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v

 Muscarinic receptors are involved in a number of physiological events like cognitive 
 processes, motor coordination, attention, circadian rhythms, food reinforcement, drug 
addiction, and synaptic plasticity. This book provides methodology for the study of musca-
rinic receptors at the structural to systemic level. The chapters are primarily intended as a 
resource for scientists who want to newly establish protocols to study muscarinic receptors 
without hitches and falling to potential pitfalls. One of such pitfalls is the lack of subtype-
selective ligands that makes studies targeted to specifi c subtype problematic. One of the 
methodological approaches for subtype identifi cation in tissues and organs is immunohis-
tochemical or Western blot analysis of muscarinic receptors. However, these methods have 
strong limitations as the selectivity of antibodies is usually poor and antibodies also target 
nonfunctional and degraded receptors. Thus these methods do not provide assessment of 
real number of receptors. Moreover, some artifacts can originate from tissue preparation. 
These can be avoided by studying receptors in their natural environment. 

 We start our book with methods for characterization of muscarinic receptor in crystal-
lography studies that advanced our understanding of structural properties and activation 
mechanism of muscarinic receptors and are cornerstone in molecular modeling and 
computer- based approaches to study muscarinic receptors. Then we move to binding tech-
niques that thanks to heterologous expression systems allow us to perform binding studies 
very accurately and easily and discuss overcoming diffi culties arising from the lack of selec-
tive ligands. Next we provide protocols to investigate molecular properties of muscarinic 
receptors. Then we provide protocols to study muscarinic receptors in the central nervous 
system using autoradiography and PET studies. We end with protocols on animals with 
knock-out and knock-in muscarinic genes to study the role of muscarinic receptors in physi-
ology and behavior.  

  Prague, Czech Republic     Jaromir     Myslivecek     
     Jan     Jakubik    
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 Experimental life sciences have two basic foundations: concepts and tools. The  Neuromethods  
series focuses on the tools and techniques unique to the investigation of the nervous system 
and excitable cells. It will not, however, shortchange the concept side of things as care has 
been taken to integrate these tools within the context of the concepts and questions under 
investigation. In this way, the series is unique in that it not only collects protocols but also 
includes theoretical background information and critiques which led to the methods and 
their development. Thus it gives the reader a better understanding of the origin of the 
techniques and their potential future development. The  Neuromethods  publishing program 
strikes a balance between recent and exciting developments like those concerning new ani-
mal models of disease, imaging, in vivo methods, and more established techniques, includ-
ing, for example, immunocytochemistry and electrophysiological technologies. New 
trainees in neurosciences still need a sound footing in these older methods in order to apply 
a critical approach to their results. 

 Under the guidance of its founders, Alan Boulton and Glen Baker, the  Neuromethods  
series has been a success since its fi rst volume published through Humana Press in 1985. 
The series continues to fl ourish through many changes over the years. It is now published 
under the umbrella of Springer Protocols. While methods involving brain research have 
changed a lot since the series started, the publishing environment and technology have 
changed even more radically. Neuromethods has the distinct layout and style of the Springer 
Protocols program, designed specifi cally for readability and ease of reference in a laboratory 
setting. 

 The careful application of methods is potentially the most important step in the process 
of scientifi c inquiry. In the past, new methodologies led the way in developing new disci-
plines in the biological and medical sciences. For example, Physiology emerged out of 
Anatomy in the nineteenth century by harnessing new methods based on the newly discov-
ered phenomenon of electricity. Nowadays, the relationships between disciplines and meth-
ods are more complex. Methods are now widely shared between disciplines and research 
areas. New developments in electronic publishing make it possible for scientists that 
encounter new methods to quickly fi nd sources of information electronically. The design of 
individual volumes and chapters in this series takes this new access technology into account. 
Springer Protocols makes it possible to download single protocols separately. In addition, 
Springer makes its print-on-demand technology available globally. A print copy can there-
fore be acquired quickly and for a competitive price anywhere in the world.  

     Wolfgang     Walz    

  Series     Preface   
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    Chapter 1   

 Towards the Crystal Structure Determination of Muscarinic 
Acetylcholine Receptors 

           Ryoji     Suno    ,     Hidetsugu     Asada    , and     Takuya     Kobayashi    

    Abstract 

   G protein-coupled receptors (GPCRs) constitute the largest family of receptors encoded by the human 
genome. Activation and inhibition of GPCRs under the physiological and pathophysiological conditions is 
largely mediated by chemical ligands (agonists and antagonists) that bind to the orthosteric binding 
pocket. Orthosteric ligands are, however, often nonspecifi c, binding to more than one GPCR subtype. In 
contrast to orthosteric agonists and antagonists, allosteric ligands do not directly compete with hormones 
and neurotransmitters for binding to the orthosteric binding pocket. Furthermore, allosteric ligands typi-
cally occupy structurally diverse regions of receptors and therefore are more selective for specifi c GPCRs, 
regulating receptor function in the more subtle ways by either enhancing or diminishing responses to natu-
ral ligands such as hormones or neurotransmitters. Recent X-ray crystallographic studies have provided 
detailed structural information regarding the nature of the orthosteric muscarinic binding site and an outer 
receptor cavity that can bind allosteric drugs. These new fi ndings may guide the development of selective 
muscarinic receptor. The procedures involved in the production, purifi cation, and crystallization of GPCRs 
are introduced here and facilitate a greater understanding of the structural basis of GPCR function.  

  Key words     G-protein coupled receptor  ,   X-ray crystal structure analysis  ,   Muscarinic acetylcholine 
receptor  ,   Antagonist  ,   Agonist  ,   Orthosteric binding site  ,   Allosteric binding site    

1     Background and Overview 

 G-protein coupled receptors (GPCRs) constitute the largest super-
family of cell surface receptors. GPCRs are seven-transmembrane 
domain receptors that mediate various cellular responses to specifi c 
ligands, including amines, eicosanoids, hormones, and peptides, as 
well as taste and light stimuli. Approximately 50 % of all currently 
available drugs act through GPCRs [ 1 ,  2 ], and GPCRs are the 
most important therapeutic targets for various disorders. Structure- 
guided drug development is important for the design of novel 
drugs devoid of side effects. 

 Electronic supplementary material   The online version of this chapter (doi:  10.1007/978-1-4939-2858-3_1    ) contains 
supplementary material, which is available to authorized users. 

http://dx.doi.org/10.1007/978-1-4939-2858-3_1
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 Muscarinic acetylcholine receptors (mAChRs) belong to the 
GPCR family and fi ve different subtypes of mAChRs (M 1 , M 2 , M 3 , 
M 4 , and M 5 ) have been cloned [ 3 – 7 ]. Muscarinic receptors are 
widely expressed in the cell membranes of brain and peripheral tis-
sues [ 8 ,  9 ]. All mAChR subtypes contain a long third intracellular 
loop (ICL3) composed of about ~160–240 amino acids and muta-
genesis studies have revealed that the N- and C-terminal portions 
of ICL3 play an important role in the specifi city of the coupling of 
G-proteins to mAChRs [ 10 ]. The M 1 , M 3 , and M 5  subtypes couple 
with the G q  family, while the M 2  and M 4  subtypes couple with the 
G i /G o  family. 

 Twenty-seven human GPCR structures including mAChRs 
have been determined to date and the crystal structures of the 
human M 2  and M 3  receptors were determined in 2012 [ 11 ,  12 ]. 
Structures of other classes of GPCRs such as glucagon receptor 
(class B), corticotropin releasing factor (CRF-1) receptor (class B), 
GABA A  receptor (class C), metabotropic glutamate receptor (class 
C), and smoothened receptor (class F) were recently solved by 
X-ray crystallographic analysis. However, several technical prob-
lems still remain with regard to solve the crystal structure of mem-
brane proteins such as GPCRs. Since milligram quantities of 
purifi ed protein are required for crystallization and structural 
determination, one of the main obstacles for crystal structure 
determination is the preparation of suffi ciently large amounts of 
functional GPCR protein [ 13 ]. 

 Previous studies have attempted to express the human M 2  
receptor with a deletion of the central portion of ICL3 from 
Ser234 to Arg381 using various expression systems, including 
 Escherichia coli  [ 14 ,  15 ],  Pichia pastoris  [ 16 ], and insect cells [ 17 ]. 
We previously identifi ed 25 GPCRs expressed by  P. pastoris  [ 16 ] 
and Sf9 insect cells, which led us to suggest both systems as suit-
able hosts for GPCR crystal structure studies. To obtain large 
amounts of M 2  receptor, Sf9 insect cells and  P. pastoris  were uti-
lized as mass production systems [ 18 ]. We expressed and purifi ed 
the M 2  receptor lacking most of the central ICL3 region (Ser234–
Arg381), and containing four asparagine residue mutations (Asn2, 
3, 6, and 9 mutated to Asp) to prevent glycosylation. This ICL3 
deletion M 2  receptor mutant was found to have the ability to bind 
agonists and activate G proteins [ 19 ], and ICL3 was shown to have 
a fl exible structure [ 15 ]. The high-affi nity inverse agonist (quinu-
clidinyl benzilate; QNB) was used and the QNB bound M 2  recep-
tor was crystallized by hanging-drop vapor diffusion. This method 
yielded crystals that diffracted to around ~9 Å, and it was not pos-
sible to further improve the quality of the crystals using this 
method. 

 Exchanging a portion of the ICL3 of the M 2  receptor with T4 
lysozyme (T4L) was initially used as a means of structure 
 determination for the β 2  adrenergic receptor [ 20 ], and this method 

Ryoji Suno et al.
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has also been used for structure determination of various GPCRs. 
The binding properties of M 2 -T4L receptors with mAChR ligands 
were the same as those in the wild-type M 2  receptor, indicating 
that the introduction of T4L does not affect the overall architec-
ture of M 2 - T4L. The M 2 -T4L receptor was subsequently crystal-
lized in the lipidic cubic phase. A 3.0 Å structure was solved by 
molecular replacement from a data set obtained by merging dif-
fraction data from 23 crystals [ 11 ]. The crystal structure of rat M 3  
receptor with T4L was also determined by the lipidic cubic phase 
method, and diffraction data from more than 70 crystals were 
merged to create a data set to 3.4 Å resolution to allow for the 
structure to be solved by molecular replacement [ 12 ]. 

 The structure determination experiments for the M 2  and M 3  
receptors revealed that, like other biogenic amine receptors, the 
mAChR family exhibits the seven-transmembrane domain topol-
ogy and overall fold of other GPCRs. The ligands bound to the M 2  
and M 3  receptors in the two crystal structures (QNB and tiotro-
pium, respectively) are both antagonists (inverse agonists). The 
orthosteric ligand-binding pocket is composed of various hydro-
phobic side chains of transmembrane domains (TMs) 3, 4, 5, 6, 
and 7 and the amino acid residues lining the orthosteric binding 
sites of all fi ve (M 1 –M 5 ) muscarinic receptor subtypes exhibit abso-
lute sequence conservation. Some polar contacts exist between 
QNB and the receptors. One such contact is a pair of hydrogen 
bonds between Asn 6.52  and the hydroxyl and carbonyl groups in 
QNB, and the other is a charge–charge interaction between the 
cationic amine of the ligand and the conserved Asp 3.32  (superscripts 
denote Ballesteros-Weinstein [ 21 ] GPCR numbering, see 
Supplementary Fig.  1 ). Asn 6.52  seems to be a unique feature of the 
mAChR family and has been proposed to be an important factor in 
slow ligand dissociation from mAChRs. Asn 6.52  is important for the 
antagonist binding, and Asp 3.32  is important for both agonist and 
antagonist binding [ 11 ]. The QNB binding site forms a cavity, 
which is secluded from the extracellular solvent and a “lid” com-
posed of three tyrosine residues located above the QNB-binding 
site to divide a large, solvent-accessible cavity into two distinct 
regions (Fig.  1 ) [ 11 ]. The lower region is the orthosteric ligand 
(QNB)-binding pocket, while the upper region is termed the 
extracellular vestibule and is implicated in the binding of allosteric 
modulators (allosteric site) [ 11 ].

   Initial structures of the M 2  and M 3  receptors were obtained in 
complex with high-affi nity antagonists (inverse agonists) repre-
senting inactive receptor conformations. However, obtaining crys-
tals of active GPCRs has proved to be extremely challenging due to 
the conformational heterogeneity induced by agonist binding. 
This chapter will focus on the techniques used to solve the struc-
ture of inactive mAChR.  

Crystal Structure of Muscarinic Receptors
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2    Materials 

 The Sf9 insect cell expression vector pFastBac1, the  P. pastoris  
expression vector pPIC9K, and Sf9 insect cells were purchased 
from Life Technologies. IPL-41 insect medium was purchased 
from AppliChem GmbH and ESF-921 insect medium was pur-
chased from Expression Systems. Tryptose phosphate, TC yeasto-
late, and Pluronic F-68 as supplements to IPL-41 medium were 
purchased from Life Technologies. Fetal bovine serum (FBS) was 
purchased from Biowest and penicillin–streptomycin was pur-
chased from Wako. Protease inhibitor cocktail tablets (cOmplete) 
were purchased from Roche Diagnostics and the mAChR antago-
nist atropine was purchased from Sigma. Sf9 insect cells were 
maintained in ESF-921 medium containing 2.0 % heat-inactivated 
FBS. IPL-41 was supplemented with 0.1 % Pluronic F-68 and 
2.0 % FBS. MD agar plates contained 1.34 % (w/v) yeast nitrogen 
base without amino acids, 2 % (w/v) dextrose, 0.00004 % (w/v) 
biotin, and 1.5 % (w/v) agar. G418-YPD agar plates contained 1 % 
(w/v) yeast extract, 2 % (w/v) peptone, 2 % (w/v) dextrose, 2 % 

  Fig. 1    The crystal structure of the inactive form of the M 2  receptor with bound 
antagonist, QNB, to the orthosteric binding site. M 2  receptor is colored in  green , and 
the T4 lysozyme is in  red . The allosteric site is shown above the orthosteric site       
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(w/v) agar, and 0.1 or 0.25 mg/ml G418. BMGY medium con-
tained 1 % (w/v) yeast extract, 2 % (w/v) peptone, 1.34 % (w/v) 
yeast nitrogen base without amino acids, 0.00004 % (w/v) biotin, 
1 % (w/v) glycerol, and 0.1 M phosphate buffer (pH = 6.0). BMMY 
medium contained 1 % (w/v) yeast extract, 2 % (w/v) peptone, 
1.34 % (w/v) yeast nitrogen base without amino acids, 0.00004 % 
(w/v) biotin, 1 % (v/v) methanol, and 0.1 M phosphate buffer 
(pH = 6.0, 7.0, or 8.0). Tritium-labeled mAChR antagonist ([ 3 H]
QNB, quinuclindinyl benzilate, 1.0 mCi/ml) was obtained from 
PerkinElmer. GF/F glass fi ber fi lters were purchased from 
Whatman. The M 2  receptor sequence was described as previously 
[ 11 ,  17 ]. For the fl ow cytometric analysis, anti-FLAG (M 2 ) anti-
body was purchased from Sigma and Alexa Fluor 488-conjugated 
goat anti-mouse IgG was purchased from Life Technologies. 
 N -Dodecyl-β- d -maltopyranoside (DDM) was purchased from 
Affymetrix and cholesterol hemisuccinate (CHS) was purchased 
from Sigma. PEG 300, (±)-2-Methyl-2,4-pentanediol (MPD), and 
ammonium phosphate were purchased from Hampton research.  

3    Methods 

   The M 2  receptor cDNA was subcloned into the pPIC9K vector, 
digested by the restriction enzyme  Pme I, and transfected into  P. 
pastoris  strain SMD1163 by electroporation (1500 V, 25 μF, and 
600 Ω) using a Gene Pulser I (Bio Rad). Clone selection was per-
formed as previously described [ 22 ,  23 ]. Briefl y, histidine-positive 
clones were selected on MD agar plates. To select for multi-copy 
transformants, histidine-positive clones were grown on G418-YPD 
agar plates. Representative clones exhibiting resistance to G418 
were tested for recombinant protein production by specifi c ligand- 
binding assays using [ 3 H]QNB. Highly functional clones were 
selected and stored as glycerol stocks at −80 °C.  

   For small-scale culture, a glycerol stock of a transformant of inter-
est was inoculated onto a YPD agar plate containing 0.1 mg/ml 
G418. Cells were pre-cultured in 5 ml of BMGY medium at 30 °C 
with shaking at 250 rpm until an OD 600  of 2.0–6.0 was reached. 
Induction of M 2  receptor expression was carried out in 5 ml of 
BMMY medium containing 0.04 % (w/v) histidine and 3 % (v/v) 
DMSO at 20 or 30 °C from an initial OD 600  of 1.0. The procedure 
used for  P. pastoris  culture was described previously [ 16 ]. After 
induction of recombinant expression for an optimized amount of 
time (generally ~20–60 h), cells were harvested by centrifugation 
at 4000 ×  g  for 15 min, washed once with ice-cold water, and then 
either frozen or immediately used for membrane preparation. 

 For large-scale culture, a single  P. pastoris  colony exhibiting 
high expression levels of the M 2  receptor was picked from a YPD 
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the M 2  Receptor 
for Expression 
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3.2  Recombinant 
Expression 
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plate containing 0.1 mg/ml G418 and was cultured in 5 ml BMGY 
medium overnight at 30 °C with shaking at 250 rpm. The cultured 
cells were inoculated into 200 ml BMGY medium and grown over-
night at 30 °C with shaking at 250 rpm until an OD 600  of 2.0–6.0 
was reached. The overnight culture (200 ml) was inoculated into 
1000 ml of BMGY medium for 4 h at 250 rpm and grown until an 
OD 600  of 5.0–10.0 was reached. Cells were harvested by centrifu-
gation at 4000 ×  g  for 15 min, after which the cell pellet was washed 
with double-distilled water before being subjected to centrifuga-
tion again. The resulting cell pellet was resuspended in 1.0–8.0 l of 
BMMY medium to an OD 600  of 1.0. The culture was incubated for 
1–4 days at 20 °C shaking at 250 rpm, and 20 % methanol (50 ml/l 
culture) was added to maintain a fi nal methanol concentration of 
1 % until the end of the culture period. Culture media (1 ml) was 
sampled for the binding assay (Figs.  2  and  3 , Table  1 ) and the 
remaining cells were harvested by centrifugation at 6000 ×  g  for 
10 min. The cell pellet was washed with 250 ml of double-distilled 
water and resuspended in 100 ml of double-distilled water 
 containing a protease inhibitor cocktail tablet (Roche). Cells were 
quick-frozen in liquid nitrogen and stored at −80 °C.

        The Bac-to-Bac baculovirus expression system (Life Technologies) 
is a rapid and effi cient system by which baculovirus can be gener-
ated for GPCR expression. An advantage of this system is the 
 site- specifi c transposition property of the Tn7 transposon, which 
simplifi es and enhances the process of generating recombinant 
bacmid DNA in  E. coli  [ 24 ,  25 ]. To solve the M 2  receptor struc-
ture, the M 2  receptor gene was constructed as described previously 
[ 11 ]. In brief, four N-linked glycosylation sites (Asn2, 3, 6, and 9) 

3.3  Generation 
and Amplifi cation 
of Baculovirus 
Encoding the M 2  
Receptor 
for Expression in Sf9 
Insect Cells
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  Fig. 2    Time course assessment of the M 2  expression levels in the insect cell and yeast expression systems 
based on the specifi c binding of [ 3 H]QNB to M 2  receptors in Sf9 insect cells ( a ) and  P. pastoris  ( b )       
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at the N-terminus were substituted with aspartic acid and the third 
intracellular loop of the M 2  receptor was replaced with T4 lyso-
zyme. The M 2  receptor gene was subcloned into the pFastBac1 
vector and, to generate the recombinant bacmid encoding the M 2  
receptor, the M 2  receptor gene in the pFastBac1 vector was trans-
formed into the DH10Bac ( E. coli. ) cells. A 1.5 ml overnight cul-
ture inoculated from a single colony of this transformant yields 
suffi cient amounts of recombinant bacmid DNA for several insect 
cell transfections. 
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  Fig. 3       Comparison of the binding properties of M 2  receptor expressed in Sf9 insect cells and  P. pastoris . The 
saturation-binding curve of M 2  receptor from Sf9 insect cell and  P. pastoris  are shown in ( a ). Scatchard plots 
were calculated from the saturation-binding curves of M 2  receptor expressed in Sf9 insect cells ( b ) and in  P. 
pastoris  ( c )       

    Table 1  
  The dissociation constant ( K  D ) and maximum specifi c binding ( B  MAX ) of M 2  
receptor expressed in Sf9 insect cells and  P. pastoris    

  K  D  (pM)   B  MAX  (pmol/mg-membrane) 

 Sf9  86.2 ± 8.6  27.2 ± 5.6 

  P. pastoris   101.1 ± 15.1  33.5 ± 7.1 

  The M 2  receptor was expressed in Sf9 insect cells and  P. pastoris  on a small scale (Sf9: 
10 ml,  P. pastoris : 5 ml). Cell membranes were prepared to determine the specifi c bind-
ing of M 2  receptor using the radioactive M 2  receptor antagonist [ 3 H]QNB.  K  D  and 
 B  MAX  values were calculated from saturation-binding curves and Scatchard plots (Fig.  3 ). 
Data are presented as means ± standard deviation  
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 Sf9 insect cells (2 ml, 1 × 10 6  cells/well) were seeded into 
6-well plates and cultured for 24 h at 27 °C. Recombinant bacmid 
DNA (2 μl) was transfected into Sf9 insect cells using Cellfectin II 
(Life Technologies) and the baculovirus (P0 virus) was amplifi ed in 
Sf9 insect cells. To amplify the P1 baculovirus, 50 ml of fresh Sf9 
insect cells (1 × 10 6  cells/ml) were transfected with 0.5 ml P0 virus. 
The resulting baculovirus titer was determined by seeding Sf9 cells 
(1 × 10 6  cells/well) into 6-well plates and incubating them for 1 h 
at 27 °C. The cells were then transfected with serially diluted bacu-
lovirus (e.g., 1000–10,000 × dilutions), cultured for 24 h, har-
vested in test tubes, and washed twice with FACS buffer (PBS (−), 
2 % FBS, 0.05 % NaN 3 ). Phycoerythrin (PE)-conjugated anti-gp64 
antibody (0.1 μg; eBioscience) was then incubated with the cells 
for 30 min on ice in the dark. For fl ow-cytometric analysis, the 
labeled cells were washed with FACS buffer and resuspended in 
100 μl of FACS buffer. For the expression of large amounts of M 2  
receptor, 1 l virus supernatant was prepared by P1 virus infection 
at an MOI (multiplicity of infection) of 0.1. The virus supernatant 
(P2 virus) was collected and used for small- or large-scale expres-
sion of the M 2  receptor.  

   Small-scale culture was performed to transfer to large-scale culture 
using a wave bioreactor (GE Healthcare) or to determine optimal 
expression conditions such as MOI and culture period. Sf9 insect 
cells were cultured in 125 ml Erlenmeyer fl asks shaken at 125 rpm 
at 27 °C and were passaged every 3–4 days. To optimize expres-
sion conditions, 10 ml Sf9 insect cells (1 × 10 6  cells/ml) were 
seeded into 125 ml Erlenmeyer fl asks infected with several MOI of 
baculovirus (e.g., MOI = 0.5–5), and grown for 2–4 days at 27 °C 
with shaking at 125 rpm. The cells were stained with anti-FLAG 
antibody (primary antibody) and goat anti-mouse IgG conjugated 
with Alexa Fluor 488 (secondary antibody) for fl ow cytometric 
analysis. Ligand-binding activity was furthermore measured using 
[ 3 H]QNB (see Section  3.5  below). 

 For large-scale culture, Sf9 insect cells were suspended (1 × 10 6  
cells/ml) in 5 l ESF921 insect media containing 2 % FBS. The cell 
suspension was transferred to a cell culture bag (CELLBAG 22 
L/O, GE Healthcare) [ 26 ,  27 ] and cultured for 1 day under the 
following culture conditions: shaking at 20 rpm, rocking angle of 
8.5°, 30 % O 2 , air fl ow rate of 0.25 l/min, and 27 °C. After that, 
100–300 ml baculovirus stock (in the case of the M 2  receptor, opti-
mized MOI = 2) was transferred into the cell bag and infection was 
allowed to proceed under the following infection conditions: 
22 rpm, rocking angle of 8.5°, 50 % O 2 , air fl ow rate of 0.5 l/min, 
and 27 °C. After 2 days of infection, 1 ml culture media was sam-
pled for the binding assay (Figs.  2  and  3 , Table  1 ) and the remain-
ing cells were harvested by centrifugation at 6000 ×  g  for 10 min. 
The cell pellet was washed with 250 ml of PBS (−) and resuspended 

3.4  Expression 
Procedure for Sf9 
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in 100 ml of PBS (−) containing a protease inhibitor cocktail tablet 
(Roche). Cells were quick-frozen in liquid nitrogen and stored at 
−80 °C.  

    All experiments were performed in duplicate in a total volume of 
200 μl. Membrane proteins were quantifi ed using a bicinchoninic 
acid (BCA) assay (Thermo Fisher Scientifi c) with bovine serum 
albumin as a standard. Membrane (5 μg) was resuspended in assay 
buffer (20 mM potassium phosphate buffer) in a 1.5 ml of tube 
and was incubated for 30 min at room temperature in the presence 
of 1.5 nM [ 3 H]QNB for a single point binding assay carried out 
with a saturating radioligand concentration. Nonspecifi c binding 
was assessed by incubation in the presence of an excess of the non-
radioactive ligand (1.5 μM QNB). GF/F glass fi lters were pre- 
soaked in 200 ml polyethyleneimine (0.3 %, v/v). Bound and free 
ligands were separated by rapid vacuum fi ltration through GF/F 
fi lters. Filtration was performed with a Brandel cell harvester at 
room temperature and fi lters were washed three times with 5 ml of 
deionized water. Residual radioactivity was measured using a LCS- 
5100 liquid scintillation counter (ALOKA).  

   Cell membranes from  P. pastoris  were prepared at 4 °C. Harvested 
cells (1 g wet weight) were suspended in 4 ml lysis buffer (50 mM 
sodium phosphate buffer, pH = 7.4, 100 mM NaCl, 5 % (v/v) glyc-
erol, and 2 mM EDTA) containing protease inhibitor cocktail (one 
tablet/100 ml lysis buffer). Suspended yeast cells were disrupted 
by vortex at 4 °C for 2 h with 0.5 mm glass beads. Lysis effi ciency 
was assessed by light microscopy and was usually found to be 
>80 %. Intact cells and cell debris were separated from the 
 membrane suspension by low-speed centrifugation (3000 ×  g  for 
5 min at 4 °C), after which membranes were snap-frozen in liquid 
nitrogen and stored at −80 °C. 

 For preparation of the cell membranes from the Sf9 insect 
cells, 1 l Sf9 biomass was centrifuged at 1500 ×  g  for 10 min at 
4 °C. The resulting cell pellet was washed with PBS (−) and resus-
pended in 100 ml of hypotonic buffer containing 10 mM HEPES 
at pH = 7.5, 20 mM potassium chloride, 10 mM MgCl 2 , and pro-
tease inhibitor cocktail using a Dounce homogenizer. Insect cell 
membranes were centrifuged at 100,000 ×  g  for 30 min and the 
resulting pellets were resuspended in 10 mM HEPES at pH = 7.5, 
10 mM MgCl 2 , 20 mM KCl, and 40 % glycerol. The suspensions 
were quick-frozen in liquid nitrogen and stored at −80 °C.  

   M 2 -T4L membranes were solubilized with a digitonin/Na-cholate 
solution and purifi ed using an affi nity column with aminobenztro-
pine (ABT) as a ligand [ 28 ]. The entire procedure was carried out 
at 4 °C. Sf9 cell membrane preparations with ~2 kg wet weight and 
~1.5 μmol of M 2 -T4L as measured by ligand binding assays using 

3.5  Radioligand 
Binding Assay

3.6  Preparation 
of Cell Membranes
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and Purifi cation 
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[ 3 H]QNB were solubilized with 1 % digitonin, 0.35 % Na-cholate, 
10 mM potassium phosphate-buffered saline (pH 7.0) (KPB), 
50 mM NaCl, 1 mM EDTA, and protease inhibitor cocktail in a 
total volume of 300 ml. The suspension was stirred for 1 h at 4 °C 
and then centrifuged at 100,000 ×  g  for 1 h. The resulting superna-
tant was stored at −80 °C. For M 2  purifi cation, the supernatant was 
applied to two ABT columns run in parallel (500 ml each), which 
were then washed with 0.1 % digitonin, 0.1 % Na-cholate, 20 mM 
KPB, and 150 mM NaCl at a rate of ~90 ml/h. M 2 -T4L was eluted 
from the ABT columns with 0.5 mM atropine, 0.1 % digitonin, 
0.1 % Na-cholate, 20 mM KPB, and 150 mM NaCl. Eluate was 
applied to a column of hydroxyapatite (30 ml). The hydroxyapatite 
column was washed at a rate of 30–50 ml/h with a series of solu-
tions as follows: (1) 0.1 % digitonin, 0.1 % Na-cholate, 20 mM 
KPB (100 ml); (2) 5 μM QNB, 0.1 % digitonin, 0.1 % Na-cholate, 
20 mM KPB (600 ml); (3) 0.35 % Na cholate, 20 mM KPB 
(600 ml); (4) 0.2 % decylmaltoside, 20 mM KPB (500 ml); (5) 
0.2 % decylmaltoside, 150 mM KPB (100 ml); [ 6 ] 0.2 % decyl-
maltoside, 500 mM KPB (60 ml). M 2 -T4L–QNB was fi nally eluted 
with 0.2 % decylmaltoside, 1 M KPB (50 ml). The eluate was con-
centrated to ~1 ml (~30 mg protein per ml) using Amicon Ultra 
Centrifugal Filter Units (MILLIPORE), dialyzed against 0.2 % 
decylmaltoside, 20 mM Tris–HCl buffer (pH = 7.5) and then 
stored at −80 °C. The M 2  receptor yield was estimated at ~50 % 
based on the assumption that the recovered protein was pure M 2 - 
T4L. Protein concentration was determined using the BCA 
method (PIERCE). Because M 2 -T4L was purifi ed in complex with 
QNB, the [ 3 H]QNB-binding activity could not be estimated 
because the dissociation rate of QNB is too slow. However, in pre-
liminary experiments using [ 3 H]QNB or dissociable atropine as 
eluents, the receptor was confi rmed to be purifi ed to near homo-
geneity. The purity of M 2 -T4L was confi rmed by SDS-PAGE and 
gel permeation chromatography.  

   The solution including purifi ed M 2 -T4L with bound QNB was sub-
jected to buffer exchange to 20 mM HEPES pH = 7.5, 100 mM 
NaCl, 0.1 % MNG and the sample was concentrated to 50 mg/ml. 
The protein sample was reconstituted in the lipidic cubic phase by 
combining it with a 1.5-fold weight excess of a 10:1 monoolein–
cholesterol mixture by the twin-syringe method. The mixture was 
further mixed either by hand or using a Gryphon LCP robot (Art 
Robbins Instruments), and was dispensed using a ratchet device 
(Hamilton) or using the Gryphon LCP robot in drops to glass 
sandwich plates and overlaid with precipitant solution. Initial 
screening was carried out by in-house screening, after which single 
crystallization conditions were optimized. Crystals were grown in 
100 mM HEPES pH 7.0–7.8, 25–35 % PEG 300, 100 mM ammo-
nium phosphate, 2 % 2-methyl-2,4-pentanediol. The crystals 
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reached full size and were harvested after 3–4 days at 20 °C, after 
which they were stored in liquid nitrogen. The crystals used for the 
data collection were grown in 100 mM HEPES pH 7.2–7.9, 
20–80 mM EDTA pH 8.0, 10–20 % PEG 300, 1,2,3-heptanetriol.   

4    Conclusion 

 The initial structures of the M 2  and M 3  receptors were obtained 
from receptors in an inactive state with high affi nity inverse ago-
nists bound to them. Determining the crystal structure of active 
GPCRs has thus far proved to be extremely diffi cult, because the 
large parts of agonist binding GPCRs are conformationally hetero-
geneous. The active-state structure of M 2  receptor with the agonist 
iperoxo has been obtained with the aid of a conformationally selec-
tive antibody fragment (nanobody) which mimicked G proteins and 
stabilized the active conformation of the receptor (Fig.  4 ) [ 29 ]. 
This approach may prove to be useful for obtaining active- state 
structures of other GPCRs in the future. Using this method, the 

  Fig. 4    The structure of the active form of M 2  receptor with bound agonist iperoxo 
and the positive allosteric modulator LY2119620. M 2  receptor is colored in  green  
and nanobody is colored in  blue . LY2119620 is bound in the allosteric site and is 
colored in  magenta . Iperoxo is bound in the orthosteric site       
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Chapter 2

Homology Modeling and Docking Evaluation of Human 
Muscarinic Acetylcholine Receptors

Trayder Thomas, David K. Chalmers, and Elizabeth Yuriev

Abstract

The development of GPCR homology models for virtual screening is an active area of research. Here we 
describe methods for homology modeling of the acetylcholine muscarinic receptors M1R–M5R. The mod-
els are based on the β2-adrenergic receptor crystal structure as the template and binding sites are optimized 
for ligand binding. An important aspect of homology modeling is the evaluation of the models for their 
ability to discriminate between active compounds and (presumed) inactive decoy compounds by virtual 
screening. The predictive ability is quantified using enrichment factors, area under the ROC curve (AUC), 
and an early enrichment measure, LogAUC. The models produce good enrichment capacity, which dem-
onstrates their unbiased predictive ability. The optimized M1R–M5R homology models have been made 
freely available to the scientific community to allow researchers to use these structures, compare them to 
their results, and thus advance the development of better modeling approaches.

Key words Acetylcholine muscarinic receptor, Binding site optimization, Decoy, Docking, GPCR, 
Homology modeling, Virtual screening

1 Introduction

The use of structure-based design methods for G protein-coupled 
receptors (GPCRs) commenced in the early 2000s with the land-
mark report of the structure of bovine rhodopsin [1]. The first crys-
tal structures of ligand-infusible GPCRs became available in 2007 
[2–4], and, at the time of writing, the number of available structures 
has grown to a total of 119 crystal structures for 22 receptor sub-
types [5]. Despite the considerable technical advances in the field, 
GPCR crystallization remains an area of highly specialized expertise, 
and the solved structures make up only a small fraction of the ~800 
GPCRs present in the human genome (including 342 nonolfactory 
receptors) [6]. It is accepted that the prospect of solving the struc-
tures of all members of the GPCR superfamily is not realistic in the 
foreseeable future [7, 8]. Therefore, when receptor models are 
required for structure-based investigations and  experimental data is 
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lacking, researchers turn to homology models. A homology model 
of a protein (also known as a comparative model) is an atomic-reso-
lution model of a protein (the “target”) built based on its amino 
acid sequence and experimental three- dimensional structure of a 
related homologous protein (the “template”).

GPCR homology models are important tools for understand-
ing GPCR function and for structure-based drug design [7–11]. 
Virtual screening campaigns against GPCR homology models have 
identified novel active agents for a range of GPCR targets [12] in 
a prospective manner (i.e., where compounds initially identified 
through a virtual screen have been sourced and experimentally 
validated). A wider overview of GPCR modeling is provided by 
reference [13]; for brief summaries of GPCR docking studies (as 
well as other docking-related surveys), see [14, 15].

This chapter describes the procedural steps involved in build-
ing, optimizing, and evaluating models of muscarinic acetylcholine 
receptors (mAChRs). We start with the overview of muscarinic 
receptor modeling (Section 2) and then discuss the approaches we 
have used to develop refined GPCR homology models which are 
able to identify active compounds through virtual screening 
(Sections 3–4) [12, 16].

There are five subtypes of muscarinic acetylcholine receptors, 
denoted M1R–M5R [17]. Development of mAChR ligands (par-
ticularly, subtype-selective ligands) holds potential for the treat-
ment of many diseases such as Alzheimer’s, schizophrenia, drug 
addiction, type 2 diabetes, and cancer [18].

2 Overview of Muscarinic Receptor Modeling

Several muscarinic receptor models have been generated over the 
past few years. They have employed a variety of different templates 
as the basis for homology model construction. The template pro-
teins used to generate the homology models in each case are listed 
in Table 1.

3 Homology Modeling of Muscarinic Acetylcholine Receptors

The modeling workflow is shown in Fig. 1 and described in detail 
in the following sections. We have built homology models of 
mAChRs M1–M5 [12], using the β2-adrenergic receptor (β2AR) 
crystal structure (PDB ID: 2RH1) [2] as the template and employ-
ing the induced fit docking (IFD) procedure [19] to optimize the 
models to improve their identification of compounds which bind to 
their orthosteric binding sites. The predictive quality of all five 
models was assessed through retrospective virtual screening investi-
gations. The results obtained using property-matched decoy librar-
ies demonstrated the unbiased predictive capacity of these models.

Trayder Thomas et al.
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Many software packages have been used for modeling of mAChRs 
including ICM [20, 21], MODELLER [22–30], MOE [31–35], 
Prime [12, 26, 35–38], YASARA [26], QUANTA [27–30], and 
VEGA [39]. Molecular modeling steps and options described in 
this protocol refer to the Schrödinger software suite [40], as used 
by us [12, 16]. Default settings were used, unless otherwise stated.

The following Schrödinger modules and programs were used 
for specific tasks (Note 1):

 1. Homology modeling—Prime [41].
 2. Multiple sequence alignment—ClustalW [42].
 3. Ligand preparation—LigPrep [43].
 4. Ligand docking—Glide [44, 45].
 5. Binding site optimization—IFD [19].
 6. Computation of physical descriptors for comparison of the 

decoy sets with the active compounds—ChemAxon Marvin 
Calculator (cxcalc) (http://www.chemaxon.com): The 
descriptors include molecular weight (MW), number of rotat-
able bonds, number of hydrogen bond donor and acceptor 
atoms, calculated logP (ClogP), polar surface area (PSA), and 
vdW volume.

3.1 Software

Table 1 
Templates used for modeling muscarinic receptors

Template
Receptor  
modeled

Template  
PDB ID References

Rhodopsin M1R 1U19 [22]
1F88 [35, 36, 39]

M2R 1U19 [26]
M3R 1GZM [23]

β2AR M1R 2RH1 [16, 28–31]
M2R 3D4S [26]
M2R 2RH1 [20, 21, 26]
M1R–M5R 2RH1 [12]

M2R M1R 3UON [34]

M3R M1R 4DAJ [33, 37]
M2R 4DAJ [26]
M5R 4DAJ [25]

D3Ra M1R 3PBL [32]

β1AR M2R 2VT4 [26]
M3R 2VT4 [38]
M5R 2VT4 [24]

aThe original D3R-based model was edited to replace the extracellular loop 2 by 
 fragments extracted from the structures of the human β2AR (PDB ID: 2RH1) and 
A2AAR (PDB ID: 3EML) receptors

Modeling Muscarinic Acetylcholine Receptors
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 7. Computation of the 2D Tanimoto score (using fragment sizes 
of 1–7 atoms, ignoring hydrogens) to demonstrate the diversity 
of the structures within the ligand sets—Silico [46].

 8. Sorting of docked poses based on rank and calculating enrich-
ment metrics—Silico [46].

Fig. 1 Flow chart of homology modeling and model evaluation

Trayder Thomas et al.
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The choice of an appropriate template for GPCR homology 
 modeling is an area of an ongoing debate [47–50]. While close 
sequence similarity is a very important factor in template selection, 
it has been shown that model refinement approaches such as bind-
ing site optimization and model enhancement based on experi-
mental knowledge (discussed in more detail in Section 3.5 below) 
are capable of compensating for more distant sequence relation-
ships [51]. Additionally, the ever-increasing number of available 
structures and improvements in methods for model refinement 
means that the most optimal choice of a template for a particular 
target cannot be determined once and for all and requires regular 
re-evaluation. As can be seen in Table 1, a variety of templates have 
been used as the basis for modeling of muscarinic acetylcholine 
receptors. Furthermore, it has also been shown that model quality 
can be improved by combining multiple templates [32].

A receptor model, built on a close sequence template, is usually 
considered to be preferable for structure-based drug design [26, 
34]. However, when close sequence templates are not available (as 
still is the case for many GPCRs), knowledge-based optimization 
can be used to improve a model that is based on a more remote 
sequence template. We have previously demonstrated that an opti-
mized model of the M2R, based on a more remote template (β2AR), 
outperformed a naïve (i.e., generated without binding site optimi-
zation) M2R model, based on a close sequence template (M3R), in 
virtual screening [12]. These results agree with similar observa-
tions for modeling the dopamine D1 and D2 receptors [48], the 
β2AR [51], as well as a diverse panel of receptors (β1A and β2A, 
dopamine D3, histamine H1, muscarine M2 and M3, A2A adenos-
ine, S1P1, kappa-opioid, and C-X-C chemokine 4 receptors) [52].

Due to a significant level of sequence conservation within the 
transmembrane regions (helices) of GPCRs, it is possible to align 
sequences by making use of highly conserved residues to identify 
the positions of gaps and inserts. GPCR sequences are available for 
download from the Universal Protein Resource  (http://www. 
uniprot.org/). For effective receptor space coverage, representa-
tives from different relevant GPCR subfamilies should be used for 
multiple sequence alignment. To establish the alignment between 
the mAChRs and the template (β2AR) structure, we used ClustalW 
[12] (Fig. 1) to create a multiple sequence alignment of the mus-
carinic receptors with the human dopamine, serotonin, α- and 
β-adrenergic, adenosine, histamine, and bovine rhodopsin recep-
tors. The ClustalW multiple sequence alignment required manual 
editing to remove gaps in helices and to ensure that highly con-
served residues in each transmembrane helix were properly aligned.

Using a well-aligned sequence of an appropriate template, a user 
can generate a starting (naïve) 3D receptor model. In our work, 

3.2 Choice 
of Template

3.3 Multiple 
Sequence Alignment

3.4 Generation of a 
Starting (Naïve) Model
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http://www.uniprot.org/
http://www.uniprot.org/


20

naïve homology models of the five human mAChRs were built in 
Prime (Fig. 1) from the multiple sequence alignment, using the 
β2-adrenergic receptor (PDB ID: 2RH1) crystal structure [2] as 
the template.

A naïve model is not necessarily very good at identifying active 
ligands and can be improved by binding site optimization. Binding 
site optimization takes into account the structural plasticity of a 
binding site and its ability to adjust to the structural demands of the 
ligand. Binding site optimization via a variety of approaches has 
been widely used to improve model quality. These have been vari-
ously described as ligand-steered [53], ligand-guided [54, 55], 
ligand-adapted [49], or ligand-optimized [48] homology model-
ing. Binding site optimization via a variety of approaches—mainly 
those employing accessible experimental data relating to a target and 
its ligand knowledge (such as structure-activity relationships and/or 
site-directed mutagenesis)—has been commonly used and shown to 
improve model quality in GPCR Dock assessments [56–58].

The following steps describe binding site optimization via 
induced fit docking, as implemented by us for muscarinic receptors 
using the IFD module of the Schrödinger software suite [12] 
(Fig. 1).

The mAChR homology models are first treated by the Maestro 
Protein Preparation Wizard workflow [43] to add and minimize 
hydrogen atoms using the OPLS_2005 force field. Following 
model preparation, the ligand-binding site is refined by docking an 
appropriate ligand (here referred to as the “optimization ligand”) 
into each of the homology models using Glide within the IFD 
protocol. The optimization ligand should ideally be representative 
of the hits a user intends to find, e.g., by having a similar scaffold. 
In order to identify a larger range of hits, it is important to con-
sider how adjusting the binding site around the optimization 
ligand will limit the ability of other ligands to dock. For example, 
optimization of the residues around a smaller ligand can reduce the 
volume of the binding site and preclude the ability of larger ligands 
to dock successfully.

Glide docks ligands within a predefined, cuboid region. This 
site should be roughly centered on the binding site, and be large 
enough, so as to allow the binding of large ligands. We chose to 
center the docking site upon residues Asp 3.32, Trp 6.48, Phe 
6.52, and Tyr 7.43 (Ballesteros-Weinstein nomenclature [59]) 
(Note 2). Both the van der Waals (vdW) radii and the partial 
atomic charges were scaled by 0.5 in order to collect a more diverse 
range of poses. In the initial Glide docking step, up to 50 poses per 
ligand were collected.

Clozapine and atropine have been demonstrated as useful opti-
mizing ligands for IFD [12] since they have high affinity for the 

3.5 Binding Site 
Optimization

3.5.1 Docking 
Optimization Ligands  
into Naïve Models

Trayder Thomas et al.
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M1–M5 receptors; reported clozapine Ki values vary from 1.4 to 
5.0 nM and atropine Ki values range between 0.2 and 1.5 nM 
[60]. Following the virtual screening evaluation procedure 
(described below), the atropine-optimized model for the M1R 
gave the best enrichment, while the best M2R–M5R models were 
optimized using clozapine [12].

The user should select specific residues to include into the binding 
site refinement. We recommend selecting the side-chain conforma-
tions of the residues within 5 Å of ligand atoms, excluding Asp 
3.32 and Trp 6.48, for optimization with Prime. Asp 3.32 and Trp 
6.48 play a critical role in correctly orienting ligand molecules 
within receptor binding sites (Note 3). For M1R–M5R models, 
when Trp 6.48 and Asp 3.32 were omitted from binding site opti-
mization, more credible ligand poses were obtained, which led to 
better enrichment in virtual screening [12, 49].

Following binding site optimization with Prime, candidate recep-
tor models are selected by evaluating how the optimization ligand 
fits within the binding site. The optimization ligand should be re- 
docked into the optimized receptors with Glide using default vdW 
and charge scaling parameters. Multiple ligand-receptor poses for 
each model should be generated and inspected. At this stage recep-
tor models are chosen on the basis of the position and orientation 
of the ligand within the binding site, key hydrogen bonding and 
vdW interactions, and the relative energy of interaction, which is a 
composite of the protein and ligand energy scores (Eq. 1). The 
distance (ndist) between the ionizable or quaternary nitrogen of 
the ligand (for simplicity we will just refer to this atom as the 
 “ionizable nitrogen”) and the closest carboxylate oxygen of the 
conserved Asp 3.32 residue should also be taken into account 
(Note 4 and 5):

 IFDScore GlideScore Prime Energy= + ´0 05. _  (1)

A maximum of 20 poses are required to be collected for further 
evaluation of receptor models by retrospective virtual screening.

4 Evaluation of Muscarinic Acetylcholine Receptor Models by Virtual Screening

The predictive quality of the candidate receptor models is estab-
lished by measuring the ability of the candidate models to distin-
guish between known active compounds and chemically similar 
decoy compounds with physicochemical properties that closely 
match those of the actives. Methods for evaluating homology 
modeling and virtual screening protocols as applied to GPCRs are 
a focus of active research [56–58, 63, 64].

3.5.2 Predicting 
Conformations of Binding 
Site Side Chains

3.5.3 Selection 
of Candidate Receptor 
Models

Modeling Muscarinic Acetylcholine Receptors
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Known antagonists of muscarinic receptors (actives) can be 
obtained from the GLIDA database [65] (http://pharminfo.
pharm.kyoto-u.ac.jp/services/glida/). We have used a set of 48 
actives (Note 6) in our retrospective virtual screening studies [12]. 
Reference [16] contains the chemical structures of these actives 
and Table 2 lists their average physicochemical properties. We used 
the Maestro module LigPrep to generate compound 3D structures 
and to assign tautomeric states and formal charges at physiological 
pH (pH 7.4 ± 2.0) of active and decoy compounds with a single, 
likely structure per compound being retained for screening.

Although there are many large decoy libraries available for retro-
spective virtual screening studies, it has been demonstrated that a 
set of approximately 1000 molecules is sufficient to detect enrich-
ment trends. For example, it has been shown that little library size- 
dependent behavior is detected when screening with the entire 
Directory of Useful Decoys (DUD) set of approximately 100,000 
molecules compared to a randomly selected subset of 1000 DUD 
molecules [66]. It is important that the decoys must not be readily 
distinguishable from the active compounds. Decoy sets where the 
physicochemical properties of the decoys differ substantially from 
those of the active ligands have been shown to lead to biased vir-
tual screening results, and often artificially good enrichment [66].

In our studies we have evaluated three sets of decoys. Table 2 
lists the properties of the decoy and active compounds: molecular 
weight MW (g/mol), number of rotatable bonds (NRB), polar 
surface area PSA (Å2), calculated logP, number of hydrogen bond 
donors and acceptors (HBD and HBA, respectively), solvent acces-
sible volume (Å3), and 2D Tanimoto score. It can be seen that, 
generally, the properties of the active compounds are similar to 
those of the decoy libraries.

The Schrödinger decoy set (http://www.schrodinger.com), previ-
ously used by us [12, 16], contains 1000 drug-like decoys, ran-
domly selected from a library of one million compounds having 

4.1 Actives

4.2 Decoys

4.2.1 Set 1

Table 2 
Average ligand properties [12]

Ligand set
MW  
(g/mol) NRB PSA (Å2) ClogP HBD HBA

vdW  
volume (Å3) 2D Tanimoto score

Actives 324 5.1 31 3.03 1.4 1.6 318 0.233

Decoy sets

1: Schrödinger 360 5.0 84 2.90 2.0 4.2 316 0.125

2: ZINC 320 4.3 38 3.43 1.4 1.7 302 0.185

3: Refined Schrödinger 343 4.8 79 2.59 2.4 3.3 312 0.143

Trayder Thomas et al.
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properties characteristic of drug molecules [44, 45]. The  molecular 
weights of this set vary from 151 to 645 g/mol, with an average of 
360 g/mol. These decoys were not specifically selected to mimic 
muscarinic antagonist compounds.

We derived the ZINC decoy set from the ZINC database (http://
zinc.docking.org/) [67] (7.2 million compounds, database ver-
sion 7) by a process of successive eliminations, generating a subset 
of molecules closely matching the physicochemical properties of 
the actives (Table 2). 1000 molecules were randomly selected sat-
isfying the physicochemical properties criteria (Note 7). This set is 
more challenging in terms of distinguishing between decoys and 
active compounds.

The refined Schrödinger decoy set is a subset of the decoy Set 1, 
with molecular weight limited to be consistent with that of the 
active compounds (260–410 g/mol). To generate this set, all com-
pounds from the Schrödinger decoy library with a molecular 
weight outside the range of the active compounds and without 
ionizable nitrogen were removed. This set contains 261 molecules 
and is more challenging than Set 1 from which it was derived.

To establish the ability of the receptor to identify muscarinic antag-
onists, the decoys and actives are docked into the candidate recep-
tor models (Note 8), generated and selected at Sections 3.5.1–3.5.3 
above (Fig. 1). The top pose for each ligand (determined by 
GlideScore) is retained following post-docking minimization.

Following docking, models should always be visually inspected 
to ensure that the ligands bind within the defined binding pocket. 
Furthermore, the intermolecular interactions in these poses should 
be examined to ensure that important expected interactions, based 
on mutagenesis studies [68], are observed between ligand and 
receptor molecules.

Both enrichment plots and receiver operating characteristic curve 
(ROC) plots have been used to establish the performance of 
homology models and crystal structures. It has been argued that 
ROC curves are superior to enrichment plots: not only do they 
reflect the selection of actives, but also the non-selection of decoys 
[69, 70]. One metric that can be derived from ROC plots is the 
area under the curve (AUC). The AUC, which has an ideal value 
of 1, gives an indication of the general ability of the model to dis-
tinguish active compounds (true positives) from decoy compounds 
(true negatives). It should be noted that the AUC does not specifi-
cally focus on the best docking scores being allocated to active 
compounds (early enrichment). In order to weight the AUC 
towards early enrichment, the ROC curve can instead be plotted 
with a logarithmic x-axis. The resulting LogAUC [71] is then 

4.2.2 Set 2

4.2.3 Set 3

4.3 Enrichment 
Studies

4.3.1 Docking

4.3.2 Numeric 
and Graphic Assessment 
of Models
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calculated by computing the fraction of the ideal area under the 
semilog ROC curve. Another metric, NSQ_AUC [72], has also 
been developed to probe early, rather than overall, enrichment.

Due to the large scale of most virtual screening efforts there is 
significant advantage in automating the process of calculating 
ROC curves. There are many programs already designed to calcu-
late ROC curves for popular docking packages. Below we detail 
the general procedure available in our scripts implemented in 
Silico [46].

The set of docked actives and decoys is ranked by GlideScore. 
The ROC curve is plotted by stepping through the list and plot-
ting the cumulative fraction of actives encountered (true positives, 
y-value) against the cumulative fraction of decoys (true negatives, 
x-value).

An enrichment curve is generated similarly, differing in that 
the x-axis reflects the percentage of compounds encountered rather 
than decoys. The enrichment factors (EF) are the y-values corre-
sponding to each % (x-value). Enrichment factors are usually calcu-
lated at 2, 5, and 10 % of the total number of compounds (Ntotal) 
screened, according to Eq. (2):
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The AUC is calculated by integrating the area under the ROC 
curve (Note 9) according to Eq. (3):
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where dT is the total number of decoys, aF is the number of actives 
found, and aT is the total number of actives.

LogROC curves follow a similar principle but weight the ROC 
curve to favor early enrichment. Because logarithmic curves have 
an asymptote at zero it is necessary to introduce a lower limit. This 
lower limit (λ) functions to restrict the length of the x-axis to a 
finite value. It is important to realize that LogAUC is only compa-
rable for identical λ values (usually 0.001). There are also addi-
tional considerations: any coordinates smaller than λ should not be 
included in the calculations and unless one of the x-coordinates 
coincides with λ, an additional term needs to be added to calculate 
the first partial step.

In its reduced form, the formula for LogAUC is Eq. (4):
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However, this formula can be understood more intuitively when 
written as Eq. (5):
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To account for the first partial step, an additional term (Eq. 6) may 
need to be added to both of these previous formulas:
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where dF is the number of decoys found, dT is the total number of 
decoys, aF is the number of actives found, and aT is the total num-
ber of actives.

The intuitive formula above can be visualized (Fig. 2) as a ratio 
of two distances on the x-axis multiplied by the height of the curve 
(the fraction of actives found). The numerator is the distance 

Fig. 2 Construction of a rectangle under a LogROC curve
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between the decoy just found and the previous decoy (one hori-
zontal step). The denominator is the length of the x-axis (λ to 1). 
The additional term is necessary because if none of the coordinates 
coincide with λ the first full horizontal step will precede λ.

Practically, this means that the LogAUC is being constructed 
in steps by a series of rectangles. Each step is calculated as a fraction 
of the Cartesian length of the logarithmic x-axis and multiplied by 
the height of the ROC curve at this point. In this way, the LogAUC 
of the perfect enrichment curve will be 1.

5 Representative Results

The receptor homology models are evaluated by testing their abil-
ity to rank active compounds above decoy molecules. In such eval-
uation, the decoy libraries (see Section 4.2 above) and active 
compounds (see Section 4.1 above) are docked into the receptor 
models. The optimization ligands, used for binding site optimiza-
tion (see Section 3.5 above), should be excluded from virtual 
screening to remove any potential structural bias.

Representative ROC curves, enrichment plots, and semiloga-
rithmic ROC curves for the M5R model are shown in Fig. 3 and 
the corresponding metrics are listed in Table 3. The M5R model 
shows excellent enrichment capacity and has particularly good 
early enrichment.

The main deficiency of the models is the failure to dock some 
of the actives, shown as a gap at the end of the ROC curves (Fig. 3). 
The properties of actives that did not dock or produced docked 
poses with a scoring energy greater than the set acceptable cutoff 
(a GlideScore of 0 kcal/mol) suggest that the most likely reason 
for this docking failure is the large size of these compounds. 
Therefore, a better model might be developed by using an alterna-
tive bulkier optimization ligand. Work is currently in progress in 
our laboratory which demonstrates that this is indeed the case and 
muscarinic receptor models generated using alternative optimiza-
tion ligands are able to dock a wider range of compounds.

The metrics shown in Table 3 compare favorably with other 
similar docking studies (although such comparisons should not be 
over-interpreted given different actives, decoy sets, and receptor 
types used). For example, the MT2 melatonin receptor models 
[49] which were based on the β2AR and optimized for antagonists 
produced EF2% = 3.1–18.7; a range of antagonist-bound GPCR 
crystal structures gave EF2% = 0.3–11.7 and EF10% = 1.5–3.9 [64].

Both decoy sets 2 and 3 (ZINC and refined Schrödinger) were 
property-matched to actives. In addition, the decoy selection crite-
ria for these sets included the requirement to contain only com-
pounds with an ionizable nitrogen at physiological pH, based on 
the hypothesis that a ligand ionizable nitrogen should be able to 

Trayder Thomas et al.
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Fig. 3 Curves for the M5R model. Blue: Set 1, Schrödinger; green: Set 2, ZINC; 
red: Set 3, refined Schrödinger. Dotted line indicates random choice (no enrich-
ment) (Color figure online)

Modeling Muscarinic Acetylcholine Receptors
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form the salt bridge with Asp 3.32. Thus, these decoys sets were 
designed to be challenging with respect to selecting for this interac-
tion in actives ahead of decoys that also contained an ionizable 
nitrogen.

The enrichment metrics (Table 3) and ROC and enrichment 
curves (Fig. 3) demonstrate that indeed these sets of decoys are 
more challenging. However, they also show that the enrichment 
and early enrichment values are similar to values of 
 non-property- matched decoys, indicating the model’s capability to 
preferentially identify active compounds even amongst property-
matched decoys.

The five subtypes M1R–M5R have pairwise sequence identities 
in the range of 50–70 %. For residues within 6 Å of the ligand 
(from the M2R crystal structure) the sequence identity increases to 
90–100 %. Due to this high similarity, compounds that act at one 
receptor subtype usually also have some affinity for the other sub-
types [17]. A rigorous test of model quality would be to dock 
compounds with a high level of specificity for individual subtypes 
into all subtypes. However, a significant challenge encountered in 
homology modeling and evaluation of muscarinic acetylcholine 
receptors is to identify a sufficient number of compounds that are 
selective for one receptor over the other four subtypes.

6 Availability of Models

It is a significant problem for researchers interested in GPCR 
structure- based design that only a limited number of GPCR homol-
ogy models (including models of the muscarinic acetylcholine 
receptors) are freely available for use and comparison. We aim to 
supplement the limited number of evaluated homology models that 
are available to the research community [12, 16]. The optimized 
M1R–M5R homology models, built and evaluated as described 
above, are freely available as part of the Supporting Information for 

Table 3 
Virtual screening metrics of the M5R

Decoy set AUC LogAUC0.001

EF (at x % of ranked database)

2 5 10

Set 1 (Schrödinger decoy set) 0.85 0.53 12.7 10.1 7.4

Set 2 (ZINC decoy set) 0.81 0.40  8.5  5.5 5.3

Set 3 (refined Schrödinger decoy set) 0.84 0.51  5.6  5.3 5.1

Trayder Thomas et al.



29

Refs. [12, 16]. ZINC-derived decoy sets (Sections 4.2.2 and 4.2.3) 
are available for users upon request. We consider such open access 
as crucial in our field since it allows researchers to use these struc-
tures, compare them to their results [34, 73], and thus advance the 
development of better modeling methods.

7 Conclusions

This chapter describes development of homology models of the 
muscarinic acetylcholine receptors M1R–M5R and their evaluation 
through retrospective virtual screening for the identification of 
antagonists. Model refinement, guided by experimental knowl-
edge of active compounds and critical binding site residues, results 
in ligand-induced adaptation of the receptor binding sites and 
their optimization for antagonist recognition. Specifically, the gen-
erated homology models are capable of distinguishing known 
antagonists from matched decoy compounds. The confirmed pre-
dictive power of these models gives greater confidence in the use of 
these models for prospective virtual screening. The following 
aspects of the modeling procedure are particularly important: 
(1) binding site optimization is a critical step in model generation; 
(2) knowledge-based homology models of GPCRs are appropriate 
for prospective virtual screening, once confirmed in retrospective 
tests; and (3) property-matched decoys should be used in virtual 
screening evaluation of homology models. Future work is required 
to evaluate homology models in a flexible receptor scenario: by 
on-the- fly receptor flexibility [14, 15], molecular dynamics [74], 
or using receptor ensembles [75–78].

8 Notes

 1. For specific version numbers of programs and modules, read-
ers should refer to original publications. For example, for 
homology modeling of the five muscarinic M1–M5 acetylcho-
line receptors we employed Prime (versions 3.0 and 3.1) using 
the Maestro interface (versions 9.2 and 9.3). Ligand mole-
cules were prepared with LigPrep (version 2.5) and docked 
into the homology models using Glide (versions 5.7 and 5.8).

 2. In the Ballesteros-Weinstein residue numbering system, the 
first number corresponds to the helix number and the second 
number represents the position relative to the most conserved 
residue in that helix (assigned the arbitrary number “50”). 
This nomenclature is not used for the variable loop regions, 
where receptor sequence numbering is used, usually following 
the crystal structure (PDB) numbering.
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 3. Trp 6.48 is a key residue of the aromatic cluster of transmem-
brane helices 5 and 6. It has been suggested that it acts as a 
“micro-switch” for receptor activation and inactivation [61]. 
The IFD protocol consistently caused Trp 6.48 to undergo a 
conformational “flip” during the Prime step [12], which 
forced the bulky indole side chain down and away from the 
binding pocket.

 4. During the IFD optimization of the binding sites, monitoring 
the distance (ndist) between the ionizable or quaternary nitro-
gen of the ligand and the closest carboxylate oxygen of the 
conserved Asp 3.32 residue is advisable. The Asp 3.32 residue 
crucial for ligand binding of all aminergic GPCRs has been 
determined by site-directed mutagenesis [62]. The distance 
ndist is a quantitative measure of this important ionic interac-
tion and receptors with ndist >3.0 Å should be excluded from 
further analysis.

 5. In the new IFD protocol (2013-1 release: label “IFD”; 2013-3 
release: label “Extended Sampling”), the re-optimized IFDScore is

IFDScore = 1.0 × Prime_Energy + 9.057 × GlideScore + 1.42
8 × Glide_Ecoul

Source: http://www.schrodinger.com/kb/307.
 6. Actives used in model evaluation via retrospective virtual 

screening: atropine, benzquinamide, benztropine, biperiden, 
buclizine, carbinoxamine, chlorpromazine, chlorprothixene, 
clidinium, clozapine, cyclizine, cyclopentolate, cycrimine, 
desipramine, dicyclomine, diphenidol, dosulepin, doxepin, 
doxylamine, ethopropazine, flavoxate, glycopyrrolate, homat-
ropine methyl bromide, hyoscyamine, methantheline, meth-
otrimeprazine, metixene, metoclopramide, olanzapine, 
orphenadrine, oxybutynin, oxyphencyclimine, oxyphenonium, 
pirenzepine, procyclidine, promazine, promethazine, prop-
antheline, propiomazine, quinacrine, scopolamine, solifena-
cin, thiethylperazine, tolterodine, tridihexethyl, 
triflupromazine, trihexyphenidyl, and trospium. Where atro-
pine was used as the induced fit ligand, it was excluded from 
the virtual screen, and likewise for clozapine.

 7. To generate the ZINC-based decoy library, molecules were 
required to fall within a similar normal distribution as the 
active compounds (MW = 265–434 g/mol; mean 322 g/mol; 
standard deviation 40 g/mol). They were also required to 
contain an ionizable nitrogen and not to contain more than 
three hydrogen bond donors or four hydrogen bond accep-
tors. Finally, to ensure topological diversity, each decoy was 
required to have a Tanimoto score <0.8 with respect to all 
other molecules within the set.
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 8. The docking site is centered as per Section 3.5.1. If using 
Glide, both the Standard Precision (SP) and the Extra Precision 
(XP) scoring functions could be used. XP gives marginally bet-
ter results [12].

 9. Calculating the AUC can be done during, or separately from, 
the curve plotting process. In general the x, y-coordinates are 
used to construct a series of geometric shapes that fit the curve 
and sum their areas. For an ROC curve the geometric shapes 
will always be rectangles but if one wants to calculate the area 
under an enrichment curve (note that this is generally less 
meaningful or comparable as the ideal area can change with 
the size of the library) then trapezoids will be necessary.
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Chapter 3

Radioligand Binding at Muscarinic Receptors

Esam E. El-Fakahany and Jan Jakubik

Abstract

Five subtypes of muscarinic acetylcholine receptors denoted M1 through M5 have been cloned. Muscarinic 
receptors mediate a wide array of physiological functions and impairment of muscarinic signaling is 
involved in numerous pathological conditions including Alzheimer’s disease and schizophrenia. Reliable 
radioligand binding techniques allow study of involvement of individual muscarinic receptor subtypes in 
the physiology and pathology of muscarinic signaling, and study of the structure of muscarinic receptors 
and structure-activation relationship of muscarinic ligands. Here we discuss the current state of knowledge 
of radioligand binding experiments at muscarinic receptors from the perspective of available radioligands 
and selective unlabeled muscarinic ligands. We relate binding properties of muscarinic ligands to experi-
mental design (e.g., nonspecific binding determination, incubation conditions, buffers, temperature). We 
also list tissue/cell sources of muscarinic receptors suitable for radioligand binding studies and describe 
procedures of cell and tissue preparation for radioligand binding experiments. We also describe several 
techniques of receptor-bound ligand separation applicable at muscarinic receptors and provide basic infor-
mation for binding data analysis.

Key words Muscarinic acetylcholine receptors, Radioligand binding

1 Historical Background

Radioligand binding methods are a cornerstone of receptor phar-
macology, taking muscarinic acetylcholine receptors as an example. 
The main principle of the method is to allow a radiolabeled com-
pound specific to a given receptor to incubate with a biological 
sample enriched with that receptor, and then separate the bound 
and free radioligand. Many radiolabeled muscarinic ligands with 
high affinity and specific activity are currently available. Development 
of reliable radioligand binding technique at muscarinic receptors 
cleared the way for identification, purification, and subsequent 
sequencing of the first muscarinic receptor [1] that enabled ensuing 
cloning of five subtypes of muscarinic receptors (M1 through M5) 
[2] that revolutionized the field of research of muscarinic receptor 
pharmacology. Furthermore, radioligand binding played a key role 
in identifying the orthosteric ligand- binding site that is located in a 
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pocket formed by transmembrane helices [3, 4], receptor subtype-
specific ligands, allosteric modulators, and structure-activation rela-
tionship. Radioligand binding may also be employed in sophisticated 
experiments to study kinetics of drug-receptor interactions or in a 
combination with site- directed mutagenesis to determine the role 
of specific residues and domains in ligand binding. Similar to other 
receptor targets, radioligand binding studies at muscarinic receptors 
are simple and if performed correctly are very sensitive and highly 
accurate.

2 Principles of Ligand Binding

Interaction of a small molecule (ligand) with a protein (receptor) is 
mediated by four chemical forces: electrostatic force, hydrogen 
bonding, van der Waals interactions, and hydrophobic bonds. 
Electrostatic force mediates attraction between opposed charged 
groups or repulsion between similarly charged groups that is pro-
portional to the net sum of charges and inversely proportional to 
the square of distance between charges (as described by Coulomb’s 
law). van der Waals interactions are attractive and repulsive forces 
between dipoles approximated by Lennard-Jones function that has 
its minimum (strongest attraction) at certain distance of the com-
ponents. A hydrogen bond is a special case of the electrostatic 
attractive interaction between polar molecules, in which hydrogen 
is bound to a highly electronegative atom like nitrogen or oxygen. 
A hydrogen bond is weaker than electrostatic force but stronger 
than a van der Waals interaction. Hydrophobic bonds are entropy- 
driven interactions between nonpolar groups to avoid interaction 
with polar groups, mainly water. Hydrophobic bonds are stronger 
than van der Waals interaction. Because these forces vary in their 
strength and dependence on the distance between components, 
the combination of all these forces directs the positioning of a 
ligand on the receptor-binding site with minimal free energy. 
A measure of attraction of the ligand to the binding site is termed 
affinity. Thermodynamic movement does not allow ligands to sit 
still in the binding site and makes them associate and dissociate 
from the receptor, even at equilibrium. Thus, the probability with 
which a ligand is bound to (stays at) the binding site of a receptor 
is given by ligand concentration, temperature, and strengths of 
interactions. Dependence of the ligand binding on its concentra-
tion (Fig. 1 black curve) is defined by Langmuir isotherm:

 
binding

L
L D

=
[ ]

[ ] +K  
(1)

where square brackets designate concentration and KD is the equi-
librium dissociation constant that is equal to concentration at which 

2.1 Ligand Binding 
Definition
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the binding site is occupied with 50 % probability (for [L] = KD 
expression is equal to 1/2 while for [L] ≫ KD it limits to 1).

