
Chapter 3

Basics of Spectroscopic Analysis

Stephen R. Delwiche

3.1 Vibrational Spectroscopy Defined

The region of the electromagnetic spectrum that draws our interest is between the

ultraviolet (lower end of 400 nm wavelength) and the far-infrared (upper end of

50,000 nm). This region encompasses the visible (400–780 nm), near-infrared

(780–2,500 nm), and mid-IR (2,500–25,000 nm) regions. Flanking this large

swath of wavelengths are gamma rays (~0.001 nm) and X-rays (~0.01 nm) on the

short end, and microwaves (~107 nm) radio waves (~1010 nm) on the long end

(Fig. 3.1). The fact that information on molecular structure is contained in this

region, particularly that in the mid-IR, can be deduced by the wave-particle

principles of quantum theory, starting with the expression for the energy of a

photon,

E ¼ hv ð3:1Þ

Where E is the photon’s energy, v is the frequency of the wave, and h is Planck’s

constant. We see that the energy of a photon is directly proportional to its

frequency.

We also recall that the wavelength (λ) and frequency (v) are inversely related to

each other, with their product being the speed of light (c) in the medium that the

light is passing through,

c ¼ λv: ð3:2Þ
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Because of the underlying quantum theory of band vibrations, spectroscopists

typically identify band locations in terms of a modified form of frequency defined

as the number of wave cycles within a fixed distance. By convention, the distance is

a centimeter, so that the term, wavenumber having units of cm�1, can be thought of

as the number of complete wave cycles in a 1 cm thickness. Physicists and

engineers, on the other hand, typically speak in terms of wavelength, and the unit

of choice for the visible and near-infrared region is the nanometer, which is one

billionth (10�9) of a meter. Because of their reciprocal relationship, conversion

between wavelength and wavenumber or vice versa is a matter of multiplying the

reciprocal by 1� 107. Because the popularization of near-infrared measurement

and analysis arose from the physicist/engineering community, whereas qualitative

analysis using the mid-IR region arose from the spectroscopist, we continue today

with this dichotomy in absorption band assignment. Although the conversion

between the two scales is routine, it is important to remember that if the increment

between neighboring readings from an instrument is uniform in one scale, it will not

be in the other. With the gaining popularity of Fourier transform (FT) near-infrared

spectrometers, whose scale is based on wavenumbers, it is especially important to

keep this in mind when comparing FT spectra with conventional monochromator-

based dispersive spectrometers whose basis is uniform spacing in the wavelength

domain.

Quantum theory dictates that the absorption of light by a molecule comes about

by discrete changes in energy levels (quantum levels) that, for the mid-IR region,
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happen when an inter-atomic bond within the molecule absorbs energy that equals

the difference between two adjacent quantum levels. Taking a diatomic (two-atom)

molecule such as carbon monoxide as an example, the vibrational frequency at

which the bond expands and contracts is set by the selection rules of quantum

theory. These rules also apply to more complex, polyatomic molecules.

3.2 Inter Atomic Bond

3.2.1 Theory

The starting point for modeling atomic bond vibrations is usually the harmonic

oscillator described by classical mechanics. In this model, two atoms are bonded by

a restoring force that is linearly related to their bond distance. In its simplest form, a

bond between two atoms is modeled as a spring connecting two spherical masses,

m1 and m2. The potential energy of this two ball assembly, V, depends on the

displacement of the masses with respect to their rest positions, caused by either

compression or elongation of the spring,

V ¼ 1

2
k x� xrestð Þ2 ð3:3Þ

where x� xrestð Þ is the distance between the centers of masses and k is force

constant of the spring. In this simple model potential energy varies in a quadratic

relation with distance to form a parabolic shape, as demonstrated in Fig. 3.2. Two

problems become readily apparent when using this model to approximate molecular

behavior. First, limits must be placed on the distance of compression, as atoms are

of physical mass and dimension, such that it is not possible for the atoms to have a

zero compression distance. Second, a bond between atoms may only elongate so far

before the atoms disassociate.

A third problem, which was not adequately addressed until the introduction of

quantum mechanical theory in the 1920s, is explained by first considering the total

energy of the system, which is the sum of the potential energy (V) and kinetic

energy. With the latter written in terms of momentum ( p), the total energy (E) of
the system is

E ¼ p2

2m
þ V ð3:4Þ

where m is the total mass of the system. Classical mechanics allows the energy to

take on a continuum of values, but this turns out to be impermissible in nature. This

is explained by the Heisenberg uncertainty principle, part of which states that for a

given direction it is not possible to know position and momentum simultaneously.

