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Preface

Over the past 15 years, we have witnessed rapid increases in R&D activities

and applications of hyperspectral imaging in food and agriculture. Hyperspectral

imaging integrates the main features of imaging and spectroscopic techniques so as

to expand our capability of detecting minor or more sophisticated features or

characteristics of an object both spatially and spectrally that would otherwise be

difficult or impossible to accomplish with either imaging or spectroscopic tech-

nique. This book is intended to give a broad, comprehensive coverage of

hyperspectral imaging technology and its applications in food and agriculture.

It is written for both researchers who are currently engaged or interested in this

area of research and advanced-level students who want to acquire special knowl-

edge about basic concepts, principles, and applications of hyperspectral imaging.

The book is organized into two parts. The first part gives readers a general

introduction to the instrumentation and implementation modalities of hyperspectral

imaging technology, hyperspectral image processing, and analysis techniques; it

starts with basic image and spectroscopic data processing and analysis methods,

followed by the specific methods and techniques for processing and analysis of

hyperspectral images for quality and safety classification and prediction. The

second part, consisting of ten chapters, covers a range of applications of

hyperspectral imaging technology from food quality and safety inspection to

plant health detection and monitoring to precision agriculture and real-time as

well as microscope applications.

Athens, GA, USA Bosoon Park

East Lansing, MI, USA Renfu Lu
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Part I

Image and Spectral Analysis Techniques



Chapter 1

Introduction

Renfu Lu and Bosoon Park

For the past two decades, we have witnessed the rapid developments and wide

applications of imaging and spectroscopic technologies in the food and agricultural

industries. Conventional imaging technology, whether monochromatic (i.e., white/

black) or polychromatic (i.e., color-based), allows acquiring two- or even three-

dimensional spatial information about an object. Using image processing and

analysis methods and techniques, we quantify or classify the spatial characteristics

or color attributes of food and agricultural products and crops or plants growing in

the field. Since surface or external characteristics are important to the consumer’s

perception about product quality and, in many cases, are also a good indicator of

product maturity and/or internal quality, imaging technology is being widely used in

inspecting, monitoring, and grading a large class of agricultural and food products

based on color, size/shape, and surface texture during postharvest handling, packing,

and processing (Ruiz-Altisent et al. 2010; Davies 2010). Applications of imaging

technology are also increasing in production agriculture such as precision chemicals

application, crop yieldmonitoring, vision guidance for off-load vehicles, and robotic

or automatic agricultural operations from seeding to weeding to harvesting (Lee

et al 2010). Despite all these successful applications, conventional imaging tech-

nology generally is not suitable for detection or assessment of intrinsic properties

and characteristics of products, whether they are physical and/or chemical (e.g.,

moisture, protein, sugar, acid, firmness or hardness, etc.).
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Spectroscopy, on the other hand, represents another major class of optical

technology, which has been increasingly used in food and agriculture in recent

years. It normally covers a portion of the electromagnetic spectrum (e.g., from x-ray

to ultraviolet to visible and to infrared), and enables acquiring spectral absorption

and scattering information from an object. The technology is especially suitable for

quantitative or qualitative analysis of product composition and properties, because

the absorption characteristics or spectral signatures of food and agricultural prod-

ucts are related to the chemical properties or composition as well as structural

characteristics. In the early days, spectroscopy technology was primarily used as a

laboratory tool due to high cost in instrumentation and slow speed or complexity in

measurement. However, advances in optics, computer, and chemometric or math-

ematical methods for analyzing spectral data, along with dramatic reduction in

instrument cost, have enabled spectroscopy technology to go well beyond the

traditional domain of application nowadays. For instance, near-infrared spectros-

copy is now being used for real-time, rapid online analysis, monitoring and

inspection of the physical and chemical properties and compositions of many

food and agricultural products (Nicolai et al. 2007). The miniaturization of spec-

trophotometers has further made it possible for on-site, low-cost measurement of

the quality or maturity of crops in both pre- and post-harvest. In contrast to imaging

technique, spectroscopic measurements normally do not provide spatially-resolved

information about products.

Today, the agricultural and food industries are increasingly concerned about the

sustainable production and delivery of consistent, high quality and safe food

products. For many applications, there is a need for more accurate assessment

and classification of food and agricultural products based on their intrinsic charac-

teristics and properties, which may be difficult to achieve with conventional

imaging or spectroscopy technology. Food and agricultural products are known

for their large variations in properties and composition within and between indi-

vidual product items. For instance, the quality of individual kernels, in terms of

protein and moisture content, for the same lot of wheat can vary greatly (Dowell

et al. 2006). Fruit growing in the same orchard or even on the same trees can have

large variations in maturity and other postharvest quality attributes. Meat tender-

ness is greatly influenced by the type, location and direction of meat muscles (Prieto

et al. 2009). The soluble solids content and textural properties like firmness vary

with location and/or orientation within the same apple fruit and melon (Abbott and

Lu 1996; Sugiyama 1999). In the past decade, food safety and security has received

increased attention from the government as well as the general public. Prevention

and early detection of food contaminants and pathogens is critical to ensure safe

production and delivery of food products to the consumer. Pathogen contamination

caused by animal feces is one common food safety concern, and there is zero

tolerance for fecal contamination on poultry and meat products, which has been

imposed in the United States and many other countries. It is difficult to achieve

accurate detection of fecal matter from the products using color or monochromatic

4 R. Lu and B. Park



imaging technology because fecal contaminants on meat and poultry products can

be indistinctive, in some cases, from the bovine animal or poultry carcasses. While

visible/near-infrared spectroscopy can achieve superior detection results, it cannot

pinpoint the exact location and, thus, would miss contaminants that are confined to

small areas on the products. In these and many other instances, conventional

imaging or spectroscopy technology has been proven insufficient to meet the food

safety inspection requirements (Park et al. 2006). Thus, it is desirable or even

necessary to develop and deploy a new, more effective inspection system to

measure the spatial and temporal variations in the quality and condition of food

products and crops growing in the field, and to detect food safety hazards that are

present in harvested or processed food products.

In view of the respective merits and shortcomings of imaging and spectroscopy

technologies, it is clear that great advantages can be gained if we can combine the

major features of these two platforms into one single platform. The integration of

imaging and spectroscopy has led to an emerging, new generation of optical

technology, called hyperspectral imaging or imaging spectroscopy. Hyperspectral
imaging combines the main features of imaging and spectroscopy to acquire

spectral and spatial information from products simultaneously. Depending on

application needs, a hyperspectral imaging system can cover a specific spectral

range in the ultraviolet (UV), visible, near-infrared (NIR), or shortwave infrared

(SWIR) region. The emergency of hyperspectral imaging is closely related to the

advances in imaging, spectroscopy, and computer technologies in the past two

decades. In the late 80s and early 90s, hyperspectral imaging technology was first

used in satellite remote sensing for environmental monitoring, geological search or

mineral mapping, atmosphere composition analysis and monitoring, military recon-

naissance or target detection, and crop yield or growing condition monitoring or

prediction (Moran et al. 1997). Development and application of hyperspectral

imaging for quality and safety inspection of agricultural products has not begun

until the late 1990s (Lu and Chen 1998; Martinsen and Schaare 1998). Since then,

we have seen significant increases in R&D activities in hyperspectral imaging for

food and agricultural product evaluation due to the advances in the high-

performance digital camera and imaging spectrograph, two key optical components

in the hyperspectral imaging system. Over the past 10 years, many technical

symposia dedicated to hyperspectral imaging in food and agricultural applications

have been held by professional societies like the American Society of Agricultural

and Biological Engineers (ASABE), International Society for Optical Engineering

(SPIE), and International Commission for Agricultural and Biological Engineering

(CIGR). The international journal “Sensing and Instrumentation for Food Quality
and Safety” (now renamed “Journal of Food Measurement and Characterization”)
published the first special issue “Hyperspectral and Multispectral Imaging for Food

Quality and Safety” in 2008 (Lu and Park 2008). Several review articles have been

written in recent years about hyperspectral imaging technology and its applications

in food and agriculture (Gowen et al. 2007; Ruiz-Altisent et al. 2010). The increas-

ing interest in hyperspectral imaging for food and agriculture applications has

been further demonstrated by the exponential increase in the number of scientific

1 Introduction 5



publications for the past 15 years. Today, a number of manufacturers1 (e.g.,

Headwall Photonics Corporation, MA, USA; Middleton Research in WA, USA;

Specim, Finland) are engaged in manufacturing hyperspectral imaging instruments

that are suitable for food and agriculture applications.

Earlier research in hyperspectral imaging for food and agricultural product

inspection was focused on using the technique as a research tool because of the

need to acquire and process a huge amount of data. As optics and computer

technologies have evolved rapidly over the past 15 years, we have seen more

diverse, practical applications of hyperspectral imaging in food and agriculture,

including online inspection of food quality and safety and microscopic

hyperspectral imaging for food safety or pathogen detection (Ariana and Lu

2008; Chao et al. 2010; Park et al. 2012; Yoon et al. 2009). The expanding use of

hyperspectral imaging in food and agriculture is expected; the technology will

replace imaging or spectroscopy technology in many applications.

This book is intended to give a broad, comprehensive coverage of hyperspectral

imaging technology and its applications in food and agriculture. It is written for

both researchers who are currently engaged or interested in this area of research and

advanced-level students who want to acquire special knowledge about basic con-

cepts, principles and applications of hyperspectral imaging. The book covers basic

image and spectroscopic data processing and analysis methods, followed by the

common methods and techniques for processing and analysis of hyperspectral

images for quality and safety classification and prediction. It then presents a

range of applications of hyperspectral imaging technology from food quality and

safety inspection to plant health detection and monitoring to precision agriculture

and real-time application.
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Chapter 2

Basics of Image Analysis

Fernando Mendoza and Renfu Lu

2.1 Introduction

Image analysis is used as a fundamental tool for recognizing, differentiating, and

quantifying diverse types of images, including grayscale and color images, multi-

spectral images for a few discrete spectral channels or wavebands (normally less

than 10), and hyperspectral images with a sequence of contiguous wavebands

covering a specific spectral region (e.g., visible and near-infrared). Earlier works

on image analysis were primarily confined to the computer science community, and

they mainly dealt with simple images for such applications as defect detection,

segmentation and classification. Nowadays, image analysis is becoming increas-

ingly important and widespread because it can be done more conveniently, rapidly

and cost effectively (Prats-Montalbán et al. 2011). Image analysis relies heavily on

machine vision technology (Aguilera and Stanley 1999). The explosive growth in

both hardware platforms and software frameworks has led to significant advances

in the analysis of digital images.

Image analysis has been applied to many different fields of science and

technology. For example, it has been used to assess or quantify the external

characteristics (i.e., color, size, shape and surface texture) and internal structures

(architecture and/or connectivity of the material constituents) of food products.
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Commercial machine vision units are readily available to meet the requirements

of automatic inspection for the food processing and packaging industries.

As consumers are demanding better quality and safer food products, there is an

increasing need for rapid and non-destructive quality evaluation of foods. In recent

years, new imaging-based inspection techniques, such as multispectral and

hyperspectral imaging, have been developed for quality assessment of a variety

of foods, which have overcome some of the drawbacks of traditional human and

instrumental inspection techniques (Du and Sun 2007). These methods, which are

based on the automatic detection of various image features, correlate well with

quality attributes of foods that are related to the sensorial, chemical, and physical

properties (Valous et al. 2009a).

It is important to note that image analysis is part of a wider field known as image

processing, where the main underlying idea is to improve the visual quality of an

image and/or to extract useful information or features. The analysis is based on

different image properties such as color, gloss, morphology of the objects,

and texture. Image processing actions can be grouped into three sub-areas

(Prats-Montalbán et al. 2011):

(a) Image compression, which reduces the memory requirements by removing the

redundancy present in the image, that is, the image information which is not

perceptible to the human eye.

(b) Image preprocessing, which consists of improving the visual quality of the

image by reducing noise, pixel calibration and standardization, enhancing the

edge detection, and making the image analysis step more reliable based on

objective and well established criteria. The term image preprocessing, in

general, is referred to all manipulations on an image, each of which produces

a new image.

(c) Image analysis, which usually returns numeric values and/or graphical infor-

mation about the image characteristics that are suited for classification, defect

detection, or prediction of some of the quality properties of the imaged object.

The term image analysis is used when the output is a number or decision, not

an image.

These processing actions are related and may have a different effect or output for

each application. The following sections describe basic concepts and characteristics

of a digital image and how they are processed and transformed (improved), give an

overview of typical image analysis methods and techniques, and show some

application examples in food quality assessment and control.

2.2 The Digital Image

A digital image is a numerical 2D or 3D representation of a real physical object or

scene, from which we can obtain an accurate spatial (geometric) and/or spectral (for

the case of a hyperspectral image) representation with sufficient detail (resolution)

for processing, compression, storage, printing and display. A digital image may be

10 F. Mendoza and R. Lu



of vector or raster type, depending on whether or not the image resolution is fixed

(Wikipedia 2012). Raster images are electronic files that consist of discrete picture

elements, called pixels (short for picture elements). Associated with each pixel is a

number that is the average radiance (or brightness) of a relatively small area within

a scene, representing the color or gray-level at a single point in the image.

Vector graphics formats are complementary to raster graphics, which are the

representation of images based on mathematical expressions, as are typically used

in computer graphics for images made up of vectors (arrows of direction, points,

and lines) that define shapes, as compared to the individual pixels used to represent

a raster image. A vector image is resolution independent, which means the image

can be enlarged or shrunken without affecting the output quality. The term digital
images usually refers to raster images, which are also called bitmap images.

Moreover, it is also applied to data associated to points scattered over a three-

dimensional region, such as produced by tomographic equipment. In that case, each

datum is called a voxel.
The most commonly used method for the creation of raster images (i.e., digital

imaging or image acquisition) is digital photography with a CCD camera in a process

called digitization. The digitization process requires the mapping of the image on a

grid and a quantization of the intensity level. Digitization is the process of converting

an analog signal into a digital signal, known as an A/D (analog to digital) conversion.

For raster images, an analog voltage signal (from any of several types of imaging

sensors), proportional to the amount of light reflected or transmitted by an item being

digitized, is divided into discrete numeric values (Castleman 1979). In other words,

the process converts an image into a series of small picture square elements or pixels
that are either black or white (binary), a specific shade of gray (grayscale) or color.

Each pixel is represented by a single or series of binary digits, either 1 s or 0 s.

By measuring the color (or gray-level for black and white photos) of an image at

a large number of points, we can create a digital approximation of the image from

which a copy of the original can be reconstructed.

Figure 2.1 depicts an example of the process for creation of a digital image.

This figure shows the energy from an illumination source being reflected from a
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Fig. 2.1 An example of the process for creation of a digital image
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scene element (apple). The imaging system collects the incoming energy and

focuses it onto an image plane. The front end of the imaging system is an optical

lens that projects the viewed scene onto the lens focal plane. The camera sensor is

an array of photo cells which measure light at discrete points. The sensor does not

directly recognize the color of the incoming light; instead, in a color camera (with

3 CCD sensors) a prism separates the light into three components or color channels

i.e., R (for red),G (for green) and B (for blue). The response of each sensor, which is

coincident with the focal plane, is proportional to the integral of the light energy

projected onto the surface of the sensor. Once a digital image has been created and

stored in any media, there is a corresponding digital to analog conversion that

allows the computer to present the image in a human readable form on either a

display or printer. Displaying an image on a computer monitor or printing the image

on a printer are both examples of an analog representation of a digital image.

In order to process and analyze images on a computer we first have to digitize them.

Figure 2.2 emphasizes the characteristics of a digital color image. The displayed

color image is a two-dimensional matrix of thousands or millions of pixels, each of

Fig. 2.2 Characteristics of a digital color image: (a) original image (340� 256 pixels),

(b) magnified color image (�1,600) to visualize the pixels, (c) the numerical R, G, and B color

intensity values for a selected region
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which has its own address, size, and grayscale or color channel representation.

By zooming in on this digital image, it is noticed that the image is composed of a

series of rows and columns of square pixels. Each pixel represents the brightness or

intensity value of a given color channel (or gray-level) at any single specific point in

the image. Typically, the pixel information is stored in computer memory as a raster

image or raster map, a 2D array of integers. These values are often transmitted or

stored in a compressed form.

Constraints of the digitized representation are that it contains much less

information of the original scene since a 3D scene is reduced to a 2D representation.

The sensors in any acquisition device (still or video cameras, scanners among other

sensors) in general are not capable to capture and reproduce exactly, although not

sensitive to the human vision, all color information from the real scene. Moreover,

the size and location of the objects on the image are now estimates, whose precision

and accuracy are dependent on the sampling resolution. The advantages of digital

images are that they can be processed and analyzed, in many ways, by computers.

2.2.1 Basic Image Measurements

There are three basic measures of every static digital image: spatial resolution,
pixel bit depth, and color (Puglia 2000). The specifications selected for each

measure determine the amount of electronic information captured to represent the

original photograph or scene. Generally, the higher the values are within these

measures, the more data will be captured representing a greater amount of photo-

graphic detail from the original.

2.2.1.1 Resolution

Spatial resolution is defined as the rate, or number of times, at which an image is

sampled during the acquisition or imaging process. More specifically, it is the

frequency of pixels used to capture sample shades in the space of the object being

digitized. Spatial frequency is synonymous for spatial resolution. Generally, more

pixels per unit dimension means a higher resolution, but the overall image quality

cannot be determined by spatial resolution alone. Typical array sizes in pixels

(or pixel resolution) in many imaging sensors vary from 640� 480 to

2,048� 1,536 pixels. For reference human vision is >100 million pixels.

Quantitatively, spatial resolution (i.e., the number of pixels in an image) can

be described in a number of ways, being the most common measures: dpi (dots
per inch), ppi (pixels per inch), and lpi (line pairs per inch) (Gonzales and

Woods 2008). The resolution of a digital image file is most appropriately referred

to as pixels per inch or ppi. The dpi and lpi measures are considered printing terms

and are most appropriate when referring to the resolution at which a computer
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printer produces a print. However, dpi is a more generic term and is more

commonly used than ppi in image reproduction and photography.

In science and engineering research, however, the dpi term is not frequently

reported when referring to the resolution of images. Generally, they are expressed

by a spatial or unit distance per pixel, i.e., mm/pixel, μm/pixel, etc., and sometimes

represented by a horizontal bar on the same image indicating the actual spatial

length of that bar (as shown in Fig. 2.3b). Figure 2.3 presents two examples of

images at different dpi levels while keeping their size the same. Reducing the

resolution of the original image generally leads to larger pixels and less detail in the

image. Images saved with the lowest dpi levels appear blurred and have a reduced

contrast. By decreasing the image resolution of the apple tissue (Fig. 2.3b) the finest

details of the tissue microstructure are lost, making it more difficult for the

visualization and analytical determination of the smallest structures.

2.2.1.2 Pixel Bit Depth

This measure is sometimes called pixel depth or color depth. This defines the

number of shades that can actually be represented by the amount of information

saved for each pixel. Computers work on a binary system; each bit of data is either

1 or 0. Each pixel in a raster image is represented by a string of binary digits and the

number of digits is known as the bit depth. Hence, a one-bit image can assign only

one of two values to a single pixel: 0 or 1 (black or white). An 8-bit (28) grayscale

image can assign one of 256 colors to a single pixel. A 24-bit (2(3�8)) RGB image

(8-bits each for red, green and blue color channels) can assign one of 16.8 million

colors to a single pixel. The bit depth determines the number of possible

Fig. 2.3 Images saved at different dpi levels while keeping the same size. (a) typical effects on a

color image; (b) X-ray microtomography image of ‘Jonagold’ apple captured with a spatial

resolution of 8.5 μm/pixel, where black areas represent pores and gray areas the cellular material
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combinations of 1 s and 0 s for that number of binary digits and therefore the

number of gray shades or color shades that can be represented by each pixel. This is

calculated by the following formula (Puglia 2000):

Number of Shades ¼ 2x, where x ¼ the bit depth: ð2:1Þ

The bit depth influences the representation of images. The greater the bit depth,
the finer the levels of change can be recorded. Consequently, more space is needed

in the computer system to handle and store the image. Although grayscale images

with bit depths of 2, 4, 6, 12, 16 and 32 exist, 8 bpp (i.e., byte-per-pixel) grayscale

images are the most common. This is for two reasons; first, the 8 bpp size makes it

easier to manipulate with a computer, and second, since the human eye can

distinguish less than 200 shades, it can faithfully represent any grayscale image

because it provides 256 distinct levels of gray. Thus, the use of 8-bit grayscale

image files and corresponding 24-bit RGB color image files, in many cases,

represent a reasonable compromise for image processing and analysis purposes.

Some scientific applications requiring wider or higher dynamic ranges, as in multi-

and hyper-spectral imaging, frequently use camera sensors with 14-bit (16,384

shades) or 16-bit (65,536 shades) in order to reduce the noise level for a higher

signal-noise-ratio.

To achieve a desired bit depth without any data loss, it is necessary to digitize a

photograph at a higher bit depth and then scale down to the desired bit depth after

any image processing has occurred. In addition to the loss of data from small

fluctuations in the acquisition system, raw digital images often require minimal

processing (e.g., sharpening or minimal tonal corrections). Any processing of a

digital image results in some data loss. Acquiring and processing an image at a

higher bit depth and then reducing to the desired bit depth will minimize the impact

of the data loss and provide a file with the desired quality.

2.2.1.3 Color Representation

Several different systems are used to represent color images. The most common are

RGB (additive color system), CMYK (subtractive color system), HSV and the

CIELAB color space. A color space is a specific implementation of a color model.

There are many RGB and CMYK color spaces defined for specific purposes and

applications (such as sRGB and CMY). The terms color space and color profile can

often be used interchangeably, since a profile is a description or numerical model of

a specific color space.

Operating systems and programs need to have access to an embedded profile that

describes the meaning of the color values in order to interpret the color correctly.

There are two types of profiles: matrix-based and table-based. Matrix-based

profiles use mathematical formulas to describe the 3D color spaces. They can be

relatively small and most appropriate as working spaces and as embedded profiles.

Table-based profiles, as the name implies, use a large table of sample points called a
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Look-Up Table or LUT to define the 3D color space. These profiles are more

customizable, and are therefore more useful when translating color information

from one space to another, or in describing the color characteristics of a particular

device. Because they rely on many data points, they are much larger.

RGB is a color model that uses the three primary (red, green, blue) additive

colors, which can be mixed to make all other colors. It builds its model by adding

different colors of light together, where the mixture of all three colors produces

white light. Grayscale values follow the line from black (the origin of the coordi-

nate system) to white, as shown in Fig. 2.4a. Digital cameras produce RGB images,

and monitors display RGB images. Mathematical conversions between different

color spaces for analysis and special visualizations are also possible.

CMYK (CMY) is a color model based on subtracting light. The cyan (C), magenta

(M ), and yellow (Y ) are the basic colors for a subtractive model, and represent the

complements of the three primary colors (see Fig. 2.4a). R, B, G, and black (K) inks

are used in most commercial color printing (books, magazines, etc.). Inks absorb

colored light, which is why the model is called a subtractive one. CMYK is

commonly referred to as process color, and there are many individual color spaces

that use the CMYK color model. Conversions from RGB to CMY are done by using

the following simple equation (Gonzales and Woods 2008):
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Fig. 2.4 Commonly used color spaces: (a) RGB color cube; (b) HSV color cone; and (c) CIELAB
or L*a*b* color system
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If a color image has to be printed, black (K ) as a fourth color is added to the model

to achieve a purer black than the simple combination of the other three colors,

resulting in the CMYK model. Transformation from CMY to CMYK is done by:

K ¼ min CCMY ;MCMY ; YCMYð Þ ð2:3Þ

CCMYK ¼ CCMY � K ð2:4Þ

MCMYK ¼ MCMY � K ð2:5Þ

YCMYK ¼ YCMY � K ð2:6Þ

HSV is a user-oriented color model based on the artist’s idea of tint, shade and tone.

HSV expresses color into three components that vary from 0 to 1; H (hue) distin-

guishes among the perceived colors, such as red, yellow, green and blue,

S (saturation) refers to how much of the light is concentrated at each specific

wavelength of the hue; and V (value) represents the total brightness (see Fig. 2.4b).

The computation of H, S, and V values from the RGB color space is made according

to the following expressions (Du and Sun 2005):

V ¼ max nR, nG, nBð Þ ð2:7Þ

S ¼ V � min nR; nG; nBð Þ
V

ð2:8Þ

Let

tR ¼ V � nR

V � min nR; nG; nBð Þ ; ð2:9Þ

tG ¼ V � nG

V � min nR; nG; nBð Þ ; ð2:10Þ

tB ¼ V � nB

V � min nR; nG; nBð Þ ; ð2:11Þ
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Then

6H ¼

5þ tB if nR ¼ max nR; nG; nBð Þ and nG ¼ min nR; nG; nBð Þ
1� tG if nR ¼ max nR; nG; nBð Þ and nG 6¼ min nR; nG; nBð Þ
1þ tR if nG ¼ max nR; nG; nBð Þ and nB ¼ min nR; nG; nBð Þ
3� tB if nG ¼ max nR; nG; nBð Þ and nB 6¼ min nR; nG; nBð Þ
3þ tG if nB ¼ max nR; nG; nBð Þ and nR ¼ min nR; nG; nBð Þ
5� tR otherwise

8>>>>>><
>>>>>>:

ð2:12Þ

where H, S,V 2 0, . . . , 1½ �.
In food research, color is frequently represented using the CIELAB or L*a*b*

color space since results closely match those of the human perception. L* is the

luminance or lightness component that goes from 0 (black) to 100 (white), and

parameters a* (from green to red) and b* (from blue to yellow) are the two

chromatic components, varying from �120 to +120 (see Fig. 2.4c). The definition

of L*a*b* is based on the intermediate system CIE XYZ which is derived from RGB
(Rec. ITU-R BT.709-5, 2002). Thus, L*, a*, and b* are defined as:

L* ¼ 116
Y

Yn

� �1=3

� 16 ð2:13Þ

a* ¼ 500
X

Xn

� �1=3

� Y

Yn

� �1=3
" #

ð2:14Þ

b* ¼ 200
Y

Yn

� �1=3

� Z

Zn

� �1=3
" #

ð2:15Þ

where Xn, Yn, Zn correspond to the XYZ values of a reference white chart.

2.2.2 Types of Files

File types are used to encode digital images, allowing for compression and storage.

Image files can be of different sizes and formats, and larger file types mean more

disk usage and slower download. Compression is a term used to describe ways of

reducing the size of the file. Compression schemes can by lossy or lossless (Shapiro
and Stockman 2001). A lossless compression algorithm does not discard informa-

tion. It looks for more efficient ways to represent an image, while making no

compromises in accuracy. A lossless algorithm might, for example, look for a

recurring pattern in the file, and replace each occurrence with a short abbreviation,

thereby cutting the file size.
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Contrarily, a lossy algorithm might accept some degradation in the image in

order to achieve smaller file size. For example, JPEG or JPG file format works by

analyzing images and discarding information that the eye is least likely to notice.

Changes in luminance are more significant by the human observer than change in

hue. Thus, in JPEG compression, factors of more than 20 are often quite acceptable.

Better graphics programs, such as Paint Shop Pro and Photoshop, allow viewing

the image quality and file size as a function of compression level, so that it is

possible to conveniently choose the balance between qualities and file size. Higher

JPEG compression equals lower image quality since the color information in

individual pixels is compressed into blocks of pixels using mathematical algorithms

that methodically blend all the pixel colors in each block. Increasing the compres-

sion produces smaller computer file sizes, whereas lower compression produces

better quality but larger computer file sizes.

The most common digital image file types and their main characteristics are

summarized in Table 2.1. Currently, GIF and JPEG are the formats used for nearly

all web images. PNG is supported by most of the latest generation browsers. TIFF is

not widely supported by web browsers, and should be avoided for web use. PNG
does everything GIF does, and better; so it is expected to replace GIF in the future.

PNG will not replace JPEG, since JPEG is capable of much greater compression of

photographic images, even when set for quite minimal loss of quality.

Table 2.1 Common digital file types

File type Description

TIFF Tagged Image File

Format

• Lossless uncompressed file format with 24 or 48 bit color

support. File sizes are quite big

• Supports embedded information like EXIFa, calibrated color

space and output profile information

• There is a lossless compression for TIFF called LZW. LZW

works like zipping the image file because there is no quality

loss. An LZW TIFF decompresses with all of the original

pixel information unaltered

PNG Portable Network

Graphics

• Lossless compression format with up to 16-bit depth for

grayscale values and up to 48-bits for color values

• In contrast with common TIFF files, it looks for patterns in

the image that it can use to compress file size

• The compression is exactly reversible, so the image is

recovered exactly

JPEG Joint Photographic

Experts Group

• Lossy compression format optimized for photographs that

contain many colors which store information as 24-bit color

and the degree of compression is adjustable

• JPEG compression ratio and resolution are not relational. It

is possible to get a high resolution JPEG image with either

low or high compression

• Supports embedded information like EXIF, calibrated color

space and output profile information

• This is the best format for photographs to be shown on the

web or as email attachments

(continued)
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2.2.3 Types of Digital Images

As described above, each pixel of a raster image is typically associated to a specific

position in the 2D region, and has a value consisting of one or more quantities

(samples) related to that position. Digital images can be classified according to the

number and nature of those samples in: binary, grayscale, color, false-color, multi-
spectral, thematic, and picture function (Shapiro and Stockman 2001).

For image processing and analysis, the input image is supposed to be grayscale

or RGB. However, there are four basic types of digital images frequently used as

intermediate steps in the processing of an image, which allow to identify, enhance,

quantify and also represent specific characteristics or regions of interest on an

image. They are: indexed color images, intensity images, binary, and labeled
images.