The aim of binding experiments is to quantify ligand binding to the 
receptor under given conditions. Labeling the ligand with a radioac-
tive isotope allows easy and sensitive quantification of binding and 
(unlike fluorescent labeling) does not interfere with ligand binding. 
High specific radioactivity is required, so ligand binding translates to 
high signal. Low nonspecific binding is required for high signal-to-
noise ratio. Finally, a good radioligand should have high affinity for 
the receptor to prevent ligand dissociation from the receptor during 
the separation of free and bound radioligand. High affinity also 
affords the use of low concentrations of expensive radioligands.

Ligand binding to a receptor is a dynamic process of attraction 
mediated by chemical forces and disruption of binding by thermal 
movement of molecules. As a result a ligand incessantly associates 
with and dissociates from the receptor with time. Ligand (L) bind-
ing to the receptor (R) and formation of ligand-receptor com-
plexes (LR) can be described as a reversible bimolecular reaction:

 
L R LR

On

Off

+ 

k

k

 
(Schema 1)

2.2 Radioligands

2.3 Ligand-Specific 
Binding

Fig. 1 Radioligand binding. Lines represent hypothetical radioligand binding (blue 
curve) that consists of saturable specific binding (black curve) defined by the 
binding isotherm and nonspecific binding (red line) that is linearly proportional to 
radioligand concentration and is non-saturable

Radioligand Binding at Muscarinic Receptors
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where kOn is the association rate constant and kOff is the dissociation 
rate constant. The observed rate of association is directly propor-
tional to the concentration of receptor, ligand, and kOn. While the 
rate of dissociation of a ligand from the receptor (kOff) is only a 
property of the affinity of binding, the amount of remaining ligand- 
receptor complex at any moment is dependent on the starting 
amount of the complexes prior to the onset of dissociation. Thus, 
for any given moment the magnitude of change of the concentra-
tion of the ligand-receptor complex is given by the difference 
between formation and decay of ligand-receptor complexes:

 

d LR
d

L R LROn Off

[ ]
= ´[ ]´[ ] - ´[ ]

t
k k

 
(2)

Under binding equilibrium the change in LR is nil and formation 
of LR happens at the same rate as its decay:

 k kOn OffL R LR´[ ]´[ ] = ´[ ]  (3)

The ratio of kOn and kOff defines ligand affinity. Affinity (also known 
as equilibrium association constant) is a measure of attraction 
between ligand and receptor and thus is directly proportional to 
kOn and inversely proportional to kOff. Equilibrium dissociation 
constant KD is the reciprocal value of equilibrium association con-
stant and defines the ligand concentration necessary to occupy 
50 % of receptors (see Eq. (1)). Restating Eq. (3) gives KD as

 
K

k
kD
Off

On

L R
LR

= =
[ ]´[ ]
[ ]  

(4)

At any time the total number of receptors [RT] is the sum of free 
receptors and receptors in complex with the ligand:

 R R LRT[ ] = [ ] + [ ]  (5a)

or

 R R LRT[ ] = [ ] - [ ]  (5b)

Substitution of R in Eq. (4) according Eq. (5b) gives Eq. (6a):
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or

 
KD

TL R
LR

L=
[ ]´[ ]

[ ]
- [ ]

 
(6c)

or

 
KD

TL
L R

LR
+ [ ] = [ ]´[ ]

[ ]  
(6d)

and finally

 
LR

L R
L
T

D

[ ] = [ ]´[ ]
+ [ ]K  

(6e)

that is actually Eq. (1) of specific binding related to concentration 
(or number) of binding sites RT.

Apart from the specific binding site on the receptor a ligand may 
also bind to other sites on the biological sample by nonspecific 
interaction that is by orders of magnitude weaker than specific 
binding. Nonspecific binding is linearly proportional to ligand 
concentration and in principle has infinite binding capacity (non- 
saturable) (Fig. 1, red curve). Nonspecific binding is not only given 
by chemical properties of the radioligand but also by arrangement 
of the experiment (e.g., sample washing, removal of tissue compo-
nents that do not express the receptor). The magnitude of nonspe-
cific binding is determined in the presence of excess of a highly 
specific non-labeled ligand sufficient to fully occupy the receptor. 
For example 1 μM atropine is commonly used for determination of 
nonspecific binding of muscarinic ligands. Higher concentrations 
should be avoided as it may slow down tracer dissociation [5] and 
so lead to overestimation of nonspecific binding. A ligand from the 
same pharmacological class but different from the radiolabeled 
ligand is preferred. A non-labeled ligand of the same chemical 
structure may bind to the same nonspecific sites and protect them 
from tracer binding so that these nonspecific binding sites are erro-
neously counted as specific binding sites. Ideally, several different 
unlabeled competitors should all yield statistically indistinguishable 
estimates of nonspecific binding. The ratio of nonspecific to spe-
cific binding should be as low as possible (less then 1 % of total 
added radioactivity to the sample and less than 10 % of total bind-
ing in case of muscarinic receptors). Washing is the least accurate 
step in the radioligand binding assay. Since nonspecific binding is 
affected by washing, variations in washing lead to variations in 
nonspecific binding. Thus, nonspecific binding should be deter-
mined in each filtration.

2.4 Ligand 
Nonspecific Binding

Radioligand Binding at Muscarinic Receptors
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3 Radioligand Binding Experiments at a Glance

A radioligand binding experiment consists of these steps: (1) prep-
aration of samples from tissues, cell cultures, or cell lines; (2) incu-
bation of samples with radioligand; (3) separation of free radioligand 
from the bound one; (4) scintillation counting to determine radio-
activity of individual samples; and (5) data analysis. Therefore, two 
pieces of specialized devices (besides common laboratory equip-
ment) are needed to conceive radioligand binding experiments: 
first, an apparatus for separation of free and bound radioligand for 
which purpose cell harvesters are most commonly used; second, a 
scintillation counter compatible with the format of apparatus used 
for separation of free and bound radioligand. For example, a scin-
tillation counter that can read filtration plates is needed when fil-
tration plates are used in the cell harvester.

4 Available Radioligands

Nowadays available muscarinic radioligands cover almost all exper-
imenter needs. Available radioligands include both reversible 
antagonists and agonists as well as covalent ligands, antagonists 
with fast as well as slow kinetics, and antagonists selective to M1, 
M2, and M3 subtypes. A list of common muscarinic radioligands is 
shown in Table 1. Their structures and chemical names are depicted 
in Fig. 2.

Muscarinic receptor antagonists are preferred over agonists as trac-
ers because of their higher affinity (Table 1). The most commonly 
used tracers are N-methylscopolamine (NMS) and quinuclidinyl 
benzilate (QNB). NMS exhibits slightly lower affinity at M2 and 
M5 receptor subtypes (Table 1). Tritiated NMS is commercially 
available at high specific radioactivity (80 Ci/mmol). The half-life 
of ligand-receptor complex is around 15 min at M1, M3, and M4 
receptors, 3 min at the M2 receptor, and 53 min at the M5 receptor 
[6]. Combined with a rather fast rate of association, NMS is suit-
able for most common radioligand binding studies. Half-life of the 
complexes is short enough to reach equilibrium and slow enough 
for ligand separation by simple filtration. The advantage of QNB 
over NMS is its higher affinity and lower nonspecific binding 
(mainly to glass-fiber filters thanks to the absence of the positive 
charge). However, commercially available tritiated QNB has lower 
specific radioactivity (50 Ci/mmol). Moreover, QNB has extremely 
slow kinetics. Half-life of QNB in complex with muscarinic recep-
tors is around 100 min, at M5 receptors even 180 min [6]. Slow 
kinetics of QNB may be problematic when attaining the  equilibrium 
quickly is needed but may be of advantage when samples are 

4.1 Antagonist 
Radioligands
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washed from free radioligand (e.g., washing tissues for radioimag-
ing) or ligand separation is slow (e.g., gel filtration, see Protocol 
F). Finally, the lipophilic nature of QNB results in its uptake into 
cells, which causes significantly high levels of nonspecific binding 
in intact cell studies. Pirenzepine is M1-selective antagonist 
(Table 1) that is commonly used for selective labeling of M1 recep-
tors in samples with mixture of receptor subtypes. The use of other 
selective as well as nonselective radiolabeled antagonists has been 
reported; however, they have in general lower affinity than NMS 
(Table 1) and thus are less suitable for routine radioligand binding 
experiments.

There are two commercially available tritiated muscarinic agonists, 
the nonselective acetylcholine and the M2 preferring oxotremo-
rine. In general, muscarinic agonists are not good tracers because 

4.2 Agonist 
Radioligands

Table 1 
List of common muscarinic radioligands

Ligand Type

KD (nM)

M1 M2 M3 M4 M5

4-DAMPa Antagonist 0.58 3.8 0.52 1.2 1.0

Acetylcholineb Agonist 23–30 21–26 19–24 18–23 19–23

ACM Agonist Covalent binding

Atropinec Antagonist 1.35 1.48

NMPBd Antagonist 2.29

NMQNBe Antagonist 0.13 0.45 0.65

NMSa Antagonist 0.08–0.15 0.2–0.4 0.15–0.2 0.05–0.1 0.5–0.7

Oxotremorinef Agonist 900 70 390 220 510

PBCM Antagonist Covalent binding

Pirenzepinea Antagonist 0.003–0.015 400–10,000 200–2500 25–1200 125–630

QNBa Antagonist 0.015–0.060 0.02–0.05 0.03–0.09 0.02–0.08 0.02–0.06

4-DAMP 4-diphenylacetoxy-N-methylpiperidine, ACM acetylcholine mustard (N-2-chloroethyl-N-methyl-2-
acetoxyethylamine), NMPB N-methylpiperidyl benzilate, NMQNB N-methylquinuclidinebenzilate, NMS 
N-methylscopolamine, PBCM propylbenzilylcholine mustard (2-[2-chloroethyl(propyl)amino]ethyl 2-hydroxy-2,2- 
diphenylacetate), QNB quinuclidinylbenzilate
Source:
aAlexander et al. [32]
bJakubik et al. [8]
cMelchiorre et al. [33]
dHejnová et al. [34]
eVisser et al. [35]
fDallanoce et al. [36]

Radioligand Binding at Muscarinic Receptors
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of their low affinity (Table 1). Moreover, only receptors in high- 
affinity states (receptors in complexes with GDP-free G-protein) 
[7] can be detected by radiolabeled agonists. Thus agonists as trac-
ers are employed only when specific effects on agonist binding 
have to be determined [8]. The use of acetylcholine as a tracer at 
muscarinic receptors is limited by several factors. First, acetylcho-
line binds both to muscarinic and nicotinic types of acetylcholine 

Fig. 2 Structures of muscarinic radioligands. Structures of radiolabeled muscarinic agonists and antagonists
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receptors. Second, acetylcholine is readily cleaved by cholinester-
ases (acetylcholinesterase and butylcholinesterase) that are omni-
present in animal tissues either in a free form in body fluids or 
anchored to plasma membranes [9]. To use acetylcholine as a 
tracer samples has to be devoid of cholinesterases (e.g., membrane 
preparations of non-neural cell lines) or activity of cholinesterases 
has to be blocked by specific inhibitors. However, many of acetyl-
cholinesterase inhibitors are allosteric modulators of muscarinic 
receptors [10] and affect binding of muscarinic ligands. Moreover, 
the ester bond of acetylcholine is not chemically stable and acetyl-
choline decays spontaneously in aqueous solution to acetate and 
choline. Commercially available tritiated acetylcholine is radiola-
beled either at acetate or choline group. It is easier (and cheaper) 
to label acetylcholine to high specific radioactivity at the choline 
group. However, acetylcholine labeled in this manner has high 
nonspecific binding due to traces of labeled choline from acetyl-
choline chemical decay that is hard to wash from nonspecific sites 
due to its positive charge. In contrast, radiolabeling of acetylcho-
line at the acetate group gives low nonspecific binding. Carbachol 
may be considered as an alternative to acetylcholine. It is similar to 
acetylcholine in structure, has similar affinity, and is resistant to 
cholinesterases. Unfortunately, radiolabeled carbachol is not com-
mercially available. Unlike acetylcholine oxotremorine is chemi-
cally stable, is not a substrate for cholinesterases, and is specific for 
the muscarinic type of acetylcholine receptors. However, oxotrem-
orine has much lower affinity than acetylcholine (Table 1).

Two radiolabeled ligands, the agonist acetylcholine mustard 
(ACM) [4] and the antagonist propylbenzilyl choline mustard 
(PBCM) [3], form covalent bonds with muscarinic receptors. The 
advantage of covalently bound, practically irreversible tracers is 
that binding withstands long-lasting sample manipulation (like 
receptor isolation, electrophoresis, or immunoprecipitation) with-
out ligand dissociation. The disadvantage of these tracers is that 
their nonspecific reactivity (binding) cannot be prevented by 
reversible antagonists (irreversible ligand always wins over revers-
ible one in competition for binding) nor removed by washing 
(because tracer is bound irreversibly). Thus these tracers are suit-
able only for at least partly purified receptors.

5 Source of Muscarinic Receptors

Muscarinic receptors are expressed throughout the body at the 
central nervous system, peripheral neurons, as well as target tissues 
innervated by cholinergic neurons (primarily parasympathetic neu-
rons) [11] (Table 2). Almost all tissues express a mixture of sub-
types of muscarinic receptors; for example smooth muscles express 

4.3 Irreversible 
Radioligands

5.1 Tissues
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M2 and M3 receptors, and lungs express M2 and M4 receptors. 
Natural expression of M5 receptor is limited only to certain parts of 
brain like the ventral tegmental area and substantia nigra [12, 13]. 
Muscarinic receptors were also reported in non-neuronal non- 
innervated cells like lymphocytes [14]. Tissues may serve as a 
source of membranes or purified receptors (Sections 5.3 and 5.4) 
or used in binding experiments in whole, as slices, dissipated cells, 
or tissue culture.

Besides expressing a mixture of muscarinic receptors another draw-
back of animal tissues as a source of muscarinic receptors is the 
relatively low density of receptor expression (less than 1 pmol of 
binding sites per mg of membrane proteins). Since cloning of all 
five subtypes of muscarinic receptors CHO cell lines stably express-
ing individual subtypes of muscarinic receptors in high density 
have become available and widely used [15]. Although muscarinic 
receptors were detected in naive CHO-K1 cells by highly sensitive 
second messenger assays [16] they cannot be detected in binding 
studies. Thus CHO cell lines are a widely used source of individual 
subtypes of muscarinic receptors in radioligand binding studies. 
Currently CHO cells stably expressing individual subtypes are 
available also from commercial sources (e.g., Perkin Elmer; 
Missouri S&T cDNA Resource Center). Muscarinic receptors are 
also routinely transiently expressed in COS-7 or HEK-293 cell 
lines [17, 18]. Since these cells have to be prepared anew for each 
binding experiment, stable transfection is usually used for studies 
of native receptors. Transiently transfected cells become quite 

5.2 Cell Lines

Table 2 
Mammalian tissues with significant expression of muscarinic receptors

Subtype Location Reference

M1 Cortex, hippocampus, striatum, salivary glands Levey [37]

Lymphocytes Kawashima and Fujii [14]

M2 Brainstem, cerebellum, thalamus, heart, ileum, lung Levey [37]

Smooth muscles Caulfield [38]

M3 Salivary glands Levey [37]

Smooth muscles Caulfield [38]

Hypothalamus Gautam et al. [39]

Hippocampus Poulin et al. [40]

M4 Striatum, lung Levey [37]

M5 Ventral tegmental area, substantia nigra Eglen and Nahorski [12]
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useful for studying the binding characteristics of a large number of 
engineered receptor constructs, e.g., in receptor mutagenesis 
studies.

The use of membranes instead of whole tissue or cells in binding 
experiments facilitates separation of bound and free radioligand 
and eliminates nonspecific binding to tissues and cellular compo-
nents that do not express the receptor. The use of membranes 
rather than intact cells removes GTP that uncouples the receptor 
from G proteins. This increases agonist affinity and enables the use 
of radiolabeled agonist. Protocols A and B yield a mixture of plasma 
membranes, light membrane vesicles, and mitochondria, and are a 
practical compromise between purity of sample and receptor yield. 
Membrane preparation according to Protocol A results in 10–30 % 
of high-affinity sites for agonists (receptors in complex with GDP- 
free G-protein). Protocol B is modification of Protocol A that facil-
itates GDP dissociation [19] and subsequent formation of 
high-affinity complexes of receptor. This makes membranes suit-
able for experiments with radiolabeled agonists.

Isolation of purified muscarinic receptors may be desired for spe-
cific purposes (like determination of effects of membrane or mem-
brane composition on receptor binding properties). Preparation of 
purified muscarinic receptors is described in Protocol C. It should 
be noted that a source with high expression density of muscarinic 
receptors like transfected Sf9 cells [20] has to be used. Purified 
receptors can be reconstituted in artificial lipid vesicles [21]. 
Protocol D describes reconstitution of purified receptors into arti-
ficial vesicles with a simplified composition of common membranes 
(cholesteryl hemisuccinate:phosphatidyl choline:phosphatidyl ino-
sitol, 4:48:48) that can be varied as desired [22] and optionally 
purified G-proteins may be added [23].

Protocol A: Preparation of membranes for general use

 1. Put tissue or cells of your choice in ice-cold homogenization 
medium (e.g., 100 mM NaCl, 10 mM EDTA, 20 mM HEPES 
buffer pH = 7.4). Keep on ice during steps 1 and 2. Homogenization 
medium should contain EDTA to stop calcium-dependent prote-
ases. Protease inhibitors should be used with caution as they may 
modify muscarinic receptors and affect their binding properties 
[24, 25]. Homogenization medium should have more or less nor-
mal ionic strength for steps 3 and 4 to work. If for any reason low 
ionic strength medium has to be used centrifugal force and dura-
tion of centrifugation in steps 3 and 4 need to be increased and 
extended because low ionic strength improves membrane disper-
sion that results in increased membrane flotation and thus 
greater centrifugal forces and longer times are needed to sedi-
ment the membranes.

5.3 Membranes

5.4 Purified 
Receptors
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 2. Homogenize the sample by the method of your choice (e.g., in 
Ultra-Turrax homogenizer by two 30-s strokes with 30-s pause 
between strokes) while cooling them on ice.

 3. To remove unbroken cells, cell nuclei, cytoskeleton, and extracel-
lular matrix proteins spin down the samples at 1000 × g for 5 min 
and take the supernatant for the next step. During preparation 
of certain tissues rich in lipids (like brain cortex) the lipid foam 
that forms on top of the water phase needs to be discarded.

 4. To remove the cytosolic fraction spin down the supernatant from 
step 3 at 30,000 × g for 30 min. Remove the supernatant and dis-
solve pellet in incubation medium (e.g., 100 mM NaCl, 10 mM 
MgCl2, 20 mM HEPES buffer pH = 7.4).

 5. Leave samples for 30 min at 4 °C.
 6. Spin down samples at 30,000 × g for 30 min and discard 

supernatant.
 7. Pellets may be stored for limited time (couple of months) frozen at 

−20 °C or below.

Protocol B: Preparation of membranes for experiments with radiola-
beled agonists

Steps 1–3 are the same as in Protocol A.

 4. To remove the cytosolic fraction spin down supernatant from step 
3 at 30,000 × g for 30 min. Remove supernatant and dissolve pel-
let in 1 M ammonium sulfate.

 5. Allow samples to denature for 3 h at 4 °C.
 6. Spin down samples at 60,000 × g for 60 min, discard superna-

tant, and dissolve pellet in incubation medium containing 20 % 
glycerol.

 7. Leave samples for 1 h at 4 °C to renaturate.
 8. Spin down samples at 60,000 × g for 60 min, discard superna-

tant, and dissolve pellet in incubation medium.
Continue with steps 5–7 from Protocol A.

Protocol C: Preparation of purified muscarinic receptors

 1. Harvest Sf9 cells by centrifugation at 1500 × g for 10 min.
 2. Prepare crude membranes according to steps 1–4 of Protocol A.
 3. Dilute crude membranes in 20 mM HEPES buffer pH = 7.4, 

5 mM imidazole, 1 mM EDTA, 1 % digitonin, and 0.1 % sodium 
cholate to a protein concentration of 1 mg/ml.

 4. Incubate stirred for 1 h at 4 °C.
 5. Centrifuge at 100,000 × g for 90 min at 4 °C and take the super-

natant fraction.
 6. Apply 1 l of supernatant fraction from step 5 to ABT-agarose 

[26] column (300 ml) at 4 °C at a flow rate of 70 ml/h.
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 7. Wash the column with 15 l of washing medium (0.2 M NaCl, 
20 mM potassium phosphate buffer (pH 7.0), 0.1 % digitonin).

 8. Connect hydroxyapatite column (1 ml) to the outflow of ABT- 
agarose column.

 9. Apply 700 ml of the washing medium supplemented with 0.1 mM 
carbachol (to dissociate receptors from affinity column) to the 
ABT-agarose column at the same rate as above (carbachol is pre-
ferred over atropine in this step for easier removal in step 11).

 10. Disconnect hydroxyapatite column from ABT-agarose column 
and elute purified receptors with 0.5 M potassium phosphate buf-
fer (pH = 7.0) containing 0.1 % digitonin.

 11. Prior to performing the radioligand binding experiment remove 
bound carbachol by 50-fold dilution in 0.5 M potassium phosphate 
buffer (pH = 7.0) containing 0.1 % digitonin. Allow carbachol dis-
sociate for 1 h at 4 °C and then concentrate receptors by centrifuga-
tion through Centricon-30 membranes (Amicon Co., Ltd.).

Protocol D: Reconstitution of receptors into artificial vesicles

Steps 10 and 11 are optional.

 1. Prepare 4 mg of lipids by combining 16 μl of cholesteryl hemisuc-
cinate (10 mg/ml in methanol), 48 μl of phosphatidyl choline 
(20 mg/ml in chloroform), and 48 μl of phosphatidyl inositol 
(20 mg/ml in chloroform) in glass tube.

 2. Form lipid film on the wall of tube by evaporation with N2.
 3. Add 1 ml of solution A (100 mM NaCl, 1 mM ETDA, 20 mM 

HEPES pH = 7.4) supplemented with 1 % sodium cholate.
 4. Sonicate on ice for 20 min.
 5. Combine 66 μl of receptors (300 pmol/ml), 32 μl of solution A, 

and 100 μl of lipid vesicles from step 4. Vortex vigorously and 
leave on ice for 30 min.

 6. Wash 2 ml Sephadex G-50 fine-grade columns with 5 ml of solu-
tion A.

 7. Apply mixture from step 5 to Sephadex G-50 column.
 8. Wash column three times with 0.2 ml of solution A.
 9. Add 0.4 ml of solution A and collect.
 10. Mix 0.2 ml of receptor vesicles (~10 pmol of receptors) from step 9 

with 28 μl of G-proteins (~50 pmol), 1.25 μl of 2 M MgCl2, 
1.25 μl of 1 M dithiothreitol, and 19.5 μl of solution A and vortex 
vigorously.

 11. Leave on ice for 60 min.
 12. Dilute with 5 volumes of solution A and use 50 μl per sample in 

binding assay.
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6 Incubation Conditions

Many types of buffers may be used for radioligand binding experi-
ments. However, it should be noted that buffer composition influ-
ences ligand affinity. Low concentrations of sodium (low ionic 
strength in general) lead to higher affinity and slower dissociation 
of the tracer [27]. This is desired in experiments with tracers with 
low affinity and fast dissociation like agonists. Agonists bind to 
complexes of receptor and GDP-free G-protein. Formation of 
these complexes is conditioned by the presence of magnesium ions 
[23]. For routine measurements on membranes thus simple buffer 
consisting of 100 mM NaCl, 5 mM MgCl2, and 20 mM HEPES 
buffer pH = 7.4 is suitable for a wide range of tracers. For binding 
experiments on whole cells iso-osmotic buffer (like Krebs-HEPES 
buffer: 138 mM NaCl, 4 mM KCl, 1.3 mM CaCl2, 1 mM MgCl2, 
1.2 mM NaH2PO4, 10 mM glucose, 20 mM HEPES pH = 7.4; 
340 mOsm/l) has to be used. An advantage of Krebs-HEPES buf-
fer is that many functional assays like accumulation of inositol 
phosphates, inhibition of cAMP synthesis, or microfluorometric 
determination of intracellular calcium can be conducted in it. This 
allows the comparison of ligand affinity in binding and functional 
studies under similar conditions [28].

Another consideration is the addition of chelating agents for 
their beneficial effects. Chelating agents may inhibit possible con-
tamination with proteases. Chelating agents in combination with 
low ionic strength promote membrane dispersion and thus improve 
handling properties of membrane preparations. On the other hand 
chelating agents significantly perturb ligand interactions by remov-
ing multivalent ions. As stated above magnesium ions are essential 
for agonist high-affinity binding.

For radioactivity of the sample to be counted accurately it should 
be about 1000 cpm (about 2000 dpm for tritiated ligands on the 
assumption of 50 % efficiency of counting). Typical specific radio-
activity of tritiated commercial grade muscarinic radioligand is 
160 dpm/fmol that translates to 12.5 fmol radioligand occupied 
sites per sample to achieve 2000 dpm of specific binding. The best 
ratio of specific to nonspecific binding is observed around ligand 
KD. When radioligand in concentration equal to KD is used 50 % of 
binding sites are occupied by radioligand. Thus 25 fmol of recep-
tors per sample is needed to get 2000 dpm of specific binding. 
Membranes prepared according to Protocol A from CHO cells sta-
bly expressing muscarinic receptors usually have 1–10 fmol of 
receptors per microgram of proteins; thus 10–20 μg of protein per 
sample is generally used. However, agonists bind with high affinity 
only to receptors in complex with GDP-free G-protein that repre-
sent only a fraction of total receptors. Thus, up to five times more 

6.1 Buffers

6.2 Sample Size
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membranes are needed in comparison to antagonist binding. The 
capacity limit of filtration on 96-well plates (filter diameter 5 mm) 
is 100 μg of protein per sample. This means that only membranes 
from high-expression systems like cell lines or brain cortex 
(0.5 fmol/μg of protein) can be used in this compact and eco-
nomic assay. Tissue homogenates or preparations from low- 
expressing systems (0.1 fmol/μg of protein or lower) like lung 
[29] have to be filtered through filters with higher capacity like 
24-tube cell harvester (filter diameter 15 mm) which maximum 
capacity is about 1 mg of proteins.

Incubation volume is determined by the method of separation of 
bound and free radioligand. In separation on gel filter the incuba-
tion volume is equal to the loading volume, which is dependent on 
the volume of the column (e.g., for 2 ml G-50 Sephadex column 
50 μl of loading volume is required). In scintillation proximity 
assay the incubation volume is only limited by the size of well or 
tube. In separation on filters the incubation volume is related to 
the size of the filter. Larger filters require larger washing volumes 
and thus larger incubation volumes. The larger the area of the fil-
ter, the higher the capacity and more membranes, cells, or tissue 
can be and should be used. Large filters (like in 24-tube Brandel 
cell harvester) are thus suitable for preparations with low receptor 
density, and therefore require a large amount of biological sample, 
e.g., non-neural tissues. For 24-tube filtration (filter diameter 
15 mm) the optimal incubation volume is about 3 ml; for 96-well 
filtration (filter diameter 5 mm) the optimal incubation volume is 
about 0.4 ml.

Another aspect that influences the size of incubation volume is 
the combination of tracer amount, tracer affinity, and number of 
binding sites in the sample. If the amount of the tracer in relation 
to the tracer affinity and the number of binding sites is low a sub-
stantial part (>10 %) of the tracer is bound to the receptors. Such 
conditions are termed tracer depletion and may happen usually in 
saturation binding experiments. Tracer depletion complicates data 
analysis because the free tracer concentration is significantly lower 
than that inferred from the amount of added tracer (radioactivity) 
and final incubation volume. The incubation volume should be 
increased if it is estimated that there is a risk of tracer depletion. 
For such cases 1.2 ml 96-well plates are available. When the incu-
bation volume of samples intended for gel filtration is increased the 
volume of the gel column has to be proportionally increased. On 
the other hand when tracers with low affinity (like agonists) are 
used the incubation volume can be reduced to save expensive 
radioligand. However, in a 96-well plate Brandel cell harvester 
samples with volume smaller than 0.2 ml are difficult to apply and 
wash reliably. In case of gel filtration a smaller incubation volume 

6.3 Incubation 
Volume
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can be diluted with ice-cold buffer to the desired volume and 
applied to the gel column of the standard size.

As explained above in Section 2 temperature affects ligand bind-
ing. An increase in temperature potentiates thermal movement of 
molecules including the receptor and the ligand but the strength 
of intermolecular forces remains the same. Temperature depen-
dence of the affinity constant KA and equilibrium dissociation con-
stant KD is described by the Van’t Hoff equation:
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where ΔG is free binding energy, ΔH is enthalpy of binding, ΔS is 
entropy of binding, and R and T are gas constant and absolute 
temperature, respectively. Enthalpy contribution to equilibrium 
ligand binding is small. The major contribution to the thermody-
namics of ligand binding is change in entropy (mainly ligand desol-
vation on association with receptor). Temperature dependence of 
equilibrium constants is thus relatively small; however it is still 
about twofold change over 10 °C (the difference between room 
temperature and body temperature). An increase in temperature 
usually leads to a decrease in affinity unless hydrophobic effects 
(which strengthen with temperature) contribute to ligand binding 
substantially [30]. Thanks to relatively low temperature depen-
dence of equilibrium binding incubation temperature can be often 
chosen to be the same as in other types of assays in the conducted 
study (e.g., 37 °C as in study of functional response). For study of 
agonist binding 30 °C appears to be optimal as the fraction of 
high-affinity sites for agonists is at its maximum [31].

Temperature dependence of the association rate constant kOn is 
described by the Arrhenius equation:
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where kB and ħ are Boltzmann’s and Planck’s constants, respectively. 
Usually there is large enthalpic contribution to kinetics of ligand 
association with receptor that gives it large temperature sensitivity. 
Thus thermodynamics of ligand binding may be inferred by assess-
ing temperature dependence of the rate of association. For musca-
rinic ligands a 10 °C increase in temperature may lead to a tenfold 
increase in the rate of association. Thus, time of incubation of a 
radioligand with the receptor source in equilibrium binding studies 
must be increased if a lower temperature is employed. For tracers 
with fast kinetics like muscarinic agonists the very short time steps 
required to accurately determine the rate of association may be unat-
tainable by available technique and lowering incubation temperature 
to slow down the rate of association may be considered.

6.4 Temperature
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7 Radioligand Separation

As stated above separation of free radioligand from the bound one 
is the most crucial step of the procedure. Separation, on the one 
hand, must not disturb the formed ligand-receptor complex (has 
to be quick). On the other hand it has to be complete (since any 
remains of free radioligand counts as nonspecific binding). Thus 
optimization of separation step is about finding a balance between 
the duration of separation and intensity of washing.

The simplest method to separate free radioligand from the bound 
one is filtration through glass-fiber filters (Protocol E) where due 
to difference in the size membranes with bound radioligand are 
retained on the filter and free radioligand passes through it. Tracer 
nonspecific binding is reduced in the filtration assay by washing the 
filters. Nonspecific binding should be determined for each filtra-
tion as it may vary among filtrations due to variations in the process 
of washing (that is the step with lowest precision and main source 
of variation). Solubilized receptors and purified receptors reconsti-
tuted in artificial lipid vesicles are small enough to pass through 
glass-fiber filters. For radioligand separation either gel filtration 
(Protocol F) or scintillation proximity assay (Protocol G) can be 
used. Filtration times on gel filter are long; thus radioligands with 
slow dissociation (e.g., QNB) have to be used. Although filtration 
on gel filters can be expedited by centrifugation of gel columns it 
is not suitable for radioligands with fast kinetics like agonists and 
certain antagonists. In gel filtration free radioligand is trapped in 
the gel pores and receptors while bound radioligand is eluted in 
void volume. In scintillation proximity assays receptors with bound 
radioligand are coprecipitated with scintillation beads by antibod-
ies, so only bound radioligand is close enough to scintillation beads 
and scintillates.

Protocol E: Filtration through glass-fiber filters in a 96-well plate 
setup

 1. If the used radioligand has positive charge (e.g., NMS, NMQNB, 
acetylcholine) soak filters in 0.5 % solution of polyethylenimine to 
lower radioligand adsorption to filters.

 2. Place GF/C filter or filtration plate into Brandel filtration appa-
ratus and wash it with ice-cold deionized water to remove bubbles 
from tubing.

 3. Place incubation 96-well plate on Brandel filtration apparatus, 
harvest the samples, and immediately wash the samples with the 
ice-cold deionized water (QNB and NMQNB for 9 s, other 
antagonists for 6 s, agonists for 3 s).

 4. Let harvest vent open for at least 30 s to remove excess moisture 
from filter.

7.1 Radioligand 
Binding in Cell 
Membranes
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 5. Take filter or filter plate out of Brandel filtration apparatus and 
dry it in microwave oven at maximum power for 2 min.

 6. For glass-fiber filters, melt on Metltilex A solid scintillator for 90 s 
on 105 °C hot plate. For filtration plates, seal the bottom of the 
plate with transparent tape, add 50 μl of liquid scintillator to 
each well, and seal top of the plate with transparent tape.

Protocol F: Gel filtration

 1. Prepare 2 ml Sephadex G-50 fine-grade columns and wash them 
with 5 ml of washing solution (100 mM NaCl, 1 mM EDTA, 
20 mM HEPES buffer pH = 7.4, 0.05 % Lubrol PX).

 2. Add 0.2 ml of washing solution to samples (incubation volume 
50 μl) and apply to column immediately.

 3. Add 0.1 ml of washing solution to columns.
 4. Place 6 ml scintillation vials under the columns. Elute with 1 ml 

of washing solution.
 5. Add 4 ml of water-compatible scintillation cocktail (e.g., EcoLite, 

Rotiszint, OptiPhase) to scintillation vials.

Protocol G: Scintillation proximity assay

 1. If membranes were incubated solubilize them by the addition of 
20 μl of 10 % Nonidet P-40 and shake the samples for 20 min.

 2. Add 10 μl of rabbit polyclonal IgG antibody against muscarinic 
receptor in a final dilution of 1:5000 and incubate for 1 h.

 3. Dilute one batch of anti-rabbit IgG-coated scintillation beads in 
40 ml of incubation medium. Add 50 μl of the scintillation bead 
suspension to each sample and incubate for 3 h.

 4. Centrifuge samples for 15 min at 1000 × g and count samples 
using the scintillation proximity assay protocol. If the background 
radioactivity due to scintillation of free ligand is too high filter 
samples through GF/C filter plate according to Protocol E.

For separation of free and bound radioligand in case of the cells in 
suspension (e.g., Sf9 cells, detached CHO cells, dissociated tissues, 
or tissue cultures) filtration through glass-fiber filters with large 
pores (Whatman GF/A) according to Protocol D is the most 
straightforward approach. Alternatively cells may be centrifuged 
for 3 min at 250 × g. This method does not allow complete removal 
of the free radioligand and is therefore associated with high non-
specific binding. It is preferred for radioligands with very fast dis-
sociation that does not allow washing that is necessary in case of 
filtration.

Protocol H: Processing of attached cells grown on 24-well plate

 1. Remove cell culture media and wash the cells with 0.5 ml of 
Krebs- HEPES buffer (KHB; final concentrations in mM: NaCl 

7.2 Radioligand 
Binding in Intact Cells
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138; KCl 4; CaCl2 1.3; MgCl2 1; NaH2PO4 1.2; Hepes 20; 
glucose 10; pH adjusted to 7.4).

 2. Incubate cells with radioligand in 0.5 ml (final volume) of KHB 
for 20 min (NMS) or 12 h (QNB).

 3. Remove incubation medium and quickly wash cells twice with 
0.5 ml of KHB removing it immediately.

 4. Dissolve cells in 0.4 ml of 1 M NaOH and shake the plate for 
15 min at room temperature.

 5. Pipet 0.2 ml aliquot to 4 ml scintillation vials and add 3 ml of 
water-compatible scintillation cocktail (e.g., EcoLite, Rotiszint, 
OptiPhase).

8 Experimental Arrangement

Arrangement of the binding experiment must conform to the specific 
parameters intended to be determined. In so-called kinetic experi-
ments time of incubation varies while other parameters remain con-
stant and the association rate constant kOn or dissociation rate constant 
kOff is determined. In so-called equilibrium experiments time of incu-
bation is constant and long enough to achieve binding equilibrium 
and the concentration of ligand is varied to determine the equilib-
rium dissociation constant KD and number of receptors RT.

Usually association experiments are performed first to determine 
the time needed to achieve equilibrium that is a prerequisite for 
dissociation and equilibrium binding experiments. In association 
experiments samples are incubated with a constant concentration 
of tracer for different periods of time and dependence of ligand 
binding on time is evaluated. Association is usually started by the 
addition of tracer to free receptor and terminated by tracer removal. 
When tracer is added to free receptors the concentration of ligand- 
receptor complexes rises according to Eq. (9) that is the integral of 
Eq. (2) over time:
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(9)

[LREq] is the concentration of LR under equilibrium according to 
Eq. (6e). In association experiments the tracer both associates with 
and dissociates from the receptors. Thus neither kOn nor kOff can be 
determined. Instead the observed rate association constant kObs is 
calculated according Eq. (10):
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Theoretical association curves are shown in Fig. 3. The association 
rate constant kOn is calculated after subtraction of kOff determined 

8.1 Measurement 
of the Rate 
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Fig. 3 Theoretical association curves. Abscissa, time. Ordinate, tracer binding 
expressed as a fraction of total receptor RT. Upper graph: Relationship between 
the association rate constants kOn (indicated in legend as the ratio to equilibrium 
dissociation constant KD) on the association of L in a concentration equal to KD. 
When L is equal to KD equilibrium binding represents 50 % of total receptors 
regardless of the association rate. Increasing kOn accelerates association and 
equilibrium is achieved earlier. Lower graph: Effects of changing the concentra-
tion of L (indicated in legend as ratio to equilibrium dissociation constant KD) for 
ligand with kOn equal to 0.25 × KD. Increasing concentration of L both accelerates 
association and increases equilibrium binding
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in dissociation experiments and division by ligand concentration. 
Association of muscarinic antagonists is easy to measure as NMS 
reaches equilibrium within minutes and QNB in hours [5]. 
However, the logarithmic shape of the association curve dictates 
that the initial time intervals of measurement should be in the frac-
tions of minute for NMS. Kinetics of muscarinic agonists are much 
faster than kinetics of antagonists. Acetylcholine reaches equilib-
rium from within 1 (M5 receptors) to 3 min (M3 receptors) [8]. 
Thus time steps should be as short as possible. With the aid of 
pipetting robots the initial steps can be as short as 2 s. The associa-
tion rate is strongly dependent on the temperature, so lowering 
incubation temperature to slow down association may be consid-
ered. Due to the rushed nature of association experiments samples 
of nonspecific binding should be preincubated with unlabeled 
ligand to allow association with all specific sites. When atropine is 
used for determination of nonspecific binding 30-min preincuba-
tion is sufficient. Formation of nonspecific binding is instant and is 
not time dependent. Thus determination of nonspecific binding at 
a single time point is sufficient. In determination of nonspecific 
binding a non-labeled, chemically distinct, highly specific ligand is 
used at a receptor saturating concentration (e.g., 1 μM atropine). 
Much higher concentrations should not be used to avoid blockade 
of nonspecific binding sites. The latter appears as a fraction of 
binding sites with extremely fast rate of association.

In dissociation experiments samples are first preincubated with 
tracer. Equilibrium binding should be reached prior to initiation of 
dissociation. To safely reach equilibrium preincubation should last 
at least 5 min for acetylcholine, 20 min for NMS or atropine, and 
3 h for QNB or NMQNB. Dissociation of tracer can be achieved 
by one of the two ways: (1) by removal of the tracer and (2) by 
addition of the excess of unlabeled ligand that prevents tracer asso-
ciation. The unlabeled ligand used for detection of nonspecific 
binding should be of a different chemical nature not to protect 
nonspecific binding sites that would appear as extremely fast dis-
sociating sites. Tracer can be removed either by replacement of 
incubation medium with tracer-free medium (that is easily achiev-
able by centrifugation or suction in case of whole tissues, cells in 
suspension, attached cell lines, and the like) or by dilution of incu-
bation medium to lower tracer concentration substantially (at least 
100 times). Medium for replacement or dilution should have the 
same temperature as preincubation medium to prevent tempera-
ture effects on dissociation. When dissociation is initiated binding 
starts to decline according to Eq. (11) that is a modification of Eq. 
(9) for zero concentration of L:

 LR LR Off[ ] = [ ]´ - ´
0 e k t

 (11)
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where [LR0] is tracer binding in the start of dissociation and is 
equal to [LREq] in Eq. (10) and [LR] in Eq. (6e) if equilibrium was 
reached. As is apparent from Eq. (11) the rate of dissociation is 
independent from used concentration of the tracer.

Equilibrium dissociation constant KD and the number of binding 
sites in sample RT can be determined in saturation binding experi-
ment where samples are incubated with various concentrations of 
the tracer. Under equilibrium tracer-specific binding depends on 
tracer concentration according to Eq. (6e). It should be stressed 
that Eqs. (6a), (6b), (6c), (6d), and (6e) were derived on the 
assumption that the concentration of tracer is much higher than 
the concentration of receptors and thus there is no ligand deple-
tion. Therefore the concentration of free tracer is constant during 
the experiment. In practice this is not always true and free tracer 
concentration has to be calculated by subtraction of ligand binding 
from initial ligand concentration that is calculated as total radioac-
tivity added to the sample divided by specific radioactivity of the 
tracer. It should be noted that this simple correction does not work 
for large tracer depletion that takes place at concentrations of the 
radioligand significantly below its KD. In such case the incubation 
volume has to be increased. Theoretical curves of saturation bind-
ing are shown in Fig. 4.

Because tracer nonspecific binding also depends on the concen-
tration of the tracer it must be determined for each tracer concentra-
tion used and subtracted from total binding (Fig. 1). For KD and RT 
to be defined and reliably used the concentrations of tracer should 
be evenly distributed around KD. Using only high concentrations of 
the tracer leads to erroneous estimates of KD (usually underestima-
tion) and using only low concentrations of the tracer leads to erro-
neous estimates of RT (usually overestimation). Extremely low and 
high concentrations of the tracer (far from KD) should be avoided as 
the ratio of specific to nonspecific binding is unfavorable (Fig. 1). If 
only RT is of interest a single saturating (several times KD) concentra-
tion of the tracer can be used (e.g., 1 nM NMS) as at concentrations 
saturating for tracer variation in KD has small effect on tracer bind-
ing. However, equilibrium time and KD should be determined in 
preliminary experiment. In typical saturation experiment eight con-
centrations of NMS ranging from 58 pM to 1 nM (starting with 
1 nM and diluting it 3:2 in each step) are used.

As shown in Table 1 the number of available radiolabeled musca-
rinic ligands is limited. However, there are means to determine the 
binding affinity of non-labeled ligands. For this purpose the ability 
of a non-labeled ligand to compete for specific binding of a radio-
ligand and decrease tracer binding is utilized. In practice binding 
of the tracer at a fixed concentration is measured in the presence of 
various concentrations of the non-labeled ligand. If the binding of 

8.3 Measurement 
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8.4 Displacement 
(Competition) Binding

Esam E. El-Fakahany and Jan Jakubik



59

Fig. 4 Theoretical saturation binding curves. Abscissa, concentration of free tracer. Ordinate, concentration of 
ligand-receptor complexes. Upper graph: Effects of tracer equilibrium dissociation constant KD (indicated in 
legend) on tracer binding for RT equal to 1. Lower graph: Effects of total receptor number RT (indicated in leg-
end) on binding of tracer with equilibrium dissociation constant KD equal to 1
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the non-labeled ligand X and tracer L is mutually exclusive then 
the amount of tracer-receptor complexes is given by Eq. (12) that 
is a combination of two equations (Eq. 6e) (one for tracer L and 
one for competitor X):
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where KX is the equilibrium dissociation constant of non-labeled 
ligand X. For practical purposes the tracer binding can be expressed 
as its fraction in the absence of X:
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where [LR0] is the tracer binding in the absence of X. Equation 
(13) can be further simplified for practical purposes by the intro-
duction of IC50 value that represents the concentration of X that 
decreases the tracer binding to 50 %:
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Equation (13) then becomes Eq. (15):
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Theoretical curves of competitive binding are shown in Fig. 5, 
upper graph. As can be inferred from Eq. (14) IC50 is dependent 
on the ratio of L to KD. As the KD is constant IC50 depends on the 
concentration of L. The higher the concentration of L the higher 
the IC50; in other words the bigger is the ratio of the IC50 and KX. 
Equation (14) dictates that the ratio of IC50 to KX is equal to the 
ratio of L to KD plus 1 (Fig. 5, lower graph). Nonlinearity of the 
dependence of IC50 on KX on the ratio of L to KD implies that the 
interaction between the tracer and non-labeled ligand is not com-
petitive, for example allosteric (see Chap. 6) or irreversible.

The application of competition binding study to determine 
equilibrium dissociation constant of non-labeled compound is 
obvious. Measurement of competition binding of tracer and non- 
labeled ligand with preferential affinity at individual receptor sub-
types may also be applied to determine receptor subtypes and their 
proportion in analyzed sample [29]. A list of selective muscarinic 
ligands is shown in Table 3. Antagonists with varied degrees of 
selectivity are available for all receptor subtypes. However, no true 
binding selectivity was found in the case of muscarinic agonists.
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Fig. 5 Competition binding. Upper graph: Competition binding of tracer L and competitor X. Abscissa, logarithm 
of ratio of competitor concentration [X] to its equilibrium constant [KX]. Ordinate, tracer binding [LR] expressed 
as fraction of total receptors [RT]. Ratio of the tracer concentration [L] to its equilibrium dissociation constant 
KD is indicated in the legend. Circles are IC50 at individual binding curves. Increasing tracer concentration leads 
to higher binding in the absence of competitor and to increase in IC50. Lower graph: Dependence of IC50 on 
tracer concentration. IC50 values (circles) from upper graph are plotted against tracer concentration. Abscissa, 
ratio of tracer concentration [L] to its equilibrium dissociation constant KD. Ordinate, ratio of IC50 concentration 
to competitor dissociation constant KX. Dependence is linear with slope equal to 1 and constant equal to 1
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The specific radioactivity is the amount of radiolabeled mass in a 
sample expressed as Ci/mol or Bq/mol. The specific radioactivity 
is required to compute mass amounts (e.g., total receptor number 
RT in saturation binding) from radioactivity measures of the sam-
ple. Specific radioactivity of commercial radioligands is provided by 
the manufacturer. For radioligands synthesized in-house the spe-
cific radioactivity can be estimated by comparing the KD value 
obtained by a tracer saturation binding with the value from a 
homologous competition experiment in which the same non- 
labeled ligand is used to displace the binding of the tracer. In satu-
ration binding the concentration of radioactivity [dpm/l] at KD is 
assessed according to Eq. (6e). Then in a homologous competition 
experiment the concentration of radioligand [mol/l] at KD is 
assessed according to Eq. (13). Specific radioactivity [in dpm/

8.5 Determination 
of Radioligand-
Specific Radioactivity

Table 3 
Selective and partially selective muscarinic antagonists

Selectivity M1 M2 M3 M4 M5

4-DAMP M3/M2 9.2 8.3 9.3 8.9 9.0

AFDX-116 M2, M4 6.2 6.7–7.3 6.1 7.0–8.7 5.3–5.6

AFDX-384 M2, M4 7.3–7.5 8.0–9.0 7.2–7.8 8.0–8.7 6.3

Darifenacin M3 8.3 7.3–7.6 9.1 8.1 8.6

Guanylpirenzepine M1 7.7 5.6 6.5 6.5 6.8

Himbacine M2, M4 7.1 7.9–8.4 6.9–7.2 7.9–8.2 5.4–6.5

MTX3 M4 7.1 <6 <6 8.7 <6

MTX7 M1 10.9 <5 <5 <5 <5

Pirenzepine M1 8.3 4.9–6.4 5.6–6.7 5.9–7.6 6.2–6.9

Tripitramine M2 8.8 9.6 7.1–7.4 7.8–8.2 7.3–7.5

VU0255035 M1 7.8 6.2 6.1 5.9 5.6

VU0488130a M5 <5 <5 <5 <5 6.5

Data adapted from Alexander et al. [32] unless otherwise indicated
Inhibition constants KI of muscarinic antagonists are expressed as negative logarithms
4-DAMP, 4-diphenylacetoxy-N-methylpiperidine; AFDX116 (otenzepad), 1-[2-[2-(diethylaminomethyl)piperidin-
1- yl]acetyl]-5H-pyrido[2,3-b][1,4]benozodiazepin-6-one; AFDX384, (±)-5,11-dihydro-11-([(2-[2-[dipropylamino)
methyl]-1-piperidinyl)ethyl)amino)carbonyl)-6H-pyrido[2,3-b](1,4)benzodiazepine-6-one; darifenacin, 2-[(3S)-1-[2-
(2,3-dihydro-1-benzofuran-5-yl)ethyl]pyrrolidin-3-yl]-2,2-diphenylacetamide; guanylpirenzepine, 4-[2-oxo-2-(6-oxo- 
5H-pyrido[2,3-b][1,4]benzodiazepin-11-yl)ethyl]piperazine-1-carboximidamide; himbacine, (3S,3aR,4R,4aS,8aR,9aS)- 
4-[(E)-2-[(2S,6R)-1,6-dimethylpiperidin-2-yl]ethenyl]-3-methyl-3a,4,4a,5,6,7,8,8a,9,9a-decahydro- 3H-benzo[f][2]
benzofuran-1-one; MTX3 and MTX7, the Eastern green mamba (Dendroaspis angusticeps) venom toxins (Liang et al. 
[41]; Fruchart-Gaillard et al. [42]; VU0255035, N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1- yl)propyl)-benzo[c][1,2,5]
thiadiazole-4 sulfonamide; VU0488130, 5-(3-acetylphenoxymethyl)-N-methyl-N-[(1S)-1-(pyridin-2-yl)ethyl]-1,2-oxazole- 
3-carboxamide
aGentry et al. [43]
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mol] is then calculated by division of radioactive concentration 
[dpm/l] by radioligand concentration [mol/l]. Figure 6 shows a 
typical saturation experiment and homologous competition for the 
determination of specific radioactivity. It should be noted that the 
requirement of equal affinity necessitates that the non-labeled and 
labeled ligands are chemically identical. Thus, if the ligand is 
labeled with [125I], the non-labeled ligand must also be in the 
iodinated form.

9 Data Analysis

Parameters of ligand binding are determined by fitting the appro-
priate equation to the data by nonlinear regression. The most com-
mon assumption is that data points are randomly scattered on both 
sides of a curve. The goal of regression is to adjust parameters of 
the equation to find the curve that minimizes the sum of the 
squares of the differences in y-values of points and curve. Simple 
least square method weights each point equally. However there are 
methodological reasons to weight points differently. If the repli-
cates show that standard deviation is dependent on y-value (the 
most common situation) then data points should be weighted 
according to y-value. When the standard deviation is proportional 
to the y-value (relative error to y-value is constant) like in Fig. 6 
then it is appropriate to perform relative weighting (weighting by 
1/Y2). When the standard deviation follows Poisson distribution 
(e.g., error from radioactive counting) then Poisson weighting 
(weighting by 1/Y) should be performed. Error coming only from 
radioactive counting is rarely the case. In practice the source of 
variation is a mix of sources and general weighting (weighting by 
1/Yk), where k is the slope of regression between standard devia-
tion and y-value and ranges from 0 to 2. When k is zero or close to 
it then there is no correlation of standard deviation and y-value and 
no weighting is needed. It may be tempting at first glance to weight 
the data by standard deviation (weighting by 1/SD2) but a very 
large number of replicates (dozens of samples) are needed for 
weighting to be correct. However, the use of such large number of 
replicates is usually not the case in radioligand binding studies.

Distribution of binding parameter estimates from nonlinear 
regression follows data distribution along axes. Thus parameters 
determined from semilogarithmic plots (e.g., competition bind-
ing) are log normally distributed. This implies that the logarithms 
of these parameters (e.g., EC50) should be compared and statisti-
cally analyzed. Also in case of linear plots (e.g., saturation binding) 
uneven data distribution along the abscissa may skew distribution 
of binding parameter (e.g., KD) estimates. Thus it should be 
checked for normality.

9.1 Regression 
Analysis

Radioligand Binding at Muscarinic Receptors
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Fig. 6 Determination of specific radioactivity. Upper graph: Saturation binding of 
radiolabeled ligand L with unknown specific radioactivity. Abscissa, free radioac-
tivity of the sample expressed in dpm. Ordinate, specific binding of the tracer 
expressed in dpm. Fitting Eq. (6e) to data gives maximum binding capacity RT at 
about 3600 dpm and equilibrium dissociation constant KD of tracer at about 38 
million dpm. Lower graph: Homologous competition of the labeled ligand L with 
non-labeled chemically identical ligand X. Abscissa, logarithm of concentration 
of non-labeled ligand X. Ordinate, specific binding of labeled ligand L in dpm. 
Labeled ligand was used in a concentration close to its equilibrium dissociation 
constant KD as indicated by specific binding around 1900 dpm that is half of total 
receptor number RT in upper graph. Fitting Eq. (15) to data gives IC50 of 423 pM 
and equilibrium dissociation constant KD 212 pM. Dividing KD from upper graph 
by KD from lower graph gives specific radioactivity 178 dpm/fmol
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Data have to be preprocessed before fitting. Namely, replicates are 
averaged and standard deviations calculated. Specific binding is cal-
culated by subtraction of nonspecific binding from total binding. 
Specific binding is converted to amounts of substance [mol] by 
division of radioactivity of the sample by specific radioactivity of 
the ligand. Then specific binding may be related to protein content 
of the sample, mass of tissue, etc. Used concentration of radioli-
gand is determined by division of the amount of total radioactivity 
added to the sample by specific radioactivity of the radioligand and 
sample volume. The easiest way of data preprocessing is to use a 
spreadsheet software one is familiar with.

It is good practice to perform basic data analysis (like sample 
variation analysis or outlier identification) prior to nonlinear regres-
sion analysis. Nonlinear regression analysis to extract binding param-
eters and subsequent statistical analysis can be performed using 
various software ranging from software specialized to analysis of 
binding data, pharmacological or biochemical experiments, many 
plotting and curve fitting programs, as well as any general- purpose 
mathematical package. Table 4 lists several software packages suitable 

9.2 Software

Table 4 
List of software suitable for fitting binding equations to data

Name Type
Operating 
systems License Reference

COPASI Biochemical network 
simulator with fitting 
functionality

Linux
MacOS X
Windows

Free and 
Commercial

www.copasi.org

CurveExpert Plotting, curve fitting, 
and statistical analysis

Linux
MacOS X
Windows

Shareware www.curveexpert.net

DataFit Plotting and curve fitting Windows Commercial www.oakdaleengr.com

GraphPad 
Prism

Pharmacological 
experiments

MacOS X
Windows

Commercial www.graphpad.com

GTK/Grace Plotting and curve fitting Linux
Windows

GPL sourceforge.net/
projects/gracegtk

Lab Fit Plotting, curve fitting, 
and statistical analysis

Windows Shareware zeus.df.ufcg.edu.br/
labfit/

SciDAVis Plotting and curve fitting Linux
MacOS X
Windows

scidavis.sourceforge.net

Scilab General-purpose 
mathematical

Linux
MacOS X
Windows

Free CeCILL www.scilab.org

Disclaimer. Table lists currently available software known to authors. It is not intended to be full list neither recom-
mendation to use

Radioligand Binding at Muscarinic Receptors
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for analysis of binding experiments. A major advantage of specialized 
pharmacological programs is that they are easy to use and have built-
in data preprocessing routines, pre-regression checks, predefined 
equations for all types of binding experiments, and implement vari-
ous post-regression tests. The main disadvantage of these programs is 
their relatively high price and inability of scripting and incorporation 
into workflows with other software. On the other hand general-pur-
pose mathematical and plotting programs are more knowledge 
demanding to the user but allow scripting and creation of various 
workflows. Some of them are open source and free of charge. For 
example for teaching purposes or when one does not have any spe-
cialized program at hand a  simple least-sum-of-squares regression can 
be done even using common spreadsheet software (Protocol I).

Protocol I: Nonlinear regression analysis in spreadsheet

 1. Input variable (x values) in column A, and dependent variable 
(y values) in column B.

 2. Enter initial values for binding function parameters in column E.
 3. In column C enter binding function calling binding parameters 

from column E.
 4. In column D calculate square of deviations between cells in col-

umns C and B in the current row.
 5. In the cell F1 calculate sum of values in column D.
 6. Open solver function of the spreadsheet and instruct it to mini-

mize value in the cell F1 by changing values in column E. Choose 
Levenberg-Marquardt method if available.

10 Conclusions

Overall, the current status of radioligand binding experiments 
allows very accurate and detailed study of equilibrium binding, 
binding kinetics, and structure-activation relationship at musca-
rinic receptors. Binding experiments may be performed in various 
forms ranging from tissue cultures via whole cells to purified recep-
tors when criteria discussed in this chapter are met. Their main 
limitation remains to be the lack of selective radiolabeled agonists 
and antagonists for some receptor subtypes.
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    Chapter 4   

 Binding Method for Detection of Muscarinic Acetylcholine 
Receptors in Receptor’s Natural Environment 

           Ikunobu     Muramatsu     ,     Hatsumi     Yoshiki    ,     Kiyonao     Sada    ,     Junsuke     Uwada    , 
    Takanobu     Taniguchi    ,     Takayoshi     Masuoka    , and     Matomo     Nishio   

    Abstract 

   The pharmacological and biochemical properties of G protein-coupled receptors have been recently 
revealed to be more complex than originally supposed. Especially, in natural environment or in vivo, some 
receptors including muscarinic acetylcholine receptor (mAChR) are frequently modifi ed by many factors, 
so that the receptors may exhibit multiple pharmacological profi les and biochemical functions, which are 
different from relatively constant and uniform properties originally reported in cell-free preparations and 
recombinant system. In order to detect the native properties of receptors occurring in tissues and cells 
without altering their natural environment and also to solve discrepancy between the functional affi nity 
obtained by a bioassay approach and the binding affi nity estimated from the conventional binding method 
with membrane preparations, the tissue segment binding method without homogenization has been 
recently developed as a new approach. In this chapter, the detailed protocol of tissue segment binding 
method and some unique properties of mAChRs observed in tissue segments are described.  

  Key words     Radioligand binding  ,   Tissue segments  ,   Tissue homogenates  ,   Muscarinic acetylcholine 
receptor (mAChR)  ,   Natural tissue environment  ,   Affi nity and density  ,   Subcellular distribution  

1      Introduction 

 The radioligand-binding method has been one of the most impor-
tant techniques in studying the pharmacological characterization 
and biochemical identifi cation of many types of receptors [ 1 ,  2 ]. 
This method was pioneered by Paton and Rang in 1965 [ 3 ], who 
incubated intact strips of intestinal smooth muscle with [ 3 H]atro-
pine, in order to study the ligand binding properties of mAChRs. 
However, the binding method was thereafter applied to homoge-
nates or membrane fractions prepared from tissue, because recep-
tor density is high in the membrane-rich preparations and any 
binding-interfering substances such as endogenous neurotransmit-
ters could be removed in the fractionated preparations ([ 2 ], also 
see other chapters in this volume). Since the pharmacological 
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 profi les of receptors obtained by the conventional membrane 
 binding method are generally uniform among many tissues and 
relatively well consistent with those of recombinant receptors 
[ 2 ,  4 ], the conventional binding method with membrane prepara-
tions and the recombinant receptors have been widely employed 
for many purposes including the identifi cation of receptors and the 
screening of drug candidates. However, there is emerging evidence 
that a receptor can show multiple pharmacological or biochemical 
properties under different conditions or states, in contrast to the 
uniform property supposed originally [ 5 – 10 ]. In particular, phar-
macological specifi city for some receptors may differ markedly 
between intact cells and cell-free preparations [ 11 – 13 ]. For exam-
ple, M 3 -mAChR subtype in rat cerebral cortex has relatively low 
affi nity to M 3 -selective antagonists (darifenacin and solifenacin) in 
the natural environment, while the antagonists can recognize the 
M 3 -mAChRs with high affi nity after homogenization [ 14 ]. 
Furthermore, there are often discrepancies in the native mAChRs 
between the functional affi nities for antagonists obtained by a bio-
assay approach and the binding affi nities estimated from the con-
ventional membrane binding assay [ 15 ,  16 ]. Moreover, M 1 -mAChR 
subtype has been recently demonstrated to exist and operate not 
only on the cell surface but also in intracellular sites in the central 
nervous system [ 17 ,  18 ]. The existence of functional intracellular 
mAChRs is inconsistent with a classical concept that mAChRs are 
representative cell-surface receptor. As tissue homogenization may 
cause disintegration of cell structure and/or dissociation with 
receptor and other membrane proteins and may result in signifi -
cant changes of the pharmacological or biochemical properties, it 
seems very important to keep receptor’s natural environment as 
possible. Recently, we have developed “intact tissue segment bind-
ing method” without homogenization [ 7 ,  19 ]. In this chapter, the 
detailed protocol of intact segment binding method and some 
unique profi les for native mAChRs are described.  

2    Materials 

   In order to maintain the native tissue environment, isotonic nutri-
ent solutions have been used. We employ a modifi ed Krebs–
Henseleit solution that is commonly used in the functional bioassay. 
The composition is as follows: 121 mM NaCl, 5.9 mM KCl, 
1.2 mM MgCl 2 , 2.0 mM CaCl 2 , 1.2 mM NaH 2 PO 4 , 25.5 mM 
NaHCO 3 , and 11.5 mM glucose. The pH of the solution is main-
tained at 7.4 by gassing with 95 % O 2  and 5 % CO 2 . It is better to 
partially freeze the solution (0 °C) before tissue isolation in order 
to stop rapidly tissue/cell metabolism upon tissue isolation. 
Especially, brain must be placed in 0 °C solution immediately after 
isolation.  

2.1  Solution 
for Tissue Isolation
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   The goal of using intact tissue in the tissue segment binding 
method is to keep the receptor environment closely as possible to 
that in tissues in vivo. Therefore, isotonic nutrient solutions are 
used during binding experiments. We use an incubation buffer 
(136 mM NaCl, 5.9 mM KCl, 1.2 mM MgCl 2 , 2.0 mM CaCl 2 , 
1.2 mM NaH 2 PO 4 , 10.5 mM NaHCO 3 , and 11.5 mM glucose, 
pH 7.4  in air ), whose composition is essentially the same as the 
modifi ed Krebs–Henseleit solution described above. However, the 
incubation buffer cannot be aerated during the incubation period, 
in contrast to the case of a functional bioassay where the nutrient 
solution is bubbled with 95 % O 2  and 5 % CO 2 . Therefore, the 
NaHCO 3  concentration in the modifi ed Krebs–Henseleit solution 
is reduced from 25.5 to 10.5 mM to adjust the pH to 7.4 under 
equilibration in room air, and the osmolality is compensated by 
adding NaCl. This bicarbonate buffer solution is suffi cient to keep 
the pH constant under the incubation conditions at low tempera-
ture. Other isotonic solutions buffered with HEPES or Tris    might 
be used instead of the bicarbonate buffer, but it should be tested 
before use whether the buffer composition affects the binding 
properties of the target receptors.  

   Two distinct radioligands have been used for the identifi cation of 
mAChRs: 1-quinuclidinyl-[phenyl-4- 3 H]-benzilate ([ 3 H]QNB) 
and 1-[N-methyl- 3 H]-scopolamine methyl chloride ([ 3 H]NMS). 
[ 3 H]QNB is hydrophobic and permeable through plasma mem-
brane. Thus, as the proportion of nonspecifi c binding is signifi -
cantly higher than that of hydrophilic [ 3 H]NMS, [ 3 H]NMS is 
useful to detect cell surface mAChRs. On the contrast, hydropho-
bic [ 3 H]QNB can bind not only cell surface but also intracellular 
mAChRs [ 20 – 22 ]. In addition to radioligands, surface and intra-
cellular mAChRs may be differently recognized by membrane- 
permeable atropine, or impermeable N-methylatropine or 
non-radioactive NMS, resulting in distinct proportions of nonspe-
cifi c binding sites. Therefore, different combinations with radioli-
gand and nonspecifi c ligand must be selected depending on 
research purposes (see Sect.  3 ) Radioligands and all tested drugs 
are diluted with incubation buffer before use. H 2 O must not be 
used for drug dilution. Glass tubes, but not plastic tubes, must be 
used for drug dilution and incubation (Fig.  1 , step A), because 
 plastic tubes  may rapidly absorb radioligands and other tested 
drugs, resulting in a rapid reduction in their concentrations during 
dilution and incubation in contrast to glass tubes.

3         Methods 

   The tissue segment binding method can be applied to all tissues 
isolated from animals including humans. Under a stereoscopic 
microscope and at 4 °C, surrounding unnecessary parts such as fat 

2.2  Incubation 
Buffer

2.3  Radioligands

3.1  Preparation 
of Tissue Segments
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and connective tissues are removed. Muscle and mucosal layers can 
be separated in some tissues such as urinary bladder and stomach. 
Then the tissue is carefully cut into small pieces with ophthalmic 
fi ne scissors under a stereoscopic microscope. In order to allow dif-
fusion of drug into tissue it is necessary to cut tissue in segments of 
small size. However, segments have to be big enough to keep 
receptor environment intact. Thus compromised size of sections 
has to be found. For example, the best size of rat cerebral cortex 
segments is approximately 1.5 mm in length, 1 mm in width, and 
0.5 mm in thickness for the measurement of mAChRs. In rat 
detrusor and stomach muscles, the best size is 1 × 1.5 mm although 
the thickness depends on the muscle layer.  

Step A: Step B:

Step C: Step D:

(shaking at 4 ℃)

Tissue
segment 

(occasional vortexing at 37 ℃)

count radioactivity

protein assay

Incubation
buffer

plastic tube

washing buffer

(gentle vortexing at 4 ℃)

glass tube

0.3 M  
NaOH

solution

glass tube

pick up

pick up

  Fig. 1    Experimental protocol for the tissue segment binding method.  Step A : One tissue segment is incubated 
with [ 3 H]NMS or [ 3 H]QNB in the absence or presence of competitor in a glass tube at 4 °C. The incubation 
volume is generally 0.5 ml and the glass tube is shaken 110–120 times per min during incubation. Incubation 
periods (7–8 or 16 h) and combination of radioligand and competitor depend on the research purpose.  Step B : 
Thereafter, the tissue segment is picked up by forceps, and then gently washed in a plastic tube containing a 
washing buffer at 4 °C for 40–60 s.  Step C  : The tissue segment is again picked up with another forceps, and 
then solubilized in 1 ml of 0.3 M NaOH solution at 37 °C for ~24 h. The test tube is strongly vortexed several 
times in order to facilitate the solubilization.  Step D : After solubilization, the radioactivity and protein content 
are measured. In general, 500 μl and 20–50 μl of the solubilized solution are used for the measurements of 
radioactivity and protein content, respectively.  Thick horizontal arrows  between steps A and B, steps B and C, 
or steps C and D represent that the tubes described in both panels are the same, respectively       
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   As shown in Fig.  1 , step A, one segment is incubated in one glass 
tube at 4 °C. The incubation volume is usually 0.5 or 1.0 ml, where 
a segment is incubated together with different concentrations of 
competitor and radioligand. In the tissues expressing receptor at 
high density, larger incubation volume (together with smaller size 
of tissue segments) is better to avoid a signifi cant reduction of 
effective concentrations of radioligand and/or competitor added 
to the incubation solution during incubation. Incubation starts 
immediately after addition of radioligand. Incubation tubes are 
usually shaken 110–120 times per min. Some investigators con-
sider 37 °C might be preferable, because this temperature is more 
physiological and because the resulting binding data might corre-
spond better to the functional data measured at 37 °C. However, 
it must be noted that the intact tissue segments are incubated in an 
isotonic solution without bubbling air or oxygen. In order to rule 
out possible changes in natural states under anoxia at 37 °C, we 
have therefore used low temperature (generally 4 °C). Receptor 
traffi cking seems to be neglected at this low temperature.  