Related to this is the restriction that energy is quantized, which means that at a

3 Basics of Spectroscopic Analysis 59



specific frequency the energy of the oscillator is limited to discrete, i.e., quantum,
levels, υ. Solution of the wavefunction form of the harmonic oscillator becomes,

Eυ ¼ hv υþ 1

2

� �
ð3:5Þ

in which Eυ is the energy of the υth quantum level υ ¼ 0, 1, 2, . . .ð Þ and v is the

fundamental frequency of the vibration, which is related to the force constant of the

bond (k) and the reduced mass (μ) by

v ¼ 1

2π

ffiffiffi
k

μ

s
ð3:6Þ

recalling that the reduced mass of a diatomic molecule defined as 1=μ ¼ 1=m1þ
1=m2; where m1 and m2 are the masses of the atoms. Classical mechanics theory

produces the result that like atomic bonds within a molecule vibrate in phase at

these fundamental or normal frequencies, with the number of unique vibrational

frequencies related to the size (i.e., number of atoms¼N ) of the molecule by the

relation (3N�6). Taking a triatomic molecule such as water for example as shown

in Fig. 3.3, three modes of vibration are possible: symmetric stretching (both

hydrogen atoms moving toward and away from the central oxygen atom in tandem),

asymmetrical stretching (one hydrogen moving away at the same time as the other

moving closer to the oxygen), and bending (hydrogen atoms moving toward and
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Fig. 3.2 Potential function for two bonded atoms
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away from each other). Actual vibrational behavior of water is far more compli-

cated, as we shall see below.

Vibrations between bonded atoms occur when the energy of the photon matches

that of the difference between energy levels of two sequential quantum levels of the

bond. For the electrical field to impart its energy into the molecule a polar

distribution of charge, or dipole, must exist or be induced to exist across the

bond. The jump between the ground state υ ¼ 0ð Þ and the first level of excitation

υ ¼ 1ð Þ characterizes the fundamental vibrations across the mid-infrared region,

this being from 4,000 cm�1 to 400 cm�1 (2,500–25,000 nm).

It turns out that the energy relationship of Eq. 3.5 can be used to describe bond

behavior for small values of the vibrational quantum number, corresponding to the

bottom region of the energy curve (Fig. 3.2) where there is near symmetry between

left and right sides. For larger quantum levels, the energy relation is more compli-

cated, such that the nonsymmetrical Morse-type function 1� e�c x�xrestð Þ� �2h i
, also

shown in Fig. 3.2, is used to incorporate the features of mechanical and electrical

anharmonicity. Mechanical anharmonicity arises from the fact that because of the

atoms’ dimensions and mass there are physical limits to the separation distance

between bonded atoms that preclude them to being too close (overlapping) or too

distant (disassociating). Electrical anharmonicity arises from a nonuniform change

in dipole moment with change in distance between bonded atoms. Unlike the

parabolic nature of the mechanical model, the Morse function allows for dissoci-

ation of the two atoms as the energy level is increased. The solution to the

wavefunction becomes

tt
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Fig. 3.3 Modes of vibration for a single water molecule
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Eυ ¼ hv υþ 1

2

� �
� xhv υþ 1

2

� �2

ð3:7Þ

The variable x is the anharmonicity constant. The presence of anharmonicity allows

for (1) overtone transitions, which arise from a change between nonadjacent

vibrational quantum levels (e.g., jΔυj> 1); (2) combination bands, which occur

when the energy from one photon produces simultaneous changes in quantum

levels of two or more different vibrational modes; and (3) unequal differences

between energy levels of the quantum states as described by Miller (2001). These

allowances would otherwise be forbidden under a set of conditions known as

selection rules that arise from group theory in quantum mechanics (Wilson

et al. 1985). The significance of these allowances becomes apparent when we

shift away from the fundamental vibrations of the mid-IR region to the overtone

and combination vibrations of the near-IR. To a first approximation, the frequencies

of the overtone bands are integer multiples of the corresponding fundamental

frequency, with each higher overtone (first, second, . . .) being weaker than the

preceding. Thus, absorptions from overtone vibrations of the same bond become

progressively weaker as wavelength is decreased. Combination bands involving

CH, NH, and OH tend to be longer in wavelength than overtones, though with

overlap between the two band types. Taking water in the liquid state as an example,

its two most prominent bands in the near-IR region are a combination band (υ2 þ υ3
¼ asymmetric stretch + bending) occurring at ~1,910 nm and a first overtone of OH

(υ1 þ υ3) occurring at 1,460 nm, where it is noted that the location of these bands as

well as the other combination bands and higher overtones are strongly influenced by

temperature through changes in hydrogen bonding. Further complication arises

with water absorbed in biological matrices whereby hydrogen bonding can occur

between water, polysaccharide, lipid, and protein molecules. Considering wheat

starch and microcrystalline cellulose separately equilibrated to 53 % RH as exam-

ples (Delwiche et al. 1992), the wavelength location of the prominent 1,900 water

combination band peak decreases by ~17 and 11 nm, respectively, as temperature

increases from �80 to 60 �C, which causes a reduction in the hydrogen bond

strength between water and the matrix (Fig. 3.4).