Table 2.1 (continued)

File type Description

GIF Graphics Interchange

Format

• Lossless uncompressed 8-bit file format that supports only

256 distinct colors. GIF creates a table of up to 256 colors

from a pool of 16 million

• Not suitable for photographs because of its limited color

support. Best used with web clip art and logo type images

BMP Bitmap Format • Lossless uncompressed file format that supports 24-bit color

invented by Microsoft

• Does not support embedded information like EXIF, cali-

brated color space and output profiles

• BMP produces approximately the same file sizes as TIFF
without any of the advantages of TIFF

RAW • Lossless compressed file format that is proprietary for each

digital camera manufacturer and model

• Though lossless, it is a factor of three or four smaller than

TIFF files of the same image

• It contains the full range of color information from the

sensor. RAW files converted to 16-bit TIFF produce the

absolute best quality image available from any digital

camera

• Camera RAW supports imbedded EXIF data

PSD,

PSP

Photoshop file, Pain

Shop Pro

• Proprietary formats used by graphic programs

• Preferred working formats as you edit images in the soft-

ware, because only the proprietary formats retain all the

editing power of the programs

• These packages use layers building complex images, and

layer information may be lost in the nonproprietary formats

such as TIFF and JPG
aEXIF stands for Exchangeable Image File Format. This data includes technical information about

each photograph including calibrated color space, output profile device information shutter speed

and aperture used, whether or not flash was used, and the date the photo was taken
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2.2.3.1 Indexed Color Images

A digital color image is an image that includes the R, G, and B color channel

information or other color representation for each pixel. An indexed color image

consists of two arrays: an image matrix and colormap. The colormap (also called a

palette) is an ordered set of values that represent the colors in the image. For each

image pixel, the image matrix contains a value that is an index into the colormap.
In computing, the encoding of the color image data in this way allows for saving

computer memory and file storage, while speeding up refreshing and file transfers.

It is a form of vector quantization compression.

2.2.3.2 Intensity Images

An intensity image or digital grayscale image is an image in which the value of

each pixel is a single sample, that is, it carries only intensity information. These

images are composed exclusively of various shades of gray, varying within a given

range from 0 (for black) to 1 (or 255 for white), with any fractional values in

between. However, it must be noted that this does not define what black or white is

in terms of colorimetry. Another convention is to employ percentages, so the scale

is then from 0 to 100 %. This is used for a more intuitive approach, but if only

integer values are used, the range encompasses a total of only 101 intensities, which

are insufficient to represent a broad gradient of grays.

Grayscale images are often the result of measuring the intensity of light at each

pixel in a single band of the electromagnetic spectrum (e.g., infrared, visible light,

ultraviolet, etc.), and in such cases they are monochromatic when only a given

frequency is captured. Multispectral or hyperspectral images have numerous bands

or a finer spectral resolution, and they are examples of this type of intensity images.

But they also can be synthesized from a full color image by converting to grayscale.

Grayscale images are also called monochromatic because of the absence of any

chromatic variation (i.e., one color).

If a color image has to be converted into an intensity or grayscale image, the

following equations can be used. One alternative is the simple average of the R, G,
B color channels:

I ¼ 0:333 � Rþ 0:333 � Gþ 0:333 � B ð2:16Þ

Another equation, which takes into account the luminance perception of the

human eye, is

Y ¼ 0:2162 � Rþ 0:7152 � Gþ 0:0722 � B ð2:17Þ

The weights used to compute luminance are related to the monitor’s phosphors.

The explanation of these weights is due to that for equal amounts of color, the eye is

more sensitive to green, then red, and then blue. This means that for equal amounts
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of green and blue light, the green will, nevertheless, be much brighter. Thus the

image obtained by the normal averaging of an image’s three color channels

produces a grayscale brightness that is not perceptually equivalent to the brightness

of the original color image. The weighted sum that defines Y (Eq. 2.17),

however, does.

2.2.3.3 Binary

A binary image has only two possible values (0 and 1) for each pixel. Typically the
two colors used for a binary image are black and white, though any two colors can

be used. The color used for the object(s) in the image is the foreground color while

the rest of the image is the background color. Thus, the set of all white pixels in a

binary image is a complete morphological description of the image (Gonzales and

Woods 2008). Binary images are also called one-bit, bi-tonal, bi-level or two-level.
This means that each pixel is stored as a single bit (0 or 1, see Sect. 2.2.1.2). In digital

image processing, binary images often arise as masks or result from certain opera-

tions such as segmentation, thresholding, and dithering. A binary image is usually

stored in memory as a bitmap, a packed array of bits (Wikipedia 2012).

2.2.3.4 Labeled Images

A labeled image is a digital image whose pixel values are symbols from a finite

alphabet. The symbol value of a pixel denotes the outcome of some decision made

for that pixel. An example is the labeling of objects in a binary image, which means

that these objects are classified and numbered. Related concepts are thematic
image, false-color image and pseudo-colored image. In a false-color image this

close correspondence between subject color and image color is altered. The term

false-color is typically used to describe images whose colors represent measured

intensities outside the visible portion of the electromagnetic spectrum. Pseudo-
coloring can make some details more visible, by increasing the distance in color

space between successive gray levels. Pseudo-color images differ from false-color
images in that they are made from only one original grayscale image, rather than

two or three.

2.3 Steps for Image Processing and Analysis

Image processing involves a series of image operations to enhance the quality of a

digital image so as to remove defects such as geometric distortion, improper focus,

repetitive noise, non-uniform lighting and camera motion. Image analysis is the

process of distinguishing the objects (regions of interest or ROIs) from the back-

ground and producing quantitative information, which is subsequently used for
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decision making. Processing and analysis can be performed on many different types

of image data. These include, in an increasing order of complexity: binary images,

grayscale, color, polarized-light, multi-spectral and hyper-spectral, 3D images,

multi-sensor and multimedia systems, and image sequences and video.

Gunasekaran and Ding (1994) defined three levels of image processing, named,

low level processing which includes image acquisition and pre-processing of

images, intermediate level processing which involves image segmentation, image

representation and description, and high level processing which involves recogni-

tion of ROIs and interpretation for quality sorting and grading. The terms machine
vision or computer vision is often used for the entire subject, including image
processing and analysis and pattern recognition techniques. Hence, the process

of making a decision involves a number of steps in sequential order. Not all

situations require all of these steps or operations, but all are potentially available

to deal with particular problems.

Machine vision generally consists of the following five steps or operations

(Fig. 2.5): (1) image acquisition operations to convert images into digital form, as

explained in Sect. 2.2; (2) pre-processing operations to obtain an improved image

with the same dimensions as the original image; (3) image segmentation operations
to partition a digital image into disjoint and non-overlapping regions; (4) object
measurement operations to measure the characteristics of objects, such as size,

shape, color and texture; and (5) classification or sorting operations to identify

objects by classifying them into different groups.
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Fig. 2.5 An overview of the operational steps for a machine vision system
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2.4 Image Processing

Image processing or pre-processing encompasses a broad range of operations,

which may be treated as an end in themselves, or are intended to simplify or

enhance subsequent analysis. Pre-processing improves the image data by removing

unintended distortions or enhancing some image features that are important for

further processing and creating a more suitable image than the original for a specific

application. The operations that can be performed on digital images include point,
local or neighborhood, and global operations.

Point operations transform pixels without regard to neighboring pixels. The gray

value of the output image at a particular pixel depends only on the gray value of the

same pixel in the input image. Theymap the pixels in one image to form another using

a single mapping function. Point operations do not consider the spatial organization

of the image, which forms the fundamental character of images as opposed to other

types of data. Examples of these operations include contrast stretching, segmentation

based on gray value, and histogram equalization (Marchant 2006). The term contrast
refers to the amplitude of gray level variations within an image.

A local or neighborhood operation or mask operation generates an output pixel

whose value depends on the pixel values in a neighborhood of the corresponding

input point. Examples include convolution (as for image smoothing or sharpening)

and spatial features detection (e.g., line, edge, and corner detection). A large and

powerful class of non-linear neighborhood operations is morphological methods;

they extend naturally to gray-level (and multiband) images (Soille 1999).

Finally, an operation is a global operation if the output value at specific

coordinate is dependent on all the values in the input images. Spatial domain

processing methods include all three types, but frequency domain operations, by

nature of the frequency (and sequence) transforms, are global operations. Of course,

frequency domain operations can become mask operations, based only on a local

neighborhood, by performing the transform on small image blocks instead of the

entire image. This section presents a brief description of the types of algorithms

commonly utilized for digital image processing. We intentionally limit the discus-

sion to the types of image processing algorithms that are widely used in applications

for foods.

2.4.1 Grayscale Operations for Image Enhancement

Once the grayscale or color image is obtained, one of several different techniques

may be used to improve the quality of the image. Image enhancement techniques

are used to emphasize and sharpen image features for further analysis in order

to facilitate the development of a solution to a specific application problem.

Consequently, the enhancement methods are application specific and are often

developed empirically.
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2.4.1.1 Arithmetic Operations

All arithmetic operations performed on matrices may be performed on images.

Arithmetic operations between images are array operations carried out between

corresponding pixel pairs. Hence, the images normally have to be of the same size.

These operators are frequently used for reducing noise and image enhancement.

The four arithmetic operations are as follows:

s x; yð Þ ¼ f x; yð Þ þ g x; yð Þ ð2:18Þ

d x; yð Þ ¼ f x; yð Þ � g x; yð Þ ð2:19Þ

p x; yð Þ ¼ f x; yð Þ � g x; yð Þ ð2:20Þ

v x; yð Þ ¼ f x; yð Þ � g x; yð Þ ð2:21Þ

where x¼ 0, 1, 2, . . ., M�1 and y¼ 0, 1, 2, . . ., N�1 for images with the size of

M rows and N columns.

Addition is a discrete version of continuous integration, and it is an operation

frequently used to create double-exposures or composites. A common variant of

this operator simply allows a specified constant to be added to every pixel in an

image, so as to brighten that image. Image subtraction is frequently used to enhance
differences between images; such as finding changes between two images.

The multiplication or division of two images is performed in two main forms.

The first form takes two input images and produces an output image in which the

pixel values are just those of the first image, multiplied (or divided) by the values of

the corresponding values in the second image. The second form takes a single input

image and produces output in which each pixel value is multiplied (or divided) by a

specified constant. This latter form is probably the more widely used and is

generally called scaling.
Image averaging is an application for correcting noisy images. Averaging of

multiple pictures of the same scene helps to reduce this noise. In practice, however,

the images must be previously registered (aligned) in order to avoid the introduc-

tion of blurring and other artifacts in the output image.

Other related operators are the logical operators such as And, Or, Not, If. . .Then,
If and only If, among others which are often used to combine (mostly binary) two

images. An example is when a mask is used for selecting a region of interest from

an image.

2.4.1.2 Histogram Equalization

The histogram of a digital image gives the numeric (quantitative) information about

the distribution of the number of pixels per gray-level value. Histograms are the

2 Basics of Image Analysis 25



basis for numerous spatial domain processing techniques, and their manipulation

can be used for image enhancement. In addition to providing useful image statistics,

the information inherent in histograms also is quite useful in other image processing

applications, such as image compression and segmentation. Mathematically, the

histogram of a digital image is a discrete function h(k)¼ nk/n, where k¼ 0, 1, . . .,
L�1 is the kth gray-level, nk is the number of pixels in the image having gray-level

k, and n is the total number of pixels in the image.

Frequently, an image is acquired in such a way that the resulting brightness

values do not make full use of the available dynamic range. Histogram equalization
is a common point operation method for spreading the histogram of pixel levels

more evenly. The gray levels are transformed with a function such that all

gray values are equally represented in the histogram. In the method each original

gray-level k is mapped into new gray-level i by:

i ¼
X k

i¼0
h jð Þ ¼

X k

j¼0

n j

n
ð2:22Þ

where the sum counts the number of pixels in the image with gray-level equal to or

less than k. Thus, the new gray-level is the cumulative distribution function of the

original gray-levels, which is always monotonically increasing. The resulting

image will have a histogram that is flat in a local sense, since the operation of

histogram equalization spreads out the peaks of the histogram while compressing

other parts of the histogram. In more complicated cases, the global histogram may

not be a good representation for local statistics in two parts of the image. In such

cases it is best to use an adaptive histogram equalization where you can divide the

image into several rectangular domains, compute an equalizing histogram and

modify levels so that they match across boundaries (Macaire and Postaire 1989).

Figure 2.6 illustrates the image enhancement of a loaf of bread using global

histogram equalization. In general, the function is non-linear. It is important to

realize that whatever point operation is used, the separation into ROIs is still not

possible. Thus, although the image in Fig. 2.6c appears easier to separate into

components, a machine vision system will still not be able to do it on the basis of

point operations only.

2.4.2 Spatial Image Filtering

With spatial image filtering technique, a window of finite size and shape is

scanned across the entire image, transforming the local intensities in that image.

The window with its weights is called the convolution kernel or filter mask. Thus,
filtering creates a new pixel with coordinates equal to the coordinates of the center

of the neighborhood, and whose value is the result of the filtering operation.

Two main linear spatial filtering methods are correlation and convolution.
Correlation is the process of moving a filter mask over the image and computing
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the sum of products at each location. The mechanisms of convolution are the same,

except that the filter is first rotated by 180� (Gonzales and Woods 2008). Correla-

tion is often used to measure the similarity between images or parts of images

(e.g., pattern matching). Correlation and convolution yield the same result when the

filter mask is symmetric. Nonetheless, basic image processing techniques are

mainly based on convolution.
The convolution is performed by sliding the kernel over the image, generally

starting at the top left corner and moving the kernel through all the positions within

the boundaries of the image. Thus, in a convolution, a convolution kernel is applied
to every pixel to create a filtered image, Iout(x, y):

Iout x; yð Þ ¼ Iin x; yð Þ*W x; yð Þ ¼
X1

u¼�1
X1

u¼�1 Iin u; vð ÞW u� x, v� yð Þ
ð2:23Þ

where the minus signs on the right flip W (i.e., rotate it by 180�). Flipping and

shifting W instead of the input image, Iin(u,v), is done for notational simplicity and

also to follow convention, which is the same as flipping and shifting the input
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Fig. 2.6 Image quality enhancement using histogram equalization: (a) grayscale image of a loaf

bread; (b) histogram of the image in (a); (c) resulting image obtained from image (a) by histogram
equalization; (d) histogram of the image in (c)
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image. It should be noticed that a special treatment is needed for calculating the

border of the new image during spatial filtering. Klinger (2003) suggests four

possibilities for handling the border of an image. First, if the convolution filter

has a size of 3� 3, get an image smaller by the border of one pixel. Second, keep

the same gray-level values of the original image for the new border pixels.

Third, use special values for the new border pixels; for example, 0, 127, or 255.

Finally, use pixels from the opposite border for the calculation of the new values.

2.4.2.1 Image Smoothing and Blurring

All smoothing filters build a weighted average of the surrounding pixels, and some

of them also use the center pixel itself. Averaging and Gaussian filters are linear

filters often used for noise reduction with their operation causing a smoothing in the

image but having the effect of blurring edges.

The average or low-pass filter is a linear filter and one of the simplest types of

neighborhood operation. In the average filtering the new value is calculated as the

average of all nine pixels (for a [3� 3] kernel) using the same weight. The elements

of the mask must be positive and the coefficients for the center pixel are either 0 or

1. With the averaging filter, the mean value of the pixels in the neighborhood is used

to form a pixel in a new image at the same location as the center pixel in the original

image. Like all averaging operations, this can be used to reduce some types of noise

at the expense of a loss of sharpness as it is shown in Fig. 2.7. The averaging

operation is represented by,

Iout x; yð Þ ¼ 1

9

Xxþ1

u¼x�1

Xyþ1

v¼y�1
Iin u; vð Þ ð2:24Þ

Rather than weight all input pixels equally, it is better to reduce the weight of the

input pixels with increasing distance from the center pixel. The Gaussian filter does
this and is perhaps the most commonly used of all filters (Shapiro and

Stockman 2001). The center pixel coefficient of a Gaussian kernel is always greater

than 1, and thus greater than the other coefficients because it simulates the shape of

a Gaussian curve according to,

Fig. 2.7 Examples of averaging filter using masks [3� 3] and [9� 9]
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Gout x; yð Þ ¼ 1ffiffiffiffiffi
2π

p
σ
exp � d2

2σ2

� �
ð2:25Þ

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xcð Þ2 þ y� ycð Þ2

q
is the distance of the neighborhood pixel [x,y]

from the center pixel [xc,yc] of the output image to which the filter is being applied.

Convolution with this kernel forms a weighted average which stresses the point at

the center of the convolution window, and incorporates little contribution from

those at the boundary. As σ increases, more samples must be obtained to represent

the Gaussian function accurately. Therefore, σ controls the amount of smoothing.

A second derivative filter based on the Laplacian of the Gaussian is called a LOG
filter. Examples of Gaussian filter using masks [3� 3] and [9� 9] with σ¼ 3 are

given in Fig. 2.8.

Sometimes, non-linear operations on neighborhoods yield better results. An

example is the use of a median filter to remove noise. Median filtering replaces

each pixel by the median in a neighborhood around the pixel. Consider an area of a

scene of reasonably uniform gray-level; the resulting image may have a single pixel

with a very different gray-level due to some random noise. The output of an

averaging filter would contain a proportion of this outlier pixel value. However,

the median filter would set the output pixel to the median value (the 5th largest

gray-level in a 3� 3 neighborhood) and so it would be unaffected by the outlier.

The method is very effective for removing salt and pepper noise (i.e., random

occurrences or impulses of black and white pixels) (Gonzales and Woods 2008), as

shown in Fig. 2.9. A disadvantage is that the median filter may change the contours

of objects in the image.

Fig. 2.8 Examples of Gaussian filter using masks [3� 3] and [9� 9]

Fig. 2.9 Example of median filter using a kernel [3� 3]: the input image (left) contains Gaussian
noise, and the noise is removed in the resultant image (right) after 3� 3 median filtering
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Computing the median requires more computation time than computing a

neighborhood average, since the neighborhood values must be partially sorted.

Moreover, median filtering is not so easily implemented in special hardware that

might be necessary for real-time processing. However, in many image analysis

tasks, its value in image enhancement is worth the time spent.

2.4.2.2 Edge Detection and Enhancement

The detection of edges in an image is an important area of study. An edge is an area
of an image characterized by sharp changes in gray-level or brightness. The process

of edge detection attenuates high fluctuations in color, i.e., dramatic change in

intensity. In the frequency domain, this process refers to the attenuation of high

frequencies. Among the families of edge detection filters are: gradient filters,
Laplacian, and wavelet transform (Klinger 2003). Both gradient and Laplacian
kernels are of the high-pass filter, which operates by differencing adjacent pixels,

because the sharp edges can be described by high frequencies. However, as in other

areas of signal processing, high-pass filtering amplifies noise, if an appropriate

attempt is made to find object boundaries in the image with a simple edge detector

(Marchant 2006).

A gradient filter extracts a significant brightness change in a specific direction

and is thus able to extract edges perpendicular to this direction. These filters are

known as Prewitt filter masks. The Prewitt operator is based on convolving

the image with a small, separable, and integer valued filter in horizontal and

vertical direction and is therefore relatively inexpensive in terms of computations.

Because the components of the gradient vector are derivatives, they are linear

operators.

Another group of gradient masks are the Sobel filters or Sobel kernels. A Sobel

operator gives the specified filter direction a stronger weight. In general, the

gradient specifies the amount of change of a value in a certain direction. First

derivatives in image processing are implemented using the magnitude of the

gradient. The simplest filter kernels, used in two orthogonal directions, are:

Gx ¼
0 0 0

0 �1 0

0 1 0

2
4

3
5 ð2:26Þ

and

Gy ¼
0 0 0

0 �1 1

0 0 0

2
4

3
5 ð2:27Þ
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resulting in two images, Ix ¼ Sx x; yð Þð Þ and Iy ¼ Sy x; yð Þ� �
. The mask coefficients

sum to zero, as expected of a derivative operator. The value and direction of the

gradient are therefore calculated as follows:

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sx x; yð Þ2 þ Sy x; yð Þ2

q
ð2:28Þ

and

θ ¼ arctan
Sx x; yð Þ
Sy x; yð Þ
� �

ð2:29Þ

The Laplacian operator is an example of a second order or second derivative

method of enhancement. It is particularly good at finding the fine detail in an image.

All masks of the Laplacian filter group are omni-directional, meaning that they

provide edge information in each direction. The Laplacian operators show two

interesting effects. First, if the sum of all coefficients is equal to 0, the filter kernel

shows all image areas with a significant brightness change; that means it works as

an isotropic or omni-directional edge detector. In other words, isotropic filters are

rotation invariant (Gonzales and Woods 2008), in the sense that rotating the

image and then applying the filter gives the same result as applying the filter to

the image first and then rotating the result. Second, if the center coefficient is

greater than the sum of the absolute values of all other coefficients, the original

image is superimposed over the edge information (Klinger 2003).

The simplest isotropic derivative operator is the Laplacian, which for a image

f(x,y) of two variables, is defined as

∇2 f ¼ ∂2
f

∂x2
þ ∂2

f

∂y2
ð2:30Þ

Laplacian as derivative operator highlights intensity discontinuities in an image

and deemphasizes regions with slowly varying intensity levels. This will tend to

produce images that have grayish edge lines and other discontinuities, all

superimposed on a dark, featureless background. Hence, it is important to define

the type of Laplacian operator used. If the filter mask has a negative center

coefficient, then it subtracts, rather than adds, the Laplacian image to obtain a

sharpened result. Typical Laplacian masks are:

Lsubtract ¼
0 1 0

1 �4 1

0 1 0

2
4

3
5 ð2:31Þ

and

Ladd ¼
�1 �1 � 1

�1 8 � 1

�1 �1 � 1

2
4

3
5 ð2:32Þ
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The basic representation using these Laplacian masks for image sharpening is,

g x; yð Þ ¼ f x; yð Þ þ c ∇2 f x; yð Þ� � ð2:33Þ

where f(x,y) and g(x,y) are the input and sharpened images, respectively. The

constant c¼�1 if the Laplacian filter Lsubtract is used and c¼ 1 if Ladd is used.

Since derivative filters are very sensitive to noise, it is common to smooth the image

(e.g., using a Gaussian filter) before applying the Laplacian. This two-step process

is call the Laplacian of Gaussian (LoG) operation.

2.4.3 Frequency Filtering

Filtering in the frequency domain consists of modifying the Fourier transform of an

image and then computing the inverse transform to obtain the processed result. Thus,

the Fourier basis can be used to remove high frequency noise from the image of signal,

to extract texture features that can be used to classify the type of objects in an image

region, and also for image compression. Formally, the Fourier transform is defined by

F u; vð Þ ¼
ð1

�1

ð1
�1

f x; yð Þe�i2π xuþyvð Þdx:dy ð2:34Þ

with F(u,v) as the frequencies and f(x,y) as the pixel intensities. The letter i ¼ ffiffiffiffiffiffiffi�1
p

denotes the imaginary unit of complex numbers. The exponential function of

Eq. 2.34 satisfies the Eulerian formula

e�i2πα ¼ cos 2πα� i sin 2πα ð2:35Þ

for any real α. Thus, the entire set of pixel intensities can be described by a sum of

sine and cosine functions but the result is complex.

The Fast Fourier Transform (FFT) is more efficient than Fourier transform since

it saves computational time by sharing common operations for different pairs of u,
v and is usually used on square images of size 2m� 2m. It can be described by

F u; vð Þ ¼ 1

m2

Xm�1

x¼0

Xm�1

y¼0
f x; yð Þe�i2π xuþyv

mð Þ ð2:36Þ

where m are the numbers of pixels in x and y directions assuming square images.

Despites its common use in image processing, the Fourier transform can cause

unwanted degradation in local features of images because it is a global transform

that uses all image pixels in every computation of F(u,v) (Shapiro and Stockman

2001). An example of FFT spectrum of a potato chip image and frequency filtering

is shown in Fig. 2.10.
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Fig. 2.10 Example of fast Fourier transform (FFT) and frequency filtering: (a) grayscale image of

a potato chip; (b) FFT spectrum of (a) where low frequency components are grouped in the centre

(brighter pixels) and high frequencies near to the corners (darker pixels); (c) low-pass filtered

transform defined by a radius¼ 100 pixels around the central point and zero-out every point in the

Fourier image that is beyond that radius; (d) low-pass filtered image after applying an inverse

Fourier transform to smooth regions of dark and bright, but lose the sharp contours and crisp edges;

(e) high-pass filtered transform using the same spatial frequency threshold of (c), where only the

higher spatial frequency components are preserved; (f) high-pass filtered image after applying an

inverse Fourier transform, which preserves all of the sharp crisp edges from the original, but loses

the larger regions of dark and bright
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2.4.4 Wavelet Transform

The wavelet transform is used primarily for smoothing, noise reduction and lossy

compression. In all cases the procedure is to first perform a forward wavelet

transform, and then perform some operations on the transformed image followed

by an inverse wavelet transform. The reconstructed image exhibits a number of

compression-related artifacts, but it is worth noting that unlike an FFT based

low-pass filter, the advantage of the wavelet transform is that the image contains

a fair amount of high-frequency content.

The wavelet transform is a convolution product of a signal with a scaled and

translated kernel (usually a n-th derivative of a smoothing kernel in order to

precisely detect singularities)

W f u; sð Þ ¼ 1

s

ð1
�1

f xð Þψ x� u

s

	 

� dx ð2:37Þ

where s and u are real numbers (s and u> 0) which are discretized for computa-

tional purposes. The wavelet transform performs a transformation of a function f(x)
into a function defined over the scale-space plane (pair of values u and s). For
implementation, typical wavelet bases are: Daubechies of order 4, Symlet of order
2 and 4, first derivative of a Gaussian and Mexican Hat wavelets.

Two simple multi-scale wavelet transforms can be used for image processing:

the discrete wavelet transform (DWT) and the continuous wavelet transform

(CWT). For DWT computations, a number of discrete levels can be computed

from the images, and four sets of coefficients are extracted for each level: horizon-

tal, vertical, diagonal and approximation coefficients (Mallat 1989). For CWT

computations, the extension of the previous concept from 1D (Eq. 2.25) to 2D is

given by Pi~nuela et al. (2007):

M f u; v; sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1 f u; v; sð Þ�� ��2 þ W2 f u; v; sð Þ�� ��2q

ð2:38Þ

with u and v denoting the 2D coordinates and the scale parameter being usually used

as s¼ 2j. Now, two separate wavelet transforms are computed: W1 refers to the

wavelet transform performed along the horizontal dimension and W2 refers to the

vertical one.

2.4.5 Binary Morphological Operations

Morphological operations are methods for processing binary images based on

shapes. Basically, morphological operations change the structure of the elements

or particles in an image. In a binary image, the elements or particles are defined as
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the segmented regions (or ROIs) in which the pixel value is 1. The rest of the image

(pixel value 0) is called background. In these operations, the value of each pixel in

the output image is based on the corresponding input pixel and its neighbors.

Morphological operations can be used to construct filters similar to the spatial

filters discussed above. The basic operations of binary morphology are dilation,
erosion, closing, and opening.

Morphological operations use a structuring element to calculate new pixels,

which plays the role of a neighborhood or convolution kernel in other image

processing operations (as shown in filter mask operations). Figure 2.11 shows two

typical examples of structuring elements. The shape of the structuring element

could be rectangular, square, diamond, octagon, disk, etc. The connectivity defines

whether four or all eight surrounding pixels are used to calculate the new center

pixel value (in the case of a [3�3] structuring element) (Klinger 2003).

2.4.5.1 Erosion and Dilation

These two operators are fundamental for almost all morphological operations

(Gonzales and Woods 2008). Opening and closing are also duals of each other

with respect to set complementation and reflection. Thus, Erosion is an operator

that basically removes objects smaller than the structuring element and removes

perimeter pixels from the border of larger image objects (sets the pixel value to 0).

If I is an image andM is the structuring element (mask), the erosion (operator�) is
defined as:

erosion Ið Þ ¼ I �M ¼ \a2MI�a ð2:39Þ

where Ia indicates a basic shift operation in the direction of element a ofM and I�a

would indicate the reverse shift operation.

Contrarily, a dilation operation enlarges a region. A dilation adds pixels to the

perimeter of each image object (sets their values to 1), filling in holes and broken

0 1 0

1 1

0 1 0

1 1 1

1 1

1 1 1

a b

Origin of the [3×3]
structuring element

Fig. 2.11 Examples of

square structuring elements

(a) connectivity 4;

(b) connectivity 8
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areas, and connecting areas that are separated by spaces smaller than the size of the

structuring element. The dilation (operator 	) is defined as:

dilation Ið Þ ¼ I 	M ¼ [a2MIa ð2:40Þ

2.4.5.2 Opening and Closing

Both operations generate a certain amount of smoothing on an object’s contour.

An opening operation (erosion then dilation) can separate objects that are connected
in a binary image. Opening generally smoothes the contour of an object, breaks

narrow isthmuses, and eliminates thin protrusions. Mathematically, the opening

function can be described by

opening Ið Þ ¼ dilation erosion Ið Þð Þ ð2:41Þ

or, using the operator ∘,

I∘M ¼ I �Mð Þ 	M ð2:42Þ

The closing operation is defined as dilation followed by an erosion using the

same structuring element. A closing operation can close up internal holes and gaps

in a region and eliminate bays along the boundary.

closing Ið Þ ¼ erosion dilation Ið Þð Þ ð2:43Þ

or, using the operator •,

I 
M ¼ I 	Mð Þ �M ð2:44Þ

It should be noted that multiple openings or closings have no effect after the

operator has been applied once.

2.5 Image Segmentation

Image segmentation is one of the most important steps in the entire image

processing technique, as subsequent extracted data are highly dependent on the

accuracy of this operation. Its main aim is to divide an image into regions that have

a strong correlation with objects or areas of interest (i.e., ROIs). Segmentation can

be achieved by three different techniques: thresholding, edge-based segmentation,

and region-based segmentation (Sonka et al. 1999; Sun 2000). These algorithms,

their modifications, and combinations with other approaches are frequently used in

food quality applications.
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Thresholding or global thresholding is a simple and fast technique for

characterizing image regions based on constant reflectivity or light absorption of

their surfaces. Edge-based segmentation relies on edge detection by edge operators.

Edge operators detect the sharp discontinuities in gray level, color, texture, etc., in

the image. Region-based segmentation involves the grouping together of similar

pixels to form regions representing single objects within the image (such as in the

seeded region growing method). The segmented image may then be represented as

a boundary or a region. Boundary representation is suitable for analysis of size and

shape features, while region representation is used in the detection and evaluation

of texture, defects or simply ROIs (Brosnan and Sun 2004).