   In the conventional binding method with cell-free preparations, 
2 h incubation is enough to reach equilibrium binding even at 
low temperature (4 °C). In contrast, binding process to intact 
tissue segments should be markedly infl uenced by tissue architec-
ture and physicochemical properties of tested drugs. Figure  2  
shows representative time course of specifi c binding of [ 3 H]QNB 
in rat urinary bladder and cerebral cortex segments. At 1.5 nM of 
[ 3 H]QNB, the binding to rat detrusor muscle is monophasic and 
reaches a plateau in incubation for approximately 8 h (Fig.  2a ). 

3.2  Incubation 
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3.3  Incubation Time
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  Fig. 2    Time course of [ 3 H]QNB binding to rat urinary bladder segments ( a , detrusor muscle) and cerebral cortex 
( b ) segments at 4 °C. [ 3 H]QNB (1.5 nM in  a , and 1.5 and 10 nM in  b ) was added at time 0 and then incubated 
for indicated periods. Specifi c binding was determined by subtraction of [ 3 H]QNB binding in the presence of 
1 μM atropine from total binding. Each point represents the mean of duplicate determinations and SEM in a 
representative experiment       
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However, the  binding of 1.5 nM [ 3 H]QNB to cerebral cortex is 
biphasic; the fi rst plateau at approximately 8 h is followed by the 
second plateau at 16 h incubation (Fig.  2b ). On the other hand, 
at a higher concentration (10 nM) of [ 3 H]QNB, the binding 
increases monophasically in rat cerebral cortex segments (Fig.  2b ). 
Recently, intracellular distribution of mAChRs in addition to cell 
surface has been  demonstrated in rat, mouse and human brain 
and in neuroblastoma cells [ 17 ,  18 ], while mAChRs usually occur 
on the cell surface in the peripheral tissues such as urinary blad-
der when the receptors are not stimulated by agonists [ 21 ,  23 –
 25 ]. Therefore, it is likely that monophasic binding of [ 3 H]QNB 
at 10 nM refl ects its faster penetration through plasma membrane 
and rapid association with mAChRs than those at low concentra-
tions (1.5 nM) of [ 3 H]QNB. Although different binding kinetics 
of QNB among mAChR subtypes cannot be also ruled out, the 
present and recent additional evidence suggests that the ability of 
hydrophobic [ 3 H]QNB to bind to cell surface and intracellular 
mAChRs strongly depends on the plasma membrane permeabil-
ity (physicochemical property) and concentrations of radioligand, 
and also on the incubation time. At present, we have used two 
different incubation periods (8 and 16 h) in [ 3 H]QNB binding 
experiments in order to detect surface and total mAChRs. In this 
case, total number of mAChRs is estimated by subtracting non-
specifi c binding defi ned with membrane- permeable atropine 
(1 μM) from total binding at 8 or 16 h incubation, while amount 
of surface mAChRs is calculated by subtracting the nonspecifi c 
binding defi ned with hydrophilic (membrane-impermeable) NMS 
(1 μM) at short incubation (8 h). Figure  3  shows the representa-
tive saturation curves for [ 3 H]QNB binding to total and surface 
mAChRs in rat cerebral cortex segments, where similar total 
number of mAChRs can be estimated by atropine regardless of 
8 or 16 h incubation (see more details in    Sect.  4.2 ). Alternatively, 
surface mAChRs may be more specifi cally estimated from [ 3 H]
NMS binding to the segments, where nonspecifi c binding should 
be defi ned with the use of more hydrophilic N-methylatropine 
than atropine [ 21 ]. Combination of chemically same compounds 
(e.g., [ 3 H]NMS vs. NMS) must be avoided in order to contami-
nate non-mAChR sites.

        After incubation, each segment is carefully picked up by forceps 
from each incubation tube and quickly moved into a  plastic tube  
containing ice-cold washing buffer (2 ml). Then, the plastic tubes 
are gently vortexed for 40–60 s (Fig.  1 , step B). The washing buf-
fer is the same as the incubation buffer used. Figure  4  shows the 
residual radioactivity remained in the tissue segments after washing 
for various times, where rat cerebral cortex segments were incu-
bated with 2 nM [ 3 H]NMS (a) or 2 and 10 nM [ 3 H]QNB (b and 
c) in the absence or presence of 1 μM atropine for 8 h beforehand. 
The residual radioactivity in the segments rapidly reduced after 

3.4  Washing
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washing and was maintained at relatively constant level during 
15–120 s. It is interesting to note that tissue radioactivity before 
washing (at 0 s) is not so high as compared with the residual count 
after washing, suggesting that contamination of radioligand in 
extracellular/interstitial spaces is minor in the used segments. This 
conclusion is also supported by extremely low levels of nonspecifi c 
[ 3 H]NMS binding in the segments incubated with atropine 
(Fig.  4a ). In contrast, nonspecifi c binding of lipophilic [ 3 H]QNB 
is higher in proportion than that of [ 3 H]NMS, suggesting intracel-
lular accumulation of [ 3 H]QNB and its persistent retention during 
washing (Fig.  4b, c ). After washing, the segment is picked up and 
moved into a  glass tub e for tissue solubilization (Fig.  1 , step C). 
Different forceps must be used at steps B and C, in order to avoid 
possible contamination of radioligand. In the case of hard seg-
ments like muscle, the blotting on paper may be applied after pick-
ing up the segment.

      The washed segments are solubilized in 0.3 M NaOH solution 
(1 ml) to measure the bound radioactivity and the protein content 
(Fig.  1 , steps C and D). Most of tissue segments are solubilized at 
37 °C within 1 day. It must be noted that segment size varies 
among segments, that results in different protein concentrations 
between tubes. Therefore, protein content must be measured in 
every tube. In general, 10–50 μl of the solubilized tissue solution 
is used for protein assay and 500 μl for measurement of radioactiv-
ity of bound radioligand, respectively.  

3.5  Tissue 
Solubilization, 
and Measurement 
of Protein 
and Radioactivity
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  Fig. 3    Representative saturation curves for [ 3 H]QNB binding to intact segments of rat cerebral cortex. ( a ) The 
segments were incubated for 8 h and the specifi c binding ( circles  and  squares ) was determined by subtraction 
of [ 3 H]QNB binding in the presence of 1 μM atropine or 1 μM NMS, respectively. ( b ) The segments were incu-
bated for 16 h and specifi c binding ( circles ) was determined by subtraction of [ 3 H]QNB binding in the presence 
of 1 μM atropine from total binding. Each point represents the mean of duplicate determinations and SEM in a 
representative experiment       
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   Since each tissue segment varies in size, the solubilized tissue solu-
tion in each tube has different protein content. For normalization 
of the data, the radioactivity measured must be adjusted to the 
counts (dpm) bound per mg of protein. Then, binding data are 
analyzed using commercially available software (PRISM version 
5.01; GraphPad Software, La Jolla, CA, USA) [ 7 ].   

4    Notes 

   The most important discrepancy between the tissue segment bind-
ing method and the conventional binding method using homog-
enates or microsomal fraction is a difference in binding density. 
Recent data of saturation binding experiments with [ 3 H]NMS in 

3.6  Data Analysis
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  Fig. 4    Residual radioactivity remained in the segments of rat cerebral cortex after washing. The segments 
were incubated with 2 nM [ 3 H]NMS ( a ) or 2 and 10 nM [ 3 H]QNB ( b  and  c , respectively) for 8 h beforehand, and 
then picked up and washed for various times. In abscissa, time 0 means that the radioactivity of the segments 
was directly measured without washing.  Squares : total radioactivity.  Circles : specifi c radioactivity.  Triangles : 
nonspecifi c radioactivity in atropine-treated segments. Each point represents the mean of duplicate determi-
nations and SEM in a representative experiment       
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the segments and homogenates of various rat tissues are summa-
rized in Table  1 . Here, the tissues were homogenized either with 
the same Krebs’ solution as the incubation buffer in the segment 
binding experiments or with sodium-free Tris-EDTA buffer in 
order to test the effects of distinct homogenizing buffers. When 
the binding capacities are compared using the same denominator 
(that is, per mg of total tissue protein in the segments and the 
homogenates), lower density of mAChRs can be estimated in the 
homogenates than in the segments, regardless of distinct homog-
enizing buffers. Similar differences in binding capacity have been 
reported in the mAChRs of other tissues (rat gastric mucosa [ 26 ]; 
human airways [ 27 ]; mouse epithelial cells [ 28 ]). Since the specifi c 
binding observed in segments is completely inhibited by not only 
lipophilic but also hydrophilic antagonists and agonists, higher 
density in the segments is not an overestimate due to nonspecifi c 
accumulation of radioligand into the tissue segments (see    Sect.  3.4 , 
Fig.  4 ). Rather, it is likely that the tissue segment binding method 
can avoid a yield loss of receptors which may be resulted from 
homogenization and/or membrane fractionation. This type of 
yield loss after homogenization has been reported in other recep-
tors (nicotinic receptor [ 29 ]; α 1 -adrenoceptor [ 19 ,  30 – 32 ]; 
β-adrenoceptor [ 26 ,  33 ]). The improved yield of receptor in intact 

    Table 1  
  The dissociation constants ( K  D ) and maximal binding capacities ( B  max ) of [ 3 H]NMS in the intact 
segments and homogenates of various rat tissues   

 Tissue 

 Segments  Homogenates 

  K  D  (pM)   B  max  (fmol/mg protein)   K  D  (pM)   B  max  (fmol/mg protein) 

 Cerebral cortex  1550  3000  178 
 (134) 

 2050 
 (1990) 

 Striatum  2500  3700  158  2800 

 Hippocampus  1800  2500  197  1950 

 Cerebellum  350  280  213  204 

 Submaxillary grand  280  380  185  153 

 Left ventricle  1050  420  334 
 (163) 

 86 
 (110) 

 Gastric muscle  970  1580  245  550 

 Detrusor muscle  800  810  212  226 

  Saturation binding experiments were carried out at 4 °C. Incubation periods were 8 h in the segments and 2 h in the 
homogenates, respectively. Tissues were homogenized with the same buffer as the Krebs’ incubation buffer used in the 
segment binding method, but cerebral cortex and left ventricle were also homogenized with Tris buffer (50 mM Tris, 
2 mM EDTA, pH = 7.4) and the data are shown in parentheses. Data represent mean value of 2–3 experiments  
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segments is of particular value for dealing with limited amount of 
tissues and/or small animals. Recently, Ikeda et al. [ 27 ] have 
applied the segment binding method to human airway tissues in 
order to compare the distribution of mAChR and β-adrenoceptor 
subtypes between segmental and subsegmental bronchi (approxi-
mately 10 mm and 1–4 mm in outer diameter, respectively).

   The second signifi cant difference between both binding meth-
ods may be observed in binding affi nities for radioligand or several 
drugs. Like [ 3 H]QNB, [ 3 H]NMS has been classically recognized 
as a non-selective but specifi c radioligand of mAChRs showing a 
relatively constant and high (subnanomolar) affi nity in various tis-
sues and recombinant receptors [ 4 ]; for example, 270 pM in rat 
cerebral cortex, 290 pM in rat hippocampus, 230 pM in rat corpus 
striatum, and 547 pM in rat gastric muscle [ 4 ,  14 ,  34 ,  35 ]. A simi-
lar high affi nity (approximately 200 pM) for [ 3 H]NMS was 
obtained in the present homogenate binding (Table  1 ). However, 
the dissociation constants for [ 3 H]NMS estimated in the segments 
are relatively low and varied among the tested tissues (280–
2500 pM). Besides these results, it has been reported that M 3 - 
mAChRs in rat cerebral cortex cannot be identifi ed as high affi nity 
sites for M 3  selective antagonists (darifenacin and solifenacin) 
under segmental conditions, while M 3 -sites have been recognized 
as their high affi nity sites in the homogenates or the membrane 
preparations [ 14 ]. Therefore, it is likely that tissue homogeniza-
tion may cause a change in receptor profi le in addition to yield loss, 
and it would in part explain well known discrepancy between 
 functional bioassay and conventional binding assay. Although the 
mechanisms for yield loss and profi le change after homogenization 
are not yet settled, it must be again emphasized that the segment- 
binding approach may shed light on distinct native phenotypes of 
cholinergic and probably other receptors observed in functional 
approach [ 7 ,  12 ,  13 ,  36 ].  

    In contrast to peripheral tissues, the mAChRs in the cerebral cor-
tex, striatum, and hippocampus exist not only on the cell mem-
branes but also in the intracellular sites (mainly Golgi apparatus) 
[ 17 ]. The intracellular sites can be accessed by hydrophobic [ 3 H]
QNB but not by hydrophilic [ 3 H]NMS [ 20 – 22 ]. Figure  3a  shows 
representative saturation curves for [ 3 H]QNB binding in rat cere-
bral cortex segments under 8 h incubation, where two distinct 
binding capacities are estimated using hydrophilic (membrane- 
impermeable) unlabeled NMS and membrane-permeable atropine, 
respectively. The density estimated with hydrophilic NMS is signifi -
cantly lower than that estimated with atropine. Such a high density 
of mAChRs is also obtained under long incubation (16 h) in the 
absence or presence of atropine (Fig.  3b ). These differences in 
binding capacities are also observed in striatum and hippocampus of 
rats and mice, but not in the cerebellum and peripheral  tissues. 

4.2  Identifi cation 
of Surface and 
Intracellular mAChRs
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These results suggest that mAChRs are localized not only on the 
cell surface but also at intracellular sites in some brain areas, and 
that such distinct subcellular distribution of mAChRs can be identi-
fi ed by different combinations of [ 3 H]QNB with hydrophobic 
and/or hydrophilic ligands in the segments. In reference to this 
point, it is important to emphasize repeatedly that cell surface and 
intracellular receptors cannot be discriminated after homogeniza-
tion. Detection of distinct subcellular distribution of receptors 
would be infl uenced by physicochemical property and concentra-
tions of ligands, and incubation times.  

   Under natural/physiological environment, mAChRs and probably 
other receptors may exist and function as pharmacologically dis-
tinct phenotypes which are different from relatively constant and 
uniform profi le observed in homogenized tissues or recombinant 
system. The tissue segment binding method is a powerful tool for 
detecting the native properties of receptors occurring in tissues and 
cells without altering their environment, and would provide impor-
tant information of pharmacokinetic analysis, positron emission 
tomography (PET) analysis and in drug development. Recently, it 
has been suggested that in vivo distribution of receptor ligands 
may be related to the distinct binding affi nities estimated in the 
segments of various tissues but not to a uniform affi nity estimated 
in the homogenates [ 13 ].      
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    Chapter 5   

 Use of Antibodies in the Research on Muscarinic 
Receptor Subtypes 

           Wisuit     Pradidarcheep     and     Martin     C.     Michel    

    Abstract 

   Antibodies can be a powerful tool to detect receptor expression at the protein level. Their main advantage 
is the potential of good spatial resolution in immunohistochemistry, whereas their main limitation is that 
they yield less quantitative results as compared to radioligand binding. However, most available antibodies 
against muscarinic acetylcholine receptor subtypes have shown poor target selectivity when tested strin-
gently, e.g., often yielded similar staining patterns in wild-type and knockout animals or in cells transfected 
with the target as compared to a closely related receptor subtype. On the other hand, a small number of 
antibodies have been validated to some degree for selectivity for a muscarinic receptor subtype. Protocols 
for their use in immunohistochemistry are discussed. However, it remains a key learning that each investi-
gator should carefully establish whether the intended antibody is indeed selective for the target under 
investigation under the assay conditions being applied.  

  Key words     Muscarinic receptor  ,   Antibody  ,   Validation  ,   Immunoblot  ,   Immunohistochemistry  

1      Introduction 

 Determination of the number and/or subtype distribution of 
 muscarinic receptors is relevant for the understanding of physiol-
ogy and pathophysiology. Radioligands are a good tool for the 
quantifi cation of total muscarinic receptor density in a tissue and its 
possible regulation by gender, ageing, or pathophysiology [ 1 ]. 
However, the use of radioligands has two limitations in the research 
fi eld of muscarinic receptors. Firstly, standard muscarinic receptor 
radioligands such as N-methylscopolamine or quinuclidinylben-
zylate are available only in tritiated forms; the associated low 
 specifi c radioactivity causes a limited sensitivity, i.e. requires 
large samples and/or a high expression density. As a consequence 
of this, morphological studies based on autoradiography with 
the radioligands require long exposure times. Second, 
N-methylscopolamine or quinuclidinylbenzylate binds with similar 
affi nity to all fi ve muscarinic receptor subtypes. Accordingly, the 
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relative contribution of any subtype can only be derived from 
experiments with subtype-selective competitors. However, most 
muscarinic receptor ligands exhibit only moderate subtype selectiv-
ity, which makes robust quantitative analysis of subtypes diffi cult, 
particularly within the M 1 /M 3 /M 5  or the M 2 /M 4  subfamily of 
muscarinic receptors [ 2 ]. 

 Receptor subtype-selective antibodies could potentially address 
several of these challenges. Due to their high affi nity they can be 
very sensitive and in immunohistochemical experiments can be an 
excellent tool for morphological studies. On the other hand, they 
have the intrinsic disadvantage that the results are diffi cult to quan-
tify. Most importantly, however, in practical experience most anti-
bodies against (individual) subtypes of muscarinic receptors have 
proven to lack selectivity for their cognate receptor. Against this 
background, this chapter initially discusses the selectivity problems 
with commonly available antibodies against muscarinic receptor 
subtypes. Thereafter, we discuss protocols which can be used for 
immunohistochemical detection of muscarinic receptors subtypes 
for the limited number of cases where antibodies possess the 
required specifi city.  

2    Selectivity Problems with Muscarinic Receptor Antibodies 

 It had been widely assumed that presence of a single band in an 
immunoblot could be considered as a proof of antibody selectivity. 
However, the number of bands in an immunoblot can be tweaked 
in various ways. For example it is infl uenced by the choice of expo-
sure time and image contrast, which may enhance the visibility of 
some bands relative to others. This becomes particularly relevant, 
if the validation immunoblot is generated with a cell line or tissue 
expressing a very high density of the target protein, for instance 
with a cell line transfected with the cognate receptor. Such overex-
pression can enhance target over background signal and may lead 
to false positive estimates of selectivity when applied to native tis-
sues with a lower expression density. 

 Another potentially misleading criterion for target selectivity of 
an antibody can be the disappearance of signal upon co-incubation 
with a blocking peptide, mostly identical in amino acid sequence to 
the peptide which had been used to generate the antibody. While 
it appears obvious that the peptide used for immunization will 
absorb the antibody, the reasoning for accepting this as specifi city 
evidence ignores the fact that a small peptide in solution may 
be much more fl exible and hence present a very different 
 three- dimensional epitope than a receptor with multiple 
 membrane- spanning domains. Both of these potential problems 
are worsened by the fact that many commercial suppliers of recep-
tor antibodies provide only limited technical information on the 
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specifi c experimental conditions which had been used in their 
 validation experiments. Moreover, the frequent absence of cau-
tionary notes that the “representative” immunohistochemical 
image or immunoblot in a catalog is limited to very specifi c recep-
tor sources and/or experimental conditions raise doubts about 
how representative it really is. 

 Meanwhile evidence from numerous types of G-protein- 
coupled receptors has shown that even with the best of intentions, 
selectivity claims on the presence of a single band in an immuno-
blot and/or signal disappearance in the presence of blocking  peptide 
in many cases provides misleading information on antibody selec-
tivity [ 3 ,  4 ]. Thus, more vigorous approaches to testing antibody 
selectivity have more often than not failed to confi rm selectivity 
claims based on a single immunoblot band or blocking peptide. 
For example, when target receptor and a closely related receptor, 
i.e., another subtype from the same receptor family, were expressed 
in the same cell line at a comparable density, a given antibody often 
produced almost identical band patterns in immunoblots with 
β-adrenoceptor [ 5 ] or dopamine receptor subtype antibodies [ 6 ]. 
Similarly, several galanin receptor antibodies produced similar 
staining patterns in both immunoblots and immunohistochemistry 
when comparing tissues from wild-type and knockout mice lacking 
the target receptor [ 7 ]. Some investigators lack access to recombi-
nant receptors or knockout animals of the required species; in such 
cases use of receptor knockdown by small interfering RNA or use 
of tissues known to lack the receptor of interest may be alternative 
acceptable validation techniques [ 8 ]. The shocking fi nding from 
validation approaches using any of these hard criteria was that the 
vast majority of receptor antibodies failed to exhibit the promised 
selectivity [ 3 ]. 

 Additional potential causes of misleading antibody-based 
results have been identifi ed. These include the observation that 
some antibodies may have acceptable specifi city in one application, 
e.g., immunocytochemistry, but not in another, e.g., immuno-
blotting [ 9 ]. Another potential cause of misleading results is the 
 observation that a given antibody may yield acceptable target spec-
ifi city in one species but not in another [ 8 ]. Finally, fi xation condi-
tions may also affect the apparent specifi city of some antibodies 
[ 10 ]. The sum of these issues has led some investigators to refer to 
receptor antibodies as “reagents of mass distraction” [ 11 ]. In the 
following we discuss specifi c evidence in this regard for antibodies 
against muscarinic receptor subtypes. 

 In an heroic effort Jositsch et al. [ 10 ] have explored the target 
selectivity of 24 antibodies against muscarinic receptors (1–9 per 
subtype), with four dilutions and up to 21 different conditions 
tested for each antibody yielding a total of 1824 conditions being 
evaluated. In this study staining with several antibodies was abol-
ished by preincubation with blocking peptide. 
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 However, the immunohistochemical signal from M 1  receptor 
antibodies ABS5164, AMR-001, AS-3701S, GP20a, Rabbit 001, 
Rabbit 002, and sc-7471 was unaffected in dorsal root ganglia, 
urinary bladder, and thoracic viscera from M 1  knockout mice. 
Using a different validation approach, i.e., immunoblotting with 
membranes from human embryonic kidney (HEK) cells trans-
fected with M 1 , M 2 , M 3 , and M 4  receptors to yield comparable 
expression levels, we found that AMR-001 exhibited a similar band 
pattern in immunoblots from all four cell lines [ 12 ]. Actually, in 
these experiments we did not identify a single band that was more 
prominent in M 1 -expressing than in other cells, and one of the 
bands was actually most prominent in M 2 -expressing cells. 

 Among M 2  receptor antibodies, Jositsch et al. [ 10 ] found that 
immunohistochemical staining was unaffected in dorsal root gan-
glia, urinary bladder, and thoracic viscera from M 2  knockout mice 
for AS3721S and AMR-002. For the former, labeling in airways 
was also unaffected by M 2 /M 3  double knockout, indicating that 
the nonspecifi c labeling was not due to staining of another musca-
rinic receptor subtype. For the latter, we have reported a similar 
band pattern in immunoblots with membranes from cells trans-
fected with M 1 , M 2 , M 3 , and M 4  receptors [ 12 ]. However, two M 2  
receptor antibodies have shown at least some promise based on the 
work by Jositsch et al. [ 10 ]. The monoclonal antibody mAB367 
labelled airway smooth muscle and the cell membrane of a sub-
population of dorsal root ganglion neurons and atrial and pulmo-
nary vein cardiomyocytes in wild-type but not in M 2  knockout 
mice, particularly when a specifi c protocol was applied; however, 
signals from ciliated epithelial cells of the oviduct obtained with 
the same antibody were not affect in the knock-out mice (Fig.  1 ). 
The rabbit polyclonal M 2  receptor antiserum AB5166-50ULa 
illustrated another problem: while some batches of this antiserum 
produced labeling specifi c for wild-type vs. M 2  knockout mice, 
other batches from the same supplier resulted in identical labeling 
patterns in both strains, i.e., the producer of this batch may have 
been unable to deliver a consistent product across batches.

   Among antibodies targeted at M 3  receptors, AB9453, AMR- 
006, AS-3741S, GP19b, R66136, R66431, Rabbit 001, Rabbit 
002, and sc-9108 yielded similar staining in immunohistochemical 
experiments in dorsal root ganglia, urinary bladder, and thoracic vis-
cera from wild-type and M 3  knockout mice (Fig.  1 ) [ 10 ]. AS-3741S 
also yielded a similar band pattern in immunoblots with membranes 
from HEK cells transfected with M 1 , M 2 , M 3 , and M 4  receptors [ 12 ]. 
Using a similar approach, another group reported that antibody 
sc-7474 detected a single band in immunoblots of M 3  receptor-
transfected HEK cells, which was absent in non- transfected cells; the 
apparent molecular weight of this band, 95–100 kDa, was consider-
ably higher that estimated based on the receptor sequence (66 kDa) 
but might be explained by glycosidation [ 13 ]. In a follow-up study 
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the same group found a similar immunohistochemical staining 
 pattern in the guinea pig urinary bladder for three antibodies, 
sc-7474, sc-9108, and Ab-13063 [ 7 ]. When tested in immunoblots 
with membranes from HEK cells transfected or non-transfected 
with M 3  receptors, sc-7474 again yielded a single band of 102 kDa. 
In contrast, Ab-13063 did not yield any band, and sc-9108 yielded 
two bands of 45 and 65 kDa. Of note, staining with sc-9108 was 
abolished by blocking peptide [ 14 ] but has not been affected by M 3  
receptor knock-out in immunohistochemistry experiments by other 
investigators [ 10 ]. 

  Fig. 1    An example of proven target selectivity and lack of it with antibodies against muscarinic receptor sub-
types. The  upper panels  show staining of mouse bronchi with the alleged M 3  receptor antibody AS-37415. 
Staining appears anatomically selective for smooth muscle in wild-type mice and is prevented by liquid-phase 
pre-absorption with the corresponding antigen but is not affected in M 3  knockout mice. In contrast, the  middle 
panels  show that staining of mouse bronchial and pulmonary vein smooth muscle with the M 2  antibody mAB 
367 is absent in M 2  receptor knockout mice; however, staining of ciliated epithelial cells of the oviduct was not 
affected in the knockout mice ( lower panels ). Adapted with permission from [ 10 ]       
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 A smaller number of M 4  receptor antibodies have been 
 evaluated by hard criteria. Among these AS-3761S, MAB1576 and 
sc-9109 yielded similar staining in immunohistochemical experi-
ments in dorsal root ganglia, urinary bladder, and thoracic viscera 
from wild-type and M 4  knockout mice [ 10 ]. MAB1576 also yielded 
a similar band pattern in immunoblots with membranes from 
HEK cells transfected with M 1 , M 2 , M 3 , and M 4  receptors [ 12 ]. 
AS-3781S, claimed to be an M 5  receptor antibody, exhibited 
 staining in immunohistochemical experiments in dorsal root gan-
glia, urinary bladder, and thoracic viscera from wild-type and M 5  
knockout mice [ 10 ]. 

 Taken together, with the possible exception of few M 2  and M 3  
receptor antibodies, most antibodies with claimed selectivity for 
individual subtypes of muscarinic receptors fail to exhibit target 
selectivity when tested under stringent conditions. However, even 
antibodies which exhibit target selectivity under some experimen-
tal conditions may not do so under others (Fig.  1 ). Therefore, the 
key message from the above is that receptor antibodies need to be 
validated as carefully as possible and that data based on such anti-
bodies always need to be interpreted very cautiously.  

3    Methods for Immunohistochemical Detection of Muscarinic Receptors 

 Immunostaining is a widely used technique that combines bio-
chemistry and immunology. The concept of immunostaining was 
developed from the antigen-antibody binding reaction and visual-
izes the distribution and localization of specifi c antigens or cellular 
components (in this case muscarinic receptors) in tissue sections 
(immunohistochemistry) or isolated cells (immunocytochemistry). 
Compared to other techniques that are based on the antigen- 
antibody reaction, such as immunoprecipitation and Western blot-
ting, which provide material for further biochemical analyses and 
provide information on molecular weight of the antigens 
(and contaminations), immunostaining provides topographical 
information.

   Immunostaining can be divided into (1) direct staining (one- 
step staining) and (2) indirect staining (two or more step staining) 
procedures. The indirect staining technique is more popular, 
because it allows the amplifi cation of the signals at the site of 
antigen- antibody binding by different hapten-conjugated anti-
bodies. According to the type of labeling of the antibodies, 
 immunostaining methods can be classifi ed as immunogold, immu-
nofl uorescence, and immunoenzyme stainings. In immunogold 
staining, colloidal gold is bound to the antibodies and visualized. 
Colloidal gold is the hydrosol form of gold and can bind proteins 
rapidly and stably. Moreover, colloidal gold has little effect on the 
biological activity of natural proteins. Therefore, colloidal gold can 
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be conjugated with both primary and secondary antibodies. Due 
to the high electronic density of colloidal gold, immunogold tech-
nique is also suitable for antigen detection with an electron micro-
scope. In immunofl uorescence staining methods, the antigens are 
visualized with fl uorescent dyes conjugated to antibodies. Because 
the exciting and emitted light have to be separated, dedicated fl uo-
rescence microscopes are necessary. Due to ease, high sensitivity, 
and convenience, the immunofl uorescence staining method is 
widely used in biomedical sciences. In immunoenzyme staining, 
enzymes are coupled to antibodies that are used to bind to specifi c 
antigens in tissue samples or cultured cells. After adding substrate, 
the enzyme generates insoluble or electron-dense particles that can 
be localized under a light or electron microscope. Compared to 
immunofl uorescence staining, immunoenzyme- stained samples 
can be stored longer. Two major enzymes covalently linked with 
secondary antibodies that are commercially available are horse 
 radish peroxidase (HRP) and alkaline phosphatase (AP). These 
enzymes catalyze reactions that produce stained products that are 
easily detectable by light microscopy. Binding reaction between 
the HRP and its substrate yields the products in brown. However, 
adding metals to HRP changes color. Reaction between AP and its 
substrate gives rise to products which stain blue (if substrate used 
is nitroblue tetrazolium chloride/5-bromo- 4-chloro-3-indolyl 
phosphate) or stain red (if aminocarbazol is used as the substrate). 

 From our own experience with immunostaining of muscarinic 
receptors in tissue sections and cultured cells, we prefer the AP- to 
HRP-based method. This is because the staining intensity of prop-
erly diluted AP-coupled antisera increases linearly with time for 
1–2 h, whereas the product inhibition of peroxidase coupled 
 antisera yields their maximal staining in a few minutes and does, 
hence, not differentiate very well between locally differing concen-
trations of antigens. The localization of antigen when stained with 
AP is adequate but HRP-based staining with diaminobenzidine is 
superior in this respect. However, the main advantage of staining 
with AP is that the intensity develops linearly with time for several 
hours and can also be intensifi ed by developing at a higher tem-
perature [ 15 ]. 

 Three major steps in a complete immunoenzyme staining 
 session are the following:

    1.    Binding of primary antibody to specifi c antigen (e.g., musca-
rinic receptors).   

   2.    Forming the antibody-antigen complex by incubation with an 
(enzyme-conjugated) secondary antibody.   

   3.    Generating a colored precipitate at the sites of antibody-anti-
gen binding by exposing the section to the chromogenic 
substrate.     

Use of Antibodies in the Research on Muscarinic Receptor Subtypes
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  Tissue preparation or fi xation is essential for the preservation of cell 
morphology and tissue architecture. Inappropriate or prolonged 
fi xation may signifi cantly diminish the accessibility of the antigen to 
the antibody. Fixatives that are suitable for immunostaining should 
at least preserve antigenic sites and should not destroy antigenicity 
by acting as a very strong protein cross-linker. In our experience, 4 % 
formaldehyde in phosphate-buffered saline (PBS) or an ice-cold 
mixture of methanol:acetone:water (MAW; 2:2:1 (v/v)) are a proper 
protein cross-linker and precipitating fi xative, respectively. These fi xa-
tives are able to successfully preserve antigens in paraffi n-embedded 
tissue sections or in cultured cells. However, some antigens will not 
survive even moderate amounts of aldehyde fi xation. Under such 
conditions, tissues should be rapidly fresh frozen in liquid nitrogen 
and cut with a cryostat. The disadvantages of frozen sections 
include poor morphology, poor resolution at higher magnifi cations, 
diffi culty in cutting relative to paraffi n sections, and the need for a 
cryotome [ 16 ]. 

 If 4 % formaldehyde/PBS is used as fi xative, the detection of 
antigens can be dramatically improved by antigen retrieval. This 
method breaks up some of the protein cross-links formed by fi xation 
to uncover hidden antigenic sites. This can be accomplished by heat-
ing in citrate or EDTA-based solution (e.g., autoclave or microwave) 
for varying lengths of times [ 17 – 19 ]. However, if MAW is employed 
as fi xative agent, the step of antigen retrieval is not required. 

 One of the main diffi culties with immunostaining is reducing 
non-specifi c background. Optimization of fi xation methods and 
times, pre-treatment with blocking agents, incubating antibodies 
diluted in a high-salt solution (e.g., 500 mM Na-acetate, pH 8), 
and optimizing post-antibody washing buffers and washing times 
are all important for obtaining high-quality immunostaining. 
In addition, the presence of positive and negative controls for 
staining is essential for determining specifi city. 

 The following and Table  1  refl ect the protocols that we have 
used to successfully reveal antigens in the paraffi n-embedded tissue 
sections [ 20 ].   

4    Protocol: Indirect Immunoalkaline Phosphatase Staining on Paraffi n Sections 

     1.    Deparaffi nize sections in three changes of xylene, 3 min each.   
   2.    Hydrate the sections in a graded descending series of ethanol: 

100 %, 96 %, 90 %, 80 %, 70 %, and 50 % for 1 min each.   
   3.    Rinse in water.   
   4.    If the sections were fi xed with formaldehyde, it is necessary 

to perform an antigen retrieval step. If the sections were 
fi xed by ice-cold mixture of methanol:acetone:water 

3.1  Tips 
in Immunoenzyme 
Staining
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(MAW; 2:2:1 (v/v)) (or other alcohol fi xative) antigen 
retrieval is not necessary. 
 The steps for antigen retrieval are as follows:
    (a)     Prepare 10 mM sodium citrate from a stock solution of 1 M 

sodium citrate; adjust the pH to 6.0 with 1 M citric acid.   
   (b)     Put your slides in the solution-containing box and cover 

with aluminum foil.   
   (c)    Put the slides in the autoclave.   
   (d)    Set the autoclave at 10 min and 120 °C.   
   (e)    Wait until the pressure is off and take the sections out.   
   (f)     Let them cool down to room temperature, wash shortly in 

distilled water and then continue with the procedure.       
   5.    Wash in PBS, pH 7.4, for a minimum of 5 min on a shaking 

platform at room temperature.   
   6.    Draw circle around the sections on the glass slides with a Pap- 

pen to prevent mixing of the different antibodies between 
adjacent sections.   

   7.    Incubate the sections in 1× TENG-T/10 % serum (normal 
goat serum (NGS) or fetal calf serum (FCS)) for a minimum of 
30 min to reduce nonspecifi c background staining.   

   8.    Remove the TENG-T + 10 % serum by suction and apply the 
primary antibody. The appropriate dilution(s) of primary anti-
body are made in TENG-T/10 % serum. The incubation is 
done overnight at room temperature in a humidity chamber. 

   Table 1  
  Chemicals used in [ 20 ]   

 Chemical and material  Manufacturer  Product No. 

 Paraformaldehyde  VWR  4005 

 Tween-20  VWR  822184.0500 

 Normal goat serum (NGS)  Gibco  16210-072 

 Fetal calf serum (FCS)  Gibco 

 NBT/BCIP  Roche  1681 451 

 GAM-AP  Sigma  A3562 

 GAR-AP  Dako  D0487 

 RAG-AP  Sigma  A4187 

 Super PAP-pen  Beckman  IM3850 
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It is noteworthy that the volume applied on each section 
should not be too big to avoid intermingling with adjacent 
incubations.   

   9.    Remove the unbound fi rst antibody by gentle suction and 
drop PBS directly on the sections.   

   10.    Wash the sections in three changes of PBS, 5 min each on a 
shaking platform at room temperature.   

   11.    Incubate the sections with the AP-conjugated secondary 
 antibody for at least 2 h at room temperature. The optimal 
dilution of AP-conjugated secondary antibody is dependent on 
the fi rst antibody used:

    (a)    If the fi rst antibody was raised in mouse, use GAM-AP: 
  GAM - AP :  G oat- a nti- M ouse IgG conjugated with  A lkaline 
 P hosphatase (1:100 in TENG-T/10 % serum).   

   (b)    If the fi rst antibody was raised in rabbit, use GAR-AP: 
  GAR - AP :  G oat- a nti- R abbit IgG conjugated with  A lkaline 
 P hosphatase (1:200 in TENG-T/10 % serum).   

   (c)    If the fi rst antibody was raised in goat, use RAG-AP: 
  RAG - AP :  R abbit- a nti- G oat IgG conjugated with  A lkaline 
 P hosphatase (1:50 in TENG-T/10 % serum). In this case 
the serum should  not  be a normal goat serum.       

   12.    Wash the sections in three changes of PBS, 5 min each on a 
shaking platform at room temperature.   

   13.    Incubate the sections in NBT/BCIP (a substrate of alkaline 
phosphatase) diluted in NTM at room temperature.

  Note 
  (a)     NBT/BCIP: nitroblue tetrazolium chloride/5-bromo-

4- chloro-3-indolyl phosphate (toluidine salt; Dako).   
  (b)     NTM contains: (1) 100 mM NaCl, (2) 100 mM Tris pH 

9.5, and (3) 50 mM MgCl 2 .   
  (c)    MgCl 2  should be added to the solution just before use.   
  (d)     Dilute the NBT/BCIP 1:50 in NTM just before use. 

Make it fresh, do not store.       
   14.    Stop the reaction in distilled water, after the staining is satisfac-

tory when viewing under light microscope (it can be 30 min, 
but up to 2 h is permitted).   

   15.    Dehydrate the sections by dipping quickly through a graded 
ascending series of ethanol (50 %, 70 %, 80 %, 90 %, 96 %, and 
100 %). If you do not go quickly through the ethanol, the 
staining will become faint.   

   16.    Dip the sections in three changes of xylene, 7 min each. This 
step makes the color in the tissues clearer.   

   17.    Mount the sections in Enthallan (a mounting media).   
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   18.    Let the sections dry in fume hood and then overnight in an 
incubator at 37 °C.   

   19.    Observe and photograph under light microscope.      

5    Notes 

     1.    Prepare stock solution of 10× TENG-T containing:
 –    100 mM  T ris–HCl.  
 –   50 mM  E DTA (pH 8.0).  
 –   1.5 M  N aCl.  
 –   2.5 %  G elatin.  
 –   0.5 % v/v  T ween-20.        

 Mix well and store at 4 °C.
    2.    In order to prepare 1× TENG-T:     

 Put 10× TENG-T in warm water and allow the content to 
melt. Shake gently and dilute it to 1× TENG-T with bidistilled 
water. Adjust the pH with HCl or NaOH to 8.0.

    3.    Prepare 1× TENG-T + 10 % serum:     
 Add 1 ml of serum to 9 ml of 1× TENG-T (NGS, FCS, or 
another serum can be used, but it must not be the serum from 
the animal in which the fi rst antibody was raised (e.g., do not 
use rabbit serum when your fi rst antibody was raised in rab-
bits)). Ideally primary and secondary antibody should be from 
different orders of mammals; if this is not feasible, non-specifi c 
binding can be tested on a Western blot.

6      Conclusions 

 The most important conclusion from this data is that investi-
gators must apply great care in their choice of antibody for 
 immunological detection of muscarinic receptor subtypes. As tar-
get selectivity may depend on the assay, i.e., immunoblotting vs. 
immunohis tochemistry, each antibody must be carefully validated 
for the intended use. Choice of fi xation protocols and other steps 
may critically affect signal strength in immunohistochemistry 
studies.     
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Chapter 6

Allosteric Modulation of Muscarinic Receptors

Jan Jakubik and Esam E. El-Fakahany

Abstract

Allosteric ligands modulate binding and function of muscarinic receptors in a different way than orthosteric 
ligands. Unlike orthosteric ligands their effects are limited by a cooperativity factor. This imparts them 
unique properties, including cooperativity-based selectivity, functional selectivity and restoring of physio-
logical-like space and time pattern of signaling under pathological conditions. Therefore, allosteric modula-
tors of muscarinic receptor are intensively studied as possible therapeutics of pathological conditions 
including Alzheimer’s disease and schizophrenia. Research of allosteric modulation has pioneered the way 
for a whole class A of G-protein coupled receptors and has had an impact beyond its own field. We review 
principles of allosteric modulations and their implications for proper design of binding as well as functional 
experiments and for proper data analysis. We demonstrate immense complexity of allosteric modulation of 
functional responses. Such complexity is reflected in the inability to determine individual microscopic con-
stants in allosterically modulated systems. Therefore, the effects of a given allosteric modulator can be 
characterized by only two macroscopic parameters, namely a change in the agonist potency and efficacy. We 
also discuss distinct properties of allosteric interactions that are specific to muscarinic receptors.

Key words Muscarinic receptors, Allosteric modulation, Radioligand binding, Functional response

1 Historic Overview

The concept of allosterism was formally introduced into the field 
of enzymology by Monod et al. [1, 2] in their description of a 
generalized model of oligomeric enzymes that contained a number 
of “stereo-specifically different, non-overlapping receptor sites.” 
The substrate was said to bind at the “primary” or “active” site. 
On the other hand, an “allosteric effector” (from the Greek word 
“allo” meaning “other”) was defined as a molecule that binds to a 
site other than the primary binding site. In pharmacology, the term 
orthosteric ligand denotes a compound that binds to the same 
binding site as endogenous ligand (neurotransmitter or hormone), 
while a ligand that binds to other sites on the receptor is termed 
allosteric. Allosteric ligands influence (modulate) binding and 
effects of orthosteric ligands in a different way than orthosteric 
ligands. In the pioneering work by Clark and Mitchelson, 
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gallamine was found to shift the concentration-response curves of 
acetylcholine in inhibiting the heart atrium to the right but the 
magnitude of the shifts was smaller than expected for conventional 
competitive receptor antagonists [3]. They proposed that galla-
mine interacts with a secondary allosteric site on the receptor. This 
notion was later confirmed in radioligand binding studies [4]. 
Subsequently, a wide variety of allosteric modulators of muscarinic 
receptors was identified including toxiferous alkaloids [5], the 
L-calcium channel blocker verapamil [6], the potassium channel 
inhibitor 4-aminopyridine [7], inhibitors of acetylcholinesterase 
[8–10], strychnos and vinca alkaloids [11], and antibiotics like 
staurosporine [12]. Numerous site-directed mutagenesis studies 
located allosteric binding sites for most allosteric modulators to the 
extracellular domain of the receptor, namely between the second 
and the third extracellular loops [13–20]. For further details see 
review by Jakubík and El-Fakahany [21]. This has been recently 
confirmed by crystallographic studies [22]. Allosteric modulation 
of muscarinic receptors has been intensively studied for decades for 
its perspective role in therapy of many pathological conditions 
including Alzheimer’s disease and schizophrenia [23, 24].

2 Principles of Allosteric Modulation

By definition, allosteric ligands bind to a site on the receptor that is 
spatially distinct from that of endogenous ligands of the receptor. 
Consequently, binding of an allosteric ligand (A) and an orthosteric 
ligand (L) to the receptor (R) is not mutually exclusive, i.e., both 
ligands may bind to the receptor to form a ternary complex LRA 
(Scheme 1). Binding of allosteric modulators induces a change in 
the conformation of the receptor that results in changes in binding 
and/or effects of the orthosteric ligand. The law of microscopic 
reversibility of thermodynamics dictates that binding of orthosteric 
ligand L affects binding of allosteric ligand A in the same way in 
which the allosteric ligand A affects binding of the orthosteric 
ligand L. A situation when L and A mutually strengthen each oth-
er’s binding is called positive cooperativity, i.e., formation of the 
ternary complex LRA leads to increase in the affinity of both ligands, 
that is a decrease in the equilibrium dissociation constants of ortho-
steric ligand (KD) and allosteric ligand (KA) (thus α < 1) (Scheme 1, 
Fig. 1 upper graph, green curve). The opposite situation when L 
and A mutually weaken their binding is called negative cooperativ-
ity. Under negative cooperativity formation of the  ternary complex 
LRA leads to a mutual decrease in affinity, that is an increase in 
equilibrium dissociation constants of orthosteric ligand (KD) and 
allosteric ligand (KA) (thus α > 1) (Scheme 1, Fig. 1 upper graph, 
red curve). In other words, binding of L to R is stronger or weaker 

2.1 Allosteric 
Modulation of Ligand 
Binding
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in the presence of A in case of positive or negative cooperativity, 
respectively. In rare situations the two ligands form a ternary com-
plex with the receptor without mutually changing their affinities is 
called neutral cooperativity (α = 1) (Fig. 1 upper graph, blue curve). 
In this particular case the affinity of L for R or AR is the same. This 
knowledge is very important in design of binding experiments.

Scheme 1 Scheme of allosteric interaction. An orthosteric ligand L binds to the 
receptor R with equilibrium dissociation constant KD and an allosteric modulator A 
binds to the receptor R with equilibrium dissociation constant KA. The orthosteric 
ligand L and the allosteric modulator A can bind concurrently to the receptor R to 
form a ternary complex LRA. Binding of one ligand to the receptor changes the 
equilibrium dissociation constant of the other ligand by factor of cooperativity α

In general ligand association is a fast process that closely parallels 
ligand diffusion to the receptor. Thus allosteric effects on ligand 
binding are usually manifested in changes in ligand dissociation; by 
slowing or accelerating dissociation in case of positive and negative 
cooperativity, respectively (Fig. 1 lower graph). Because changes in 
kinetics of ligand binding do not strictly follow changes in ligand 
affinity, binding of an allosteric agent with neutral cooperativity may 
be detected by changes in the rate of dissociation of an orthosteric 
ligand. As changes in ligand kinetics are not possible without forma-
tion of the ternary complex they become a hallmark of allosteric 
interaction and the most straightforward way to identify it.

It should be noted that effects of allosteric modulator on both 
equilibrium and kinetic binding and on functional effects of ortho-
steric ligands is limited by a cooperativity factor α. For example, in 
Scheme 1, with increasing concentrations of the allosteric modula-
tor A the equilibrium dissociation constant of the orthosteric 
ligand L changes from its original value KD until it reaches a value 
α × KD. Further increase in the concentration of A does not bring 
further change in KD. That is in contrast to competition of two 
orthosteric ligands for the same site where changes in binding of 
one orthosteric ligand are proportional to the concentration of the 
other orthosteric ligand without a maximal limit (see Chapter 3, 
Fig. 5). The level of maximum effect of allosteric modulator (also 
known as “ceiling effect”) would confer safety under conditions of 

Allosteric Modulation of Muscarinic Receptors
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Fig. 1 Allosteric modulation of binding. Theoretical curves of tracer equilibrium saturation binding (upper 
graph) and tracer dissociation (lower graph) in the absence (black) or in the presence of positive (green), nega-
tive (red) or neutral (blue) allosteric modulator. Tracer binding (in binary LR and ternary LRA complexes) is 
expressed as a fraction of total receptor number RT (upper graph) or fraction of complexes at start of dissocia-
tion (lower graph). A positive allosteric modulator causes an increase in tracer affinity (decrease in tracer 
equilibrium dissociation constant KD) (upper graph) and slow down of tracer dissociation (lower graph). A nega-
tive allosteric modulator causes a decrease in tracer affinity (increase in tracer equilibrium dissociation con-
stant KD) (upper graph) and acceleration of tracer dissociation (lower graph)
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overdosage. This represents an advantage of development of 
 allosteric receptor modulators for therapeutics purposes.

A conformational change of the receptor induced by an allo-
steric ligand has different effects on binding of structurally differ-
ent orthosteric ligands as well as structurally different receptor 
subtypes. Thus, the factor of cooperativity α depends on combina-
tion of all three constituents of allosteric interaction: the receptor 
and the orthosteric and allosteric ligands. For example eburnamo-
nine decreases affinity of the agonist arecoline at the muscarinic M2 
receptor, but has no effect on the affinity of the agonist arecaidine 
propargyl ester. Interestingly, it increases the affinity of the agonist 
pilocarpine. In contrast, eburnamonine decreases the affinity of all 
three agonists at M1 and M3 muscarinic receptors [11].

Allosteric modulators may affect receptor activation by mecha-
nisms additional to effects on binding of an orthosteric agonist to 
the receptor. Thus for a given pair of allosteric modulator and 
orthosteric agonist, positive cooperativity in binding does not nec-
essarily translate into an increase in agonist potency in functional 
assays and may even lead to “allosteric quenching of agonist effi-
cacy” [25, 26]. Moreover, an allosteric modulator that exerts neg-
ative binding cooperativity with an agonist at equilibrium may 
potentiate agonist-induced activation of the receptor due to accel-
eration of agonist binding [27].

Another feature of allosteric modulators of muscarinic receptors 
is their ability to activate the receptors in the absence of agonists. For 
example, partial stimulation of accumulation of inositol phosphates 
and inhibition of accumulation of cAMP in response to strychnine-
like allosteric modulators has been reported [28]. A whole new class 
of potent allosteric agonists has been reported recently [29–31].

3 Promises of Allosteric Targeting of Muscarinic Receptors

Muscarinic receptor subtypes share high structural homology in 
the transmembrane domains where the orthosteric binding site is 
located. On the other hand, domains out of membrane are less 
conserved. Targeting allosteric domains allows achieving binding 
selectivity to an extent that is not possible by orthosteric ligands. 
Allosteric modulators exhibit a wide range of selectivity for differ-
ent muscarinic receptor subtypes. For example, while prototypical 
allosteric modulators like alcuronium and gallamine display selec-
tivity towards M2 receptors [32], strychnine is M3 selective [11] 
and WIN compounds are M4 selective [33].

Theoretically, a positive allosteric modulator of acetylcholine that 
has no efficacy on its own would only induce an action when the 
endogenous acetylcholine is released. Consequently, its action 

2.2 Anomalies 
in Allosteric 
Modulation 
of Functional 
Response
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Targeting Less 
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would be restricted in space and time to those regions of the body 
where signaling is actually taking place. Thus, space and time pat-
tern of signaling could be restored under pathological conditions 
of diminished acetylcholine release, e.g., degeneration of choliner-
gic neurons in certain brain areas in Alzheimer’s disease.

Theoretically, absolute selectivity is achieved by having an allosteric 
agent with the intended positive or negative cooperativity in combi-
nation with the orthosteric ligand at one subtype of the receptor 
and neutral cooperativity at the rest of the subtypes. Selectivity may 
be derived from binding and/or activation cooperativity. As proof 
of concept such cooperativity-based binding selectivity for thio-
chrome at the M4 muscarinic receptor has been reported [34].

4 Analyzing Allosteric Modulation of Ligand Binding

The methodology of radioligand binding at muscarinic receptors is 
described in detail in a previous chapter. Here we only describe the 
setup and data analysis of experiments with allosteric ligands. The 
major complication of radioligand binding experiments with allo-
steric modulators is the lack of suitable allosteric radioligands. So 
far only a few radiolabeled allosteric ligands are available. These 
include tritiated ABA-type like compounds (Fig. 2) dimethyl-W84 
[35], derivatives of α-truxillic acid anatruxonium and truxillonium 
[36], and iodinated proteins like the muscarinic toxins MTX2 [37], 
MTX1 [38, 39], and MTX7 [40]. Tritiated ABA-type compounds 
have relatively low affinity and extremely high nonspecific binding 
in comparison to orthosteric antagonists that make their use as 
tracers difficult. Fluorescent labeling and detection of binding by 
FRET seems to be the way to reduce nonspecific binding [41, 42]. 
Muscarinic toxins display very slow kinetics that lead to kinetic arti-
facts [37, 40]. None of muscarinic radiolabeled ligands are avail-
able commercially. Thus almost all binding studies of muscarinic 
allosteric ligands are conducted indirectly and their binding param-
eters are inferred from changes in binding of orthosteric tracers.

Equilibrium dissociation constant of the allosteric ligand KA and 
factor of cooperativity α can be determined from a series of experi-
ments of tracer saturation binding. Equilibrium dissociation con-
stants in Scheme 1 are defined as follows:

 
K

L R

LRD =
[ ][ ]
[ ]  

(1a)

 
K

R A

RAA =
[ ][ ]
[ ]  

(1b)

3.3 Absolute 
Selectivity

4.1 Allosteric 
Modulation of Tracer 
in Saturation Binding 
Experiments
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Fig. 2 Radiolabeled allosteric modulators. ABA-type compounds that have 
been experimentally tritiated. Dimethyl-W84 (6-[dimethyl-[3-(4-methyl- 1,3-
dioxoisoindol-2-yl)propyl]azaniumyl]hexyl-dimethyl-[3-(4-methyl- 1,3-
dioxoisoindol-2-yl)propyl]azanium), anatruxonium (1,1′-[(2,4-diphenylcyclobutane- 
1,3-diyl)bis(carbonyloxypropane-3,1- diyl)]bis(1-ethylpiperidinium)) and truxillo-
nium (bis[4-(1-methylpiperidin- 1-ium-1-yl)butyl]2,4-diphenylcyclobutane-1,3- 
dicarboxylate)

Allosteric Modulation of Muscarinic Receptors
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aK

L RA

LRAD =
[ ][ ]
[ ]  

(1c)

 
aK

LR A

LRAA =
[ ][ ]
[ ]  

(1d)

Total number of receptors is sum of free receptors and binary and 
ternary complexes:

 R R LR RA LRAT[ ] = [ ] + [ ] + [ ] + [ ]  (2)

Fraction of receptors occupied by tracer L:
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Multiplying the numerator and denominator of the fraction on the 
right side of Eq. (3) by 1/[L][R] gives:
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Substituting Eq. (4) by Eq. (1a):
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Substituting Eq. (5) by Eqs. (1b) and (1c):
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(6)

After simplification:
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L K
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(7a)

where KD
′ is the apparent equilibrium dissociation constant of the 

tracer in the presence of allosteric modulator A that is given as:
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For saturating concentrations of the allosteric modulator 
([A] ≫ KA) Eq. (7b) can be reduced to:

 
K K

A

A
KD D D

¢ = ´
[ ]

[ ]
=

/a
a

 
(8)

As can be seen, an allosteric modulator affects the tracer equilib-
rium dissociation constant (Eq. 7b) without a change in binding 
capacity (Eq. 7a). Maximum change in the equilibrium dissocia-
tion constant is given by the cooperativity factor α (Eq. 8). In case 
of positive cooperativity the tracer’s equilibrium dissociation con-
stant decreases with increasing the concentration of the allosteric 
modulator (Eq. 7b; Fig. 3, upper graph). Such effects are unique 
to allosteric interaction and thus positive allosteric modulators are 
easily identified. In case of negative cooperativity the tracer’s equi-
librium dissociation constant increases with increasing the concen-
tration of an allosteric modulator (Eq. 7b; Fig. 3, lower graph). 
At first glance this is similar to competition of orthosteric ligand 
with the tracer for the same binding site (Fig. 4). However, as 
stated above, at negative cooperativity the decrease in tracer affin-
ity has its limit given by the cooperativity factor α, while the effects 
of a classical competitive interaction are directly proportional to 
the competitor’s concentration without a limit. While plotting of 
tracer equilibrium dissociation constant against concentration of a 
competitor gives a straight line (with slope equal to 1 and constant 
equal to 1) (Fig. 5, circles) plotting tracer equilibrium constant 
against the concentration of a negative allosteric modulator gives a 
hyperbole with asymptote equal to the cooperativity factor α 
(Fig. 5, squares). It can be seen that deviations from competitive 
behavior are more obvious at high concentrations of a negative 
allosteric modulator. Likewise, plotting tracer equilibrium dissocia-
tion constant against the concentration of a positive allosteric 
modulator gives an inverse hyperbole with asymptote equal to the 
cooperativity factor α (Fig. 5, triangles).

When equilibrium dissociation constant of the allosteric ligand 
KA and factor of cooperativity α are determined from a series of 
experiments of tracer saturation binding (like in Fig. 3) Eq. (7a) is 
fitted to data and apparent equilibrium dissociation constant of the 
tracer KD

′ is determined for each concentration of the allosteric 
modulator A. Then the obtained KD

′ values are plotted against the 
concentration of A (like in Fig. 5) and Eq. (7b) is fitted to data to 
determine the equilibrium dissociation constant of allosteric mod-
ulator KA and the cooperativity factor α.

Determination of the equilibrium dissociation constant of the allo-
steric ligand KA and factor of cooperativity α from a series of exper-
iments of tracer saturation binding is laborious and expensive. 
Binding parameters of an allosteric ligand can be determined in a 

4.2 Displacement 
Binding Experiments
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Fig. 3 Allosteric modulation of tracer saturation binding. Effects of positive 
(α = 0.1) (upper graph) and negative (α = 10) (lower graph) allosteric modulators 
on tracer saturation binding. Abscissa, the concentration of tracer L is expressed 
as a logarithm of the ratio to its equilibrium dissociation constant KD. Ordinate, 
tracer binding is expressed as a fraction of total receptor number RT. Legend, the 
concentration of allosteric modulator A is expressed as a ratio to its equilibrium 
dissociation constant KA. A positive allosteric modulator concentration depend-
ently decreases tracer KD, while a negative allosteric modulator concentration 
dependently increases tracer KD

Jan Jakubik and Esam E. El-Fakahany
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Fig. 4 Competition with tracer saturation binding. Effects of a competitor on tracer 
saturation binding. Abscissa, concentration of tracer L is expressed as the loga-
rithm of the ratio to its equilibrium dissociation constant KD. Ordinate, tracer bind-
ing is expressed as a fraction of total receptor number RT. Legend, concentration of 
competitor X is expressed as ratio to its equilibrium dissociation constant KX

Fig. 5 Shifts in equilibrium dissociation constants. From Figs. 3 and 4 shifts in 
equilibrium dissociation constant caused by negative allosteric modulator 
(α = 10) (squares), positive allosteric modulator (α = 0.1) (triangles) and competi-
tive ligand (circles) are expressed as the logarithm of the ratio of tracer apparent 
equilibrium dissociation constant KD

′ in the presence of the second ligand to 
tracer equilibrium dissociation constant KD in its absence. Abscissa, concentra-
tion of the second ligand is expressed as logarithm of the ratio of second ligand 
concentration to its equilibrium dissociation constant

Allosteric Modulation of Muscarinic Receptors
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simpler way by measuring the effects of increasing concentrations 
of an allosteric modulator on binding of a single concentration of 
the tracer. Binding of tracer L at fixed concentration in the pres-
ence of various concentrations of allosteric modulator A is described 
by Eq. (7) (Fig. 6). It is more convenient to express the data as a 
fraction of the tracer binding in the presence of the allosteric mod-
ulator than its binding in the absence of the allosteric modulator 
(Fig. 7) that is given:
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After substitution of Eq. (9) with Eq. (7b):
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When the equilibrium dissociation constant of allosteric modulator 
KA and the cooperativity factor α are determined by measuring 
binding at a single concentration of the tracer and various concen-
trations of allosteric modulator Eq. (10) is fitted to data expressed 
as ratio of tracer binding in the presence of A to the tracer binding 
in the absence of A (like in Fig. 7). Equilibrium dissociation of the 
tracer KD has to be determined in separate measurements. Precise 
concentration of the tracer L used in the assay should be deter-
mined by counting total radioactivity added to the sample and 
division by specific radioactivity of the tracer and sample volume. 
It can be seen from equations describing allosteric binding that 
the equilibrium dissociation constant of an allosteric modulator 
KA and cooperativity factor α are interdependent parameters. 
Overestimation of α leads to underestimation of KA and vice versa. 
Thus a wide range of concentrations of A has to be used. For 
proper determination of α a saturating concentration of A has to 
be used to reach a curve plateau. This plateau defines α according 
to Eq. (9) where for a saturating concentration of A the apparent 
equilibrium dissociation constant of tracer KD

′ becomes αKD. The 
value of αKA has to be determined properly for accurate determina-
tion of KA. The value of αKA corresponds to the inflection point of 
the binding curve. The latter is best determined by measuring bind-
ing at several concentrations close to the inflection point (αKA).

Positive cooperativity is easily spotted as an increase in tracer 
binding to free receptors (Figs. 6 and 7, upper graphs). The frac-
tion of free receptors decreases with increasing tracer concentra-
tion. For positive allosteric modulators with strong cooperativity 
the fraction of free receptors may be limiting. If a saturating 
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Fig. 6 Effects of an allosteric modulator on binding of the tracer at a fixed con-
centration. Effects of various concentrations of a positive (α = 0.1) (upper graph) 
and negative (α = 10) (lower graph) allosteric modulators at indicated on the 
abscissa on binding of the tracer at fixed concentration indicated in legend. 
Abscissa, concentration of allosteric modulator is expressed as logarithm of ratio 
to its equilibrium dissociation constant KA. Ordinate, the tracer binding is 
expressed as a fraction of total receptor number RT. Legend, concentration of the 
tracer L is expressed as ratio to its equilibrium dissociation constant KD. A posi-
tive allosteric modulator concentration dependently increases tracer binding, 
while a negative allosteric modulator concentration dependently decreases 
tracer binding. Changes in tracer binding are more obvious at lower concentra-
tions of the tracer
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Fig. 7 Effects of an allosteric modulator on binding of the tracer at a fixed concen-
tration. Effects of a positive (α = 0.1) (upper graph) and negative (α = 10) (lower 
graph) allosteric modulators at various concentrations indicated on the abscissa on 
binding of the tracer at a fixed concentration indicated in the legend. Abscissa, 
concentration of allosteric modulator is expressed as logarithm of the ratio to its 
equilibrium dissociation constant KA. Ordinate, tracer binding is expressed as a 
fraction of its binding in the absence of allosteric modulator. Legend, concentration 
of the tracer L is expressed as a ratio to its equilibrium dissociation constant KD. A 
positive allosteric modulator concentration dependently increases tracer binding 
while a negative allosteric modulator concentration dependently decreases tracer 
binding. Changes in tracer binding are greater at lower concentrations of the tracer
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concentration of the tracer is used it is difficult to reliably determine 
the cooperativity factor α because subtle differences in the level of 
plateau represent huge differences in α. So in binding experiments 
with strong positive allosteric modulators low concentrations of 
the tracer (below its KD) are desired to prevent full receptor occu-
pancy at saturating concentrations of the allosteric modulator. 
However too low concentration of the tracer gives low and unreli-
able control binding in the absence of allosteric modulator. Thus a 
compromise between the size of allosteric change and the quality 
of control binding has to be achieved. In the model case of positive 
cooperativity with α = 0.1 a tracer concentration equal to its KD 
gives sufficient (>80 %) increase in tracer binding and sufficient 
proportion (almost 20 %) of the receptors remain free at saturating 
concentrations of the allosteric ligand (Fig. 7, upper graph).

Negative binding cooperativity can be distinguished from 
competitive binding by incomplete inhibition of tracer binding, 
resulting in a plateau in the displacement curve (Figs. 6 and 7, 
lower graphs). The higher the concentration of tracer, the higher 
the level of the plateau (less complete inhibition of tracer binding) 
(Fig. 7). Thus, detection of strong negative cooperativity requires 
the use of a tracer concentration several times higher than its dis-
sociation constant KD to get incomplete inhibition of tracer bind-
ing. However, the ratio of specific to nonspecific binding decreases 
with increasing tracer concentration, indicating that extremely 
high concentrations of the tracer should be avoided. It must be 
noted that allosteric modulators with very high cooperativity fac-
tors (α > 100) would cause almost complete inhibition of tracer 
binding, making them indistinguishable from competitive binding. 
A more experimental setup in this special case is to construct satu-
ration curves for the tracer in the absence and in the presence of 
increasing concentrations of the allosteric modulator. The appar-
ent equilibrium dissociation constant of the tracer KD

′ is deter-
mined for each concentration of the allosteric modulator A (like in 
Fig. 3, lower graph) and plotted against concentration of A (like in 
Fig. 5, squares) and Eq. (7b) is fitted to data.

Ligands with weak (either positive or negative) cooperativity 
induce small changes in tracer binding. As can be seen in Eq. (9) 
the lower concentration of L the greater the change in fractional 
binding. Thus low concentrations of the tracer are desired to mag-
nify changes induced by weak allosteric modulators. It can be dem-
onstrated using Eq. (10) that even for ligands with very weak 
cooperativity (0.9 < α < 1.1) lowering tracer concentration below 
0.1 × KD does not bring further increase in allosteric effects. 
Maximum attainable increase in tracer binding by positive alloste-
ric modulators with α = 0.9 is 10 % of the control binding and, 
analogically, maximum attainable decrease in tracer binding is 10 % 
by very weak negative allosteric modulators with α = 1.1. Such 
small changes may be problematic to detect and are usually consid-
ered as neutral cooperativity.
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Protocol A: Determination of KA and α in equilibrium experiments 
(96-well plate setup)

 1. Determine the equilibrium dissociation constant KD of [3H]NMS 
in saturation binding experiments in a buffer of your choice at 
25 °C (see previous Chapter 3).

 2. Add membranes, about 20 fmol of receptors per well.
 3. Add [3H]NMS to a final concentration around 0.5 × KD (when 

positive cooperativity is expected) or 2 × KD (when negative 
cooperativity is expected) for 60 min at 25 °C in a final incuba-
tion volume of 0.4 ml.

 4. Add tested allosteric modulators to final concentrations rang-
ing from 10 nM to 100 μM (9 concentrations at 0.5 log con-
centration steps). Make samples of control binding in the 
absence of allosteric modulator, samples of nonspecific bind-
ing in the presence of 1 μM atropine alone and in the presence 
of 100 μM allosteric modulator (to verify that the allosteric 
modulator does not change nonspecific binding).

 5. Seal the plate and incubate for 20 h at 25 °C (see justification 
below for the long incubation time).

 6. Filter samples though GF/C filters or a filtration plate. Wash 
with ice-cold deionized water for 6 s.

 7. Determine the exact tracer concentration used in the experi-
ment by counting added radioactivity divided by specific 
radioactivity and incubation volume (0.4 ml).

 8. Fit Eq. (10) to specific binding expressed as a fraction of con-
trol. Use KD of [3H]NMS determined in saturation binding 
experiment and exact radioligand concentration L from step 7.

Usually association of substrates or ligands with enzymes or recep-
tors is a fast process, being controlled by diffusion. Under such 
conditions a change in the affinity of the orthosteric radioligand by 
an allosteric modulator is manifested mainly as a change in the dis-
sociation rate of the tracer. Allosteric modulation of the radioli-
gand rate of dissociation in an ideal model system with constant 
association rate by positive (α = 0.1) and negative (α = 10) allosteric 
modulators is shown in Fig. 8. A positive allosteric modulator con-
centration dependently slows down tracer dissociation. The slow-
down is limited by the factor of cooperativity α, in this case 10-times 
at maximum. Inversely, a negative allosteric modulator concentra-
tion dependently speeds up tracer dissociation. Again, the effect is 
limited by the factor of cooperativity α, reaching a maximum of a 
tenfold change in this particular case.