3.2.2 Practical Ramifications for the Near-IR Region

Because of the departures from the ideal case of the harmonic oscillator we are left

with the inherent complexities, which are fortunate opportunities of near-IR spec-

troscopy. Three general statements are made to underscore the limits and power of

the near-IR:

1. Compared to the fundamental absorption bands of the mid IR region, absorption

bands of the near-IR region are weak. What appears to be a detriment for the NIR

analyst on first glance is actually a boon because materials that are examined in
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either transmission or reflection modes do not have to be diluted beforehand, as

is the typical procedure for mid IR analysis. At most, especially for reflectance

measurement, the material is ground into fine particles thereby reducing the

heterogeneity of the sample caused by spatial differences in either chemical or

physical structure.

2. The near-IR region is primarily composed of the overtone and combination

bands arising from bonds involving the lightest atom, hydrogen. Typically,

these include the bonds C–H, O–H, and N–H, all of which are prevalent in

organic molecules. Thus, near-IR analysis is especially well suited for the

studies involving agricultural, biomedical, pharmaceutical, and petrochemical

materials.

3. Because hydrogen is much lighter than any other atom, its bonds with carbon,

oxygen, and nitrogen produce vibrational movements that cause the largest

motion for the hydrogen atoms, thus making vibrational movements localized

to the functional group. Intrachain bond vibrations such as C–C are not active in

the near-IR region.

4. Due to the multitude of overlapping bands in the near-IR region, the exact

assignment of a bond’s vibration to a wavelength or frequency is seldom

possible, thus making near-IR spectroscopy a poor candidate for qualitative

analysis. By the same token, however, quantitative analysis such as the concen-

tration of chemical group is possible through the power of advanced regression

algorithms.
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The exact location and magnitude of overtone and combination bond vibrations

for functional groups are very difficult to determine because of the effects from

anharmonicity and dipole moment changes. As a rule of thumb, bond strength and

reduced mass determine the band frequency location, while the dipole moment and

anharmonicity affect the band’s magnitude. Other factors such as hydrogen bonding

and neighboring groups will have secondary effects on location and magnitude.

3.3 Light Absorption in a Scattering Medium

The realization that electromagnetic radiation behaves in both corpuscle and wave-

form conditions has led to several theoretical models to describe the infrared

spectral response. We will consider some of these in brief format, with the reader

directed to particular seminal texts for more detail.

3.3.1 Light Without Scattering

This is the most common model used in calculating concentration of a solute in

gases and clear liquids, in other words media with negligent scattering. The theory

was originally developed by Pierre Bouguer (1729) and Johann Lambert (1760)

independently, and later expanded by August Beer (1852) to include substances of

varying concentrations within the media. In the translated words (from Latin) of

Lambert’s Theorem 68, “The logarithm of the remaining light, when it is weakened

in a less transparent medium, is related by a ratio to the maximum of all the

intermediary obstructing material of that medium, which it encounters along its

path, and to whatever manner in which the obstructing material may be dissemi-

nated in the medium and whatever the curvature of the path is.” (p. 391). With

inclusion of Beer’s contribution, the law states that the intensity I of light decreases
exponentially with penetration distance d and the concentration of the compound of

interest [J],

I dð Þ
I d ¼ 0ð Þ ¼ e�k J½ �d ð3:8Þ

where k is an absorption coefficient (formerly called the extinction coefficient when

dealing with molar concentrations). Equation 3.8 is universally referred to as the

Beer-Lambert Law, secondarily as Beer’s law, and lastly, but seldom, the Beer-

Lambert-Bouguer Law. A more familiar format appears when the base 10 logarithm

of each side is taken,
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A ¼ log
1

T

� �
¼ k

0
J½ �d ð3:9Þ

in which we write transmittance (T ) as the ratio of the intensity of the light at depth
d to that at the surface. In practice, the concentration c may be written in terms of

molarity (nsolute/volumesolution), mole fraction (nsolute/nsolvent), or mass fraction

(masssolute/masssolution) with the units for k
0
selected accordingly so that the right

hand side product is dimensionless. Direct application of Eq. 3.9 occurs with the use

of simple spectrophotometers in which cuvettes of precise dimension are used to

measure the intensity of transmitted light through a clear solution at a single

wavelength, typically in the UV region. Upon the development of the calibration

curve, absorbance is directly related to the concentration of a conjugate from a

biochemical assay. The complexities of natural materials, such as plant and ani-

mals, leads to a stretching of the rules for the Beer-Lambert equation, yet conve-

niently and frequently with success.