Two examples are presented to illustrate the segmentation process. Figure 2.12

shows the image segmentation process for green and yellow bananas using a simple

global thresholding. In general, successful results are found for the identification of

the true area of both bananas since the intensity distribution of the banana peel and

background pixels are sufficient distinct. The histogram is bimodal with the peaks

for background being tall and narrow, and separated from the banana peaks by deep

valleys (Fig. 2.12b).

Ideally a segmentation process should be fully automatic so that it can provide

fully objective and consistent data. Several methods have been proposed for

automatic threshold determination. An interesting alternative for that is the Otsu
method, which selects the threshold based on the minimization of the within-group

variance of the two groups of pixels separated by the thresholding operator. So, if

the histogram is bimodal, the thresholding problem is to determine the best thresh-

old t separating the two modes of the histogram from each other (as shown in

Fig. 2.12). Each threshold t determines a variance for the group of values that are

less than or equal to t (�t) and a variance for the group of values greater than t (>t).
The definition for the best threshold suggested by Otsu is that threshold for which

the weighted sum of within-group variances is minimized. The weights are the

probabilities of the respective groups (Shapiro and Stockman 2001). The applica-

tion of the Otsu method for segmenting the same images of bananas in ripening

stages 1 and 5 (shown in Fig. 2.12) gave threshold values of 56 and 63, respectively.

Removal of the background should be fairly straight-forward but removing

non-useful sub-regions of an object can be far more difficult. Difficulty in segmen-

tation can vary with each task. Figure 2.13 compares the results of segmenting

pores and cellular material of apple tissue from X-ray computed tomography

(CT) images using a global thresholding and a combination with the kriging
based segmentation method (Oh and Lindquist 1999). For automatic segmentation

of apple pores from a stack of CT images, a common practice in using a simple

global threshold is to choice a threshold value that would match a predetermined

bulk measurement of porosity (e.g., around 28 % for ‘Jonagold’ apples). However,

this procedure is very subjective and may lead to biases when one is trying to

segment and extract reproducible quantitative information from multiple images

(e.g., for binary 3D reconstructions from stacks of CT images). The distinction

between the void and solid phases in radiographic images is frequently not sharp

(i.e., do not show a bimodal distribution) due to the amount of peak overlapping in
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the attenuation coefficient histogram and the nature of X-ray tomography (where

processing and analysis are based on voxels instead of pixels). Moreover, the

resulting binary image of apple tissue using global thresholds of 60 is noisy

(Fig. 2.13b), and the average porosity is highly dependent on the selected thres-

hold value. Figure 2.13e plots the distribution of the transmitted X-ray intensities

(solid line, right axis) measured for the reconstructed tomography images of apple

tissue, and it also shows the typical dependence of the porosity (open circles,

left axis) of the resulting segmented image when a simple global threshold

is chosen.
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Fig. 2.12 Image segmentation process for bananas using a simple global thresholding:

(a) pre-processing of a color image of bananas in ripening stages 1 and 5, including previous

grayscale transformation and image smoothing using a Laplacian-of-Gaussian filter (LOG filter)

[3� 3] for easing the edge detection, binarization, and segmentation; (b) histogram of the

grayscale images for both bananas showing the chosen threshold value of 60
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Alternatively, the thresholding algorithm developed by Oh and Lindquist (1999)

is a non-parametric formulation able to analyze regions of uncertainty based on the

estimation of the spatial covariance of the image in conjunction with indicator

kriging to determine object edges (Mardia and Hainsworth 1988). Use of indicator

kriging makes the thresholding local based on two threshold values, T0 and T1, and
guarantees smoothness in the threshold surface. Implementation of the method

requires a-priori population identification of some percentage of the image. Thus,

for the thresholding step of apple tissue images, the gray threshold values were set

at 40 and 70. According to this thresholding window, pores were identified as

those voxels with gray values less than 40, and voxels of gray value greater than

70 were classified as cellular material (in general, non-edge). Finally, the remaining

voxels of the population were identified by indicator kriging (Fig. 2.13c).
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Fig. 2.13 Image segmentation process for apple tissue images using a simple global thresholding

and krigking based segmentation methods: (a) original grayscale image; (b) segmented image

using a simple global threshold of 60; (c) segmented image after using a thresholding window T0

(¼40) and T1 (¼70) and indicator krigking for edge detection; (d) segmented image after cleaning

(c) by erosion and dilation operations; and (e) the distribution of the transmitted X-ray intensities

(solid line, right axis) measured for the tomography images of apple tissue, and the typical

dependence of the porosity (open circles, left axis) of the resulting segmented image when a

simple global threshold is chosen (Reproduced from Mendoza et al. 2007b with permission from

Springer-Verlag)
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Small disconnected void or solid phase components which may be either physical

or arise from segmentation error, can be cleaned up from each image using a

morphological procedure called opening which involves a simple step of erosion

followed by dilation (Fig. 2.13d).

2.6 Quantitative Analysis

A large part of computer vision is concerned with extracting features from images.

Techniques by which numerical measurements are extracted from images vary

considerably in technological complexity. The process of image measurement

involves an enormous reduction in the amount of data, by selecting from the

original image those objects and parameters that are important for further charac-

terization and sorting of samples. This selection and reduction is at the heart of

image analysis and measurement, and it is achieved by ignoring irrelevant

information.

In food images, the most frequently occurring features are color, texture and

morphology. These are the features that reveal information on palatability, quality

and defects. They are easy to measure but can be difficult to characterize succinctly.

After processing of the image and with the region of interest identified, the region

must be described with measurable features based on standard chemical and

physical measurements (e.g., color parameters by colorimeter or spectrophotome-

ter, firmness by penetrometer, soluble solids content by refractometer, etc.), or

empirical standards developed by experts (standard charts for color, gloss and

texture of food surfaces, and sensorial evaluations). Many image processing tech-

niques developed for 2D images can also be extended to analyzing multi-

dimensional images, such as multispectral or hyperspectral images and

tomographic images. In this section, we discuss in some detail the three main

approaches and methods used in image analysis: color analysis, image texture

analysis, and geometrical or morphological analysis, accompanied with specific

application examples in food quality inspection.

2.6.1 Color Analysis

Color is specified by the geometry and spectral distributions of three elements: the

light source, the reflectivity of the sample and the visual sensitivity of observer.

Each of these was defined by the Commission Internationale de I’Eclairage (CIE)
in 1931. CIE also defined, for the purpose of color measurement, the cone of

spectral sensitivities of an average observer and introduced several methods to

describe color objectively. The definition was aimed at stimulating the human color

perception based on a 2� field of view, a set of primaries (red, green, blue), and

color-matching functions (CIE 1986). Several standard illuminants which are
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specified by their color temperatures were also defined by CIE. The most common

one is standard illuminant D65, corresponding to the radiation of a black body at

6,500�K, which is intended to represent average daylight (Hunt 1991).

2.6.1.1 Color Evaluation

To accurately specify object colors and color differences, CIE recommended two

color spaces that are less illumination-dependent, namely, CIELAB or L*a*b* and

CIELUV L*u*v* (Robertson 1976). The CIELAB space has a function of

correcting for chromatic adaptation to the white point, and is intended for object

color displays. The CIELUV space is defined in a similar manner, and the coordi-

nate (L*, u*, v*) is calculated from the Y and (u0, v0) of the given light stimulus and

the white point.

The color difference in the CIELAB space is calculated as the Euclidean

distance between the points in this three-dimensional space, and is given by,

ΔE*
ab ¼ ΔL*

� �2 þ Δa*
� �2 þ Δb*

� �2h i1=2
ð2:45Þ

Equation 2.45 is called the CIE 1976 (L*, a*, b*) color difference formula. Chroma

C*
ab and hue angle h*ab are also calculated from (L*, a*, b*) by

C*
ab ¼ a*

2 þ b*
2

	 
1=2
ð2:46Þ

h*ab ¼ tan�1 b*=a*
� � ð2:47Þ

Procedures for calibrated color measurements and color reproduction using

machine vision systems with color digital cameras were proposed and discussed

in Mendoza et al. (2006) for the analysis of fruits and vegetables and in

Valous et al. (2009a) for the analysis of pre-sliced hams.

2.6.1.2 Color Measurement on Curved Surfaces

Computer vision systems based on color digital cameras can quantify the color of

any food easily and quickly (Segnini et al. 1999; Papadakis et al. 2000). Different

color channels give different color information about the pixel intensity distribution

of an image, and therefore, evaluations using different color components represent

an advantage in further quality characterization and classification tasks. However,

average color results from curved and/or uneven surfaces, as they are typical in

many fresh foods, should be interpreted with caution. A sensitivity analysis of color

measurements by a common machine vision system for samples with curved

surfaces (bananas and red pepper) revealed that L*a*b* is more appropriate for
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color representation of surfaces or materials illuminated by a light source. These

color profiles are less affected by the degree of curvature, shadows and glossiness of

the surfaces than the RGB and HSV color systems, and, therefore, more appropriate

for color measurement of food surfaces (Mendoza et al. 2006). An example of the

effect of the curvature on a yellow banana using the L*a*b* and HSV color scales is

illustrated in Fig. 2.14. L* and V color scales were highly sensitive to the curvature

of the banana surface, while the S scale was also surface-curvature sensitive but to

a lesser extent. For the a*, b* and H scales no or minimum color variations

were observed.

2.6.2 Texture Analysis

The meaning of the term texture in image processing is completely different from

the usual meaning of texture in foods. Image texture can be defined as the spatial

organization of intensity variations in an image at various wavelengths, such as the

visible and infrared portions of the electromagnetic spectrum (Haralick et al. 1973).

Image texture is an important aspect of images and textural features play a major

role in image analysis. In some images, it can be the defining characteristic of

regions and critical in obtaining a correct analysis (Shapiro and Stockman 2001).

These features provide summary information defined from the intensity maps of the

Fig. 2.14 Color profiles expressed in L*a*b* and HSV color scales for a yellow banana. The

profiles were constructed using the average values of the pixels in the longitudinal direction of the

segmented image and its angular positions varying from� 90� to 90� (Modified from Mendoza

et al. 2006)
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scene, which may be related to visual characteristics (coarseness of the texture,

regularity, presence of a privileged direction, etc.), and also to characteristics that

cannot be visually differentiated.

Texture is a property of areas, so there is no texture for a point. Texture involves

the spatial distribution of gray levels and there is a need for a significant number of

intensity units (i.e., pixels) in a region to detect texture features. This is linked to the

fact that texture involves gray levels in a spatial neighborhood. There are many

texture analysis techniques that can be applied to images. Among the most popular

methods used for the characterization and evaluations of food surfaces and biolog-

ical structures are: First-order Statistics, Gray Level Co-occurrence and Run
Length Matrices, and Fractals.

2.6.2.1 First-Order Statistics (FOS)

Image histogram gives primarily the global description of the image. The histogram

of a gray-level image represents the relative frequency of occurrence of each gray-

level in the image. The features of FOS are commonly derived from the normalized

gray-level histogram of the digital image, which is built by counting the number of

pixels (N ) with the gray value of i (I) and can be written as:

H ið Þ ¼ N x; yð ÞjI x; yð Þ ¼ ih i ð2:48Þ

The histogram, H(i), is normalized using the function given below:

H
0
ið Þ ¼ H ið ÞX

i

H ið Þ ð2:49Þ

The extracted statistical features for further partial least squares analysis

included: mean of the pixel histogram (MV), variance (VA), entropy (ET), and

energy (EN), which are defined as follows (Cernadas et al. 2005):

MV ¼
X
i

iH
0
ið Þ ð2:50Þ

VA ¼
X
i

i�MVð Þ2H0
ið Þ ð2:51Þ

ET ¼ �
X
i

H
0
ið Þlog H

0
ið Þ

	 

ð2:52Þ

EN ¼
X
i

i2H
0
ið Þ ð2:53Þ
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These FOS features, however, do not provide any insight about the possible textural

differences in an image, because they do not extract any information about the

relative position of pixels, and the correlation of their intensities.

2.6.2.2 Gray Level Co-occurrence Matrix (GLCM)

When a non-random spatial distribution (or more than one texture in an image) has

to be characterized, second-order statistics are more suitable to describe these types

of relationships. A GLCM is a matrix with a number of rows and a number of

columns equal to the number of gray level intensities of the image, which contains

textural features (spatial relationships) from an image obtained using second order

statistics. Each element of the gray level co-occurrence matrix P(i,j|Δx, Δy) is the
relative frequency or probability of occurrence linked to the combination of inten-

sities I(i,j) in all pixel pairs of the image located at a distance (Δx, Δy). This relative
position is defined by a distance (d ) and an angle (θ¼ 0�, 45�, 90�, 135�). For a
given directional orientation and distance of the patterns, 14 textural features can

be extracted from a grayscale image using this matrix as proposed by

Haralick et al. (1973), the most common being energy, entropy, contrast, correla-
tion, local homogeneity and variance. They are computed by:

Energy ¼
X
i

X
j

Pdθ i; jð Þ2 ð2:54Þ

Entropy ¼ �
X
i

X
j

Pdθ i; jð Þ � log Pdθ i; jð Þð Þ ð2:55Þ

Contrast ¼
X
i

X
j

i� jð Þ2 � Pdθ i; jð Þ ð2:56Þ

Correlation ¼

X
i

X
j

i � jð Þp i; jð Þ � μi � μ j

σi � σ j
ð2:57Þ

Homogeneity ¼
X
i

X
j

1

1þ i� jð Þ2 � Pdθ i; jð Þ ð2:58Þ

Variance ¼
X
i

X
j

i� ui j
� �2 � Pdθ i; jð Þ ð2:59Þ

where μi and μj are the means, and σi and σj are the standard deviations. Energy
measures the textural uniformity of the image, i.e., the repetition of pixel pairs.
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Entropymeasures the disorder or randomness of the image and it is an indication of

complexity within the image, i.e., more complex images have higher entropy

values. Contrast is a measure of the local variations present in the image; so higher

contrast values indicate larger local variations. Homogeneity (also called an inverse
difference moment) is inversely proportional to contrast at constant energy. Simi-

larly at constant contrast, homogeneity is inversely proportional to energy. Finally,

correlation is a measure of image linearity among pixels (Mendoza et al. 2007a).

An application of GLCM features for the characterization of the surface appearance

of a banana (Musa cavendish) during ripening is presented in Fig. 2.15.

2.6.2.3 Run Length Matrix (RLM)

First introduced by Galloway (1975), the gray-level RLM approach characterizes

texture by the gray-level run, which is a set of consecutive pixels with the same

gray-level. Run length is the number of pixels in a run. Therefore, the run length of

coarse textures will be longer than that of fine textures. In RLM method, a matrix

containing the information about the run length of images is constructed in terms of

the brightness value and length of the runs (Fardet et al. 1998).

The run-length matrix P(i, j) is defined by specifying direction (i.e., 0�, 45�, 90�,
135�) and then counting the occurrence of runs for each gray levels and length in

this direction. i-dimension corresponds to the gray level (bin values) and has a
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Fig. 2.15 Image texture analysis using the gray level co-occurrence matrix (GLCM) method for

quantifying the ripening process of a banana (Musa cavendish)
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length equal to the maximum gray-level (bin values), j-dimension corresponds to

the run length and has a length equal to the maximum run length (bin values). Five

features were proposed by Galloway (1975), namely, short run emphasis (SRE)

which measures the distribution of short runs, long run emphasis (LRE) which

measures the distribution of long runs, gray-level non-uniformity (GLNU) which

measures the similarity of gray-level values throughout the image, run length non-
uniformity (RLNU) which measures the similarity of the length of runs throughout

the image, and run length percentage (RLP) which measures the homogeneity and

the distribution of runs of an image in a given direction. These RLM features are

calculated as follows:

SRE ¼ 1

nr

XM
i¼1

XN
j¼1

P i; jð Þ
j2

ð2:60Þ

LRE ¼ 1

nr

XM
i¼1

XN
j¼1

P i; jð Þ � j2 ð2:61Þ

GLNU ¼ 1

nr

XN
j¼1

XM
i¼1

P i; jð Þ
 !2

ð2:62Þ

RLNU ¼ 1

nr

XM
i¼1

XN
j¼1

P i; jð Þ
 !2

ð2:63Þ

RLP ¼ nr
n p

ð2:64Þ

in which nr is the total number of runs and np is the number of pixels in the image,

M is the number of gray levels (bins) and N is the number of run length (bins).

2.6.2.4 Fractal Methods

A fractal describes a rough or fragmented geometric shape that can be subdivided

into parts, each of which is, at least approximately, a reduced-size copy of the

whole. This means that they are generally self-similar and independent of scale

(Mandelbrot 1983). Contrary to the classical Euclidean geometry, fractals are not

regular and may have an integer or non-integer dimension. Thus, fractal dimensions

offer a systematic approach in quantifying irregular patterns that contain an internal

structure repeated over a range of scales. Self-similarity is not visually obvious,

but there may be numerical or statistical measures that are preserved across scales.

46 F. Mendoza and R. Lu



Due to their statistical scaling invariance, natural objects may exhibit statistical

fractality (Klonowski 2000).

The methods to calculate fractal dimensions can be divided into two types:

spatial and spectral. The first type operates in the spatial domain, while the second

type operates in the frequency domain, using the Fourier power spectrum. The two

types are unified by the principle of fractional Brownian motion (Dougherty and

Henebry 2001).

Box-Counting Method

Estimations of fractal dimension are all based on the box-counting method. The
technique allows to obtain the scaling properties of two dimensional fractal objects

(such as from binary images) by covering a measure with a range of boxes of size ε
and counting the number of boxes containing at least one pixel representing the

object under study. This means that the technique does not consider the amount of

mass (density of pixels) inside each box. Hence, in a homogeneous system, the

number N of features of a certain size ε varies as (Evertsz and Mandelbrot 1992):

N εð Þ / ε�D0 ð2:65Þ

where the fractal dimension D0,

D0 ¼ lim
ε!0

logN εð Þ
log1ε

ð2:66Þ

can be measured by counting number N of boxes needed to cover the object under

investigation for increasing box sizes ε and estimating the slope of a log-log plot.

Figure 2.16 illustrates the scaling properties of a binary image for apple tissue.

Variogram Method

The directional fractal dimension (DFD) of grayscale images using the variogram
model is computed as follows (Kube and Pentland 1988; Mandelbrot 1983):

v dð Þ ¼ c � da ð2:67Þ

v dð Þ ¼ 1

Nd

X
N dð Þ

y sþ dð Þ � y sð Þ½ �2 ð2:68Þ

DFD ¼ 3� 0:5â ð2:69Þ
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where v(d) is the variogram of the image, a is termed the fractal index, c is a

constant, d is the separation distance in pixels, y(s) denotes the gray-level of the

pixel at location s, and N(d) denotes the cardinality of the set of pairs of observa-

tions. The image variogram v(d) represents the variance or dispersion of the

difference between two random variables. Thus, the relationship between a and v
(d) can also be represented using a linear regression model by applying log function

to both sides of this equation to get an estimate of fractal index â. Then, the
directional fractal dimension (DFD) of the image can be directly computed.

The variogram of the image and hence the fractal dimension are estimated at a

fixed image resolution level without specifying any spatial direction along which

the set of pairs of observations is constructed. This means that the image is assumed

to be isotropic. Since the fractal texture parameters of many images of foods and

biological materials do not have isotropic patterns, four variograms should be

computed along the directions d¼ 0�, 45�, 90�, and 135� (namely horizontal, first

diagonal, vertical and second diagonal) respectively. These variograms should be

analyzed and averaged for a given pixel location s of an image, and then be used in

further analysis and image characterization.

This approach has been recently applied to the appearance characterization

and classification of commercial pork, turkey and chicken ham slices (Mendoza

et al. 2009). DFD features were extracted from the digitalized intensity images in

grayscale, and R,G, B, L*, a*, b*,H, S, and V color components were calculated for

three image resolution levels (100, 50, and 25 %). Simulation results showed that in
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Fig. 2.16 Illustration of fractal box-counting theory applied to a binary image of fresh apple tissue

(pores are represented by white pixels)
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spite of the complexity and high variability in color and texture appearance, the

modeling of ham slice images with DFD allowed the capture of differentiating

textural features between the four commercial ham types. Independent DFD

features entailed better discrimination than that using the average of four directions.

However, the DFD features revealed a high sensitivity to color channel, orientation

and image resolution for the fractal analysis. The classification accuracy using six

DFD features was 93.9 % for the training data and 82.2 % for the testing data.

Fourier Fractal Texture (FFT)

In the calculation of FFT, the 2D Fourier transform of the grayscale image is first

calculated and the 2D power spectrum is then derived. The 2D power spectrum is

reduced to a 1D radial power spectrum (direction-independentmean spectrum, i.e., the

average of all possible directional power spectra) by averaging values over increas-

ingly larger annuli for each of the radial increments. The power spectrum, P( f ),
varying with frequency f, is calculated as follows (Dougherty and Henebry 2001):

P fð Þ ¼ k � f �1�2Hð Þ ð2:70Þ

where k is a constant and H is the Hausdorff-Besicovitch dimension. When the log

[P( f )] is plotted against log[f], a straight line can be fitted. According to the Fourier
slice theorem, the 1D Fourier transform of a parallel projection of an image along a

line with the direction h is identical to the value along the same line in the 2D

Fourier transform of the image. This means that the line through the spectrum gives

the spectral information obtained from a projection with the same orientation in the

spatial domain. FFT dimensions, Df, are calculated as a function of orientation

based on this theorem, with 24 being the frequently number of directions that the

frequency space is uniformly divided. The data of magnitude vs. frequency are

plotted in log-log scale and its slope is determined using linear least-squares

regression. Thus, Hausdorff-Besicovitch dimension H is computed from the slope

c of the straight line, c¼ (�1�2H ). The Df dimension of the grayscale image is

related to the slope c of the log–log plot by the equation below, with H¼Df�3,

2<Df< 3 and 3< c< 1 (Geraets and Van der Stelt 2000):

D f ¼ 7

2
þ c

2
ð2:71Þ

For analysis the slope and intercept for all directions can be computed from each

image and used for further image characterization and classification. This algorithm

was proposed by Russ (2005) and was modified by Valous et al. (2009b) for hams

processing.
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Fractal Lacunarity (FL)

Various studies have shown that the fractal dimension alone is not a sufficient

metric for the characterization of most textures, because fractal dimension only

measures how much space is filled. A second-order fractal metric such as

Lacunarity complements fractal dimension by measuring how the data fill the

space, enabling the parsimonious analyses of textures (Tolle et al. 2008). In this

method, a square structuring element or moving window of side length b is placed

in the upper left-hand corner of the ham slice image of side length T (pixels), such

that b� T. The algorithm records the number or mass m of pixels that are associated

with the image underneath the moving window. The window is then translated by

one pixel to the right and the underlying mass is again recorded. When the moving

window reaches the right-hand side of the image, it is moved back to its starting

point at the left-hand side of the image and is translated by one pixel downward.

The computation proceeds until the moving window reaches the lower right-hand

edge of the image, at which point it has explored every one of its (T� b+ 1)2

possible positions. Allain and Cloitre (1991) defined lacunarity Λ measured with a

square moving window of side length b on an image of side length T (pixels), such

that b� T, as:

Λ ¼ σ2

μ2
þ 1 ð2:72Þ

where the ratio of σ (standard deviation) to μ (mean) changes with window size

which signifies that lacunarity depends on the scale (moving window size relative to

image size). Lacunarity may assume any value between 1 and 1. A lacunarity

value of 1 indicates that the textural content is uniformly dispersed at a given scale,

while values 6¼1 indicate non-uniformity.

The technique can be performed on binary and grayscale images. However,

computing the lacunarity for characterizing binary images would result in the

counting of every gliding box, thus the boxes would all be full and the output

would be rather uninteresting. In contrast, when the algorithm measures the average

intensity of pixels per gliding box in most cases the results of this textural analysis

is more than adequate (Krasowska et al. 2004).

Valous et al. (2009b) applied the gliding box algorithm to characterize the

texture appearance of ham slices based on segmented images of pores/defects and

fat-connective tissue. Later, Valous et al. (2010) used the same approach to

characterize ham slices based on grayscale information. Lacunarity was computed

for each value of b between bmin¼ 2 and bmax¼ 256 with a step size of 1 for

the 256� 256 pixel intensity images. Once the computation was complete, the

lacunarity as a function of moving window b was presented as a spatial response

function with a 2D scatter plot, which illustrated the scale dependency of spatial

non-stationary in the intensity images. As shown in Fig. 2.17, lacunarity plots

revealed important textural content information that corresponds to degree of
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spatial heterogeneity of intensities and level of self-similar behavior. The results of

intensity lacunarity suggested that window sizes up to 10 pixels may be adequate to

cover textural features and produce meaningful results.

2.6.3 Morphology Analysis

Once a set of regions-of-interest has been identified by image segmentation, the

individual regions (objects) or silhouettes can be described by their geometric and

shape properties. Most image analysis systems offer a number of measures related

to the size and shape and produce a numeric output suitable for further image

characterization and classification. Size and shape are common object measure-

ments for food quality evaluation; and compared with other features such as color

and image texture, they are easier to measure using image processing techniques.

Among these morphological properties are the counting of objects (such as parti-

cles, holes, granules, droplets, bubbles, among others) and defining their position,

surface roughness and orientation in the image.

Fig. 2.17 Visualization of surface of three wet-cured cooked pork ham qualities (high yield or

low quality, medium yield or intermediate quality, and low yield or premium quality ham) using

different muscle sections, percentages of brine solutions and processing regimes. (a) intensity
images of B color channel and their three-dimensional mesh plots. (b) two-dimensional log–log
scatter plot of averaged values of intensity lacunarity as a function of moving window b.
(Reproduced from Valous et al. 2010)
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2.6.3.1 Particle Size

Many image analysis applications need to characterize or describe the distribution

of particle sizes on binary images. The usual way of summarizing data for a

particular system is to draw a frequency histogram of the number of particles in a

certain size class. Furthermore, since many natural samples are broadly shaped like

a normal or Gaussian distribution, this allows to apply statistical methods to

evaluate confidence parameters and make recommendations on the minimum

number of particles to analyze in order to achieve a reasonable level of statistical

significance. Another widely used method of depicting data is to calculate a

cumulative distribution, which shows what percentage of material lies above or

below a particular size (Aguilera and Stanley 1999).

In food quality evaluations, there are three commonly used features for size

measurement of an object: area, perimeter, and length and width. The most basic

measurement for size is the area, which is represented by the number of pixels

within the area and is straightforwardly determined by counting. The perimeter of

an object is the length of its boundary, and it is particularly useful for discriminating

between objects with simple and complex shapes. Area and perimeter are easily

computed from a segmented image, however the quality of the measurements is

highly dependent of the complexity of the measured objects and the efficiency of

the segmentation method. The length and width of an object can also be used to

measure the size of an object. It is necessary to locate the major axis of the object

and measure its relative length and width (Du and Sun 2004).

Although relative measurements of the percentage of pixels of selected areas on

an image could be done for various particle size evaluations, in some applications

we need to know the x and y dimensions of an image in its real dimensional units.

Hence, before making any measurements, the relationships between the size of a

pixel to a size of an object of known length (in mm for example) that is visible in the

image must be first specified. A scale calibration factor ( f ) for the x and y directions
can be determined by

f ¼ real distance mmð Þ
image distance pixelsð Þ ð2:73Þ

2.6.3.2 Shape Descriptors

Measuring size alone is sometimes insufficient to detect important but subtle

differences between samples. This is because particles or grains with similar

composition and/or structure could measure the same area or perimeter, but have

different shapes.

Frequently, the objects of one class can be distinguished from the others by their

shapes, which are physical dimensional measurements that characterize the appear-

ance of an object. Shape features can be measured independently and by combining
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size measurements. Table 2.2 summarizes some of the most widely used shape

features with combinations of size measurements for food products.

Of particular interest in particle analysis is circularity, which is a good measure

of deviation from a perfect circle. However it is important to remember that it is

unlikely that one single shape descriptor will perfectly discriminate and character-

ize all applications and different combinations of shapes. Circularity has values in
the range of 0� 1. A perfect circle has a circularity of 1, while a very spiky or

irregular object has a circularity value closer to 0. Circularity is sensitive to both

overall form and surface roughness.

2.7 Concluding Remarks

The field of image processing and analysis has experienced dramatic growth and its

application has become increasingly widespread in recent years. The development

of new and more effective algorithms for image processing and analysis, along with

advances in image acquisition, computer, data storage, and the Internet, has made it

possible to handle an increasingly large volume of image data. Digital image

processing has become economical in many fields of research and in industrial

applications. While each application is different or unique from the others, they are

all concerned about speed, affordability and performance or accuracy. More and

more research activities and applications in machine vision are being focused on

real-time and interactive operations, where image acquisition, processing, and

analysis and decision-making are almost carried out simultaneously or in parallel.

Table 2.2 Common shape

descriptors
Statistical parameter Calculation

Area ratio ¼ Area

Max Diameter �Min Diameter
Aspect ratio ¼ Max Diameter

Min Diameter
Compactness ¼ Perimeter2

Area
Circularity ¼ 4π � Area

Perimeter2

Diameter range ¼ Max Diameter �Min Diameter

Eccentricity
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Semi Minor2

Semi Major2

s

Elongation ¼ 1� Aspect Ratio

Roundness ¼ 4π � Area
π �Max Diameter2

Shape factor1 ¼ 4π � Area
Perimeter2

Shape factor2 ¼ Max Diameter

Area
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For the past decade, we have also witnessed an exponential increase in research and

development activities in multispectral and hyperspectral imaging technology for

food and agriculture applications. While many of the basic image processing and

analysis methods described in this chapter are still useful for processing and

analyzing two or three-dimensional multispectral and hyperspectral images, it

also entails new challenges in handling these types of images. Methods and

techniques specific to processing and analyzing multispectral and hyperspectral

images are presented in Chaps. 6 and 7.
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Chapter 3

Basics of Spectroscopic Analysis

Stephen R. Delwiche

3.1 Vibrational Spectroscopy Defined

The region of the electromagnetic spectrum that draws our interest is between the

ultraviolet (lower end of 400 nm wavelength) and the far-infrared (upper end of

50,000 nm). This region encompasses the visible (400–780 nm), near-infrared

(780–2,500 nm), and mid-IR (2,500–25,000 nm) regions. Flanking this large

swath of wavelengths are gamma rays (~0.001 nm) and X-rays (~0.01 nm) on the

short end, and microwaves (~107 nm) radio waves (~1010 nm) on the long end

(Fig. 3.1). The fact that information on molecular structure is contained in this

region, particularly that in the mid-IR, can be deduced by the wave-particle

principles of quantum theory, starting with the expression for the energy of a

photon,

E ¼ hv ð3:1Þ

Where E is the photon’s energy, v is the frequency of the wave, and h is Planck’s

constant. We see that the energy of a photon is directly proportional to its

frequency.