However, muscarinic receptors are far from ideal. Almost all 
muscarinic allosteric ligands, regardless of being positive or nega-
tive modulators, slow down both association and dissociation of 

4.3 Allosteric 
Modulation of Tracer 
Binding Kinetics
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Fig. 8 Allosteric modulation of tracer binding kinetics. Effects of a positive 
(α = 0.1) (upper graph) and negative (α = 10) (lower graph) allosteric modulator 
on binding kinetics of the tracer. Abscissa, time is expressed as folds of dissocia-
tion halftime of tracer-receptor complex LR in the absence of allosteric modula-
tor A. Ordinate, the tracer binding is expressed as a ratio of tracer L binding to its 
binding at the start of dissociation. Legend, concentration of allosteric modulator 
A is expressed as a ratio to its equilibrium dissociation constant KA. A positive 
allosteric modulator concentration dependently slows down tracer dissociation 
while a negative allosteric modulator concentration dependently speeds up 
tracer dissociation
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orthosteric ligands. The orthosteric binding site of the receptor is 
located deep within transmembrane helices so association is rela-
tively slow and may be accelerated by allosteric modulators [27]. 
The binding site for allosteric ligands is located between the sec-
ond and the third extracellular loops, being close to the path that 
an orthosteric ligand takes during association and dissociation. 
Thus, bound allosteric ligands usually represent a physical obstacle 
(steric hindrance) for orthosteric ligands on their way to and away 
from the muscarinic receptor [43]. It is noteworthy that effects on 
the kinetics of binding of an orthosteric ligand allows for identifi-
cation of agents with neutral cooperativity, since these agents do 
not change affinity of the tracer in equilibrium experiments. 
Furthermore, effects on the kinetics of tracer binding distinguish 
allosteric modulators with very strong negative cooperativity from 
competitive agents.

Mechanistically, orthosteric ligand L may bind only to free 
receptor R and is not able to bind to complex of receptor and allo-
steric ligand RA. In Scheme 1 reaction L + RA to LRA is not pos-
sible (Scheme 2).

The orthosteric ligand L and allosteric modulator A can bind 
concurrently to receptor R and form a ternary complex. The 
orthosteric ligand L has to bind first to R followed by binding of A 
to form the ternary complex LRA. If the receptor is already 
 occupied by an allosteric ligand the orthosteric ligand has to “wait” 
until the allosteric ligand dissociates. Dissociation of the ortho-
steric ligand from the ternary complex LRA must take place in the 
reverse order, i.e., the allosteric ligand has to dissociate first to 
make way for dissociation of the orthosteric ligand. Thus, this 
sequential arrangement of binding has profound effects on binding 
kinetics of an orthosteric ligand as demonstrated in the example of 
slowing down of binding kinetics of [3H]NMS at M2 muscarinic 
receptors by alcuronium. With increasing concentrations of the 
allosteric modulator alcuronium the proportion of free receptors 
decreases and thus association of the orthosteric tracer [3H]NMS 
decelerates, even though alcuronium is a positive allosteric modu-
lator (Fig. 9, upper graph). Concurrently, increasing the concen-
tration of alcuronium is associated with exerting stronger steric 

Scheme 2 Scheme of allosteric interaction with allosteric hindrance
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hindrance of [3H]NMS dissociation (Fig. 9, lower graph). 
Retardation of the on and off biding kinetics of orthosteric ligands 
by allosteric ligands is proportional to the concentration of the 
allosteric ligand and is unlimited. Thus extremely long incubation 

Fig. 9 Slowdown of [3H]NMS binding kinetics by alcuronium. Time courses of 
association (upper graph) and dissociation (lower graph) of 100 pM [3H]NMS at 
M2 muscarinic receptors in the absence (black curves) or in the presence of 
alcuronium at the concentrations indicated in the legend. Upper graph: [3H]NMS 
binding at the time points indicated on the abscissa is expressed as pmol per mg 
of protein. Alcuronium concentration dependently increases equilibrium binding 
and slows down the rate of association of [3H]NMS. Lower graph: binding at the 
time point indicated on the abscissa is expressed as percent of [3H]NMS binding 
at the start of dissociation. Alcuronium concentration dependently slows down 
the rate of dissociation
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times (hours or even days) are required to reach equilibrium of an 
orthosteric radioligand at high concentrations (over 100-times of 
equilibrium dissociation constant) of an allosteric ligand [11].

Non-equilibrium binding leads to kinetic artifacts as shown in 
Fig. 10 where equilibrium binding is not reached at 10 μM of 
alcuronium and higher, causing the binding curve to appear bell- 
shaped (black curve) instead of being sigmoidal (red curve). In such 
experiment equilibrium may be reached faster by preincubation of 
receptors with the orthosteric tracer (e.g., 1 h with [3H]NMS) to 
allow it to bind without slowing-down by the allosteric modulator. 
Adding a positive allosteric modulator to the preformed [3H]NMS-
receptor complex will result in an increase in bound radioactivity. 
Thus binding lower than control binding (like in Fig. 10) cannot be 
observed. The situation is more complicated in the case of negative 
allosteric modulators, where prolonged time may be necessary to 
allow the tracer to dissociate from the receptor and for binding the 
allosteric agent to the receptor to reach equilibrium. Lack of equi-
librium after the addition of a negative allosteric modulator would 
lead to underestimation of the factor of cooperativity.

Extremely long incubation times needed to reach equilibrium 
may be avoided by inferring allosteric modulator binding from 
changes in tracer kinetics. Because of arrangement of allosteric and 
orthosteric sites on muscarinic receptors dissociation of the ortho-
steric ligand from ternary complex is impossible. Thus observed 
rate of dissociation limits to zero with increase in concentration of 

Fig. 10 Artifacts of non-equilibrium binding. Binding of 100 pM [3H]NMS to M2 
receptors after 3 h of incubation at 25 °C in the presence of alcuronium at the 
concentrations indicated on the asbcissa is expressed as percent of [3H]NMS 
binding in the absence of alcuronium (circles). Equilibrium is not reached in the 
presence of alcuronium at a concentration of 10 μM and higher. The red curve 
represents binding under equilibrium (KD = 250 pM, α = 0.32)
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allosteric modulator. Observed dissociation rate is inversely pro-
portional to receptor occupancy by allosteric modulator. Receptor 
occupancy is given by saturation binding isotherm with apparent 
equilibrium dissociation constant of allosteric modulator KA

′. 
Observed dissociation rate kOff

′ is thus given by Eq. (11)
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where k0 is dissociation rate constant of the tracer in the absence of 
allosteric modulator. At saturating concentrations of A dissociation 
of tracer occurs only from ternary complexes and thus KA

′ becomes 
αKA. For [A] ≫ αKA Eq. (10) simplifies to:
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Moreover, at high concentrations of A dissociation of tracer is 
monophasic and thus observed dissociation rate constant kOff

′ can 
be determined in a single time-point measurement and the equilib-
rium dissociation constant of allosteric modulator at the ternary 
complex (αKA) determined without prolonged incubation needed 
to reach equilibrium (Protocol B). An example of determination of 
apparent equilibrium dissociation constant of the allosteric modu-
lator methoctramine at M2 muscarinic receptors from changes in 
[3H]NMS dissociation is shown in Fig. 11. The disadvantage of 
this approach is that only αKA can be determined (not α and KA 
separately). However, this approach is sufficient for screening 
 purposes (e.g., in structure–function relationship studies where 
similar α and KA values are expected for similar compounds). 
Moreover, in specific conditions (like in the case of methoctramine 
that binds with high affinity to the orthosteric site and with low 
affinity to the allosteric site) kinetic experiments are the only way 
for assessing the apparent equilibrium dissociation constant [42].

Protocol B: Determination of apparent equilibrium dissociation 
constant in dissociation experiments (96-well plate setup)

 1. Determine the equilibrium dissociation constant KD of [3H]
NMS in a buffer of your choice at 25 °C in saturation binding 
experiment and the dissociation rate constant koff of [3H]NMS 
in dissociation experiments (see previous Chapter 3).

 2. Add membranes, about 10 fmol of receptors per well.
 3. Add [3H]NMS to a final concentration 3 × KD for 60 min at 

25 °C in a final incubation volume of 0.2 ml.
 4. Initiate dissociation by the addition of 0.2 ml of atropine in a 

final concentration of 1 μM either alone or in combination 
with the tested allosteric modulator in concentrations ranging 
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Fig. 11 Dependence of the dissociation rate of [3H]NMS from M2 receptors on the 
concentration of methoctramine. Observed rate dissociation constants (kOff

′) are 
plotted against the concentrations of methoctramine. Fitting Eq. (12) to data 
yields KA

′ around 2.8 μM ( pKA
¢ = ±5 55 0 5. . ; means ± SEM, n = 4). Data are 

means ± SEM of 3–4 independent experiments performed in quadruplicates

from 10 μM to 1 mM (5 concentrations at 0.5 log concentra-
tion steps). Make samples of control binding (no addition/
dilution) and samples of nonspecific binding in the presence of 
1 μM (added prior step 3). Sums to 32 samples, one third of 
96-well plate, when performed in quadruplicates.
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 5. Incubate samples for three times of the half-life of ligand dis-
sociation (about 10 min for M2, 45 min for M1, M3, and M4, 
and 3 h for M5).

 6. End dissociation by filtering samples through GF/C filters or 
filtration plates. Wash with ice-cold deionized water for 6 s.

 7. Calculate the observed dissociation rates kOff
′ from decrease in 

specific binding as negative natural logarithm of fractional 
binding divided by dissociation time.

 8. Plot calculated kOff
′ values against the concentrations of the 

tested allosteric modulator and fit Eq. (12) to data.

4.4 Three 
Ligand System

Many compounds of interest like orthosteric agonists are not can-
didates as useful tracers because of their low affinity. As explained 
above, neither are allosteric modulators suitable for radiolabeling. 
For investigation of allosteric interaction of non-labeled ortho-
steric ligands and non-labeled allosteric modulators a procedure 
employing three ligands (orthosteric tracer L, non-labeled ortho-
steric ligand B, and non-labeled allosteric modulator A) has been 
devised as depicted in Scheme 3 [11].

Orthosteric tracer L binds to the receptor R with equilibrium dissociation 
constant KD, orthosteric non-labeled ligand binds to the receptor R with 
equilibrium dissociation constant KB and allosteric modulator binds to the 
receptor R with equilibrium dissociation constant KA. The binding of 
orthosteric ligands L and B is mutually exclusive but the allosteric modula-
tor A can bind concurrently to the receptor R occupied by either of the ortho-
steric ligands and form a ternary complex LRA or BRA. Alpha and β are 
factors of binding cooperativity of A with L and A with B, respectively.

In this procedure allosterically induced changes in the affinity 
for non-labeled orthosteric ligands are reflected in changes in the 
binding of an orthosteric tracer. The following relations apply 
besides those described in Eq. (1) in the three ligand system:
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Scheme 3 Interaction of two orthosteric ligands and one allosteric modulator
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And Eq. (2) becomes to:

 R R LR RA LRA BR BRAT[ ] = [ ] + [ ] + [ ] + [ ] + [ ] + [ ]  (14)

Analogously to derivation in Eqs. (3)–(7a, b) apparent dissociation 
constant of the orthosteric tracer L in the presence of the allosteric 
modulator A and the orthosteric ligand B is derived as:
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And the ratio of tracer binding in the presence of A and B to the 
absence of A and B becomes:
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Experimental setup is similar to measurement at a fixed concentra-
tion of the tracer and various concentrations of the allosteric mod-
ulator. In this three ligand system two curves are measured. One in 
the absence of the non-labeled orthosteric ligand and one in the 
presence of a fixed concentration of the orthosteric ligand (Fig. 12). 
In control curve (in the absence of B) equilibrium dissociation 
constant of allosteric modulator KA and factor of cooperativity α 
are determined by fitting Eq. (10) to data. These parameters are 
then used for fitting Eq. (16) to binding data measured in the pres-
ence of B. Equilibrium dissociation constants of the tracer KD and 
of the orthosteric ligand KB have to be determined in separate 
measurements. The precise concentration of the tracer L used in 
the assay should be determined by counting total radioactivity 
added to the sample and division by specific radioactivity of the 
tracer and sample volume. Inhibition of tracer binding by B in the 
absence of A has to correspond to inhibition calculated using equi-
librium dissociation constants KD and KB and concentrations of L 
and B (see Chapter 3, Eq. (13)).

A low concentration of the tracer has to be used when study-
ing allosteric modulators that exert positive cooperativity with the 
tracer (Fig. 12 upper graph) to get a clear increase in tracer bind-
ing by allosteric modulators. Vice versa, a high concentration of 
the tracer has to be used in case of allosteric modulators with 
negative cooperativity (Fig. 12 lower graph) to get incomplete 
inhibition of tracer binding by the allosteric modulator. The con-
centration of B should be chosen based on the factor of 
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Scheme 4 Interaction of an orthosteric, an allosteric, and a bitopic ligand

cooperativity β. Low concentrations of tracer (in relation to KB) 
are suitable in case of positive cooperativity between A and B but 
leave little room for quantification of negative cooperativity and 
vice versa. Moreover the concentration of L (in relation to KD) 
also affects the range of appropriate concentrations of B. Higher 
concentration of B is required when a higher concentrations of L 
(in relation to KD) is used to reach the same inhibition of tracer 
binding. In case of negative cooperativity between A and B with 
increase in concentration of A binding of B becomes weaker and 
thus inhibition of the tracer binding smaller. As a result the curves 
of inhibition of tracer binding in the absence and in the presence 
of B move closer with increasing the concentration of A (Fig. 12, 
red and green curves). On the other hand, positive cooperativity 
between A and B leads to strengthening of binding of B and 
therefore stronger inhibition of tracer binding. As a result the 
curves of tracer binding in the absence and the presence of B show 
more diversion with increasing the concentration of A (Fig. 12, 
magenta and yellow curves).

There are several parameter combinations under which it is 
very hard or impossible to determine the factor of cooperativity β. 
One is the case of studying a combination of an allosteric modula-
tor with strong cooperativity with another with weak cooperativity 
(negative or positive). This is because on the one hand a low con-
centration of the tracer is a prerequisite for measurements of weak 
(either positive or negative) cooperativity and on the other hand a 
high concentration of the tracer is required for measurements of 
strong cooperativity systems. In such situation a series of tracer 
saturation binding has to be performed to determine the apparent 
equilibrium dissociation constant of the tracer KD

′ in the presence 
of various concentrations of A and one concentration of B. Then 
KD

′ has to be plotted against concentration of A and Eq. (15) fitted 
to data (Fig. 11).

Bitopic ligands that bind both to the orthosteric and allosteric 
sites at muscarinic receptors have been proposed [44] and subse-
quently identified [42, 45, 46]. Binding of a bitopic ligand B to 
the allosteric binding site prevents binding of the allosteric ligand 
A and vice versa (Scheme 4).
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Fig. 12 Effects of an allosteric modulator on binding of a tracer at a fixed concentration in the presence of a 
non-labeled orthosteric ligand. Effects of a positive (upper graph) and negative (lower graph) allosteric modu-
lator A at various concentrations indicated on the abscissa on binding of the tracer L at a fixed concentration 
indicated in the legend, in the absence (black curves) or in the presence of orthosteric ligand B at a fixed 
concentration indicated in the legend. Abscissa, concentration of allosteric modulator is expressed as loga-
rithm of ratio to its equilibrium dissociation constant KA. Ordinate, the tracer binding is expressed as a fraction 
of tracer binding in the absence of allosteric modulator. Legend, factors of cooperativity β of A and B binding. 
Orthosteric ligand B decreases tracer binding (color curves). In case of negative cooperativity between A and 
B (red and green curves) A concentration dependently weakens the binding of B that results in smaller inhibi-
tion of tracer binding (curves are getting closer to control curve). In case of positive cooperativity between A 
and B (magenta and yellow curves) A concentration dependently strengthens the binding of B that results in 
greater inhibition of tracer binding (curves are getting apart from control curve)

The orthosteric ligand L and allosteric modulator A can bind 
concurrently to the receptor R and form a ternary complex 
LRA. Binding of the bitopic ligand B is mutually exclusive both 
with binding of L and A. The ternary complex cannot be formed 
upon binding of B. Equation (16) does not fit the data as fractional 
binding of the tracer in the presence of A and B and the absence of 
A and B is:
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5 Analyzing Allosteric Modulation of Functional Responses

Muscarinic receptors are spontaneously active that is manifested by 
activation of second messenger pathways in the absence of agonists 
[47–49]. Such receptor spontaneous activity implicates that in the 
absence of the agonist there is a balance between two forms of the 
receptor (active RA and inactive RI) with non-zero RA number. The 
thermodynamically complete description of interaction between a 
agonist and an allosteric modulator on functional receptor is thus 
described by the cubic ternary complex model (Scheme 5).

The receptor exists in an inactive conformation RI and an 
active conformation RA. The ratio of RA to RI is given by the activa-
tion constant KACT. The agonist L and allosteric modulator A bind 
to inactive receptor RI with equilibrium dissociation constants KD 
and KA, respectively. Effects of an allosteric modulator on the func-
tional response of the receptor to the agonist are complex. Besides 
allosteric modulation of agonist binding (factor of cooperativity α) 
an allosteric modulator affects spontaneous activation of the recep-
tor (factor cooperativity γ) and agonist-induced receptor activation 
(factor of cooperativity δ). If effects of the allosteric modulator on 
spontaneous activation of the receptor are positive then the alloste-
ric modulator activates receptors even in the absence of agonists. 
Such allosteric modulators have been identified [28–31]. The 
overall effect of an allosteric modulator on the formation of the 
ternary complex with the active receptor LRAA is given by multi-
plication of these three factors of cooperativity (α, γ, δ). If the 
resultant of multiplication is greater than 1 then the effect of the 
allosteric modulator on agonist potency is negative even if L and A 
have positive binding cooperativity.

5.1 Effects 
of Allosteric 
Modulators 
on Functional 
Response Under 
Equilibrium

Scheme 5 Cubic ternary complex model
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G-proteins bind to the receptor in both activation states 
(spontaneously active and agonist bound). Effects of agonists on 
G-protein binding to receptor are described by next cubic ternary 
complex model (Scheme 6).

G-protein G binds to the receptor in its inactive state RI with 
equilibrium dissociation constant KG. There is mutual allosteric 
modulation of G-protein binding and receptor activation (factor of 
cooperativity ε). Agonist L allosterically modulates binding of G to 
RI (factor of cooperativity η), receptor activation (factor of coop-
erativity β) and G-protein binding induced by receptor activity 
(factor cooperativity ζ). The aggregate effect of agonist on 
G-protein binding is given by multiplication of these three factors 
of cooperativity (ζ, η, β). It is obvious that an increase in concen-
tration of G (overexpression of G) leads to activation of receptor. 
Thus the aggregate effect of agonist is dependent on the receptor 
to G-protein ratio and is, generally speaking, system dependent.

Besides modulation of receptor activation and agonist binding 
described in Scheme 5 an allosteric agent can also allosterically 
modulate G-protein binding to the receptor and receptor agonist 
complexes (Scheme 7).

Scheme 6 Agonist effect on G-protein binding and receptor activation

Scheme 7 Effect of an allosteric modulator on G-protein binding
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G-proteins can bind both to receptors in inactive (Scheme 7, 
left cube) and active (Scheme 7, right cube) conformation. As 
described in Scheme 6 G-protein binds to free receptor in the inac-
tive conformation with equilibrium dissociation constant KG and 
to the active conformation with εKG. In addition to modulation of 
agonist binding (α), receptor spontaneous activation (γ) and 
agonist- induced receptor activation (δ) an allosteric modulator 
affects G-protein binding to RI (κ) and RA (πκ) and effects of ago-
nist on G-protein binding (λ). Similar to an agonist, effects of an 
allosteric modulator depend on the receptor to G-protein ratio. 
Moreover, effects of an allosteric modulator depend on the direc-
tion (activation or inhibition) and magnitude of agonist effects. 
The overall effect of an allosteric modulator is given by multiplica-
tion of all factors of cooperativity involved in transition from state 
in the absence of A (Scheme 6) to state in the presence of A 
(Scheme 7) (all factors of cooperativity except ε, β, η and ζ).

Conversions between complexes with bound G-protein have 
to be added for the scheme describing interactions between recep-
tor, G-protein, agonist and allosteric modulator in order for the 
model to be thermodynamically complete (Scheme 8).

All eight receptor-G-protein complexes are interchangeable in 
a step-by-step manner with equilibrium dissociation constants 
resulting from Scheme 5 through 7. Moreover, G-protein activa-
tion is initiated by release of GDP from the G-protein as a result of 
negative cooperativity between agonist and GDP [50]. There are 
four receptor-G-protein complexes with bound allosteric modula-
tor in the interaction scheme. Allosteric modulators may affect 
GDP affinity (and thus activation of G-protein) differently at these 
four complexes.

Effects of allosteric modulators on functional response depend 
on the nature of the agonist and system. The ratio of receptor to G 
proteins affects system basal activity. Systems with high R to G 
ratio have low basal activity and high receptor reserve. As a result 
agonists have high efficacy and potency. On the other hand, 

Scheme 8 Conversions between various receptor-G-protein complexes
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systems with low R to G ratio have high basal activity and no receptor 
reserve. As a result agonists have both low efficacy and potency. 
Effects of both positive and negative allosteric modulators on 
agonist potency (shift in apparent KG in the presence versus in the 
absence of L) (α, γ, δ) are weaker at systems with high R to G ratio 
due to high receptor reserve. High basal activity of the system 
decreases agonist efficacy (shift in ratio of active species in the pres-
ence versus in the absence of L). At systems with high basal activity 
effects of positive allosteric modulator on efficacy are weaker. On 
the other hand, effects of negative allosteric modulators on agonist 
efficacy may be stronger (if δ < πκλ).

Full agonists, due to strong positive cooperativity β, act as ago-
nists at all systems (regardless of R to G ratio). Allosteric modula-
tors may act as agonists (activate receptors in the absence of an 
orthosteric agonist) [28] or inverse agonists depending on the fac-
tor of cooperativity γ, activation constant KACT and receptor to 
G-protein ratio [51]. Allosteric modulators that have weak positive 
cooperativity γ act as partial agonists in a system with high R to G 
ratio and as inverse agonists at a low R to G ratio. As evident, 
effects of allosteric modulators on functional responses to an ago-
nist are very complex. It is technically unfeasible to experimentally 
isolate and determine individual constants and factors of coopera-
tivity. From a practical point of view only the overall effect of an 
allosteric modulator on the potency and efficacy of a given agonist 
in a given system could be determined.

Although a change in agonist potency induced by an allosteric 
modulator usually follows change in agonist affinity [52, 53] it has 
been reported that allosteric modulators may have different effects 
on agonist binding and agonist-mediated functional responses 
[25]. Moreover, effects of allosteric modulators on functional 
responses may also differ over time. This is exemplified by the 
dichotomous effects of the allosteric modulator rapacuronium on 
acetylcholine equilibrium binding on the one hand and on the 
kinetics of acetylcholine binding on the other hand [27]. For 
example, although rapacuronium exerts negative cooperativity 
with binding of acetylcholine to all muscarinic receptor subtypes at 
equilibrium it accelerates the rate of acetylcholine binding at odd- 
numbered subtypes. At low concentrations it transiently increases 
the potency and efficacy of functional responses to acetylcholine at 
odd-numbered subtypes (Fig. 13). The time between acetylcholine 
release and termination of its action by acetylcholinesterase is in the 
range of a fraction of a second. Therefore, effects of allosteric mod-
ulators in the early non-equilibrium stage of receptor signaling are 
physiologically more relevant than effects on acetylcholine equilib-
rium binding that does not occur in vivo. Thus fast functional 
assays that much better simulate physiological conditions are more 
suitable for screening of potential allosteric modulators of neuro-
transmission than long-lasting equilibrium binding experiments.

5.2 Effects 
of Allosteric 
Modulators 
on the Kinetics 
of Functional 
Responses
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The advantage of [35S]GTPγS binding as a measure of receptor 
functional response (Fig. 13) is that it can be easily scaled up for 
high-throughput screening. Its disadvantage is that an agonist must 
be present during incubation lasting minutes that is still far from 
physiological conditions. Moreover, the resulting signal is the sum 
of functional response over the whole time-course of incubation. 

Fig. 13 Effects of rapacuronium on the kinetics of [35S]GTPγS binding. Membranes 
were preincubated for 60 min in the presence (open symbols) or in the absence 
(closed symbols) of 1 μM rapacuronium. Then [35S]GTPγS was added simultane-
ously with buffer (circles) or 10 μM acetylcholine (squares). Incubations were 
terminated at the times indicated on the abscissa. The increase of specific [35S]
GTPγS binding is expressed as fmol per μg of protein (top) and as fold increase 
of specific binding under basal conditions (bottom). Data are means ± SE of val-
ues from three independent experiments performed in quadruplicates
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Methods that allow real-time measurement of functional responses 
and transient application of agonist are more appropriate. Such 
methods include microfluorometry of intracellular  calcium release 
[54] (see Protocol C) or measurement of conformation changes of 
the receptor by fluorescence resonance energy transfer between two 
dyes attached to one receptor (see Chapter 8).

Protocol C: Measurement of allosteric modulation of a functional 
response by microfluorometry of intracellular calcium

 1. Seed CHO cells stably expressing muscarinic receptors on 
24 mm-diameter microscope cover glass in 35 mm-diameter 
Petri dish and cultivate them until about 80 % confluency.

 2. Optional: If CHO cells express M2 or M4 receptors transfect 
cells with G15/16 G-protein to couple these subtypes to phos-
pholipase C [55].

 3. Prepare DMSO solutions of 2 mM Fura-2AM and 20 % 
Pluronic F-68 and mix them 1:1.

 4. Wash cells with warm Krebs-HEPES buffer (KHB; final con-
centrations in mM: NaCl 138; KCl 4; CaCl2 1.3; MgCl2 1; 
NaH2PO4 1.2; Hepes 20; glucose 10; Probenecid 1; pH 
adjusted to 7.4).

 5. Load cells with Fura-2 by incubating them in 0.5 ml KHB and 
10 μl of solution from step 4 for 1 h at 37 °C.

 6. Remove KHB, wash cells with fresh KHB.
 7. Assemble the cover glass in superfusion chamber and place 

under a fluorescence microscope. Record Fura-2 emission 
(>470 nm) at 380 and 340 nm emissions twice a second.

 8. Expose cells to increasing concentrations of an agonist (e.g., 
carbachol or acetylcholine 10 nM to 10 μM) for 5 s. Allow 
cells to rest for 3–5 min between stimuli.

 9. Analyze the ratio of Fura-2 emissions at 380 and 340 nm exci-
tation to determine half-efficient concentration (EC50) and 
maximum stimulation.

 10. Expose cells to the tested allosteric modulator (1 μM to 1 mM) 
for 5 s to check for possible agonist/inverse agonist effects of 
the allosteric modulator by itself. Allow cells to rest for 3–5 min 
between stimuli.

 11. To determine the effects of an allosteric modulator on agonist 
potency expose cells for 5 s to agonist at a concentration around 
its EC50 (for positive cooperativity slightly below and for nega-
tive cooperativity slightly above EC50) alone and then in mix-
ture with increasing concentrations of the tested allosteric 
modulator. Allow cells to rest for 3–5 min between stimuli.

 12. To determine effects of allosteric modulator on maximum 
response to agonist expose cells for 5 s to agonist in saturating 
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concentration alone and then in mixture with increasing 
 concentrations of the tested allosteric modulator. Allow cells 
to rest for 3–5 min between stimuli.

6 Conclusions

Allosteric modulation of muscarinic receptors is an interesting phe-
nomenon with great potential for drug discovery and pharmaceu-
tical application. However, detailed studies and understanding are 
limited to simple systems due to complexity of allosteric interac-
tions. Another limitation is that allosteric modulators of muscarinic 
receptors generally have affinity that is too low to make them suit-
able radiolabeled tracers. This necessitates complex experimental 
arrangements to quantify binding parameters of these agents.
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    Chapter 7   

 Subcellular and Synaptic Localization of Muscarinic 
Receptors in Neurons Using High-Resolution Electron 
Microscopic Preembedding Immunogold Technique 

           Véronique     Bernard    

    Abstract 

   The function of a G protein-coupled receptor in the modulation of neuronal activity is highly dependent 
on its availability on the cell surface, on its distribution among different subcellular compartments and in 
relationship with the presynaptic afferents. Therefore, investigation of the precise localization of GPCRs is 
required to clarify their contribution to neuronal function, and can be achieved only by immunoelectron 
microscopy. Here, we describe the high-resolution electron microscopic preembedding immunogold tech-
nique that we have developed to analyze the subcellular and synaptic distribution of two acetylcholine 
muscarinic receptors (MR), M 2  and M 4  MRs in neurons in vivo. We have shown that M 2 MR and M 4 MR 
are mostly located at the plasma membrane where they are in a right position to interact with acetylcholine 
to modulate neuronal function. The synaptic and extrasynaptic localization of M 2 MR suggests that the 
effect of acetylcholine might be mediated through a synaptic as well as diffuse type of transmission. The 
demonstration that M 2 MR are present at the postsynaptic membrane beneath glutamatergic terminals 
provides a direct argument in favor of a co-release of ACh and glutamate. Finally, we have shown that 
muscarinic receptors are subject to an intraneuronal traffi cking when they are stimulated and that this traf-
fi cking is different according to the duration of the stimulation (acute versus chronic).  

  Key words     M 2  muscarinic receptor  ,   M 4  muscarinic receptor  ,   Acetylcholine  ,   Immunogold  ,   Synapse  , 
  Subcellular localization  ,   Confocal microscopy  ,   Electron microscopy  

1      Introduction 

 Neuronal functions are determined by the highly precise arrangements 
of presynaptic and postsynaptic elements. G protein- coupled rec-
eptor (GPCRs) including MRs, are located to specifi c presynaptic 
or postsynaptic sites. The location of MRs within different neuro-
nal compartments has a variety of functional implications, i.e., neu-
rotransmitter release regulation at axonal level [ 1 ] or  modulation 
of neuronal excitability at somatodendritic level [ 2 ]. Therefore, the 
precise localization and density of GPCRs on the cell surface seems 
to be a critical factor for specifi city of signaling within and between 
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neurons, which can be determined only using high-resolution 
morphological approaches. 

 The development of morphological approaches at high- 
resolution provides a wonderful tool to locate the sites of acetyl-
choline action, i.e., acetylcholine receptors in normal neurochemical 
environment and the redistribution of these sites when the cholin-
ergic tone is modifi ed. Especially, this procedure allowed us to 
identify the localization with a high resolution of two muscarinic 
receptors, M 2 MR and M 4 MR and to analyze their traffi cking in 
different subcellular and synaptic neuronal compartments. 

 We will describe in this chapter how to prepare samples to ana-
lyze subcellular and synaptic localization of muscarinic receptors 
and more generally membrane bound proteins.  

2    Materials 

   0.2 M Phosphate Buffer (PB), pH 7.4.

  Solution A : 0.2 M Na 2 HPO 4 -2H 2 O 
(35.6 g/l in distilled water) 

 800 ml 

  Solution B : 0.2 M NaH 2 PO4-2H 2 O 
(31.2 g/l in distilled water) 

 200 ml 

   Adjust at pH = 7.4. 
 Store at room temperature for up to 2 months. 

            

 0.2 M PB  50 ml 

 NaCl  8.76 g 

 KCl  0.2 g 

 Distilled water  up to 1 l 

   Store at room temperature for up to 2 months.  

            

 Hot distilled water (60 °C, not more)  500 ml 

 Add paraformaldehyde (Ref: 145.004005.60, Merck)  20 g 

   Stir until the solution is clear.

 Add PB 0.2 M, pH 7.4  500 ml 

   Store at 4 °C for 1 week.  
           
 2 % paraformaldehyde  1 l 

 25 % glutaraldehyde  8 ml 

2.1  Buffers 
and Solutions

2.1.1  Phosphate 
Buffered Saline (PBS)

2.1.2  2 % 
Paraformaldehyde

2.1.3  2 % 
Paraformaldehyde + 0.2 % 
Glutaraldehyde
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   (Glutaraldehyde 25 % for electron microscopy, Ref: 49626, Fluka). 
 Stir and use immediately.   

           
 0.2 M PB pH = 7.4  25 ml 

 Glycerol (Ref: 24397296, Prolabo)  10 ml 

 Sucrose (Ref: S7903, Sigma)  25 g 

 Distilled water  75 ml 

   Stir to dissolve and store at 4 °C for 1 week. 

           
 Sodium acetate trihydrate (Ref: S8625, Sigma)  13.6 g 

 Distilled water  1 l 

   Adjust at pH = 7 with acetic acid. 
 Store at 4 °C for up to 1 month.  

           
 Tris Base (Ref: T1503; Sigma)  6 g 

 Distilled water  1 l 

   Adjust at pH = 7.6 with HCl. 
 Store at room temperature for up to 2 months.   

            
 Pioloform powder (Ref: R1275; Agar Scientifi c)  1 g 

 Chloroform  100 ml 

   Stir to dissolve. 
 Store at 4 °C for up to 2 months.  

            
 Single component A (M epoxy resin; Sigma 44611; 

Sigma-Aldrich) 
 10 g 

 Single component B (hardener 964; Sigma 44612; 
Sigma-Aldrich) 

 10 g 

 Single component C (accelerator 960; Sigma 44613; 
Sigma-Aldrich) 

 0.3 ml 

 Single component D (Sigma 44614; Sigma-Aldrich)  0.2 ml 

   In a fume hood, combine all components in a disposable beaker. Stir 
until well mixed. Pour in small weighing cup and store until use.  

 ●      Perfusion stand.  
 ●   Vibrating microtome.  
 ●   6 or 12-well plates.  
 ●   Mesh baskets fi tting with the 6 or 12-well plates.  

2.2  Cryoprotectant

2.2.1  0.1 M Sodium 
Acetate Buffer pH = 7

2.2.2  Tris Buffer

2.3  Pioloform 
(for Support Film 
on EM Grids)

2.4  Resin Durcupan

2.5  Materials
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 ●   Thin paint brush.  
 ●   EM copper grids one 2 mm × 1 mm slot (Ref: G2010-Cu; 

Electron Microscopy Science, Hatfi eld, USA).  
 ●   Thin tweezers.  
 ●   Ultramicrotome.  
 ●   Antibodies:

 –    Anti-Muscarinic Acetylcholine Receptor m2 Antibody 
(rat), clone M2-2-B3 Ref: MAB367, Millipore.  

 –   Anti-Muscarinic Acetylcholine Receptor m4 Antibody 
(mouse), clone 17F10.2, Ref: MAB1576, Millipore.     

 ●   Nanogold ®  Conjugates, Nanoprobes, Yaphank, NY, USA.
 –    Nanogold-Anti rat (m2R); Raised in goat, Ref: 2007: IgG 

molecule.  
 –   Nanogold-Anti mouse (m4R); Raised in goat, Ref: 2001: 

IgG molecule.  
 –   Nanogold-Streptavidin; Ref: 2016: Streptavidin.     

 ●   HQ Silver™ Enhancement Kit, Ref: 2012; Nanoprobes, 
Yaphank, NY, USA.      

3    Sequence of Procedures for Detection of mAChRs 

 ●      Perfuse-fi x the animal using a gravity system with 10 ml of 
NaCl (room temperature) and then with a cold 2 % PFA and 
0.2 % glutaraldehyde solution (100 ml for 15 min).  

 ●   Remove the brain from the skull and post-fi x it in 2 % PFA 
alone overnight at 4 °C.  

 ●   Rinse the brain and store it in PBS at 4 °C until use (may be 
stored for some weeks).  

 ●   Cut sections on a vibrating microtome at 50–70 μm. Use small 
mesh  baskets  in a 6-well plate and put all the sections from the 
brain area of interest in a same well. Alternatively, serial sec-
tions may be cut. The baskets will allow to easily perform the 
fi rst steps of freeze–thaw and washes.  

 ●   Carry out a freeze–thaw procedure to enhance penetration of 
immunoreagents:

 –    Before freezing, the sections are equilibrated in a cryopro-
tection solution for 15 min.  

 –   Then, excess of cryoprotectant is absorbed with a paper 
towel and the sections are dropped for 5 s into isopentane 
cooled either in liquid nitrogen or in dry ice.  

 –   The sections are thawed in the cryoprotectant and then 
rinsed in PBS 3 times for 5 min.     

3.1  Common Steps 
for Detection of MR 
at Light and Electron 
Microscopic Levels
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 ●   Subject sections to immunohistochemistry of muscarinic recep-
tors alone or muscarinic receptors and a marker of cholinergic 
or non-cholinergic terminals (cholinergic or non- cholinergic [ 3 ]) 
or other markers [ 4 ].
 –    Blockade of the nonspecifi c binding with 4 % normal 

serum for 30 min.  
 –   Incubate with the primary antibody overnight at RT under 

shaking. When two targets are co-detected, incubate in a 
mix of two primary antibodies.        

     When the receptor only is detected, incubate the secondary  antibody 
coupled to a fl uorochrome (Alexa 594 anti-rat for M 2  MR or Alexa 
594 anti-mouse for M 4  MR; dilution 1:1000; Life Technologies) for 
1 h. Alternatively, if the signal for the receptor is weak, it may be 
intensifi ed using a biotinylated secondary antibody (dilution 1:200; 
Vector Laboratories) for 1 h and then a streptavidin coupled to a fl uo-
rochrome (Alexa 594 streptavidin; dilution 1:1000; Life Technologies) 
for 1 h. When two antibodies are used, incubate in a mix of two anti-
bodies coupled to a fl uorochrome (Alexa 594 anti-rat for M 2  MR or 
Alexa 594 anti-mouse for M 4 MR; dilution 1:1000; Life Technologies 
and Alexa 488 anti-species; dilution 1:1000; Life Technologies) for 
1 h. Finally, rinse the sections in PBS. Mount the sections in 
VECTASHIELD (Vector Laboratories, Burlingame, CA, USA).  

   The sections were observed using a fully automated upright Leica 
TCS SP5 fl uorescence microscope equipped with a 63x oil immer-
sion lens (numerical aperture, 1.25) and with a Leica SP5 scanning 
system equipped a Ar white-light laser that allows choosing any 
excitation wavelength from 470 to 670 nm. We choose 488 nm 
and 543 nm wavelength to detect Alexa488 and Al594 (Leica 
Microsystems, Deerfi eld, IL; USA). Images were treated using 
ImageJ and Adobe Photoshop softwares.  

 ●          Incubate with the secondary fl uorescent antibody coupled 
either to a nanogold particle (1.4 nm, Nanoprobes, Yaphank, 
NY, USA) or to biotin (dilution 1:200; Vector Laboratories). 
When the secondary antibody is coupled to biotin, incubate 
the sections with a streptavidin coupled to a nanogold particle 
(1.4 nm, Nanoprobes, Yaphank, NY, USA).  

 ●   Rinse in PBS and post-fi x with 1 % glutaraldehyde for 10 min.  
 ●   Rinse in PBS and incubate in 0.1 M sodium acetate, pH = 7.0, 

until silver intensifi cation.  
 ●   Increase the diameter of the nanogold particle with silver 

intensifi cation (HQ Silver™ Enhancement Kit, Nanoprobes, 
Yaphank, NY, USA; one drop of red, one drop of white, one 
drop of blue). Incubate in the mix for 3 min.  

 ●   Post-fi x sections for EM in 1 % osmium tetroxide.  

3.2  Detection 
of mAChRs at Light 
Microscopic Level

3.2.1  Incubation 
with the Secondary 
Fluorescent Antibody

3.2.2  Observation 
of the Sections at 
the Confocal Microscope

3.3  Detection 
of mAChRs at Electron 
Microscopic Level

3.3.1  Detection of MR
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 ●   Dehydrate sections (50 %, 10 min; 70 % + 0.1 % uranyl acetate, 
25 min; 95 %, 10 min; 100 %, two times 10 min; propylene 
oxide, 10 min) and fl at-embed in resin between two  microscope 
slides coated with Sigmacote (Sigma SL2, Sigma Aldrich).  

 ●   Make the resin polymerize in an oven (60 °C) for 2 days.  
 ●   Examine the sections in the light microscope, cut and glue 

the areas of interest, cut ultrathin sections, and examine in the 
electron microscope.  

 ●   Quantify mAChR localization if needed.     

 ●      When another protein of interest is detected, the secondary 
antibody against the receptor primary antibody is coupled to a 
nanogold particle and the secondary Ab against this protein is 
coupled to biotin. Both antibody are co-incubated.  

 ●   After silver intensifi cation of the immunogold signal, incubate the 
sections in streptavidin coupled to horse radish peroxidase (HRP).  

 ●   Reveal HRP with diamino benzidine (DAB).  
 ●   Wash in PBS.  
 ●   Post-fi x sections for EM in osmium tetroxide 1 % diluted in 

distilled water.  
 ●   Dehydrate sections (see above) and fl at-embed in resin between 

two microscope slides.  
 ●   Make the resin polymerize in an oven (60 °C) for 2 days.  
 ●   Examine the sections in the light microscope, cut and glue the 

areas of interest (no more than 1 mm 2 ) at the top of a blank 
piece of polymerized resin, cut semi-thin and ultrathin sections 
and examine in the electron microscope.  

 ●   Quantify MR localization if needed.       

4    Results 

   The M 2  MR and M 4  MR are located mostly at the membrane of 
cell bodies and dendrites, where they are in a right position to 
interact with acetylcholine to modulate neuronal excitability. 
(Figs.  1 ,  2 ,  3 , and  5a ). The M 2  MR is also found at the axonal 

3.3.2  Co-detection 
of MR and Another 
Protein of Interest

4.1  Subcellular 
Localization of M 2  MR 
and M 4  MR in Normal 
Conditions

Fig. 1 (continued) the striatum of perikarya of control rats using preembedding immunogold method with silver 
intensifi cation. Proportion of immunoparticles associated with different subcellular neuronal compartments. For 
each neuron, the number of immunoparticles associated with each compartment was counted, and the proportion 
in relation to the total number was calculated. The largest portion of immunoparticles are associated with the 
plasma membrane [ 1 ]. In the cytoplasm, the immunoparticles are detected in association primarily with small 
vesicles [ 2 ] and endoplasmic reticulum [ 5 ]. A small proportion of immunoparticles are associated with the Golgi 
apparatus [ 4 ] and multivesicular bodies [ 3 ]. Some immunoparticles are not seen in association with any identifi ed 
compartment [ 6 ].  b  bouton,  n  nucleus,  G  Golgi apparatus. From Bernard et al. [ 11 ]       
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  Fig. 1    Cellular and subcellular distribution of M 2  MR in the striatum of a normal animal. ( A – B ″) In a control mouse, 
the simultaneous detection of M 2  MR and VAChT immunoreactivities at confocal microscopic level shows that m2R 
is located at the plasma membrane of a cholinergic perikaryon ( A – B ″) and of cholinergic varicosities ( B – B ″). ( C – E ) 
Subcellular distribution of M 2  MR immunoreactivity in the striatum of rats using preembedding immunogold 
method with silver intensifi cation. Detail of M 2  MR immunolabeling in the cytoplasm of cell bodies ( D ), a dendrite 
( C ) and an axon ( E ). Numerous immunoparticles are associated with the plasma membrane ( arrow heads ) of the 
perikaryon, dendrite and axon. Some immunoparticles are associated with cytoplasmic compartments like endo-
plasmic reticulum (er) and Golgi apparatus (G). ( F ) Quantitative analysis of the subcellular distribution of M 2  MR in 

 



  Fig. 2    Cellular and subcellular distribution of M 4  MR. Immunohistochemistry in striatal neurons in control ani-
mals ( A ,  A ′,  B ) using the immunoperoxidase ( A ,  A ′) and immunofl uorescence ( B ) methods. The M 4  MR immu-
nolabeling is detected at the membrane of some cell bodies of neurons often seen in clusters ( asterisks ). 
Immunolabeling for m4R is also seen in dendrites ( A :  arrowheads ), but with reduced immunoreactivity. ( C ,  D ) 
Subcellular distribution of m4R immunoreactivity in the striatum of normal animals using the preembedding 
immunogold method with silver intensifi cation. Detail of M 4  MR immunolabeling in the cytoplasm of a cell bod-
ies ( C ) and a dendrite ( D ). Some immunoparticles are associated with the plasma membrane ( arrow heads ) of 
the perikaryon and dendrite. Immunoparticles are associated also with cytoplasmic compartments like endo-
plasmic reticulum ( arrows ) and Golgi apparatus (G). ( E ) Quantitative analysis of the subcellular distribution of 
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membrane where they are supposed to modulate acetylcholine 
release. Surprisingly, we were not able to detect M 4  MR at axonal 
varicosities, despite the fact that this receptor was clearly shown to 
be involved in acetylcholine release [ 5 ]. We cannot exclude that 
this was due to a lack of sensitivity of the immunogold technique.

       The localization of the M 2  MR was analyzed in correlation with 
synapses by electron microscopic immunohistochemistry in the 
mouse trigeminal, facial, and hypoglossal motor nuclei (Fig.  3 ). 
In all nuclei, M 2  MR were localized at the membrane of motoneu-
ronal perikarya and dendrites. The M 2  MR were concentrated at 
cholinergic synapses located on the perikarya and most proximal 
dendrites. However, M 2  MR at cholinergic synapses represented 
only a minority (<10 %) of surface M 2  MR. The M 2  MR were also 
found in abundance at glutamatergic synapses in both motoneuro-
nal perikarya and dendrites. A relatively large proportion (20–30 %) 
of plasma membrane-associated M 2  MR were located at glutama-
tergic synapses. 

 The synaptic and extrasynaptic localization of M 2  MR suggests 
that the effect of acetylcholine might be mediated through a syn-
aptic as well as diffuse type of transmission. The demonstration 
that M 2  MR are present at the postsynaptic membrane beneath 
glutamatergic terminals provides a direct argument in favor of a 
co-release of ACh and glutamate by the same terminal as suggested 
by different groups [ 6 ,  7 ].  

  Our data show that muscarinic receptors are subject to an intra-
neuronal traffi cking when they are activated and that this traffi ck-
ing is different according to the duration of the stimulation (acute 
versus chronic). When MR are acutely stimulated, few M 2  MR 
immunoparticles are detected in association with the plasma 
membrane of the somatodendritic compartment (Figs.  4b, b ′,  e ,  e ′ 
and  5c ). In parallel, M 2  MR and M 4  MR immunoreactivity is seen 
in the cytoplasm in association with small endosome-like vesicles 
(Figs.  4b ′, ev and  5c ). Muscarinic receptors are thus endocytosed 
and then either recycled to the plasma membrane or degraded in 
lysosomes [ 8 ]. When ACh receptors are chronically stimulated like 
in acetylcholinesterase knockout mice (AChE−/−), traffi cking of 

4.2  Synaptic 
Localization of M 2  MR

4.3  Subcellular 
Redistribution of M 2  
MR and M 4  MR After 
Acute and Chronic 
Activation

Fig. 2 (continued) M 4  MR in the striatum of control rats using the pre-embedding immunogold method with 
silver intensifi cation in two striatal regional compartments, matrix and patches. Proportion of immunoparticles 
associated with different subcellular neuronal compartments in perikarya of medium spiny neurons. For each 
cell body, the number of immunoparticles associated with each compartment was counted, and the proportion 
in relation to the total number was calculated. In medium spiny neurons, of the immunoparticles that are 
associated with an identifi ed compartment, most of them are preferentially located at the plasma membrane. 
The proportion of immunoparticles at the membrane is much higher in patches than in matrix. In the cyto-
plasm, the immunoparticles are mostly detected in association with small vesicles, the Golgi apparatus, and 
the endoplasmic reticulum. A small proportion of immunoparticles are associated with multivesicular bodies 
( mvb ) and the outer nuclear membrane. Some immunoparticles are not seen in association with any of an 
identifi ed compartment. ( D – E ) Reproduced with permission, from Bernard et al. [ 4 ]       
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  Fig. 3    Synaptic distribution of M 2  MR immunohistochemistry in brainstem motor nuclei in mouse. ( A ) Confocal 
microscopic illustration of the distribution of M 2  MR and the vesicular transporter of glutamate type 1 (VGLUT1) 
immunoreactivity in the trigeminal motor nucleus. The surface of motoneuron cell bodies ( asterisks ) is intensely 
M 2  MR-immunoreactive ( red ). VGLUT1 immunostaining is predominantly confi ned to large intensely stained 
varicosities ( green ). VGLUT1- immunoreactive varicosities form close contacts with M 2  MR-immunoreactive 
perikarya and dendrites ( arrows ). ( B – H ) Electron microscopic qualitative ( B – E ,  H ) and quantitative ( G ) analysis 
of the subcellular distribution of M 2  MR at cholinergic ( B ,  D ,  F ) and glutamatergic ( C ,  E ) synapses in hypoglos-
sal nucleus ( B ), trigeminal motor nucleus ( C – E ) and facial nucleus ( F ) after preembedding immunogold method 
with silver intensifi cation. The M 2  MR immunoparticles are detected at the plasma membrane, in association 
with its inner side. Some immunoparticles are found at the postsynaptic membrane ( arrows ) under VAChT 
( B ,  D ,  F ) or VGluT1 ( C ) or vesicular transporter of glutamate type 2 (VGluT2) ( E ) immunoreactive presynaptic 
boutons (electron-dense peroxidase product). The VAChT-immunoreactive boutons form synapses on peri-
karya ( B ,  D ,  F ) and the VGluT1 and 2-immunoreactive boutons form synapses on dendrites. ( G ) Statistical 
analysis (nonparametric Wilcoxon matched pairs test) shows that the density of M 2  MR at VAChT-positive 
cholinergic synapses (syn.) is signifi cantly higher than the overall density of receptors at the plasma membrane 
(PM) in motoneurons of the hypoglossal (XII), facial (VII) and trigeminal motor (V) nuclei (e). *** P  < 0.001. From 
Csaba et al. [ 3 ]       

 



  Fig. 4    Effect of acute and chronic modifi cations of ACh levels on the cellular and subcellular distribution of M 2  
MR and M 4  MR in neurons of the striatum in vivo. Images were collected under epifl uorescence ( A – C ), and 
electron microscopy ( A ′– C ′,  D ′,  E ′) using immunofl uorescent ( A – C ), and peroxidase ( D ,  E ) histochemistry and 
a pre-embedding immunogold method ( A ′– C ′,  D ′,  E ′). ( A ,  A ′,  D ,  D ′) In control mice, M 2 R and M 4 R immunore-
activity are mostly detected at the plasma membrane. Immunoparticles are associated mostly with the internal 
side of the plasma membrane ( arrowheads ). ( B ,  B ′,  E ,  E ′) After acute treatment with oxotremorine (‘Oxo’; 
0.5 mg/kg subcutaneously for 1 h), M 2  MR and M 4  MR immunoreactivities are seen in the cytoplasm. ( C ,  C ′) 
After chronic stimulation of ACh receptors in acetylcholinesterase knockout mice (AChE−/−), no staining is 
observed at the membrane, whereas strong immunoreactivity is detected in the cytoplasm. Few immunopar-
ticles are detected in association with the plasma membrane ( arrowheads ). By contrast, numerous particles 
are seen in the cytoplasm associated with the endoplasmic reticulum (er) and Golgi apparatus. This suggests 
that, when ACh receptors are chronically stimulated, targeting of M 2  receptors is blocked in the intraneuronal 
compartments of synthesis and maturation, and thus they are no longer targeted to the membrane. Scale bars, 
10 mm in ( A – E ); 500 nm in ( F ,  G ); 50 nm in ( H ). Reproduced, with permission, from Bernard et al. [ 8 ]       
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muscarinic receptors ends in the intraneuronal compartments of 
synthesis and maturation, and thus they are no longer targeted to 
the membrane of the somatodendritic compartment (Figs.  4c, c ′ 
and  5d ). Conversely, M 2  MR density increases at axonal varicosities 
(Fig.  5d ).

  Fig. 5    Schematic representation of the subcellular and synaptic distribution of M 2  MR in neurons. ( a ) In control 
mice, most M 2  MR are at the plasma membrane of the somatodendritic compartment and at axonal varicosi-
ties. ( b ) In motoneurons in the brainstem, the M 2  MR are localized at the plasma membrane of perikarya and 
dendrites, at higher density in dendrites than in cell bodies. Cholinergic terminals (VAChT-immunopositive) 
form synapses on perikarya. VGLUT1-labeled glutamatergic terminals form synapses on perikarya and large-
caliber dendrites, whereas small VGLUT2-labeled glutamatergic terminals form synapses on perikarya and 
small-caliber dendrites. The density of both VGLUT1- and VGLUT2-labeled synapses is higher in dendrites than 
in perikarya. Note the enrichment of M 2  MR at VAChT-labeled cholinergic as well as VGLUT1- and VGLUT2- 
labeled glutamatergic synapses. ( c ) After acute stimulation of cholinergic neurons, M 2  MR density decreases 
in the somatodendritic plasma membrane and M 2  MR accumulate in association with endosomes and multi-
vesicular bodies (MVBs). The decrease in M 2  MR density at the membrane is blocked when the muscarinic-
receptor antagonist atropine is injected. In cholinergic varicosities, localization of M 2  MR at the plasma 
membrane is similar to that in control animals. ( d ) After chronic stimulation of ACh receptors, M 2  MR are almost 
absent from the somatodendritic plasma membrane but accumulate in the cytoplasm in association with the 
endoplasmic reticulum and Golgi apparatus. The decrease in M 2  MR at the plasma membrane is blocked after 
atropine injection in a chronically stimulated animal. In cholinergic varicosities, M 2  MR density at the plasma 
membrane is increased. Intracellular GPCRs are those that have been retrieved from the plasma membrane 
(acute stimulation) or blocked on their way out to the membrane (chronic stimulation)       
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5         Notes 

   We use a gravity system to perfuse the animals. Though such a 
system may take longer time to achieve organ perfusion, the results 
are reproducible and perfusion is thorough. Gravity systems allow 
consistent pressure and controlled fl ow rates, providing good per-
fusion of the major organs, especially brain. Excessive pressure 
using other methods, like a pump, may cause artifacts in the neu-
ronal ultrastructure.  

  Glutaraldehyde is an essential compound of the fi xative solution. 
The concentration of glutaraldehyde has to be carefully chosen. 
The percentage has to be high enough to preserve the ultrastruc-
ture of the tissue for analysis at EM level and low enough to avoid 
interference with antibody binding that may cause considerable 
decrease of intensity of labeling or even nonspecifi c binding. In our 
hands, 0.5–0.2 % of glutaraldehyde in addition to 2–4 % parafor-
maldehyde gave us good results on labeling intensity and ultra-
structure preservation for the majority of primary antibodies, 
including anti-MR antibodies.   

  The section freezing allows to produce small ice crystals that 
mechanically disrupt the tissue causing only limited damages and 
thus enhance the penetration of reagents. Detergents like Triton 
X-100 must not be used because of the irreversible damages they 
cause to neuronal ultrastructure.  

  We and others have tested different anti-muscarinic receptors anti-
bodies by immunohistochemistry [ 9 ]. Only anti-M 2  MR and M 4  
MR antibodies commercialized by Millipore (Ref: MAB367 and 
MAB1576) have been found to selectively label the receptors, i.e., 
the immunohistochemical M 2  MR and M 4  MR signals were abol-
ished in the corresponding knock-out mice. Anti-M 2  MR antibod-
ies bind rat and mouse M 2  MR. Surprisingly, if we found labeling 
with anti-M 4  MR antibodies in rats, we were able to detect M 4  MR 
only in one strain of mouse, e.g., control mice of M 2  KO mice 
from Taconic farm (Germantown, NY).  

   It is important to be aware that the immunogold technique is less 
sensitive compared to immunofl uorescence or immunoperoxidase. 
Increase of the concentration of the antibody may be necessary to 
obtain a good signal.  

   When possible, we prefer to use biotinylated secondary antibodies 
and streptavidin coupled to gold particles instead of secondary 
antibodies directly coupled to gold beads. First, it allows to use 
the same gold coupled compound in experiments detecting fi rst 

5.1  Perfusion

5.1.1  Perfusion System

5.1.2  Fixative

5.2  Tissue 
Permeabilization

5.3  Specifi city 
of Primary Muscarinic 
Receptor Antibodies

5.4  Adjustment 
of Primary Antibody 
Concentration

5.5  Gold Coupled 
Secondary Antibodies 
or Streptavidin?
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antibody produced in different species. Second, we found a more 
important variability in labeling obtained with secondary antibod-
ies coupled to gold particles compared to the same labeling 
obtained with biotinylated secondary antibodies and streptavidin 
coupled to gold particles.  

   Samples for transmission electron microscopy must be supported 
on a thin electron transparent fi lm, to hold the specimen in place 
while in the objective lens of the TEM. We use pioloform as a sup-
port fi lm. For the detailed procedure, see [ 10 ].  

   Semi-thin sections (1 μm thick) are fi rst cut and observed under a 
light microscope. When the labeling correspond to the area of 
interest, ultrathin sections (5 nm thick) are cut. Since the reagent 
do not penetrate deeply into the tissue, ultrathin sections have to 
be cut at the surface of the tissue in the few fi rst micrometers, as 
parallel as possible to the surface. 

 The use of single slot grids instead of mesh grids makes the 
observation more comfortable. It allows for example to analyze the 
labeling on a whole structure like a cell body and not be hindered 
by bars of the mesh grid.  

   Counting immunoparticles at the ultrastructural level is important 
for comparing the abundance of receptor in each compartment in 
basal and experimental conditions. For that, sections from control 
or wild type animals and treated animals or KO mice must be pro-
cessed for immunohistochemistry in the same time. The analysis 
are performed on EM at a fi nal magnifi cation of about 4000×, 
using the Metamorph software (Universal Imaging Corporation, 
Paris, France) [ 11 ] or Image-Pro Plus image analysis software 
(Media Cybernetics, Bethesda, MD) [ 3 ] on a personal computer. 
In cell bodies, the immunoparticles are identifi ed and counted in 
association with different subcellular compartments: the plasma 
membrane, endosome-like vesicles, multivesicular bodies, the Golgi 
apparatus, endoplasmic reticulum, the nuclear membrane. Some 
immunoparticles are classifi ed as associated with an unidentifi ed 
compartment, because they were associated with either no detect-
able organelles or an organelle that could not be identifi ed as one 
of the fi ve previous ones. The results are expressed as:

    1.    The percentage of immunoparticles associated with the differ-
ent subcellular compartments in normal animals.   

   2.    The number of immunoparticles per membrane length 
(micrometers), cytoplasmic surface (square micrometers), 
multivesicular body, or Golgi apparatus in normal and treated 
rats (mice).    

  For the analysis of the localization of M 2  MR in relationship 
with the presynaptic terminals, immunoparticles are identifi ed and 

5.6  Coating Grids 
with Pioloform

5.7  Ultrathin 
Sections Cutting 
Procedure

5.8  Quantifi cation
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counted in association with the plasma membrane and at the 
 postsynaptic membrane beneath the VAChT-, VGLUT1-, and 
VGLUT2-immunoreactive presynaptic boutons. The latter area 
included the synaptic complexes and also adjacent plasma mem-
brane in apposition with the VAChT-, VGLUT1-, and VGLUT2- 
immunoreactive presynaptic boutons. Results are expressed as 
density of M2 MR at the postsynaptic membrane beneath VAChT-, 
VGLUT1-, and VGLUT2-labeled boutons and overall at the 
plasma membrane (number of immunoparticles per 1 μm mem-
brane length). We assume that the number of immunoparticles is 
proportional to the absolute number of the receptor. The values 
from control and treated animals are compared using a suitable 
statistical test.   

6    Conclusions 

 Despite the tricky aspect of the post-embedding immunohisto-
chemistry, this chapter demonstrates the extraordinary power of 
the high-resolution electron microscopic immunohistochemistry 
to locate muscarinic receptors in the different neuronal compart-
ments, including synapses and to analyze the traffi cking of these 
receptors in neurons. These data give new keys to understand the 
mode of transmission of ACh through muscarinic receptors. 

 Such experimental approaches may be adapted to the analysis 
of other neurotransmitter receptors localization or other proteins 
in the brain or in other tissues and may help to better understand 
the link between localization of GPCRs and their intraneuronal 
traffi cking and neuronal responses induced by GPCR activation. 
This might enable the development of new strategies for treating 
neurological diseases associated with altered GPCR signaling, such 
as Parkinson’s disease.     
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Chapter 8

Investigation of Muscarinic Receptors  
by Fluorescent Techniques

Cornelius Krasel, Andreas Rinne, and Moritz Bünemann

Abstract

Since the last decade or so, fluorescent techniques have markedly improved our ability to investigate the 
localization of proteins within the cell and to measure the kinetics of protein–protein interactions. In this 
chapter, we discuss how these techniques have been applied to the muscarinic acetylcholine receptor field, 
with a focus on measuring Förster resonance energy transfer (FRET) by time-resolved sensitized emission.

Key words Sensitized emission, FRET, G-protein-coupled receptors, Muscarinic acetylcholine receptors, 
Protein–protein interaction

1 Background

Fluorescence-based techniques are well suited to investigate 
G-protein-coupled receptors on the single-cell level. In most cases, 
the readout is performed by microscopy, even though it is theoreti-
cally possible to perform experiments in other formats. However, 
the lack of publications suggests that with the exception of time- 
resolved Förster resonance energy transfer (TR-FRET), it appears 
that the signal-to-noise ratio is not sufficiently high to reliably 
detect signals. Fluorescence microscopy has been used to track 
muscarinic acetylcholine receptors in cells, to investigate conforma-
tional changes of muscarinic acetylcholine receptors and to resolve 
the interaction of muscarinic acetylcholine receptors with other 
proteins. Basically, the receptor can either be treated with a fluores-
cent ligand or labeled with a fluorescent dye or protein. A major 
problem of fluorescent ligands is that ligand modification (to make 
it fluorescent) may alter its pharmacological properties. For exam-
ple, fluorescent derivates of the agonist AC-42 are antagonists [1]. 
Nevertheless, Hern et al. [2] used two fluorescent antagonists, 
Alexa 488-telenzepine and Cy3B-telenzepine, to monitor dimer-
ization of the M1 receptor by single-molecule microscopy.
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However, the focus of this chapter is the fluorescent labeling of 
the receptor. This can be achieved either by fusing a fluorescent 
protein [3] at a suitable position to the receptor of interest, or by 
inserting a comparatively small targeting sequence that binds spe-
cifically to a small organic fluorescent molecule [4]. The advantage 
of using fluorescent proteins is that labeling is achieved by making 
appropriate constructs by molecular biology, and no manipulation 
beyond transfection is required to express fluorescent receptors. In 
addition, the fluorescent labeling is specific, and the signal-to-noise 
ratio is quite high. However, fluorescent proteins are bulky (the 
size of GFP is about 27 kDa) and may therefore sterically interfere 
with the function of the receptor. This was first demonstrated for a 
conformational sensor of the adenosine A2a receptor [5]. Labeling 
with small organic fluorescent molecules will, however, inevitably 
create background fluorescence within the cell which has frustrated 
many researchers working with these molecules [6]. It is therefore 
maybe less suitable for the localization of molecules within cells 
and more suitable for resonance energy techniques (see below).

Using fluorescent proteins, receptors can be tracked within the 
cell [7], their pharmacology [8–10] and their quaternary structure 
[11, 12] may be investigated, and kinetics of their conformational 
change [13–18] or of their interaction with other proteins [13, 18, 
19] can be studied.

Förster resonance energy transfer (FRET), also often called 
fluorescence resonance energy transfer, is a versatile method to 
obtain information about the proximity of two suitable fluorescent 
molecules. In FRET, energy is transferred in a radiation-less way 
from one fluorescent molecule (the donor) to another molecule 
(the acceptor). Three conditions are required for FRET to occur 
[20]: (1) the emission spectrum of the donor and the excitation/
absorption spectrum of the acceptor have to overlap, (2) the dipole 
orientation of the donor and the acceptor must not be orthogonal 
to each other, and (3) the two fluorescent molecules must be close 
to one another as FRET efficiency is inversely proportional to the 
sixth power of the donor–acceptor distance. The spectral overlap is 
dependent on the two fluorescent molecules used for the experi-
ment. A particularly established donor–acceptor pair for FRET 
experiments in biology is the combination of cyan and yellow fluo-
rescent protein but FRET can also be performed with other com-
binations. If the donor or acceptor is a small fluorescent molecule, 
the other partner of the FRET pair has to be chosen appropriately 
to ensure spectral overlap. The relative orientation of the dipoles is 
usually hard to control. If fluorescent proteins are employed, they 
are often attached to the protein of interest with a relatively long 
flexible linker to ensure rotational freedom of the fluorophores. 
This ensures that the relative dipole orientation is variable over the 
time course of the experiment which should yield at least some 
FRET. Consequently, changes in FRET over the time course of 
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the experiment should reflect a change in the distance of the two 
fluorescent molecules which could reflect a conformational change 
or protein–protein association/dissociation. To investigate whether 
a fluorescent molecule can indeed rotate freely, fluorescence anisot-
ropy measurements can be employed [21, 22].

Sometimes FRET may fail to report a known protein–protein 
interaction. The reasons are not entirely clear but may be due to an 
unsuitable orientation of the two fluorescent molecules. 
Nevertheless, we and others have successfully investigated the 
interaction of muscarinic acetylcholine receptors with heterotri-
meric G-proteins, G-protein-coupled receptor kinases and arres-
tins using FRET [13, 18, 19].

2 Creating a Fluorescent Receptor

FRET can be used to monitor the interaction of fluorescent or 
fluorescence-quenching ligands with receptors in real time. This 
has been exemplified at the M1 receptor [9, 10]. In all cases 
described so far, a fluorescent protein was fused in front of the 
N-terminus of the receptor. The construction of the EGFP-M1 
fusion protein has been described in some detail [8]. A 31 amino- 
acid signal sequence from the chicken a7 nicotinic acetylcholine 
receptor was fused in front of the EGFP to ensure proper translo-
cation. Similarly, a hemagglutinin signal sequence has been used to 
improve plasma membrane targeting of the β2-adrenergic receptor 
[23, 24]. To obtain such constructs, PCR is used to amplify the 
fluorescent protein of interest. Experimentation with the linker 
length between the fluorescent protein and the C-terminus may be 
necessary to obtain good plasma membrane localization. The sig-
nal sequence is encoded in the forward primer of the fluorescent 
protein. For example, the following forward primer encompasses 
the hemagglutinin signal sequence and should be useful for most 
GFP derivatives (i.e., YFP, CFP, pHluorin):

aaaaaggatccatgaagacgatcatcgccctgagctacatcttctgcctggtattcgccagta-
aaggagaagaacttttcactggagttgtccc

The BamHI restriction site ggatcc can be replaced with any 
suitable restriction site to facilitate cloning of the PCR product.

In the published work, ligand–receptor interaction was mea-
sured by monitoring FRET between a GFP-tagged receptor and a 
Bodipy-labeled ligand in a cell suspension in a cuvette [8–10].

The M3 receptor has also been labeled at the N-terminus with 
a SNAP-tag [11]. The SNAP-tag is derived from O-6- 
methylguanine-DNA methyltransferase, a protein with a size of 
20 kDa (i.e., smaller than GFP), that can be covalently labeled with 
small fluorescent pseudosubstrates [25]. The advantage of the 
SNAP tag is that small organic molecules may have advantageous 
fluorescence properties (e.g., quantum yield, stability against 
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photobleaching) compared to fluorescent proteins. However, in 
addition to generating the cDNA for the construct of interest, an 
additional labeling step is required. The introduction of a SNAP 
tag is performed in the same way as the introduction of a fluores-
cent protein. Alternatively, the protein of interest can be cloned 
into a commercial vector already containing the SNAP-tag (avail-
able from New England Biolabs). Labeling of proteins with an 
extracellular SNAP-tag is straightforward, whereas labeling of 
intracellular SNAP-tags requires different, cell-permeable com-
pounds and should result in a considerable level of background 
fluorescence as the unbound fluorescent chemical needs to be 
washed out from the cell.