In diffuse reflectance analysis, liberties are taken with the Beer-Lambert law to

allow the substitution of reflected or, in Dahm and Dahm’s (2007) terminology,

remitted energy for transmitted energy. A simplified representation of diffuse

reflectance is shown in Fig. 3.5. In this case, white or monochromatic light is

collimated and then directed onto a the surface of a sample, whereupon the light

may (1) be directly reflected from the surface of the first particle that it encounters;

(2) penetrate the first surface, followed by additional internal reflections and trans-

missions with other particles; (3) be remitted light from the surface that it entered;

or (4) be absorbed by an atomic bond. Mathematical modeling of these phenomena

is the subject of ongoing investigation (Dahm and Dahm 2007). In practice, terms

on the right side of Eq. 3.9 are commonly lumped together and collectively referred

to as the concentration of the compound of interest. Hence,

log
1

R

� �
� analyte½ � ð3:10Þ
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with square brackets indicating concentration. The implementation of this relation-

ship implies that pathlength is constant across samples and other compounds or

analytes are not interfering. Using ground wheat as an example, typical uncorrected

log(1/R) spectra are shown for in Fig. 3.6a, b for the mid-IR and NIR regions,

respectively. What is obvious from either plot is the lack of a clear baseline

response despite the existence of wavenumber or wavelength regions of low

spectral absorption. The non-horizontal behavior of these spectra, especially notice-

able in the NIR region is caused by scatter. Because pathlength in a scattering

medium is extremely difficult, if not impossible, to determine, the assumption of

constant pathlength is favored when samples are of the same distribution in particle

size makeup. A workaround to the particle size problem is to apply a mathematical

correction to the log(1/R) spectrum, typically a multiplicative scatter (signal)

correction (Martens and Næs 1989), a standard normal variate transformation
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Fig. 3.6 Mid IR and near-IR spectra of ground wheat
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(Barnes et al. 1989), or a first or higher order derivative, as explained in Sect. 3.4.

The problem of interfering absorbers is addressed by considering responses at more

than one wavelength, whereupon by using linear modeling methods (multiple linear

regression, principal component, partial least squares) or nonlinear methods (arti-

ficial neural networks, support vector machines) quantitative models of sufficient

accuracy are possible. Known collectively as chemometrics, extensive details on

such algorithms for quantitative and qualitative analysis of spectra are the subject of

several texts (Mark and Workman 2007; Naes et al. 2002; Varmuza and Filzmoser

2009; Jolliffe 2002; Cristianini and Shawe-Taylor 2000). One further simplification

that is often employed in remote sensing hyperspectral analysis is the use of

reflectance R directly, in which it is assumed that the degree of nonlinearity

between R and its log reciprocal transform is negligible [for example, over the

reflectance range 0.2–0.8, the coefficient of determination with log(1/R) is 0.97].

3.3.2 Kubelka-Munk

Unlike the Beer-Lambert-Bouguer theory that was based on transmission and

adopted for diffuse reflectance, the theory known as Kubelka-Munk (K-M) is

fundamentally based on reflectance from a scattering medium, with its application

primarily relegated to the paper and paints industries. As with Beer-Lambert-

Bouguer, K-M theory is most appropriate for media and analytes of low absorption

(Olinger et al. 2001). Originally developed by Kubelka and Munk (1931), the

theory assumed light to be traveling through a continuum, a medium with no

internal boundaries such as particle surfaces. Further, the light is modeled as having

a forward flux and a backward flux. Diffuse illumination at the surface is also

assumed and the medium scatters the radiation isotropically. The behavior of

radiation is written as a combination of two constants, K and S, which have

analogies to absorption and scatter. With solution of coupled differential equations

for forward and backward radiations, the well known Kubelka-Munk function was

derived (Kortüm 1969)

F R1ð Þ ¼ K

S
¼ 1� R1ð Þ2

2R1
ð3:11Þ

In this equation, R1 is the remitted radiation from a medium of infinite thickness,

which may be experimentally determined by observing when the addition of depth

to a sample produces no change in R. For the mid-IR and near-IR regions the infinite

thickness is a reasonable assumption for thicknesses greater than several millime-

ters. As explained by Dahm and Dahm (2007), the problem with Kubelka-Munk

equation in practice arises with the attempts at disentangling K and S. Ideally, one
would like to treat K as a pure absorption coefficient in the same manner as Beer-

Lambert so that concentrations of absorbing compounds can be accurately
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modeled. In reality, the equation falls short for reasons of (1) a two flux model

overly simplifying light direction; (2) specimens are not diffusely illuminated, but

instead illuminated with collimated light; (3) the medium is not a continuum but

instead consists of discrete particles that individually reflect and refract light; and