We also recall that the wavelength (λ) and frequency (v) are inversely related to

each other, with their product being the speed of light (c) in the medium that the

light is passing through,

c ¼ λv: ð3:2Þ
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Because of the underlying quantum theory of band vibrations, spectroscopists

typically identify band locations in terms of a modified form of frequency defined

as the number of wave cycles within a fixed distance. By convention, the distance is

a centimeter, so that the term, wavenumber having units of cm�1, can be thought of

as the number of complete wave cycles in a 1 cm thickness. Physicists and

engineers, on the other hand, typically speak in terms of wavelength, and the unit

of choice for the visible and near-infrared region is the nanometer, which is one

billionth (10�9) of a meter. Because of their reciprocal relationship, conversion

between wavelength and wavenumber or vice versa is a matter of multiplying the

reciprocal by 1� 107. Because the popularization of near-infrared measurement

and analysis arose from the physicist/engineering community, whereas qualitative

analysis using the mid-IR region arose from the spectroscopist, we continue today

with this dichotomy in absorption band assignment. Although the conversion

between the two scales is routine, it is important to remember that if the increment

between neighboring readings from an instrument is uniform in one scale, it will not

be in the other. With the gaining popularity of Fourier transform (FT) near-infrared

spectrometers, whose scale is based on wavenumbers, it is especially important to

keep this in mind when comparing FT spectra with conventional monochromator-

based dispersive spectrometers whose basis is uniform spacing in the wavelength

domain.

Quantum theory dictates that the absorption of light by a molecule comes about

by discrete changes in energy levels (quantum levels) that, for the mid-IR region,

log10(wavelength in meters)
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Fig. 3.1 Electromagnetic spectrum, highlighting the region used in hyperspectral imaging

(400–1,700 nm)
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happen when an inter-atomic bond within the molecule absorbs energy that equals

the difference between two adjacent quantum levels. Taking a diatomic (two-atom)

molecule such as carbon monoxide as an example, the vibrational frequency at

which the bond expands and contracts is set by the selection rules of quantum

theory. These rules also apply to more complex, polyatomic molecules.

3.2 Inter Atomic Bond

3.2.1 Theory

The starting point for modeling atomic bond vibrations is usually the harmonic

oscillator described by classical mechanics. In this model, two atoms are bonded by

a restoring force that is linearly related to their bond distance. In its simplest form, a

bond between two atoms is modeled as a spring connecting two spherical masses,

m1 and m2. The potential energy of this two ball assembly, V, depends on the

displacement of the masses with respect to their rest positions, caused by either

compression or elongation of the spring,

V ¼ 1

2
k x� xrestð Þ2 ð3:3Þ

where x� xrestð Þ is the distance between the centers of masses and k is force

constant of the spring. In this simple model potential energy varies in a quadratic

relation with distance to form a parabolic shape, as demonstrated in Fig. 3.2. Two

problems become readily apparent when using this model to approximate molecular

behavior. First, limits must be placed on the distance of compression, as atoms are

of physical mass and dimension, such that it is not possible for the atoms to have a

zero compression distance. Second, a bond between atoms may only elongate so far

before the atoms disassociate.

A third problem, which was not adequately addressed until the introduction of

quantum mechanical theory in the 1920s, is explained by first considering the total

energy of the system, which is the sum of the potential energy (V) and kinetic

energy. With the latter written in terms of momentum ( p), the total energy (E) of
the system is

E ¼ p2

2m
þ V ð3:4Þ

where m is the total mass of the system. Classical mechanics allows the energy to

take on a continuum of values, but this turns out to be impermissible in nature. This

is explained by the Heisenberg uncertainty principle, part of which states that for a

given direction it is not possible to know position and momentum simultaneously.

Related to this is the restriction that energy is quantized, which means that at a
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specific frequency the energy of the oscillator is limited to discrete, i.e., quantum,
levels, υ. Solution of the wavefunction form of the harmonic oscillator becomes,

Eυ ¼ hv υþ 1

2

� �
ð3:5Þ

in which Eυ is the energy of the υth quantum level υ ¼ 0, 1, 2, . . .ð Þ and v is the

fundamental frequency of the vibration, which is related to the force constant of the

bond (k) and the reduced mass (μ) by

v ¼ 1

2π

ffiffiffi
k

μ

s
ð3:6Þ

recalling that the reduced mass of a diatomic molecule defined as 1=μ ¼ 1=m1þ
1=m2; where m1 and m2 are the masses of the atoms. Classical mechanics theory

produces the result that like atomic bonds within a molecule vibrate in phase at

these fundamental or normal frequencies, with the number of unique vibrational

frequencies related to the size (i.e., number of atoms¼N ) of the molecule by the

relation (3N�6). Taking a triatomic molecule such as water for example as shown

in Fig. 3.3, three modes of vibration are possible: symmetric stretching (both

hydrogen atoms moving toward and away from the central oxygen atom in tandem),

asymmetrical stretching (one hydrogen moving away at the same time as the other

moving closer to the oxygen), and bending (hydrogen atoms moving toward and
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Fig. 3.2 Potential function for two bonded atoms
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away from each other). Actual vibrational behavior of water is far more compli-

cated, as we shall see below.

Vibrations between bonded atoms occur when the energy of the photon matches

that of the difference between energy levels of two sequential quantum levels of the

bond. For the electrical field to impart its energy into the molecule a polar

distribution of charge, or dipole, must exist or be induced to exist across the

bond. The jump between the ground state υ ¼ 0ð Þ and the first level of excitation

υ ¼ 1ð Þ characterizes the fundamental vibrations across the mid-infrared region,

this being from 4,000 cm�1 to 400 cm�1 (2,500–25,000 nm).

It turns out that the energy relationship of Eq. 3.5 can be used to describe bond

behavior for small values of the vibrational quantum number, corresponding to the

bottom region of the energy curve (Fig. 3.2) where there is near symmetry between

left and right sides. For larger quantum levels, the energy relation is more compli-

cated, such that the nonsymmetrical Morse-type function 1� e�c x�xrestð Þ� �2h i
, also

shown in Fig. 3.2, is used to incorporate the features of mechanical and electrical

anharmonicity. Mechanical anharmonicity arises from the fact that because of the

atoms’ dimensions and mass there are physical limits to the separation distance

between bonded atoms that preclude them to being too close (overlapping) or too

distant (disassociating). Electrical anharmonicity arises from a nonuniform change

in dipole moment with change in distance between bonded atoms. Unlike the

parabolic nature of the mechanical model, the Morse function allows for dissoci-

ation of the two atoms as the energy level is increased. The solution to the

wavefunction becomes

tt

t +1/ 2 t +1/ 2

t +1/ 2t +1/ 2

t +1/ 2 t +1/ 2

tt

tt

a b

c

Fig. 3.3 Modes of vibration for a single water molecule
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Eυ ¼ hv υþ 1

2

� �
� xhv υþ 1

2

� �2

ð3:7Þ

The variable x is the anharmonicity constant. The presence of anharmonicity allows

for (1) overtone transitions, which arise from a change between nonadjacent

vibrational quantum levels (e.g., jΔυj> 1); (2) combination bands, which occur

when the energy from one photon produces simultaneous changes in quantum

levels of two or more different vibrational modes; and (3) unequal differences

between energy levels of the quantum states as described by Miller (2001). These

allowances would otherwise be forbidden under a set of conditions known as

selection rules that arise from group theory in quantum mechanics (Wilson

et al. 1985). The significance of these allowances becomes apparent when we

shift away from the fundamental vibrations of the mid-IR region to the overtone

and combination vibrations of the near-IR. To a first approximation, the frequencies

of the overtone bands are integer multiples of the corresponding fundamental

frequency, with each higher overtone (first, second, . . .) being weaker than the

preceding. Thus, absorptions from overtone vibrations of the same bond become

progressively weaker as wavelength is decreased. Combination bands involving

CH, NH, and OH tend to be longer in wavelength than overtones, though with

overlap between the two band types. Taking water in the liquid state as an example,

its two most prominent bands in the near-IR region are a combination band (υ2 þ υ3
¼ asymmetric stretch + bending) occurring at ~1,910 nm and a first overtone of OH

(υ1 þ υ3) occurring at 1,460 nm, where it is noted that the location of these bands as

well as the other combination bands and higher overtones are strongly influenced by

temperature through changes in hydrogen bonding. Further complication arises

with water absorbed in biological matrices whereby hydrogen bonding can occur

between water, polysaccharide, lipid, and protein molecules. Considering wheat

starch and microcrystalline cellulose separately equilibrated to 53 % RH as exam-

ples (Delwiche et al. 1992), the wavelength location of the prominent 1,900 water

combination band peak decreases by ~17 and 11 nm, respectively, as temperature

increases from �80 to 60 �C, which causes a reduction in the hydrogen bond

strength between water and the matrix (Fig. 3.4).

3.2.2 Practical Ramifications for the Near-IR Region

Because of the departures from the ideal case of the harmonic oscillator we are left

with the inherent complexities, which are fortunate opportunities of near-IR spec-

troscopy. Three general statements are made to underscore the limits and power of

the near-IR:

1. Compared to the fundamental absorption bands of the mid IR region, absorption

bands of the near-IR region are weak. What appears to be a detriment for the NIR

analyst on first glance is actually a boon because materials that are examined in
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either transmission or reflection modes do not have to be diluted beforehand, as

is the typical procedure for mid IR analysis. At most, especially for reflectance

measurement, the material is ground into fine particles thereby reducing the

heterogeneity of the sample caused by spatial differences in either chemical or

physical structure.

2. The near-IR region is primarily composed of the overtone and combination

bands arising from bonds involving the lightest atom, hydrogen. Typically,

these include the bonds C–H, O–H, and N–H, all of which are prevalent in

organic molecules. Thus, near-IR analysis is especially well suited for the

studies involving agricultural, biomedical, pharmaceutical, and petrochemical

materials.

3. Because hydrogen is much lighter than any other atom, its bonds with carbon,

oxygen, and nitrogen produce vibrational movements that cause the largest

motion for the hydrogen atoms, thus making vibrational movements localized

to the functional group. Intrachain bond vibrations such as C–C are not active in

the near-IR region.

4. Due to the multitude of overlapping bands in the near-IR region, the exact

assignment of a bond’s vibration to a wavelength or frequency is seldom

possible, thus making near-IR spectroscopy a poor candidate for qualitative

analysis. By the same token, however, quantitative analysis such as the concen-

tration of chemical group is possible through the power of advanced regression

algorithms.
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Fig. 3.4 Temperature effect on the 1,940 nm water combination band in moisture containing
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The exact location and magnitude of overtone and combination bond vibrations

for functional groups are very difficult to determine because of the effects from

anharmonicity and dipole moment changes. As a rule of thumb, bond strength and

reduced mass determine the band frequency location, while the dipole moment and

anharmonicity affect the band’s magnitude. Other factors such as hydrogen bonding

and neighboring groups will have secondary effects on location and magnitude.

3.3 Light Absorption in a Scattering Medium

The realization that electromagnetic radiation behaves in both corpuscle and wave-

form conditions has led to several theoretical models to describe the infrared

spectral response. We will consider some of these in brief format, with the reader

directed to particular seminal texts for more detail.

3.3.1 Light Without Scattering

This is the most common model used in calculating concentration of a solute in

gases and clear liquids, in other words media with negligent scattering. The theory

was originally developed by Pierre Bouguer (1729) and Johann Lambert (1760)

independently, and later expanded by August Beer (1852) to include substances of

varying concentrations within the media. In the translated words (from Latin) of

Lambert’s Theorem 68, “The logarithm of the remaining light, when it is weakened

in a less transparent medium, is related by a ratio to the maximum of all the

intermediary obstructing material of that medium, which it encounters along its

path, and to whatever manner in which the obstructing material may be dissemi-

nated in the medium and whatever the curvature of the path is.” (p. 391). With

inclusion of Beer’s contribution, the law states that the intensity I of light decreases
exponentially with penetration distance d and the concentration of the compound of

interest [J],

I dð Þ
I d ¼ 0ð Þ ¼ e�k J½ �d ð3:8Þ

where k is an absorption coefficient (formerly called the extinction coefficient when

dealing with molar concentrations). Equation 3.8 is universally referred to as the

Beer-Lambert Law, secondarily as Beer’s law, and lastly, but seldom, the Beer-

Lambert-Bouguer Law. A more familiar format appears when the base 10 logarithm

of each side is taken,
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A ¼ log
1

T

� �
¼ k

0
J½ �d ð3:9Þ

in which we write transmittance (T ) as the ratio of the intensity of the light at depth
d to that at the surface. In practice, the concentration c may be written in terms of

molarity (nsolute/volumesolution), mole fraction (nsolute/nsolvent), or mass fraction

(masssolute/masssolution) with the units for k
0
selected accordingly so that the right

hand side product is dimensionless. Direct application of Eq. 3.9 occurs with the use

of simple spectrophotometers in which cuvettes of precise dimension are used to

measure the intensity of transmitted light through a clear solution at a single

wavelength, typically in the UV region. Upon the development of the calibration

curve, absorbance is directly related to the concentration of a conjugate from a

biochemical assay. The complexities of natural materials, such as plant and ani-

mals, leads to a stretching of the rules for the Beer-Lambert equation, yet conve-

niently and frequently with success.

In diffuse reflectance analysis, liberties are taken with the Beer-Lambert law to

allow the substitution of reflected or, in Dahm and Dahm’s (2007) terminology,

remitted energy for transmitted energy. A simplified representation of diffuse

reflectance is shown in Fig. 3.5. In this case, white or monochromatic light is

collimated and then directed onto a the surface of a sample, whereupon the light

may (1) be directly reflected from the surface of the first particle that it encounters;

(2) penetrate the first surface, followed by additional internal reflections and trans-

missions with other particles; (3) be remitted light from the surface that it entered;

or (4) be absorbed by an atomic bond. Mathematical modeling of these phenomena

is the subject of ongoing investigation (Dahm and Dahm 2007). In practice, terms

on the right side of Eq. 3.9 are commonly lumped together and collectively referred

to as the concentration of the compound of interest. Hence,

log
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with square brackets indicating concentration. The implementation of this relation-

ship implies that pathlength is constant across samples and other compounds or

analytes are not interfering. Using ground wheat as an example, typical uncorrected

log(1/R) spectra are shown for in Fig. 3.6a, b for the mid-IR and NIR regions,

respectively. What is obvious from either plot is the lack of a clear baseline

response despite the existence of wavenumber or wavelength regions of low

spectral absorption. The non-horizontal behavior of these spectra, especially notice-

able in the NIR region is caused by scatter. Because pathlength in a scattering

medium is extremely difficult, if not impossible, to determine, the assumption of

constant pathlength is favored when samples are of the same distribution in particle

size makeup. A workaround to the particle size problem is to apply a mathematical

correction to the log(1/R) spectrum, typically a multiplicative scatter (signal)

correction (Martens and Næs 1989), a standard normal variate transformation
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Fig. 3.6 Mid IR and near-IR spectra of ground wheat
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(Barnes et al. 1989), or a first or higher order derivative, as explained in Sect. 3.4.

The problem of interfering absorbers is addressed by considering responses at more

than one wavelength, whereupon by using linear modeling methods (multiple linear

regression, principal component, partial least squares) or nonlinear methods (arti-

ficial neural networks, support vector machines) quantitative models of sufficient

accuracy are possible. Known collectively as chemometrics, extensive details on

such algorithms for quantitative and qualitative analysis of spectra are the subject of

several texts (Mark and Workman 2007; Naes et al. 2002; Varmuza and Filzmoser

2009; Jolliffe 2002; Cristianini and Shawe-Taylor 2000). One further simplification

that is often employed in remote sensing hyperspectral analysis is the use of

reflectance R directly, in which it is assumed that the degree of nonlinearity

between R and its log reciprocal transform is negligible [for example, over the

reflectance range 0.2–0.8, the coefficient of determination with log(1/R) is 0.97].

3.3.2 Kubelka-Munk

Unlike the Beer-Lambert-Bouguer theory that was based on transmission and

adopted for diffuse reflectance, the theory known as Kubelka-Munk (K-M) is

fundamentally based on reflectance from a scattering medium, with its application

primarily relegated to the paper and paints industries. As with Beer-Lambert-

Bouguer, K-M theory is most appropriate for media and analytes of low absorption

(Olinger et al. 2001). Originally developed by Kubelka and Munk (1931), the

theory assumed light to be traveling through a continuum, a medium with no

internal boundaries such as particle surfaces. Further, the light is modeled as having

a forward flux and a backward flux. Diffuse illumination at the surface is also

assumed and the medium scatters the radiation isotropically. The behavior of

radiation is written as a combination of two constants, K and S, which have

analogies to absorption and scatter. With solution of coupled differential equations

for forward and backward radiations, the well known Kubelka-Munk function was

derived (Kortüm 1969)

F R1ð Þ ¼ K

S
¼ 1� R1ð Þ2

2R1
ð3:11Þ

In this equation, R1 is the remitted radiation from a medium of infinite thickness,

which may be experimentally determined by observing when the addition of depth

to a sample produces no change in R. For the mid-IR and near-IR regions the infinite

thickness is a reasonable assumption for thicknesses greater than several millime-

ters. As explained by Dahm and Dahm (2007), the problem with Kubelka-Munk

equation in practice arises with the attempts at disentangling K and S. Ideally, one
would like to treat K as a pure absorption coefficient in the same manner as Beer-

Lambert so that concentrations of absorbing compounds can be accurately
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modeled. In reality, the equation falls short for reasons of (1) a two flux model

overly simplifying light direction; (2) specimens are not diffusely illuminated, but

instead illuminated with collimated light; (3) the medium is not a continuum but

instead consists of discrete particles that individually reflect and refract light; and

(4) given that the instrument measures remitted energy, the expression does not

inherently provide a means to separate absorption, hence concentration of a com-

ponent, from scatter. With respect to log(1/R), F(R) is more greatly affected by

baseline errors (Griffiths 1995). Also, from experimental measurements of reflec-

tance from a three component mixture of varying proportions (NaCl as the

nonabsorbing matrix, graphite as a general absorbing compound, and carbazole as

a typical organic analyte possessing both C–H and N–H bonds), Olinger and

Griffiths (1988) reasoned that the linearity of F(R1) with concentration of an

absorbing compound (carbazole in this case) is highest when the matrix is

nonabsorbing because the photons have more opportunity to undergo interactions

with many particles before leaving the sample surface. Linearity drops off as the

matrix becomes more absorbing, as they observed when 5 % graphite by weight

was added to the NaCl matrix. Conversely, the theoretical lack of a dependency of

the linearity of log(1/R) with many particle interactions for a photon is the reason-

ing behind the general better performance of log(1/R) in diffuse reflectance spec-

troscopy of powdered materials. Because of these limitations, the Kubelka-Munk

theory is not commonly applied to near-IR diffuse reflectance spectroscopy of

biological and agricultural materials.

3.3.3 Diffusion Theory

This is also a continuum approach that has gained use in modeling the decay of light

in biological tissue and uses a mathematical model to derive an expression for

remitted light as a function of a coefficient due to absorption (μa) and another

coefficient due to scattering, called the transport scattering coefficient (μ
0
s), in which

scattering is assumed to be isotropic (Farrell et al. 1992). An assumption of a highly

scattering matrix allows for the development of a diffusion equation for photon

propagation, as derived from the Boltzmann radiative transport equation. For the

special condition of considering light as a point source directed onto a semi-infinite

medium at a direction normal to the surface, the remitted radiation R(r), where r is
the radial distance from the point of entry, can be derived (Farrell et al. 1992),

R rð Þ ¼ a
0

4π

1

μ
0
1

μeff þ
1

r1

� �
e�μeffr1

r21
þ 1

μ
0
1

þ 4A

3μ0
t

� �
μeff þ

1

r2

� �
e�μeffr2

r22

� �
ð3:12Þ

where the transport albedo, a
0 ¼ μ

0
s= μa þ μ

0
s

� �
, the effective attenuation coefficient,

μeff ¼ 3μa μa þ μ
0
s

� �	 
1=2
, r1 ¼ 1=μ

0
t

� �2 þ r2
h i1=2

, and r2 ¼ 1=μ
0
t þ 4A=3μ

0
t

� �2 þ r2
h i1=2

.
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Further, the total interaction coefficient, μ
0
t ¼ μa þ μ

0
s, and A is a parameter that

is related to the internal reflection and is derived from the Fresnel reflection

coefficients. In practice, A may be determined empirically as a function of the

relative refractive index (Groenhuis et al. 1983), and with additional simplifica-

tion it may be treated as a constant. With this assumption the right side of Eq. 3.12

becomes an expression of only two terms, the absorption coefficient μa and the

transport scattering coefficient μ
0
s. Among other features, the diffusion theory

approach differs from K-M in that absorption and scattering are mathematically

decoupled.

From experimental measurements of R(r) at various radial positions and

inverse application of Eq. 3.12, separate values for μa and μ
0
s are determined

over the wavelength range of interest, thus producing separate absorption spectra

and scattering spectra. Lu and coworkers (Qin and Lu 2008; Lu et al. 2010)

developed this approach using line scan hyperspectral imaging (λ¼ 500–

1,000 nm) to nondestructively examine ripeness in tomatoes (Qin and Lu 2008),

bruising in apples (Lu et al. 2010), and mechanical damage in pickling cucumbers

(Lu et al. 2011).

3.4 Practical Outcomes for Near Infrared Reflectance

Because log(1/R) is most commonly used in NIR spectroscopy the following

discussion will assume this format, though many of the transformations may be

applied to the other formats of reflectance data mentioned in the previous section.

Broadly termed as spectra preprocessing, these transformations are performed for

improving signal-to-noise and minimizing the effect of scatter often with the

expectation that band intensities become more linearly related to the concentration

of the absorbing compound. Improvement in signal-to-noise is typically performed

by a smoothing operation, such as a running mean,

A j ¼ A j�l þ . . .þ A j�1 þ A j þ A jþ1 þ . . .þ A jþl

2 jþ 1
ð3:13Þ

where Aj is the original spectral value at wavelength j and Āj is the mean value as

determined from the original value as well as the neighboring l points on the left and
the same number of points on the right. Selection of the size for l should be based on
the inherent bandpass of the spectrometer (typically 10 nm for dispersive scanning

monochromators) and the size of the absorption band of interest. In practice, the

value is selected by trial and error, with too small a value yielding insufficient noise

reduction and too large a value attenuating the higher frequency absorption

bands. Using simulated spectral data, Brown and Wentzell (1999) warned of the

deleterious effect of smoothing on multivariate calibrations such as principal

component (PC) regression. Also, they noted that smoothing has the greatest
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chance of being beneficial under conditions of high measurement noise and

wavelength-to-wavelength correlation, in which case the improvement in charac-

terization of the spectral subspace through PC reduction offsets the losses caused by

spectral distortion.

Spectral derivatives, or more accurately stated as spectral differences, usually of

the first and second order are applied for removal of vertical offset and slope effects.

In simplest form, these are two-point (first) and three-point (second) central finite

difference expressions. Although the points need not be consecutive (in which case

the difference becomes a poor approximation to the true derivative but nevertheless

may produce a better calibration), the intervals between the end points and the

central point should be equal. With these Δy/Δx and Δ2y/Δx2 difference expres-

sions, it is common to omit the denominator term when chemometric modeling is

the goal. The omission is not a problem unless one is trying to accurately show the

values for the derivative spectrum for its own sake or one is attempting to compare

derivative spectra possessing different values for Δx.
A more common form of spectral differentiation is the Savitzky-Golay poly-

nomial approximation procedure, as first popularized by the authors (Savitzky and

Golay 1964). Using a sliding window along the wavelength axis, and assuming a

constant wavelength spacing, the window of points (typically an odd number

between 5 and 25) is fitted using least squares regression to a polynomial of

second through sixth order, whereupon the analytical derivative of the polynomial

function is evaluated at each point. The procedure can be computationally sim-

plified to a convolution operation using the same number of points in the window

and using published coefficient values, as reported in their original paper and later

corrected by Steinier et al. (1972). Spectral differentiation is shown by example in

Fig. 3.7. A ‘spectrum’ has been created by adding two Gaussian functions, with

one being twice the magnitude and twice the width of the other, to a sloped line

and then adding random noise. In this simple example, one sees a replacement of

the vertical offset in the absorbance curve with a small offset (¼1/1,500 on

average, i.e., the slope of the upwardly trending line in the absorbance curve) in

the first derivative curve, which disappears altogether in the second derivative.

The two local absorbance maxima become zero crossing points in the first

derivative curve but reappear as local minima in the second derivative curve.

This is typical behavior and explains why the second derivative is generally easier

to interpret than the first derivative. However, interpretation of the second deriv-

ative is tricky even without considering the complexities of vibrational physics.

For instance, in the simple example of Fig. 3.7, the Gaussian band at the lower

wavelength, despite being half the magnitude of the other Gaussian band, appears

as having a larger absolute value in second derivative. Because the lower wave-

length band has half the width of the upper band its curvature and hence second

derivative magnitude is greater. Secondly, derivatives have the tendency to

amplify noise, as seen in the progression of a smooth appearance in the absor-

bance curve (Fig. 3.7a) to a first derivative curve with noise of pen width in

magnitude (Fig. 3.7b), and on to a second derivative curve with very noticeable

noise (Fig. 3.7c). In practice, the noise amplification effect is not as pronounced
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Fig. 3.7 Demonstration of spectral differentiation. (a) Artificial spectrum created by combining

two Gaussian bands (full widths at half maximum of 50 and 100 nm, with peak values of 0.25 and

0.50, respectively, and centered at 1,700 and 1,800 nm, respectively) to a sloped line
[y(1,000 nm)¼ 0.2, y(2,500 nm)¼ 1.2], then adding random noise (�0.0004 to 0.0004 peak to

peak, uniformly distributed). (b) Savitzky-Golay first derivative (cubic polynomial, 11 point

convolution window). (c) Savitzky-Golay second derivative (cubic polynomial, 11 point convo-

lution window)
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because the ‘noise’ in a spectrum is not entirely random as in the artificial

spectrum of Fig. 3.7, but instead may largely consist of baseline drift, which has

low-frequency dominance in the noise power spectrum. The low-frequency nature

means that noise levels of neighboring wavelengths are not fully independent.

Brown et al. (2000) investigated drift noise through simulation and found that

derivatives may reduce drift noise, but at the same time spectra can be distorted

with respect to the underlying chemical constituents, thus making it difficult to

predict the benefit of this preprocessing technique in multivariate calibrations. For

example, if the left Gaussian band in Fig. 3.7 was centered at 1,750 nm rather than

1,700 nm, the resulting absorbance spectrum (Fig. 3.8a) would appear as one

broad but asymmetrical band superimposed on the upwardly trending baseline

curve. Upon first differentiation using the same SG convolution function the two

zero crossing points are replaced by one located at approximately 1,770 nm

(Fig. 3.8b), which is between the absorbance peak positions of 1,750 and

1,800 nm. The second derivative (again with the same function as originally

used) has local minima at 1,750 (the same as original) and 1,814 nm (Fig. 3.8c),

which is 14 nm longer than the absorbance peak position. This helps to explain

why NIR calibrations are often trial and error operations that are enhanced by a
priori knowledge of the locations and magnitudes of bands associated with the

analyte of interest.

Because of the complexities of the scatter-absorption effect, separation of these

components through theoretical means as described earlier is often replaced by

working corrections as part of spectral preprocessing. The two most common full

spectrum approaches are the multiplicative signal (scatter) correction (MSC) and

the standard normal variate transformation (SNV). With MSC, as popularized by

Martens (see Geladi et al. 1985), a sample’s reflectance spectrum is corrected to

have roughly the same degree of scatter as the other samples within the calibration

set. The usual procedure is to calculate the mean spectrum of the calibration set and

then for every sample within the set, a least squares correction (most often a first

order polynomial but this can be of higher order) is developed by regressing the

spectrum’s points onto those of the mean spectrum. The regression coefficients are

then used to ‘correct’ the spectrum to the mean spectrum. This has the noticeable

effect of collapsing spectra together so that under ideal conditions all sample-to-

sample spectral differences are attributed to chemical absorption. This transforma-

tion requires the retention of the reference (mean) spectrum in order to correct

future spectra before the calibration equation is applied. An example of this

transformation is shown in Fig. 3.9, which consists of spectra of 198 samples of

ground wheat, first with no transform (Fig. 3.9a) and next with MSC (Fig. 3.9b).

Alternatively, one may conduct a scatter correction that is based on each spectrum

independently. Known as the standard normal variate (SNV) transformation, this

correction has a format similar to that of standard error in statistics, this being that

within each spectrum the mean value (over the wavelength region) is subtracted

from each spectral value and this difference is then divided by the standard

deviation of the spectrum’s values (Barnes et al. 1989), as shown by example in
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Fig. 3.9c. This results in each transformed spectrum having a mean of zero and a

standard deviation of unity. As with MSC, the intention is that the benefits of the

SNV correction through reduction of variation from scatter outweigh whatever

losses in chemical information that result from spectral distortion.
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Fig. 3.8 Demonstration of spectral distortion by differentiation. The conditions that produced

graphs (a–c) are identical to those of Fig. 3.7 with exception that the low wavelength absorption

peak is located at 1,750 nm and the dashed lines are moved to his location
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3.5 Application to Imaging

The principles of NIR spectroscopy carry over to NIR hyperspectral imaging. With

the latter, the measurement of energy remitted from a broad surface, as read by one

or a set of detectors, is replaced by image measurement from a camera sensor array
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Fig. 3.9 Example of spectral scatter removal techniques using a set of 198 ground wheat samples.