To look for G-protein-coupled receptor trafficking, receptors 
are often tagged with fluorescent proteins at the C-terminus. In 
many cases, this can be achieved by amplification of the open read-
ing frame of the receptor by PCR and replacing the stop codon 
with a suitable restriction site in this process. This modified recep-
tor can then either be cloned into a commercially or noncommer-
cially available plasmid (pEGFP-N1 and related plasmids) which 
results in a fairly long linker between the receptor and the fluores-
cent protein, or the fluorescent protein can be cloned directly 
behind the restriction site which makes the linker only two amino 
acids long. However, tagging of the M4 muscarinic acetylcholine 
receptor with GFP at the C-terminus reduced the affinity for ago-
nists three- to fourfold and abolished recycling of internalized 
receptors [7]. This was interpreted as a result of very high overex-
pression. However, the possibility has to be considered that the 
extreme C-terminus may contain motifs relevant for protein–
protein interactions such as PDZ ligands [26] which may be 
destroyed by fusing a fluorescent protein to the C-terminus.

FRET can also be used to monitor the conformational change 
of a G-protein-coupled receptor and has been extensively used for 
muscarinic acetylcholine receptors. In all cases described so far, 
either the CFP-YFP pair [13, 16] or the CFP-FlAsH pair [14, 15, 
17] was used. Labeling of the intracellular loops is more challeng-
ing than labeling of the N- or C-terminus because it may more 
pronouncedly affect receptor–G protein coupling or trafficking 
to the plasma membrane. The precise construction of FlAsH-
based receptor sensors has been described in a number of papers 
(e.g., [17, 27]).

3 Fluorescence Microscopy and FRET

To perform fluorescence microscopy using receptors tagged with 
fluorescent proteins, the cDNA for these proteins has to be intro-
duced into a suitable cell line. We preferentially use HEK293T cells 

3.1 Preparation 
of Cells for Microscopy
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(ATCC) because they are easy to transfect, but any type of cell that 
can be transfected may be used. It is important to use a transfection 
reagent that does not damage the cells too much. If more than one 
cDNA is introduced into the cells, it is also important to achieve 
relatively high transfection efficiencies because otherwise some cells 
will only be transfected with some of the cDNAs. For HEK293T 
cells, we use Effectene (Qiagen) which results in high transfection 
yields (30–50 %) and does not alter cell morphology too much. We 
also have used polyethylenimine successfully. When working with 
transiently transfected cells, we perform transfection on day 1, split 
cells on coverslips on day 2 and do the experiment on day 3.

What cDNAs to transfect depends on the experimental ques-
tion. When investigating receptor conformational changes or 
changes in receptor localization, it is often sufficient to transfect 
just the receptor construct. Some receptor constructs are not tar-
geted very well to the membrane. This may be ameliorated by one 
of the following:

 1. Transfecting a relatively small amount of DNA (e.g., only 
20–25 % of what the protocol of the transfection reagents sug-
gests as a maximum) to avoid cellular overload.

 2. Cloning a signal sequence in front of the construct (see above).
 3. Creating a stable cell line expressing the construct.

When the interaction between receptors and other proteins is 
studied, at least cDNAs for both fluorescent proteins have to be 
transfected plus possibly cDNAs for some nonfluorescent proteins. 
For example, if the interaction between receptors and heterotri-
meric G-proteins is to be investigated, one will have to transfect a 
cDNA for a fluorescent receptor, a cDNA for a fluorescent 
G-protein subunit (e.g., the β subunit) and two cDNAs for the 
remaining nonfluorescent G-protein subunits (e.g., the α and γ 
subunit).

Transfection of HEK293T cells with Effectene:

●● On the day before transfection, seed a suitable amount of your 
cell line of choice on a 6 cm-dish (the manufacturer recom-
mends seeding 200,000–800,000 cells).

●● On the day of transfection, mix 200 μl EC buffer, the cDNA 
(see below) and 16 μl enhancer by pipetting up and down.

●● Let the mixture stand for around 5 min at room temperature.
●● Add 20 μl Effectene, mix by pipetting up and down.
●● Let the mixture incubate for another 5 min at room 

temperature.
●● Add the mixture dropwise to the 6 cm-dish that was prepared 

the day before.
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cDNA:

●● To investigate a receptor sensor, use 0.5 μg of the sensor cDNA.
●● To investigate receptor–G protein interaction by FRET, use 

for example 0.5 μg YFP-tagged receptor, 0.5 μg nonfluores-
cent suitable Gα subunit (e.g., Gαq for M1, M3, and M5 recep-
tors, Gαi1 for M2 and M4 receptors), 0.5 μg CFP-tagged Gβ1, 
and 0.3–0.4 μg nonfluorescent Gγ2.

●● To investigate receptor–GRK2 interaction by FRET, use for 
example 0.5 μg YFP-tagged receptor, 0.5 μg nonfluorescent 
suitable Gα subunit (e.g., Gαq for M1, M3, and M5 receptors, 
Gαi1 for M2 and M4 receptors), 0.5 μg nonfluorescent Gβ1, 
0.3–0.4 μg nonfluorescent Gγ2, and 0.5 μg CFP-tagged GRK2.

On the day after transfection, transfer the cells from the plastic 
dish onto glass coverslips. One 6 cm-dish of transfected cells will usu-
ally be good for six coverslips. Use round coverslips (24–-25 mm 
diameter, thickness #1, supplier VWR) which will be mounted on the 
microscope using an Attofluor (Invitrogen) holder. Glass-bottom 
plates can be used instead but in the long run they will be more 
expensive than glass coverslips. Glass is preferable to plastic because it 
has superior optical properties and thus allows more reliable imaging, 
in particular at higher magnification. Before cell transfer, glass should 
be coated with polylysine to render it less hydrophobic. Either poly-
l-lysine or poly-d-lysine can be used, but poly-d-lysine is less suscep-
tible to degradation by cellular proteases. Coat coverslips as follows:

●● Prepare a stock solution of poly-d-lysine by adding 50 ml 
of sterile water to 5 mg sterile poly-d-lysine hydrobromide 
(Sigma P-6407). This solution can be stored in the fridge for 
several weeks.

●● The following steps should be performed under a sterile hood.
●● Fill each of the six wells of a six-well plate with 2 ml of sterile PBS.
●● Use forceps to immerse a round coverslip in a beaker filled with 

70 % ethanol for a few seconds, then drop the coverslip into 
one of the six wells. Repeat with five more coverslips.

●● As the coverslips are likely to float on top of the PBS, use a 
sterile glass Pasteur pipet to fully immerse the coverslip in the 
PBS. Then remove the PBS by suction. Make sure the glass 
surface is completely dry.

●● Pipet a drop (approx. 200–250 μl) of poly-d-lysine solution in 
the middle of the glass coverslip. Let it sit there for approx. 1 h.

●● Remove the poly-d-lysine by suction using a glass Pasteur 
pipet. Then add 2 ml of sterile PBS to the well and remove it 
again using suction, drying the coverslip and the well 
completely.

●● The glass coverslips are now ready for use. They can be pre-
pared in advance and will keep in the fridge for a few days.

Cornelius Krasel et al.



153

There are several methods to measure FRET, but to obtain infor-
mation about rapid kinetics we prefer to use a method called sensi-
tized emission in which fluorescence of the FRET donor and FRET 
acceptor are measured simultaneously. The advantage of this 
method is that, dependent on the experimental setup, up to 100 
values per second can be obtained, making it possible to follow 
very rapid kinetic changes reliably. The disadvantage is that it is 
hard to quantify the precise extent of FRET as the concentration 
of the acceptor is measured only once and not in every frame.

We have several different types of equipment to measure sensi-
tized emission but they all consist of a light source, an inverted 
microscope and a camera with an additional beam-splitter in front 
of it. The light paths for observing cells by eye and for measuring 
sensitized emission are detailed in Fig. 1.

The light source needs a fast triggering possibility as the cells 
should be illuminated as briefly as possible to avoid photobleach-
ing. We have experience with various Polychrome sources (Till 
Photonics, now FEI Life Sciences) and with the DG4 (Sutter) but 
at the moment we like the CoolLED light sources best. They are 
as bright as the mercury or xenon lamps, relatively inexpensive 
and, since they are LED-based, should have a longer lifetime than 
the lamps. Their only disadvantage, compared to a Polychrome, is 
that if measurements are to be performed at different wavelengths, 
a new LED must be installed.

The camera should be fairly sensitive (again the more sensitive 
the camera, the shorter the illumination time) and have a grayscale 
sensor. We have experience with the Spot Pursuit PR3400 (Spot 
Imaging Solutions) and Evolve512 (Photometrics) cameras. 

3.2 The 
Microscope Setup

Fig. 1 Scheme of the optical path in the microscope when searching for a cell by eye (left) or when measuring 
sensitized emission (right). In the setup on the right, beamsplitter 2 and the two emission filters are built into 
an image splitter that is attached to one of the ports of the microscope. The excitation filter and beamsplitter1 
are built into a filter cube within the microscope. Note that this filter cube does not have an emission filter 
which will increase sensitivity
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To measure sensitized emission reliably, fluorescence has to be 
acquired simultaneously in two channels. While Hamamatsu sells a 
system that comes with two cameras, one for each channel, it is less 
expensive to install an additional beamsplitter directly in front of 
the camera. This way, half of the chip will be illuminated by the 
fluorescence of the donor and the other half of the chip will be 
illuminated by the fluorescence of the acceptor. Image splitters 
offering these possibilities include the Optosplit (Cairn Research) 
and the DC2 (Photometrics).

For searching a suitable cell by eye, any dual band CFP/YFP 
filter cube (like the discontinued Chroma 51017 or the Chroma 
59017) should work (see Fig. 1):

●● Excitation filter: dual band exciter (Chroma 59017x).
●● Beam splitter: dual band beam splitter (Chroma 69008bs).
●● Emission filter: dual band filter (Chroma 59017m).

With such a filter cube, either 430 nm light (to excite CFP) or 
500 nm light (to excite YFP) may be used to search for cells 
expressing the proteins of interest. Once this has been achieved, 
the filter wheel on the microscope is switched and the following 
filters are used:

●● Excitation filter: ET430/24 (Chroma).
●● Beamsplitter 1 (separates emission from excitation light): 

T455LP (Chroma).
●● Beamsplitter 2 (separates CFP from YFP fluorescence): 

T495lpxr (Chroma).
●● Emission filter 1 (CFP): ET480/40m (Chroma).
●● Emission filter 2 (YFP): BrightLine HC 534/20 (Semrock).

A number of companies will provide a system consisting of 
these components, an inverted microscope and the software to 
run it.

To actually perform the FRET experiment, the glass coverslip is 
mounted in a suitable holder (e.g., the Attofluor from Invitrogen). 
If glass-bottom dishes are used, there is no need to mount any-
thing. Throughout the measurement, the cells are continuously 
superfused with FRET buffer (137 mM NaCl, 5 mM KCl, 2 mM 
CaCl2, 1 mM MgCl2, 10 mM HEPES pH 7.3–7.4) using a pres-
surized perfusion system (ALA-VC3-8SP, ALA, Scientific 
Instruments). For longer measurements, this buffer may be sup-
plemented with 10 mM glucose. If peptides or lipophilic sub-
stances are used, 0.1 % BSA should be added to the buffer to 
reduce absorption of the ligands to the tubes and plastics of the 
perfusion system. The perfusion system allows fast buffer exchange 
within less than 10 ms, enabling the measurement of very fast 

3.3 Measuring FRET
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on- or off-rates. Unused channels should be filled with FRET 
 buffer. After each experiment the perfusion system should be 
washed with water because the very thin tubes tend to become 
clogged. If BSA or glucose was present in the FRET buffer, the 
perfusion system should first be washed with water, then with 20 % 
ethanol to reduce microbial contamination, and finally again with 
water. Once a month, the system should be cleaned thoroughly by 
washing it with 5 % acetic acid and 20 % ethanol. Nevertheless, the 
perfusion system is the part of the setup that is most likely to fail, 
thus it is useful to have a few spare parts available.

Before the actual kinetic experiment is performed, the dual 
band filter cube should be used to measure the fluorescence of the 
YFP-labeled protein upon excitation of YFP (i.e., with 500 nm 
light). This results in two values, F500,534,cell and F500,534,BG. After 
that, the sensitized emission experiment is performed using the 
435 nm excitation filter and the T455LP dichroic mirror. In the 
images obtained in these experiments, two areas of interest should 
be marked, one containing the cell under investigation, the other 
containing no cells. This second area of interest is the background. 
Thus, for each image, four fluorescence intensities are calculated: 
F430,480,cell, F430,480,BG, F430,534,cell, and F430,534,BG. To compute FRET, 
the following calculation is performed:

 
FRET
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The two numbers BT and DE are the bleedthrough of CFP 
into the YFP channel and the direct excitation of YFP by the 
430 nm light, respectively. These numbers have to be measured 
once for each filter combination in cells transfected only with CFP 
or YFP, respectively, and stay pretty constant over time.

In a cell transfected only with CFP:
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In a cell transfected only with YFP:
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Finally, the FRET signal can be plotted against time and evalu-

ated by nonlinear curve fitting.
If investigating protein–protein interactions, both the initial 

ratio and the amplitude of the FRET signal may be quite sensitive 
to the precise stoichiometry of fluorescent (and possibly nonfluo-
rescent) proteins in the cell. To average several traces, we subtract a 
basal ratio (e.g., before the addition of agonist) from each trace and 
afterwards calculate means and standard error for each time point. 

Investigation of Muscarinic Receptors by Fluorescent Techniques



156

Kinetics are calculated for each individual trace and the resulting 
time constants averaged. Sometimes, traces have to be corrected for 
differential photobleaching of CFP and YFP beforehand—if one of 
the fluorescent proteins bleaches faster than the other, the ratio will 
drift which in turn will affect the calculation of the time constants. 
An example readout for a FRET experiment is shown in Fig. 2.

4 Conclusions

Using the methods described in this chapter we have successfully 
measured the kinetics of ligand-induced receptor conformation 
[16, 28] and the interaction of muscarinic acetylcholine receptors 
with G-proteins and G-protein-coupled receptor kinases [19, 28]. 

Fig. 2 Example of a FRET experiment. Dual emission FRET recordings were per-
formed with HEK293T cells expressing a conformational sensor of the M1 recep-
tor [16]. A single cell was imaged as described above and stimulated with three 
different concentrations of carbachol. Shown are the CFP fluorescence (FCFP = 
 F430,480,cell − F430,480,BG, bottom), the YFP fluorescence (FYFP = F430,534,cell − F430,534,BG, 
middle) and the ratio of the two (upper trace). Several such traces could be used 
to determine a concentration–response curve. To determine the amplitudes cor-
rectly, photobleaching has to be taken into account (dashed line in the upper 
panel). Because the amplitudes are only compared within the experiment, no 
further corrections were performed. After agonist washout the conformation of 
the sensor does not return to the start value. This is partially due to photobleach-
ing but also caused by residual carbachol that cannot be fully removed from the 
cell by the perfusion system
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Based on such measurements, others have developed mathematical 
models of muscarinic acetylcholine receptor signaling [13]. In the 
future fluorescent techniques may be useful to reveal novel proper-
ties of muscarinic acetylcholine receptors.

References

 1. Daval SB, Valant C, Bonnet D, Kellenberger E 
et al (2012) Fluorescent derivatives of AC-42 
to probe bitopic orthosteric/allosteric binding 
mechanisms on muscarinic M1 receptors. 
J Med Chem 55:2125–2143

 2. Hern JA, Baig AH, Mashanov GI, Birdsall B 
et al (2010) Formation and dissociation of M1 
muscarinic receptor dimers seen by total inter-
nal reflection fluorescence imaging of single 
molecules. Proc Natl Acad Sci U S A 107: 
2693–2698

 3. Giepmans BN, Adams SR, Ellisman MH, 
Tsien RY (2006) The fluorescent toolbox for 
assessing protein location and function. 
Science 312:217–224

 4. Griffin BA, Adams SR, Tsien RY (1998) 
Specific covalent labeling of recombinant pro-
tein molecules inside live cells. Science 281: 
269–272

 5. Hoffmann C, Gaietta G, Bünemann M, Adams 
SR et al (2005) A FlAsH-based FRET approach 
to determine G protein-coupled receptor acti-
vation in living cells. Nat Methods 2:171–176

 6. Stroffekova K, Proenza C, Beam KG (2001) 
The protein-labeling reagent FLASH-EDT2 
binds not only to CCXXCC motifs but also 
non-specifically to endogenous cysteine-rich 
proteins. Pflugers Arch 442:859–866

 7. Madziva MT, Edwardson JM (2001) 
Trafficking of green fluorescent protein-tagged 
muscarinic M4 receptors in NG108-15 cells. 
Eur J Pharmacol 428:9–18

 8. Ilien B, Franchet C, Bernard P, Morisset S et al 
(2003) Fluorescence resonance energy transfer 
to probe human M1 muscarinic receptor struc-
ture and drug binding properties. J Neurochem 
85:768–778

 9. Tahtaoui C, Parrot I, Klotz P, Guillier F et al 
(2004) Fluorescent pirenzepine derivatives as 
potential bitopic ligands of the human M1 mus-
carinic receptor. J Med Chem 47:4300–4315

 10. Tahtaoui C, Guillier F, Klotz P, Galzi J-L et al 
(2005) On the use of nonfluorescent dye 
labeled ligands in FRET-based receptor bind-
ing studies. J Med Chem 48:7847–7859

 11. Alvarez-Curto E, Ward RJ, Pediani JD, 
Milligan G (2010) Ligand regulation of the 
quaternary organization of cell surface M3 
muscarinic acetylcholine receptors analyzed by 

fluorescence resonance energy transfer (FRET) 
imaging and homogeneous time-resolved 
FRET. J Biol Chem 285:23318–23330

 12. Patowary S, Alvarez-Curto E, Xu T-R, Holz 
JD et al (2013) The muscarinic M3 acetylcho-
line receptor exists as two differently sized 
complexes at the plasma membrane. Biochem 
J 452:303–312

 13. Jensen JB, Lyssand JS, Hague C, Hille B 
(2009) Fluorescence changes reveal kinetic 
steps of muscarinic receptor-mediated modu-
lation of phosphoinositides and Kv7.2/7.3 K+ 
channels. J Gen Physiol 133:347–359

 14. Maier-Peuschel M, Frölich N, Dees C, 
Hommers LG et al (2010) A fluorescence res-
onance energy transfer-based M2 muscarinic 
receptor sensor reveals rapid kinetics of alloste-
ric modulation. J Biol Chem 285:8793–8800

 15. Ziegler N, Bätz J, Zabel U, Lohse MJ et al 
(2011) FRET-based sensors for the human 
M1-, M3-, and M5-acetylcholine receptors. 
Bioorg Med Chem 19:1048–1054

 16. Markovic D, Holdich J, Al-Sabah S, Mistry R 
et al (2012) FRET-based detection of M1 
muscarinic acetylcholine receptor activation by 
orthosteric and allosteric agonists. PLoS One 
7:e29946

 17. Chang S, Ross EM (2012) Activation biosen-
sor for G protein-coupled receptors: a FRET- 
based m1 muscarinic activation sensor that 
regulates Gq. PLoS One 7:e45651

 18. Tateyama M, Kubo Y (2013) Analyses of the 
effects of Gq protein on the activated states of 
the muscarinic M3 receptor and the purinergic 
P2Y1 receptor. Physiol Rep 1:e00134

 19. Wolters V, Krasel C, Brockmann J, Bünemann 
M (2015) Influence of Gαq on the dynamics of 
M3-acetylcholine receptor-G protein-coupled 
receptor kinase 2 interaction. Mol Pharmacol 
87:9–17

 20. Stryer L (1978) Fluorescence energy transfer 
as a spectroscopic ruler. Annu Rev Biochem 
47:819–846

 21. Vilardaga JP, Steinmeyer R, Harms GS, Lohse 
MJ (2005) Molecular basis of inverse agonism 
in a G protein-coupled receptor. Nat Chem 
Biol 1:25–28

 22. Bondar A, Lazar J (2014) Dissociated GαGTP and 
Gβγ protein subunits are the major activated 

Investigation of Muscarinic Receptors by Fluorescent Techniques



158

form of heterotrimeric Gi/o proteins. J Biol 
Chem 289:1271–1281

 23. Guan XM, Kobilka TS, Kobilka BK (1992) 
Enhancement of membrane insertion and 
function in a type IIIb membrane protein fol-
lowing introduction of a cleavable signal pep-
tide. J Biol Chem 267:21995–21998

 24. Lampe M, Pierre F, Al-Sabah S, Krasel C et al 
(2014) Dual single-scission event analysis of 
constitutive transferrin receptor (TfR) endocyto-
sis and ligand-triggered beta2-adrenergic recep-
tor (beta2AR) or Mu-opioid receptor (MOR) 
endocytosis. Mol Biol Cell 25:3070–3080

 25. Keppler A, Pick H, Arrivoli C, Vogel H et al 
(2004) Labeling of fusion proteins with syn-
thetic fluorophores in live cells. Proc Natl Acad 
Sci U S A 101:9955–9959

 26. Hall RA, Ostedgaard LS, Premont RT, Blitzer 
JT et al (1998) A C-terminal motif found in 
the β2-adrenergic receptor, P2Y1 receptor and 
cystic fibrosis transmembrane conductance 
regulator determines binding to the Na+/H+ 
exchanger regulatory factor family of PDZ 
proteins. Proc Natl Acad Sci U S A 95: 
8496–8501

 27. Hoffmann C, Gaietta G, Zurn A, Adams SR 
et al (2010) Fluorescent labeling of tetracyste-
ine-tagged proteins in intact cells. Nat Protoc 
5:1666–1677

 28. Hoffmann C, Nuber S, Zabel U, Ziegler N 
et al (2012) Comparison of the activation 
kinetics of the M3 acetylcholine receptor and a 
constitutively active mutant receptor in living 
cells. Mol Pharmacol 82:236–245

Cornelius Krasel et al.



159

Jaromir Myslivecek and Jan Jakubik (eds.), Muscarinic Receptor: From Structure to Animal Models, Neuromethods, vol. 107, 
DOI 10.1007/978-1-4939-2858-3_9, © Springer Science+Business Media New York 2016

    Chapter 9   

 Autoradiography Assessment of Muscarinic Receptors 
in the Central Nervous System 

           Vladimir     Farar     and     Jaromir     Myslivecek    

    Abstract 

   The detection of muscarinic receptor binding sites is a crucial step in many experimental conditions. 
Although in peripheral tissue, the radioligand binding (see appropriate chapter) allows to obtain well- 
defi ned receptor characteristic, and also is usable in some central nervous system regions, when trying to 
determine receptor binding in central nervous system regions with low density or with infi nitesimally small 
receptor changes, the receptor autoradiography is a better method. The development of this method made 
important progress, and some different modes (phosphor imaging) are used nowadays. Here, we describe 
muscarinic receptor detection using different radioligands: [ 3 H]-QNB, [ 3 H]-NMS, [ 3 H]-pirenzepine, and 
[ 3 H]-AFDX-384. Specifi c attention is paid to the detection of subtypes of muscarinic receptors and the 
limits of the method are emphasized.  

  Key words     Muscarinic receptors  ,   Autoradiography  ,   [ 3 H]-QNB  ,   [ 3 H]-NMS  ,   [ 3 H]-pirenzepine  , 
  [ 3 H]-AFDX-384  ,   Central nervous system  

  Abbreviations 

    3 H-QNB     3 H-quinuclidinyl benzilate,  3 H-1-azabicyclo[2.2.2]oct-3-yl 2-hydroxy-2, 
2-diphenylacetate   

   3 H-NMS     3 H- N -methyl-scopolamine,  3 H-(1R,2S,4R,5S,7R)-{[(2R)-3-hydroxy-2- 
phenylpropanoyl]oxy}s[19]-9,9-dimethyl-3-oxa-9- azoniatricyclo 
[3.3.1.02,4]nonane   

   3 H-pirenzepine     3 H-11-[(4-methylpiperazin-1-yl)acetyl]-5,11-dihydro-6H-pyrido[2,3-
 b][1,4]benzodiazepin-6-one   

   3 H-AFDX-384     3 H- N -(2-[(2R)-2-[(dipropylamino)methyl]piperidin-1-yl]ethyl)-
6-oxo- 5H-pyrido[2,3-b][1,4]benzodiazepine-11-carboxamide   

  RT    Room temperature   
  MRs    Muscarinic receptors   
  GPCRs    G protein-coupled receptors   
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1        Historical Overview 

 Autoradiography is not a single method, but refers to a general 
concept shared by a family of experimental techniques. The aim of 
autoradiography is to visualize and quantify the distribution of 
radioactive substance within the specimen (e.g., acrylamide gels, 
agarose gels, nitrocellulose sheets, paper chromatograms, thin layer 
chromatograms, tissue sections) [ 1 – 3 ]. In principle, the binding of 
radioactive substance to specifi c target is not different from radioli-
gand binding (see Chapter   3    ). The radiolabeled compound that is 
specifi c to a given receptor is allowed to bind to the receptor and 
then free radioligand is separated. The fi rst autoradiography screen 
appeared accidentally when blackening was obtained on silver chlo-
ride (and iodide) emulsions (on a photographic plate) by uranium 
salts (uranium nitrate) [ 4 ]. This study and the subsequent work 
of Henri Becquerel and the Curies (1898) led to the discovery of 
radioactivity. However, the development of method as a technique 
to study biological structures became possible only after World War 
II when photographic emulsions became widely available [ 5 ]. 

 Autoradiography technique is able to identify not only  proteins 
but also nucleic acid fragments and can be used in polyacrylamide 
or agarose gel electrophoresis, in situ hybridization and in subcel-
lular localization of radioactive drug product [ 1 ,  3 ,  6 ,  7 ]. 

 One of the fi rst review summarizing pioneering work using 
acetylcholine receptor imaging was study [ 8 ] in which nicotinic 
acetylcholine receptors were detected using [ 3 H]-bungarotoxin. 
In fact, autoradiography detection of acetylcholine receptors (nic-
otinic, i.e., on motor endplate) started in 1970s of the twentieth 
century. In the same time, Kuhar and Yamamura have published 
the study on localization of muscarinic receptors (MRs) in the rat 
brain [ 9 ]. Shortly after, autoradiography of muscarinic and their 
counter-regulatory receptors, adrenoceptors [ 10 ] showed its local-
ization on cardiomyocytes in culture. Then, muscarinic receptors 
were detected in the retina [ 11 ], in presynaptic nerve terminals in 
the heart [ 12 ], and repeatedly in the central nervous system (for 
review see [ 13 ]). Less work was devoted to characterize muscarinic 
receptors in peripheral tissue like bladder [ 14 ]. Some snake toxins, 
that are more selective among muscarinic receptor subtypes, were 
radiolabeled with aim to prepare subtype specifi c ligand [ 15 ]. The 
main disadvantage of snake toxins is irreversibility of binding and 
not well-defi ned allosteric binding [ 15 ,  16 ]. Also, uncertain effects 
were revealed on adrenoceptors [ 15 ]—there is discrepancy between 
inhibited prazosin binding and abolishment of such binding by 
atropine: muscarinic toxins can also inhibit the binding of [ 3 H]-
prazosin, an antagonist of α-adrenergic receptors. But, binding of 
radioactive toxins to rat brain was completely abolished by atro-
pine, indicating that the toxins target only muscarinic receptors.  
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2    Principles of Receptor Autoradiography 

 Depending on the degree of anatomical resolution, autoradiogra-
phy can be divided into micro-autoradiography (using exposure 
and development of photographic emulsion visualized by micro-
scopic technique at cellular and subcellular level) and macro- 
autoradiography (using X-ray or autoradiography fi lms to produce 
radioisotope distribution images with resolution at macroscopic 
level) [ 6 ,  7 ]. The detection and visualization of radioligand tissue 
distribution throughout the whole body at the level of organs and 
organ systems is called whole-body macro-autoradiography [ 7 ]. 

 In general, there are two ways, how to detect the receptors 
with radioactive ligands. First is in vivo autoradiography when the 
receptors are labeled within intact living tissue by systemic or intra-
cerebral administration of radioligand and distribution of radiola-
beled receptors within the specimen is then determined ex vivo 
either by micro or macro-autoradiography [ 3 ,  7 ]. 

 The idea of in vivo labeling of receptors and their visualization 
gave rise to development of noninvasive in vivo imaging techniques 
such as positron emission tomography (PET) and single photon 
emission computed tomography scanning (SPECT, [ 3 ]). For detailed 
description of PET method see Chapter   10    . Second is in vitro auto-
radiography [ 17 ,  18 ], that uses slide-mounted tissue sections which 
are incubated with radioligand what is subject of this chapter. In vitro 
autoradiography offers several advantages over the in vivo autoradi-
ography. These includes reduced amounts of the radioligand, precise 
control of the radioligand binding conditions (incubation buffer, 
pH, incubation temperature and time, exact concentration of the 
radioligand, duration and number of washings to remove unbound 
radioligand), use of ligands that do not cross blood–brain barrier or 
are not metabolically stable, ability to perform competition assays 
with unlabeled ligands and saturation studies in addition of regional 
mapping of the ligand binding sites [ 3 ,  19 ]. 

 In principle, the receptor binding of radioactive substance 
in vitro autoradiography is not different from the radioligand bind-
ing to membranes or homogenates (see Chapter   3    ): The radiola-
beled compound specifi c to a given receptor binds to the receptor 
and then free radioligand is separated. 

 While receptor autoradiography can provide valuable informa-
tion about the distribution and density of receptor binding sites it 
does not evaluate their signaling capacity. In case of distinct G 
protein- coupled receptors (GPCRs) a specialized in vitro receptor 
autoradiography was developed to address this issue. While pre-
serving the high degree of anatomical resolution, [ 35 S]GTPγS 
binding autoradiography, also known as functional receptor 
 autoradiography, was developed [ 20 ]. This technique combines 
the advantages of classical in vitro receptor autoradiography and 
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[ 35 S]GTPγS binding assay on cell membranes to provide information 
about signaling capacity – functional state of GPCRs at high 
 anatomical resolution. The aim of receptor autoradiography is 
visualization and quantifi cation of the binding sites of a given 
receptor. By contrast functional autoradiography aims to visualize 
the downstream signaling event upon agonist stimulation. In detail, 
this method studies CNS distribution of [ 35 S]GTPγS binding 
under agonist stimulation in the presence of GDP (suppress basal 
binding—see [ 20 ] for details) and Mg 2+  (shifts the equilibrium 
towards the high-affi nity state of receptor). Specifi city of binding 
should be confi rmed by antagonizing effects of atropine (in case of 
MRs). Thus only those potentially active GPCRs (i.e., those recep-
tor-G protein complexes that are still able to function in tissue 
sections) are recruited and visualized in functional autoradiogra-
phy. For detailed description of this method, its advantages and 
limitations see [ 20 ]. 

 The basic principle of any autoradiography is creation of an image 
that specifi cally shows distribution of the radioligand binding within 
the specimen, the autoradiogram. The radioactive decay of radiola-
beled ligand that is bound to a protein or nucleic acid generates 
changes in detection media that can be autoradiography fi lm exposed 
directly to the radioactive decay, direct exposure with an intensifying 
screen [ 1 ,  21 ] and fl uorography exposure (fl uorography, that is not 
subject of this chapter) [ 17 ]. There are multiple methods how to 
detect radioactivity in situ: the fi lm autoradio graphy, the electronic 
autoradiography, and the biomaging/phosphor imaging. Based on 
the way how autoradiogram is acquired autoradiography can be 
divided into direct and indirect autoradiography. A typical example of 
direct autoradiography is contact fi lm autoradiography when ionizing 
radiation, that is emitted by the radioligand, is detected by autoradi-
ography fi lm to generate a latent image. Then the autoradiogram is 
developed by photographic processing of the fi lm. In indirect autora-
diography such as phosphor imaging or the use of trans-screens where 
the radioactive signal is fi rst converted into the light which is subse-
quently detected with phosphor imager or autoradiography fi lm to 
generate digitalized autoradiogram or latent image, respectively. 

 The isotopes usually used in autoradiography determination 
are listed in Table  1 .

   For further use we will focus on the in vitro autoradiography 
of receptors, with specifi c aim to describe in vitro autoradiography 
of muscarinic receptors. 

   There is a broad range of commercially available fi lms that can be 
used in autoradiography to detect directly or in conjunction with 
intensifying screens or trans-screens the radiation within the speci-
men (e.g., Kodak, Amersham (GE Healthcare)). The selection of 
autoradiography fi lm type depends on the radioisotope used in the 
assays, the way of exposure, importance of sensitivity, resolution 
and speed of detection [ 2 ,  21 ]. 

2.1  Film 
Autoradiography
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 Based on the type of exposure method, fi lm autoradiography 
can be divided into direct and indirect fi lm autoradiography. In direct 
exposure procedure, the radioactive specimen is directly apposed 
to autoradiography fi lm in light-tight autoradiography cassette. 
In indirect type of exposure such as trans-screen intensifying- screen 
exposure, the radiolabeled specimen is tightly apposed to a medium 
that converts ionizing radiation into the light emission that is then 
detected by the autoradiography fi lm. Converting ionizing radia-
tion to light greatly increases detection effi ciency [ 2 ,  21 ]. 

 A typical autoradiography fi lm is composed of a polyester sup-
port (clear or colored) that is coated either on one side or on both 
sides by emulsion of light-sensitive silver halide grains and gelatin. 
The emulsion layers are then protected by an anti-scratch layer. 
When the photographic emulsion is exposed to ionizing radiation 
the silver ions are converted into the silver atoms to produce a 
stable latent image. In subsequent fi lm processing these few silver 
atoms catalyze the reduction of the silver halide crystal to metallic 
silver to produce visible image of the radioisotope distribution 
within the specimen [ 2 ,  21 ]. 

 Single-coated autoradiography fi lms (e.g., Biomax MR) are 
optimized for detection of medium-energy radioisotopes (e.g., 
 14 C,  35 S, and  33 P) in direct exposure mode. When used with high- 
energy isotopes (e.g.,  125 I,  32 P) they provide maximum resolution. 
However, because of the anti-scratch protective layer, they are not 
suitable for detection of  3 H (what is the case of muscarinic receptor 
ligands) [ 1 ,  21 ].  3 H is a β-emitter with low energy, that has only 
limited permeability through the protective layer to expose the 
photographic emulsion. Therefore specialized fi lm lacking the 
overcoat layer and thus allowing direct contact of  3 H emission with 
photographic emulsion has to be used. Then, a special attention 

   Table 1  
  Radioligands of choice and their half-lives, specifi c activity (SA), maximal energy, tissue range, and decay   

 Radionuclide  Half-life 
 Maximal specifi c 
activity (Ci/mol) 

 Decay 
mode 

 Energy 
(max.) (MeV) 

 Max. tissue 
range  Application 

  14 C  5730 years  6.7 × 10 1   β  0.156  0.008  1, 2, 3, 4, 5, 6 

  3 H  12.43 years  2.9 × 10 4   β  0.0186  0.301  4, 5 

  35 S  87.4 days  1.5 × 10 6   β  0.167  0.042  1, 2, 3, 4, 5, 6 

  32 P  14.3 days  9.2 × 10 6   β  1.709  2.750  1, 2, 3 

  125 I  60.0 days  2.2 × 10 6   γ  0.035  0.019  5, 6 

  131 I  8.04 days  1.6 × 10 7   β  0.364  2.300  5 

  Notes (explanation of Application legend): 1: Southern blots, 2: Northern blots, 3: DNA sequencing, 4: Protein syn-
thesis, 5: In situ hybridization, 6: Western blots 
 Adapted from refs. [ 17 ,  2 ,  19 ]  
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has to be paid to handling these fi lms to avoid their damage [ 19 ,  21 ]. 
The direct exposure is done at room temperature (RT) [ 21 ]. 

 Alternatively,  3 H can be detected using trans-screen, intensify-
ing screen system. In this type of exposure, the radioactive speci-
men is apposed to the surface of phosphor layer coated on a thin 
clear plastic base. The phosphor layer captures the beta particles 
and converts their energy to photons. Photons are then directed to 
the autoradiography fi lm placed between the phosphor layer and 
refl ecting layer. Films that are spectrally matched to the trans- 
screen are used. The optimum exposure temperature range (deter-
mined by experience) is −70 to −80 °C [ 21 ]. In general, detection 
of emitted light is signifi cantly improved by reducing the exposure 
temperature. The latent image center forming in the silver grain 
becomes more stable, thus reducing latent-image fading (signal 
loss). The detection sensitivity increases because the latent image 
accumulates with additional light exposure. 

 The conversion of ionizing radiation to light emissions is also 
the principle of intensifying screen exposure. Intensifying screens 
greatly increase the sensitivity and speed of detection. In this type 
of exposure, the radiolabeled specimen is placed in direct contact 
with one side of double-coated autoradiography fi lm and intensify-
ing screen is apposed to the other side of the fi lm. The radioisotope 
must have suffi cient energy (e.g.,  32 P,  125 I) to pass through the 
auto radiography fi lm before reaching the intensifying phosphors 
in the screen. The ionizing radiation (γ-rays and high energy 
β-particles) is then converted by the screen into the light emission 
that is detected by the fi lm. The optimum exposure temperature 
range is −70 to −100 °C [ 1 ,  21 ]. 

 Impregnation of the radiolabeled specimen with a scintillator 
to convert ionizing radiation to light emission and thus enhance 
detection effi ciency by autoradiography fi lm is called fl uorography. 
Fluorographic exposure is used for detection of low- and medium- 
energy radioisotopes such as  3 H,  14 C, and  35 S. The optimum 
 exposure temperature range is −70 to −100 °C [ 1 ,  2 ,  21 ]. 

 It is necessary to perform three steps when detecting radio-
ligand distribution within the specimen using fi lm autoradiogra-
phy: direct or indirect exposure of radiolabeled specimen to the 
autoradiography fi lm, fi lm development at the end of exposure 
and evaluation of autoradiograms. The length of exposure for a 
given radioligand is subject to preliminary experiments. This time 
depends on the type of radioisotope and radioactivity amount 
applied to specimen [ 18 ,  21 ]. It is necessary to expose sensitive 
fi lm to calibrated amount of radioactivity. If the autoradiography 
resolution is comparable to that of the original chromatogram, the 
exposition is properly done [ 17 ]. 

 Autoradiograms obtained by fi lm autoradiography are analyzed 
by fi lm densitometry using computer-assisted densitometric sys-
tems. Quantifi cation of radioactivity amount bound to the protein 
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(nucleic acid) requires comparison of the measured optical density 
to a radiation response curve generated using standards on the 
same media (fi lm, or storage phosphor screen as mentioned below) 
[ 17 ,  19 ]. Standards can be purchased as radiolabeled plastic poly-
mers. Alternatively, it is possible to prepare standards by labeling 
tissue paste homogenates or plastics with defi ned amounts of 
 radioisotope. The apparent disadvantage of autoradiography fi lms 
is their narrow linear dynamic range of response. The relationship 
between incident-radiation exposure and optical density is however 
linear only over limited range. Eventually the media can be satu-
rated and will not be more sensitive to additional exposure. In such 
cases, the analysis of autoradiograms is not possible. As a result, 
multiple exposures of the same specimen are often required [ 19 ] to 
determine optimal exposure time. Exposure time depends on the 
type of isotope and amount of radioactivity applied to the plate. 
In case of fi lm autoradiography, both the narrow linear dynamic 
range (from 300 to 1) of the method (when using image analysis) 
and the lack of sample preservation (in zonal analysis) constitute a 
defi nite disadvantage. The linear dynamic ranges of the phosphor 
image technique are wider (by at least 10 5 ) than is needed for detec-
tion in fi lm autoradiography. 

 Film development can be made automatically using fully 
 automated benchtop fi lm processors or manually in tanks and trays 
using fi lm developers and fi xators. In principle, developing, rins-
ing, fi xing, washing, and drying are fi ve steps of this process, and 
the freshness of chemicals is a critical point that can affect the qual-
ity of results. For details on manual processing of autoradiography 
fi lms please see ref.  21 .  

   Storage phosphor screen imaging technology was introduced by 
Fuji Company in 1980s of the twentieth century. Now, after more 
than 30 years, other suppliers of this material are on the market 
(e.g., GE Healthcare, Perkin Elmer, Bio-Rad). The exposition 
time in phosphor imaging is approximately 1 week, while in classi-
cal fi lm autoradiography it is as long as several weeks. This method 
is similar to fi lm autoradiography but has some advantages, mainly 
shortening of exposition time (in comparison to working with tri-
tium labeled compounds). In some papers, this type of autoradiog-
raphy is called “fi lmless autoradiography” referring to usage of 
other medium than fi lm. 

 Phosphor imaging technique uses storage phosphor screens to 
detect and store energy of ionizing radiation in a stable state to 
generate latent images of the distribution of radioisotopes within 
the specimen. Phosphor imaging screens consists of support, photo-
stimulatable phosphor layer (crystals of BaFBr:Eu 2+ ) and protective 
layer. These crystals are able to store the energy in crystal vacancies 
when irradiated. Then the luminescence occurs, that is evoked 
by change of Eu 2+  ions into Eu 3+  that leads to electron release. 

2.2  Bioimaging/
Phosphor Imaging
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Electrons are trapped in the Br vacancies and color centers are 
formed [ 17 ]. Screens with protective layer are suitable for detection 
of radioisotopes such as  32 P,  125 I,  35 S,  33 P, and  14 C, but not for 
 3 H. Similarly to autoradiography fi lm,  3 H signal has to be directly 
accessible to photo-sensitive phosphor layer and imaging plates 
constructed without protective coat has to be used. 

 For exposure with phosphor imaging screens, the radioactive 
specimen is directly apposed to the phosphor screen in light-tight 
autoradiography cassette. After exposure, latent images are devel-
oped and digitized using phosphor imager. The screen is removed 
from autoradiography cassette under safe-light conditions and 
placed into the phosphor imager for reading. During scanning the 
phosphors are activated by a laser beam (633 nm) that leads to the 
release of stored energy as luminescence. The intensity of released 
luminescence is proportional to the amount of radioactivity in the 
specimen. The luminescence is recorded and stored in relation to 
the position of the laser beam to generate images that are then 
displayed on video monitor. The stored images are subsequently 
analyzed with an appropriate software [ 1 ]. 

 Phosphor imaging technique offers several advantages over the 
fi lm autoradiography. These include a linear dynamic range over 
fi ve orders of magnitude (1.5 orders of magnitude in case of fi lm), 
higher sensitivity (up to 100 times, depending on sample type and 
radioisotope used), and reduced exposure times (up to one-tenth, 
depending on sample type and radioisotope used) [ 1 ,  22 ]. The 
high sensitivity and wide linear dynamic range allows to detect and 
analyze weak and strong signals simultaneously. The results come 
out already in digitized form, which facilitates analysis of autora-
diograms. Unlike autoradiography fi lm, storage phosphor screens 
with protective layer can be used repeatedly if handled carefully. 
Unfortunately this is not the case for  3 H sensitive screens, which 
lack the protective layer and can be easily contaminated or dam-
aged by exposure to the specimen. However, when  3 H sensitive 
screens are used with thin tissue sections mounted on glass-slides, 
the surface of the screen that has not been in contact with radiola-
beled tissue section can be reused. 

 The most but not all of stored information is released upon 
scanning with the phosphor imager. For further use of the screen, 
the remaining signal must be erased with bright visible light (there 
are commercially available erasers). This is an important step that 
cannot be omitted as not properly erased screen retains images 
from previous exposure that can interfere with the image actually 
analyzed.  

   This technique differs from previously mentioned one in the 
absence of storage medium. The radioactivity is measured directly 
with imaging detectors. Berthold’s digital autoradiograph and 
Instant-imager (Canberra-Packard) are used for these purposes. 

2.3  Electronic 
Autoradiography
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 The principle of digital autoradiograph is based on measuring 
position and intensity of two-dimensional distributions of ionizing 
radiation on the surface (thin-layer chromatography plate) [ 17 ]. 

 Instant imager consists of two sections [ 17 ], the microchannel 
array plate and a multiwire chamber and is continuously fl owed by 
gas (argon, CO 2 , and isobutene). The principle is based on gas 
ionization in one of the microchannels by beta-particle which is 
emitted from a source of radioactivity. This leads to the production 
of electrons, that are accelerated by the high electric fi eld in the 
microchannel. This process leads to the further gas ionization and 
production of electron cloud, that migrates up an electric fi eld gra-
dient into the multiwire chamber.   

3    Advantages and Disadvantages of Method 

 The principle of ligand binding to receptors is same as in radio-
ligand binding studies. But, there are some advantages of autora-
diography method in comparison to binding studies. While 
radioligand binding studies are restricted to the brain areas that 
can be precisely dissected, in vitro autoradiography allows explore 
radioligand binding to MRs in very well-defi ned brain regions. In 
case of smaller brain areas or regions with lower MR density it is 
necessary to pool tissue from more animals. In addition, binding in 
homogenates/membrane fractions is limited by the density of MR 
in the sample. By contrast, in vitro autoradiography has high sen-
sitivity allowing explore brain regions even with few MR. The use 
of very thin tissue sections in vitro autoradiography provides sev-
eral advantages over the large tissue blocks used in binding studies 
in homogenates/membrane fractions. The brain sectioning allows 
analyzing MR density in virtually all brain areas of a single animal 
greatly reducing the number of experimental animals. Moreover, 
sectioning of a single brain generates suffi cient number of tissue 
sections to explore the binding of multiple radioligands in a 
 particular brain area of the same animal. This further reduces 
the number of experimental animals and allows comparing the 
effect of treatment on multiple targets (receptors, transporters) in 
a  single animal. 

 The important question, also discussed in the chapter on 
Radioligand binding, is the selectivity of radioligand used in the 
experiments. A general problem in identifi cation of muscarinic 
receptor subtypes present in specifi c central nervous system area is 
the lack of highly subtype-selective muscarinic antagonists. The 
muscarinic receptor subtypes affi nities for pirenzepine and AFDX- 
384 are shown in Table  2 . It can be deduced from this table that 
both pirenzepine and AFDX-384 has high affi nity not only for M 1 , 
M 2  muscarinic receptors, respectively, but also for M 4  muscarinic 
receptor subtype. In radioligand binding studies, it is therefore 
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necessary to use a combination of various antagonists. However, 
for autoradiography detection this approach is not suitable because 
of evaluation limitations of such changed “binding.” Thus, the 
present protocols for M 1  and M 2  muscarinic receptor subtypes 
identifi cation should be considered as method for detection of M 1  
(or M 2 ) and also small portion of M 4  muscarinic receptors. 
Unfortunately, only few papers report these binding sites as M 1 /
M 4  muscarinic receptors (e.g., [ 23 ,  24 ]).

   Historically, tritiated pirenzepine was used as ligand that binds to 
muscarinic receptors with distinct binding in specifi c brain areas [ 25 ]. 
Further, distinct distribution was found in the central nervous  system. 
[ 3 H]-QNB and [ 3 H]-pirenzepine both label regions of the cerebral 
cortex, hippocampus, striatum, and dorsal horn of the spinal cord, 
while sites in the cerebellum, nucleus tractus solitarius, facial nucleus, 
and ventral horn of the spinal cord are labeled with [ 3 H]-QNB 
and not by [ 3 H]-pirenzepine [ 26 ]. These observations indicated 
binding to different subtypes of muscarinic receptors. This was fur-
ther expanded to defi nition of binding sites as M 1  muscarinic recep-
tors [ 27 ] and in the middle of 1980s pirenzepine binding sites were 
considered as M 1  muscarinic receptors [ 28 ,  29 ]. On the other hand, 
AFDX-384 was from the beginning considered as M 2  muscarinic 
receptor specifi c ligand [ 30 ] and some authors became aware of lim-
ited selectivity (e.g., [ 31 ]). In many cases, however, [ 3 H]-AFDX-384 
and [ 3 H]-pirenzepine are considered as selective ligands [ 32 ,  33 ].  

4    Equipment, Materials, and Setup 

 Before the start of work it is necessary to prepare all equipment, 
surgical instruments, buffers, and all other things that are essential 
for the method. Appropriate preparation is a basic condition for 
successful work. Some details about items listed below are dis-
cussed in other sections of this chapter. 

   Table 2  
  Pirenzepine and AFDX-384 affi nity constants (log affi nity or pKi values) 
for muscarinic receptor subtypes   

 Antagonist 

 Receptor subtype 

 M 1   M 2   M 3   M 4   M 5  

 Pirenzepine  7.8–8.5  6.3–6.7  6.7–7.1  7.1–8.1  6.2–7.1 

 AF-DX 384  7.3–7.5  8.2–9.0  7.2–7.8  8.0–8.7  6.3 

  Data were obtained from ref. [ 35 ]  
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 The items are as follows: 
 Items for tissue dissection and preparation of glass slide- 

mounted tissue sections:

    1.    Target tissue (mice or rat brain). For tissue preparation see 
Section  5 .   

   2.    Surgical instruments (e.g., tweezers, forceps, scissors).   
   3.    Gelatine-coated standard microscope glass slides (25 × 5 mm) 

with frosted ends allowing marking of individual slides or ready 
to use glass slides treated by manufacturer to attract and fi rmly 
bind frozen tissue sections without additional coating of the 
glass-slide surface (e.g., Superfrost® Plus glass slides).   

   4.    Pencil (for labeling the glass slides).   
   5.    Paintbrush (fl at or round with small diameter, for tissue 

manipulation).   
   6.    Parafi lm.   
   7.    Dry ice (better supplied as powdered dry ice).   
   8.    Polystyrene box (for freezing the freshly dissected tissue).   
   9.    Cryostat operating between −10 and −25 °C (e.g., Leica 

CM3050S).   
   10.    Tissue glue matrix (e.g., Tissue OCT from Labonord).   
   11.    Slide boxes.   
   12.    Desiccant (silica gel with an indicator of moisture content).   
   13.    Isopentane.   
   14.    Brain atlas (e.g., very useful is Paxinos’ atlas [ 34 ]).     

 Items for preparation of gelatin-coated microscope glass slides:

    15.    Gelatin.   
   16.    Chromium(III) potassium sulfate dodecahydrate (KCr(SO 4 )·

12H 2 O.   
   17.    Distilled water.   
   18.    Paper fi lter.   
   19.    Glass funnel.   
   20.    Slide boxes.   
   21.    Desiccant.     

 Items for specifi c labeling of MR in brain sections:

    22.    Liquid scintillation counter (e.g., Beckman Coulter).   
   23.    Scintillation vials.   
   24.    Scintillation cocktail (e.g., GE Healthcare Life Sciences or 

homemade (see below)).   
   25.    Pieces of glass fi ber fi lter paper.   
   26.    Hair dryer operating at room temperature.   
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   27.    Slide staining set (staining dishes, slide holder).   
   28.    Drain rack.   
   29.    Polystyrene box.   
   30.    Crushed ice.   
   31.    Distilled water.   
   32.    50 mM sodium/potassium phosphate buffer, pH = 7.4.   
   33.    Atropine sulfate.   
   34.    Radioligands ([ 3 H]-QNB and [ 3 H]-NMS, [ 3 H]-pirenzepine, 

and [ 3 H]-AFDX-384).     

 Items for preparation of liquid scintillation cocktail:

    35.    Naphthalene.   
   36.    2,5-Diphenyloxazole (PPO).   
   37.    1,4-Bis(5-phenyl-2-oxazolyl)benzene (POPOP).   
   38.    Methanol.   
   39.    Ethylene glycol.   
   40.    1,4-Dioxane.     

 Items for receptor binding evaluation:

    41.     3 H sensitive storage phosphor screen (e.g., storage phosphor 
screen BAS IP-TR).   

   42.    Phosphor imager (e.g., Typhoon FLA7000 biomolecular 
imager).   

   43.    PC with WinXP or Win7 for results evaluation using specifi c 
software.   

   44.    Computer-assisted densitometric system (e.g., MCID).   
   45.    Suitable tritium standards on glass slides (e.g., American 

Radiolabeled Chemicals).   
   46.    Light-tight autoradiography exposure cassette (e.g., Carestream 

Kodak Biomax).   
   47.    Cartridge paper.   
   48.    Double-sided tape.      

5     Procedures 

 Here we will provide protocols for muscarinic receptors determina-
tion using four radioligands: unspecifi c [ 3 H]-QNB (see Fig.  1 ) and 
[ 3 H]-NMS (see Fig.  2 ), M 1  specifi c [ 3 H]-pirenzepine (see Fig.  3 ) 
and M 2  specifi c [ 3 H]-AFDX-384 (see Fig.  4 ). In our laboratory we 
use storage phosphor screen imaging technology and thus this 
technique is described further.
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  Fig. 1    Illustrative autoradiograms of [ 3 H]-QNB binding in coronal brain sections in wild type mice.  Aca  anterior 
commissure, anterior part,  cc  corpus callosum,  CPu  caudate putamen,  Cx  cortex,  Hipp  hippocampus,  Hth  
hypothalamus,  OT  olfactory tubercle,  Th  thalamus       

  Fig. 2    Illustrative autoradiograms of [ 3 H]-NMS binding in coronal brain sections in wild type mice.  Aca  anterior 
commissure, anterior part,  cc  corpus callosum,  CPu  caudate putamen,  Cx  cortex,  Hipp  hippocampus,  Hth  
hypothalamus,  OT  olfactory tubercle,  Th  thalamus       

  Fig. 3    Illustrative autoradiograms of [ 3 H]-pirenzepine binding in coronal brain sections in wild type mice. Note 
the barely visible labeling in Th and Hth, brain areas in which M 1  are practically absent.  Aca  anterior commis-
sure, anterior part,  cc  corpus callosum,  CPu  caudate putamen,  Cx  cortex,  Hipp  hippocampus,  Hth  hypothala-
mus,  OT  olfactory tubercle,  Th  thalamus       

 

 

 

Autoradiography Assessment of Muscarinic Receptors in the Central Nervous System



172

      In vitro autoradiography of brain muscarinic receptors (MR) is 
a powerful tool to assess the distribution and MR changes in a 
variety of experimental models (drug treatment, genetic manipula-
tions, ontogenetic studies) at a high degree of anatomical resolu-
tion and reproducibility of results. 

 Previously the apparent disadvantage of in vitro autoradio-
graphy of MR using [ 3 H]-labeled compounds and standard 
[ 3 H]-sensitive autoradiography fi lms was the time of exposure of 
radiolabeled sections to the fi lms to detect the bound radioactivity 
and generate autoradiogram, which could take as long as several 
weeks. Nowadays, the use of phosphor imaging techniques over-
comes this issue and autoradiography of MR can be completed 
within 1 week. 

 Similarly to in vitro autoradiography of other receptors, in vitro 
autoradiography of MR consists of three major steps.

    1.    Tissue processing and preparation of glass slide-mounted  tissue 
sections.   

   2.    Preincubation, incubation of sections with appropriate radioli-
gand and washing.   

   3.    Detection, visualization and analysis of autoradiographic signal.     

       1.    Sacrifi ce experimental animal according to the regulations con-
cerning the handle and use of laboratory animals.   

   2.    Rapidly remove the brain from the skull and immediately 
freeze the brain in isopenthane cooled to −30 °C. Alternatively 
put the brain on the piece of parafi lm and place it on powdered 
dry ice in a closed polystyrene box. The rapid processing 
of fresh tissue prevents or minimizes the postmortem loss of 
receptor-binding sites.   

5.1  Tissue 
Processing 
and Preparation 
of Glass Slide- 
Mounted Tissue 
Sections

  Fig. 4    Illustrative autoradiograms of [ 3 H]-AFDX-384 binding in coronal brain sections in wild type mice.  Aca  
anterior commissure, anterior part,  cc  corpus callosum,  CPu  caudate putamen,  Cx  cortex,  Hipp  hippocampus, 
 Hth  hypothalamus,  OT  olfactory tubercle,  Th  thalamus       

 

Vladimir Farar and Jaromir Myslivecek



173

   3.    If the brains are not directly used for cryosectioning, store the 
brains at −80 °C. Before cryosectioning of brains stored at 
−80 °C, transfer brains from −80 to −20 °C for 3 h.   

   4.    Attach the brain to the specimen disc that holds the specimen 
during sectioning (cryostat chuck).   

   5.    Cover the cryostat chuck with a layer of tissue glue matrix 
and place it into the quick freeze shelf inside the cryostat 
chamber.   

   6.    If the cryostat is not equipped with system that secures rapid 
freezing of the disc, perform the mounting of the brain to the 
chuck inset into the powdered dry ice.   

   7.    Choose the right orientation of the brain for sectioning of 
 coronal, sagittal or axial brain slices. Always use steel tweezers 
cooled to the cryostat temperature to manipulate with brain.   

   8.    Once the glue begins to freeze immerse the brain into the glue 
perpendicular to the chuck. Within few seconds the glue matrix 
is frozen. Subsequently you can add an additional layer of glue 
to secure the fi rm fi xation of the brain during the sectioning.   

   9.    Insert the specimen disc with fi xed brain into the specimen 
head. The optimal temperature of the cutting is usually between 
−15 and −20 °C. The temperature within cryostat chamber 
and temperature of specimen strongly infl uences the quality of 
sections. The appropriate temperature should be set in prelimi-
nary experiments.   

   10.    Trim the brain to the anatomical level corresponding to your 
brain area of interest. Set the appropriate thickness of sections 
and sectioning speed (in case of motorized devices). When sec-
tioning manually, rotate the hand wheel evenly and at uniform 
speed. It is recommended to discard fi rst 2–3 sections before 
tissue section collecting. The most common section thickness 
is 16 μm. Thinner sections can be cut to collect more sections 
through a desired brain region.   

   11.    Cut the brain section of appropriate thickness. The tissue sec-
tion will remain on the knife or knife holder. Use paintbrush to 
manipulate with section and make it accessible to the glass 
slide.   

   12.    Thaw and mount the section at the bottom of the glass slide. 
Place the glass slide of RT over the section as closely as possi-
ble. The section will stick to the glass slide. Dry the section at 
room temperature. Store the dried sections in the slide boxes 
with desiccant at −80 °C.     

 Typically four sections are collected on one glass slide. To incre-
ase the homogeneity of samples collect every fi fth or tenth section on 
an individual slide (depending on the size of brain area). For brain 
areas that span several hundred micrometers through the brain (e.g., 
striatum, dorsal hippocampus) collect brain sections on a set of ten 
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slides. During the collecting sections keep the slides at RT. Thaw 
mount the fi rst section on the fi rst slide, the second section on the 
second slide and the tenth section on the last slide. Collect the next 
ten sections in the same way (thaw mount the 11th section on the 
fi rst slide, 12th on the second slide, etc.). Collect another two sets of 
sections. Finally, at individual slide you will have four sections while 
each section will be 160 μm distant from the previous one. 

  Recipe 1. Preparation of gelatin-coated microscope glass slides 
    1.    Dissolve 10 g of gelatin in 1 L of distilled water at 60 °C.   
   2.    Dissolve KCr(SO 4 )·12H 2 O in gelatin solution chilled to RT.   
   3.    Filter the solution through the paper fi lter.   
   4.    Store at RT in a dark place.   
   5.    Dip slides into the gelatin solution for 5 min.   
   6.    Dry slides for 24 h at 37 °C in the presence of desiccant   
   7.    Store slides in slide boxes containing desiccant in a dry place.    

     Each assay consists of four    major steps:

    1.    Pre-incubation of tissue sections to remove endogenous ligands.   
   2.    Incubation of tissue sections in incubation medium compris-

ing the particular radioligand.   
   3.    Washing of tissue sections to remove unbound radioligand 

from tissue.   
   4.    Rapid drying of labeled sections to prevent diffusion of radio-

ligand bound to receptors.    

  Steps 1–3 are described in detail below:

    1.    Prepare fi ve staining dishes. Fill one with maximal volume 
of pre-incubation medium, the second one with incubation 
medium containing radioligand at appropriate concentration 
at suitable volume. The volume of incubation medium is cho-
sen to following two conditions: First, it has to be suffi cient to 
cover all tissue sections. Second, the concentration of radioli-
gand in incubation medium should be only marginally affected 
by binding. This can be experimentally addressed by sampling 
the incubation medium before, during and after incubation 
and determining concentration of free radioligand by liquid 
scintillation counting. Concentration of free radioligand should 
not differ among determinations.   

   2.    Shortly before the end of incubation period fi ll two dishes with 
ice-cold washing medium and one with ice-cold water. Place 
the dishes containing ice-cold solutions into the ice in polysty-
rene box to maintain their temperature.     

5.2  Specifi c Labeling 
of MR in Brain 
Sections
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  Recipe 2. Preparation of liquid scintillation cocktail 
    1.    Add 120 g of naphthalene, 8 g of PPO and 0.4 g of POPOP 

to a beaker.   
   2.    Add 500 ml of dioxane, 200 ml of methanol and 40 ml of 

 ethylene glycol to a beaker.   
   3.    Stir until naphthalene dissolves (ca. 30 min).   
   4.    Add 1260 ml of dioxane and stir for 2 h.    

  Detailed protocols for above mentioned radioligands are in 
further sub-sections. 

       1.    Remove the slide-mounted tissue sections from the freezer and 
allow them to thaw and dry for 20 min at RT. Transfer the 
slides into the slide holder.   

   2.    Pre-incubate dried sections for 30 min in 50 mM sodium/
potassium phosphate buffer (pH 7.4) at RT (pre-incubation 
medium).   

   3.    Transfer the sections into the fresh 50 mM sodium/potassium 
phosphate buffer (pH 7.4) containing 2 nM [ 3 H]-QNB (incu-
bation medium) and incubate for 2 h at RT.   

   4.    To determine nonspecifi c binding of [ 3 H]-QNB, label adjacent 
sections with incubation medium supplemented with 10 μM 
atropine (fi nal concentration) sulfate in the medium.   

   5.    Wash the sections for 5 min in ice-cold 50 mM sodium/ 
potassium phosphate buffer (pH 7.4).   

   6.    Wash the sections second time for 5 min in fresh ice-cold 
50 mM sodium/potassium phosphate buffer (pH 7.4).   

   7.    Dip the slides for 2 s in ice-cold distilled water.   
   8.    Immediately place the slides upright in the drain rack with tis-

sue sections on the top and dry sections with gentle stream of 
room temperature air.   

   9.    Store the dried section in slide boxes containing desiccant.      

       1.    Remove the slide-mounted tissue sections from the freezer and 
allow them to thaw and dry for 20 min at RT. Transfer the 
slides into the slide holder.   

   2.    Pre-incubate dried sections for 30 min in 50 mM sodium/
potassium phosphate buffer (pH 7.4) at RT.   

   3.    Transfer the sections into the fresh 50 mM sodium/potassium 
phosphate buffer (pH 7.4) containing 2.5 nM [ 3 H]-NMS and 
incubate for 1 h at RT.   

   4.    To determine nonspecifi c binding of [ 3 H]-NMS, label adjacent 
sections with incubation medium supplemented with 10 μM 
atropine (fi nal concentration) in the medium.   

5.2.1  Labeling of MR 
with [ 3 H]-QNB

5.2.2  Labeling of MR 
with [ 3 H]-NMS
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   5.    Wash the sections for 5 min in ice-cold 50 mM sodium/ 
potassium phosphate buffer (pH 7.4).   

   6.    Wash the sections second time for 5 min in fresh ice-cold 
50 mM sodium/potassium phosphate buffer (pH 7.4).   

   7.    Dip the slides for 2 s in ice-cold water.   
   8.    Immediately place the slides upright in the drain rack with 

 tissue sections on the top and dry sections with gentle stream 
of room temperature air.   

   9.    Store the dried section in slide boxes containing desiccant.      

       1.    Remove the slide-mounted tissue sections from the freezer and 
allow them to thaw and dry for 20 min at RT. Transfer the 
slides into the slide holder.   

   2.    Pre-incubate dried sections for 30 min in 50 mM sodium/
potassium phosphate buffer (pH 7.4) at RT.   

   3.    Transfer the sections into the fresh 50 mM sodium/potassium 
phosphate buffer (pH 7.4) containing 5 nM [ 3 H]-pirenzepine 
and incubate for 1 h at RT.   

   4.    To determine nonspecifi c binding of [ 3 H]-pirenzepine, label 
adjacent sections with incubation medium supplemented with 
10 μM atropine sulfate (fi nal concentration) in the medium.   

   5.    Wash the sections for 5 min in ice-cold 50 mM sodium/ 
potassium phosphate buffer (pH 7.4).   

   6.    Wash the sections second time for 5 min in fresh ice-cold 
50 mM sodium/potassium phosphate buffer (pH 7.4).   

   7.    Dip the slides for 2 s in ice-cold distilled water.   
   8.    Immediately place the slides upright in the drain rack with 

 tissue sections on the top and dry sections with gentle stream 
of room temperature air.   

   9.    Store the dried section in slide boxes containing desiccant.      

       1.    Remove the slide-mounted tissue sections from the freezer and 
allow them to thaw and dry for 20 min at RT. Transfer the 
slides into the slide holder.   

   2.    Pre-incubate dried sections for 30 min in 50 mM sodium/
potassium phosphate buffer (pH 7.4) at RT.   

   3.    Transfer the sections into the fresh 50 mM sodium/potassium 
phosphate buffer (pH = 7.4) containing 2 nM [ 3 H]-AFDX-384 
and incubate for 1 h at RT.   

   4.    To determine nonspecifi c binding of [ 3 H]-AFDX-384, label 
adjacent sections with incubation medium supplemented with 
10 μM atropine sulfate (fi nal concentration) in the medium.   

   5.    Wash the sections for 5 min in ice-cold 50 mM sodium/potas-
sium phosphate buffer (pH 7.4).   

5.2.3  Labeling of MR 
with [ 3 H]-pirenzepine

5.2.4  Labeling of MR 
with [ 3 H]-AFDX-384
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   6.    Wash the sections second time for 5 min in fresh ice-cold 
50 mM sodium/potassium phosphate buffer (pH 7.4).   

   7.    Dip the slides for 2 s in ice-cold distilled water.   
   8.    Immediately place the slides upright in the drain rack with 

 tissue sections on the top and dry sections with gentle stream 
of room temperature air.   

   9.    Store the dried section in slide boxes containing desiccant.       

       1.    Cut the cartridge paper to fi t the autoradiography cassette.   
   2.    Organize the slides and standard in a logical manner. Use 

double- sided tape to attach slides and standard to cartridge 
paper. In case that the size of microscope slide layer does not 
match that of the storage phosphor screen use additional 
 microscope slides for covering of the free surface of the paper 
sheet to secure uniform contact of the screen.   

   3.    Place the sheet with fi xed slides into autoradiography cassette.   
   4.    Appose the storage phosphor screen to the labeled sections 

and standard.   
   5.    Close autoradiography cassette and note the date and time.   
   6.    Expose storage phosphor screen for the predetermined period 

of time at RT.   
   7.    After exposure, dim the lights and remove storage phosphor 

screen from the autoradiography cassette.   
   8.    Scan the storage phosphor screen in a phosphor imager.   
   9.    Save the digitized autoradiograms for further analysis.      

   Proper analysis of autoradiograms requires reliable anatomical iden-
tifi cation of brain regions of interest. This can be achieved in several 
complementary ways. In all cases, a detailed brain atlas is indispens-
able tool for identifi cation of regional anatomy. The use of brain atlas 
by Franklin and Paxinos [ 34 ] is very useful, as it provides brain sec-
tions stained for acetylcholinesterase, which shows distribution pat-
tern similar to that of MR. Autoradiograms in itself can be used to 
directly identify distinct brain regions. The heterogeneous distri-
bution of MR binding sites within the tissue sections and thus signal 
intensity within corresponding autoradiogram can provide readily 
observable details and contrasts to directly identify many brain 
regions. As can be seen in Fig.  1  the white matter is virtually devoid 
of labeling and can be clearly distinguished from surrounding grey 
matter which shows different levels of labeling. Accordingly, the 
white matter structures and tracts such as internal capsule, corpus 
callosum, anterior commissure, fornix, and others can be clearly rec-
ognized. In addition there are signifi cant differences in MR density 
between individual brain regions. For instance the density of MR in 
striatum is about twofold higher than that in cortex. 