(4) given that the instrument measures remitted energy, the expression does not

inherently provide a means to separate absorption, hence concentration of a com-

ponent, from scatter. With respect to log(1/R), F(R) is more greatly affected by

baseline errors (Griffiths 1995). Also, from experimental measurements of reflec-

tance from a three component mixture of varying proportions (NaCl as the

nonabsorbing matrix, graphite as a general absorbing compound, and carbazole as

a typical organic analyte possessing both C–H and N–H bonds), Olinger and

Griffiths (1988) reasoned that the linearity of F(R1) with concentration of an

absorbing compound (carbazole in this case) is highest when the matrix is

nonabsorbing because the photons have more opportunity to undergo interactions

with many particles before leaving the sample surface. Linearity drops off as the

matrix becomes more absorbing, as they observed when 5 % graphite by weight

was added to the NaCl matrix. Conversely, the theoretical lack of a dependency of

the linearity of log(1/R) with many particle interactions for a photon is the reason-

ing behind the general better performance of log(1/R) in diffuse reflectance spec-

troscopy of powdered materials. Because of these limitations, the Kubelka-Munk

theory is not commonly applied to near-IR diffuse reflectance spectroscopy of

biological and agricultural materials.

3.3.3 Diffusion Theory

This is also a continuum approach that has gained use in modeling the decay of light

in biological tissue and uses a mathematical model to derive an expression for

remitted light as a function of a coefficient due to absorption (μa) and another

coefficient due to scattering, called the transport scattering coefficient (μ
0
s), in which

scattering is assumed to be isotropic (Farrell et al. 1992). An assumption of a highly

scattering matrix allows for the development of a diffusion equation for photon

propagation, as derived from the Boltzmann radiative transport equation. For the

special condition of considering light as a point source directed onto a semi-infinite

medium at a direction normal to the surface, the remitted radiation R(r), where r is
the radial distance from the point of entry, can be derived (Farrell et al. 1992),

R rð Þ ¼ a
0

4π

1

μ
0
1

μeff þ
1

r1

� �
e�μeffr1

r21
þ 1

μ
0
1

þ 4A

3μ0
t

� �
μeff þ

1

r2

� �
e�μeffr2

r22

� �
ð3:12Þ

where the transport albedo, a
0 ¼ μ

0
s= μa þ μ

0
s

� �
, the effective attenuation coefficient,

μeff ¼ 3μa μa þ μ
0
s

� �	 
1=2
, r1 ¼ 1=μ

0
t

� �2 þ r2
h i1=2

, and r2 ¼ 1=μ
0
t þ 4A=3μ

0
t

� �2 þ r2
h i1=2

.

68 S.R. Delwiche



Further, the total interaction coefficient, μ
0
t ¼ μa þ μ

0
s, and A is a parameter that

is related to the internal reflection and is derived from the Fresnel reflection

coefficients. In practice, A may be determined empirically as a function of the

relative refractive index (Groenhuis et al. 1983), and with additional simplifica-

tion it may be treated as a constant. With this assumption the right side of Eq. 3.12

becomes an expression of only two terms, the absorption coefficient μa and the

transport scattering coefficient μ
0
s. Among other features, the diffusion theory

approach differs from K-M in that absorption and scattering are mathematically

decoupled.

From experimental measurements of R(r) at various radial positions and

inverse application of Eq. 3.12, separate values for μa and μ
0
s are determined

over the wavelength range of interest, thus producing separate absorption spectra

and scattering spectra. Lu and coworkers (Qin and Lu 2008; Lu et al. 2010)

developed this approach using line scan hyperspectral imaging (λ¼ 500–

1,000 nm) to nondestructively examine ripeness in tomatoes (Qin and Lu 2008),

bruising in apples (Lu et al. 2010), and mechanical damage in pickling cucumbers

(Lu et al. 2011).

3.4 Practical Outcomes for Near Infrared Reflectance

Because log(1/R) is most commonly used in NIR spectroscopy the following

discussion will assume this format, though many of the transformations may be

applied to the other formats of reflectance data mentioned in the previous section.

Broadly termed as spectra preprocessing, these transformations are performed for

improving signal-to-noise and minimizing the effect of scatter often with the

expectation that band intensities become more linearly related to the concentration

of the absorbing compound. Improvement in signal-to-noise is typically performed

by a smoothing operation, such as a running mean,

A j ¼ A j�l þ . . .þ A j�1 þ A j þ A jþ1 þ . . .þ A jþl

2 jþ 1
ð3:13Þ

where Aj is the original spectral value at wavelength j and Āj is the mean value as

determined from the original value as well as the neighboring l points on the left and
the same number of points on the right. Selection of the size for l should be based on
the inherent bandpass of the spectrometer (typically 10 nm for dispersive scanning

monochromators) and the size of the absorption band of interest. In practice, the

value is selected by trial and error, with too small a value yielding insufficient noise

reduction and too large a value attenuating the higher frequency absorption

bands. Using simulated spectral data, Brown and Wentzell (1999) warned of the

deleterious effect of smoothing on multivariate calibrations such as principal

component (PC) regression. Also, they noted that smoothing has the greatest
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chance of being beneficial under conditions of high measurement noise and

wavelength-to-wavelength correlation, in which case the improvement in charac-

terization of the spectral subspace through PC reduction offsets the losses caused by

spectral distortion.