(a) Raw log(1/R) spectra. (b) With multiplicative scatter correction (MSC). (c) With standard

normal variate (SNV)
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in which each element or pixel captures energy from a small region of the sample

surface. The spectral dimension arises from one of two general formats, a liquid

crystal tunable filter employed to capture two-dimensional images at a series of

tuned wavelengths, or a dispersion device called a spectrograph that is placed

between the lens and body of the camera. Between the spectrograph and the lens

is a slit that reduces the focused image to that of a narrow line. The line of light is

passed onto the spectrograph, which then disperses the light from each ‘point’ along

the line to a series of wavelengths. By methodically advancing the location of the

line on the object, either by moving the camera or moving the object, additional

lines are imaged until the entire object has been scanned and reproduced as a

mosaic of lines.

In its simplest and most common form, camera array readings are referenced to a

highly reflecting Lambertian material such as ‘Spectralon’ (Labsphere, North

Sutton, NH) while also being corrected for dark current of the sensor. In such

case reflectance (R) becomes

R ¼ Esample � Edark

Ereference � Edark
ð3:14Þ

where Ex is the energy from each x component. The reference material is treated as

being 100 % reflective and Eq. 3.14 assumes a linear response for sample reflec-

tance. Alternatively, sample reflectance may be determined using a higher order

polynomial to describe the response (Burger and Geladi 2005). In such cases, a set

of reflectance standards with traceable reflectance values (typically 3–8 samples of

Spectralon doped with carbon black) whose reflectances span the anticipated range

of the samples is used to develop a calibration equation. For example, assuming a

quadratic response, reflectance is written (Burger and Geladi 2005),

R ¼ b0 þ b1Eþ b2E
2: ð3:15Þ

During calibration, the left side values of Eq. 3.15 are known for the reflectance

standards, E is measured for each standard, and the coefficients b0, b1, and b2 are
determined by least squares regression. The regression procedure is performed at

each wavelength, which may be done on a pixel-by-pixel basis or globally using the

median spectrum, as determined from pixels within a region of interest.

3.5.1 Collection of the Hypercube

Hyperspectral systems fall into two broad categories depending on the method of

light dispersion. As illustrated in Fig. 3.10a, the tunable filter system collects two

dimensional spatial images at each ‘tuned’ wavelength. This results in a stack of

spatial images with each page in the stack representing a separate wavelength. The

push broom system (Fig. 3.10b) builds up one dimensional spatial spectral pages.
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Regardless of mode of instrument operation, the stored data, known as a hypercube,

consists of one spectral and two spatial dimensions.

By way of example, a set of 81 spectra collected from an approximately square

(9 pixel� 9 pixel) region of a wheat kernel using a push broom hyperspectral

imaging system is shown in Fig. 3.11. (Details of the system and settings are

found in Delwiche et al. 2012). A digital photograph of a wheat kernel is added

as an inset in Fig. 3.11 for the purpose of showing the approximate location and size

of the square region. The 9-element width is just a small portion of the line, which

consists of 320 elements. Individual pixel spectra have a much higher level of noise

than those from a conventional spectrometer, as seen by comparing Figs. 3.11 and

3.9a. Averaging of all pixel spectra within the square region results in reduction in

noise (Fig. 3.11, solid black curve), albeit at the expense of fine feature detail of the

individual pixels. It should be noted that whether it be on an individual pixel level

or on a regional level, the principals of spectroscopy as well as the mathematical

transformations leading up to and including qualitative and quantitative modeling

hold true for hyperspectral imaging.
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Fig. 3.10 Schematic of the two modes for hyperspectral image collection. (a) Stacked wave-

length—at a given time instant the camera records two spatial dimensions (x and y) at one

passband (λ) of a liquid crystal tunable filter. Recording continues with the next passband. (b)
Pushbroom—at a given time instant the camera records one spatial ( y) and one spectral (λ)
dimension, where the spectral component is created by radiation dispersion through a spectrograph

located between a slit and the camera body. Recording continues with relative movement of the

object in a direction (x) perpendicular to the other spatial direction
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3.6 Raman

Raman spectroscopy is based on the property of the photons from light of a very

narrow frequency (e.g., a laser) striking a sample whereupon while most of the

photons’ energy momentarily raises the energy state of the molecules but then is

released as the molecule returns to its ground state. A small fraction of photons,

however, release a portion of their energy to the molecule whereby the bond is not

returned to its ground state, and further the photon emerges at a lower energy and

hence lower frequency. This phenomenon is known as Stokes scattering. The

Stokes shift is a measurement of the difference in frequency of the incident and

emergent photon. Oppositely, photons may pick up energy from molecules already

at a higher than ground state in the matrix as they return to a lower state. In this case

when the photon is released from the medium after scattering, the frequency is

greater than the incident frequency. This is known as anti-Stokes scattering and

occurs at an even lower prevalence than Stokes scattering because there are

relatively few molecules already in an excited state. As with infrared spectroscopy

selection rules exist for a Raman transition, these based on the requirement that the

polarizability of light changes as the molecule vibrates. Traditionally, Raman

spectroscopy has been used in determining force constants, dissociation energies,

and bond lengths. The change in polarizability determines the intensity of the bands

in the Raman spectrum. Further, the intensity is proportional to the fourth power of

monochromatic light of excitation upon shifting,
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Fig. 3.11 Pixel reflectance spectra and average spectrum from a 9� 9 pixel square region of a

wheat kernel
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IRaman / v0 � v j

� �4 dα

dQ

� �2

ð3:16Þ

where v0 and vj are the original and scattered light frequencies, respectively, and the
squared term is the change in polarizability that occurs during vibration. Knowl-

edge of this relationship is useful for two reasons. First, it shows that the frequency

of monochromatic light is not fixed by the Raman effect, but rather Raman spectra

may be obtained at any number of frequencies. In practice, the monochromatic

sources are supplied by lasers, for which the two most popular are the infrared diode

laser at 785 nm (12,740 cm�1) and Nd:YAG at 1,064 nm (9,400 cm�1). Second,

Raman intensity diminishes with increase in the wavelength of the laser source by a

fourth order relationship. Hence, without complicating factors, a shorter wave-

length source would be preferable. In reality, fluorescence, which is often prevalent

at low wavelengths, becomes the complicating factor. Because Raman signals are

inherently weak, fluorescence emission can at times overpower the Stokes lines.

This is particularly problematic with botanical samples. Conversely, fluorescence

can be avoided by exciting at longer wavelengths, such as with a Nd:YAG laser, but

at the expense of reduced Raman intensity.

Raman spectroscopy and infrared spectroscopy, though both based on molecular

vibration, are complementary to one another. Bonds that exhibit strong absorption

in the infrared, such as water, will typically be weak in the Raman and vice versa.

Thus for biological samples, which typically have more than 50 % water by mass,

Raman spectroscopy offers a means to examine molecular structure in situ.
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Chapter 4

Hyperspectral Image Processing Methods

Seung-Chul Yoon and Bosoon Park

4.1 Introduction

Hyperspectral image processing refers to the use of computer algorithms to extract,

store and manipulate information from visible near-infrared (VNIR) or near-

infrared (NIR) hyperspectral images for various information processing and data

mining tasks, such as analysis, classification, regression, target detection, and

pattern recognition (Chang 2013; Eismann 2012; Sun 2010; Thenkabail

et al. 2011; Plaza et al. 2009; Gowen et al. 2007; Landgrebe 2003; Shaw and

Manolakis 2002). Many disciplines have contributed to the advances in

hyperspectral image processing technology. The fundamental theories and tech-

niques for hyperspectral image processing are deeply rooted in the optics, the

digital signal processing dealing with one-dimensional time- and frequency-domain

signals and the digital image processing dealing with multidimensional space- and

space-time-domain signals such as images and videos. Because hyperspectral

images are inherently multidimensional signals, many techniques developed for

digital image processing were directly applicable to hyperspectral image processing

without modifications. However, hyperspectral images contain the spectral domain

signals, i.e., spectral information at each image pixel. Thus, special tools and

techniques have been developed to process both spatial and spectral information

of hyperspectral images. Most tools and techniques for hyperspectral image

processing have been initially developed by the remote sensing community for

target detection (Manolakis et al. 2003; Manolakis and Shaw 2002), change
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detection (Rogers 2012; Eismann et al. 2008; Radke et al. 2005), anomaly detection

(Stein et al. 2002), spectral unmixing (Keshava and Mustard 2002), and classifica-

tion (Harsanyi and Chang 1994; Melgani and Bruzzone 2004; Chang 2003). On the

contrary, the demand for new hyperspectral image processing tools and techniques

more appropriate for near sensing in laboratories or fields of various science and

engineering communities has been increasing in more recent years (Sun 2010;

Gowen et al. 2007; Lorente et al. 2012; Ruiz-Altisent et al. 2010; Davies 2009;

Dale et al. 2013). From the perspective of multivariate statistics, hyperspectral

images are multivariate data as well. Thus, in recent years, chemometrics and

multivariate analysis techniques started being applied to process hyperspectral

images (Geladi and Grahn 1997; Grahn and Geladi 2007; Prats-Montalbán

et al. 2011; Gendrin et al. 2008). Naturally, the spectroscopy and Chemometrics

communities contributed many analysis tools and methods such as principal com-

ponent analysis and partial least squares regression analysis that could be applied to

the process of spectral information within hyperspectral images. The machine

learning and data mining communities also contributed to the advances. For

example, as the computing resources to process hyperspectral images are becoming

more readily accessible to the science and engineering communities, new machine

learning techniques and algorithms have been used to tackle more complex prob-

lems such as real-time detection of complex materials or targets that were impos-

sible in the past (Stevenson et al. 2005; Stellman et al. 2000; Yoon et al. 2011;

Tarabalka et al. 2009; Heras 2011).

Hyperspectral image processing workflows are fundamentally different from the

conventional color image processing workflows although both data types are

multidimensional and multivariate. The typical hyperspectral image processing

workflow includes calibration and atmospheric correction (only for remote sens-

ing), creation of a reflectance data cube, dimensionality reduction, spectral library

and data processing. It is unique to require both spectral and spatial preprocessing in

the workflow. However, many researchers in food and agricultural research com-

munities have difficulty in grasping the entire workflow of hyperspectral image

processing and modifying the workflow appropriate for their applications, partially

due to the multidisciplinary aspect and the lack of appropriate tools and resources.

In this chapter, the recent advances in hyperspectral image processing algorithms

and workflows for hyperspectral image processing are discussed. The contents of

the chapter consist of the basics of hyperspectral image processing techniques such

as calibration, spectral and spatial preprocessing, dimensionality reduction includ-

ing feature extraction and selection. The typical hyperspectral image processing

workflow is described in the below figure.

Image 
acquisition

Calibration
Spectral/spatial 
preprocessing

Dimensionality 
reduction

Analysis, 
Classification, 
Detection, etc.
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4.2 Hyperspectral Image Acquisition

Hyperspectral imaging systems typically acquire several hundreds of discrete

wavelength data points at each image pixel, and thus produce three-dimensional

(3D) data cubes with xyz coordinates where x and y are the spatial coordinates and z

is the wavelength (i.e., spectral) coordinate. The detectors commonly used in the

hyperspectral imagers are two-dimensional (2D) devices such as CCD (charge-

coupled device) and CMOS (complementary metal-oxide semiconductor) image

sensors (CCD vs. CMOS). Therefore, in order to acquire a complete hyperspectral

image data cube, a hyperspectral imaging instrument usually requires to acquire the

2D array data either in xz (or yz) or xy coordinates several hundred times by a 2D

image sensor. One type of hyperspectral imaging instruments uses dispersive

optical components such as diffraction grating, prism and mirror, installed behind

the front lens but in front of the detector. The most common dispersive

hyperspectral imaging sensor is the pushbroom line scanner, where one line scan

produces all wavelength data points along the same spatial coordinate as the line

direction (Lawrence et al. 2003; Robles-Kelly and Huynh 2013). Another type of

hyperspectral imaging uses electro-optical filters such as liquid crystal tunable filter

(LCTF) and acousto-optical tunable filter (AOTF) for simultaneous acquisition of

a spatial image with xy coordinates at each z coordinate (Robles-Kelly and

Huynh 2013).

Regardless of the type of hyperspectral imaging, the resulting 3D data cube

typically is constructed either in BSQ (band sequential), BIL (band interleaved by

line), or BIP (band interleaved by pixel) format. These formats are known as ENVI

file formats, where ENVI is a commercial software product for hyperspectral image

analysis and processing (ENVI). In the BSQ format, each image of a wavelength

band (or known as spectral band) that represents a narrow range (several nanome-

ters) of the electromagnetic spectrum is followed by the next band image. In one

spectral band, each line is stored from top to bottom and from left to right on the

image. The BSQ format is good for spatial processing at a spectral band. Therefore,

the BSQ format is recommended for creation of regions of interest, spatial feature

extraction, and image processing. In the BIL format, starting from the first line

(row) of the first band image, the lines located at the same top row in the subsequent

bands are stored. Then, the second rows of all bands are stored in the same order as

the first rows, and so on. This format is recommended for multivariate classification

and chemometrics that use both spatial and spectral processing. In the BIP format,

the first pixels of all spectral bands are stored in the wavelength order, and followed

by the second pixels, the third pixels, and so on. This format is the best for spectral

processing such access to z-profiles (spectra). In a summary, when saving or before

processing the hyperspectral data cubes, the selection of the optimal format is

desirable for each task. However, the BIL format usually provides a good compro-

mise on most hyperspectral image processing tasks.

4 Hyperspectral Image Processing Methods 83



4.3 Calibration

Calibration of measured hyperspectral image data is important to ensure the

accuracy and repeatability of results produced by a hyperspectral image system.

This section provides a brief overview of the hyperspectral image calibration in the

spectral, spatial and radiometric domains.

Spectral (or wavelength) calibration is a process that links band numbers with

wavelengths. Pencil-style calibration lamps or monochromatic laser sources that

produce narrow and intense peaks at a few known wavelengths are widely used for

the wavelength calibration. The popular gas types of commercial calibration lamps

are argon, krypton, neon, xenon, mercury-neon, and mercury-argon. A linear or

non-linear regression analysis is used to predict the wavelengths at the unknown

spectral bands. The wavelength calibration is typically done by a product vendor

before the hyperspectral image camera is shipped to a customer. Thus, an end user

needs to perform the wavelength calibration only on an occasional basis or only if

necessary.

Spatial (or geometric) calibration (or correction) is a process that correlates each

image pixel to known units such as meters or to known features such as grid

patterns. Spatial calibration provides the information about the spatial dimensions

of each sensor pixel on the surface of the material or the absolute location and size

of the material. Spatial calibration also corrects optical aberrations (smile and

keystone effects). Smile and keystone effects refer to the curvatures in

two-dimensional image detectors. With an ideal imaging spectrometer, the spectral

and spatial line data would be straightly projected on the area detector. However,

imaging spectrometers suffer from smile and keystone effect. The “smile” refers to

the curved spectral information along the spatial direction whereas the “keystone”

refers to the curved spatial lines along the spectral direction. The optical aberrations

cause blurred images and thus reduce the optical resolutions. In recent years, the

manufactures of imaging spectrometers have improved their designs to minimize

smile and keystone effects well below the tolerances of the spatial resolutions

necessary for most applications.

Radiometric calibration, in remote sensing, refers to the conversion of the digital

numbers (raw data) to physical units of radiance and the subsequent calculation of

reflectance at the surface on the ground by atmospheric correction. In food and

agricultural applications that do not use remote sensors, radiometric calibration

often means reflectance (or transmittance) calibration or flat-field correction with-

out the conversion to radiance and atmospheric correction. Reflectance

(or transmittance) correction is a process that converts the measured digital num-

bers to percent reflectance (or transmittance) values with standard (known) mate-

rials that are spectrally flat and spatially homogenous. Because a flat-surface

material is used, a term, flat-field calibration (or correction) is also used instead

of reflectance or transmittance calibration. The reflectance calibration calculates

relative (percent) reflectance values at each pixel with a known diffuse reflectance

material (white or gray) in the field of view, such as Spectralon (Labsphere) and
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Teflon. The transmittance calibration can be done similarly with transparent or

semi-transparent known materials such as Teflon and neutral-density filters. How-

ever, transmittance calibration is more difficult to estimate accurate transmittance

values in relative or percentage term, especially when measuring turbid media such

as biological materials, because of the strong scattering phenomenon. The well

known percent-reflectance calibration equation is the following.

R x; y; λð Þ ¼ Iwhite x; y; λð Þ � Im x; y; λð Þ
Iwhite x; y; λð Þ � Idark x; y; λð Þ * C λð Þ

where Iwhite, Idark, and Im are a white (or gray) reference, a dark current, and

a measured image. The x and y are the spatial coordinates, and λ is the wavelength.
C(·) is a vector of multiplication scale factors (e.g., 100 and 40 %) defined at each

wavelength, which is typically provided by the manufacture. If C(·) is either not
available or almost constant across all wavelengths, a nominal reflectance value or

an average of C(·) can be used as a constant. In practice, the constant 99 (or 100) is

widely used for calibrating hyperspectral images with a 99 % Spectralon reflectance

panel (Lawrence et al. 2003).

Flat-field correction is another way to calculate apparent (relative) reflectance.

Flat-field correction is useful when the image includes a uniform area that has a

relatively flat spectral curve and a topographically flat surface. The scene is

converted to “relative” reflectance (or transmittance) by dividing each image

spectrum by the flat field mean spectrum. Average relative reflectance conversion

also normalizes image spectra by dividing a mean spectrum that is computed from

the entire image.

4.4 Spatial Preprocessing

Spatial preprocessing refers to a process to enhance or manipulate the information

in the spatial image domain. Any conventional image processing techniques for

filtering and enhancement can be applied here. Spatial preprocessing for denoising

and sharpening is not usually applied to raw or calibrated hyperspectral images

unless a specific task requires it because spatial preprocessing may affect the

spectral signatures. Spatial postprocessing is more popular than preprocessing

because classification or prediction images are ordinary images that need spatial

interpretation, manipulation, and pattern recognition. The details about these spatial

processing methods were already covered in Chap. 4. Thus, we omit the details

here. Instead, we introduce spatial preprocessing methods that are important for

spectral preprocessing and later processing tasks such as classification and regres-

sion in the image domain.
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4.5 Spatial Sampling and ROIs

One of the early steps for hyperspectral image processing is to determine spatial

locations to be examined. This process typically starts from an image binarization

(or segmentation) with a thresholding operation on a spectral image band. The

thresholding operation can be replaced with any type of an image segmentation

method, if necessary. The image binarization produces a binary image where the

background is masked out. So, this binarization process is also known as back-

ground masking (Yoon et al. 2009). A heuristic but practically useful method for

background masking is to browse the spectral image bands and pick the heuristi-

cally best wavelength band, and then all spectral bands are binarized with the same

segmentation process. Another useful method is to find an imaging condition that

provides a simpler solution for background masking. For example, when imaging

white objects, a black background is better. A more systematic method to find the

band for background masking is to use factor analysis such as principal component

analysis (PCA) to find the band with the largest variation in reflectance

(or absorbance) values. The spurious noise, unwanted holes, or excessive boundary

edges on the binary mask are often removed by spatial image processing such as

median filtering and morphological filtering.

After background masking, the remaining foreground pixels are examined for

specular reflection. Specular pixels, typically with reflectance values approaching

or exceeding 100 %, produce highly invalid spectral responses. Hence, it is not

recommended to include the specular pixels in the data set for any spectral

processing. The specular reflection is often caused by wet or glossy surface features

on the scene and is more pronounced when the angle between the incident light and

the camera is small or too much of the light is incident upon the surface. Therefore,

regardless of the source of the specular reflection, any pixels with reflectance values

close to the saturation should be dealt with a caution. If necessary, these pixels

should be masked out by either a thresholding operation or a classification method.

The reflectance values associated with specular reflection are significantly higher

than the normal scene features and can thus be differentiated.

The creation of ground-truth regions-of-interest (ROIs) in hyperspectral image

processing is similar to sampling or sample design in statistics, which is concerned

with the selection of subset of individual samples to extrapolate the population from

the selected samples (Yoon et al. 2013). The key idea of ROI creation is to represent

the population of each material with the samples within each ROI. Typically, if

there are multiple materials to examine, ROIs for all materials are prepared in such

a way that the pixels showing pure spectra are included in the ROIs. Glints and

shadows are often excluded in the ROIs. Pixels along the boundaries of each

material are also not included in the ROIs. A rule of thumb is to exclude any pixels

with mixed spectral responses unless it is necessary. Either a binary mask (1 for

each ROI pixel and 0 for the others) or a grayscale image with class labels

associated with each ROI type is also created. The ROIs are used for building

spectral libraries, designing classification models and evaluating the performance

of the classification models.
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4.6 Image Mosaicing

A mosaic-based image representation can be used to facilitate data analysis and

classification algorithm development, where a mosaic of multiple hyperspectral

images are merged into a single hyperspectral image (Yoon et al. 2009, 2013). The

calibrated hyperspectral images are tessellated without overlap into an image

mosaic according to a pre-defined rule such as replicates, duplicates, material

types, etc. For example, all images obtained from each replicate experiment can

be shuffled into two neighboring columns if the measurement was duplicated twice.

Then, the next replicates can be arranged chronologically from left to right. The

image mosaic can expedite the image analysis and classification development and

evaluation using one single hyperspectral data cube.

4.7 Spectral Preprocessing

Most spectral preprocessing of hyperspectral images can be roughly grouped into

two categories according to their associated tasks. The first category is for

endmember extraction, where an endmember refers to a pure spectral signature.

Endmember extraction is an important task in remote sensing, greatly influenced by

mineralogy. Endmembers can be obtained on the ground or in laboratories by

spectrometers in order to build a spectral library of pure signatures. However, if

endmembers should be extracted from a given image, they are typically obtained by

spectral preprocessing methods such as pixel purity index (PPI) and N-finder

algorithm (N-FINDR) (Chang 2013). Extracted endmembers are widely used in

spectral unmixing, target detection and classification (Eismann 2012). The second

category is for chemometrics, where chemometrics refers to chemometric analysis

of spectral data. Chemometric spectral preprocessing is an important task in

spectroscopy. Spectral data obtained by chemometric spectral preprocessing are

typically used in multivariate analysis such as PCA and partial least squares (PLS)

(Ozaki et al. 2006; Williams and Norris 2001; Rinnan et al. 2009; Vidal and Amigo

2012). From a slightly different perspective, spectral unmixing using endmembers,

called abundance estimation in remote sensing, is similar to concentration estima-

tion using PLS regression model in spectroscopy because both tasks, when applied

to a hyperspectral image, attempt to predict how much of pure materials or

chemical components is measured at each image-pixel sample. This perspective

implies the selection of appropriate preprocessing methods is highly data-driven

and task-specific. Nonetheless it is a good practice to map the preprocessed spectra

back to the (spatial) image domain so that spatially-bound processing algorithms

can be applied. In this chapter, we focus on the second category: chemometric

spectral preprocessing methods because they can be applied to any spectral data

as needed.
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4.8 Transformation to Absorbance

For spectroscopic data analysis, reflectance or transmittance is transformed to

absorbance that is a logarithmic ratio of the radiation incident on a material to the

radiation reflected or transmitted through the material. The formula for the trans-

formation is given by

A ¼ log10 1=Rð Þ

where R is the reflectance value (a fractional point value between 0 and 1).

Absorbance can be also transformed to reflectance by R¼ 10�A. Note that if the

percent reflectance is used, R should be properly scaled by C/R where C is the

percentage scale factor, such as 100. Similarly, the transmittance, T can be

converted to the absorbance by replacing R with T. The transformation to absor-

bance has been known to decrease the non-linearity in reflectance or transmittance

measurements, to some degree (Burns and Ciurczak 2007).

4.9 Noise Reduction

Hyperspectral data typically suffer from noise. In spectroscopy, it is common to

measure multiple scans to reduce the noise. In hyperspectral imaging, it is not

common to measure multiple scans because of the restricted scan time in many

applications or the limitation of the acquisition software. If possible, it is a good

practice to measure multiple scans and take an average or median to reduce the

noise. Even after the multiple scans to reduce the noise, the data may still contain

the noise. In that case, a denoising algorithm can reduce the noise in the data.

Denoising in the spectral domain of the hyperspectral image data is an essential

preprocessing method for producing high quality data. Most denoising methods

using smoothing filtering such as moving average and Savitzky-Golay filters are

based on an assumption that signals are locally smooth so that neighbors are

spectrally similar (Savitzky and Golay 1964; Press et al. 2007). The selection of

the proper filter type and size is important because otherwise the original spectral

signals may be distorted due to the filtering.

A low pass filter that passes low-frequency signals is the simplest of all smooth-

ing filters with windows of fixed size such as 3� 3, 5� 5, and 1� 3. The net effect

of low pass filtering is obviously smoothing the data. The low pass filter is fast and

simple to implement by a convolution. Let’s assume that x is a measured spectrum,

h is a filter, and y is the smoothed output spectrum. Spectral smoothing with a filter

can be generalized by a 1D convolution,
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y i½ � ¼ x i½ �*h i½ � ¼
Xk
m¼�k

x m½ � � h iþ m½ �

where i is the band number and h is a finite impulse response (FIR) filter, usually

called impulse function, kernel, filter, or window (Proakis and Manolakis 2006).

The implementation of the convolution is done by a sliding window method in the

spectral domain or a fast Fourier transform (FFT) in the frequency domain. Various

filters such as moving average with equal weights, weighted moving average, and

Savitzky-Golay filter were developed and applied to spectral denoising. The mov-

ing average filter with equal weights has the same coefficients with a box shape.

The weighted moving average gives different weights at different positions in the

windows and thus produces various filter shapes such as triangle and exponential.

The Savitzky-Golay filer is a FIR filter that performs a local least-squares polyno-

mial regression (or approximation) to obtain the filter coefficients that are constant

for all outputs. Thus, the Savitzky-Golay filer is a weighted moving average, where

their coefficients are already calculated for the different sizes of the windows and

the different orders of polynomials. The advantage of the Savitzky-Golay filter for

spectral smoothing is that it tends to preserve the original signals by removing noise

only to some degree, which is better than moving average with equal weights.

However, as in any smoothing filtering, aggressive smoothing with the increased

windows size lowers the peak values and broadens the shapes. Other techniques for

spectral denoising are wavelet transform, moving median filtering, and minimum

noise fraction transform. De-noising methods using both spatial and spectral

domain signals were also developed.

The signal-to-noise ratio (SNR) is a metric to measure the performance of

denoising filters, defined as the ratio of mean to standard deviation of an image.

SNR λð Þ ¼ μ λð Þ
σ λð Þ

where μ(λ) is the mean of the image pixel values and σ(λ) is the standard deviation

at the wavelength λ.

4.10 Baseline Correction

A baseline shift (or offset) refers to a non-zero background signal that is a slowly

varying low-frequency signal, observed without measurements of actual samples

(Ozaki et al. 2006; Williams and Norris 2001). A non-zero baseline shift introduced

into the measured spectra is caused by many different sources such as the instru-

ment, light scattering, and different spectral path lengths through the sample. The

goal of the baseline correction is to put the baseline back into the zero-absorbance

(or reflectance) baseline by subtracting the shifted baseline from the measured
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spectral data. In general, it is difficult to model the baseline shifts with a unified

theoretical framework. A simple manual approach for baseline correction is for the

user to pick a few representative points from the baseline and interpolate the other

points along the baseline using linear, polynomial, or spline functions. A regression

fit can be also used. There are several automated baseline correction methods

such as derivatives (discrete differentiation) or high-pass filtering, detrending,

multivariate or polynomial baseline modeling, iterative weighting, etc. The base-

line correction can be integrated as a part of the data normalization such as

multiplicative scatter correction and standard normal variate with detrending,

which will be discussed in a separate section later on. Detrend is a baseline

correction technique that removes the overall trend or slope in the data. Detrend

fits the entire data with a polynomial function such a line and a quadratic, etc. and

subtracts this polynomial line or curve from the data.

4.11 Derivatives

Derivative computes simply the slope of a signal at a certain point. Differentiation

is a process of applying the derivative to the signal. Differentiation can remove the

baseline shift and also extract spectral features such as spectral shape and peak

width (Ozaki et al. 2006; Williams and Norris 2001; Rinnan et al. 2009; Vidal and

Amigo 2012). Differentiation reduces the effect of baseline shift. In practice,

second derivatives and higher-order derivatives tend to remove the baseline shift.

A spectral shape such as Gaussian and sigmoid can be predicted by examining the

derivatives. For example, a Gaussian-type spectral signal has a peak. A positive

derivative means that the signal slope goes up. A negative derivative means that the

signal slope goes down. A zero derivative means a zero slope at the peak location.

Thus, the location of the maximum (peak) can be computed by the location of the

zero-crossing in its first derivative. The peak (crest) of the signal becomes a trough

(valley) in its second derivative. The second example is a sigmoid-type spectral

signal with an “S” shape. The inflection point where the slope becomes the

maximum corresponds to the maximum in its first derivative and the zero-crossing

in its second derivative. Thus, the exact location of the inflection point can be

computed by the zero-crossing in its second derivative. Another important feature

to predict by differentiation is that a peak width in a Gaussian-type or any peak-type

signal is inversely proportional to the amplitude of derivatives. The narrower peak

produces the larger derivative amplitude and vice versa. Therefore, when a signal

has a wide peak, the amplitude of its derivative at the peak location is small. Note

that differentiation reduces the signal-to-noise ratio if smoothing is not properly

applied before the differentiation. Any de-noising algorithm can be used but the

Savitzky-Golay differentiation filter is one of the popular methods because it

combines differentiation and smoothing into one convolution algorithm.

90 S.-C. Yoon and B. Park



4.12 Normalization and Scatter Correction

Data normalization is a process to correct multiplicative scale effects (i.e., scale

differences) in spectral data. Light scattering is one of the main causes for multi-

plicative scale differences. This is why some normalization methods such as

multiplicative scatter correction (MSC) and standard normal variate (SNV) that

reduce scatter effects are also called scatter correction methods (Ozaki et al. 2006;

Williams and Norris 2001; Rinnan et al. 2009; Vidal and Amigo 2012). The

simplest form of normalization is to normalize each spectrum with a constant

weight that is the sum of all sample values (reflectance, transmittance, or absor-

bance). Normalization itself is a simple division by a constant.