5.3  Generation 
of Autoradiograms

5.4  Analysis 
of Autoradiograms
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 The anatomical identifi cation of brain regions can be facilitated 
by conventional histology techniques such as Nissl staining. Either 
those radiolabeled and used for exposure or adjacent tissue sec-
tions can be processed for Nissl staining [ 19 ]. 

 There is specialized software for analysis of digitized autora-
diograms generated by phosphor imagers (e.g., MCID). The basic 
procedure for quantifying digitized autoradiograms with MCID 
Analysis is as follows:

    1.    Load the autoradiographic image fi le.   
   2.    Establish a density calibration.   
   3.    Use any Sample tool to gather data from tissue section(s).   
   4.    Repeat steps 1–3 for all remaining image fi les.   
   5.    Summarize and save the data.       

6    Conclusions 

 In vitro autoradiography of MR is widely recognized method in 
neuroscience and neuropharmacology that can bring out unique 
information about the regulation of MR abundance under physi-
ological as well as pathophysiological conditions (drug treatment, 
genetic manipulations, stress conditions, physiological processes 
like learning and memory and many others) at a high degree 
of anatomical resolution and reproducibility of results. The use of 
radioligand membrane binding techniques has been useful tool to 
determine pharmacological properties of wide range of receptors 
in the peripheral tissues as well as in the brain and is the method of 
choice for kinetic and competition assays. The apparent limitations 
of these techniques is however the resolution at the anatomical 
level. In particular, mapping the distribution of receptor binding 
sites in discrete functionally and/or anatomically defi ned regions 
of the brain is not possible by membrane binding techniques. 
While the use of radioligand membrane binding techniques is 
restricted to larger brain areas that can be precisely dissected, 
in vitro autoradiography allows exploring radioligand binding to 
MR in very discrete brain regions. In vitro autoradiography has 
high sensitivity allowing to explore brain regions even with few 
MR. The brain cryosectioning allows analyzing MR density in vir-
tually all brain areas of a single animal greatly reducing the number 
of experimental animals. Moreover, cryosectioning of a single brain 
generates suffi cient numbers of tissue sections to explore the bind-
ing sites of additional radioligands in a particular brain area of the 
same animal. Alternate sections collected during cryosectioning 
can be also processed in multiple assays such as in situ hybridiza-
tion, histochemistry and functional autoradiography. This further 
reduces the number of experimental animals and allows comparing 
the effect of treatment on multiple targets (receptors, coupling of 
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receptors, transportes, mRNA, enzymes) in a single animal. There 
are multiple methods for detection and visualization of autoradio-
graphic signal including sensitive media (fi lm, screen) and media- 
free (electronic) autoradiography. As recommended method for 
this purposes, phosphor imaging with [ 3 H]-QNB and [ 3 H]-NMS, 
[ 3 H]-pirenzepine, and [ 3 H]-AFDX-384 is discussed in this chapter.     
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Chapter 10

Imaging of Muscarinic Receptors in the Central  
Nervous System

Hideo Tsukada, Shingo Nishiyama, and Kazuhiro Takahashi

Abstract

For the quantitative imaging of muscarinic acetylcholine receptors (mAChR), we developed novel PET 
probes, (+)N-11C-methyl-3-piperidyl benzilate (11C-(+)3-MPB), and its N-alkyl substitute analogs, and 
evaluated them in the brains of conscious monkeys (Macaca mulatta) using high-resolution positron emis-
sion tomography (PET). Although (+)3-MPB had relatively poor selectivity to the subtypes of mAChR, 
the regional cortical distribution of 11C-(+)3-MPB was found to be consistent with mAChR density in the 
living monkey brain as reported in vitro. In contrast, its enantiomeric analog 11C-(−)3-MPB provided 
homogeneous distribution with no significant specific binding throughout the whole brain. The N-alkyl 
substitution of alkyl moiety from methyl (11C-(+)3-MPB) to ethyl (11C-(+)3-EPB) and propyl (11C-(+)3- 
PPB) resulted in lower affinities to mAChR in vitro, the faster kinetics in the living brain, and greater 
sensitivity to increased endogenous ACh level, induced by acetylcholinesterase (AChE) inhibitor, than 
11C-(+)3-MPB. Administration of scopolamine, a mAChR antagonist, reduced 11C-(+)3-MPB binding to 
mAChR in all regions except the cerebellum, and the reduction of 11C-(+)3-MPB uptake was well corre-
lated with the degree of impairment of working memory performance assessed in conscious monkeys. 
These results demonstrated that PET imaging with 11C-(+)3-MPB could be useful for diagnosis of neuro-
logical diseases associated with impaired mAChR function and cognitive function.

Key words Brain, Muscarinic acetylcholine receptor, 11C-(+)3-MPB, PET

1 Introduction

In the cholinergic neuronal system, acetylcholine (ACh) is the 
primary neurotransmitter released in the central nervous system 
(CNS). The cholinergic receptor (AChR) population is divided into 
nicotinic and muscarinic subclasses, and the AChR appears to be 
predominantly of the muscarinic-type receptor (mAChR) in the 
CNS. The mAChR belongs to the family of receptors coupled to 
heterotrimeric GTP-binding proteins (G-proteins), and the CNS 
mAChR system plays an important role in memory and cognitive 
functions. Alzheimer-type dementia (AD) has been neuropatholog-
ically characterized by the presence of neurofibrillary tangles with 
the deposition of hyperphosphorylated tau protein inside nerve cells 



182

and senile plaques with extracellular aggregation of amyloid-β (Aβ) 
protein [1, 2]. Moreover, loss of cholinergic neurons in the fore-
brain [3], reduced cholinergic activity in the hippocampus and cor-
tical loss of choline acetyltransferase [4], and reduced central 
mAChR binding have been observed in the brains of AD patients 
[5–7]. In addition, the severity of these cholinergic abnormalities is 
closely correlated with the degree of dementia [6, 7].

Positron emission tomography (PET) has been applied for 
noninvasive investigations of physiological functions as well as neu-
rodegenerative dysfunctions of mAChR in the living brain. Several 
antagonist-based 11C-labeled-PET probes for imaging of mAChR 
in the CNS have been developed and evaluated, including 
11C-scopolamine [8–10], 11C-dexetimide [11], 11C-quinuclidinyl 
benzilate (QNB) [12], 11C-benztropine [13], and 11C-tropanyl 
benzilate (TRB) [14, 15]. These labeled ligands for mAChR, how-
ever, show poor subtype selectivity, relatively low uptake to the 
brain, and also slow dissociation rates from the binding sites which 
may limit quantitative measurement of the density of mAChR 
in vivo [15]. A low dissociation rate from mAChR makes analysis 
difficult, because a true equilibrium state cannot be obtained 
within the PET scanning time with the short half-lives of positron 
emitters. To solve these problems, a radiolabeled mAChR probe, 
N-11C-methyl-4-piperidyl benzilate (11C-4-MPB) (Fig. 1), with 
more favorable kinetic properties than previous compounds was 
proposed [16]. However, the properties of 11C-4-MPB with 
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(+)3-PPB (d). Affinity (Ki) values of each compound were determined by in vitro competitive assay in rat brain 
slices with 3H-QNB, as shown in e
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relatively high affinity to mAChR were still insufficient for quanti-
tative imaging of mAChR in the living brain. In 1997, we pro-
posed a novel mAChR probe, N-11C-methyl-3-piperidyl benzilate 
(11C-3- MPB) [17] (Fig. 1). Since its chemical structure contained 
a chiral carbon, it provides two stereoisomers, an active form is 
11C-(+)3- MPB and an inactive one is 11C-(−)3-MPB. Active form, 
11C-(+)3- MPB, revealed relatively low affinity to mAChR as deter-
mined by in vitro binding assay [17, 18]. Furthermore, 11C-(+)3-
MPB was evaluated for the quantification of cerebral mAChR 
binding in the brain of conscious monkey (Macaca mulatta) [19]. 
By comparison between young and aged monkeys changes in 
11C-(+)3-MPB binding to mAChR were found [20, 21]. The tem-
poral relationship between the occupancy level of central mAChR 
by scopolamine, as measured by 11C-(+)3-MPB, and cognitive 
impairment, as assessed by the delayed matching-to-sample, was 
determined in conscious monkeys [22].

This chapter will provide a detailed overview of the develop-
ment of a novel PET probe, 11C-3-MPB, for mAChR imaging 
from design of its chemical structure, synthesis, radiolabeling to its 
assessments in vitro as well as in vivo on experimental animals.

2 Materials and Methods

It is well known that stereoisomers exhibit different properties in 
target-binding affinity/specificity, which results in their different 
pharmacological properties. To apply the chemical compounds 
with stereoisomers like 3-MPB as PET probe agents, quality con-
trol of enantiomeric purity is a very critical factor in the production 
of their corresponding precursors to radiolabeling.

As a precursor of 11C-3-MPB, 3-piperidyl benzilate (3-PB) was 
prepared following a previously reported procedure [17]. A mix-
ture of benzene (30 mg), 3-piperidinol (0.4 g), and methyl ben-
zilate (1.0 g) was stirred and heated to reflux in a flask with a 
Molecular Sieve 4A column, a reflux condenser, and a soda lime 
tube. When all methyl benzilate was dissolved, sodium methoxide 
(20 mg) was added to the flask. After 3-h reaction, the reaction 
mixture was cooled down to room temperature, and 50 ml of 
1 mol/l hydrochloric acid was added for separation into two 
phases. The aqueous phase was washed twice with 50 ml of ether, 
and made the phase basic with ammonium hydroxide to precipitate 
the benzyl ester. Thirty milliliters of ether was added twice to the 
aqueous phase to dissolve the benzyl ester and separate the ether 
layer. The ether layer was washed twice with water, dried with 
anhydrous potassium carbonate, filtered, and then the solvent was 
removed by distraction in vacuum. The residue was crystallized in 
ether-hexane solution, and the solid was separated by filtration as 
enantiomeric 3-PB. (+)3-PB and (−)3-PB were separated using an 

2.1 Syntheses 
of Cold 3-PB, 3-MPB, 
4-PB, and 4-MPB
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HPLC system with a chiral column (Chiralcel OJ column, Daiseru 
Corporation, Osaka, Japan) eluted with a mixture of hexane/etha-
nol = 80/20 (v/v) under a flow rate of 0.5 ml/min. The retention 
times of (+)3-PB and (−)3-PB were 27.0 min and 16.8 min, 
respectively.

As the standard compound of 11C-3-MPB for quality control 
analysis, 3-MPB was obtained using N-methyl-3-piperidinol 
(0.45 g) instead of 3-piperidinol by the same reaction as 3-PB syn-
thesis described above. (+)3-MPB and (−)3-MPB were isolated 
using same HPLC system used in (+) and (−)3-PB isolation. The 
retention times of (+)3-MPB and (−)3-MPB were 15.8 min and 
13.2 min, respectively.

For the comparison, 4-piperidyl benzilate (4-PB) and 4-methyl- 
piperidyl benzilate (4-MPB) were prepared according to a previ-
ously reported method [23]. A mixture of benzene (30 mg), 
4-piperidinol (0.4 g), and methyl benzilate (1.0 g) was stirred and 
heated to reflux in a flask with a Molecular Sieve 4A column, a 
reflux condenser, and a soda lime tube. When all methyl benzilate 
was dissolved, sodium methoxide (20 mg) was added to the flask. 
After 3 h reaction, the reaction mixture was cooled down to room 
temperature, and 50 ml of 1 mol/l hydrochloric acid was added for 
separation into two phases. The aqueous phase was washed twice 
with 50 ml of ether, and the phase was made basic with ammonium 
hydroxide to precipitate the benzyl ester. Thirty milliliters of ether 
was added twice to the aqueous phase to dissolve the benzyl ester 
and separate the ether layer. The ether layer was washed twice with 
water, dried with anhydrous potassium carbonate, filtered, and 
then the solvent was removed by distraction in vacuum. The resi-
due was crystallized in ether-hexane solution, and the solid was 
separated by filtration as enantiomeric 4-PB. 4-MPB was obtained 
using N-methyl-4-piperidinol (0.45 g) instead of 4-piperidinol by 
the same reaction as 4-PB synthesis described above.

The binding affinity of each probe was assessed by a competitive 
binding assay in rat brain slices using 3H-QNB autoradiography. 
Since it is generally considered that the information derived from 
autoradiography is more pertinent to the in vivo properties of the 
receptor than that obtained from “pure” binding studies carried 
out using cell-free preparations, we applied this method for PET 
imaging agents.

The frozen brain was sectioned on a Cryostat (CM3000, Leica 
Microsystems, Nussloch, Germany) into 10 μm coronal tissue sec-
tions (bregma −2.3 to −2.8 mm), which were transferred onto 
cooled, gelatinized glass slides. The cryosections were incubated 
with 3H-QNB (1.2 nM) and varying amounts of each PET probe 
for 30 min at 25 °C in Tris–HCl buffer. Nonspecific binding of the 
radioligand in the brain slice was determined by including a 

2.2 In Vitro 
Assessment of Novel 
PET Probes
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saturating concentration (1 μM) of atropine in the incubation 
medium. The incubation was terminated by rinsing the sections 
twice for 2 min each in cold buffer, then dipping briefly in cold 
distilled water (4 °C), and slides were dried rapidly on a hot-plate 
(50 °C). The labeled slices were exposed for 3 days to an imaging 
plate (TR- 2040, Fuji Film Co., Tokyo, Japan), and the imaging 
data were analyzed (BAS-2500, Fuji Film Co., Tokyo, Japan). 
Specific binding of 3H-QNB was estimated as the difference 
between total binding and nonspecific binding. Specific binding 
was plotted against the concentration of each ligand to determine 
concentration causing 50 % inhibition (IC50 values), which were 
converted to inhibition constants (Ki) using the Cheng and Prusoff 
equation [24]. The rat brain anatomical structures in autoradio-
graphic images were visually identified according to the atlas of 
Paxinos and Watson [25].

Subtype specificity of (+)3-MPB and 4-MPB was assessed 
using human mAChRs (M1–M5) transfected in CHO-K1 cells 
(Receptor Biology, Inc., Beltsville, USA) [26]. For the experi-
ments, the membranes were thawed and diluted in phosphate- 
buffered saline (PBS, pH 7.4) and homogenized in a glass vessel 
with the aid of a Teflon pestle. The final concentration of receptors 
in the assay was in the range of 50–100 pM. For the association 
study, homogenate was incubated with labeled compound at 
22 °C, and the binding was started at different time points in 
reverse order and terminated simultaneously in all samples at time 
0. The incubation was terminated by rapid filtration through 
Whatman GF/B glass fiber filters (FPB-148, Gaithersburg, USA). 
For the dissociation study, the association of samples was termi-
nated after 50 min. The dissociation was started by adding unla-
beled compound in excess at different time points, and the reactions 
were terminated simultaneously in all samples at time 0. After ter-
mination of the incubation, the filters were rinsed four times with 
2 ml of ice-cold incubation buffer each time. Thereafter, the filter 
rings were collected from the cell harvester (Brandel, Gaithersburg, 
USA) and were transferred into vials for counting in a γ-counter.

To measure lipophilicity of the labeled ligands, their partition 
coefficients (log D at pH 7.4) were measured. Octanol (2 ml) and 
0.066 M phosphate-buffer, pH 7.4 (2 ml) were mixed for 3 min. 
Ten milliliters of each labeled compound was mixed, vortexed for 
3 min, centrifuged for 5 min, separated, and 11C-radioactivity was 
counted. The lipophilicity of each labeled PET probe was then 
calculated as logarithm of the distribution constant between lipo-
philic organic (octanol) phase and polar aqueous (water) phase.

The buffer solutions can be stored conveniently at 4 °C and are 
stable for several months. Drug solutions and radioligands are dis-
tributed in small aliquots and stored at −20 °C. Atropine solutions 
are prepared fresh monthly.

Imaging of Muscarinic Receptors in the Central Nervous System
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Carbon-11 (11C), a positron emitter with a 20 min half-life, is a 
candidate for the isotopic or non-isotopic labeling of any organic 
compound used for PET imaging. In isotopic labeling, since 11C 
replaces stable 12C/13C in the molecule, the biological properties 
of the molecule are virtually unchanged. In non-isotopic labeling, 
a group containing 11C is added to the molecule of interest, pro-
ducing a new compound with different properties to the original.

The reaction time with 11C that has a short-half life (=20 min) 
needs to be as short as possible, and the reaction needs to be driven 
to give useful yields within one physical half-life. Reactions are pro-
moted by (1) using a large excess of precursor to consume labeling 
agent; (2) using a high precursor concentration in small volumes; 
(3) using sealed vessels for elevated reaction temperature; and (4) 
using microwaves or sonication. In addition, since the stability of 
some 11C-PET probes was low even at the end of synthesis (EOS) 
because of a radiolysis, this should be taken into account by sup-
pressing radiolysis by adding a selective scavenger for hydroxyl 
radicals and/or hydrated electrons into the PET probe solution.

The concentration of 11C-labeled probe was calculated from 
calibration curves by simultaneous monitoring of radioactivity and 
UV absorbance with authentic substances used as standards. 
Specific radioactivity of 11C-labeled probe was defined as the ratio 
of radioactivity (Ci) to accompanying cold compound (mol), and 
was expressed in units of Ci/mol. There is substantial dilution of 
11C-labeled compound with cold compound. The amount of cold 
compound remains constant, while the radioactivity decays over 
time according to the half-life of the positron emitter. Therefore, 
the specific radioactivity for PET probe should be cited with respect 
to a particular time, such as the end of radionuclide production 
(EOB), EOS, or time of injection (TOI).

Positron emitting carbon-11 (11C) was produced by a 14N(p,a)11C 
nuclear reaction using a cyclotron (HM-18; Sumitomo Heavy 
Industry, Tokyo, Japan) at Hamamatsu Photonics PET center and 
obtained as 11C-CO2. Labeled compounds were synthesized using a 
modified CUPID system (Sumitomo Heavy Industry, Tokyo, 
Japan). As isotopic labeling, 11C-(+)3-MPB and its stereoisomer 
11C-(−)3-MPB were labeled by N-methylation of respective nor-
compounds ((+)3-PB or (−)3-PB) with 11C-methyl iodide (Fig. 2) 
[17, 19]. 11C-CO2 was converted to 11C-methyl iodide by LiAlH4 
reduction followed by reaction with HI, and 11C-methyl iodide was 
trapped in a reaction vial containing the free base (+) or (−)3-PB 
(0.5 mg) in DMF (200 μL) at −40 °C. When reaching the maximum 
radioactivity of 11C-methyl iodide, the vial was hearted at 80 °C for 
5 min. After cooling down, the reaction mixture was injected into an 
HPLC system with a C18 column (μBondapak-C18, Waters, 
Milford, MA) eluted with a mixture of acetonitrile/0.1 M AcONa/
Acetic acid = 700/300/1 (v/v) under a flow rate of 7 ml/min. The 
fraction eluted at a retention time of ca. 10 min was transferred to an 
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and 11C-4-MPB
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evaporator for evaporation of elute solvent, dissolved in saline 
(10 ml), and filtered through a 0.22-μm pore size filter.

Chemical and radiochemical analysis of 11C-(+)3-MPB and 
11C-(−)3-MPB was performed by HPLC in a system consisting of 
a column (Finepak SIL C18-S, 4.6 mm in diameter × 150 mm in 
length, Jasco, Tokyo, Japan), pump (CCPS, Tosoh, Tokyo, Japan), 
UV detector (UV-8020, Tosoh, Tokyo, Japan), and radio detector 
(RLC-700, Hitachi Aloka Medical, Inc., Tokyo, Japan) using 
CH3CN/30 mM CH3COONH4/CH3COOH (350/650/2) as a 
mobile phase at a flow rate of 1 ml/min. Analyses of the enantio-
meric purity of 11C-(+)-3-MPB and 11C-(−)-3-MPB were per-
formed by HPLC in a system consisting of a column (Chirobiotic 
V, 4.6 × 250 mm, Astec, NJ, USA), pump (DP8020, Tosoh, Tokyo, 
Japan), UV detector (UV-8020, Tosoh, Tokyo, Japan), and radio 
detector (TCS-713, Aloka, Tokyo, Japan) using CH3OH/
CH3COOH/(C2H5)3N (1000/0.5/0.1) as a mobile phase at a 
flow rate of 1 ml/min. The retention times of 11C-(+)3-MPB and 
11C-(−)3-MPB were 15.8 min and 13.2 min, respectively, both of 
which were identical to each corresponding standard compound.

The radioactive purity of each labeled compound used in this 
study was greater than 99 % and the specific radioactivity ranged 
from 61.7 to 92.4 GBq/μmol for 11C-(+)3-MPB, and from 60.0 
to 79.5 GBq/μmol for 11C-(−)3-MPB at EOS. Enantiomeric 
purity of 11C-(+)-3-MPB and 11C-(−)-3-MPB was 100 %.

11C-MethylIodide

LiAIH4

LiAIH4

LiAIH4

THF

THF THF

THFTHF

OH OH

NH N
R

DMF, 100°C, 180sec

[11C]R-I
O O

OO

11CO2

11CO2

11CO2

11CH3I

CH3MgBr

CH3CH2MgBr
CH3CH211CO2MgBr CH3CH211CH2I

CH311CH2I

HI

HI
CH311CO2MgBr

HI

11C-EthylIodide

11C-PropylIodide

Fig. 2 Radiolabeling of 11C-(+)3-MPB, 11C-(+)3-EPB, and 11C-(+)3-PPB using (+)3-PB and 11C-methyl iodide, 
11C-ethyl iodide, and 11C-propyl iodide, respectively
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As for the previously reported reference, 11C-4-MPB was 
 prepared by the same method as used for 11C-3-MPB labeling. The 
radioactive purity used in this study was greater than 99 % and the 
specific radioactivity ranged from 34.4 to 75.9 GBq/μmol for 
11C-4-MPB at EOS.

In order to evaluate the effects of affinity to mAChR on kinetics as 
well as the sensitivity to changes in the synaptic endogenous ACh 
level, two N-alkyl substitution analogs of 11C-(+)3-MPB, N-11C- 
ethyl-3-piperidyl benzilate (11C-(+)3-EPB) and N-11C-propyl-3-
piperidyl benzilate (11C-(+)3-PPB), were used [18]. Standard 
compounds, (+)3-EPB and (+)3-PPB, were synthesized by 
N-ethylation and N-propylation, respectively, of (+)3-PB. For the 
radiolabeling, C-11 was produced by 14N(p,a)11C nuclear reaction 
using a cyclotron (HM-18; Sumitomo Heavy Industry, Tokyo, 
Japan) and obtained as 11C-CO2. Labeled compounds were synthe-
sized using a modified CUPID system (Sumitomo Heavy Industry, 
Tokyo, Japan). Instead of 11C-methyl iodide, 11C-ethyl iodide or 
11C-propyl iodide was prepared by reaction of Grignard reagent 
(Fig. 2) [18, 27]. In the synthesis of 11C-ethyl iodide or 11C-propyl 
iodide, 0.5 ml of 0.25 M methylmagnesium bromide in tetrahy-
drofuran (THF) or 0.5 ml of 0.25 M ethylmagnesium bromide in 
THF were used. After a reaction time for 5 min, 1 ml of lithium 
aluminum hydrate (1 M) in THF was added and the solvents were 
removed. Two milliliters of hydriodic acid (54 %) was then added, 
and the product was distilled off and transferred in a stream of 
nitrogen gas through a drying tower containing sodium hydrox-
ide/phosphorus pentoxide to the reaction vessel. 11C-(+)3- EPB or 
11C-(+)3-PPB was synthesized by N-ethylation or N-propylation of 
(+)3-PB with 11C-ethyl iodide or 11C-propyl iodide.

Chemical and radiochemical analysis of 11C-(+)3-EPB and 
11C-(+)3-PPB was performed by HPLC in a system consisting of a 
column (Finepak SIL C18-S, 4.6 mm in diameter × 150 mm in 
length, Jasco, Tokyo, Japan), pump (CCPS, Tosoh, Tokyo, Japan), 
UV detector (UV-8020, Tosoh, Tokyo, Japan), and radio detector 
(RLC-700, Hitachi Aloka Medical, Inc., Tokyo, Japan) using 
CH3CN/30 mM CH3COONH4/CH3COOH (350/650/2) as a 
mobile phase at a flow rate of 1 ml/min. Analyses of the enantio-
meric purity of 11C-(+)-3-EPB and 11C-(+)-3-PPB were performed 
by HPLC in a system consisting of a column (Chirobiotic V, 
4.6 × 250 mm, Astec, NJ, USA), pump (DP8020, Tosoh, Tokyo, 
Japan), UV detector (UV-8020, Tosoh, Tokyo, Japan), and radio 
detector (TCS-713, Aloka, Tokyo, Japan) using CH3OH/
CH3COOH/(C2H5)3N (1000/0.5/0.1) as a mobile phase at a 
flow rate of 1 ml/min. The retention times of 11C-(+)3-EPB, 
11C-(−)3-EPB, 11C-(+)3-PPB, and 11C-(−)3-PPB were 15.3 min, 
14.8 min, 12.7 min, and 13.7 min, respectively.

2.4 Radiosynthesis 
of 11C-(+)3-EPB 
and 11C-(+)3- PPB
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The radioactive purity of each labeled compound used in this 
study was greater than 99 %, and the specific radioactivity ranged 
from 34.1 (11C-(+)3-PPB) to 66.3 GBq/μmol (11C-(+)3-EPB) at 
EOS. The specific radioactivity levels of these two PET probes 
were comparable to that of 11C-(+)3-MPB. Enantiomeric purity of 
11C-(+)-3-EPB and 11C-(+)-3-PPB were 100 %.The solution of 
labeled compound was passed through a 0.22-μm pore size filter 
before intravenous administration to the subjects.

For the assessment of acetylcholinesterase (AChE) level in the 
living brain using PET, N-11C-methyl-4-piperidyl acetate 
(11C-MP4A) was labeled by N-methylation of its corresponding 
nor-compound, 4-piperidyl acetate (P4A) (ABX Advanced 
Biochemical Compounds, Radeberg, Germany), with 11C-methyl 
iodide [28].

Magnetic resonance images (MRI) of the monkeys were obtained 
with a 3.0 T MR imager (Signa Excite HDxt 3.0 T, GE Healthcare 
Japan, Tokyo, Japan) using a 3D-Spoiled Gradient Echo (SPGR) 
sequence (176 slices with a 256 × 256 image matrix, slice thick-
ness/spacing of 1.4/0.7 mm, TE: 3.4–3.6 ms, TR: 7.7–8.0 ms, 
TI: 400 ms, and flip angle: 15°) under pentobarbital anesthesia.

The PET studies in this chapter have been conducted with mon-
keys under conscious condition. Anesthetics have been used in 
non-human primate PET studies, because it is necessary to fix the 
animal during PET scanning. However, anesthetics have been 
reported to affect several neuronal functions, resulting in an altera-
tion of neuronal activities in the central nervous system. Thus, the 
brain function as well as the pharmacological actions as measured 
by PET should be affected by anesthetics [29–32]. In order to 
avoid these anesthetic effects, we developed a PET system with 
transaxial resolution of 2.6 mm full width at half maximum 
(FWHM) and a center-to-center distance of 3.6 mm (SHR-7700, 
Hamamatsu Photonics, Hamamatsu, Japan) [33], and its gantry 
can be tilted up to 90° for brain imaging of monkey sitting on a 
monkey chair under conscious condition. In order to eliminate the 
stress caused by head motion restriction influence on measured 
parameters, as reported in the dopaminergic neuronal system [34], 
the monkeys were trained for more than 2 months and plasma 
cortisol was monitored.

After an overnight fast, a monkey (Macaca mulatta) was seated 
on a monkey chair under conscious condition and fixed with ste-
reotactic coordinates aligned parallel to the orbitomeatal (OM) 
line. After a transmission scan for 30 min using a 68Ge-68Ga rota-
tion rod source, an emission scan for 91 min was conducted after 
the injection of each labeled compound (100–120 MBq/kg body 
weight) through the venous cannula.

2.5 MRI Data 
Acquisition

2.6 PET Analysis
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The PET data obtained were reconstructed by the filtered back 
projection (FBP) method with a Hanning filter of 4.5 mm 
FWHM. Volumes of interest (VOIs) in brain regions were drawn 
manually on the MRI referring regional information from 
BrainMaps.org, and VOIs of MRI were superimposed on the co- 
registered PET images to measure the time activity curves (TACs) 
of each PET probes for kinetic analysis.

For quantitative analysis of 11C-(+)3-MPB, arterial blood sam-
ples were obtained every 8 s up to 64 s, followed by 90 and 150 s, 
and then 4, 6, 10, 20, 30, 45, 60, and 90 min after tracer injection, 
and the blood samples were centrifuged to separate plasma, 
weighed, and their radioactivity was measured. For metabolite 
analysis, methanol was added to some plasma samples (sample/
methanol = 1/1) obtained at 16, 40, and 64 s, 6, 10, 30, and 
45 min after the injection, followed by centrifugation. The obtained 
supernatants were developed using thin layer chromatography 
plates (AL SIL G/UV, Whatman, Kent, UK) with a mobile phase 
of ethyl acetate. The ratio of unmetabolized fraction was deter-
mined using a phosphor imaging plate (FLA-7000, Fuji Film, 
Tokyo, Japan). The input function of unmetabolized 11C-(+)3- 
MPB was calculated using the data obtained by correction of the 
ratio of the unmetabolized fraction to total radioactivity, which was 
used as the arterial input function.

Logan [35] and Patlak [36] graphical analyses with metabolite- 
corrected plasma input were applied for quantitative measurements 
of 11C-(+)3-MPB binding to mAChR in the living brain using 
PMOD software (PMOD Technologies Ltd., Zurich, Switzerland). 
The Logan graphical plot [35] directly gives a linear function of 
the free receptor concentration known as the distribution volume 
based on the following Eq. (1):

 ò ò( ) ( ) = ( ) ( ) +ROI d ROI DV Cp d ROIt t T t t T C/ /
 

where ROI(T) and Cp(T) represent tissue and metabolite- corrected 
arterial plasma radioactivity, respectively, at time T, DV is the slope 
and C is the intercept on the Y-axis. For the reversibly labeled 
compounds, this Logan plot becomes linear after some time with a 
slope (DV) that is equal to the steady-state distribution volume. 
The ratios of DV in each ROI (DV(ROI)) to K in the cerebellum 
(DV(CE)) were calculated to determine the distribution of mAChR 
in the living brain.

Patlak plot analysis [36] was used to measure the net accumu-
lation of PET probe in the irreversible compartment based on the 
following Eq. (2):

 ò ò( ) ( ) = ( ) ( ) +ROI d Cp DV Cp d ROIt t T t t T C/ /
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where ROI(T) and Cp(T) represent tissue and metabolite- corrected 
arterial plasma radioactivity, respectively, at time T, DV is the slope, 
and C is the intercept of the Y-axis. The slope (DV) was equal the 
parameter combination K1k3/(k2 + k3). The dissociation constant 
(k4) is assumed to be negligible over the course of the scan. Patlak 
slope value is influenced by the blood–brain barrier (BBB), trans-
port rate constants (K1 and k2), and thus does not provide a pure 
estimate of association constant (k3).

A PET probe is no-cold added (NCA) when no source of cold 
compound has been added deliberately during its production. In 
contrast, it is cold-added (CA) when a source of cold compound 
has been added deliberately during its production.

For the inhibition study of 11C-(+)3-MPB binding to mAChR 
in the living brain, scopolamine, a specific mAChR antagonist, was 
administered at a dose of 50 μg/kg 30 min before PET probe 
injection under NCA condition.

In order to evaluate the sensitivity to changes in the synaptic 
endogenous ACh level induced by AChE inhibition, Aricept, an 
AChE inhibitor, was intravenously administered at doses of 50 and 
250 μg/kg 30 min before 11C-(+)3-MPB injection under NCA 
condition.

To determine the correlation between mAChR occupancy and 
cognitive impairment in monkeys, scopolamine was administered 
at the dose of 10 and 30 μg/kg, and then PET measurements with 
11C-(+)3-MPB injection under NCA condition and cognitive per-
formance test were serially conducted 2, 6, 24 and 48 h after 
administration of scopolamine. The mAChR occupancy levels were 
determined from the degree of reduction (%) of the BPND by sco-
polamine as following Eq. (3):

 
Occupancy BP post ROI BP pre ROIND ND%( ) = - ( ) - ( )( )´1 100

 

where BPNDpre(ROI) and BPNDpost(ROI) are BPND pre- and post- 
scopolamine, respectively.

Several clinical PET studies have attempted to determine quantita-
tively the age-related alterations of mAChR in the living brain 
using 11C-benztropine [37], 11C-4-MPB [38–40], and 11C-TBZ 
[41]. These PET probes for mAChR, however, showed relatively 
low uptake to the brain and also slow dissociation rates from 
mAChR, which may limit estimation of the density of binding sites 
in vivo [15]. Therefore, we attempted to assess the age-related 
changes in mAChR with 11C-(+)3-MPB, a reversible-type PET 
probe, in the living brains of young (ca. 6 years old) and aged (ca. 
20 years old) monkeys in a conscious state [20]. The syntheses of 
11C-(+)3-MPB, PET data acquisitions, and the analysis of cortical 
TAC were conducted as described in Sections 2.3 and 2.5.

2.7 Drug 
Perturbations on PET 
Probe Binding 
to mAChR

2.8 Effects of Aging 
on mAChR
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Saturation experiments were performed to examine the effects 
of aging on in vivo binding parameters (maximum binding capac-
ity BMAX and equilibrium dissociation constant KD) of 11C-(+)3- 
MPB as performed previously in the dopaminergic system [42, 
43]. 11C-(+)3-MPB was injected into monkeys under NCA and 
CA conditions and together with various amounts cold (+)3-MPB 
from 3 to 300 μg/kg. The total radioligand concentration of 
11C-(+)3-MPB in the cerebellum was used as an estimate of the 
free radioligand concentration (F) in each ROI. Specific binding 
(B) was defined as radioactivity in each ROI reduced by F. The 
curve for B was fitted to a set of three exponential functions to 
determine the time point at which B reached a peak. The values for 
B and F at these time points were used in the in vivo pseudo 
Scatchard plot analysis where the ratio of B/F was plotted against 
B [44]. The apparent in vivo BMAX and KD values were calculated 
using LIGAND software.

Although it had been well known that blockade of mAChR with 
scopolamine, a specific mAChR antagonist, resulted in transient 
cognitive impairment [45], there have been no study revealing the 
relationship between the occupancy level of central mAChRs and 
the degree of cognitive impairment induced by scopolamine in pri-
mates. Therefore, we attempted to evaluate the correlation between 
the mAChR occupancy level and cognitive impairment in con-
scious monkeys [22].

Cognitive impairment was determined by a titration version of 
delayed match to sample (T-DMS) task [46]. DMS task is one 
method for evaluating potential drug effects on cognitive func-
tions. Typically, a sample visual stimulus is presented to the animal 
for a short period. Following a delay, the sample and another test 
stimulus are presented simultaneously. The subject is required to 
choose the sample visual stimulus in order to be rewarded. However, 
one limitation of the conventional DMS task is that the maximal 
delay is fixed for all subjects, although cognitive abilities differ 
among them. With T-DMS task test, under control condition, the 
monkeys’ correct response levels depend on each animal’s working 
memory capacity as determined by the maximal delay interval.

Sixty-four different visual stimuli comprising all combinations 
of eight distinct colors and eight distinct shapes were presented on 
a touch-sensitive screen placed in front of monkey. A sample stimu-
lus appeared for 300 ms, disappeared, and then the sample stimu-
lus and three other stimuli appeared after a delay. Monkeys were 
trained to touch the visual stimulus that matched the sample within 
5 s, and if the answer was correct, water drops (0.2 ml) were given 
as a reward. If the trial was correct, the next trial was presented 
with a delay 1 s longer. The delay for the trial after an incorrect 
choice was decreased by 1 s. This process was repeated until the 
delay for a correct choice peaked, the delay interval over the last 

2.9 Cognitive 
Assessment 
of Monkeys
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ten trials of each session was used as the cognitive index. Cognitive 
impairment was defined as following Eq. (4):

Cognitive Impairment Cognitive Index Cognitive Indexpost%( ) = - -1 ppre( )´100
where Cognitive Indexpre and Cognitive Indexpost are pre- and post- 
administration values for vehicle or scopolamine, respectively.

PET measurements and cognitive performance test were seri-
ally conducted 2, 6, 24, and 48 h after administration of scopol-
amine, and the degrees of impaired of cognitive function were 
plotted against mAChR occupancy degrees induced by scopol-
amine administration.

3 Experimental Results

Synthesized 3-PB, 3-MPB, 3-EPB, and 3-PPB were analyzed to 
confirm their chemical structures as 1H-NMR spectra (R-1200, 
Hitachi High-Tech Fielding Corporation, Tokyo, Japan). 1H- NMR of 
3-PB: 7.36 (m, 10H), 4.92 (m, 1H), 2.94 (m, 1H), 2.70 (m, 4H), 
1.82 (m, 1H), 1.71 (m, 1H), 1.26 (m, 1H). 3-MPB: 7.36 (s, 10H), 
5.02 (m, 1H), 2.69 (m, 1H), 2.46 (m, 1H), 2.24 (s, 3H), 2.17 (m, 
1H), 1.94 (m, 1H), 1.82 (m, 1H), 1.71 (m, 1H), 1.58 (m, 1H), 
1.41 (m, 1H), 1.26 (m, 1H); 3-EPB: 7.32 (s, 10H), 5.01 (m, 1H), 
4.41 (s, 1H), 2.72 (m, 2H), 2.25 (m, 4H), 1.68 (m, 3H), 1.25  
(s, 1H), 0.97 (t, 3H); 3-PPB: 7.36 (s, 10H), 5.01 (m, 1H), 4.37  
(s, 1H), 2.74 (m, 2H), 2.27 (m, 4H), 1.60 (m, 6H), 0.92 (t, 3H).

As shown in Fig. 1, we designed methods to synthesize several 
analogs of (+)3-MPB, and evaluated their affinities to mAChR and 
lipophilicity. In competition assays with 3H-QNB, the IC50 and Ki 
values of (+)3-MPB, (+)3-EPB, (+)3-PPB, and their inactive ste-
reoisomers, (−)3-MPB, (−)3-EPB, and (−)3-PPB, for mAChR 
were determined using rat brain slices in vitro. Since the binding of 
3H-QNB showed a time-dependent increase, reaching equilibrium 
by about 30 min, an incubation time of 30 min was chosen for this 
competition assays. As a result, (+)3-MPB had the highest (Ki = 1.69 
nM), (+)3-EPB had moderate (12.90 nM), and (+)3-PPB had the 
lowest affinity (47.53 nM) for mAChR in the neocortex of the rat 
brain (Fig. 1e), suggesting that the longer alkyl chain length caused 
the lower affinity [47]. The affinity of 4-MPB (0.51 nM) was 3.3- 
fold higher than that of (+)3-MPB. In contrast, (−)3MPB, (−)3- 
EPB, and (−)3-PPB showed remarkably lower affinity to the 
mAChR (1000 nM and more), which were two orders lower than 
those of their corresponding active (+) forms [18]. The log D at 
pH 7.4 of 11C-(+)3-MPB, 11C-(+)3-EPB, and 11C-(+)3-PPB were 
1.53, 1.68, and 2.37, respectively.

By using the five cloned human mACh receptors, the KD val-
ues for (+)3-MPB exhibited no significant selectivity for any 

3.1 In Vitro 
Assessment of (+)3-
MPB Analogs
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subtype, whereas the binding profile of Ki values for (+)3-MPB 
was M4 ≥ M1 > M3 ≥ M2 > M5. A binding profile for 4-MPB was 
M4 > M1 ≥ M3 ≥ M5 > M2. The largest difference in affinity was 
below ten times (between M4 and M5 for 3-MPB and between M2 
and M4 for 4-MPB). These competition binding data of (+)3- and 
4-MPB showed that neither of these substances has an affinity pro-
file that makes them suitable for subtype-specific assays [26].

11C-(+)3-MPB and its N-alkyl substitution analogs, (−)3-MPB, (+) 
and (−)3-EPB, (+) and (+)3-EPB, were labeled by using 11C-methyl 
iodide, 11C-ethyl iodide, or 11C-propyl iodide for the alkylation of 
(+) or (−)3-PB as shown in Fig. 2. Each of these compounds was 
intravenously injected into monkey for scanning for 90 min, and 
then the acquired data were reconstructed to images for TAC 
determination as sequential images and ROI setting as summation 
images from 60 to 90 min after the injection.

In Fig. 3, typical PET images of 11C-(+)3-MPB (B), 11C-(−)3- 
MPB (C), 11C-(+)3-EPB (D), 11C-(+)3-PPB (E), and 11C-4-MPB 
(A) as a reference are shown, which were obtained from the same 
monkey under conscious condition. The regional uptake pattern of 
11C-(+)3-MPB was high in the striatum; intermediate in the 

3.2 In Vivo 
Assessment 
of 11C-(+)3-MPB 
Analogs

b 11C-(+)3-MPB c 11C-(-)3-MPB

a 11C-4-MPBMRI
OM  +0 +7.2        +14.4       +21.6

0.50
(MBq/mL)

d 11C-(+)3-EPB e 11C-(+)3-PPB

Fig. 3 MRI and PET images of 11C-4-MPB (a), 11C-(+)3-MPB (b), 11C-(−)3-MPB (c), 11C-(+)3-EPB (d), and 11C-(+)3-
PPB (e) in conscious monkey brain. PET data were collected in the conscious state with a high-resolution PET 
scanner (HAMAMATSU SHR-7700) with transaxial special resolution of 2.6 mm (FWHM). Each labeled compound 
(100–120 MBq/kg body weight) was injected through the venous cannula. PET scans were performed for 
91 min, and each PET image was generated by summation of image data from 60 to 94 min post-injection
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occipital, temporal, and frontal cortices, hippocampus, and thala-
mus; and low in the cerebellum (Fig. 3b). In contrast, the level of 
11C-(−)3-MPB was much lower than those of 11C-(+)3-MPB 
 showing a homogeneous distribution in all regions of the brain 
(Fig. 3c). The patterns of distribution of 11C-(+)3-EPB (Fig. 3d), 
11C-(+)3- PPB (Fig. 3e), and 11C-4-MPB (Fig. 3a) were almost 
identical to that of 11C-(+)3-MPB. There results demonstrated 
that specificity of these PET probes except 11C-(−)3-MPB remained 
constant even upon substitution of N-alkyl moiety.

The time activity curves of 11C-(+)3-MPB in the frontal, tem-
poral, and occipital cortices reached their peaks 40 min after injec-
tion, whereas the striatal and hippocampal regions reached peak 
values 60 min after injection. In contrast, the time–activity curves 
of 11C-(−)3-MPB showed similar patterns in all regions of the brain 
[19]. The uptake of 11C-4-MPB in all regions except the thalamus 
and cerebellum gradually increased over time during the scan until 
91 min after injection [19].

As shown in Fig. 4a, Patlak plot graphical analysis demon-
strated that 11C-(+)3-MPB provided nonlinear curves showing 
slope = 0 in the late phase, suggesting that the dissociation rate 
constant (k4) from mAChR was not negligible. Next, Logan plot 
graphical analysis was applied to investigate the in vivo binding of 
11C-(+)3-MPB (Fig. 4b). The ratio of Logan slopes (DV) of 
11C-(+)3-MPB in each region against the cerebellum was 
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Fig. 4 Patlak plot graphical (a) and Logan plot graphical analysis (b) of 11C-(+)3-MPB in conscious monkey brain. 
Regions of interest (ROls) were identified according to an MRI scan of the each animal, and metabolite-corrected 
plasma input was applied for quantitative measurements of 11C-(+)3-MPB binding to mAChR in the living brain
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correlated with the data of mAChR density (BMAX) as measured by 
the in vitro assay [48]. These results demonstrated that 11C-(+)3-
MPB was a more suitable PET probe for the quantification of 
mAChR in the living brain than conventional 11C-labeled ligands 
such as 11C-4-MPB and 11C-scopolamine.

As described in Section 3.1, two N-alkyl substitution analogs 
of (+)3-MPB, (+)3-EPB, and (+)3-PPB revealed lower affinities to 
mAChR than 4-MPB and (+)3-MPB. In order to develop PET 
probes with moderate affinity to assess neurotransmitter release 
into the synaptic cleft [29, 43, 49], we attempted to synthesize 
11C-(+)3-EPB and 11C-(+)3-PPB, and evaluated their specificity 
and kinetics in comparison with those of original 11C-(+)3-MPB in 
conscious monkey brain.

The time–activity curves demonstrated that the peak times 
shifted to an earlier time with a higher clearance rate after injection 
of PET probes with longer 11C-alkyl chains [18]. As shown in Fig. 5, 
kinetic analysis indicated that labeling with a longer 11C-alkyl chain 
induced lower binding potential (Frontal cortex; 2.4, 2.0, and 1.4 
for 11C-(+)3-MPB, 11C-(+)3-EPB, and 11C-(+)3-PPB, respectively). 
The administration of Aricept, an AChE inhibitor, increased acetyl-
choline level in extracellular fluid of the frontal cortex (ca. 150 % and 
175 % of baseline at 50 μg/kg and 250 μg/kg, respectively) [18]. 
The binding of 11C-(+)3-PPB with the lowest affinity to mAChR was 
displaced by the endogenous ACh induced by Aricept, while 
11C-(+)3-MPB with the highest affinity was not significantly affected 
(Fig. 5). These results suggested that increasing 11C-alkyl chain 
length did alter the kinetic properties of PET probes by reducing the 
affinity to mAChR, which might make it possible to assess the inter-
action between the endogenous neurotransmitter acetylcholine and 
ligand-receptor binding in vivo as measured by PET.

In aged monkeys, the time–activity curves of 11C-(+)3-MPB in 
regions rich in mAChR peaked at earlier time points with faster 
elimination rates than those in young monkeys, while curves in the 
cerebellum showed no significant difference between young and 
aged animals [20]. Significant age-related alterations of the in vivo 
binding of 11C-(+)3-MPB were observed in the temporal and fron-
tal cortices and the striatum (Fig. 6a). The Scatchard plot revealed 
a linear curve for 11C-(+)3-MPB in all regions of young and aged 
monkeys (Fig. 6b). Aged animals showed the age-related reduc-
tion in the maximum number of binding sites (BMAX) of mAChR, 
while there was no age-related alteration in the affinity (1/KD) of 
mAChR for (+)3-MPB (Fig. 6b).

Previous studies demonstrated, when expressed relative to the 
cerebellum, which is assumed to be a nonspecific and tracer-free ref-
erence region, age-related reduction of mAChR in almost all cerebral 
regions in humans as measured by 11C-benztropine [37] and 11C-4-
MPB [38–40]. There were trends toward reduced cerebral mAChR 
binding and toward elevated cerebellar binding with aging in humans, 

3.3 Effects of Aging 
on mAChR
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as measured by a kinetic analysis method using 11C-tropanyl benzilate 
using metabolite-corrected plasma TAC as input function, a gold 
standard kinetic analysis for reliable quantification of receptor bind-
ing in vivo [41]. This may suggest when used cerebellar TAC as input 
function, the opposing cortical and cerebellar changes of binding led 
to the apparent age-related loss of mAChR binding.

With applying T-DMS task test, the memory assessment of young 
monkeys was serially conducted 2, 6, 24 and 48 h after administration 
of scopolamine at the doses of 10 and 30 μg/kg. Scopolamine 
impaired the memory performance in a dose-dependent manner 2 h 
after administration, followed by gradual recovery at 24 h and later 
after scopolamine administration (Fig. 7b). The time- dependent 
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changes in occupancy of mAChR by scopolamine were simultane-
ously observed with serial PET measurements using 11C-(+)3-
MPB. Occupancy levels of mAChR peaked 2 h after scopolamine 
administration in the cortical regions innervated primarily by the 
basal forebrain, thalamus, and brainstem (Fig. 7a). As shown in Fig. 8, 
mAChR occupancy and the degree of cognitive impairment were sig-
nificantly and positively correlated in the brain regions assessed. 
Cognitive impairment induced by scopolamine persisted for 6 h and 
was followed by complete recovery to normal levels 24 h later. It was 
very interesting that some scopolamine binding to mAChRs was still 
observed in most brain areas except the brainstem 24 h after scopol-
amine administration, suggesting the existence of a threshold (ca. 
25 %) of mAChR occupancy to induce cognitive impairment.

4 Limitations

All these data described above indicate that 11C-(+)3-MPB [17, 
19] is superior to its previous alternatives, such as 11C-scopolamine 
[8–10], 11C-QNB [12], 11C-dexetimide [11], 11C-benztropine 
[13], 11C-TRB [14, 15], and 11C-4-MPB [16]. However, several 
limitations of 11C-(+)3-MPB remain to be solved. One limitation 
may be poor subtype selectivity for mAChR, which consist of at 
least the M1–M5 subtypes. The in vitro radioligand binding experi-
ments performed with five cloned human mAChR subtypes 
expressed in CHO-K1 cells demonstrated that (+)3-MPB have no 
apparent selectivity for M1 and M2 receptors (unpublished data), 
suggesting that 11C-(+)3-MPB images the integration of both M1 
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and M2 receptors. To compensate the poor selectivity, a selective 
agonist-based PET probe for M2 receptor, 3-(3-(3-18F-flouropropyl)
thio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine 
(18F-FP-TZTP) was developed with Ki of 2.2 and 7.4 nM for M2 
and M1, respectively [50]. By using mice with the knocked-out M1, 
M2, M3, or M4 receptors, it was confirmed that 18F-FP-TZTP selec-
tively bound to M2 mAChR subtype [51].

The assessment of neurotransmitter release in the living brain 
should be very important from neurological and pharmacological 
points of view. In the last decade, interactions between endoge-
nous neurotransmitters released into the synaptic cleft and the 
binding of labeled compounds have been examined by neuroimag-
ing with PET/SPECT, especially in the dopaminergic system [29, 
43, 49]. As demonstrated with 11C-(+)3-EPB and 11C-(+)3-PPB 
[18], the cortical binding of 18F-FP-TZTP was also decreased by 
physostigmine, a AChE inhibitor, showing the competition 
between 18F-FP-TZTP and increased synaptic endogenous ACh 
on mAChRs [52]. This PET probe seemed to be more favorable 
than previous ones; however uncertain properties have been 
revealed on 18F-FP-TZTP as described later.

There is a loss of cholinergic neurons in the forebrain, reduced 
cholinergic activity in the hippocampus, and cortical loss of cho-
line acetyltransferase in AD, and the severity of these cholinergic 
abnormalities is correlated well with the degree of dementia [3–7]. 
Noninvasive imaging of mAChRs in the brain could contribute to 
the diagnosis and monitoring of medications for treatment of 
these diseases. Of interest, an age-related “increased” binding of 
agonist- based 18F-FP-TZTP was determined [53], which was 
completely the opposite result obtained with antagonist-based 
11C-benztropine [37], 11C-4-MPB [38–40], 11C-tropanyl ben-
zilate [41], and 11C-(+)3-MPB [20], showing “decreased” bind-
ing. The authors speculated that a lower concentration of ACh in 
the synapse was one possible explanation for the age-related 
increase in 18F-FP- TZTP binding [53]. It remains controversial 
that opposite effects of aging on mAChR binding were observed 
between agonist-based and antagonist-based PET probes. We 
reported the similar opposite effects of stress induced by head 
motion restriction on dopamine D2 receptor binding between 
agonist-based (11C-MNPA) and antagonist-based PET probes 
(11C-raclopride) [34]. Although it is well established that agonists 
can bind to a “high-affinity” state of the receptor, this phenome-
non is conceptually unresolved because it has yet to be ascertained 
exactly what state of the receptor (conformational, coupled etc.) 
defines “high-affinity.” These results suggest that when we attempt 
to develop novel PET probes, we should take into account the 
chemical properties of agonist or antagonist.

Hideo Tsukada et al.
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5 Conclusion

This chapter has introduced the procedure how to develop the 
novel PET probes for quantitative mAChR imaging with PET, and 
also showed how to utilize these PET probes in preclinical and 
clinical researches based on our own experiences. Thus, we 
 developed novel PET probes for mAChR imaging, 11C-(+)3-MPB 
and its N-alkyl substitution analogs with suitable kinetic properties 
for quantitative imaging of mAChRs in the living brain with 
PET. On the basis of these preclinical evaluations of 11C-(+)3-MPB 
as a novel PET probe for mAChR imaging, we applied this PET 
probe to assess the changes in mAChR binding in the brain of 
chronic fatigue syndrome patients [54]. These results of our stud-
ies described in this chapter strongly suggested the usefulness of 
these PET probes for pathophysiological and neurological assess-
ments of neurological/mental disorders.
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    Chapter 11   

 Detection of Non-neuronal Acetylcholine 

           Ignaz     Karl     Wessler      and     Charles     James     Kirkpatrick   

    Abstract 

   The biological role of acetylcholine and the cholinergic system has been revisited within the last 25 years. 
Acetylcholine and the pivotal components of the cholinergic system (high affi nity choline uptake, choline 
acetyltransferase and its endproduct acetylcholine, muscarinic and nicotinic receptors, cholinesterases) are 
expressed by more or less all mammalian cells, i.e., cells not innervated by neurons at all. Moreover, ace-
tylcholine and cholinergic binding sites have been described in plants. Acetylcholine is even detected in 
bacteria and algae and thus represents an extremely old signaling molecule on the evolutionary time scale. 
The following chapter summarizes the detection of acetylcholine beyond neurons with particular emphasis 
on the presence of acetylcholine in so-called primitive organisms. Finally, an overview is given about the 
detection in mammalian non-neuronal cells. The existence of the non-neuronal cholinergic system has 
identifi ed an important new target to illuminate the pathophysiological background of acute and chronic 
infl ammatory diseases as well as heart diseases and cancer.  

  Key words     Non-neuronal acetylcholine  ,   Non-neuronal cholinergic system  ,   HPLC combined 
with bioreactors and electrochemical detection  ,   Evolution  ,   Bacteria  ,   Plants  ,   Unicellular organisms  , 
  Epithelial–mesothelial–endothelial and immune cells  ,   Signaling via muscarinic and nicotinic receptors  

1       Introduction 

 Even in our modern day and age textbooks as well as academic 
education are presenting acetylcholine as a neurotransmitter medi-
ating the communication between neurons, interneurons and 
innervated effector cells such as muscle fi bers and glandular cells. 
An actual upload (  http://en.wikipedia.org/wiki/acetylcholine     [ 1 ]) 
describes acetylcholine as follows: “ acetylcholine has functions both 
in the peripheral nervous system  ( PNS )  and in the central nervous 
system  ( CNS )  as a neuromodulator .” An actual research in PubMed 
shows 150-fold more references in favor of the key words “acetyl-
choline and neurotransmitter” than given for the term “non-neuronal 
acetylcholine.” Of course, our knowledge about acetylcholine and its 
biological functions has substantially increased in the last 130 years, 
when for the fi rst time acetylcholine was extracted from the brain and 
called at fi rst neurin and later on synthesized as acetylcholine [ 2 ,  3 ]. 

http://en.wikipedia.org/wiki/acetylcholine
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It is fascinating today to realize that all the biological systems/
functions in which acetylcholine, released from central, parasympa-
thetic, and peripheral intramural neurons as well as motoneurons, 
is involved by stimulating at least 11 different subunits of nicotinic 
receptors and fi ve subtypes of muscarinic receptors. Thus, acetyl-
choline acts as neurotransmitter in the motoric and sensoric (i.e., 
thermal, pain, taste) system; acetylcholine is involved in complex 
integrative neuronal functions like memory, learning and sexual 
activity; acetylcholine, as a neurotransmitter of autonomic neu-
rons, controls the cardiovascular, respiratory, gastrointestinal, and 
urogenital system. However, this summarizes only the role of ace-
tylcholine within the nervous system, and the role of acetylcholine 
as a general signaling molecule beyond neurons has to be consid-
ered additionally. 

 To discriminate acetylcholine not synthesized by neuronal cells 
and not mediating nervous impulses but acting as autocrine/ 

paracrine signaling molecule from acetylcholine acting as neuro-
transmitter, the nomenclature “non-neuronal acetylcholine” and 
“non-neuronal cholinergic system” has been introduced in 1998 
and 1999 [ 4 ,  5 ]. One should consider that the existence of acetyl-
choline independent of neurons has been known for a long time 
before (for review see ref. [ 6 ]). Unfortunately, the scientifi c com-
munity has forgotten the fi rst experiments by Ewins and Dale who 
investigated the effect of an extract of the ergot fungus ( Claviceps 
purpurea ) on the blood pressure in 1914 [ 7 ,  8 ]. Ergot grows on 
rye particularly during rainy periods in spring and can induce seri-
ous intoxications (called “St. Anthony’s Fire”) which were known 
during the Middle Ages and were based on the vasoactive effects of 
the ergot alkaloids. When Ewins and Dale investigated the hemo-
dynamic effects of an extract of this fungus, they found a depressor 
effect [ 7 ,  8 ]. Later on they could attribute this depressor effect to 
acetylcholine [ 8 ]. In conclusion, the fi rst experiments illuminating 
a biological role of acetylcholine, “the blood pressure lowering 
substance”, the molecule was extracted from fungi, i.e., from non- 
neuronal organisms. Some years later (1921) Otto Loewi pre-
sented the fi rst experimental evidence for the neurotransmitter role 
of acetylcholine, when he used a pair of isolated frog hearts [ 9 ]. 
The fi rst heart with the nerves attached was stimulated and the 
second was used as detector to demonstrate the released substances 
from the fi rst one. He postulated the so-called “Vagus-Stoff” 
or “parasympathin” acting as humoral transmission of nervous 
impulses [ 9 ] and 5 years later the vagus-substance was identifi ed 
as acetylcholine [ 10 ]. Later on (1963) Whittaker stated that 
 “acetyl choline occurs in non-nervous tissues and is so widely dis-
tributed in nature to suggest a non-nervous function of it” [ 11 ] 
and Koelle speculated about acetylcholine representing a phylo-
genetically very old molecule, which, in primitive organisms such 
as plants and unicellular organisms, might be involved in the 
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 regulation of transport processes [ 12 ]. Moreover, important 
 contributions in the last century showed the synthesis of acetylcho-
line in bacteria, algae, yeast, fungi, protozoa, nematodes, sponges, 
and plants [ 4 – 6 ,  13 – 22 ] Thus, acetylcholine is as far as we know 
one of the oldest signaling molecules in the evolutionary process. 

 The present chapter is focused on the detection of non- 
neuronal acetylcholine. In the last years important review articles 
have been published to describe this topic in more detail [ 4 – 7 , 
 23 – 35 ]. Moreover, in 2002, 2006, 2011, and 2014 international 
conferences on non-neuronal acetylcholine were held [ 36 – 38 ].  

2     Detection Methods for Acetylcholine 

 For decades the most sensitive, but less specifi c, method for deter-
mination of acetylcholine was the bioassay, such as the leech longi-
tudinal muscle, the guinea pig small intestine, the frog rectus 
abdominis muscle, and cat blood pressure. Using these detector 
systems together with specifi c antagonists the lower detection limit 
for acetylcholine amounted to about 0.2–5 ng (corresponding to 
about 1–20 μmol) [ 6 ]. In addition acetylcholine can be detected 
by gas chromatography combined with a preceding chemical trans-
formation of the quaternary ammonium compound acetylcholine 
or by ion-pair extraction and using a nitrogen selective detector 
[ 39 ]. The detection limit for these methods is around 50–100 pmol 
acetylcholine. 

 Later on in the 1980 decade acetylcholine is detected by HPLC 
combined with bioreactors, i.e., an analytical column separates ace-
tylcholine from choline and thereafter acetylcholine is converted 
by immobilized acetylcholinesterase to choline which reacts with 
immobilized choline-oxidase to H 2 O 2  and betaine; H 2 O 2  can then 
be detected either by luminescence or by electrochemical detection 
[ 40 ,  41 ]. The HPLC method was further optimized in the follow-
ing years by using microbore columns with an internal diameter of 
1 mm and attained a sensitivity of about 10–50 fmol/20 μl ([ 4 ], 
see also Fig.  1a ). Finally, a radioimmunoassay for acetylcholine has 
also been established [ 42 ]. Very recently a highly sophisticated 
method has been developed which can visualize non-neuronal ace-
tylcholine in the epithelial cell layer of the mouse small intestine 
[ 43 ]; matrix-assisted laser absorption/ionization (MALDI-TOF) 
imaging mass spectrometry has been optimized for the cellular 
detection and visualization of acetylcholine.

   The increase in the detection limit was very important for 
progress in understanding the non-neuronal cholinergic system, 
because mammalian non-neuronal cells contain considerably less 
acetylcholine than neurons. The non-neuronal cells (see Table  3 ) 
do not concentrate acetylcholine in high quantities within small 
vesicles, where acetylcholine is highly concentrated and stored by 
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spiked with ACh
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b

  Fig. 1       Detection of non-neuronal ACh by HPLC with bioreactors and electrochemi-
cal detection. ( a ) 85 mg of a stem of  Urtica dioica  was placed in 1 ml of 15 vol.% 
formic acid in acetone and minced with scissors. After standing on ice (30 min) and 
centrifugation, the supernatant was evaporated to dryness by nitrogen. The dried 
sample was resuspended in 1 ml of a phosphate buffer, diluted by a factor of 200 
and an aliquot (20 μl) was injected onto the HPLC-system (for details see ref. [ 44 ]). 
 First row : chromatogram of a standard solution containing 1 pmol acetylcholine 
and choline/20 μl using the regular analytical column or, on the  right hand side , an 
analytical column packed with acetylcholine-specifi c esterase, i.e., under this con-
dition the fi rst acetylcholine peak disappeared.  Second row : chromatogram of the 
extract from  Urtica dioica ; the second chromatogram shows the same sample 
spiked with 0.6 pmol acetylcholine/20 μl; still only one peak appears at the reten-
tion time corresponding to acetylcholine; third chromatogram shows the same 
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neurons to generate a super threshold signal upon neuronal activity. 
In contrast, non-neuronal cells appear to release acetylcholine in 
small quantities more or less continuously to maintain cellular 
homeostasis by autocrine and paracrine signaling via muscarinic 
and nicotinic receptors which are abundantly expressed on more or 
less all cells. Thus, a very sensitive method is required to detect 
non-neuronal acetylcholine extracted either from human epithelial 
cells or human skin by dermal microdialysis [ 44 ,  45 ]. 

 However, one has to consider that HPLC measurement 
 combined with bioreactor and electrochemical detection does not 
represent a 100 % specifi c method, as other unknown compounds 
or other choline-esters can produce peaks with a retention rate 
similar to that of acetylcholine. Therefore, one has to prove the 
identity of the acetylcholine peak by spiking the sample with a low 
quantity of applied acetylcholine and by using an acetylcholinester-
ase-packed analytical column. Under this condition the acetylcho-
line peak must disappear and the choline peak should increase 
correspondingly. A typical example is shown in Fig.  1a  using extracts 
of leaves of  Urtica dioica  and for reference a standard sample con-
taining 1 pmol/20 μl of both acetylcholine and choline. Figure  1b  
demonstrates the presence of acetylcholine in human platelets. 

 For detection of non-neuronal acetylcholine in tissue or cells 
(freshly isolated or cultured) it is important to homogenize or lyse 
the cells/tissue in small volumes. For example, pieces of isolated 
airways or small intestine can be fi xed in a Petri dish with the lumi-
nal surface facing upwards and a cotton-tipped applicator can gen-
tly rubbed for 5 s along the luminal surface. Using this approach 
the basal membrane of the surface airway epithelium is not pene-
trated, i.e., the underlying lamina propria remained intact [ 44 ]. 
Likewise, rubbing of the intestinal surface removed tips of villi 
only, the lamina muscularis mucosae with the underlying choliner-
gic submucosal plexus remained intact [ 44 ]. Corresponding sam-
ples can be taken from the lung surface (pulmonary pleura) or 
from the surface epithelium of oral and vaginal mucosa of volun-
teers [ 44 ]. After rubbing, the cotton-part of the applicator is placed 
in 1 ml ice-cold 15 % formic acid in acetone (v/v) for 30 min with 
intermittent vortexing. This medium mediates cell lysis and inacti-
vates all enzymes immediately. Thereafter, the cotton is removed 
and the medium evaporated to dryness by a smooth nitrogen jet. 

 Likewise, tissue can be pulverized by means of liquid nitrogen 
and placed in 1 ml ice-cold 15 % formic acid in acetone (v/v). After 
standing on ice (30 min) with repeated vortexing, the samples 

Fig. 1 (continued) sample using the esterase-packed analytical column; the fi rst acetylcholine peak disappears. 
( b ) 40 ml of a concentrate of human platelets were centrifuged and the pellet was analyzed as described above 
under a; the huge choline peak may be caused by activation of platelets by the separation procedure       
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can be centrifuged (10 min; 4000 rpm), and the supernatant is 
 evaporated to dryness by a smooth gas jet of nitrogen. This will 
take about 30 min and within that time samples can again be placed 
on ice to prevent spontaneous hydrolysis of acetylcholine. The 
dried sample is resuspended in 300–1000 μl of the mobile phase of 
the HPLC system (70 mM phosphate buffer with 0.3 mM EDTA; 
pH 8.5 adjusted). The principle of the detection of acetylcholine 
by HPLC and the use of bioreactors and electrochemical detection 
is described above. The use of microbore columns is helpful bec-
ause the fl ow-front of H 2 O 2  originating from conversion of acetyl-
choline to choline and betaine is concentrated and then, can 
produce a measurable current at the working electrode. Moreover, 
the enzymatic reaction acts as an amplifi er, because 1 mol acetyl-
choline produces 2 mol H 2 O 2 . It is diffi cult to use internal  standard, 
therefore acetylcholine content has to be quantifi ed by comparison 
with external acetylcholine standard which is measured before and 
after an individual sample. 

 In the following sections examples are given of the detection 
of non-neuronal acetylcholine, in which acetylcholine is either 
measured directly or the expression of one of the synthesizing 
enzymes is shown. Acetylcholine can be synthesized by choline 
acetyltransferase (ChAT) or carnitine acetyltransferase (CarAT). 
Both enzymes have been found to mediate the synthesis of non- 
neuronal acetylcholine, for example, in plants but also in verte-
brates and invertebrates [ 6 ,  22 ,  46 – 48 ].  

3     Detection of Acetylcholine in So-Called Primitive Organisms Generated 
Very Early on the Evolutionary Time Scale 

 Bacteria are regarded as one of the fi rst forms of life on earth, aris-
ing about four billion years ago; also archaea represent prokaryotic 
microorganisms and are thought to have populated the earth about 
three billion years ago. Using a radioimmunoassay or HPLC com-
bined with electrochemical detection acetylcholine has been 
detected in bacteria and archaea (see Table  1 ). An acetylcholine- 
synthesizing activity has been isolated from extracts of bacteria or 
archaea, but the properties differ from the mammalian ChAT 
enzyme. The function of acetylcholine in these microorganisms is 
unknown so far. However, bacteria show locomotion and it has 
been shown that motility of two photosynthetic bacteria ( Rhodo-
spirillum rubrum ,  Thiospirillum jenense ) was stopped by 1 mM 
atropine, an antagonist of muscarinic receptors. Furthermore, phy-
sostigmine and other cholinesterase inhibitors also reduced motil-
ity [ 49 ]. It is probable that the system became desensitized in the 
presence of cholinesterase inhibitors. Table  1  gives an overview 
about the presence of acetylcholine in prokaryotic microorganisms 
and unicellular eukaryotic organisms as well as in fungi and lower 
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plants, i.e., in biological systems (including the gill plates of 
 mussels) not regulated by neurons. All these biological systems are 
created very early during evolution.