Spectral derivatives, or more accurately stated as spectral differences, usually of

the first and second order are applied for removal of vertical offset and slope effects.

In simplest form, these are two-point (first) and three-point (second) central finite

difference expressions. Although the points need not be consecutive (in which case

the difference becomes a poor approximation to the true derivative but nevertheless

may produce a better calibration), the intervals between the end points and the

central point should be equal. With these Δy/Δx and Δ2y/Δx2 difference expres-

sions, it is common to omit the denominator term when chemometric modeling is

the goal. The omission is not a problem unless one is trying to accurately show the

values for the derivative spectrum for its own sake or one is attempting to compare

derivative spectra possessing different values for Δx.
A more common form of spectral differentiation is the Savitzky-Golay poly-

nomial approximation procedure, as first popularized by the authors (Savitzky and

Golay 1964). Using a sliding window along the wavelength axis, and assuming a

constant wavelength spacing, the window of points (typically an odd number

between 5 and 25) is fitted using least squares regression to a polynomial of

second through sixth order, whereupon the analytical derivative of the polynomial

function is evaluated at each point. The procedure can be computationally sim-

plified to a convolution operation using the same number of points in the window

and using published coefficient values, as reported in their original paper and later

corrected by Steinier et al. (1972). Spectral differentiation is shown by example in

Fig. 3.7. A ‘spectrum’ has been created by adding two Gaussian functions, with

one being twice the magnitude and twice the width of the other, to a sloped line

and then adding random noise. In this simple example, one sees a replacement of

the vertical offset in the absorbance curve with a small offset (¼1/1,500 on

average, i.e., the slope of the upwardly trending line in the absorbance curve) in

the first derivative curve, which disappears altogether in the second derivative.

The two local absorbance maxima become zero crossing points in the first

derivative curve but reappear as local minima in the second derivative curve.

This is typical behavior and explains why the second derivative is generally easier

to interpret than the first derivative. However, interpretation of the second deriv-

ative is tricky even without considering the complexities of vibrational physics.

For instance, in the simple example of Fig. 3.7, the Gaussian band at the lower

wavelength, despite being half the magnitude of the other Gaussian band, appears

as having a larger absolute value in second derivative. Because the lower wave-

length band has half the width of the upper band its curvature and hence second

derivative magnitude is greater. Secondly, derivatives have the tendency to

amplify noise, as seen in the progression of a smooth appearance in the absor-

bance curve (Fig. 3.7a) to a first derivative curve with noise of pen width in

magnitude (Fig. 3.7b), and on to a second derivative curve with very noticeable

noise (Fig. 3.7c). In practice, the noise amplification effect is not as pronounced
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Fig. 3.7 Demonstration of spectral differentiation. (a) Artificial spectrum created by combining

two Gaussian bands (full widths at half maximum of 50 and 100 nm, with peak values of 0.25 and

0.50, respectively, and centered at 1,700 and 1,800 nm, respectively) to a sloped line
[y(1,000 nm)¼ 0.2, y(2,500 nm)¼ 1.2], then adding random noise (�0.0004 to 0.0004 peak to

peak, uniformly distributed). (b) Savitzky-Golay first derivative (cubic polynomial, 11 point

convolution window). (c) Savitzky-Golay second derivative (cubic polynomial, 11 point convo-

lution window)
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because the ‘noise’ in a spectrum is not entirely random as in the artificial

spectrum of Fig. 3.7, but instead may largely consist of baseline drift, which has

low-frequency dominance in the noise power spectrum. The low-frequency nature

means that noise levels of neighboring wavelengths are not fully independent.

Brown et al. (2000) investigated drift noise through simulation and found that

derivatives may reduce drift noise, but at the same time spectra can be distorted

with respect to the underlying chemical constituents, thus making it difficult to

predict the benefit of this preprocessing technique in multivariate calibrations. For

example, if the left Gaussian band in Fig. 3.7 was centered at 1,750 nm rather than

1,700 nm, the resulting absorbance spectrum (Fig. 3.8a) would appear as one

broad but asymmetrical band superimposed on the upwardly trending baseline

curve. Upon first differentiation using the same SG convolution function the two

zero crossing points are replaced by one located at approximately 1,770 nm

(Fig. 3.8b), which is between the absorbance peak positions of 1,750 and

1,800 nm. The second derivative (again with the same function as originally

used) has local minima at 1,750 (the same as original) and 1,814 nm (Fig. 3.8c),

which is 14 nm longer than the absorbance peak position. This helps to explain

why NIR calibrations are often trial and error operations that are enhanced by a
priori knowledge of the locations and magnitudes of bands associated with the

analyte of interest.