MSC was developed to remove both scaling effects (a multiplicative factor, a)

and baseline shift effects (an additive factor, b) with the below linear regression

equation.

xi ¼ axþ b

where xi is the spectrum of a sample and x is a reference spectrum (typically a mean

spectrum in the calibration data set). For each sample, a and b are estimated by

least-squares regression of a measured spectrum xi and the mean spectrum x. Each
xi is corrected by the following formula

MSC : exi ¼ xi � b

a
:

SNV is also widely used for scatter correction. The SNV transformation does not

need a reference spectrum because it is applied to individual samples whereas MSC

needs a calibration set to compute a reference (mean) spectrum. For the SNV

transformation, the spectrum of each sample is mean-centered and scaled by the

values derived from the sample spectrum itself.

SNV : exi ¼ xi � mi

σi

where mi and σi are the mean and standard deviation values of the sample spectrum

xi, respectively. The SNV corrected spectrum has always zero-mean and unit-

variance. In practice, the SNV transformation is typically followed by detrending.

De-trending also corrects individual spectra without a reference spectrum.

Detrending subtracts a quadratic (i.e., 2nd degree) polynomial baseline, calculated

by linear least squares regression, from the signals.
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4.13 Dimensionality Reduction

It has been known that the high dimensionality of hyperspectral images does not

always provide the abilities and effectiveness necessary for hyperspectral image

processing tasks because of the curse of dimensionality. The curse of dimension-

ality is also known as the Hughes phenomenon that when the same size is fixed, the

increased dimensionality does not increase the classification accuracy (Landgrebe

2003). A solution to this problem is to increase the number of sample size.

However, in most applications, it is simply not easy to determine the statistically

sufficient sample size beforehand and collect these samples. Thus, one widely used

method to overcome the curse of dimensionality is to reduce the data dimension and

to extract spatial and/or spectral features in a lower dimensional space. We intro-

duce a few popular dimensionality reduction methods for hyperspectral image

processing: data binning, feature extraction and feature selection.

4.13.1 Binning

Binning reduces the spatial and spectral resolution but increases the signal to noise

ratio (SNR). The CCD-based hyperspectral image sensors perform on-chip binning

at the hardware level inside the camera in order to reduce the amount of readout

data, which increases the frame rate and at the same time improves the SNR. The

on-chip binning performed on CCD devices is a summation operation that com-

bines the photon charges of neighboring pixels and thus no noise is added to the

binned signal. The relationship between the improved SNR and binning on CCD

sensors is linear in that N-pixel binning provides N-fold SNR improvement.

However, no true charge binning is possible in conventional CMOS detectors

because the voltage signals with random noise are added into the binned signal.

In general, binning of N adjacent pixels in a CMOS sensor may improve the SNR to

the square root of the number of binned pixels, i.e., only
ffiffiffiffi
N

p
-fold SNR improve-

ment. Therefore, hardware binning in CMOS image sensors is similar to software

binning done in computer hardware, except the binning, either summation or

average, is performed inside a CMOS camera. In hyperspectral imaging, if spatial

binning is applied to one direction (x or y direction) on an image sensor, spectral

binning is defined on the other direction. The binning size at each direction is

typically the power of 2, e.g., 1, 2, 4, etc.

4.14 Feature Extraction

Hyperspectral images carry a lot of redundant information in the spatial and

spectral domains. Feature extraction refers to a linear or non-linear transformation

procedure that lowers the data dimensionality and thus reduces the data redundancy
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in the spatial and/or spectral domain. A feature extraction process should be

carefully designed to extract only the information relevant to desired applications

such as classification and regression. A rule of thumb for finding the best features is

to extract features specific to the desired application, which involves the domain

knowledge about the data. If the domain knowledge is not available, general feature

extraction methods can be used. The general feature extraction methods include

PCA (Pearson 1901), PLS (Wold et al. 2001), independent component analysis

(ICA) (Comon 1994), kernel PCA (Sch€olkopf et al. 1998), and spatial image

processing to detect spatial features edges, corners, blobs and shapes, etc. These

feature extraction methods can be also used to extract the features in an ad hoc

matter with the domain knowledge. If an application requires real-time image

acquisition and processing, multispectral imaging with several band ratios and/or

vegetation indices can be a practically viable solution. In determining the feature

extraction methods, there are several important factors to consider.

Regardless of how the features are extracted, the feature extraction methods

should preserve or reveal the information necessary for the chosen application such

as classification and detection. For classification tasks, the ideal features must

minimize the classification error. However, it is usually difficult to estimate or

predict the classification error directly from the raw data. Instead, class separability

that can be directly measured from the data is widely used to predict the classifi-

cation or discriminative power of the feature. Some common separability measures

are Euclidean distance (within class and between-class), Mahalanobis distance

(Gaussian density model), Bhattacharyya distance (similarity of distributions),

Kullback–Leibler (KL) divergence (expectation of likelihood ratio), and entropy.

The class separability problem can be formulated with

max
w
!

J w
!� �

where J w
!� �

is an objective (or called a criterion) function of the separability

measured between classes and w
!
is a transformation (e.g., a linear projection) that

projects the raw feature space to another feature space (usually, a reduced dimen-

sional space). Thus, the feature extraction is to find a vector w
!
, or called a linear

predictor, that maximizes the class separability. The Fisher’s linear discriminant

analysis (LDA) (Duda et al. 2000; Hastie et al. 2009) considers the following

objective function, called the Fisher criterion

J w
!� �

¼ w
!T

SBw
!

w
!T

SWw
!

where SB is the between-class scatter matrix and SW is the within-class scatter

matrix. After mathematical manipulations, the optimal solution maximizing the

Fisher criterion J w
!� �

, obtained by solving the generalized eigenvalue problem is a
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projection vector, w
!* ¼ S�1

w μ1 � μ2ð Þ where μ1 and μ2 are mean vectors of each

class. The projection vector w
!
is perpendicular to the hyperplane that partitions the

vector space into two sets, one for each class. A limitation of LDA is that LDA fails

if discriminatory information is embedded in the variance of the data. In this case,

PCA is a better choice. Also, LDA is a parametric method that assumes unmoral

Gaussian distribution of the data. Therefore, if the data distribution is

non-Gaussian, LDA is not effective in separating the overlapped distributions.

Support vector machines are worthy to be mentioned here and compared with the

standard feature extraction methods such as LDA and PCA. PCA is a linear

transformation that projects the original data space into an orthogonal vector

space with uncorrelated features, i.e., principal components. In a nutshell, the

features in the PCA domain are optimal for data representation but the features

obtained by LDA are optimal for data classification.

4.14.1 Support Vector Machine and Feature Extraction

A linear support vector machine (SVM) (Hastie et al. 2009) is built upon the well-

defined statistical learning theory that separates the linearly separable feature

space into two classes with the maximum margin. If the feature space is not

linearly separable, a non-linear SVM can be used or the linear SVM is modified to

a soft margin classifier in order to allow the misclassification error by adding error

variables, called slack variables, to its objective function. If the non-linear SVM is

used, the basic concept is to represent the data in a higher (even infinite) dimen-

sional feature space such that the non-linearly mapped data are linearly separable

in the high dimensional feature space and thus the linear SVM can be applied to

the newly mapped data. However, the non-linear mapping via a dot product in the

high dimensional space is computationally very expensive. Alternatively, the

non-linear SVM using a kernel trick provides a computationally feasible solution

that produces the same results as what the non-linear mapping functions would.

The kernel trick with a kernel function eliminated the need to know explicitly

about the required higher dimensionality and the non-linear mapping function.

Popular kernel functions are polynomial, radial basis function of Gaussian, and

sigmoidal. The non-linear SVM finds nonlinear decision boundaries in the orig-

inal feature space. Although a limitation of SVM is in that the best kernel function

for a given problem is typically found by trial and error, the kernel trick alone or

the non-linear SVM itself has been combined with many popular feature extrac-

tion methods to make an effective framework for classification and regression

analysis, such as kernel-PCA (Sch€olkopf et al. 1998; Zhang et al. 2012; Zhu

et al. 2007), kernel discriminant analysis (Mika et al. 1999), and PCA-SVM

(Zhang et al. 2012) and LDA-SVM.
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4.15 Feature Selection

4.15.1 Search Algorithms and Selection Criteria

In machine learning, feature extraction refers to a process to transform the input

features to a set of new features in a lower dimensional space, whereas feature

selection refers to a process to select a subset of the input features without a

transformation. That’s why feature selection is also called feature subset selection.

Like feature extraction, feature selection requires the optimization of a objective

function, J. For feature selection, the optimization finds a subset over the set of all

possible subsets. Thus, the best subset X is found by optimizing the following

objective function,

max
X2Xd

J Xð Þ

where Xd is the set of all possible subset combinations obtained from the input

features. To solve this optimization problem, feature selection typically requires a

search strategy to select candidate feature subsets and an objective function to evaluate

the feature subset candidates. Some examples of search algorithms (Webb 2002) are

branch and bound, greedy hill climbing, exhaustive search (usually computationally

most expensive), sequential forward selection, sequential backward selection, bidi-

rectional search, projection pursuit, etc. When a search algorithm suffers from local

minima, a randomized search strategy such as simulated annealing and genetic

algorithms can be used by incorporating randomness in the search procedure to escape

from the local minima (Liu and Motoda 2007). The objective functions for feature

selection fall into three groups: filter, wrapper, and embedded methods (Guyon and

Elisseeff 2003; Molina et al. 2002). Filter methods evaluate the candidate subsets by

the information content such as distance, separability, correlation and mutual infor-

mation. Wrapper methods use a classifier to evaluate the candidate subsets by the

classification performance (accuracy or error rate) on test data generated by statistical

resampling or cross-validation. The wrapper methods usually provide the explicit best

feature subset optimized for a given learning model, whereas the filter methods

typically provide a feature ranking. The wrapper methods may suffer from the risk

of overfitting and are computationally expensive. The filter methods, however, are

much faster to compute than the wrappers. Embeddedmethods incorporate the feature

selection process into a learning model. The computational complexity of embedded

methods is between filters and wrappers.

4.15.2 Band Selection

Feature selection has been proven to be effective in many multivariate data analysis

and classification tasks such as DNA microarray analysis and hyperspectral image

classification, especially when there are many more features (i.e., variables) than
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samples. Although the “feature selection” terminology has been widely used and

recognized in many fields, this feature selection problem is also commonly known

as a band selection problem in the hyperspectral imaging literature (Bajwa

et al. 2004; Nakariyakul and Casasent 2004; Martı́nez-Us�o et al. 2006; Su

et al. 2008). In fact, a band selection problem is a particular case of feature

selection, specifically to reduce the dimensionality of hyperspectral images and

find the important and useful features, i.e., wavelengths, for analysis, classification

and regression. Therefore, any feature selection methods mentioned previously can

be used to solve the band selection problem. In this section, we introduce a band

selection method with PCA that provides a practically feasible solution.

Band selection refers to a process to identify a few wavelengths that provide

discriminative information. Although PCA is widely used as a feature extraction

method, it can be used for feature selection (Yoon et al. 2009; Koonsanit et al. 2012;

Song et al. 2010; Malhi and Gao 2004; Cataltepe et al. 2007; Cohena et al. 2013).

The basic idea of using PCA for feature selection is to select variables (i.e.,

wavelengths) according to the magnitude of the coefficients of loadings because

the loadings can be understood as the weights (or the amount of contribution) of

each input variable to the principal component. To determine the contribution of

each of all n bands to the new features (PC score image bands in this case), the

squares of the loading vector coefficients at each band are computed and normal-

ized to the sum of 1 by the following equation:

Wk ið Þ ¼ Pk ið Þ2Xn

i¼1
Pk ið Þ2

, i 2 1; . . . ; nf g

where Wk(i) is a weighting factor of the i-th band of the k-th principal component,

Pk(i), i.e., a loading vector. We call all of Wk(i) the PCA-band weightings. The

PCA-band weightings of the first several principal components can be examined to

select the wavelengths.

4.16 Fusion of Spatial and Spectral Information

In this section, we briefly introduce a new trend in hyperspectral image processing:

fusion of spatial and spectral information for hyperspectral image processing under

a unified mathematical framework or an integrated processing algorithm. The

widely accepted practice in processing hyperspectral images is the separate appli-

cation of spatial and spectral processing methods (Plaza et al. 2009). No matter how

the spectral data was processed, separate spatial processing methods were typically

used to extract and enhance spatial features and suppress spatial noise, all indepen-

dent of spectral processing. However, there is a growing need for processing

spectral data in a spatial context or vice versa. The review paper of Plaza

et al. (2009) provides an overview of recent developments in using both spatial
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and spectral information for hyperspectral image processing. These developments

roughly fall into two categories. The first category is composite kernel methods

utilizing cross-information between kernels for spatial (textual) and spectral feature

extraction. A composite kernel machine developed by Camps-Valls et al. (2006)

was applied to hyperspectral image classificaiton. The second category is the

integration of spatial and spectral information for classification, segmentation and

unmixing. Mathematical morphology (Fauvel et al. 2013) and Markov random

fields (Jackson and Landgrebe 2002) were used for classification that integrated

spectral features with spatial features such as size, orientation, contrast, and local

homogeneity. For hyperspectral image segmentation, an iterative algorithm, called

a butterfly approach, was developed by extracting both spatial topology and spectral

latent variable (Gorretta et al. 2009). Mendoza et al. (2011) used 294 spatial and

spectral features for predicting apple quality attributes with a PLS regression

model. Martı́n and Plaza (2012) combined spatial homogeneity information and

spectrally pure pixels for endmember extraction and spectral unmixing.

Although the resolution and quality of hyperspectral images generated for food

and agricultural applications have been improved in recent years, it is still a difficult

task to define pixels or regions that are both spatially and spectrally homogenous

and thus to extract useful or relevant spectral features in a spatial context. None-

theless, the incorporation of the spatial information and spectral signatures into a

unified hyperspectral image processing algorithm is highly desirable. Hence, we

foresee that the number of publications in this area will be increasing in near future.

4.17 Summary and Discussion

In this chapter, we described a variety of different methods and techniques for

hyperspectral image processing from acquisition to dimensionality reduction.

There are many more topics not covered in this chapter. For example, pattern

recognition techniques such as supervised classification and unsupervised cluster-

ing algorithms were not discussed in this chapter. Instead, we focused on

preprocessing and feature extraction and selection methods that can be used as

inputs to a pattern recognition algorithm. It is not an easy task to determine the best

pattern recognition algorithm for a given application because there are many

pre-steps affecting the performance of the final algorithm. These pre-steps men-

tioned in this chapter are mainly about how to acquire, preprocess hyperspectral

images and which features are used for the given application. If these pre-steps are

carefully designed and executed, the selection of the best pattern recognition

algorithm often becomes trivial. Although, in some applications, it is not possible

to separate the feature selection and/or extraction from the classifier design, it is

advisable to design a pattern recognition algorithm with the data in the reduced

dimensional space.
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Chapter 5

Classification and Prediction Methods

James E. Burger and Aoife A. Gowen

Dedication
In the memory of Dr. James Burger
Jim Burger was a great friend, teacher and mentor.
He brought life into hyperspectral imaging through his
unyielding enthusiasm and positivity. Indeed, this paper
would never have come to life without his encouragement
and persistence. Jim was unique in that he looked at science
through the eyes of a child—always full of wonder and joy.
This was manifested in his hyperspectral research
workshops, most notably “Hyperfest 2010 and 2012” and in
the IASIM (International Association for Spectral Imaging)
meetings he championed. His passing in September 2014 has
left a huge gap, both in our hearts and in the wider
hyperspectral imaging community.

5.1 Introduction

The primary goal of hyperspectral imaging (HSI) is to obtain quantitative or

qualitative information from a scene or object in a non-destructive manner, based

on its optical properties. Visual inspection of such data is limited, due to the large

number (>100) of spectral channels and spatial locations (>10,000 pixels) in

each hyperspectral image. Moreover, in the process control environment, where

thousands of hyperspectral images are generated in minutes, visual inspection is
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impossible. Indeed, the reason for implementing HSI in such settings is to facilitate

automated quality control. Thus the need for automatic techniques to extract

meaningful information from HSI arises. This often means the derivation of very

few summary values from the massive amount of data contained within individual

hyperspectral images.

Luckily, due mainly to advances in digital signal/image processing techniques in

the past 50 years, there now exists a huge variety of methods with which to mine

data. These have been assimilated into, among other fields, the estimation of

chemical properties from multivariate data, chemometrics, which forms the basis

of multivariate image analysis (MIA). Hyperspectral images can be viewed as

multivariate in two senses; each pixel is represented by multiple wavelength vari-

ables, equally each wavelength is represented by multiple intensity values (pixels).

Therefore the tools of chemometrics and MIA are highly suitable for analysis of

HSI data.

A selection of the most commonly used data analysis techniques applied to

classification and prediction of HSI data is presented in Table 5.1. It is evident from

this table that a multitude of techniques exist with which to tackle HSI data, whose

variety seems to be ever expanding. This stems from the fact that there is no “best”

method to deal with such data. Generally, problems nonlinear in nature benefit from

the use of nonlinear techniques, such as support vector machines (SVMs), while

linear techniques such as principal components analysis (PCA) are better suited to

linear data. However, care must be taken to include sufficient independent datasets

to avoid model overfitting. The fundamental theories behind many of the methods

listed in Table 5.1, while outside of the scope of this chapter, can be found in

various excellent books (Brown et al. 2009; Otto 1999).

Chemical quantification or classification is the basis of HCI. In this chapter,

steps involved in the development of classification and prediction models from HCI

data will be explained by examining results of their application to an example

image. This sample image represents a familiar yet challenging real world example

containing common objects—a raisin, a piece of wood, string, rice, a walnut and a

paperclip (Fig. 5.1)—that we know and can easily recognize. This image is

presented to illustrate and explore some of the basic concepts of MIA and the

visual interpretation of subsequent results. These familiar objects illustrate some of

the common challenges faced in HCI. Walnut and raisin have interesting textures

with deep shadows, while wood and string are materials with similar compositions

but with differing physical properties. The grains of rice exhibit heterogeneity—the

embryo being clearly distinguished from the endosperm. To facilitate the isolation

of the individual objects in this example image, all objects were placed on a

background of black silicon carbide sandpaper, since this material is a very low

absorber of NIR light. In addition to their differing chemical and physical makeup,

all objects are non-flat and exhibit different morphologies; this results in shadow

effects, non-uniform light distribution, and variable sample to detector distances.

These effects all add variability to the spectra of each sample.
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The example HCI hypercube used in this discussion has spatial dimensions

of 600� 318 pixels (each 100� 100 μm in size) and 207 wavelength channels

(962–1,643 nm), acquired with a BurgerMetrics HyperPro NIR imaging system

(Martens and Dardenne 1998).

Table 5.1 A selection of signal processing techniques employed in hyperspectral image analysis

Classification/prediction method Frequencya

Support vector machines (SVMs) 20

Principal components analysis (PCA) 8

Fuzzy clustering 5

Partial least squares 4

Artificial Neural Networks 4

Multiple Linear Regression 4

Band arithmetic 3

Spectral Angle Mapper 3

Random forest 2

Kernel PCA 2

Linear Discriminant Analysis 2

Spatial/spectral approach 2

Maximum Likelihood Classification 2

Combination of magnitude and shape parameters 2

Minimum Noise Fraction 2

Classification trees 1

Genetic Algorithms 1

Local manifold learning 1

Markov Random Fields 1

Tensor modeling 1

Independent Components Analysis 1

Random Fields 2

Supervised local tangent space alignment 1

Multiscale approach 1

k-Nearest Neighbors 1

Fast Fourier Transform 1

Canonical Transformation 1

Nearest component analysis 1

Swarm Intelligence/Wavelet analysis 1

Soft Independent Modelling of Class Analogy 1

Morphological profiles 1

Adaptive Cosine Estimator 1

Matched filtering 1

Regularized Maximum Likelihood Clustering 1

Bayesian learning with Gaussian processes 1
aFrequency estimated as number of times employed within the first 100 publications base on WOS

search with title¼ (hyperspectral and (classification or prediction)), timespan¼ all years.

Databases¼ SCI-EXPANDED, SSCI, A&HCI. Carried out on 03/02/2011
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5.2 Multivariate Image Analysis Applied to HSI

HSI hypercubes are three dimensional data structures (spatial� spatial�wavelength);

however, most chemometric techniques are based on operations of two dimensional

structures (matrices). Consequently, the three dimensional hypercube must first be

rearranged prior to analysis. This is typically achieved by unfolding the three-

dimensional hypercube into a two-dimensional matrix of spectra by stacking each

pixel spectrum, one on top of the other, as shown in Fig. 5.2. This may be followed

by a chemometric technique that favors two-dimensional structures, for example, PCA.

The processing results, in this case score vectors, can then be refolded back to obtain

spatial image representations, in this case score images. Such unfolding> proces-
sing> refolding operations are common throughout many HCI—chemometric

operations.

5.2.1 Principle Components Analysis

PCA is a cornerstone of chemometrics. This unsupervised multivariate technique is

the basis for many exploratory and prediction techniques. In NIR spectroscopy,

some wavelength regions contain important information, while other regions are

redundant and contribute primarily noise. One of the main features of PCA is that

of data compression: high dimensional spectral data space is projected into a lower

dimensional latent variable space. Effectively, signal is separated from noise. PCA

bilinear decomposition provides a set of principle components (PCs) consisting of

loading and score vectors. These PCs are ordered in such a way as to explain a

sequentially decreasing amount of signal variance. What does all this mean? When

the sample data set contains only tens or perhaps hundreds of spectra, this PCA

compression may be difficult to understand. However this data compression is

easily understood in a visual examination of score images obtained by applying

PCA to HCI.

Fig. 5.1 Mean wavelength

image of an example

hypercube (obtained by

averaging each pixel over

the wavelength dimension),

where 1¼wood, 2¼ raisin,

3¼walnut, 4¼ rice,

5¼ string, 6¼ paperclip.

The image background can

also be included as an image

feature or class
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Our original HCI image contains 207 wavelength bands. Examination of the data

at any individual wavelength band will undoubtedly yield a spatial image with a

combination of identifiable features as well as background noise—every single

wavelength band contains both signal and noise components. Moreover, contiguous

wavelength band images in the hypercube are highly correlated. Our 207 wave-

length bands equates to a 207 dimensional spectral space. Is there a way to separate

the signal from noise? Are 207 dimensions required to explain the relevant infor-

mation within the full hypercube? PCA enables a lower dimensional representation

of the data by forming linear combinations of the original wavebands in directions

of maximal variance, but how many dimensions are really required to represent our

spectral data? Visual analysis of score images helps us to find the answers to these

questions.

Figure 5.3 shows PCA score images of our example image corresponding to

latent variables 1–12. The PC-1 projection axis represents the maximum variation

in data signal, and consequently score image 1 shows the maximum contrast

between pixel intensities in the image. We can see that physical variation due to

the non-flat surfaces of the samples contributes greatly to the variance described by

PC-1. For instance, the central region of the walnut is a similar gray level intensity

to the raisin and rice, while the edges of the walnut have a similar grey level to the

wood. Rather than contrasting between the different substances, this score image

gives us contrast based on the physical texture of the samples. This demonstrates

that PCA finds the directions of maximal variance in the data, regardless of their

source. This may imply a need for spectral pretreatments such as standard normal

variate or derivative transforms to reduce the influence of light scattering effects

brought on by the physical properties of these kinds of samples. Score image

2 represents the HCI data projected to the PC-2 axis orthogonal to PC-1. In this

image, the paperclip and the cellulose based objects (string and wood) are distin-

guishable from the food products (raisin, walnut and rice). Score image 3 distin-

guishes the walnut and paperclip from the other objects, while score image

4 distinguishes the paperclip from the other objects. One of the predominant

questions of PCA is how many PCs to retain in order to fully explain the data

space. Paging through sequential score images can contribute to a further

λ

λ1λ2 ...λm

0

λ PC

1
n n

1

Hypercube Score imagesSpectra Scores

Unfolding RefoldingPCA

PC

PC1PC2...PCp

Fig. 5.2 Fundamental unfolding, processing, and refolding of HCI data
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understanding of data space dimensionality. This is a distinct example of the image
advantage of HCI. As the number of the PC increases, noise becomes more

prevalent in the images. For example, the PC-11 score image appears extremely

noisy, containing very little signal from the object features. PCs and score images

beyond this essentially contain only noise, and can be excluded from further

analysis. In such an image sequence we can clearly visualize the effect of PCA

data compression.

It should also be noted that, in this example, the gray levels of the displayed

score images have been autoscaled, i.e., the minimum gray level in the image

corresponds to the minimum score value and likewise for the maximum. In some

applications, PCs may not be monotonic in terms of information content. Signif-

icant noise present in the data can often contribute to a large portion of the

variance manifesting in major PCs, while smaller contributions to variance from

objects in an image may not appear until later PCs. In this case, autoscaling the

score images is especially beneficial and may help to expose these minor object

components to visual inspection. It is equally important, however, that

autoscaling not be driven by extreme outlier values. Any extreme outliers in the

score space should be removed before autoscaling, otherwise their inclusion

would expand the scale of the image and thereby suppress finer details. It is

also important to consider the eigenvalue corresponding to each score image.

Image details apparent in low eigenvalue images may actually correspond to

primarily only noise. If the score images are scaled by their respective eigen-

values, the sequential decrease in signal content is even more visually apparent.

Fig. 5.3 Principal component (PC) score images for test hypercube. Beyond 11 PCs the

contribution is largely noise
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Another important point to note is that the sign of PCA loading vectors is

ambiguous. This means that the score images shown for example in Fig. 5.4a, b

are equally relevant. Even though they are simply the inverse of each other, it may

be possible to make distinctly different visual interpretations of the two inverted

score images. For example, the raisin appears to have greater detail in Fig. 5.4b than

a, while the opposite is true for the piece of string. It is therefore important to

always consider this inverse of a score image as a source of additional information.

Although scrolling though individual score image is instructive, there are other,

more intuitive ways in which to visualize PCA results. Some examples are given in

Fig. 5.5: false color red-green-blue (‘RGB’) mapping; scatter plots of all pixels in

2-dimensions and 3-dimensional scatter plot showing scores of spectral subsets of

each object. The false color ‘RGB’ mapping is obtained by concatenating the

autoscaled PC score 1, 2 and 3 images, so that each image pixel has an R, G and B

channel intensity corresponding to scores 1, 2 and 3. This image shows clear ‘color’

distinction between some objects, but also some similarity problems between

objects of different composition (e.g., wood and string, raisin and rice). The 2D

scatter plot of PC1 and PC2 scores from each pixel of the entire image is colorized to

represent cloud density (i.e., the number of pixels with overlapping score 1 and score

2 values). With this approach, clusters corresponding to individual objects can

be seen: the main clusters are identified as wood, walnut, raisin, paperclip and

background, as shown in Fig. 5.5. In addition, a random selection of 500 spectra

(mean centered) from the six featured classes is plotted in 3D score space. The colors

of classes within the various data-clouds show both separation and overlap of

classes, as well as differences in within class variance. In particular, the string

class (shown in magenta) has huge variance, most likely due to regions of specular

Fig. 5.4 Sign ambiguity of loading vectors and consequently of score images. (a) Original score
image and loading vector and (b) inverse of image and loading vector shown in (a)
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reflection which can be clearly seen in Fig. 5.1. Although hypercubes contain a

massive quantity of data, this assortment of viewing tools coupled with PCA should

always be considered to fully explore the basic variance structure of sample data.

5.2.2 Partial Least Squares: Discriminant Analysis

Classification of hyperspectral images can be achieved by identifying regions or

objects of similar characteristics using the spectral and spatial information contained

in the hypercube. In contrast to unsupervised methods such as PCA, supervised

classification methods require the selection and labeling of representative calibra-

tion and training sets for classifier optimization. One of the major advantages of

HSI in this respect is the sheer volume of data available in each hypercube with

which to create robust calibration and training sets. Since PLS is one of the most

widely used chemometric methods in HSI quantification and classification, we will

present the example of PLS discriminant analysis (PLS-DA) here to demonstrate the

use of HCI in interpretation of a supervised chemometric method (and vice versa).

Although alternate chemometric methods may differ in the ‘nuts and bolts’ of how

Fig. 5.5 Alternate strategies for visualizing PC scores: false color ‘RGB’ mapping is obtained by

concatenating the auto-scaled score 1, 2 and 3 images; 2D scatter plot of PC1 and PC2 scores from

each pixel of the entire image and 3D scatter plot of a random selection of 500 spectra (mean

centered) from the six featured classes (dark green¼walnut, blue¼ raisin, magenta¼ string,

cyan¼ paperclip, red¼wood, yellow¼ rice)
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they treat the input data, their application to HSI data can be roughly generalized in a

consistent manner. The development of the classification or prediction model

generally begins with data pretreatment (spatial or spectral) followed by selection

of regions of interest (ROIs). A data reduction step is then performed to create

training set data, followed by calibration model development. Evaluation of inde-

pendent test set is essential for model validation.

The typical steps in the building of a supervised classification model are shown

in Fig. 5.6. The beginning phase of this modeling process provides the greatest

opportunity for user input to impact the performance of the resulting model. First,

spectral preprocessing options such as first or second derivatives, detrending, or

normalizations, must be chosen to maximize intra-class variations while minimiz-

ing inter-class variations and the effects of systematic variances due to, for exam-

ple, instrumentation instabilities. Such transformations are generally application

specific and must simply be tested to explore which are most appropriate in any

given situation. The second and probably most critical step of model construction

involves the selection of proper spectra from the hyperspectral imaging data to

adequately represent each class of interest. ROIs must be selected which capture as

much as possible the variance of each desired class. This is especially important

when a desired class contains spectral variations due to physical conditions such as

sample height or shadow effects imposed by surface textures. ROIs may be selected

Fig. 5.6 Fundamental steps involved in developing classification models from hyperspectral

chemical image (HCI) data
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from just one hyperspectral image, if all variations of all classes of interest are

present in that image; however, it is preferable to select spectra from a number of

hypercubes in order to include in the model additional potential sources of vari-

ability arising from images taken at different times (e.g., spectral differences arising

from changes in the detector response or sample preparation and presentation

methodology). This ROI selection process may result in spectral datasets

containing thousands of spectra. One of the advantages of hyperspectral imaging

is the availability of large collections of spectra which can be split into training and

testing or model validation subsets. Further data reduction of model training sets

can be achieved by computing either mean spectra, or by randomly selecting

smaller subsets of spectra for each class. The implications of these approaches

will be discussed further in following sections of this chapter.