4        Detection of Acetylcholine in the Plant Kingdom 

 Table  2  gives an overview of the expression of acetylcholine in the 
plant kingdom, i.e., multiple examples for the expression of acetyl-
choline independent of any existing neuronal system. Obviously, 
acetylcholine is expressed in lower and higher plants. It seems 
 inevitable that the list will be enlarged in the future. One has to 
consider that our knowledge about the biological function of ace-
tylcholine is very scanty, and a systematic analysis of the expression 
and biological role of acetylcholine within the plant kingdom is 
lacking. Reports have indicated that the synthesis of acetylcholine 
in plants may be regulated by light [ 50 ]. One very interesting obser-
vation is that the acetylcholine content is very high in rapid grow-
ing plants like  bamboo ,  helianthus  and  Urtica dioica . Moreover, it 
has been shown that at least in  Urtica dioica  acetylcholine is invol-
ved in the regulation of water homeostasis and photosynthesis [ 24 ]. 
Particularly, 1 μM atropine reduced the intracellular space, the cell 
vacuole, and cell size and mediated proliferation of the thylakoid 
membrane [ 24 ,  34 ]. In conclusion, also in the plant kingdom 
binding sites for acetylcholine exist, which can be blocked by 
atropine.

5        Detection of Acetylcholine or Positive Anti-ChAT Immunoreactivity 
in Mammalian Non-neuronal Cells 

 To demonstrate the existence of non-neuronal acetylcholine in 
mammalian cells without any doubt, a contamination of neuronal 
acetylcholine has to be excluded in the respective samples. Thus, it 
has to be shown conclusively that acetylcholine is synthesized by 
cells not innervated at all by neurons and that these cells/tissues 
cannot take up acetylcholine which may be released from possible 
adjacent neurons. The following fi ndings demonstrate without any 
doubt that isolated cells or tissue which lacks any cholinergic inner-
vation synthesize and release acetylcholine:

    (a)    Acetylcholine synthesis has been demonstrated in various 
 cultured cells (keratinocytes, airway epithelial cells, and cardio-
myocytes) and cell lines like leukemic T-cells (MOLT-3), 
embryonic stem cells (CGR8), colon (Caco-2; H508) or lung 
(H82) cancer cell lines [ 26 ,  51 – 60 ]. All these cultured cells are 
free of any neuronal input. Release of acetylcholine was demon-
strated also from cultured bovine arterial endothelial cells [ 61 ].   
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   (b)    Cultured epithelial cells isolated from the airways of monkeys 
release acetylcholine into the supernatant [ 62 ]. In organic-
cation- transporter knockout mice, i.e., a condition limiting the 
release of non-neuronal acetylcholine, airway epithelial acetyl-
choline content was doubled, which indicates an in vivo release 
of acetylcholine from these cells [ 63 ,  64 ]. Likewise, the release of 
non-neuronal acetylcholine becomes evident by the inhibitory 

   Table 2  
  Presence of non-neuronal acetylcholine in the plant kingdom   

 Family  Genus,  Species   Amount  References 

 Amaranthaceae  Spinacia  Spinacia oleracea   ~3–7 nmol/g  [ 21 ,  50 ] 

 Anthophyta  Arabidopsis  Arabidopsis thaliana  
 Eggplant  Solanum melongena  
 Bamboo shoot  Phyllostachys bambusoides  
  Phyllostachys pubescens  

 23.7 pmol/g 
 416 nmol/g 
 2.9 μmol/g 
 0.6–1.7 μmol/g 

 [ 22 ] 

 Apocynaceae  Amsonia  Amsonia angustifolia   [ 82 ] 

 Araceae  Arum  Arum specifi cum ,  Arum 
maculatum  

 ~1.8 nmol/g  [ 24 ] 

 Asteraceae  Helianthus  Helianthus annuus  
 Senecio  Senecio vulgaris  

 3–8 μmol/g 
 ~6.5 nmol/g 

 [ 21 ,  50 ] 

 Brassicaceae  Capsella  Capsella bursa - pastoris  
 Sinapis  Sinapis alba  

 ~4.8 nmol/g  [ 24 ] 

 Bryophyta  Moss  Conocephalum conicum  
  Polytrichum ,  Brachythecium  

 0.03–8.0 nmol/g  [ 22 ,  24 ,  50 ,  83 ] 

 Coniferophyta  Cedar  Cryptomeria japonica  
 Hinoki  Chamaecyparis obtuse  
 Pine  Pinus thunbergii  
 Podocarp  Podocarpus macrophyllus  

 120–343 pmol/g  [ 50 ] 

 Cucurbitales  Cucurbita  Cucurbita pepo   3–10 nmol/g  [ 84 ] 

 Fabaceae  Phaseolus  Phaseolus vulgaris ,  Phaseolus 
aureus  

 Pisum  Pisum sativum  

 ~100 ng/g 
 1–8 nmol/g 

 [ 50 ,  85 ] 

 Moraceae   Malayan jack - fruit Artocarpus integra   564 μg/g  [ 84 ] 

 Plantaginaceae  Digitalis  Digitalis ferruginea   1.6 mg/50 g 
pulverized leaves 

 [ 86 ] 

 Pterophyta  Fern  Pteridium ,  Gleichenia glauca   0.07–1.6 nmol/g  [ 22 ] 

 Rosaceae  Fragaria  Fragaria vesca  
 Crataegus  Crataegus specifi cus  

 ~5.4 nmol/g  [ 24 ,  87 ] 

 Sphenophyta  Horsetail  Equisetum arvense  
  Equisetum robustum  

 38 pmol/g 
 ~2.8 nmol/g 

 [ 22 ,  24 ] 

 Urticaceae  Urtica  Urtica dioica  
  Girardinia heterophylla  

 ~0.5 μmol/g  [ 24 ,  88 ,  89 ] 
 Fig.  1a  
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effect of nicotine receptor antagonists on the migration of cultured 
airway epithelial cells [ 65 ].   

   (c)    The placenta of various species (human, monkey, cow, rabbit, 
rat, mouse), an organ free of cholinergic neurons, synthesizes, 
stores and releases acetylcholine [ 6 ,  15 ,  66 – 70 ].   

   (d)    ChAT mRNA and ChAT protein have been demonstrated in 
most of these cells.   

   (e)    In vivo release of acetylcholine from human skin has been 
demonstrated by dermal microdialysis. Botulinum toxin blocks 
neuronal acetylcholine release but does not inhibit acetylcho-
line release from the human skin [ 45 ].     

 In conclusion, convincing experimental data have been pub-
lished since the third decade of the last century about the presence 
of non-neuronal acetylcholine in mammalian cells. Nevertheless, in 
the following decades the scientifi c community has focussed more 
or less exclusively on the role of neuronal acetylcholine in the brain 
and peripheral nervous system. Possibly, the brain and neurons 
may have drawn more attraction than apparently less specifi ed 
 non- neuronal cells, although the regulation and communication of 
these cells and their respective networks is already extremely com-
plex. It is fascinating that epithelial or immune cells communicate 
by the same molecules and cholinergic receptors as do neurons in 
the brain. Both, the specifi c cholinesterase and the pseudocholin-
esterase, play an important role to clearly separate both systems 
(non-neuronal vs. neuronal) in vivo. This is operating because 
 specifi c cholinesterase represents the enzyme with the highest 
turnover rate created by nature and because of the abundant 
 presence of both enzymes in mammalian organisms thus limiting 
neuronal acetylcholine to act at hot spots only. 

 Table  3  gives an overview about the expression of non- neuronal 
acetylcholine in various mammalian cells. Accordingly, acetylcho-
line has been detected directly after extraction from these cells/
tissues or positive anti-choline acetyltransferase (ChAT) immuno-
reactivity has been found. However, in the case of using the method 
of immunohistochemistry alone some caution is required, because 
false positive staining has been found with antibodies directed 
against muscarinic receptors in corresponding knockout mice [ 71 ].

   When non-neuronal acetylcholine is released and present 
in the extracellular space or plasma [ 26 ], it will diffuse in close 
 proximity to its source but also to neighboring cells, because in 
principle the expression level of cholinesterase activity is lower 
in non-innervated than in innervated cells. For example release of 
acetylcholine from the isolated placenta can be measured without 
preceding inhibition of cholinesterase [ 6 ,  70 ]. Consequently, non- 
neuronal acetylcholine can mediate autocrine and paracrine effects 
by stimulating muscarinic and nicotinic receptors which are ubiq-
uitously expressed in the majority of cells (for review see ref. [ 33 ]).  
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6     Conclusion 

 Research early and late in the last century has substantially broad-
ened our understanding of the role of acetylcholine and the cholin-
ergic system, i.e., choline uptake, synthesizing enzymes, muscarinic 
and nicotinic receptors, and the inactivating enzymes. This system 
has been created extremely early on the evolutionary time scale 
(about three to four billion years ago). Thus, it is not surprising to 
detect the cholinergic system in plants, unicellular organisms and 
in more or less all mammalian cells independently of neurons. 
Neurons have become specialized cells prepared for signaling 
on the milliseconds time scale. Therefore, neurons have taken an 
advantage of the already established cholinergic signaling system 
and have further specialized this system during evolution: storing 
in specialized organelles (vesicles), triggering vesicular release, 
establishing of hot spots for nicotinic receptors and acetylcholines-
terase. In contrast, the non-neuronal cholinergic system does not 
mediate cellular communication on the millisecond time scale 
but establishes a variable cholinergic tone to co-regulate basic 
cell functions like proliferation, differentiation, cell–cell contact, 
 secretion, and absorption. For example, acetylcholine via musca-
rinic receptors causes an increase of intracellular calcium within 
seconds but not within milliseconds [ 58 ]. It is important to learn 
more about the physiological and pathophysiological role of non- 
neuronal acetylcholine and the non-neuronal cholinergic system. 
Recent articles have described an important role of the non- neuronal 
cholinergic system in different diseases [ 30 ,  72 – 77 ]. Particularly, 
chronic airway diseases (COPD and bronchial asthma) have been 
identifi ed to be treated with long acting muscarinic receptor antag-
onists (aclidinium, glycopyrronium, tiotropium) to induce thera-
peutic effects beyond bronchodilation. In animal models provoking 
COPD or asthma these receptor antagonists have been shown 
to reduce airway infl ammation and airway remodeling by suppress-
ing cellular effects of non-neuronal acetylcholine [ 78 ]. Moreover, 
intensive research is required to further illuminate the pathophysi-
ological role of the non-neuronal cholinergic system in other 
infl ammatory diseases, cancer, and heart diseases.     
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    Chapter 12   

 Utilization of Superfused Cerebral Slices in Probing 
Muscarinic Receptor Autoregulation of Acetylcholine 
Release 

              Glenda     Alquicer     ,     Vladimír     Doležal      and     Esam     E.     El-Fakahany   

    Abstract 

   Signal transmission from cholinergic nerves is mediated by two receptor families: ionotropic nicotinic and 
metabotropic (G-protein coupled) muscarinic receptors. The muscarinic receptor family comprises fi ve 
receptor subtypes (M 1  through M 5 ), each encoded by its own gene. Individual subtypes play important 
specifi c roles in many physiological processes, ranging from vegetative to cognitive functions and memory. 
Cloning of individual muscarinic receptor subtypes has enabled targeted studies of ligand binding and 
activation characteristics of the recombinant protein and a rapid increase in the development of receptor 
selective drugs for various potential therapeutic uses. Results of testing new drugs obtained on recombi-
nant proteins need to be verifi ed using systems that better mimic a physiological environment. Here we 
provide a brief outline and examples of the utilization of superfused brain slices for probing drug effects 
on muscarinic autoreceptor-mediated regulation of acetylcholine release.  

  Key words     Muscarinic receptors  ,   Acetylcholine release  ,   Autoregulation  ,   Superfusion  

1      Background 

 A hundred years ago acetylcholine (ACh) was identifi ed and 
 proposed as the fi rst chemical neurotransmitter [ 1 ,  2 ]. The chemi-
cal transmission of nerve impulses by acetylcholine was unequivo-
cally proven in superfused frog heart [ 3 ,  4 ]. The discovery of 
chemical neurotransmission by H.H. Dale and O. Loewi was 
awarded a Nobel Prize in medicine in 1936. Since the identifi ca-
tion of ACh as a chemical neurotransmitter, multiple roles in the 
central as well as peripheral nervous systems have been revealed, 
and tremendous progress in the fi eld of physiology and pharmacol-
ogy of cholinergic neurotransmission has been achieved [ 5 ,  6 ]. 

 Acetylcholine is synthesized and stored mainly in cholinergic 
nerve terminals from which it is liberated by nerve impulses 
[ 7 – 9 ]. Unlike other small neurotransmitters, quick hydrolysis by 
 cholinesterases terminates ACh action in the absence of reuptake 
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of extracellular ACh back to the nerve terminal or surrounding 
glial cells. In addition to neuronal ACh some non-neuronal cells 
are also capable of synthesizing and releasing ACh [ 10 – 12 ]. 
Irrespective of its origin, ACh present in the extracellular fl uid 
transmits signals via nicotinic and muscarinic receptors located in 
the plasma membranes of recipient cells [ 5 ]. Nicotinic receptors 
are a family of pentameric ligand-gated ionic channels that insure 
fast excitatory transmission. Skeletal muscle nicotinic receptors are 
composed of subunits α 1 , β 1 , γ, δ, or ε while neuronal nicotinic 
receptors are hetero or homopentamers composed of subunits α 2  
through α 11  and β 2  through β 4  [ 13 – 15 ]. Muscarinic receptors 
belong to the family of metabotropic receptors (GPCR, receptors 
that transduce extracellular signal to the cell interior via G-proteins) 
and comprise fi ve subtypes denoted M 1  through M 5  [ 16 ]. Each 
muscarinic receptor subtype is a product of a single gene [ 17 ,  18 ]. 
Odd-numbered muscarinic receptors preferentially couple with 
G q/11  G-proteins and activate phospholipase C signaling pathway. 
Even-numbered receptors preferentially utilize G i/o  G-proteins to 
inhibit adenylyl cyclase and the cAPM signaling pathway [ 18 ]. In 
addition to the activation of these intracellular signaling pathways, 
odd-numbered muscarinic receptors regulate potassium conduc-
tance [ 19 ] and even-numbered muscarinic receptors directly 
 regulate specifi c voltage- operated calcium channels [ 20 ,  21 ] by 
quick “membrane delimited” action through G βγ  G-protein sub-
unit dimers [ 22 ]. 

 Muscarinic transmission subserves many diverse physiological 
roles both in the central and peripheral nervous systems ranging 
from vegetative to cognitive functions [ 6 ,  23 ]. With respect to syn-
apse morphology, muscarinic receptors may be localized on pre-
synaptic nerve terminals or postsynaptic membranes. Presynaptic 
muscarinic receptors may be further classifi ed as heteroreceptors 
(located on nerve terminals releasing different transmitters than 
ACh) or autoreceptors (located on ACh-releasing terminals). 
Activation of presynaptic muscarinic receptors may increase or 
decrease release of different neurotransmitters. In addition to syn-
aptic localization many cells (e.g., immune cells, endothelial cells, 
stem cells, cancer cells, keratinocytes) that do not form classical 
synapses express various subtypes of muscarinic receptors [ 10 – 12 ].  

2    General Remarks 

 Acetylcholine is synthesized by the enzyme choline acetyltransfer-
ase in the cytoplasm of synaptic terminals from choline and acetyl-
coenzyme A [ 7 – 9 ]. Synthesis of ACh is entirely dependent on 
choline supply from the extracellular fl uid while acetylcoenzyme 
A is formed in nerve terminal mitochondria. Choline is transported 
to the terminal from the extracellular fl uid by a high-affi nity  choline 
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transporter [ 24 ,  25 ]. Inhibition of the choline transporter results 
in inhibition of neuronal ACh synthesis. Acetylcoenzyme A origi-
nating from oxidative metabolism of glucose is supplied by nerve 
terminal mitochondria. Shortage of immediate pyruvate precursors 
(glucose and lactate) and oxygen strongly inhibits ACh synthesis 
and release [ 26 – 29 ]. Synthesized ACh is transported to synaptic 
vesicles by way of a vesicular acetylcholine transporter [ 30 – 32 ] and 
becomes available for vesicular release. Nerve stimulation- evoked 
release of neuronal ACh fully depends on the infl ux of extracellular 
calcium as a result of depolarization of nerve terminals and open-
ing of specifi c voltage-operated calcium channels or artifi cially by 
calcium ionophores (Fig.  1 ).

   Cerebral (tissue) slices ex vivo are useful for studies of presyn-
aptic physiology and pharmacology of synthesis, storage, and 
release of ACh. The superfusion technique is particularly suitable 
for studies of presynaptic regulation of transmitter release. This 
approach is based on radioactive prelabeling of acetylcholine in 
the nerve terminal with its tritiated precursor choline followed 
by superfusion of slices under conditions that prevent re-uptake of 
choline and new synthesis of ACh. Measurement of the evoked 
release of preformed labeled ACh thus does not depend on changes 
in synthesis or storage of ACh but principally depends on charac-
teristics of nerve terminal releasing machinery and its regulation by 
presynaptic receptors. Utilization of ex vivo brain slices represents 
a reasonable experimental preparation that allows good control 
of extracellular milieu and adequate degree of tissue integrity. 
However, synaptosomes [ 33 ,  34 ] and in vivo dialysis [ 35 ] are 
superior in these two aspects, respectively.  

3    Preparation and Superfusion of Cerebral Slices 

      Stock solution A (tenfold concentrated) (mM): NaCl 1230, KCl 
30, CaCl 2  13, MgSO 4  10 in redistilled water.  

  Stock solution B (tenfold concentrated) (mM): NaH 2 PO 4  12, 
NaHCO 3  250 in redistilled water.  

  Hemicholinium-3 (HC-3) 10 mM in redistilled water.  
  (Methyl  3 H)-choline chloride ( 3 H-Ch), SRA ~80 Ci/mmol, 

1 mCi/ml, ~12.5 μM (e.g., ARC, USA).  
  Drugs to be tested 100- to 1000-fold concentrated in water or 

other solvent (e.g., DMSO, ethanol) as feasible.     

   Dilute 100 ml of stock solution B in approximately 750 ml of 
redistilled water and bubble with gas mixture of 95 % oxygen/5 % 
carbon dioxide for at least 20 min at room temperature. Add 
100 ml of stock solution A, 2 g of glucose, adjust pH to 7.4 (using 

3.1  Stock Solutions

3.2  Preparation 
of Krebs Buffer
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superfusion apparatus, and superfused at a fl ow rate of 0.5 ml/min with Krebs buffer containing 10 μM 
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sodium hydroxide or hydrochloric acid) if needed, and top up with 
redistilled water to 1000 ml. Keep for further use at room tem-
perature under atmosphere 95 % oxygen–5 % carbon dioxide or 
continuous bubbling with 95 % oxygen–5 % carbon dioxide.  

   Add 10 μl of  3 H-Ch to 2 ml of Krebs buffer.  

   Add HC-3 to Krebs solution at a fi nal concentration of 10 μM. 
Drugs to be tested during the superfusion experiment are diluted 
from stock solutions in Krebs buffer containing HC-3.  

   Kill experimental animal (e.g., rat or mouse) by cervical dislocation 
and decapitation. Quickly remove the brain from the skull and 
 dissect the selected brain region. Prepare slices from dissected tis-
sue by McIlwain’s tissue chopper set at a width of slices less than 
0.4 mm. This is to ensure adequate substrate and oxygen satura-
tion of all cells in the cerebral slices that solely depends on diffu-
sion. Wash slices several times in surplus of fresh oxygenated Krebs 
buffer without HC-3 (at least three times in about 2 ml of fresh 
oxygenated buffer per 0.1 g of tissue) by gentle mixing and gravity 
sedimentation in order to remove tissue debris, extracellular fl uid, 
and solutes released from damaged cells.  

   Depending on the number of channels of the superfusion appara-
tus (e.g., Brandel, Gaithersburg, MD, USA), transfer 10–20 slices 
to 2 ml eppendorf test tube, add 1 ml of fresh oxygenated Krebs 
buffer (without HC-3) and  3 H-Ch to a fi nal concentration around 
100 nM (5 μl of  3 H-Ch stock solution per 1 ml of loading medium). 
Replace air atmosphere in test tube by 95 % oxygen–5 % carbon 
dioxide, close the tube, and incubate for typically 30 min at 
37 °C. At the end of labeling wash slices at room temperature 
three to fi ve times in 1 ml of fresh oxygenated Krebs buffer con-
taining HC-3 to remove excess extracellular radioactivity.  

   Superfusion chambers are made of Tefl on and after assembly incor-
porate platinum grid electrodes. Electrodes are physically separated 
from slices by Whatman GF/B or GF/C fi lter discs. First cover the 
lower electrode with fi lter disc, then place body of the chamber 
and randomly transfer 1–2 slices per chamber. Finally, cover the 
upper part of the chamber with fi lter disc and insert the upper 
electrode.  

   The whole superfusion apparatus including buffer vessels is placed 
in a temperature-controlled environmental cover set to 37 °C. 
Buffer fl ow is driven by peristaltic pump set to a fl ow rate of 
0.5 ml/min. Superfusion chambers are oriented vertically with 
infl ow from the bottom to minimize the risk of air bubble trapping 
inside the chamber that would impede electrical stimulation. 

3.3  Labeling Medium

3.4  Superfusion 
Medim

3.5  Preparation 
of Cerebral Slices

3.6  Labeling 
of Slices

3.7  Assembling 
Superfusion Chambers

3.8  Superfusion
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Electrical wiring of stimulation electrodes should be parallel so that 
occasional failures due to air bubble accumulation within chambers 
or incorrect assembly of a given chamber impacts only this cham-
ber but not others. 

 Superfuse slices at a rate of 0.5 ml/min at 37 °C for 1 h with 
Krebs buffer containing 10 μM HC-3 that prevents further uptake 
of choline, to remove residues of extracellular and loosely bound 
tissue radioactivity, and to let slices recover after loading. Discard 
superfusate collected during this washing period. 

 Start collection of 4-min fractions to scintillation vials by means 
of a built-in fraction collector. The fi rst two fractions before the 
fi rst stimulation are suffi cient to determine resting liberation of 
radioactivity (see Figs.  1 ,  2 , and  3 ). Stimulation is then started with 
intervals between stimulations being dependent on the length of 
stimulation. Tested drugs should be present not earlier than base-
line after preceding stimulation is reached and two fractions 
(8 min) before stimulation in the presence of tested drug to see a 
possible effect on resting liberation of radioactivity, and to assure 
suffi cient equilibration of the drug within slices.

    The following superfusion protocol was used for experiment 
shown in Fig.  2  (for details see text to Figure).

   Apply the fi rst electrical stimulation at the beginning of the third 
fraction collection.  

  Superfuse with carbachol from the beginning of the seventh frac-
tion collection.  

  Apply the second stimulation at the beginning of the ninth fraction 
collection.  

  Superfuse with atropine from the beginning of the 13th fraction 
collection.  

  Apply the third stimulation at the beginning of the 15th fraction 
collection.    

 At the end of the superfusion stop the fraction collector and 
peristaltic pump. Remove fi lter discs with slices from superfusion 
chambers and let slices dissolve in scintillation vials in 0.5 ml of 
1 M NaOH for 30 min at 50 °C. These samples serve to determine 
radioactivity remaining in slices after superfusion for calculation of 
fractional release of radioactivity in collected fractions (i.e., radio-
activity in a given fraction divided by sum of radioactivity in this 
and all following fractions and slice at the end of superfusion).  

   Add 3 ml of scintillation cocktail (hydrophilic scintillation cocktail 
with high water absorbing capacity, e.g., Rotiszint Eco Plus) to 
each of collected fractions and tissue lysates. Thoroughly mix to get 
homogenous solution, let stand for 2 h in the dark, then measure 
radioactive content in a liquid scintillation counter (e.g., Packard 
Tricarb, Perkin Elmer, USA) with counting each sample for 5 min.  

3.9  Scintillation 
Counting
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  Fig. 2    Effects of carbachol and atropine on electrical stimulation-evoked ACh release from rat striatal slices. 
 Upper panel : Striatal slices were prepared and superfused as described in Fig.  1 . They were stimulated electri-
cally thrice (2 ms monopolar pulses at 1 Hz for 1 min, 25 mA;  open symbols ) at the beginning of the third 
(always control stimulation), ninth ( open symbols , control;  closed symbols , 10 μM muscarinic agonist carba-
chol was present from the 6th to 11th fraction), and 15th ( open symbols , control;  closed symbols , 1 μM mus-
carinic antagonist atropine was present from the 12th fraction till the end of superfusion) fraction. Points are 
means ± SEM when bigger than symbol of three slices from a single experiment.  Lower left panel : The evoked 
release of labeled ACh was calculated as the difference between the release of radioactivity during stimulation 
and resting liberation of radioactivity.  Lower right panel : The release of ACh during the second (S2; control or 
in the presence of carbachol) and third (S3; control or in the presence of atropine) stimulation is normalized in 
relation to the fi rst stimulation (S1) and expressed as ratios S2/S1 and S3/S1. Electrical stimulation evokes at 
least three successive reliable responses with a small decline of the third stimulation possibly due to autoin-
hibition. Carbachol inhibits electrically evoked release of ACh by about 55 % and washing with atropine fully 
reverses autoreceptor- mediated inhibition of the evoked release       
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  Unlike other small neurotransmitters, released ACh is quickly 
hydrolyzed to choline and acetate. Radioactivity found in the col-
lected 4-min fractions thus consists of radioactive label in a rather 
small fraction of total ACh, labeled choline derived from hydrolysis 
of prelabeled ACh, and labeled choline and its metabolites derived 
from prelabeled tissue. For this reason the resting liberation of 
radioactivity is not a reliable measure of neuronal ACh release. 
However, the release of radioactivity evoked by electrical or chemi-
cal stimulation of nerve terminals over background liberation 
 consists of labeled ACh and labeled choline derived from hydroly-
sis of released ACh. Stimulated release of  3 H is thus an adequate 
measure of [ 3 H]ACh release even in the absence of cholinesterase 
inhibitors [ 36 ,  37 ]. 

 Typically, slices during collection period are exposed several 
times to electrical or chemical stimulations that are separated by 
resting periods for recovery before the next stimulation is deliv-
ered. The fi rst stimulation always serves as control stimulation. 
Drugs to be tested are added to the superfusion fl uid at a suitable 
time before the test stimulation. At the end of superfusion, slices 
are removed from superfusion chambers and dissolved. The 
radioactivity remaining in tissue lysates after superfusion and 
in each collected fraction is measured by liquid scintillation 
counting. 

 The release of radioactivity in individual fractions is expressed 
as fractional release, i.e., the proportion of released radioactivity 
from total radioactivity present in slices at the beginning of respec-
tive collection period. Afterwards stimulated release of ACh is cal-
culated as the difference between the radioactivity collected during 
stimulation and that under resting conditions immediately before 
the stimulation and after the stimulated release returned back to 
resting liberation of radioactivity. Effects of tested drugs are fur-
ther normalized to control (fi rst) stimulation run in the absence of 
tested drug (ratio of stimulated release in the presence of drug/
control stimulated release, Sn/S1) and compared to another mea-
surement that includes only control stimulations (Figs.  2  and  3 ). 
A possible effect of drug solvent alone when different than water 
should be checked in a control experiment.   

3.10  Processing 
of Data

Fig. 3 (continued) thiochrome when evoked by 1 Hz stimulation that does not lead to autoinhibition of evoked 
ACh release, and 5 Hz stimulation that already induces robust autoinhibition. This demonstrates that thio-
chrome does not interact with the orthosteric binding site of muscarinic autoreceptors. Meanwhile, thiochrome 
signifi cantly inhibits ACh release evoked by pulses delivered at 2 Hz indicating allosteric potentiation of the 
effects of released ACh       
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4    Typical Experiment 

 Superfusion experiments summarized in Figs.  2  and  3  demonstrate 
applicability of the method in the examination of muscarinic auto-
receptors that mediate autoinhibition of electrically evoked ACh 
release from rat striatal slices. The autoinhibition is mediated by 
M 4  receptors [ 38 ,  39 ]. Electrical stimulation (60 pulses delivered 
at a frequency of 1 Hz) during superfusion in control conditions 
repeatedly evoke ACh release with a small decline during the third 
stimulation (Fig.  2 ). In parallel superfusion, application of the 
muscarinic agonist carbachol before the second stimulation results 
in a statistically signifi cant decrease in evoked ACh release by about 
55 %. The inhibition is abolished by atropine added before the 
third stimulation. Actually, compared to control superfusion, the 
release of ACh in the presence of atropine is slightly higher than in 
control conditions. Nonetheless, a small decline of the third con-
trol stimulation and a small increase of the third stimulation in the 
presence of atropine are not statistically signifi cant, demonstrating 
that the increase in ACh concentration in the synaptic cleft evoked 
by this mild electrical stimulation is not big enough to activate 
presynaptic M 4  autoreceptors. 

 In addition to the orthosteric binding site for ACh, muscarinic 
receptors possess allosteric binding sites. Concurrent presence of 
orthosteric and allosteric ligands results in mutual interaction 
called cooperativity that can be positive (increase in binding affi n-
ity), negative (decrease in binding affi nity), or neutral (no change 
in affi nity). Allosteric modulators demonstrating positive coopera-
tivity with ACh are particularly wanted for possible medical appli-
cations where there is defi ciency in ACh release because they 
exhibit remarkable receptor subtype selectivity in infl uencing ACh 
affi nity [ 40 – 45 ]. In contrast, orthosteric ligands exhibit lower 
selectivity due to the high degree of homology of the orthosteric 
binding site of muscarinic receptor subtypes [ 46 ]. An example of 
allosteric enhancement of endogenous ACh inhibitory effects 
on ACh release in striatal slices is given in Fig.  3  (see also [ 44 ]). The 
release of ACh was evoked by three consecutive stimulations by 40 
pulses delivered at 1 Hz during the fi rst and second stimulations, 
and by 2 or 5 Hz during the third stimulation. The allosteric ligand 
thiochrome was added to superfusion medium 8 min before the 
second stimulation and remained in medium till the end of super-
fusion. Thiochrome alone neither activates nor inhibits presynaptic 
receptors because it does not inhibit ACh release evoked by the 
second stimulation (unlike agonist carbachol; see Fig.  2 ) but inhib-
its ACh release evoked by 2 and 5 Hz stimulation during the third 
stimulation. The increase in stimulation frequency to 2 Hz during 
the third stimulation has no appreciable effect in control condi-
tions while the release of ACh in the presence of thiochrome is 
signifi cantly inhibited. Further increase in stimulation frequency to 
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5 Hz already leads to substantial autoinhibition of ACh release and 
thiochrome loses its potentiating effect observed at lower frequen-
cies. This indicates that stimulation by 40 pulses delivered at 1 and 
2 Hz does not induce suffi cient accumulation of ACh in the synap-
tic cleft to induce autoinhibition before the next pulse arrives. 
However, the increase in residual concentration of ACh in the syn-
aptic cleft remaining before arrival of the next pulse during 2 Hz 
stimulation that does not yet activate presynaptic receptors is high 
enough to induce autoinhibition in the presence of thiochrome 
that increases receptor affi nity for ACh. Stimulation at 5 Hz in 
control medium demonstrates already substantial autoinhibition of 
ACh release (by about 50 % compared to control 2 Hz S3/S1 
ratio; see Fig.  2 , inhibition of ACh release by saturating concen-
tration of carbachol is about 55 %) and the potentiating effect of 
thiochrome understandably disappears.  

5    Practical Tips 

 ●     No drugs (e.g., general anesthetics) may be used before decap-
itation of the animal.  

 ●   Preparation of slices can be done at room temperature (around 
20 °C) and should be as quick as possible (no longer than 
5 min from killing animal and submersion of slices to oxygen-
ated buffer). Alternatively, after removal from skull, the brain 
can be chilled in oxygenated buffer before dissection of selected 
regions.  

 ●   Loading of slices with labeled choline should start immediately 
after preparation and washing of slices. The content of cerebral 
tissue ACh after preparation of slices is much lower than in 
cerebral tissue in vivo but quickly increases.  

 ●   Cerebral tissues liberate high amounts of free choline. The spe-
cifi c radioactivity of used labeled choline should thus be high 
and its concentration low (at the beginning of loading around 
100 nM) in order to get a fairly specifi c labeling of synthesized 
ACh that couples to the high-affi nity choline transporter over 
other choline metabolite that are derived from choline trans-
ported by low affi nity choline carriers [ 47 ,  48 ].     

6    Conclusions 

 The superfusion technique of cerebral slices ex vivo after radio-
active labeling of acetylcholine has proven a useful approach for 
studies of acetylcholine release. This approach is effi cient tool 
for probing effects of both orthosteric and allosteric drugs on 
the muscarinic autoreceptor-mediated regulation of acetylcholine 
release.     
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    Chapter 13   

 Regulation of Heart Contractility by M 2  and M 3  Muscarinic 
Receptors: Functional Studies Using Muscarinic Receptor 
Knockout Mouse 

           Takio     Kitazawa     ,     Hiroki     Teraoka    ,     Nao     Harada    ,     Kenta     Ochi    , 
    Tatsuro     Nakamura    ,     Koichi     Asakawa    ,     Shinya     Kanegae    , 
    Noriko     Yaosaka    ,     Toshihiro     Unno    ,     Sei-ichi     Komori    , 
and     Masahisa     Yamada   

    Abstract 

   To investigate the functional roles of M 2  and M 3  muscarinic receptors in mouse atria, wild-type mice, 
muscarinic M 2  or M 3  single receptor knockout mice (M 2 KO, M 3 KO), and M 2  and M 3  muscarinic receptor 
double knockout mice (M 2 /M 3 KO) were used for pharmacological and molecular biological approaches. 
Effects of carbachol on spontaneous contraction (right atrium) or electrically evoked contraction 
(left atrium) were examined in the isolated atria of the respective mice. Presence of muscarinic receptor 
subtype mRNAs and proteins was determined by real time RT-PCR using specifi c primers and immuno-
histochemistry using specifi c anti-M 2  and anti-M 3  receptor antibodies. Quantitative real-time RT-PCR 
analysis showed that M 2  receptor mRNA was expressed dominantly in mouse atria but that the M 1 , M 3 , 
M 4 , and M 5  receptor subtypes were also expressed at low levels. Carbachol decreased the frequency 
of spontaneous beating in right atria of mice through activation of the M 2  receptor subtype. In left atria 
of wild-type mice, carbachol decreased the amplitude of electrical fi eld stimulation (EFS)-evoked contrac-
tions (M 2  receptors), but this inhibition was transient and was followed by a gradual increase in cont-
raction amplitude (M 3  receptors). Cyclooxygenase-2 (COX-2) and prostaglandins in the endocardial 
endothelium were involved in the M 3  receptor-mediated positive inotropic actions. In conclusion, 
the present studies using isolated atria of muscarinic receptor knockout mice demonstrated that myocar-
dial M 2  receptors mediate negative chronotropic/inotropic actions and that M 3  muscarinic receptors 
mediate positive chronotropic/inotropic actions in mouse atria. Physiologically, M 3  receptor-mediated 
excitatory cardiac effects might dampen the inhibitory effects of M 2  receptor activation on cardiac 
contractility.  

  Key words     Atrial contraction  ,   Muscarinic receptor knockout mouse  ,   M 2  muscarinic receptor  ,   M 3  
muscarinic receptor  ,   Inotropic action  ,   Chronotropic action  ,   Pertussis toxin  ,   Endocardial endothelium  , 
  Cyclooxygenase-2  ,   Cardiac intrinsic neuron  
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1      Introduction 

 Muscarinic receptor stimulation by acetylcholine plays an impor-
tant role in parasympathetic control of cardiac functions such 
as heart rate (chronotropic action), conduction velocity (dromo-
tropic action), and contractility (inotropic action). Muscarinic 
receptors are prototypic members of the superfamily of G protein- 
coupled receptors, and molecular cloning studies have demon-
strated the existence of fi ve distinct mammalian muscarinic receptor 
subtypes [ 1 ]. Based on their differential coupling to G-proteins 
and second messengers, the fi ve receptors can be subdivided into 
two major functional classes. The M 1 , M 3 , and M 5  receptors pref-
erentially couple to G q/11  protein, increasing inositol-trisphosphate 
(IP 3 ) and diacylglycerol levels, while the M 2  and M 4  receptors are 
linked to G i/o  protein decreasing level of cyclic AMP [ 1 ,  2 ]. It has 
been well documented that the heart predominantly expresses the 
M 2  receptor subtype [ 3 ,  4 ]. Following activation of cardiac M 2  
receptors, the activated α subunit of G i/o  proteins inhibits adenylyl 
cyclase activity, resulting in a decrease of cytoplasmic cyclic AMP, 
whereas the βγ subunit of G i/o  proteins directly activates the 
inwardly rectifying muscarinic K +  channel to cause hyperpolariza-
tion of cardiac muscle. Hyperpolarization decreases the contractil-
ity of cardiac muscle [ 4 ,  5 ]. 

 However, since many organs contain multiple subtypes of 
muscarinic receptors, it has been thought that the M 2  receptor is 
not the only muscarinic receptor subtype that is functional in the 
heart [ 6 ]. Pharmacological, biochemical, immunohistochemical 
and molecular biological studies using whole heart tissues or iso-
lated cardiomyocytes indicate that the heart also expresses non-M 2  
muscarinic receptors including the M 1  and M 3  receptor subtypes 
[ 6 – 16 ]. The M 3  receptor and associated proteins including con-
nexin 43 [ 17 ] and β-catenin [ 18 ] have been reported to participate 
in ischemia and the induced infarction. A pervasive role of the M 3  
receptor in cardiac diseases has been discussed recently [ 19 ]. 
Therefore, analysis of non-M 2  receptors in cardiac tissues is impor-
tant both in the physiology and pathophysiology of the heart. 
However, expression of multiple muscarinic receptor subtypes 
(while M 2  subtype is dominant) in one organ and lack of selective 
potent muscarinic receptor agonists or antagonists for respective 
subtypes hamper functional analysis of non-M 2  muscarinic recep-
tors in the heart. 

 Recently, mutant mice lacking M 1 –M 5  muscarinic receptors 
(knockout mice) have become available as novel experimental tools 
to study the functional roles of individual muscarinic receptors in the 
heart and other organs [ 20 ,  21 ]. In spontaneously beating right atria 
from M 2  receptor knockout (M 2 KO) mice, carbachol was devoid of 
any negative chronotropic activity [ 22 ,  23 ], indicating that the M 2  
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receptor mediates the negative chronotropic actions of muscarinic 
agonists in agreement with previous pharmacological evidence 
obtained using receptor subtype-preferring antagonists [ 1 ,  4 ]. 

 We used muscarinic M 2  or M 3  single receptor knockout mice 
(M 2 KO, M 3 KO) and M 2  and M 3  muscarinic receptor double 
knockout mice (M 2 /M 3 KO) to investigate potential functional 
roles of the M 3  receptor subtype in regulation of atrial contractility. 
Isolated mouse atrium is a good animal model to examine function 
of muscarinic receptor in regulation of contractility. Each atrial 
preparation is isolated and suspended in an organ bath and sponta-
neous contraction and electrically evoked contraction are recorded. 
Muscarinic agonist-induced effects on the atrial contraction are 
observed and analyzed. Localization of M 3  receptors and down-
stream mechanisms of M 3  receptor activation have been also inves-
tigated using immunohistochemical methods and pharmacological 
characterization of the evoked muscarinic responses and reported 
in the following papers [ 23 – 25 ].  

2    General Approach for Analysis of Muscarinic Receptor Subtypes in the Heart 

 Functional approaches (contraction, receptor binding and mea-
surement of second messengers), immunological approaches 
(immunohistochemistry and Western blotting) and molecular bio-
logical approaches (measurements of receptor mRNAs) have been 
used to determine functional muscarinic receptor subtypes in heart 
(ventricles and atria). An outline of these approaches is given in 
this section. 

    Contraction study : Isolated cardiac muscle preparations (atrium 
and ventricle) are fi xed in the organ bath and the mechanical 
changes in the preparations are detected by a force transducer. Our 
experimental procedures are shown in Protocol 1. Effects of some 
muscarinic receptor antagonists on muscarinic agonist-induced 
responses have been evaluated to determine muscarinic receptor 
subtypes in the heart. Receptor subtype-preferring muscarinic 
receptor antagonists, including M 1  antagonist pirenzepine [ 26 ], 
M 2  antagonists methoctramine [ 26 ,  27 ], AF-DX116 and 
4-diphenylacetoxy- N-methylpiperidine methiodide (4-DAMP) 
[ 26 ,  28 ], M 3  antagonist hexahydro-sila-difenidol hydrochloride 
(p-F-HHSiD) and M 4  antagonist tropicamide [ 29 ], have been 
used in contractile functional studies. However, selectivity of these 
antagonists to respective receptor subtypes is largely dependent on 
the concentrations used, and these antagonists might to bind to all 
or some muscarinic receptor subtypes when affi nity (pK b  values) to 
respective receptors are close. Receptor subtype-selective agonists 
are not available at present because structures of binding site of 
individual subtypes of muscarinic receptor are similar. Using these 

2.1  Functional 
Approaches
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receptor antagonists, it has been proposed that M 1  or M 3  receptors 
mediate positive inotropic responses in isolated cardiac muscle 
strips from humans and mice [ 30 ,  31 ]. Nouchi et al. [ 32 ] analyzed 
the biphasic inotropic response in the developing chicken heart 
using antagonists and demonstrated M 4  receptor-mediated nega-
tive inotropic and M 1  receptor mediated-positive inotropic actions 
that are different from those in mammals. 

  Receptor binding study : Radioligand ([ 3 H]N-methylscopolamine 
and [ 3 H]quinuclidinyl benzilate) binding study using membrane 
preparations from atria or ventricles can reveal muscarinic receptor 
proteins as radioligand binding sites. Results of analysis of the 
 saturation binding curve and competition curve by competitors 
(muscarinic receptor agonists or antagonists) indicate the character-
istics of the radioligand binding sites (muscarinic receptors). 
Computer- aided analysis of binding competition curves shows how 
many binding sites are present in the membrane preparations. In the 
binding displacement studies using muscarinic receptor antagonists, 
Wang et al. [ 11 ], Pérez et al. [ 15 ], and Myslivecek et al. [ 16 ] showed 
that data from competition curves gave the best fi t to a two-site 
binding model and suggested the presence of another muscarinic 
receptor subtype in addition to dominant M 2  receptor subtype. 
However, selectivity of muscarinic receptor agonists and antagonists 
is also a fundamentally important point in this kind of analysis. 

  Biochemical study : In general, the M 1 , M 3 , or M 5  receptors cou-
pling with a G q/11  protein activate phospholipase C to produce IP 3  
and diacylglycerol, but the dominant M 2  receptor affects cyclic 
AMP contents in cardiac tissues. Therefore, muscarinic receptor 
agonist-induced increase of inositol phosphate formation in car-
diac tissue suggests the expression of non-M 2  receptors. In isolated 
rat cardiomyocytes and slices of the human right atrium, stimu-
lation of IP 3  formation via M 3  receptor subtype has been dem-
onstrated [ 13 ,  14 ]. On the other hand, in guinea-pig isolated 
cardiomyocytes, it was suggested that the M 1  receptor caused accu-
mulation of [ 3 H]inositol monophosphate [ 7 ]. In the rat cardiac 
homogenate, carbachol stimulated phospholipase C activity, which 
was inhibited by both M 1  and M 5  receptor antagonists but not by 
an M 3  receptor antagonist [ 16 ]. These biochemical approaches can 
indicate the presence of odd-numbered muscarinic receptors in the 
heart, but muscarinic receptor antagonists are generally used to 
identify receptor subtypes (M 1 , M 3 , and M 5  receptors). Therefore, 
as in contraction and binding studies, selectivity of muscarinic 
receptor antagonists is a basic problem for this kind of pharmaco-
logical analysis and suggests the limit of investigation.  

   Immunohistochemical and Western blotting studies using respec-
tive muscarinic receptor antibodies might be useful for detecting 
the presence of muscarinic receptor proteins in cardiac tissues. 

2.2  Immunological 
Study
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In immunostaining of muscarinic receptors, antibodies for M 1 , M 2 , 
M 3 , and M 5  subtypes but not M 4  subtype showed positive staining 
in isolated human ventricular myocytes [ 11 ]. Abramochkin et al. 
[ 33 ] reported strong staining of M 3  receptors in the sinoatrial node 
of a murine heart and suggested possible regulation of heart rate 
by the M 3  receptor. Immunohistochemical analysis can show the 
localization of muscarinic receptors in the heart. M 5  receptor stain-
ing was largely restricted to intercalated discs, whereas other recep-
tor subtypes were evenly distributed along the surface membranes 
of cardiac cells [ 11 ]. We have used the tissue section of mouse 
atrium for immunohistochemical study using antibodies for M 2  or 
M 3  receptors and have demonstrated that M 2  receptor immunore-
activity is restricted to the atrial muscles but that the M 3  receptor is 
expressed in both cardiac myocytes and the endocardial endothe-
lium, Protocol 2 [ 24 ]. As selectivity of the antibody to G-protein 
coupled receptor, such as muscarinic receptors might be a problem 
in this kind of research [ 34 ], muscarinic receptor knockout mice 
are useful to check suitability of muscarinic receptor antibodies for 
immunohistochemical evaluation on tissue sections [ 35 ]. 

 Immunoprecipitation study using each muscarinic receptor- 
selective antibody has shown the quantitative expression of musca-
rinic receptor subtypes in the rat heart [ 16 ]. The M 2  receptor was 
the dominant subtype (93–100 % of total muscarinic receptors) in 
both the atrium and ventricle, but a small population of M 3 , M 4 , 
and M 5  receptors (0.4–2.5 %) was also detected in the atria and 
ventricles [ 16 ].  

   Investigation of the expression of individual muscarinic receptor 
subtype mRNAs might be crucial for evaluation and testing a 
hypothesis about their functional roles in the heart and other 
organs. Sharma et al. [ 8 ] showed the presence of M 1  and M 2  recep-
tor mRNAs in the rat ventricle, and they observed M 1  receptor- 
mediated stimulatory responses in intracellular Ca 2+  transient. 
Recently, the concentrations of mRNAs for muscarinic M 1 –M 5  
receptors in cardiac atria and ventricles were investigated and 
 compared with each other using quantitative RT-PCR. Krejcí and 
Tucek [ 12 ] demonstrated that more than 90 % of total muscarinic 
receptor mRNAs in the rat heart were M 2  type and that the expres-
sion level of M 2  in the atria was two-times higher than that in the 
ventricle. However, expression of non-M 2  muscarinic receptors 
was found in the atria and ventricle. M 3  receptor mRNA expression 
level was 1–3 % and M 5  receptor mRNA expression level was 4–5 % 
of total mRNA for muscarinic receptors but M 1  or M 4  expression 
was less than 1 % (0.01–0.8 %). Pérez et al. [ 15 ] also provided 
molecular biological evidence for the presence of multiple subtypes 
of muscarinic receptor mRNAs in the human heart, though M 2  
type was the dominant muscarinic receptor subtype. In mouse 
atria and ventricles, we carried out quantitative RT-PCR studies to 

2.3  Molecular- 
Biology Study
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examine the expression of M 1 –M 5  muscarinic receptor mRNAs, 
Protocol 3. Total copies of muscarinic receptor transcripts in the 
atrium and ventricle were not signifi cantly different. Similar to 
other animal species (rats and humans), M 2  receptor mRNA expres-
sion was dominant in both the ventricle and atrium (99.8 % of total 
muscarinic receptors), and M 1 , M 3 , M 4 , and M 5  receptor mRNAs 
were also expressed at relatively low levels (0.02–0.06 %) [ 23 ]. 
In parallel with the quantitative data for expression levels of mus-
carinic receptor subtype mRNAs, functional (contraction) studies 
on the heart facilitate evaluation of the physiological and patho-
physiological roles of individual muscarinic receptor subtypes in 
the heart.   

3    Contraction Study Using Muscarinic Receptor Knockout (KO) Mice 

 Since expression levels of non-M 2  receptors in the heart are rela-
tively low [ 23 ,  36 ], muscarinic receptor knockout (KO) mice are 
good animal models for determining the functional roles of mus-
carinic receptors. Stengel et al. [ 22 ,  37 ] has already shown that the 
negative chronotropic action of carbachol was abolished in M 2  
receptor KO (M 2 KO) mice but not in M 3  receptor KO (M 3 KO) 
mice. Attenuation of carbachol-induced negative chronotropic 
actions in atria from M 4 KO mice suggests possible involvement of 
the M 4  receptor in inhibition of heart rate in cooperation with the 
M 2  receptor [ 22 ]. We have also examined chronotropic and ino-
tropic actions induced by the muscarinic receptor agonist carba-
chol (insensitive to acetylcholinesterase) using right and left atria 
isolated from M 2 KO, M 3 KO, and M 2 /M 3  double KO mice, 
Protocol 1 [ 23 ,  24 ]. 

   In spontaneously beating right atria of normal (wild type) mice, 
carbachol (10 nM–10 μM) caused concentration-dependent inhibi-
tion of spontaneous beating and fi nally abolished it (EC 50  = 430 nM). 
The inhibition was competitively antagonized by AF-DX116 
(pK b  = 7.54). Since pK b  for AF-DX116 was consistent with that for 
the M 2  muscarinic receptor [ 6 ], the negative  chronotropic action 
was confi rmed to be mediated by the M 2  receptor as previously 
described [ 4 ]. 

 Negative chronotropic actions of carbachol were also exam-
ined in atria isolated from pertussis toxin-treated mice. Pertussis 
toxin is able to distinguish M 2 /M 4  muscarinic receptors (pertussis 
toxin-sensitive G-protein pathway) and M 1 /M 3 /M 5  muscarinic 
receptors (pertussis toxin-insensitive G-protein pathway). Although 
spontaneous beating was almost the same in the atria from pertus-
sis toxin-treated mice, the negative chronotropic action of carba-
chol was completely abolished, confi rming the involvement of M 2  
receptors (Fig.  1a ). To obtain further evidence for the involvement 

3.1  Chronotropic 
Actions
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of M 2  receptors in the negative chronotropic actions, effects of 
carbachol on spontaneous beating of right atria were compared 
among M 2 KO, M 3 KO, and M 2 /M 3 KO mice (Fig.  1b ). The spon-
taneous beating rates were almost the same for wild-type mice 
and muscarinic receptor KO mice. Carbachol concentration- 
dependently decreased spontaneous beating of atria from wild-type 
and M 3 KO mice and fi nally abolished spontaneous beating at con-
centrations of 10–30 μM. On the other hand, in atria of M 2 KO 
mice, the negative chronotropic actions of carbachol were abol-
ished and heart rate tended to increase at high concentrations of 
carbachol (30–100 μM). The carbachol-induced negative chrono-
tropic actions were also not observed in the right atria from M 2 /
M 3 KO mice (Fig.  1b ).

   Effects of carbachol on respective spontaneously beating atria 
are shown in Fig.  2 . In atria from wild-type and M 3 KO mice, car-
bachol only decreased the spontaneous contraction regardless of 
high or low heart rate preparations. However, in M 2 KO mice, car-
bachol did not induce any chronotropic actions in the high heart 
rate atrium (400 beats/min), but when the heart rate was low 
(under 300 beats/min), carbachol caused an increase in heart rate 
(positive chronotropic actions). Since carbachol did not cause any 
chronotropic actions in either high or low heart rate atria from 
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  Fig. 1    Effects of carbachol on spontaneous contraction of isolated mouse right atria. ( a ) Carbachol-induced 
negative chronotropic actions and effects of pertussis toxin treatment on carbachol-induced actions. On the 
basis of average heart rate (beats/min), atrial preparations from wild-type and pertussis toxin-treated mice 
were divided into a high heart rate group (>350 beats/min) and a low heart rate group (<350 beats/min) (see 
the text). In these two groups, the effect of increasing concentration of carbachol was examined and concen-
tration–response curves were compared. Ordinate: spontaneous contraction (beats/min). * p  < 0.05; signifi cant 
increase of heart rate compared with that in the absence of carbachol. ( b ) Comparison of chronotropic actions 
of carbachol in the right atria from wild-type (WT) and muscarinic receptor KO mice (M 2 KO, M 3 KO, and M 2 /
M 3 KO). Heart rates (beats/min) of isolated atria were 378 ± 22 (wild-type,  n  = 5), 406 ± 20 (M 2 KO,  n  = 5), 
420 ± 32 (M 3 KO,  n  = 5) and 385 ± 35 (M 2 /M 3 KO,  n  = 5). Ordinate: heart rate change expressed as percentage of 
heart rate just before application of carbachol. Values are means ± S.E.M. of at least 4 experiments. These 
fi gures are from Kitazawa et al. [ 23 ] and Harada et al. [ 24 ]       
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M 2 /M 3 KO mice, it is thought that the positive chronotropic 
actions were due to activation of the M 3  receptor. When the heart 
rate was high, positive chronotropic action by M 3  receptor activa-
tion was masked, but it was revealed when the heart rate was low. 
Similar heart rate-dependent chronotropic actions of carbachol 
were also observed in the atria from pertussis toxin-treated mice 
(Fig.  1a ). Average spontaneous beating rate in the atria of wild- 
type, pertussis toxin-treated, M 2 KO, M 3 KO, and M 2 /M 3 KO mice 
was 348 ± 12 beats/min ( n  = 59). Therefore, we divided the atrial 
preparations of wild-type and pertussis toxin-treated mice into a 
high heart rate group (>350 beats/min) and a low heart rate group 
(<350 beats/min). Within 14 atrial preparations from 14 pertussis 
toxin-treated mice, carbachol failed to cause any chronotropic 
actions in the high heart rate group (404 ± 14 beats/min,  n  = 8) 
but caused concentration-dependent positive chronotropic actions 
in the low heart rate group (256 ± 34 beats/min,  n  = 6). Until now, 
positive chronotropic actions by M 3  receptor activation have not 
been demonstrated in atria of M 2 KO mice probably due to high 
heart rate (396 beats/min) [ 22 ], but the present results indicated 
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  Fig. 2    Effects of carbachol on spontaneous contraction of right atria from wild-type (WT) and muscarinic recep-
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that activation of the M 3  receptor could cause a positive  chronotropic 
action under certain experimental conditions. Since the M 2  receptor 
is involved in negative chronotropic actions and is the dominant 
receptor subtype expressed in the heart [ 11 ,  23 ], after reduction of 
M 2  receptor function (by pertussis toxin treatment or knockout 
of M 2 R) it is possible to observe M 3  receptor-mediated actions. In 
addition, the results suggest that a low heart rate condition is 
required for detecting M 3  receptor-mediated positive chronotropic 
actions. Highly positive immunostaining of M 3  receptors has been 
demonstrated in pacemaker cells of a murine atrium [ 33 ]. This histo-
logical observation supports M 3  receptor-mediated positive chro-
notropic actions of a muscarinic receptor agonist in M 2 KO mice.

      Electrical fi eld stimulation (EFS, 1 Hz) was applied to the isolated 
left atrium and the inotropic action of carbachol was measured as a 
change in amplitude of EFS-induced contraction. As previously 
described [ 31 ,  38 ], carbachol induced negative inotropic actions 
(decrease in EFS-induced contraction) followed by slowly devel-
oped positive inotropic actions (increase in EFS-induced contr-
action) in the mouse left atrium (Fig.  3 ). Both inotropic actions 
increased depending on the carbachol concentrations, and atro-
pine abolished both actions, indicating the involvement of musca-
rinic receptors in both actions. Positive and negative inotropic 
actions induced by carbachol were characterized using muscarinic 
receptor KO mice. As shown in Fig.  3 , the fi rst negative inotropic 
actions by carbachol were abolished in the atria of M 2 KO and M 2 /
M 3 KO mice. Slowly developed positive inotropic actions of carba-
chol were observed in M 2 KO mice but not in M 2 /M 3 KO mice. In 
the atria of M 3 KO mice, carbachol caused only negative inotropic 
actions and a slowly developed positive-inotropic actions were 
abolished. In the atria from pertussis toxin-treated wild-type mice, 
the negative inotropic action induced by carbachol was abolished 
and only a positive inotropic action remained. In addition, a low 
concentration of 4-DAMP (M 3  receptor preferential antagonist) 
decreased the positive inotropic actions without affecting the 
 negative inotropic actions (Fig.  3 ). Taken together, the results of 
the functional study using muscarinic receptor KO mice indicated 
that the M 2  receptor mediates the fi rst negative inotropic action 
and that the M 3  receptor mediates the second positive inotropic 
action in the mouse atrium. Using M 2 KO and M 3 KO mice, the 
concentration–response relationships of M 2 -mediated inhibition 
and M 3 - mediated potentiation of contraction were compared 
(Fig.  4 ). The EC 50  value of negative inotropic action by the M 2  
receptor in M 3 KO mice was 1.5 μM and that of positive inotropic 
action by the M 3  receptor in M 2 KO mice was 3.7 μM. Although 
the difference in the EC 50  values might be due to the difference in 
M 2  and M 3  receptor expression levels, a low concentration of ace-
tylcholine decreases cardiac contractility by the M 2  receptor, and if 

3.2  Inotropic Actions
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the acetylcholine concentration increases, the M 3  receptor is 
 possibly stimulated to decelerate the excessive inhibition by M 2  
receptor activation.

       M 3  receptor-mediated positive inotropic action in the mouse 
atrium has been shown to be decreased by treatment with indo-
methacin [ 23 ,  38 ] and with prostanoid receptor antagonists (EP 
and FP receptors) [ 39 ]. Prostaglandins are effective for inducing 
positive inotropic actions in the mouse atrium [ 38 ,  39 ]. Therefore, 
it is thought that M 3  receptor activation stimulates the synthesis of 
prostaglandins through activation of cyclooxygenase (COX) and 
that released prostaglandins cause positive inotropic actions. COXs 
are divided into COX-1 (constitutive type) and COX-2 (inducible 
type), and indomethacin non-selectively inhibits both COX iso-
zymes. To clarify functional roles of COX isozymes in the carbachol- 
induced positive inotropic actions, the effects of selective COX-1 

3.3  Distribution 
of M 2  and M 3  
Muscarinic Receptors 
in the Mouse Atrium

a WT 5 min

0.1g

b 4-DAMP 100 nM

c PTX

d M2KO
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M2/M3KO
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f

  Fig. 3    Effects of carbachol on EFS-induced contraction of isolated left atria from wild-type, M 2 KO, M 3 KO, and 
M 2 /M 3 KO mice. Carbachol (CCh, 30 μM) induced biphasic inotropic actions in atria of wild-type mice ( a ). Slowly 
developed positive inotropic actions were decreased by 4-DAMP (100 nM) ( b ). In atria from pertussis toxin- 
treated mice, the action of carbachol was reversed and only positive inotropic action was observed ( c ). In atria 
from M 2 KO mice, negative inotropic action was abolished and only positive inotropic action was evoked ( d ), but 
in atria from M 3 KO mice, slowly developed positive inotropic action was abolished and the negative inotropic 
action remained ( e ). Carbachol did not cause any inotropic actions in atria from M 2 /M 3 KO mice ( f ). The fi gure 
is from Harada et al. [ 24 ]       
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and COX-2 inhibitors on carbachol-induced inotropic actions 
were examined. Carbachol-induced negative and positive inotropic 
actions were not affected by SC560 and FR122047 (COX-1 inhib-
itors). However, NS398 (a COX-2 inhibitor) decreased the posi-
tive inotropic action induced by carbachol and the responses 
changed to a sustained negative inotropic action without affecting 
the fi rst negative inotropic actions (Fig.  5 ). Hara et al. [ 39 ] have 
already reported the same results. Therefore, COX-2, but not 
COX-1 is involved in the positive inotropic actions induced by 
carbachol in the mouse atrium. Our results also indicated that 
nitric oxide was not involved in the carbachol-induced action 
because treatment with  L -nitroarginine methyl ester (L-NAME) 
failed to change the EFS-induced contraction (Fig.  5 ). In addition, 
the nitric oxide donor nitroprusside did not cause any inotropic 
actions. Nitric oxide might not be an important modulator of con-
tractility in the mouse atrium.

   The positive inotropic action induced by carbachol was also 
abolished by mechanical removal or chemical destruction of the 
endocardial endothelium [ 24 ,  38 ,  39 ], suggesting that the M 3  recep-
tor to COX-2 pathway is located in endocardial endothelial cells. 

 For detecting M 2 R and M 3 R immunoreactivities in the mouse 
heart, immunohistochemical study was carried out, Protocol 2. 
In an immunohistochemical study using the mouse atrium, M 2  
receptor immunoreactivity was shown to be localized only in the 
myocardial cells, whereas M 3  receptor immunoreactivity was dis-
tributed in both endocardial endothelium and myocardium of the 
atrium (Fig.  6 , Harada et al. [ 24 ]). Distribution of M 3  receptor in 
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  Fig. 4    Comparison of inotropic actions induced by carbachol in left atria isolated 
from wild-type, M 2 KO, M 3 KO, and M 2 /M 3 KO mice. After establishing reproducible 
EFS-induced atrial contractions, carbachol (10 nM–100 μM) was applied non- 
cumulatively at 30-min intervals and concentration–response relationships were 
constructed. Values are means and SEM of 5–6 experiments. The fi gure is from 
Kitazawa et al. [ 23 ]       
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the ventricle was the same with that in the atrium and both 
 endocardial endothelium and myocardium were stained by M 3  
receptor  antibody. Atria from M 2 KO and M 2 /M 3 KO mice lacked 
M 2  immunoreactivity in the myocardium, but atria from M 3 KO 
mice showed positive immunostaining of the M 2  receptor. On the 
other hand, M 3 R immunoreactivity was observed in the myocar-
dium and endocardial endothelium of wild-type and M 2 KO mice 
[ 24 ]. These results for muscarinic receptor KO mice guaranteed 
the specifi city of both the anti-M 2  receptor antibody and anti-M 3  
receptor antibody in the mouse atrium.

   Localization of COX-1 and COX-2 in the mouse atrium was 
also examined immunohistochemically. Briefl y, the left atria were 
isolated from wild-type and rinsed with fresh Krebs solution. Each 
atrium was fi xed with 4 % paraformaldehyde-Tris buffer (pH = 7.4) 
and fi nally embedded in paraffi n. All tissue blocks were cut into 
6 μm section using microtome. The sections were immersed in 
0.5 % hydrogen peroxide in methanol at room temperature for 
10 min and were then incubated with 10 % normal goat serum 
(Histofi ne SAB Kit, Nichirei, Tokyo, Japan) to block nonspecifi c 
binding at room temperature for 20 min, followed by incubation 
with respective antibodies for COX (mouse anti-COX-1 antibody 
1:50 and mouse anti-COX-2 antibody 1:300, Cayman Chemical, 
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  Fig. 5    Effects of L-NAME and COX inhibitors on carbachol-induced inotropic actions in the isolated left atrium 
of a mouse. ( a ) Typical effects of SC560 (1 μM) and NS398 (1 μM) on carbachol-induced inotropic action 
(30 μM). ( b ) Comparison of the time courses of carbachol-induced inotropic actions in the absence (Control, 
 fi lled circle ) and presence of L-NAME ( open circle , 100 μM), SC560 ( fi lled square , 1 μM), FR122047 ( open 
square , 1 μM), and NS398 ( fi lled triangle , 1 μM). Ordinate: relative amplitude of EFS-induced contraction 
expressed as percentage of the amplitude just before application of carbachol. Abscissa: incubation time with 
carbachol (min). Values are means ± S.E.M. of at least 5 experiments. * p  < 0.05, signifi cantly different from the 
values of the control at the corresponding time. The fi gure is from Harada et al. [ 24 ]       
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USA) at 4 °C, overnight. Subsequently, the sections were washed 
with phosphate buffered saline and incubated with second anti-
bodies (anti-rabbit IgG 1:300, Cayman Chemical, USA) for 2 h at 
room temperature. After washing out, the sections were incuba ted 
with avidin-biotinylated peroxidase complex for 30 min and 
washed out. Finally, the sections were incubated with hydrogen 
peroxide conjugated 3-3′-diaminobenzidine tetrahydrochloride 
(DAB) (Histofi ne Simple Stain DAB solution, Nichirei, Japan) and 
counterstained with hematoxylin and eosin. COX-1 immunoreac-
tivity was observed in both the myocardium and endocardial endo-
thelium of wild-type mice. COX-2 immunoreactivity was also 
localized in the atrial myocardium and endocardial endothelium. 
Distributions of the M 2  receptor, M 3  receptor, COX-1 and 
COX-2 in the mouse atrium are shown in Table  1 . Since the 

  Fig. 6    Localization of M 2 R and M 3 R immunoreactivities in the atrium and ventricle of wild-type mice. 
Immunofl uorescence of muscarinic receptors was detected by confocal microscopy. Tissue sections from the 
atrium ( a ,  c ) and ventricle ( b ,  d ) were treated with an anti-M 2 R antibody ( a ,  b ) or anti-M 3 R antibody ( c ,  d ) and 
stained with Cy3-labeled anti-IgG ( red ). The nucleus was stained using SOYTOX Green Nucleic Acid Stain. M 3 R 
immunoreactivity was detected in the endocardial endothelium of both the atrium and ventricle ( arrows ). Myo, 
myocardium; End, endocardial endothelium. Scale bars = 20 μm. The fi gure is from Harada et al. [ 24 ]       
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 endocardial endothelium and COX-2 are necessary for M  3  recep-
tor-mediated positive inotropic actions, it is thought that the M 3  
receptor-COX-2-prostaglandin pathway in endocardial endothelial 
cells participates in the carbachol-induced positive inotropic actions 
in the mouse atrium. 

 Immunohistochemical evidence for localization of muscarinic 
receptors and COXs raises two questions to be solved. First, the 
M 3  receptor-COX-2-prostaglandin pathway is also present in the 
myocardium, but the functional roles of this pathway were not 
explained by the results of present experiment. Second, both 
COX-1 and COX-2 are present in the endocardial endothelium. 
Why is only COX-2 functional and what is the physiological role of 
COX-1 (in both the myocardium and endothelium) in the mouse 
atrium? Further studies are needed to answer these questions.  