Because of the complexities of the scatter-absorption effect, separation of these

components through theoretical means as described earlier is often replaced by

working corrections as part of spectral preprocessing. The two most common full

spectrum approaches are the multiplicative signal (scatter) correction (MSC) and

the standard normal variate transformation (SNV). With MSC, as popularized by

Martens (see Geladi et al. 1985), a sample’s reflectance spectrum is corrected to

have roughly the same degree of scatter as the other samples within the calibration

set. The usual procedure is to calculate the mean spectrum of the calibration set and

then for every sample within the set, a least squares correction (most often a first

order polynomial but this can be of higher order) is developed by regressing the

spectrum’s points onto those of the mean spectrum. The regression coefficients are

then used to ‘correct’ the spectrum to the mean spectrum. This has the noticeable

effect of collapsing spectra together so that under ideal conditions all sample-to-

sample spectral differences are attributed to chemical absorption. This transforma-

tion requires the retention of the reference (mean) spectrum in order to correct

future spectra before the calibration equation is applied. An example of this

transformation is shown in Fig. 3.9, which consists of spectra of 198 samples of

ground wheat, first with no transform (Fig. 3.9a) and next with MSC (Fig. 3.9b).

Alternatively, one may conduct a scatter correction that is based on each spectrum

independently. Known as the standard normal variate (SNV) transformation, this

correction has a format similar to that of standard error in statistics, this being that

within each spectrum the mean value (over the wavelength region) is subtracted

from each spectral value and this difference is then divided by the standard

deviation of the spectrum’s values (Barnes et al. 1989), as shown by example in
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Fig. 3.9c. This results in each transformed spectrum having a mean of zero and a

standard deviation of unity. As with MSC, the intention is that the benefits of the

SNV correction through reduction of variation from scatter outweigh whatever

losses in chemical information that result from spectral distortion.
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Fig. 3.8 Demonstration of spectral distortion by differentiation. The conditions that produced

graphs (a–c) are identical to those of Fig. 3.7 with exception that the low wavelength absorption

peak is located at 1,750 nm and the dashed lines are moved to his location

3 Basics of Spectroscopic Analysis 73



3.5 Application to Imaging

The principles of NIR spectroscopy carry over to NIR hyperspectral imaging. With

the latter, the measurement of energy remitted from a broad surface, as read by one

or a set of detectors, is replaced by image measurement from a camera sensor array
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Fig. 3.9 Example of spectral scatter removal techniques using a set of 198 ground wheat samples.

(a) Raw log(1/R) spectra. (b) With multiplicative scatter correction (MSC). (c) With standard

normal variate (SNV)
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in which each element or pixel captures energy from a small region of the sample

surface. The spectral dimension arises from one of two general formats, a liquid

crystal tunable filter employed to capture two-dimensional images at a series of

tuned wavelengths, or a dispersion device called a spectrograph that is placed

between the lens and body of the camera. Between the spectrograph and the lens

is a slit that reduces the focused image to that of a narrow line. The line of light is

passed onto the spectrograph, which then disperses the light from each ‘point’ along

the line to a series of wavelengths. By methodically advancing the location of the

line on the object, either by moving the camera or moving the object, additional

lines are imaged until the entire object has been scanned and reproduced as a

mosaic of lines.

In its simplest and most common form, camera array readings are referenced to a

highly reflecting Lambertian material such as ‘Spectralon’ (Labsphere, North

Sutton, NH) while also being corrected for dark current of the sensor. In such

case reflectance (R) becomes

R ¼ Esample � Edark

Ereference � Edark
ð3:14Þ

where Ex is the energy from each x component. The reference material is treated as

being 100 % reflective and Eq. 3.14 assumes a linear response for sample reflec-

tance. Alternatively, sample reflectance may be determined using a higher order

polynomial to describe the response (Burger and Geladi 2005). In such cases, a set

of reflectance standards with traceable reflectance values (typically 3–8 samples of

Spectralon doped with carbon black) whose reflectances span the anticipated range

of the samples is used to develop a calibration equation. For example, assuming a

quadratic response, reflectance is written (Burger and Geladi 2005),

R ¼ b0 þ b1Eþ b2E
2: ð3:15Þ

During calibration, the left side values of Eq. 3.15 are known for the reflectance

standards, E is measured for each standard, and the coefficients b0, b1, and b2 are
determined by least squares regression. The regression procedure is performed at

each wavelength, which may be done on a pixel-by-pixel basis or globally using the

median spectrum, as determined from pixels within a region of interest.