For classification purposes a categorical variable must be maintained which is a

vector of the same length as the spectral data matrix, containing information on the

class that each spectrum belongs to. A classifier model must be computed for each

individual class. A ‘Y-block’ reference vector is created for each class, typically

containing values of one or zero, indicating whether each spectrum is or is not a

class member. Once a suitable classifier has been trained it can be applied to the

entire unfolded hypercube (or for classification of new hypercubes) providing a

classification prediction for every spectrum. Because of the immense quantity of

hyperspectral data, alternative representations of results should be explored:

1. Predictions may be refolded, resulting in a spatial image known as a prediction

map. Typically each class is assigned a unique color or grayscale value for

identification of classified pixels in the prediction image map.

2. Histograms can be created for examining the distribution of prediction values for

an individual class.

3. Classification confusion tables can be created which summarize the counts of

classified and mis-classified data. Interactive software which provides simulta-

neous displays of these results may lead to fully optimized classification models.

For example, implications from modifications to the class threshold value, a

limit which defines the boundary for class membership, can be immediately

explored by examination of the spatial maps and confusion tables. These ideas

are presented in the following case study using the BurgerMetrics HyperSee™
image analysis software.

5.2.3 Case Study Description

As a case study of the development of PLS-DA models from HCI data, we

demonstrate the prediction of seven classes in the example image. As previously

mentioned, the first step in developing a classification model is the selection of data

to be included in the calibration set. We will present a variety of methods for doing

this, and compare them in terms of the visual quality of prediction maps and

classification accuracy of the resultant models. The selection methods we present
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can be broadly partitioned into two groups: in the first group, calibration spectra

were selected from a rectangular ROI on each object, shown in Fig. 5.7a; in the

second group, spectra were selected from spatial regions representing full objects

(with the exception of the background class, where three ROIs were selected in order

to keep the number of pixel spectra in each class comparable), shown in Fig. 5.7b).

The ROIs were selected interactively using HyperSee™ software.

The various modeling strategies explored in this case study are listed in

Table 5.2. The three sampling strategies employed were as follows:

1. Mean spectra: within each ROI, 200 pixel spectra were randomly selected. The

mean of these 200 pixel spectra, matched to the categorical variable describing

its class, was used for model building (cases 1 and 5 in Table 5.2)

2. Pixel spectra: within each ROI, 200 pixel spectra were randomly selected. Each

was matched to the categorical variable corresponding to its class for model

building (cases 2, 3, 6 and 7 in Table 5.2)

3. Resampling: within each ROI, 200 pixel spectra were randomly selected. Each

was matched to the same categorical variable for model building. This random

selection process was repeated 50 times (cases 4 and 8–13 in Table 5.2). The

regression vectors from the 50 resulting calibration models were then averaged

It is often necessary to apply spectral pretreatments to HCI data. There is a wide

variety to choose from, ranging from baseline to multiplicative scatter correction;

however, in this case study we will consider only two: standard normal variate

(SNV, case 12 in Table 5.2) and first derivative Savitsky Golay pretreatment (case

13 in Table 5.2).

As previously mentioned, we wish to build a PLS-DA model for each class

present in the image. In order to do this for a given class, the calibration spectra

representing that class are assigned a categorical value of 1. The remaining ‘non-

class’ spectra in the calibration set are assigned a categorical value of 0. In the

Number of Pixels Wood Raisin Walnut Rice String Paperclip Background

Rectangle 1715 2800 3074 958 1500 350 2050
Full Object 8534 16038 31715 4848 3830 8557 13838

a b

c

Fig. 5.7 Selecting regions of interest (ROIs) for development of classification models.

(a) rectangle ROI, (b) full object ROI, and (c) number of pixels of each class in each ROI
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development of a PLS-DA model it is first necessary to build a PLS regression

(PLSR) model to predict the categorical variable. The number of latent variables to

include in the classification model must be determined. This is by no means a trivial

task—the inclusion of too many latent variables can lead to poor predictive

performance on independent test sets due to overfitting. Numerous methods are

available to aid in the selection of the number of latent variables in a PLSR model

(Martens and Dardenne 1998; Wiklund et al. 2007; Gowen et al. 2011); however, it

is outside of the scope of the current chapter to review them. In the presented case

study, for comparative purposes the optimum number of latent variables for each

model was systematically estimated as the number after which the % explained

variance in the categorical variable became less than one.

After selecting the number of latent variables to include, the predicted class

values for each sample may be investigated. Since PLSR is a regression method, the

predicted class values are distributions of values around 0 and 1 rather than exact

class values. In HCI, it is useful to visualize these predicted values as a histogram,

as shown in Fig. 5.8. In order to step from PLSR to PLS-DA, it is necessary to select

a threshold, such that samples with predicted values greater than the threshold will

be classified as ‘in class’ or 1, and vice versa. In this case study, four threshold

selection approaches were investigated:

1. ‘0.5’ (cases 1, 2, 5 and 6 in Table 5.2): the threshold was set to 0.5. This threshold
value is commonly selected, since it lies in the middle of the interval [0, 1].

2. ‘Auto’ (cases 3, 4, 7, 8, 9, 12, 13 in Table 5.2): the threshold was set by

an automatic procedure in HyperSee™ software, based on the means and

Table 5.2 Training set details (in all cases, 200 spectra were randomly selected from each class

ROI)

Case # Mean ROI Threshold Re-sample Pre-process

1 Y Rectangle 0.5 1

2a Rectangle 0.5 1

3 Rectangle Auto 1

4 Rectangle Auto 50

5 Y Full object 0.5 1

6b Full object 0.5 1

7 Full object Auto 1

8 Full object Auto 50

9c Full object Auto 50

10d Full object Conservative 50

11d Full object Liberal 50

12 Full object Auto 50 SNV

13 Full object Auto 50 FirstD
aBased on case 3 model, thresholds manually set to 0.5
bBased on case 7 model, thresholds manually set to 0.5
cCase 9 is a repeat of case 8
dBased on case 9 model, thresholds manually adjusted
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standard deviations of the ‘class’ and ‘non-class’ samples. An example threshold

estimated using this approach is shown in Fig. 5.8a.

3. ‘Conservative’ (case 10 in Table 5.2): when the histogram of the test set is

examined (Fig. 5.8b), the automatically selected threshold appears on the edge

of the ‘non class’ distribution. Visually, a more satisfying threshold would lie

somewhere in the valley between the two distributions. This is what we call the

conservative approach. The threshold for each class model is selected in an

interactive way by visualization of the histogram of predicted values (Fig. 5.8c).

4. ‘Liberal’ (case 11): this method of threshold selection is highly interactive: it

involves selecting the threshold by simultaneously considering the histogram

and the prediction accuracy, viewing the display of the spatial class prediction

map, and by selecting the threshold that maximizes the diagonal elements but

minimizes the off diagonal elements of the confusion matrix (Fig. 5.8d).

5.2.4 Comparison of Prediction Model Results

The prediction maps for cases 1–8 (described in Table 5.2) are shown in Fig. 5.9a.

The advantage of using pixel spectra (cases 2–4 and 6–8) over mean spectra (cases

1 and 5) is evident: the prediction maps arising from the models built with pixel

spectra have far fewer misclassifications than those built with mean spectra.

Comparing the models built with spectra selected from square ROIs (cases 1–4)

-0.5 -0.1 0.3 0.7 1.1 1.5 -0.5 -0.1 0.3 0.7 1.1 1.5-0.5 -0.1 0.3 0.7 1.1 1.5 -0.5 -0.1 0.3 0.7 1.1 1.5 -0.5 -0.1 0.3 0.7 1.1 1.5

ba

d

c

Fig. 5.8 Setting thresholds in PLS-DAmodels of HCI data. The histograms shown here are for the

raisin class and correspond to cases 9–11. (a) Histogram for calibration training set with automatic

threshold displayed at 0.27, (b) histogram for test set with automatic threshold displayed at 0.27,

(c) threshold manually adjusted to 0.46, and (d) confusion table for prediction of each class
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with those selected from full object ROIs (cases 5–8), there is obviously less

misclassification when the full object ROIs are used. This is particularly evident

for the raisin object, regions of which are misclassified as string or rice in a number

of the prediction maps. How can we account for these differences? Imagine viewing

the class spectra in a multi-dimensional spectral space scatter plot, similar to

Fig. 5.5c. Basing a classification model on mean spectra from each class utilizes

only the differences in distance between class centers. When variations within a

class are included, improved discriminating class boundaries can be found which

account for the variation in size and shape of each class. Additionally, when an

Fig. 5.9 Prediction maps for models built according to strategies described in Table 5.2
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individual class contains excessive variations (e.g., peripheral sample shadow

effects) it is important to include the full object, not just a subset rectangular

ROI, to adequately define the complete class region.

There appears to be fewer misclassified pixels when the automatic thresholding

method was applied (cases 3 and 7), as compared to setting the threshold to 0.5

(cases 2 and 6), although this advantage is more evident for the square ROIs (cases

3 and 2) than for the full object ROIs (cases 7 and 6). Some misclassification of

background pixels becomes evident upon the use of automatic thresholding (case

7). There is a slight visible improvement upon the use of resampling for the models

based on square ROIs (compare cases 3 and 4), in terms of fewer misclassifications

on the raisin object, and fewer misclassified background pixels for the models based

on full image ROIs (compare cases 7 and 8). The misclassification of edge regions

of the rice grains persists throughout all prediction images. In this example case

image, the effect of resampling is diminished by the fact that 200 randomly selected

spectra were used to define the variation in each class. Resampling these 200 spectra

provides little change in the variation of each class. Resampling is more effective

when the availability of representative class spectra is reduced. Case 9 is simply a

repeat of case 8 to check the repeatability of the resampling method. In this case the

number of factors for each class model, the automatic threshold values, and

the training and test set prediction counts were nearly identical to case 8 values.

The random resampling method appears to create very repeatable robust models.

Comparing conservative thresholding (case 10) with automatic thresholding

(case 8), it seems that by setting the threshold conservatively, there is a problem

with edge classification, with most of the object edges being unclassified. Liberal

thresholding (case 11) gives a better result, with a prediction map comparable to

Fig. 5.9 (continued)
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that obtained using the automatic threshold; however, a number of background

pixels are misclassified. The repositioning of class thresholds is a very subjective

process and must be carefully reconsidered with any application. Results should

also be confirmed with truly independent test images, which for brevity, was not

included here. The SNV pretreatment (case 12) resulted in a noisy looking predic-

tion map; for example, many pixels in the background were misclassified. This may

be due to the inflation of noise in the spectra upon using this pretreatment. Such a

high level of noise was not as apparent on the application of the first derivative

pretreatment (case 13). The application of this pretreatment resulted in a prediction

map similar to that for resampled raw spectra selected from the full images (case 8).

As with threshold values, spectral pretreatments are also application specific and

must be applied with caution.

In conjunction with examining the prediction maps for each model, it is also

useful to quantify the model performance by calculating the percentage of correct

and mis-classifications associated with each model. These can be plotted for each

class or on an average basis, as shown in Fig. 5.10. It should be noted that these

charts are based on combined training and test set statistics, which represents a

subset of the full image prediction maps of Fig. 5.9. The summary statistics

displayed in Fig. 5.10 are very informative: immediately we can pick out the

worst performing strategies—cases 1 and 5—which were based on mean spectra.

This is in agreement with the visual inspection of full image prediction maps arising

from these models. The advantage of using the automatic thresholding method

instead of using a threshold of 0.5 is confirmed by comparing cases 6 and 7. The

advantage of resampling was less clear; the percentage correct classification for

models built using resampled spectra (cases 4 and 8) and those built without

resampling (cases 3 and 7) were not obviously higher; however the % false

positives was slightly lower for the resampled data. This is in agreement with

visual analysis of the prediction maps. The conservative thresholding approach

(case 10) resulted in the lowest % false positives; however, this came at the expense

of lower % correctly classified spectra. The liberal thresholding (case 11) approach

maintained a high % correct classification, but this came at the cost of a higher %

false positives. The manual selection of thresholds used can be optimized according

to application specific needs of total correct and false positive classifications.

Figures 5.9 and 5.10 appear to show conflicting results for cases 12 and 13, i.e.,

prediction maps (Fig. 5.9b) for case 12 appear to contain more mis-classifications,

whereas the summary statistics (Fig. 5.10) for case 12 indicated a slightly higher

correct classification and lower false positive classification percentage than case 13.

This can be explained because the summary statistics are based on only test plus

training areas, which do not include for example, the highly mis-classified back-

ground regions seen in Fig. 5.9b.

In addition to examining the numbers of positive predictions or false positive

predictions, sometimes it can be beneficial to create maps identifying the class

members not correctly classified. Figure 5.11 presents these negative prediction

maps for some of the processing cases. It is apparent that the majority of pixels not

classified are along the edges of the featured objects, where dark shadows make
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Fig. 5.10 (a) % Correct classification for each class/modeling method and (b) % false positives

for each class/modeling method (see Table 5.2) (Average classification performance over different

samples for each method is shown in black and white bar chart)
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spectral measurements difficult. If these pixels are less important, then manually

adjusting the threshold levels may be advantageous. The three cases displayed in

the left column reflect this: the case 8 map shows the default ‘automated’ results.

Increasing the threshold limits to minimize false positives (case 10) increased

the non-classified edge pixels significantly. Whereas decreasing the thresholds

enabled better classification of the wood and rice edge pixels, but increased

the non-classification of string edge and background pixels. The case 5 map

indicates the areas of the objects not classified because their variance was not

captured properly by the mean spectra used for model building. The cases 12 and

13 maps provide additional information regarding the effect of spectral

preprocessing on each specific class; here we can see that the SNV pretreatment

(case 12) resulted in a lower number of incorrectly-classified pixels than the first

derivative pretreatment (case 13).

Fig. 5.11 Identification of training and test pixels which are not detected can also contribute to

model optimizations
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5.3 Incorporating Spatial Information in Model
Development

The methods for HSI classification discussed above take only information in the

spectral domain into account, discarding the extra information available in the

spatial domain. This is mainly due to the fact that these methods were developed

for conventional NIR spectral data where spatial information is absent. Such

methods do not exploit the fact that the spatial domain is also useful for model

evaluation and development. Recently, a number of novel HSI classification

methods have been presented that take the spatial information into account. One

category of such approaches extends existing clustering methods by including

spatial information in the feature vector (Camps-Valls et al. 2006; Noordam and

van den Broek 2002). Another category of approaches considers the spectral and

spatial domains in succession. A combined spectral-spatial method, applied to

multispectral remote sensing data was presented by Marçal and Castro (2005).

This method takes, as an input, a classification map obtained from the original

multispectral image using an unsupervised classifier operating on the spectral

domain. Hierarchical clustering is then applied to the classification map based on

an aggregation index that simultaneously characterizes each class by its mean

spectrum, size (relative to the image) and two spatial indices (boundary and

compactness). The method is computationally efficient and has been demonstrated

to work well on a test image. However, it suffers from the indeterminacy of tuning

coefficients that weigh each element of the aggregation index. Moreover, the

required prior classification step can result in different class maps depending on

the choice of unsupervised classifier.

More recently, Gorretta et al. (2009) proposed an elegantly titled “butterfly

approach” which combines topological concepts and chemometric analysis, using

an iterative cross analysis of data in spectral and spatial domains. As a first step,

spatial structures in an image are defined based on spectral structure; the second

step is to extract a spectral structure based on spatial structure. PCA is employed for

extracting spectral structures while spatial structures are extracted by applying

region segmentation algorithms to the PC score images. This approach demon-

strated promising results when applied to remote sensing hyperspectral images.

Another approach, proposed by Tarabalka et al. (2009), is based on partitional

clustering. This method implies the joint use of an unsupervised classifier based

on spectral data (e.g., ISODATA or expectation maximization) combined with a

pixel-wise classification by SVM. The results from both methods are overlaid in

the spatial domain and a maximum vote rule applied to classify pixels. An

additional post-processing step is then applied that uses spatial information

obtained from the classified image by assigning each pixel to the class most
represented by its neighbors. The definition of most represented rests on the

number of neighboring pixels required to have that class. Although the authors

show that this method improved classification in a number of remotely sensed

hyperspectral images, they also caution that such spatial post-processing might
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lead to the incorrect classification of pixels if a certain class is only present in one

or a small number of disjoint pixels. This problem is potentially severe in remote

sensing images where one pixel can represent a few square meters area, although

it has its analogue in higher resolution imaging should the target of interest be

small enough to span only one pixel. Therefore any prior knowledge on the

expected size of object regions compared with pixel size should be incorporated

into the analysis.

To demonstrate how spatial information might be incorporated in a classifica-

tion model in a simple way, we present a spatial postprocessing of case 12 in our

case study (Fig. 5.9b). Based on visual observation of the prediction maps, case

12 was a poor model, with numerous background pixels being misclassified. It is

possible to improve the appearance of this classification map by spatial filtering.

This consists of choosing a window around each pixel (e.g., a 3� 3 window

around a central pixel), and replacing each pixel in that window by the median or

mode of the pixel values in the window. In Fig. 5.12 we compare the effects of

changing the window size and the difference between using the median or mode

value of the window pixels for filtering. It can be seen that these kinds of spatial

operation are useful for the removal of isolated misclassified pixels. In this case,

the mode filter was more effective than the median filter; for example, the median

filter retained misclassified pixels on the edge of the wood sample, whereas the

mode filter did not. In addition, the effect of increasing window size is apparent:

this improved the classification of interior parts of the samples. However, this

occurred at the expense of some ‘smearing’ where separate objects, e.g., rice

grains, began to merge. Effects such as these depend greatly on the type of sample

to be imaged, and should be taken into consideration when choosing a window

size for spatial post processing.

5.4 Summary

In this chapter we have presented some specific hyperspectral image processing

tools which allow extraction of information, focusing on data exploration (PCA)

and classification (PLS-DA) of common objects identifiable in a representative

image. We have demonstrated how various graphical data representations such as

histograms and color coded prediction maps can be used to further the understand-

ing of multivariate model building. In particular we have shown how interactive

software tools can be used to assist with the optimization of model performance.

Training and test data set selection is essential to capture the full variance of

individual classes. The effects of model parameters such as the number of latent

variables, classification thresholds, and spectral preprocessing treatments can be

spatially visualized for comparison purposes. Additional prediction improvements

may be achieved by applying spatial filters to prediction maps.

The selection of spectral pretreatment, calibration technique and model param-

eters (e.g., number of latent variables, class boundary thresholds) is generally
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application dependent. However, the graphical tools presented here: confusion

matrices, histogram distributions and color coded maps of both positive and

negative predictions, can always be used for model comparison, regardless of the

modeling technique applied. In all cases, however, the results of model prediction

should be validated with truly independent image data.

Fig. 5.12 Spatial filtering of case 12 prediction image using median and mode filters of different

window sizes
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Chapter 6

Safety Inspection of Plant Products

Haibo Yao, Zuzana Hruska, Robert L. Brown, Deepak Bhatnagar,

and Thomas E. Cleveland

6.1 Introduction

Outbreaks of food-borne illness create major headlines. Some recent examples

(Food Safety News 2011) are alfalfa and spicy sprouts contaminated with Salmo-
nella enteritidis and cantaloupe contaminated with Listeria monocytogenes in the

US, and the outbreak of E. coli O104:H4 in Germany due to contaminated

fenugreek seeds. For consumers, the demand for safe food is paramount. The

food industry and its associated research communities are always challenged to

meet the safety requirements of the public and continually seek new technologies

for safety inspection of food products and process control. In the past decade, one

type of technology, hyperspectral imaging, has made significant progress for the

food industry in addressing rapid and non-destructive inspection of food quality

and safety issues (Kim et al. 2001, 2004; Park et al. 2002; Lawrence et al. 2003a;

Lu 2003; Zavattini et al. 2004; Gowen et al. 2007; Chao et al. 2007a; Yoon

et al. 2011). Hyperspectral imaging technology integrates both imaging and

spectroscopy into unique imaging sensors producing hyperspectral images with

exceptional spectral and spatial resolution. A single hyperspectral image has a
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contiguous spectral resolution between one and several nanometers, with the

number of bands ranging from tens to hundreds. Generally, high spectral resolu-

tion images can be used to study either the physical characteristics of an object at

each pixel by looking at the shape of the spectral reflectance curves or the

spectral/spatial relationships of different classes using pattern recognition and

image processing methods. By investigating the physical, biological, and chem-

ical properties of food products using both spatial and spectroscopic information,

the hyperspectral technology offers an alternative and often superior method for

assessment of food safety.

Hyperspectral imagery was traditionally used in earth remote sensing applica-

tions incorporating aerial or satellite image data. More recently, low cost portable

hyperspectral sensing systems became available for laboratory-based research.

Typically, hyperspectral imaging is used as a research vehicle with full wavelength

analysis in the exploration phase of a research project. In most applications, the full

wavelength spectrum of data can be reduced to several key wavelengths for specific

subject matter. These wavelengths can then be implemented in a multispectral

mode for faster data acquisition. This way, rapid inspection can be realized in

real-time online applications. Many food-related research applications that used

hyperspectral technology are reported in literature. An incomplete list of these

applications includes Fusarium head blight (SCAB) detection in wheat (Delwiche

and Kim 2000), fecal contamination on apples (Kim et al. 2002a, b), aflatoxin

detection in corn kernels (Pearson et al. 2001; Yao et al. 2010a), identification

of fecal contamination on poultry carcasses (Park et al. 2002; Lawrence

et al. 2003a, b; Heitschmidt et al. 2007), detection of apple bruising (Lu 2003),

on-line measurement of grain quality (Maertens et al. 2004), detection of pits in

cherries (Qin and Lu 2005), detecting egg embryo development (Lawrence

et al. 2006), apple firmness estimation (Peng and Lu 2006; Lu 2007), quality

assessment of pickling cucumbers (Liu et al. 2006; Kavdir et al. 2007; Ariana

and Lu 2008), differentiation of wholesome and systemically diseased chicken

carcasses (Chao et al. 2007a), bone fragment detection in chicken breast fillets

(Yoon et al. 2008), detection of insects in cherries (Xing et al. 2008), quality

definition of sliced mushrooms (Gowen et al. 2008), quality evaluation of fresh

pork (Hu et al. 2008), prediction of beef tenderness (Naganathan et al. 2008),

detection of toxigenic fungi (Yao et al. 2008; Rasch et al. 2010), citrus canker

detection (Qin et al. 2008), food-borne pathogen detection (Yoon et al. 2009), fecal

contamination detection in vegetables (Yang et al. 2010), as well as contamination

detection on processing equipment (Cho et al. 2007; Jun et al. 2009). While other

chapters in this book discuss different issues and applications with hyperspectral

technology, the present chapter focuses on food safety inspection of plant products.

The generic approach for applying hyperspectral technology in food related

research includes experiment design, sample preparation, image acquisition,

spectral pre-processing/calibration, sample ground truth characterization, data anal-

ysis and information extraction. Hyperspectral measurement can be point or image

data, and this chapter will discuss research and applications using both types.

A spectrometer is usually used for point data acquisition (Pearson et al. 2001;

128 H. Yao et al.



Hu et al. 2008). For hyperspectral image data acquisition, two methods can be used.

One approach is the frame-based method which acquires one band at a time in a

sequential process. A liquid crystal tunable filter based (LCTF) system (Gat 2000;

Peng and Lu 2006) follows the frame-based principal. The other approach is to use

a line scanning method such as push-broom scan. The scan mechanism can be

implemented by either moving the target (Kim et al. 2001) or moving the camera

lens internally within the camera system (Mao 2000). For more details regarding

hyperspectral imaging and data analysis, the readers are encouraged to visit the

previous chapters.

In the following sections, the major food safety concerns that have drawn upon

hyperspectral imaging research and applications will be discussed. The most

common types of food contaminants including pathogens, physical and chemical

contaminants, and their detection applications using sensing technology will be

summarized. Next, hyperspectral technology will be briefly discussed. Since the

technology has been covered in great detail in the previous chapters, the emphasis

will be on the different aspects of hyperspectral data such as reflectance, fluores-

cence, and transmittance. The application feasibility of such data to plant product

safety inspection will also be discussed. The third section will discuss different

applications of using hyperspectral data. The main focus will be on grains, produce,

nuts, and spices. Different application modes including lab research, online inspec-

tion, and in-field/remote monitoring will be presented after the applications.

The last section will be a summary of the chapter.

6.2 Food Safety

Because presence of any pathogenic microorganism in food can lead to severe

health consequences in both animals and humans, food safety is of major concern.

Though the global incidence of food-borne disease is difficult to estimate, it was

reported in 2005 that close to two million people died from gastrointestinal infec-

tions largely attributed to contaminated food and drinking water (WHO 2007). A

high incidence of food-borne illness in developing countries is understandable;

however, the numbers are high even in industrialized countries. Reports indicate that

up to 30 % of the population is stricken with food-borne diseases each year in

developed countries. For example, the Centers for Disease Control and Prevention

(CDC 2011a) estimated that around 48million cases of food-borne diseases, resulting

in 128,000 hospitalizations and 3,000 deaths occur each year in the USA. Clearly,

preventing food-borne illness remains a major public health challenge.

Due to a recent increase in health awareness worldwide, higher consumption

of plant products including fresh produce, nuts and grains has increased the

incidence of food-borne illness from contaminated foods precipitated partially by

changes in food production (non-traditional farming practices spurred on by the

“green” revolution) and supply (increase in international trade). According to

the international trade statistics, the World Trade Organization (WTO 2007)
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reported that Europe is responsible for 46 % of world exports of agricultural

products, where 80 % of the agricultural export represents food (WTO 2007).

Trading of contaminated food between countries increases the potential for out-

breaks and health risks posed by microbial pathogens present in the food. In 2007,

the US Food and Drug Administration (FDA) developed a comprehensive ‘Food

Protection Plan’, which implies that food must be considered as a potential vehicle

for intentional contamination (FDA, Food Protection Plan 2007). Such intentional

contamination of food could result in human or animal illnesses and deaths, as well

as economic losses.

Leading causes of contamination worldwide are microbial toxins and chemicals

from agriculture. Most prominent food-borne pathogens associated with plant

products are certain species of Salmonella, Escherichia coli and Listeria (Arora

et al. 2011) as well as mycotoxins. In the US the impact of international commerce

connected to global incidence of food-borne illness was felt during the recent

outbreak in Germany where infected fenugreek seeds originating from Egypt

contributed to numerous deaths from E. coli O104:H4 shiga toxin infection, one

of which was an American (Giordano 2011). In addition to the food-borne epi-

demic, the incident caused a diplomatic breach with Spain for mistakenly impli-

cating Spanish cucumbers in the outbreak and causing massive losses to farmers in

that country (Giordano 2011). Another example was the recent Salmonella outbreak
in 23 US states resulting from contaminated papayas imported from Mexico. The

2008 Salmonella saintpaul infection caused serious losses for tomato producers in

the US due to recall of tomatoes mistakenly implicated in spread of the infection.

It was determined that the infection outbreak was caused by jalapeno peppers from

a Texas farm and Serrano peppers from Mexico, distributed to Mexican restaurants

in the US and used to prepare salsa (Behravesh et al. 2011). Another incident was

reported in September 2011 when fresh cantaloupes from Jensen Farms, Colorado

were linked to a Listeria monocytogenes outbreak in 20 states in the US resulting in

an estimated 100 infections and 18 deaths (CDC 2011b). The most susceptible

populations for contracting Listeriosis are pregnant women, the immuno-

compromised, and the elderly.

Conventional microbiology techniques for the detection of microorganisms

include culture and colony counting (Allen et al. 2004), immunological assays

(Van et al. 2001), polymerase chain reaction (PCR) (Burtscher and Wuertz 2003),

imaging flow cytometry for complex food systems (Bisha and Brehm-Stecher 2009)

and more recently, biosensors (Arora et al 2011; Velusamy et al. 2010; Lazcka

et al. 2007). Current methods for detection of mycotoxins are largely dependent on

chromatography methods (TLC—thin-layer chromatography, HPLC—high perfor-

mance liquid chromatography, immunoaffinity column chromatography), and

enzyme assays (e.g., ELISA—Enzyme-linked immunosorbent assay). While these

methods can be sensitive, inexpensive and give both qualitative and quantitative

information of the tested microorganisms, there are drawbacks associated when

using them for detection of food-borne pathogens and toxins. The techniques are

time-consuming as well as labor intensive. Some require elaborate instrumentation,

and most must be performed by qualified personnel. Moreover, the results are not
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always accurate and each method requires destruction of samples. To overcome

these limitations recent research has focused on the development of biological

sensors for the detection of pathogens. Biosensors offer multiple, rapid, real time

analyses from perishable or semi-perishable foods. However, applying biosensors

also has some limitations in its sensitivity, cost, and the need for sample

pre-treatment for the detection of pathogens (Arora et al. 2011). It is also an

analytical approach and as such, subject to sampling error and sample destruction.

Implementation of safe agricultural (Kay et al. 2008; Umali-Deininger and Sur

2007), and manufacturing practices (Mucchetti et al. 2008; Umali-Deininger and

Sur 2007) as well as applying the hazard analysis and critical control point

(HACCP) program (Jin et al. 2008) can significantly diminish pathogens in food.

However, to more effectively address problems related to health and food safety a

need remains for rapid, reliable, simple, specific and sensitive detection technology

that is also suitable for real-time monitoring at a low cost. Hyperspectral imaging

technology could prove to be an invaluable tool in reducing risk of food contam-

ination by effectively detecting microbial pathogens such as Salmonella spp.,
Escherichia coli spp. (E. coli) and mycotoxins.

6.2.1 Contaminants and Detection

6.2.1.1 Pathogen Contamination

More than 250 different food-borne illnesses have been described in scientific

literature. Most of these diseases are caused by a variety of bacteria, viruses, and

parasites. Recently, a number of researchers have reported the potential of

hyperspectral imaging for identification of microorganisms of concern in food.

Dubois et al. (2005) demonstrated the potential application of NIR (near-infrared)

hyperspectral imaging as a high throughput technique for the differentiation of

bacteria based on their NIR spectra. NIR images of cards for specific foods

containing both test and calibration bacteria samples were obtained in the spectral

region 1,200–2,350 nm using an InSb focal-plane array detector. Some bacteria

were identifiable from spectral differences observed at unique wavelengths; how-

ever, in situations where particular microorganisms of concern were sought, partial

least square (PLS) classification was preferable to separate the genera of bacteria

present.