   The involvement of COX-2 in M 3  receptor-mediated inotropic 
actions was described in the previous section. Generally, COX-2 is 
thought to be an inducible isozyme, but its expression in fresh 
mouse atria has already been demonstrated by Western blotting 
issues [ 39 ,  40 ] such as the kidney, brain and heart, COX-2 may be 
expressed constitutively to produce endogenous prostaglandins 
[ 40 ]. In the rat heart, expression of COX-2, but not that of COX- 
1, increased in an age-dependent manner, suggesting that COX-1 
expression and COX-2 expression in cardiac tissues are regulated 
by different mechanisms [ 41 ]. Recently, Hara et al. [ 39 ] suggested 
that COX-2 protein in the mouse atrium increased in an  incubation 
time-dependent manner during continuous electrical stimulation, 
and we also confi rmed incubation time-dependent increase in M 3  
receptor-COX-2-mediated positive inotropic actions [ 24 ]. There-
fore, we examined the relationships between expression levels of 
COX-1 and COX-2 mRNAs and incubation time. For quantitative 
analysis of COX-1 and COX-2 mRNAs, real-time RT-PCR was 
conducted using SYBR Green, Protocol 3. Primer pair sequ ences 
were 5′-ACTATCCGTGCCAGAACCAG-3′ (forward) and 
5′-ATTCCCAGAGCCAGTATCCA-3′ (reverse) for COX-1 
(192 bp), and 5′-TGCGACATACTCAAGCAGGA-3′ (forward) 
and 5′-CAATGCGGTTCTGATACTGG-3′ (reverse) for COX-2 
(196 bp), respectively. As shown in Fig.  7 , COX-2 mRNA expres-
sion level, but not COX-1 mRNA expression level, signifi cantly 
increased depending on incubation time in the mouse atrial prepa-
rations. The increases in COX-2 mRNA expression levels both in 
stimulated and non-stimulated left atrial preparations were almost 
the same, suggesting that continuous contraction of the atrium is 
not an inducer of COX-2 mRNA expression but that incubation in 
Krebs solution itself might stimulate expression of COX-2 mRNA. 
Incubation time-dependent increase in COX-2 mRNA was also 
observed in other isolated preparations such as the aorta, gastric 
strips and colonic strips. As a bacterial endotoxin, lipopolysaccha-

3.4  Regulation 
of COX-2 mRNA 
Expression in the 
Isolated Mouse Atrium
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ride is known to stimulate COX-2 mRNA expression [ 42 ], it is 
 hypothesized that growth of bacteria and increase in their  toxins in 
the medium during incubation might stimulate the expression of 
COX-2 mRNA and that the synthesized prostaglandins by COX-2 
also enhance the expression of COX-2 mRNA. To investigate this 
hypothesis, we changed the experimental conditions and used 
sterile water and sterilized apparatus (scissors, forceps and organ 
bath) for making preparations and doing the organ bath experi-
ment. As shown in Fig.  7a , COX-2 mRNA expression level was 
decreased by sterilization. However, a slight increase in COX-2 
mRNA expression remained probably due to some contamination 
of bacteria in the incubation medium. To determine the involve-
ment of endogenous prostaglandins in COX-2 mRNA expression, 
the effects of COX inhibitors and bath-applied prostaglandin on 
the expression level of COX-2 mRNA were examined. Either 
indomethacin or COX-2 inhibitor (NS398) tended to decrease 
the COX-2 mRNA expression. However, COX-1 inhibitor 
(FR122047) did not affect the COX-2 mRNA expression level 
(Fig.  8a ). In addition, application of prostaglandin E 2  (1 μM) and 
lipopolysaccharide (1 μg/ml) signifi cantly increased COX-2 
mRNA expression (Fig.  8b ). Although further experiments are 
needed, these results support our hypothesis and indicated that 
some contamination of bacteria in the incubation medium used 
in vitro is likely to affect functional actions mediated by the M 3  
receptor and COX-2 in the mouse atrium.
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  Fig. 7    Incubation time-dependent increase of COX-2 mRNA expression in the left atria of mice. The left atrium 
was isolated from a wild-type mouse and the preparation was electrically stimulated. After 0.5, 1, 2, 4, and 6 h 
of incubation in warmed Krebs solution, COX-2 mRNA in the atrium was extracted and measured by quantita-
tive real-time RT-PCR using specifi c primers ( a ,  black column ). COX-1 mRNA expression in the atrium was also 
measured using real-time RT-PCR ( b ,  black column ). When sterile water and sterilized apparatus (scissors, 
forceps, organ bath) were used in the preparation of the atrium and organ bath study, incubation time-dependent 
increase in COX-2 mRNA expression decreased markedly ( open column ). * p  < 0.05, signifi cantly different from 
the values of fresh atrium.  #  p  < 0.05, signifi cantly different from the corresponding normal values. Values are 
means ± S.E.M. of at least 4 experiments       
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      Intrinsic cardiac ganglia were initially regarded as simple relay 
 stations in parasympathetic preganglionic cholinergic neurons to 
postganglionic cholinergic neurons innervating the myocardium. 
However, cardiac ganglia have been demonstrated to have a com-
plex neurochemical phenotype different from the classical postgan-
glionic cholinergic neurons. Morphological study has shown that 
some cholinergic nerve cell bodies contain noradrenergic neurons 
markers, such as tyrosine hydroxylase, dopamine-β-hydroxylase, 
and noradrenaline transporters. The presence of such hybrid (cho-
linergic/adrenergic) intrinsic cardiac neurons has been reported in 
several animal species [ 43 – 46 ]. Although regulation of cardiac 
contractility through these kinds of intrinsic neurons is interesting 
the functional role of these neurons has not been clarifi ed in detail. 
Isolated atrium is a good experimental model to investigate the 
function of intrinsic nerves because the atrium contains postsynap-
tic ganglionic nerves. The atrial preparations are also suspended in 
the organ bath and their contractility is measured and recorded. 
We used 1,1-dimethyl-4-phenylpiperazinium (DMPP) to stimu-
late nicotinic receptor on intrinsic nerves [ 25 ]. 

  Chronotopic actions : In wild-type mice, DMPP caused a biphasic 
response consisting of an initial transient decrease in heart rate and 
amplitude (from 5 to 20 s after application, fi rst phase)  followed 
by increase in heart rate and amplitude (from 20 to 60 s after appli-
cation, second phase) in a concentration-dependent manner 

3.5  Cardiac Intrinsic 
Neurons Regulating 
Mouse Atrial 
Contractility
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  Fig. 8    Effects of COX inhibitors, prostaglandins and lipopolysaccharide on COX-2 mRNA expression in the 
mouse left atrium. ( a ) Increase in COX-2 mRNA expression after 2 h of incubation in Krebs solution was 
decreased by indomethacin (Indo, 1 μM, nonselective COX inhibitor) and NS398 (1 μM, COX-2 inhibitor), but 
FR122047 (1 μM, COX-1 inhibitor) did not change COX-2 mRNA expression. The inhibition by indomethacin 
and NS398 did not reach signifi cance in the present experimental conditions. ( b ) COX-2 mRNA expression 
increased signifi cantly by incubation with prostaglandin E 2  (1 μM) and lipopolysaccharide (LPS, 1 μg/ml) for 
30 min. * p  < 0.05, signifi cantly different from the values of the control (0.5 h). Values are means ± S.E.M. of at 
least 4 experiments       
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(1–100 μM). In the fi rst phase, inhibition of amplitude (20–25 % 
inhibition) was more marked than that in heart rate (10 % inhibi-
tion) (Fig.  9 ). The fi rst phase inhibition was abolished by atropine, 
hexamethonium and pertussis toxin treatment, and the following 
phase increase in contractility was decreased by hexamethonium 
and atenolol (β 1 -adrenoceptor antagonist). In the atria from reser-
pine-treated mice, increase of spontaneous contraction by DMPP 
decreased markedly. These results suggested that nicotinic receptor 
activation caused both cholinergic nerve excitation to decrease 
contractility and adrenergic nerve excitation to increase contractil-
ity of the mouse atrium.

   In the atria from M 2 KO mice, the DMPP-induced inhibition 
of heart rate and amplitude was abolished and changed to enhance-
ment of the EFS-induced contraction. The fi rst inhibitory phase 
was also abolished in the atria from M 2 /M 3 KO mice and changed 
to the excitatory responses (Fig.  9 ). Due to abolition of the fi rst 
inhibitory phase, the second increase phase of contractility in 
M 2 KO and M 2 /M 3 KO mice was signifi cantly greater than that 
in wild-type mice. In the atria from M 3 KO mice, time courses of 
changes in heart rate and amplitude were comparable with those of 
wild-type mice (Fig.  9 ). The results from muscarinic receptor KO 
mice confi rmed that the initial inhibition of atrial contractility is 
due to activation of intrinsic cholinergic nerves followed by acetyl-
choline release and activation of M 2  receptors. 
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  Fig. 9    Comparison of DMPP-induced actions on heart rate and amplitude of spontaneous contraction in the 
right atria from wild-type and muscarinic receptor knockout mice. Each graph shows the time course of 
DMPP-induced (100 μM) chronotropic action ( a ) and inotropic action ( b ) observed in wild-type (WT,  fi lled 
square ), M 2 KO ( fi lled circle ), M 3 KO ( fi lled triangle ) and M 2 /M 3 KO mice ( fi lled inverse triangle ). Ordinate: relative 
heart rate and amplitude of spontaneous contraction (absence of DMPP = 100 %). * p  < 0.05, signifi cantly dif-
ferent from the values of wild-type mice ( fi lled square ). Values are means ± S.E.M. of at least 5 experiments. 
The fi gures are from Ochi et al. [ 25 ]       

 

Takio Kitazawa et al.



253

  Inotropic actions : Effects of DMPP on EFS-induced contraction of 
the left atria were also examined to characterize inotropic responses 
evoked by activation of intrinsic nerves. As shown in Fig.  10 , 
DMPP (100 μM) caused transient small negative inotropic actions 
followed by long-lasting positive inotropic actions. The negative 
inotropic action was short-lived and was changed to  positive ino-
tropic action after 30 s of application, and the positive inotropic 
action peaked at 3–6 min after application. Negative inotropic 
actions of DMPP were decreased by treatment with atropine or 
hexamethonium but tended to be potentiated by atenolol. In the 
atria from pertussis toxin-treated mice, the DMPP-induced nega-
tive inotropic action was abolished. The positive inotropic actions 
were also characterized using some autonomic drugs. Both atro-
pine and hexamethonium decreased the onset and ampli tude of 
positive inotropic actions. Atenolol and reserpine treatments were 
also effective in decreasing positive inotropic actions. 
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  Fig. 10    Effects of DMPP on EFS-induced contraction of the left atrium. ( a ) Typical inotropic action of DMPP 
(100 μM) in left atria from wild-type (WT), M 2 KO, M 3 KO, and M 2 /M 3 KO mice. Comparison of negative ( b ) and 
positive inotropic actions ( c ) induced by DMPP in wild-type and muscarinic receptor KO mice. Transient nega-
tive inotropic actions were evaluated at 15 s after application, and positive inotropic actions were evaluated 
at the maximum amplitude of contraction. Each column indicates relative amplitude of EFS-induced atrial 
contraction. * p  < 0.05, signifi cantly different from the values of wild-type mice ( black column ).  #  p  < 0.05, 
 signifi cantly different from the values of M 2 KO mice ( open column ). Values are means ± S.E.M. of more than 
4 experiments. The fi gures are from Ochi et al. [ 25 ]       
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Pharmacological characterization indicated that the negative transient 
inotropic action is due to activation of cholinergic nerves and M 2  
receptors but that both adrenergic and cholinergic muscarinic 
mechanisms are involved in the slowly developed positive inotropic 
actions.

   The biphasic inotropic actions induced by DMPP were com-
pared in the atria from muscarinic receptor KO mice. The initial 
inhibition of EFS-induced contraction was abolished in the atria 
from M 2 KO and M 2 /M 3 KO mice (Fig.  10b ). On the other hand, 
positive inotropic actions were signifi cantly decreased in the atria 
from M 3 KO and M 2 /M 3 KO mice but not in the atria from M 2 KO 
mice (Fig.  10c ). Therefore, the results indicated that the M 2  recep-
tor is involved in the initial negative inotropic actions and that the 
M 3  receptor is involved in the second positive inotropic actions in 
the mouse atrium. 

 The functional study for characterization of the cardiac intrin-
sic nerves using a nicotinic receptor stimulant indicated that both 
cholinergic and adrenergic intrinsic nerves are present in the mouse 
atrium and participate in the biphasic inotropic actions consisting 
of inhibition of atrial contraction (acetylcholine-M 2  receptor 
 pathway) and potentiation of atrial contraction (acetylcholine-M 3  
receptor pathway and noradrenaline-β 1  receptor pathway). Extrinsic 
neurons innervating cardiac ganglia of the mouse atrium exhibit 
both excitatory and inhibitory actions through activation of car-
diac intrinsic neurons releasing acetylcholine or noradrenaline, and 
these neurons regulate cardiac contraction.   

4    Conclusions 

 Parasympathetic control of visceral organs is accomplished by ace-
tylcholine acting via muscarinic receptors. Dysfunction of neural 
control is related to the specifi c pathophysiology. Therefore, it is 
necessary to examine the function of muscarinic receptors in each 
organ. There are fi ve subtypes of muscarinic receptor. Their distri-
butions are different and multiple subtypes of muscarinic receptors 
are present in each organ. In addition, lack of selectivity of mus-
carinic receptor agonists and antagonists makes pharmacological 
analysis of receptor subtypes diffi cult. However, the combination 
of classical pharmacological analysis and useful muscarinic receptor 
knockout mouse can overcome the diffi culty for clarifi cation of 
functional roles of individual muscarinic receptor subtypes. In the 
isolated mouse atrium, our data demonstrated that although the 
expression level is low, M 3  muscarinic receptors expressed on 
the endocardial endothelium cause positive inotropic actions in 
response to both muscarinic receptor agonists and endogenous 
acetylcholine to antagonize the excessive inhibition by M 2  muscarinic 
receptors (Fig.  11 ). Therefore, muscarinic receptor knockout mice 
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such as M 2 KO mice open up a new research fi led for physiological 
and pathophysiological functions of non-M 2  receptors in the 
heart.

5           Protocols 

       1.    Mice are killed by cervical dislocation and beating hearts are 
isolated from animals and immersed in warmed bubbling Krebs 
solution.   

   2.    Left and right atria are dissected together from ventricles and 
their lumen is rinsed well by Krebs solution to remove blood. 
Then right atrium and left atrium are separated and are con-
ducted to the contraction study.   

5.1  Protocol 1: 
In Vitro Contraction 
Study for Analysis 
of Functional 
Muscarinic Receptor 
Subtypes in the 
Mouse Heart
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  Fig. 11    Parasympathetic control of mouse atrial contractility by M 2  and M 3  muscarinic receptors. In the mouse 
atrium, M 2  receptors are the dominant muscarinic receptor subtype and are located on the myocardium. 
Although the expression level of M 3  receptors is low, M 3  receptors are located in both the myocardium and 
endocardial endothelium. Acetylcholine released from postganglionic cholinergic nerves fi rst acts on the domi-
nant M 2  receptors and induces negative inotropic/chronotropic actions through activation of G i/o  protein (hyper-
polarization, decrease in Ca 2+  infl ux and Ca 2+ -induced Ca 2+  release, CICR). However, a higher concentration of 
acetylcholine can act on the small population of M 3  receptors. Endothelial M 3  receptor activation increases Ca 2+  
concentration and activates phospholipase A 2  to produce arachidonic acids. Arachidonic acids are converted to 
prostaglandins (PGE 2  and PGF 2α ) through COX-2 in the endothelium. Synthesized prostaglandins act in a para-
crine fashion and are effective for producing positive inotropic/chronotropic actions to decelerate the M 2 - 
mediated inhibitory actions. However the function of M 3  receptors on the myocardium is unknown at present       
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   3.    The atrial muscle preparations are fi xed in the organ bath 
(20 ml) containing gassed (95 %O 2  + 5 %CO 2 ) and warmed 
(37 °C) Krebs solution (NaCl, 118 mM; KCl, 4.75 mM; 
MgSO 4 , 1.2 mM; KH 2 PO 4 , 1.2 mM; CaCl 2 , 2.5 mM; 
NaHCO 3 , 25 mM; and glucose, 11.5 mM).   

   4.    Mechanical changes in the preparations are detected by a force 
transducer (TB-612 T, Nihon Kohden, Japan). Right atrial 
preparations show spontaneous contractions. Left atrial prepa-
rations are electrically stimulated (1 Hz, 2 ms in duration, 
1.5 × threshold voltage) using a pair of platinum electrodes 
connected to Stimulator (SEN-3301, Nihon Kohden).   

   5.    Effects of muscarinic agonist (carbachol) on the spontaneous 
contraction (chronotropic action) and the electrical stimulation 
evoked contraction (inotropic action) are compared among 
wild-type, drug-treated, and muscarinic receptor knockout 
mice.   

   6.    Effects of muscarinic receptor antagonists and drugs on the 
carbachol-induced actions are also examined to clarify the 
mechanisms of muscarinic action in the heart.      

       1.    Mice are deeply anesthetized with phenobarbital (i.p., 25 μg/
kg) and perfused with physiological saline via the aorta, 
 followed with 4 % formaldehyde plus 0.2 % picric acid in 0.1 M 
phosphate buffer, pH 7.4.   

   2.    After perfusion, the heart is removed and immersed in the 
same fi xative solution for an additional 6 h at 4 °C.   

   3.    The formaldehyde-fi xed tissues are dipped in 30 % sucrose 
solution overnight at 4 °C, embedded in OCT compound, and 
quickly frozen in liquid nitrogen.   

   4.    Frozen sections of 12 μm in thickness are mounted on poly-l   - 
lysine-coated glass slides, incubated with a guinea-pig anti- 
mouse M 2 R antibody (Frontier Institute Co. Ltd, Japan, 
1:200) or a rabbit anti-mouse M 3 R antibody (Acris antibodies 
GmbH, Germany, 1:400) overnight, followed by incubation 
with Cy3- labeled anti-rabbit IgG or anti-guinea-pig IgG 
(Jackson Immuno Research, West Grove, PA, USA, 1:200) 
for 2 h.   

   5.    Nucleus is counterstained using SOYTOX Green Nucleic Acid 
Stain (Invitrogen, Carlsbad, CA, USA, 1:30,000, incubation 
time: 10 min).   

   6.    The stained sections are mounted with glycerin-PBS and 
observed under a confocal laser scanning microscope (Fluoview; 
Olympus, Tokyo, Japan).      

5.2  Protocol 2: 
Immunohistochemical 
Study for Muscarinic 
Receptor Subtypes 
in the Mouse Heart
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      1.    Isolated mouse ventricles and atria are cut into small pieces and 
were immediately immersed in RNA Later (Takara, Japan) for 
12 h at 4 °C and then stored at −30 °C until use.   

   2.    Total RNA of cardiac tissues is extracted by the acid guani-
dine–phenol–chloroform method (TRIzol reagent, Invitrogen, 
Carlsbad, CA, USA).   

   3.    For quantitative analysis of muscarinic receptor mRNA 
 expression levels, real-time RT-PCR is conducted using SYBR 
Green. Sequences of primer pairs used are 5′-TCAGGACTCC
TCTGGCTTC- 3′ (forward) and 5′-CCGGGTTTCACTCT
CTGTCT- 3′ (reverse) for the M 1  receptor (Gene Bank, NM 
007698), 5′-CCGGTGTCTCCCAGTCTAGT-3′ (forward) 
and 5′-CAGACGTGGAGTCATTGGAG-3′ (reverse) for the 
M 2  receptor (Gene Bank, NM 203491), 5′-ACCAAGCTACCC
TCCTCAGA- 3′ (forward) and 5′-GACAGTTGTCACGGT
CATCC- 3′ (reverse) for the M 3  receptor (Gene Bank, NM 
033269), 5′-ATGGTGTTCATTGCGACAGT-3′ (forward) 
and 5′-GACTGTCTGCAACTGCCTGT-3′ (reverse) for the 
M 4  receptor (Gene Bank, NM 007699), and 5′-CGATCATGA
TGCCAGCCCTCT- 3′ (forward) and 5′-GACTGTCTGCAA
CTGCCTGT- 3′ (reverse) for the M 5  receptor (Gene Bank, 
NM 205783).   

   4.    PCR amplifi cation is carried out in a total volume of 20 μl 
 containing Platinum SYBR Green qPCR SuperMix-UDG 
(Invitrogen). The assay is performed using an Opticon Chromo 
4 real-time PCR detection system (Bio-Rad), and the PCR 
cycling program consisted of 2 min at 50 °C, 2 min at 95 °C, 
50 cycles of 15 s at 95 °C, and 1 min at 61.4 °C. Plate reading 
is carried out at 61.4 °C. Melting curve analysis following PCR 
amplifi cation confi rms the specifi city of the primers by detec-
tion of a single PCR product of the expected size on 2 % 
 agarose gels.   

   5.    PCR reactions are carried out in duplicate in 96-well plates. 
Standard curves are obtained using PCR fragments that had 
been isolated using a PCR purifi cation kit, resuspended in 
10 mM Tris-EDTA buffer (pH = 8.0), and quantifi ed with a 
spectrophotometer to calculate cDNA concentration. Sample 
concentrations calculated from the standard curves are con-
verted into copies of receptor cDNA per 1 μg RNA.        
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    Chapter 14   

 Muscarinic Receptor Gene Transfections and In Vivo 
Dopamine Electrochemistry: Muscarinic Receptor Control 
of Dopamine-Dependent Reward and Locomotion 

           Stephan     Steidl    ,     David     Ian     Wasserman    ,     Charles     D.     Blaha    , 
and     John     Yeomans    

    Abstract 

   Cholinergic neurons in laterodorsal (LDT) and pedunculopontine (PPT) tegmental nuclei respond to 
novel, arousing stimuli, then directly activate dopamine neurons, and increase dopamine outputs as mea-
sured by either in vivo microdialysis or by electrochemistry (described here). These mesopontine choliner-
gic neurons also directly activate superior colliculus and thalamic systems important for attention to novel 
stimuli, and for reward-seeking behaviors. M 5  muscarinic receptors that activate dopamine neurons 
and reward-seeking behaviors have been studied using pharmacology, knockout mice, oligonucleotide 
knockdown, and with electrochemistry and Herpes simplex viral gene transfections (HSV-M 5 ) protocols 
described here. Protocols for using HSV-M 5  genes, and designed M 4 D and M 3 D muscarinic receptor 
genes in behaving mice and for dopamine electrochemistry are presented, along with consequences for 
drug and gene therapy.  

  Key words     Chronoamperometry  ,   Viral transfections  ,   DREADDs  ,   Gene therapy  ,   HSV  ,   AAV  ,   Reward  , 
  Locomotion  ,   M 5  muscarinic receptors  ,   Dopamine  

1      Background and Historical Overview 

 Dopamine neural output is important for human diseases, such as 
Parkinson’s, schizophrenia, and drug abuse. Drugs that infl uence 
dopamine output have powerful effects on behaviors in animals 
(such as locomotion, reward seeking, and motor control) and simi-
larly powerful effects on confi dence, mood and motor control in 
humans important for the therapeutic value of pharmaceuticals. 
We have studied how dopamine neural outputs and reward- seeking 
behaviors in rodents are infl uenced by cholinergic and GABAergic 
neurons of the midbrain and pons, and then how M 2 , M 3 , M 4 , and 
especially M 5  muscarinic receptors and gene manipulations infl u-
ence dopamine effl ux and behaviors. 
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  The m5 receptor gene was discovered by Bonner’s group [ 1 ], 
shortly after the identifi cation of m1–m4 genes. Complete maps of 
m1–m5 mRNA expression are now available on the Allen Mouse 
Brain Atlas. Regional localization of M 1 –M 5  proteins in brain stem 
has been reviewed [ 2 ]. 

 Immunoprecipitation studies show that M 5  receptors account 
for only about 1 % of all muscarinic receptors in the rat brain. Low 
receptor numbers make it diffi cult to localize M 5  receptors by 
immunohistochemistry [ 3 ,  4 ]. Expression of m5 mRNA is local-
ized to ventral tegmental area (VTA) and substantia nigra, zona 
compacta (SNc). Following 6-hydroxydopamine dopamine lesions 
m5 mRNA is no longer detected in midbrain [ 5 ,  6 ]. This suggests 
that excitatory M 5  receptors are important for activation of dopa-
mine neurons, and inspired the creation of M 5  knockout (M 5 - KO) 
mice [ 7 ,  8 ].  

   Cholinergic input to dopamine reward systems was fi rst studied 
using VTA microinjections in rats bar-pressing for rewarding hypo-
thalamic brain stimulation. Microinjections of acetylcholine, nico-
tine or carbachol into the VTA were found to increase sensitivity to 
rewarding brain stimulation [ 9 – 11 ], as well as to increase mesolim-
bic dopamine effl ux [ 12 ]. Microinjections of muscarinic antago-
nists into the VTA were found to reduce sensitivity to rewarding 
brain stimulation more than nicotinic antagonists [ 13 ]. Similarly, 
selective knockdown of M 5  muscarinic receptors with antisense 
 oligonucleotides in the VTA reduced sensitivity to rewarding brain 
stimulation [ 14 ]. 

 Food- and opioid-motivated rewards were also strongly reduced 
by these same muscarinic antagonists in the VTA [ 15 ,  16 ]. Acetyl-
choline levels in VTA are increased during eating, drinking and 
brain-stimulation rewards as measured by in vivo microdialysis [ 17 ].  

   Cholinergic neurons (Ch1–8) are defi ned by the presence of the 
synthesizing enzyme choline acetyltransferase (ChAT) [ 18 ]. The 
only direct projections of cholinergic neurons to the VTA and 
SNc are from pedunculopontine (PPT; Ch5) and laterodorsal teg-
mental nuclei (LDT; Ch6) [ 19 ,  20 ]. The direct projections to 
VTA dopamine neurons from these nuclei are especially from LDT 
and caudal PPT cholinergic and glutamate neurons [ 21 ,  22 ]. The 
Ch5/Ch6 cholinergic projections to VTA and SNc are less 
dense than to thalamus or superior colliculus intermediate layers, 
however. 

 These anatomical connections suggest that cholinergic activa-
tion of dopamine systems is part of a larger cholinergic arousal 
system [ 2 ]. So, novel and rewarding stimuli activate fast saccadic 
eye movements and approach turns via the superior colliculus, 
facilitated by nicotinic input from Ch5 [ 23 ,  24 ]. At the same time, 
Ch5/6 cholinergic activation of thalamus facilitates cortical arousal 
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and attention to these stimuli [ 25 ] via fast nicotinic and slower 
 M 1 -type muscarinic receptors [ 26 ,  27 ]. Ch5 and Ch6 neurons also 
provide weaker anatomical projections to Ch1–4 basal forebrain 
nuclei supporting cortical arousal [ 28 – 30 ]. Finally, SNc and VTA 
dopamine activation provides sustained motor arousal and moti-
vated reward-seeking behaviors. 

 Excitotoxic lesions of PPT and LDT neurons reduce behav-
ioral arousal and reward sensitivity in several ways. For example, 
bilateral lesions of caudal PPT block acquisition of brain- stimulation 
reward [ 31 ] and morphine conditioned place preference [ 32 ]. 
Cholinergic output can be inhibited pharmacologically in PPT or 
LDT by local infusion of the cholinergic agonist carbachol, which 
inhibits Ch5 and Ch6 neurons via M 2  and M 4  inhibitory receptors 
[ 33 ,  34 ]. Carbachol in the PPT similarly inhibits dopamine output 
[ 35 ], brain-stimulation reward or locomotion [ 36 ,  37 ]. By con-
trast, muscarinic antagonists in the PPT or LDT strongly facilitate 
dopamine outputs, rewarding brain stimulation, or locomotion, 
apparently via M 2  receptors [ 38 ]. M 4  receptors in VTA also appear 
to inhibit ACh release from VTA cholinergic terminals [ 39 ].  

   In vivo electrochemistry allows temporal resolution of the many 
different neural pathways and receptors that infl uence dopamine 
transmission (e.g., ref.  38 ). Following LDT or PPT electrical stim-
ulation (see Protocol and Fig.  1 ) dopamine levels change in three 
phases in rats: (1) Dopamine increases for 2–4 min due to both 
VTA nicotinic and AMPA glutamate receptors, (2) Dopamine 
decreases for 5–10 min due to LDT/PPT M 2 -like receptors, fol-
lowed by (3) sustained increases in dopamine (from 10 to 60 min 
post stimulation), due to M 5  muscarinic receptors in VTA or SNc 
[ 38 ,  40 ]. The third phase is completely removed by muscarinic 
receptor antagonists infused into the VTA or SNc, or by m5 gene 
knockout (Fig.  1a ; [ 38 ,  40 – 42 ]). Therefore, M 5  receptors on 
dopamine neurons have very long-lasting and powerful activating 
effects on dopamine outputs to the nucleus accumbens and 
striatum.

   Although excitatory M 3  receptor mRNA is found near orexin/
hypocretin neurons in the lateral hypothalamus, carbachol inhibits, 
and the M 3  antagonist 4-DAMP excites, orexin neurons [ 43 ]. 
Therefore M 3  receptors may excite GABA interneurons in the 
hypothalamus as they do in midbrain near dopamine neurons [ 44 ].   

2    Electrochemical Methods to Study Muscarinic Modulation 
of Brain Dopamine Signaling 

 Oxidization of an electroactive compound such as dopamine results 
in measurable current fl ow (Fig.  1b  bottom). The methods outlined 
below describe an experimental setup that uses chronoamperometry 
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  Fig. 1    ( a ) Nucleus Accumbens (NAc) Dopamine Effl ux Measured by Chronoamperometry in Mice after Electrical 
Stimulation of the LDT ( arrow ).  Left Panel Top : In wild-type mice LDT stimulation induces a rapid increase in 
NAc dopamine (1) followed by a decrease in dopamine effl ux from 3 to 8 min (2). Dopamine effl ux is again 
increased from 10 to 60 min following LDT stimulation (3).  Left Panel Bottom : Systemic pretreatment with the 
muscarinic receptor antagonist scopolamine in wild-type mice selectively blocks the third phase of increased 
dopamine effl ux.  Right Panel : In M 5  knockout mice the third phase of increased dopamine effl ux following LDT 
electrical stimulation is completely absent and is not further reduced by systemic scopolamine pretreatment 
(Figure adapted from [ 41 ]). ( b ) In chronoamperometry the applied potential to the working electrode is near- 
instantaneously stepped up from a resting potential to a value above the dopamine oxidation potential (−0.15 V 
to 0.25 V) for 1 s duration at a fi xed interval. To measure dopamine with carbon paste electrodes, the potential 
is instantly stepped from a resting value of −0.15 V to 0.25 V for 1 s, every 30–60 s ( left ). As the potential is 
stepped up, the recorded current increases dramatically, and this is due to charging current of the electrode 
and oxidation of the electroactive species. The charging current decays as the potential is held, and the fara-
daic (i.e., dopamine oxidation) current ( bottom ) is measured and integrated over the fi nal 50 ms of the 1000 ms 
pulse ( middle ; [ 45 ]). Oxidation current is then plotted across time. Dopamine oxidation current is proportional 
to in vivo dopamine concentration ( right ). ( c ) Chronoamperometry in combination with carbon paste electrodes 
to measure in vivo dopamine: the stearate-modifi ed graphite paste recording electrode is implanted in the 
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Fig. 1 (continued) brain area of interest (e.g., the nucleus accumbens), a combined reference and auxiliary 
electrode is placed into contact with the cortex (opposite hemisphere). A potentiostat, or electrometer, provides 
a circuit between the three electrodes and allows for the application of a voltage potential to the recording 
electrode via the auxiliary electrode, as well as the maintenance of a potential difference between the record-
ing and reference electrode [ 45 ]. When a positive voltage is applied to the working electrode of suffi cient 
amplitude it causes the oxidation of dopamine at its surface. ( d ) Anesthetized animal recordings should be 
performed in a standard Faraday cage. Place the stereotaxic apparatus inside the cage and place the elec-
trometer outside of the cage. The stereotaxic apparatus shown here allows for the use of 3–4 manipulator 
arms simultaneously. At minimum, one carrier is needed to hold the stearate-modifi ed graphite paste record-
ing electrode and a second carrier is needed to hold the combined reference and auxiliary electrode. Additional 
carrier arms then allow for mounting stimulating electrodes (i.e., for PPT/LDT electrical stimulation) or injection 
cannulae (for intracranial microinjection of drugs or pharmacological agents). ( e ) Stearate-modifi ed carbon 
paste electrode constructed from a Tefl on-coated stainless steel wire. Extruding the Tefl on coating ~1 mm 
beyond the tip of the stainless-steel wire creates a well that is fi lled with stearate-modifi ed graphite paste. 
( f ) Diagram showing a combined reference/auxiliary electrode       

(one of several available electrochemical techniques) in combination 
with stearate-modifi ed graphite paste electrodes to measure dopa-
mine in vivo. Three electrodes are needed: the working electrode is 
implanted into the brain area of interest (see section 2.2.2) and a 
combined reference and auxiliary electrode is placed into contact 
with the cortex (see section 2.2.3). A potentiostat, or electrometer, 
provides a circuit between the three electrodes and allows for the 
application of a voltage to the recording electrode via the auxiliary 
electrode, as well as the maintenance of a potential difference 
between the recording and reference electrodes (Fig.  1c ; [ 45 ]). 
When a positive voltage of suffi cient amplitude is applied to the 
working electrode it causes the oxidation of electroactive com-
pounds (e.g., dopamine) at its surface. Oxidation results in the 
transfer of  electrons producing a measurable current (Fig.  1b  bot-
tom). The current fl ow, termed the faradaic current, is proportional 
to the concentration of the neurochemical of interest [ 45 ,  46 ]. In 
chronoamperometry the applied potential is near-instantaneously 
stepped from a resting value of −0.15 V to 0.25 V for 1 s, every 
30–60 s. The faradaic (i.e., oxidation) current is measured and inte-
grated over the fi nal 50 ms of the 1000 ms pulse (Fig.  1b ; [ 45 ]). 

         1.    Stereotaxic frame (Model 1504 with Model 1211 base plate; 
this stereotaxic frame allows for the use of 3–4 manipulator 
arms simultaneously), mouse or rat nose bar and rat ear bars 
(model 855) produced by David Kopf Instruments (Fig.  1d ).   

   2.    Stereotaxic drill (Model 1471 with Model 1469 stereotaxic 
holder) produced by David Kopf Instruments and trephine 
drill bits (Harvard Apparatus).   

   3.    Stereotaxic cannula holder (Model 1776-P1) produced by 
David Kopf Instruments.   

2.1  Materials

2.1.1  Stereotaxic 
Equipment
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   4.    Various surgical instruments: scalpel, forceps, small animal 
clippers etc. (Fine Science Tools).   

   5.    Hamilton syringes (Model 7002KH), injector tubing, guide 
cannulae (26 gauge), injector cannulae (33 gauge; Plastics 
One Inc.) and a micro-infusion pump (Harvard Apparatus).   

   6.    Various surgical supplies: gauze, cotton tip applicators, beta-
dine, latex gloves, etc.   

   7.    Urethane for anesthesia (Sigma-Aldrich).   
   8.    Temperature-regulated heating pad (e.g., TC-1000; CWE 

Inc., New York, NY).      

       1.    Glass mortar and pestle, a 25 ml beaker, a 250 ml beaker, 
appropriately sized magnetic stir bar, a glass capillary heat-
sealed on one end, and a stirring hotplate.   

   2.    Stearate (99.9 % purity), silicone oil, and graphite powder 
(particle size < 10 μm; all available from Sigma-Aldrich), 0.9 % 
saline solution.   

   3.    Tefl on-coated stainless-steel wire (0.008″ o.d.; Medwire, Mount 
Vernon, NY), silver wire (0.008″ o.d.; A&M Systems Sequim 
WA), stainless steel wire (0.008″ o.d.; A&M Systems Sequim WA).   

   4.    #5 forceps, a glass plate, masking tape, #10 scalpel blade, 
Tefl on tape, a compound microscope that will allow for view-
ing of the electrode tip, a 9 V battery, black wax, a needle tip, 
standard 1 ml pipette tip, epoxy.      

       1.    0.01 M phosphate-buffered saline solution, dopamine hydro-
chloride, perchloric acid (Sigma-Aldrich), and double distilled 
water.      

       1.    Bipolar concentric stimulating electrode (e.g., SNE-100, 
Rhodes Medical Co., Woodland Hills, CA or CBARD75, 
FHC, Bowdoin, ME).   

   2.    Programmable pulse generator (e.g., Master 9, AMPI, Jerusalem, 
Israel) connected to a stimulus isolator (e.g., ISO-Flex, AMPI, 
Jerusalem, Israel) to apply stimulation current pulses.   

   3.    Electrometer (e.g., EChempro, GMA Technologies, Vancouver, 
Canada).       

     Graphite paste electrodes are treated to enhance selectivity for 
dopamine by incorporating a fatty acid (stearic acid) into the graph-
ite paste [ 46 ,  47 ]. The fatty acid provides an anionic recording 
 surface that slows down the electron transfer kinetics of anions (i.e., 
ascorbic acid and dopamine metabolites, such as DOPAC [ 45 ]).

    1.    Using the 25 ml glass beaker and stir bar dissolve 75 mg of 
stearate in 1 ml silicone oil heated to 40 ºC (Note 1).   

2.1.2  Equipment 
for Construction 
of Stearate- Modifi ed 
Graphite Paste Recording 
Electrodes and Reference/
Auxiliary Electrodes

2.1.3  Materials 
for In Vitro Calibration 
of Graphite-Paste 
Electrodes

2.1.4  Materials 
for In Vivo Electrochemical 
Recordings in Anesthetized 
Rats or Mice

2.2  Methods

2.2.1  Preparation 
of Stearate- Modifi ed 
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   2.    Once the stearate crystals are fully dissolved remove from heat 
and transfer contents of beaker into glass mortar. Add 1 g of 
graphite powder and thoroughly mix using the glass pestle. 
The consistency of the mixture will start off paste-like and with 
additional mixing will become powdery.   

   3.    Transfer stearate-modifi ed graphite paste to a light-proof glass 
vial for storage.    

         1.    Cut a length of Tefl on-coated stainless-steel wire from the 
spool using wire cutters. Trim the length of wire to ~10 cm 
using a #10 scalpel blade. Straighten the cut length of wire 
carefully.   

   2.    Strip ~1 cm of Tefl on coating form one end of the wire. This 
will provide the top end of the implantable electrode where the 
electrometer can be connected.   

   3.    Use a pair of #5 forceps to grip exposed 1 cm length of 
stainless- steel wire. Holding the electrode by the forceps, gen-
tly pass the coated portion between thumb and forefi nger to 
loosen the Tefl on coating. Be careful not to pull the Tefl on 
coating off the stainless-steel wire.   

   4.    Extrude the Tefl on coating 2–3 mm past the tip of the stainless- 
steel wire on the opposite end.   

   5.    While holding the uncoated portion of the wire between the 
thumb and forefi nger of one hand, lay the wire fl at on the glass 
plate, maintaining a loose grip on the wire. Use a thin-edged 
razor blade to cut the well’s surface. Hold the blade perpen-
dicular to the wire approximately 5 mm behind the end of the 
stainless-steel wire on the end where you previously extruded 
the Tefl on coating. Gently lower the blade onto the wire and 
let blade rotate the wire across the glass surface for one full 
rotation. Remove the excess Tefl on using forceps.   

   6.    Hold the stainless-steel wire at the electrode contact end in 
one hand. Then with the thumb and forefi nger of the other 
hand around the center of the electrode gently push the 
remaining Tefl on coating so that the edge of the well extrudes 
~1 mm beyond the tip of the wire (Fig.  1e ). Examine the well 
surface under a microscope. The well should have a clean and 
unblemished concentric Tefl on surface. And uneven cut will 
create Tefl on spirals visible under the microscope. If this occurs 
cut another well as described above.   

   7.    Grip and hold the wire fi rmly using #5 forceps at a distance 
from the well surface that is about 2–3 mm over the depth 
the electrode is to be implanted (~1 cm for a mouse). Loop the 
wire tightly around the tip of the forceps for two complete 
revolutions. Carefully slide out the tip of the forceps. Wrap a 
small (3–4 mm wide × 2 cm long) strip of masking tape around 
the loop.   

2.2.2  Construction 
of Stearate- Modifi ed 
Graphite Paste Recording 
Electrodes
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   8.    Place a small quantity of the stearate-modifi ed graphite paste 
mixture onto the clean surface of a glass plate. If needed clean 
the glass surface with ethanol. Holding the electrode around 
the contact end between thumb and forefi nger gently push the 
well into the graphite paste mixture to fi ll the well. Avoid large 
particles of graphite powder and do not apply pressure as this 
will crush the fragile well.   

   9.    Clean the excess paste from the well’s side and surface by gen-
tly rubbing the tip across a suspended piece of Tefl on tape.   

   10.    Then, hold the electrode perpendicular to the glass surface 
(well facing down) and drop the electrode onto the glass 
 surface to tightly pack the graphite paste into the Tefl on well 
(Fig.  1e ).   

   11.    Examine the electrode’s surface under a microscope. The 
graphite surface should appear shiny and smooth and the walls 
of the well’s surface should be free of graphite. If cracks or 
grooves are observed additional packing and/or additional 
graphite paste may be required (Note 2).      

       1.    Use gloves to handle silver wire. Wrap a length of silver wire 
(~10 cm) around the shaft of a stereotaxic drill bit to achieve 
about 10–15 closely spaced, but not touching, loops.   

   2.    Place the coil in the 250 ml beaker fi lled with 0.9 % saline 
ensuring the entire coil is submerged. Attach the coil to the 
anode (+) of the 9 V battery. Attach a second short length of 
bare silver wire to the cathode (−) of the battery. The process 
of silver chloriding the wire will darken the surface of the coil. 
Set aside the coil in saline until ready for use.   

   3.    Obtain a standard 1 ml pipette tip. Use a heated 18 g needle 
tip to burn a hole into the side of the pipette tip ~1 cm from 
the top rim. Next, melt a circular groove around the circum-
ference of the pipette tip at the level of the hole. Melt a second 
circular groove just above where the pipette tip tapers.   

   4.    Insert the silver/silver chloride coil into the pipet and feed the 
excess wire on one end through the hole. Cover the hole with 
black wax to secure the position of the coil.   

   5.    Obtain a 30 cm piece of stainless-steel wire and tightly wrap it 
around the exposed piece of Ag/AgCl wire. Then wrap this 
wire around the pipette (starting in the groove) and a closely 
placed dowel to form a loop. This will provide a contact for the 
electrometer to connect to the Ag/AgCl reference electrode.   

   6.    Obtain a second 30 cm piece of stainless-steel wire. Coil this 
wire around the groove created just above the tapered end of 
the pipette tip leaving plenty of access on one end. Start loop-
ing the wire downward to the tip creating a coil on the way 
down. Wind the wire around the groove at the tip several times 

2.2.3  Construction 
of Reference/Auxiliary 
Electrode (Fig.  1f )
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and begin looping upward again to the middle groove. Wrap 
around the middle groove several times and twist remainder 
around the other end of the wire left in place previously. Then 
wrap this wire around the pipette and a closely placed dowel to 
form a loop. This will provide a contact for the electrometer to 
connect to the auxiliary electrode. Cover the middle groove 
and wire with epoxy to ensure the position of the auxiliary 
electrode is secure.   

   7.    Fill interior of pipette with 0.9 % saline while epoxy is drying. 
Insert an appropriately sized rubber stopper in the top end of 
the pipette tip (Fig.  1f ). Set aside until ready to use (Note 3).      

       1.    Place a glass container containing 15 ml of a 0.01 M phosphate- 
buffered saline solution on a battery-operated magnetic stirrer.   

   2.    Submerge the graphite paste electrode and the combination 
reference/auxiliary in the solution.   

   3.    Use the electrometer to obtain a linear sweep voltammogram 
by ramping the potential applied to the working electrode 
from −0.15 V to 0.5 V vs. the Ag/AgCl electrode at a rate of 
10 mV/s.   

   4.    Add discrete quantities of a 2 mM solution of dopamine 
(37.9 g of dopamine hydrochloride dissolved in 90 ml double 
distilled water and 10 ml of 0.1 M perchloric acid) to achieve 
a 1 μM concentration of dopamine in the phosphate-buffered 
saline solution. Stir the solution gently for a period of 5 s 
(Note 4).   

   5.    Obtain another linear sweep voltammogram. Repeat the 
 process for between 3 and 5 additions of 1 μM dopamine to 
confi rm, fi rst, that peak current was always obtained at the 
same potential and, second, that the relative increases in peak 
current were consistent across consecutive 1 μM additions of 
dopamine.      

       1.    Anesthetized animal recordings should be performed in a stan-
dard Faraday cage. Place the stereotaxic apparatus inside the 
cage. Place the electrometer outside of the cage.   

   2.    Anesthetize mice or rats with urethane (1.5 g/kg, i.p.; initial 
dose supplemented with 0.3 g/kg 30 min later).   

   3.    Secure mouse or rat in a stereotaxic frame. Maintain body 
 temperature at 37 ± 0.5 °C with a temperature-regulated 
 heating pad.   

   4.    Drill a hole into the skull above the brain area of interest (e.g., 
NAc or dorsolateral striatum) large enough to accommodate 
the graphite paste recording electrode. Drill a second larger 
hole to accommodate the tip of the combined reference/ 
auxiliary electrode. This hole should be placed so that the 

2.2.4  In Vitro Testing 
of Graphite Paste 
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combined reference/auxiliary electrode is in contact with the 
opposite brain hemisphere at a distance that does not interfere 
with placement of the recording electrode.   

   5.    Mount the combined reference/auxiliary electrode on a stereo-
taxic carrier and connect the electrometer. Ensure the reference/
auxiliary electrode is completely fi lled with 0.9 % saline (air bub-
bles commonly occur at the tip). Place a drop of saline on to the 
hole and place the reference/auxiliary electrode into contact 
with the cortical surface.   

   6.    Attach the graphite paste recording electrode to another 
 stereotaxic carrier and lower into the brain area of interest 
(e.g., NAc) according to coordinates obtained from a stereo-
taxic brain atlas. Ensure that the tip of the electrode does not 
come into contact with blood.   

   7.    Attach the electrometer to the recording electrode (Fig.  1d ).   
   8.    Perform repetitive chronoamperometric measurements of oxi-

dation current by applying potential pulses from −0.15 to 0.30 V 
to the recording electrode (vs. reference electrode) for 1 s 
duration at 30 or 60 s intervals.      

       1.    Obtain muscarinic receptor knockout mouse and wild-type 
controls (available from Taconic Bioscience, Inc.).   

   2.    Secure anesthetized mouse in stereotaxic frame as described 
above.   

   3.    Drill an additional hole into the skull above the LDT or PPT 
and lower a bipolar concentric stimulating electrode into either 
LDT or PPT. Use a programmable pulse generator connected 
to a stimulus isolator to apply current pulses with the following 
parameters: 1 s, 35 Hz train of 400 μA pulses (1 s intertrain 
interval) applied over a 60 s period (1050 pulses in total). These 
parameters are designed to mimic spontaneous fi ring patterns 
of PPT neurons in awake, naturally aroused animals [ 25 ].   

   4.    Comparisons of electrically evoked nucleus accumbens or dor-
sal striatum dopamine effl ux between wild-type and knockout 
mice will reveal the contribution of muscarinic receptors to 
each of the three phases of dopamine effl ux [ 41 ].      

       1.    Secure anesthetized mouse or rat in stereotaxic frame as 
described above.   

   2.    Drill an additional hole above the VTA (when studying LDT 
electrically evoked nucleus accumbens dopamine effl ux) or the 
SNc (when studying PPT electrically evoked dorsal striatal dopa-
mine effl ux) to allow for insertion of a guide cannula. The guide 
cannula can be held by a stereotaxic carrier or can be chronically 
implanted by securing it to the skull surface using a combination 
of stainless-steel jeweler’s screws and dental cement.   

2.2.6  Using Muscarinic 
Knockout Mice to Study 
the Role of Muscarinic 
Receptor Signaling 
in Mesopontine 
Excitation of Mesolimbic 
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   3.    Apply electrical stimulation to the LDT or PPT and observe 
the triphasic response pattern [ 38 ,  40 – 42 ].   

   4.    Infuse a muscarinic receptor antagonist, or vehicle, into the 
VTA or SNc (Note 5) and repeat electrical stimulation.   

   5.    Compare the predrug, vehicle-treated, and antagonist-treated 
response patterns to determine the contributions of muscarinic 
receptors.       

       1.    Be careful not to overheat the silicone oil. This is easily accom-
plished by removing the beaker from the heat source the moment 
the last few crystals of stearate are observed to dissolve into the 
silicon oil.   

   2.    The microscope should allow for viewing the tip of the graph-
ite paste electrode. Wells have to be recut or repacked if 
necessary.   

   3.    The saline solution that fi lls the pipette tip should be replaced 
regularly. When not in use the tip of the reference/auxiliary 
electrode should be submerged in saline solution.   

   4.    Prepare fresh dopamine solution for in vitro calibration.       

3    Opioid Rewards and Mesopontine/M 5  Activation of Dopamine Neurons 

 M 5 -KO mice show defi cits in responding to morphine, either in 
conditioned place preference or in morphine-induced locomotion 
tasks, but not stimulant- or saline-induced locomotion tasks [ 48 – 51 ]. 
Similarly, PPT or LDT lesions signifi cantly reduce morphine- 
induced dopamine release [ 52 ,  53 ]. Finally, M 5 -KO mice lose their 
dopamine response to morphine entirely [ 42 ]. This suggests that 
morphine acts indirectly through the PPT/LDT to M 5  pathway to 
activate dopamine neurons, and for dopamine-dependent behav-
ioral effects of morphine. 

 These effects of morphine depend on μ-opioid receptors in the 
ventral tegmental region that inhibit GABA neurons. The most 
critical GABA neurons for opioid rewards and for  morphine- induced 
locomotion are located just caudal to VTA in the rostromedial teg-
mental nucleus (RMTg; [ 22 ,  54 ]). RMTg GABA neurons express 
together μ-opioid, nociceptin, GABA A  and M 4  muscarinic recep-
tors, all of which are normally inhibitory. We have proposed that 
together these receptors inhibit GABA neurons and thereby dis-
inhibit cholinergic and dopaminergic output neurons needed for 
opioid reward and dopamine effects [ 55 ]. 

 To excite VTA and RMTg neurons, we infused HSV-M 5 -GFP 
bilaterally into M 5 -KO and wild-type mice (Fig.  2 ) (See protocol 
below).    Viral infections work best when infecting cells, not axons, 
due to the larger surface area of dendrites and somata which clearly 

2.3  Notes
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express GFP after viral transfections (Fig.  2a–c ). This HSV-M 5  
method relies on expression of extra M 5  receptors, so that 
 endogenous activation of cholinergic neurons and endogenous 
ACh release is needed to activate the M 5  receptors.

   Although these two sites are less than 1 mm apart, VTA infec-
tions strongly facilitated morphine-induced locomotion, while 
RMTg infections blocked morphine-induced locomotion (Fig.  3 ). 
Both VTA and RMTg sites receive direct projections from many 
LDT and caudal PPT cholinergic neurons [ 55 ]. Therefore, the 
same populations of PPT and LDT neurons that excite VTA and 
SNc neurons via M 5  muscarinic receptors can simultaneously 
inhibit RMTg GABA neurons via inhibitory muscarinic M 4  recep-
tors. This suggests that morphine-mediated inhibitory inputs 

  Fig. 2    ( a–c ) HSV-M 5 -GFP Transfected Neurons and M 5  Expression. The HSV-M 5 -GFP vector was infused into 
VTA sites in M 5 -KO mice. Expression of viral GFP can be seen in ( a ). Sections were double-labeled with M 5  
antibodies ( red :  b ) and DAPI. ( c ) Merged image displaying triple-labeled cells ( purple nucleus , with  yellow 
spots  in cytosol) of viral GFP, M 5 -expression, and DAPI (20× magnifi cation, bar represents 75 μm) All cells 
labeled with viral GFP were also M 5  positive ( white arrows  indicate triple-labeling). As the mouse was an M 5  
knockout, all observed M 5  expression was virally mediated. ( d ) Schematic of the M 5 R-p1005 Vector. Expression 
of M 5 R was driven by a constitutive IE4/5 promoter while GFP expression was driven by a CMV promoter. 
Replication-defi cient Herpes simplex virus ( HSV )-derived particles were made from this vector as previously 
described ([ 60 ]; Figure modifi ed from [ 22 ])       
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to RMTg are facilitated by M 4  inhibition at the same time that 
cholinergic activation of dopamine neurons occurs. Then RMTg 
GABA connections to PPT and VTA release these neurons from 
inhibition to facilitate the arousing and rewarding outputs of cho-
linergic and dopaminergic systems. Therefore, the critical roles 
of RMTg inputs, and of caudal PPT, LDT and M 5  receptor out-
puts, to opioid reward and locomotion, appear to depend on close 
interconnections, supported by appropriate muscarinic receptor 
modulations.

   These muscarinic effects can be studied by local site-specifi c 
viral transfections of neurons, or by neuron-specifi c viral trans-
fections, using TH::Cre, ChAT::Cre or GAD2::Cre mouse lines. 
To identify which RMTg GABA neurons are critical for morphine- 
induced locomotion, we used AAV-M 3 D and AAV-M 4 D to activate 
or inhibit mCherry-labeled GABA RMTg neurons in GAD2::Cre 
mice. This method for activating genetically modifi ed muscarinic 
receptors (i.e., M 3 D for excitation like M 5 , and M 4 D for inhibition 
like M 4 ) relies on exogenously administered clozapine-N-oxide 
(CNO) [ 56 ]. AAV induces long-term infections of identifi ed neu-
rons, while systemic CNO control of these neurons occurs via 
muscarinic receptors with mutant binding sites. For future gene 
therapy applications, this is a powerful method for remote control 
of  specifi cally targeted brain neurons (see protocol below).  

  Fig. 3    ( a ) Open-fi eld apparatus for locomotion. Mice were placed in the center of arenas while a video camera 
recorded their horizontal movements. A computerized tracking program, Noldus Ethovision, thereafter scored the 
video and calculated the distance traveled. ( b – c ) Total saline and morphine-induced locomotion following HSV 
transfections. ( b ) In VTA, HSV-M 5  infusions ( green ) signifi cantly increased distance traveled at both morphine 
doses over HSV-control vector ( blue ) over the 2 h period. No differences were observed for saline. ( c ) In RMTg, 
HSV-M 5  infusions ( red ) signifi cantly reduced total locomotion over HSV-control vector ( orange ) only at 30 mg/kg. 
(M 5 -VTA,  n  = 7; M 5 -RMTg,  n  = 15; Control-VTA,  n  = 6, Control-RMTg,  n  = 7.) (fi gure modifi ed from [ 55 ])       

 

Muscarinic Receptor Gene Transfections and In Vivo Dopamine Electrochemistry…



274

4    Local Gene Control with HSV-M 5 -GFP Viral Transfections Including 
Cell- Specifi c Control with AAV-M 3 D, AAV-M 4 D 

         1.    Stereotaxic frame, mouse nose bar (Model 926) and rat ear 
bars (model 855) produced by David Kopf Instruments.   

   2.    Stereotaxic drill and drill bits.   
   3.    Stereotaxic cannula holder (Model 1776-P1) produced by 

David Kopf Instruments.   
   4.    Various surgical instruments: scalpel, forceps, etc. (Fine Science 

Tools).   
   5.    10 μl Hamilton microsyringes (Model 7002KH) connected 

with Tygon tubing (0.02 mm i.d.) to injector cannula (33 
gauge) produced my Plastics One Inc.   

   6.    Small animal clippers.   
   7.    Various surgical supplies: gauze, cotton tip applicators, beta-

dine surgical scrub, nitrile gloves, etc.   
   8.    Isofl urane for anesthesia (Sigma-Aldrich).   
   9.    Temperature-regulated heating pad (e.g., TC-1000; CWE 

Inc., New York, NY).   
   10.    Syringe pump.   
   11.    Mineral oil.      

       1.    Open-fi eld arena(s) (measuring 31 × 31 × 31 cm).   
   2.    Video camera suspended above open-fi eld arena(s).   
   3.    Video tracking software (e.g., Noldus Ethovision V7.0 

(Groningen, Netherlands)).      

       1.    M 5 -KO mice and wild-type controls (CD1/129).   
   2.    M 5 -HSV-GFP and M 5 -control-GFP (see Note 5 for details on 

HSV vectors).   
   3.    Morphine sulfate pentahydrate (Sigma, St. Louis, MO) (Note 6).      

       1.    GAD2::Cre mice (Jackson Laboratory, Gad2 tm2(cre)Zjh /J, 010802).   
   2.    AAV-FLEX-M 3 D-mCherry or AAV-FLEX-M 4 D-mCherry (see 

Note 7 for details on AAV vectors and DREADDs).   
   3.    Morphine sulfate pentahydrate (Sigma, St. Louis, MO) 

(Note 8).   
   4.    Dimethyl sulfoxide (DMSO).   
   5.    Clozapine-N-oxide (CNO) (Note 9).       

4.1  Materials

4.1.1  Stereotaxic 
Equipment

4.1.2  Equipment Needed 
for Behavioral Testing 
of Open-Field Locomotion

4.1.3  Materials 
for HSV-M 5  Transfections 
in M 5 -KO or WT Mice

4.1.4  Materials 
for AAV-M3D or M4D 
Transfections 
in GAD2::Cre Mice
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        1.    Fill Hamilton syringe/Tygon tubing/injector cannula assembly 
with mineral oil (or water) (Note 10). Place fi lled Hamilton 
syringe into syringe-pump and eject 4–10 μl. Wipe tip of injec-
tor, and withdraw 0.5–1.0 μl to create an air bubble. Place 
injecNor cannula into virus solution, and slowly load vector 
(rate of 0.1–3.0 μl/min). To conserve virus, consider loading 
enough viral vector to perform several surgeries (Note 11).   

   2.    Anesthetize mice based on an approved Institutional Animal 
Care and Use Committee (IACUC) protocol. Anesthesia should 
be induced at 3 % isofl urane and maintained at 1.5 % isofl urane 
delivered via a vaporizer at 0.7 l/min O 2 .   

   3.    Secure mouse in a stereotaxic frame. Maintain body tempera-
ture at 37 ± 0.5 °C with a temperature-regulated heating pad.   

   4.    Drill burr holes into the skull above the brain area of interest 
large enough to accommodate an injector cannula. Slowly 
lower injectors into burr holes to desired D/V coordinates 
into site of interest.   

   5.    Begin injecting virus slowly (0.1–3.0 μl/min) until the desired 
volume of the virus has been dispensed 0.1–1.0 μl of virus. 
Note: volume and rate of injection can depend on specifi c type 
of virus, titer, desired spread, and limitations of syringe pump.   

   6.    Allow for the injector cannula to remain in place for an addi-
tional 5–10 min to ensure vector diffusion.   

   7.    Following diffusion period, slowly raise the cannula out of the 
skull.   

   8.    Depending on experimental design, repeat steps 5–7 for alter-
nate hemisphere or additional sites.   

   9.    Once all viral injections are complete, retract the cannula, 
suture the wound, and apply standard post-operative care.   

   10.    Depending on biosafety protocol, segregate cages from colony 
under HEPA-fi ltered cage tops for 48 h.      

   Open-fi eld locomotion is a reliable measure of drug effect in 
rodents. Drug-induced hyperactivity is easy to quantify and has 
been shown, in rodents, in response to several different drugs 
of abuse. This drug-elicited, goal-directed behavior is an adaptive 
survival mechanism to encourage exploration, and risk taking. 
Increases in drug-induced locomotion often refl ect activation of 
the mesolimbic DA system. Thus, running can be taken as a behav-
ioral index refl ective of the functioning and integrity of the DA 
system [ 57 ]. 

 While there are several other methods to measure open-fi eld 
locomotion (automated photocell cages, scored by observation), 
here we will be discussing video-recorded trials and offl ine-scoring 
using Noldus Ethovision tracking software (Fig.  3a ) [ 22 ,  50 ].

4.2  Methods

4.2.1  Viral Transfections 
in Mice

4.2.2  Behavioral Testing: 
Open-Field Locomotion
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    1.    Behavioral experiments should always be carried out at the 
same time of the day taking into account that the animals show 
minimal motor activity around noon under a light regime with 
lights on from 6 a.m. to 6 p.m.   

   2.    To ensure best results, perform open-fi eld testing in a room 
with dim red lighting and with a 70 dB white-noise generator.   

   3.    Assign mice to specifi c open-fi elds such that they are consis-
tently tested in the same environment.   

   4.    Before commencing tests, habituate mice to the open-fi eld 
arenas. Place each mouse in the center of its open-fi eld and 
allow it to freely explore the environment. It is recommended 
to habituate mice at least once before testing.   

   5.    Begin test days with a brief habituation period (30–60 min). 
Place each mouse in the center of its open-fi eld and video- 
record their behavior.   

   6.    Briefl y remove mice from open-fi elds and return them to indi-
vidual cages. Using dry paper towel, lightly wipe down each 
open-fi eld and remove any feces and urine. Do not use ethanol 
or any other cleaner as the odors may infl uence behavior.   

   7.    Administer injections to each mouse, before returning them to 
the center of their open-fi eld. Begin recording video for the 
duration of your test phase.   

   8.    If mice are performing additional tests on that day, repeat steps 
6–7. When mice have completed testing, return them to their 
home cages and housing room.   

   9.    Analyze videos using software (e.g., Noldus Ethovision) and 
calculate the measures of interest (horizontal distance traveled, 
rotations, etc.).    

     A Herpes simplex viral vector (HSV) was used to transfect M 5  
DNA [ 58 ] in a small fi eld, to precisely defi ne neurons causing the 
behavioral changes [ 59 ,  60 ] (Fig.  2d ). Due to the time course of 
the HSV transfections, an accelerated testing period was required 
as maximal gene expression for HSV vectors occurs 24–72 h fol-
lowing infusion [ 59 ,  61 ]. M 5 -KO and WT mice were run in groups 
of 4–6 mice over a period of 5 days [ 22 ]. On day 1, surgery was 
performed and either the HSV-M 5 -GFP or HSV-control-GFP vec-
tor was bilaterally infused (at a volume of 0.5 μl per hemisphere at 
2.5 μl/min) into the VTA or RMTg (relative to bregma: VTA—
AP: −3.40, ML: ±0.50, DV: −4.40; RMTg—AP: −3.90, ML: ±0.40, 
DV: −3.88 [ 62 ]. On day 2, mice received standard post- surgical 
treatment and were allowed the day to recover. 

 Behavioral testing occurred on days 3 and 4, and each day 
began with a 60-min habituation period. On day 3, following 
habituation, each mouse was briefl y removed from its test box, 
received a saline injection and was immediately placed back in the 

4.2.3  HSV-M 5  
Transfections
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center of its box. Video recording occurred over the next 2 h to 
track saline-induced locomotion. After the 2 h trial, mice were 
again briefl y removed from their boxes, injected with 10 mg/kg 
morphine i.p., and were returned to the center of their respective 
boxes. Again, video acquisition occurred for 2 h. Following the 
morphine trial, mice were returned to their home cages and 
returned to the housing room. On day 4, following habituation, 
mice were injected with 30 mg/kg i.p. morphine. Again, locomo-
tion was recorded for a 2 h period after which, the mice were 
returned to their home cages in the housing room. In order to 
minimize order effects over the 2 consecutive test days, all mice 
received increasing morphine doses (0, 10, 30 mg/kg) with each 
subsequent test. Video recordings were scored using Noldus 
Ethovision V7.0 (Groningen, Netherlands), which calculated the 
distance traveled (in m) for each 15-min period.  

   To study the locomotor effects of muscarinic signaling on RMTg 
GABA neurons, we transfected GAD2::Cre mice with genes encod-
ing the mutant muscarinic receptors M 3 D or M 4 D specifi cally 
into RMTg GABA neurons [ 56 ,  63 ] using Cre-responsive adeno- 
associated viral vectors (AAV) [ 55 ]. 

 GAD2::Cre mice received bilateral microinjections of either 
AAV-M3D or AAV-M4D vectors (at a volume of 0.2 μl per hemi-
sphere at a rate of 0.1 μl/min) into the RMTg (relative to bregma: 
RMTg—AP: −3.90, ML: ±0.40, DV: −3.88) [ 62 ]. 

 Behavioral testing began 4–5 weeks after AAV infusions and 
occurred on alternate days for a total of 6 sessions. Testing sessions 
began with each mouse placed in the center of its test box for 1-h 
habituation, then briefl y removed for an i.p. injection and returned 
to its box for a 3-h test. Test sessions 1 and 4, however, served 
as no-injection control trials, where, following habituation, each 
mouse was removed from its box, briefl y handled, and then 
returned for a 3-h test without any injection. On test days 2 and 3, 
mice received either saline/vehicle alone, or CNO (counterbal-
anced). On test days 5 and 6, mice received either morphine alone, 
or morphine with CNO (counterbalanced). Following each testing 
session, mice were returned to their home cages, then to the hous-
ing room. All test sessions were video-recorded using overhead 
digital cameras. Recordings were analyzed using Noldus Ethovision 
V7.0 (Groningen, Netherlands) to calculate total horizontal dis-
tance traveled for each 30-min period.   

       5.    A cDNA containing the full-length reading frame of mouse 
M 5  receptor DNA (M 5 R) was subcloned into the bi-cistronic 
amplicon vector p1005 (Fig.  2d ). The resulting vector, HSV-
M 5 - GFP, contained mM 5 R after the HSV-derived IE4/5 pro-
moter along with the cDNA for green fl uorescent protein 
(GFP) after a CMV promoter. Replication-defi cient Herpes 

4.2.4  AAV-M 3 D or M 4 D 
Transfections of RMTg 
in GAD2::Cre Mice

4.3  Notes
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simplex virus- derived particles were made from this vector 
as previously described [ 60 ]. A control virus (p1005), HSV-
control-GFP was also constructed; this was identical to the 
HSV-M 5  with the M 5 R gene excluded. Both viruses (M 5 R-
p1005 and p1005) had titers >1 × 10 8  infectious units/ml.   

   6.    Morphine sulfate pentahydrate dissolved in sterile saline and 
injected i.p. at a volume of 10 ml/kg body weight and concen-
trations of 10 mg/kg and 30 mg/kg calculated according to 
free base weight.   

   7.    To selectively excite or inhibit RMTg GABA neurons in mice, 
we used two mutant muscarinic receptors, M 3 D and M 4 D, also 
known as DREADDS: Designer Receptors Exclusively Acti-
vated by Designer Drugs [ 56 ]. We employed a Cre recombinase- 
dependent, AAV expression system called the AAV-FLEX 
approach. The AAV-FLEX vector carries a reversed and dou-
ble-fl oxed effector gene to enable specifi c expression in trans-
genic mice expressing Cre recombinase under the control of 
the GAD2 promoter. The coding sequences of the M 3 D 
or M 4 D DREADDs were linked to the fl uorescent protein, 
mCherry, and packaged into a Cre recombinase- dependent 
AAV vector to allow expression of either M 3 D or M 4 D and 
mCherry fusion proteins. In the absence of Cre recombinase, 
transgenes (M 3 D-mCherry or M 4 D-mCherry) are inverted 
with respect to the promoter between two pairs of heterotypic, 
antiparallel loxP sites, and thus transgene expression is off. 
When introduced to Cre-expressing cells, however, the trans-
gene orientation is inverted by Cre-mediated excision, leading 
to the activation of the trans-gene expression. These mutant 
receptors are designed to be activated by CNO which can be 
systemically administered. Further, these receptors have been 
evolved such that they do not respond to endogenous ACh 
[ 64 ]. These receptors are identical to M 3  and M 4  muscarinic 
receptors except they both have the same 2 point mutations in 
the ACh binding site [ 65 ].   

   8.    Morphine sulfate pentahydrate dissolved in sterile saline and 
injected i.p. at a volume of 10 ml/kg body weight and concen-
tration of 10 mg/kg calculated according to free base weight.   

   9.    CNO was dissolved in 0.5 % DMSO in sterile saline and injec-
ted i.p. at a volume of 10 ml/kg body weight for a fi nal con-
centration of 2 mg/kg. CNO was generously donated through 
the National Institute of Mental Health’s Chemical Synthesis 
and Drug Supply Program (Bethesda, MD).   

   10.    Both mineral oil and water can be used to fi ll the assembly. 
Mineral oil is preferred, however, due to its greater viscosity 
and increased accuracy.   
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   11.    Depending on length of surgery, and properties of the viral 
vector, injectors may be loaded with enough vector for multi-
ple sites and/or surgeries. If pursuing this option, ensure to 
load injector with excess vector. After infusing virus into fi rst 
animal, wipe injector with ethanol, dry injector, and withdraw 
an additional air bubble (1.0 μl). Before beginning the follow-
ing surgery, push out a volume greater than the withdrawn air 
bubble (e.g., 1.2 μl) to ensure that virus is correctly loaded at 
tip of injector.       

5    Conclusions 

 M 2  and M 4  receptors directly inhibit LDT and PPT cholinergic 
neurons mediating arousal. Chronoamperometry studies in M 5  
knockout mice show that activation of PPT/LDT cholinergic 
inputs to the midbrain results in sustained activation of dopamine 
neurons mainly via M 5  receptors. Behavioral studies in which M 5  
receptors are downregulated (i.e., oligonucleotides or gene knock-
out) or upregulated (i.e., HSV M 5  transfection) show that M 5  
receptors critically mediate sustained arousal and reward-seeking in 
response to brain-stimulation, food, and opioid rewards. These 
dopamine and cholinergic neuron populations are both inhibited 
by VTA and RMTg GABA neurons. RMTg GABA neurons express 
inhibitory M 4  and μ-opioid receptors that work together to dis- 
inhibit cholinergic and dopamine neurons in arousal states [ 55 ]. 
GFP-labeled transfections of these neurons with specifi c HSV- or 
AAV-muscarinic genes allows for studying the behavioral effects of 
inhibiting or activating these neurons using Cre lines and  clozapine 
nitric oxide.     
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