3.5.1 Collection of the Hypercube

Hyperspectral systems fall into two broad categories depending on the method of

light dispersion. As illustrated in Fig. 3.10a, the tunable filter system collects two

dimensional spatial images at each ‘tuned’ wavelength. This results in a stack of

spatial images with each page in the stack representing a separate wavelength. The

push broom system (Fig. 3.10b) builds up one dimensional spatial spectral pages.
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Regardless of mode of instrument operation, the stored data, known as a hypercube,

consists of one spectral and two spatial dimensions.

By way of example, a set of 81 spectra collected from an approximately square

(9 pixel� 9 pixel) region of a wheat kernel using a push broom hyperspectral

imaging system is shown in Fig. 3.11. (Details of the system and settings are

found in Delwiche et al. 2012). A digital photograph of a wheat kernel is added

as an inset in Fig. 3.11 for the purpose of showing the approximate location and size

of the square region. The 9-element width is just a small portion of the line, which

consists of 320 elements. Individual pixel spectra have a much higher level of noise

than those from a conventional spectrometer, as seen by comparing Figs. 3.11 and

3.9a. Averaging of all pixel spectra within the square region results in reduction in

noise (Fig. 3.11, solid black curve), albeit at the expense of fine feature detail of the

individual pixels. It should be noted that whether it be on an individual pixel level

or on a regional level, the principals of spectroscopy as well as the mathematical

transformations leading up to and including qualitative and quantitative modeling

hold true for hyperspectral imaging.
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Fig. 3.10 Schematic of the two modes for hyperspectral image collection. (a) Stacked wave-

length—at a given time instant the camera records two spatial dimensions (x and y) at one

passband (λ) of a liquid crystal tunable filter. Recording continues with the next passband. (b)
Pushbroom—at a given time instant the camera records one spatial ( y) and one spectral (λ)
dimension, where the spectral component is created by radiation dispersion through a spectrograph

located between a slit and the camera body. Recording continues with relative movement of the

object in a direction (x) perpendicular to the other spatial direction
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3.6 Raman

Raman spectroscopy is based on the property of the photons from light of a very

narrow frequency (e.g., a laser) striking a sample whereupon while most of the

photons’ energy momentarily raises the energy state of the molecules but then is

released as the molecule returns to its ground state. A small fraction of photons,

however, release a portion of their energy to the molecule whereby the bond is not

returned to its ground state, and further the photon emerges at a lower energy and

hence lower frequency. This phenomenon is known as Stokes scattering. The

Stokes shift is a measurement of the difference in frequency of the incident and

emergent photon. Oppositely, photons may pick up energy from molecules already

at a higher than ground state in the matrix as they return to a lower state. In this case

when the photon is released from the medium after scattering, the frequency is

greater than the incident frequency. This is known as anti-Stokes scattering and

occurs at an even lower prevalence than Stokes scattering because there are

relatively few molecules already in an excited state. As with infrared spectroscopy

selection rules exist for a Raman transition, these based on the requirement that the

polarizability of light changes as the molecule vibrates. Traditionally, Raman

spectroscopy has been used in determining force constants, dissociation energies,

and bond lengths. The change in polarizability determines the intensity of the bands

in the Raman spectrum. Further, the intensity is proportional to the fourth power of

monochromatic light of excitation upon shifting,
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Fig. 3.11 Pixel reflectance spectra and average spectrum from a 9� 9 pixel square region of a

wheat kernel
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IRaman / v0 � v j

� �4 dα

dQ

� �2

ð3:16Þ

where v0 and vj are the original and scattered light frequencies, respectively, and the
squared term is the change in polarizability that occurs during vibration. Knowl-

edge of this relationship is useful for two reasons. First, it shows that the frequency

of monochromatic light is not fixed by the Raman effect, but rather Raman spectra

may be obtained at any number of frequencies. In practice, the monochromatic

sources are supplied by lasers, for which the two most popular are the infrared diode

laser at 785 nm (12,740 cm�1) and Nd:YAG at 1,064 nm (9,400 cm�1). Second,

Raman intensity diminishes with increase in the wavelength of the laser source by a

fourth order relationship. Hence, without complicating factors, a shorter wave-

length source would be preferable. In reality, fluorescence, which is often prevalent

at low wavelengths, becomes the complicating factor. Because Raman signals are

inherently weak, fluorescence emission can at times overpower the Stokes lines.

This is particularly problematic with botanical samples. Conversely, fluorescence

can be avoided by exciting at longer wavelengths, such as with a Nd:YAG laser, but

at the expense of reduced Raman intensity.

Raman spectroscopy and infrared spectroscopy, though both based on molecular

vibration, are complementary to one another. Bonds that exhibit strong absorption

in the infrared, such as water, will typically be weak in the Raman and vice versa.

Thus for biological samples, which typically have more than 50 % water by mass,

Raman spectroscopy offers a means to examine molecular structure in situ.
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