A visible near-infrared (VNIR) hyperspectral technique was used for detecting

and differentiating cultures of Campylobacter associated with human gastrointes-

tinal infections from semi-raw poultry or unpasteurized milk, from non-Campy-
lobacter cultures after 48 h (Yoon et al. 2009) and 24 h (Yoon et al 2010)

incubations. The latter study found that a two-band ratio algorithm at 426 and

458 nm achieved up to 99 % detection accuracy for cultures grown on blood agar,

determined to be an optimal culture medium for VNIR reflectance, after 24 h.

Yao et al. (2008) conducted a similar VNIR study on fungal cultures. Their study
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reported that five fungal strains were differentiated with a classification accuracy of

97.7 %. In addition, all five fungi could be classified by using only three narrow

bands (bandwidth¼ 2.43 nm) centered at 743 nm, 458 nm, and 541 nm. Jian

et al. (2009) applied Principal Component Analysis (PCA) along with Support

Vector Machine (SVM) for the classification of toxigenic and atoxigenic strains

of Aspergillus flavus to VNIR hyperspectral data and concluded that although the

technique was promising, broadening the spectrum range to include the ultraviolet

and infrared regions would simplify classification.

The suitability of Raman hyperspectral imaging for the enumeration of water-

borne pathogens has also been evaluated (Escoriza et al. 2006). Hyperspectral

images in the range 3,200–3,700 nm were obtained from inoculated water samples

using a Raman Chemical Imaging microscope containing a liquid crystal tunable

filter. It was shown that Raman hyperspectral imaging can provide quantitative

information for bacterial concentration in water samples. It was noted, however,

that the Raman signal was poor for low bacteria concentration and requires the use

of filters on dilute water samples prior to examination.

6.2.1.2 Chemical (Toxins) Contamination

Beside microbial contamination, certain food-borne illnesses are caused by chem-

ical food contaminants from natural or industrial sources (Peshin et al. 2002).

Natural toxins include compounds such as lectins and glycoalkaloids produced by

plants (phytotoxins) and found in potatoes as well as legumes (Peshin et al. 2002;

Rietjens and Alink 2003). Other sources of naturally occurring toxins are myco-

toxins produced by some fungi and phycotoxins present in some marine algae

(Peshin et al. 2002; Rietjens and Alink 2003). Under ambient environmental

conditions certain fungi produce toxic secondary metabolites that contaminate

agricultural products including grains, nuts, seeds, and various produce. Myco-

toxins can enter the food chain in the field, during transport, in storage, or at any

point during production and result in significant economic consequences for the

producers (Bennett and Klich 2003). The major toxigenic fungi affecting agricul-

tural products and of consequence to food inspectors include some species of

Aspergillus, Fusarium and Penicillium (Peshin et al. 2002; Bennett and Klich

2003). Collectively, these fungi produce a variety of toxins, (e.g. aflatoxin,

ochratoxin, fumonisin, among others), some of which have acute or chronic health

effects (Peshin et al. 2002; Bennett and Klich 2003). Environmental contaminants

including heavy metals and organic pollutants such as dioxins, and polychlorinated

biphenyls, as well as pesticides and cleaning chemicals are found in the food chain

by chance, as a result of transportation, storage or processing and are largely

considered industrial contaminants (Peshin et al. 2002; Rietjens and Alink 2003;

Schrenk 2004). Intentional food additives that enhance taste or appearance, such as

sulfides and MSG are considered adulterants and may have deleterious effects on

health of sensitive individuals (Peshin et al. 2002; Lipp 2011). A recent example of

ill intended adulteration that resulted in a major heath consequence was the addition
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of scrap melamine to milk products (Lipp 2011). Unfortunately, globalization

compounds the challenge of producing a safe food supply. Being able to rapidly

verify the authenticity of a product could be a useful step in food production and

manufacturing.

The development and application of nondestructive analytical techniques based

on the optical properties of agricultural and biological products may be useful tools

for quality control and evaluation of food products (Deshpande et al. 1984). Yao

et al. (2010a) utilized fluorescence hyperspectral imaging techniques for detecting

the mycotoxin aflatoxin in corn kernels inoculated with Aspergillus flavus under

field condition. A Fluorescence Peak Shift (FPS) phenomenon was noted among

different groups of kernels with different levels of aflatoxin contamination indicat-

ing the potential of fluorescence hyperspectral techniques for detecting mycotoxins

in grains. Hiroaki et al. (2002) used Fourier transform infrared diffuse reflectance

spectroscopy (FT-IR-DRS) to measure pesticide residue on heads of lettuce

obtained directly from the field. The diffuse reflectance spectra ranged from

2,800 to 800 cm�1 and were transformed to spectra closely resembling the NIR

transmission spectral features (Birth and Hecht 1987). The results of the study

pointed to the potential of a more rapid (2 min) pesticide measurement system

utilizing the PLS regression model for optimal calibration for measuring pesticides

in agricultural products. Carrasco et al. (2003) tested hyperspectral systems with

both reflectance and fluorescence outputs to assess the feasibility of remote sensing

for food quality applications and found that hyperspectral imaging may be a

valuable tool in detecting pesticide levels in agricultural products. To address the

adulteration factor of food safety, September (2011) applied NIR hyperspectral

imaging and multivariate image analysis (PCA, Partial least square discriminant

analysis PLS-DA, and PLS regression) to determine presence and amount of

foreign substances such as buckwheat and millet flour in ground black pepper

samples. Overall the study results indicate that NIR hyperspectral imaging may

be a promising technique for the identification of adulterants in ground black pepper

which may have additional applications for identifying adulterants in other pow-

dered foods.

6.2.1.3 Physical Contamination

Physical contamination of a food product can occur when objects such as glass,

hair, dirt, paint chips, etc. get intermixed with food. In the tobacco industry, for

example, a variety of products including plastics, paper, and cords, among other

debris, get mixed with the leaves due to manual harvesting. Although tobacco is not

exactly considered a food item, it is a plant product widely used in oral applications

(e.g. chewing tobacco, cigars, etc.) and as such needs to be free of physical

contaminants. Conde et al. (2006) developed a real-time spectral image-based

system for the discrimination of tobacco leaves from unwanted debris as well as

other non-tobacco plant materials. The authors utilized PCA analysis and ANN

(Artificial Neural Network) classification for efficient discrimination of tobacco

6 Safety Inspection of Plant Products 133



from debris. Furthermore, the technique appears applicable to other sorting needs as

long as the ANN is properly trained based on total characterization of the spectra of

the material in question.

Transmission hyperspectral imaging is potentially applicable for the online

estimation of internal constituent concentrations and detection of internal defects

within foods (Schmilovitch et al. 2004). Qin and Lu (2005) applied hyperspectral

transmission imaging to detect pits, considered a choking hazard, in tart cherries.

Light was transmitted through individual cherries from a light source placed below

the sample holder, and recorded by an imaging spectrograph placed above the

sample. Transmission images for four different sample orientations were tested, and

it was shown that sample orientation and color did not significantly affect classifi-

cation accuracy.

The shells in packaged nuts are also considered a potential choking hazard.

Because of this, food processors in the pistachio industry have a very low or no

tolerance policy for the presence of shells or shell fragments. Unfortunately,

automated sorters are not that precise so a manual sorting must follow the machine

sorting, incurring additional cost to the industry (Haff et al. 2010). A recently

developed (Pearson 2009) relatively low cost, high speed, color sorter was used

to sort small and large in-shell pistachio nuts from kernels. The system consisted of

three cameras around the product stream to insure that all surfaces of each sample

were inspected. The study employed two algorithms, DA and k-nearest neighbor

(KNN), making use of the spatial information provided by the camera configura-

tion. Both algorithms successfully (99 % accuracy) discriminated between regular

in-shell and kernel pistachios. The accuracy declined when small in-shells and

kernels were compared, with the KNN algorithm significantly outperforming the

DA algorithm (Haff et al. 2010).

6.3 Hyperspectral Imaging

6.3.1 Reflectance

Reflectance measurement is the most common way of utilizing hyperspectral

technology. Reflectance is the fraction of incident electromagnetic power reflected

by a surface. The typical reflectance information is in the visible and near-infrared

region of the electromagnetic spectrum. For plant product safety inspection,

some examples of using reflectance measurement include mycotoxin detection in

corn (Berardo et al. 2005), deoxynivalenol estimation in wheat (Beyer et al. 2010),

classification of scab-damaged wheat kernels (Delwiche and Hareland 2004), detec-

tion of toxigenic fungi (Del Fiore et al. 2010; Jian et al. 2009; Yao et al. 2008),

identification of fecal contamination on vegetable leaves (Yang et al. 2010), and

assessment of Fusarium damage to wheat kernels (Shahin and Symons 2011).
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In summary, hyperspectral reflectance imagery has proven to be a good tool for

external inspection and evaluation for food quality and safety applications.

In processing reflectance data, the raw digital counts recorded by the camera are

generally converted into reflectance as part of the image radiometric calibration.

For example, the following equation can be used to convert raw digital counts of

reflectance into percent reflectance:

Reflectanceλ ¼ Sλ � Dλ

Rλ � Dλ
� 100%; ð6:1Þ

where Reflectanceλ is the reflectance at wavelength λ, Sλ is the sample intensity at

wavelength λ, Dλ is the dark intensity at wavelength λ, and Rλ is the reference

intensity at wavelength λ. Eventually, the calibrated reflectance value lies in the

range from 0 to 100 %. More topics on hyperspectral image calibration can be

found in Yao and Lewis (2010).

6.3.2 Transmittance

Another approach of using hyperspectral technology is through measurement of

transmittance. Transmittance is the fraction of incident electromagnetic power that

passes through a sample. Hyperspectral transmission measurement involves

projecting light at one side of the target and recording light transmitted through

the target at the opposite side with a hyperspectral imager. Consequently,

hyperspectral images of transmittance can be useful for studying internal properties

of food. It was reported that NIR spectroscopy in transmittance mode can penetrate

deeper regions of fruit (>2 mm) compared to reflectance mode (McGlone and

Martinsen 2004). The internal property of targets can be analyzed using light

absorption within the detector’s spectral range. One drawback of transmittance

imaging is the low signal level from light attenuation due to light scattering and

absorption.

Research activities related to using hyperspectral transmittance measurement for

plant product safety inspection have been reported in detection of aflatoxin (Pear-

son et al. 2001) and fumonisin in corn (Dowell et al. 2002), corn kernel constituent

analysis (Cogdill et al. 2004), detection of pits in cherries (Qin and Lu 2005), and

detection of Fusarium in single wheat kernels (Polder et al. 2005). These studies

demonstrated that hyperspectral transmittance data has potential for safety inspec-

tion of plant products.

Equation (6.1) used in reflectance calibration is also applicable for calculating

the calibrated relative transmittance. Similarly, a dark current image and a refer-

ence transmittance image are needed in the calibration equation.
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6.3.3 Fluorescence

In addition to reflectance and transmittance measurements, fluorescence

hyperspectral imaging is also used for food and agriculture applications. Fluores-

cence is the emission of light by a sample that has absorbed electromagnetic

radiation. Generally, the emitted light (emission) has a longer wavelength than

the absorbed incident radiation (excitation). For example, certain organic and

inorganic substances exhibit natural, intrinsic fluorescence when excited under an

ultraviolet (UV) light source (<400 nm). Under UV excitation, plants can emit a

fluorescence spectrum ranging from about 400 to 800 nm. Thus, fluorescence

spectra are suitable for studying the properties of sample constituents and also

chemical compositions related to safety inspections.

In the past decade, fluorescence hyperspectral imaging technology has been

developed to enable the acquisition of fluorescence image data with both high

spectral and spatial resolutions (Kim et al. 2001; Zavattini et al. 2004). A fluores-

cence hyperspectral imaging system is generally based on an imaging spectrometer

or hyperspectral imager. Fluorescence emission can be excited by long wavelength

UV radiation (Kim et al. 2001; Jun et al. 2009; Yao et al. 2010a), or induced by a

laser source (Kim et al. 2003a, 2004; Lefcourt et al. 2004). Some research and

applications in plant product safety inspection that found use for fluorescence

hyperspectral imagery include detection of fecal contamination on apples (Kim

et al. 2002a, 2005a) and on cantaloupes (Vargas et al. 2005), assessing bacterial

biofilm on stainless steel surfaces (Jun et al. 2009), studying corn contaminated

with aflatoxin (Yao et al. 2010a), and analyzing Fusarium influence on wheat ears

(Bauriegel et al. 2011b).

6.4 Plant Products Safety Inspection Applications

6.4.1 Grains

6.4.1.1 Corn with Aflatoxin Contamination

Aflatoxins, secondary metabolites produced by certain Aspergillus species, are

among the most toxic naturally occurring substances known (Bennett and Klich

2003). Repeated exposure to the most potent aflatoxin (B1) in the diet can lead to

liver cancer, and prolonged inhalation to aspergillosis as well as lung cancer

(Peshin et al. 2002; Bennett and Klich 2003; Wild and Turner 2002). Contaminated

feed often results in deleterious health effects as well as eventual demise for several

types of farm animals (Peshin et al. 2002; Bennett and Klich 2003). Thus, aflatoxins

present a serious food safety issue when found in food and feed products. Figure 6.1

is an illustration of the chemical structure of aflatoxins B1, B2, G1, and G2.

Because of their uneven distribution, particularly in grains, aflatoxins are difficult
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to isolate for elimination without destroying a large amount of product and incur-

ring significant economic losses to the farmers. The estimated cost for the manage-

ment of aflatoxin and other mycotoxins reported in 2003 was between $500 M to

$1.5 M (Robens and Cardwell 2003). Aflatoxin is regarded as one of the most

important food safety problems in the world (Robens 2008).

Aflatoxin contamination is a major concern, particularly in corn, as corn is one of

the main crops in food and feed production. In preharvest corn plants, the problem

usually starts when the toxigenic fungus infects the corn kernels in the field.

Figure 6.2 illustrates (a) Aspergillus flavus fungus cultured on potato dextrose

agar (PDA) medium and (b) a sporulating mycelia of A. flavus under Scanning

Electron Microscope (SEM). Figure 6.3 is an illustration of corn ears exhibiting

Aspergillus flavus infestation. The fungus begins to produce aflatoxin when the host
corn plant is under heat and drought stress in the early dough stage. Aflatoxin levels

in food and feed are regulated by the Food and Drug Administration (FDA) in the

US as well as various agencies throughout the world. In the US, the regulation

levels are 20 ppb (parts per billion) for human consumption and 100 ppb for feed.

These levels (USDA 2002) allow farmers, the food industry, and the Federal Grain

Inspection Service (FGIS) to take appropriate action when aflatoxin is found in food

or feed. To screen for aflatoxin, conventional chemical-based analytical methods

such as TLC and HPLC are used. These methods are time consuming, expensive

(Collison et al. 1992; Brown et al. 2001) and require the destruction of samples.

It is thus important to be able to detect aflatoxin in corn in a rapid and

non-destructive manner. Hyperspectral technology based detection provides a

potential approach for this application. Pearson et al. (2001) used spectral reflec-

tance (5,050–1,700 nm) and transmittance (500–950 nm) measurements for
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Fig. 6.1 Structure of aflatoxins B1, B2, G1, and G2
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contamination detection in single corn kernels. The experiment utilized fiber optic

spectrometers for the spectral measurements. A total of 200 kernels inoculated with

Aspergillus flavus NRRL A-27837 and another 300 randomly selected kernels were

used in the experiment. After spectral measurement, each single kernel was chem-

ically analyzed with an affinity chromatography procedure for the actual aflatoxin

concentration. The spectral data was treated with a 19-point Savitzky-Golay second

order filtering for noise removal and was converted to absorbance (log (1/R). The

average whole kernel reflectance is displayed in Fig. 6.4. In the plot, corn kernels

were divided into three categories, i.e., <1 ppb, >100 ppb, and between 1 and

100 ppb. In the reflectance spectra the absorbance was higher below 850 nm and

Fig. 6.2 Aspergillus flavus in culture and SEM image. (a) Aspergillus flavus culture and

(b) Aspergillus flavus SEM Image

Fig. 6.3 Corn ears infected

with A. flavus with artificial

inoculation of the fungus
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lower between 850 and 1,700 nm for contaminated kernels. In the transmittance

spectra the absorbance was generally much higher for highly contaminated kernels.

The authors speculated that the differences could be explained by the scattering and

absorbance characteristics caused by the fungus in the kernel. With the fungal

invasion, the kernel endosperm becomes powdery. Consequently, the scattering

would cause less NIR (>750 nm) radiation to be absorbed in the reflectance mode.

While in the transmission mode, more NIR radiation would be absorbed from the

contaminated kernels.

The above corn kernel spectra and chemical data was analyzed using discrim-

inant analysis and partial least squares regression. For the kernels with>100 ppb or

<10 ppb levels of aflatoxin, the classification accuracy was over 95 %. For the

kernels between 10 and 100 ppb the accuracy was 25 %. The study also pointed out

that the two-feature discriminant analysis of the transmission data yielded the best

result. This approach involved the use of a two band ratio for the analysis.

Another study (Fernández-Iba~nez et al. 2009) also used a spectrometer (400–

2,500 nm) and a Fourier transform near-infrared (FT-NIR) spectrophotometer

(9,000–4,000 cm�1) for aflatoxin (B1) detection in corn (66 samples) and barley

(76 samples). The spectral data were acquired in reflectance mode and saved as log

(1/R), where R is the reflectance. The grain samples were cultured at room

temperature (20� 2 �C) for 3 months after natural infection. Each single grain

was chemically analyzed to determine its aflatoxin contamination concentration,

with above 20 ppb classified as positive and below 20 ppb as negative. Data

processing was based on discriminant analysis with the partial least squares.

The best model for aflatoxin detection based on reflectance data had R2¼ 0.8 for

corn and R2¼ 0.85 for barley. When the FT-NIR data was used the R2 numbers
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Fig. 6.4 Average whole kernel reflectance with different aflatoxin contamination levels (Pearson

et al. 2001)
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were 0.82 and 0.84, respectively. The study explored analysis with different

chemometric models. The description of grain sample preparation did not reveal

much detail.

Fluorescence measurement could provide another approach for screening

aflatoxin contaminated corn kernels. Aflatoxin emits fluorescence when excited

with UV light (Carnaghan et al. 1963; Goryacheva et al. 2008). A. flavus-infected
grains also emit bright greenish yellow fluorescence under UV excitation. Marsh

et al. (1969) pointed out that the ability of emitting fluorescence is a characteristic

of living cells that exhibit peroxidase activity. For A. flavus, the fungus must infect

the plant tissue and grow in it for some time, producing and transforming kojic acid,

another known A. flavus metabolite, to one or more BGYF (bright greenish-yellow

fluorescence) compounds in a peroxidase-type reaction. In other words, there is an

apparent overlap between the BGYF compound and aflatoxin production. The

BGYF phenomenon had been widely used in presumptive tests for the presence

of aflatoxin in corn (Shotwell and Hesseltine 1981; Maupin et al. 2003) in order to

determine if chemical analysis is required to measure the level of aflatoxin concen-

tration of a given sample. The approach requires the use of 365 nm UV light for

fluorescence identification. However, it only reveals the broad fluorescence

response from the samples without identifying the source of fluorescence emission.

As a consequence, the BGYF approach was not used as a quantitative or even

qualitative measure of aflatoxin contamination.

The use of narrow band fluorescence spectra offers the potential for better

aflatoxin detection in corn. Instead of using a spectrometer for single point data

collection for each grain sample, a hyperspectral imaging system can capture

hundreds of pixels over the same grain sample. The later approach can thus

provide more optimal data collection, especially in the spatial domain. With

this approach, one study (Yao et al. 2010a) used fluorescence hyperspectral

imaging for aflatoxin detection in corn. The study focused on understanding the

BGYF phenomenon in corn kernels infected with fungus, and the goal was

to determine the relationship between fluorescence emission of corn kernels

inoculated with A. flavus and aflatoxin contamination levels within the corn.

The fluorescence hyperspectral imaging system was based on push-broom line

scanning coupled with a spectrograph for spectral light dispersing. The imaging

sensor was a 14 bit CCD camera. A long wave UV lamp with wavelength centered

at 365 nm was used as a fluorescence excitation light source. The total sample was

comprised of 504 individual kernels. After imaging, each kernel was chemically

analyzed to ascertain aflatoxin levels. All the corn samples were obtained from a

field where corn ears were artificially inoculated with toxigenic A. flavus.
The fluorescence hyperspectral image data were preprocessed and the region of

interest (ROI) for each corn kernel was generated. The ROIs were used to extract

fluorescence spectral information and to statistically compare it with the chemical

measurement. A Fluorescence Peak Shift phenomenon was noted among different

groups of kernels with different levels of aflatoxin contamination. It was found that

the fluorescence emission peak shifted toward the longer wavelengths with highly

contaminated corn kernels (Fig. 6.5). The fluorescence peak of highly contaminated
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kernels was also found to have a lower level of intensity compared with less

contaminated kernels. In addition, a general negative correlation existed between

the measured aflatoxin and the fluorescence image bands in the blue and green

regions. The correlation coefficient of determination, R2, was 0.72 for the multiple

linear regression model. The multivariate analysis of variance revealed that fluo-

rescence means of the four aflatoxin groups, <1 ppb, 1–20 ppb, 20–100 ppb,

and� 100 ppb, were significantly different from each other at 0.01 level of α.
Under a two-class schema, the classification accuracy ranged from 0.84 to 0.91

when either a threshold of 20 ppb or 100 ppb was used. Studies with other

classification algorithms produced similar outcomes (Yao et al. 2010b, 2011b).

6.4.1.2 Corn Contaminated with Fumonisin by Fusarium and Other

Mycotoxins

Another common mycotoxin in corn is fumonisin. Fumonisin is produced by the

toxigenic fungi Fusarium. Similar to aflatoxin, fumonisin is considered to have

cancer promoting ability. Based on FDA’s regulations, the maximum level of

fumonisin in corn and corn products is 2–4 ppm (parts per million) for human

consumption. The maximum levels for animal consumption are 5–100 ppm based

on different animal feeds (FDA/CFSAN 1978). Current sampling procedures

account for up to 90 % of the variability in the results. Measurement of fumonisin

is based on analytical methods. Corn samples are ground and chemically analyzed

for accurate determination of fumonisin levels.

Visible and NIR reflectance and transmittance spectroscopy has provided

the potential for rapid and non-invasive detection of fumonisin in corn kernels.

Dowell et al. (2002) used spectral reflectance (400–1,700 nm) and transmittance

(550–1,050 nm) measured with fiber optic spectrometers for fumonisin detection in

single corn kernels. The total number of kernels was 330. The corn was artificially

Fig. 6.5 Illustration of a

fluorescence emission peak

shift between control and

corn kernels contaminated

with aflatoxin
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inoculated with Fusarium verticillioides NRRL 25457 in the late milk to early

dough stage of kernel maturity. After spectral measurement, each single kernel was

chemically analyzed for the actual fumonisin concentration. Both partial least

square and discriminant analysis were used for data analysis. It was found that

kernels with >100 ppm and <10 ppm could be accurately classified as fumonisin

positive or negative, respectively. In another study, Berardo et al. (2005) acquired

VNIR reflectance spectra of 280 corn kernels with Fusarium infection.

The spectrometer was in the range from 400 to 2,500 nm and the data was recorded

in log(1/R). Each kernel was chemically analyzed with HPLC for fumonisin

concentration. A modified partial least-squares regression was used for data anal-

ysis. The model prediction R2¼ 0.78.

6.4.1.3 Corn Contaminated with Fungus

Generally, corn kernels damaged by fungi are low in quality with a higher proba-

bility of being contaminated with mycotoxins. If these kernels were removed, the

overall corn quality could be greatly improved. This removal would also prevent

such infected/contaminated materials from entering the food chain. Thus, in addi-

tion to mycotoxin detection, studies were also implemented on the detection of

fungi infected corn kernels using spectroscopic methods.

Studies have shown that fungi could be spectrally quite different. For example,

Yao et al. (2008) attempted to differentiate toxigenic fungi using hyperspectral

imagery. In the study, five different types of fungi, Penicillium chrysogenum,
Fusarium verticillioides, Aspergillus parasiticus, Trichoderma viride, and

Aspergillus flavus, some of which are toxin producers, were imaged with a VNIR

push-broom line-scanning hyperspectral camera. The resulting reflectance data

indicated that these fungi are highly separable with a classification accuracy of

97.7 %. In another study, Jian et al. (2009) used hyperspectral images to classify

one toxigenic A. flavus and three atoxigenic A. flavi. The data was collected with

two different light sources, UV and halogen light. To process the image, Genetic

Algorithm (GA) was first used to select the principal components based on

Bhattacharya Distance. A support Vector Machine was then used for the classifi-

cation of fungi. On average, the classification accuracy ranged from 0.67 to 0.85.

The pair-wise classification achieved accuracy from 0.8 to 0.99.

Pearson and Wicklow (2006) found that NIR reflectance spectral bands centered

at 715 and 965 nm correctly identified 96.6 % of corn kernels that showed extensive

discoloration and were infected with Aspergillus flavus, Aspergillus niger, Diplodia
maydis, Fusarium graminearum, Fusarium verticillioides, or Trichoderma viride.
The spectral data was collected with a spectrometer. Other studies in this area also

used hyperspectral images. Williams et al. (2010) focused on distinguishing

betweenFusarium infected and soundwhole corn kernels. The hyperspectral images

used were in the NIR an SWIR range (960–2,498 nm). It was pointed out that the

infected and non-infected regions on individual kernels could be effectively identi-

fied with principal component analysis. Specifically, along principal component one
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(PC1), there was a distinct difference between infected and sound kernels with two

clusters. With partial least square discriminant analysis, the coefficient of determi-

nation was 0.73 and 0.86 for the two camera systems used in the study.

Del Fiore et al. (2010) worked to differentiate between kernels infected with

fungi and healthy control corn kernels using hyperspectral reflectance data. The

imaging system was based on push-broom line-scanning. For sample preparation,

four types of Aspergillus strains, two Fusarium strains, and one Penicillium strains

were used to inoculate 12 corn hybrids. For imaging, kernels were divided into 20 g

samples. After imaging, the reflectance data was converted to apparent absorbance

units expressed as log (1/R) and then transformed to principal components for

statistical analysis. In this study, after inoculation the changes induced by fungal

infection on the surface of the corn kernels were recorded through daily imaging.

The results showed that the ANOVA and the following Fisher’s LSD test could

identify two wavelengths with high discrimination power for the presence of fungus

and/or growth. Additionally, the study demonstrated an early detection of fungal

infection on the corn, which appeared 48 h after inoculation of A. flavus and

A. niger.

6.4.1.4 Wheat Contaminated with Mold-Scab and Other Fungi

One of the major problems in wheat is Fusarium head blight, or scab. The problem

is a fungal disease caused by the Fusarium fungus in humid conditions when the

wheat plant is in flowering or early kernel development stage. The symptoms of

Fusarium head blight are shrunken kernels which are chalky white or pink in

appearance (Fig. 6.6). The presence of scab can result in downgrading of wheat

with eventual losses to the producers, as well as to the consumers. The current

method used by USDA/GIPSA (Grain Inspection, Packers and Stockyards Admin-

istration) for scab inspection is based on manual visual inspection, which is labor

intensive and subjective; therefore, new methods for rapid inspection are always

sought. In this section, several spectroscopic methods will be reviewed, including

the use of a fiber spectrometer, application of spectroscopic data in sorting, and

hyperspectral imaging.

In one study, Delwiche (2003) grouped single wheat kernel samples into three

categories, sound, mold-damaged, and scab-damaged. Each category had a mini-

mum of 138 kernels. Reflectance of each kernel was measured with a spectrometer

in the range from 940 to 1,700 nm. The reflectance data was then stored in log (1/R)

format. The best combination of individual wavelengths, best difference of wave-

lengths, best ratio, and combinations of each were exhaustively searched. The best

classification model, which was a combination of kernel mass and the difference of

two wavelengths, 1,182 and 1,242 nm, achieved up to 95 % detection accuracy. If

only two classes (sound vs. damaged) were used, the accuracy level was from 95 to

98 %. The study pointed out that the orientation of kernel placement also had an

impact on the classification accuracy. In a later study, Delwiche and Hareland

(2004) grouped hard red spring wheat kernels into sound and scab-damaged
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kernels, with 868 kernels from each category for one trial and 1,790 for a second

trial. The spectrometer instrument was the same as in the previous study with

wavelength ranging from 1,000 to 1,700 nm. Statistical classification methods

such as linear discriminant analysis and k-nearest-neighbor were used. It was

found that the slope of the low-wavelength side of a broad carbohydrate absorption

band (~1,200 m) was quite effective in separating the sound from the scab-damaged

kernels (95 % accuracy).

Peiris et al. (2009) reported the NIR absorbance characteristics of sound and

Fusarium damaged wheat kernels. Differences were found in the heights of the

absorption peaks at 1,204, 1,365, and 1,700 nm. The differences could be caused by

the changes in the levels of grain food reserves such as starches, proteins, lipids, and

other structural compounds. There were also shifts in absorption peak positions

between the two types of kernels at 1,425–1,400 nm and 1,915–1,930 nm. Finally,

in a recent study (Rasch et al. 2010), it was found that data combined from different

spectroscopic methods such as optimized excitation and emission wavelengths,

fluorescence decay times and fluorescence quantum efficiency, and NIR spectros-

copy is promising for the qualitative and quantitative identification of fungi and

mycotoxin.

Efforts were also carried out to implement the related findings in the sorting of

Fusarium-damaged wheat. In general, sorters are based on monochromatic or

bichromatic light from broad visible or NIR wavelength regions. Delwiche and

Gaines (2005a) aimed at locating the best monochromatic and bichromatic wave-

lengths in the visible and near-infrared regions for the sorting task. The results

showed an accuracy of 94 % with 500 and 550 nm in the visible region, 97 % with

1,152 and 1,248 nm for the NIR region, and 86 % with 750 and 1,476 for the

Fig. 6.6 Fusarium Head

Blight on Wheat. Courtesy

of USDA ARS
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hybrid region. In the sorting process, one challenge for the sorters is to identify

and remove the damaged kernels. Delwiche (2008) implemented a design with

high-power pulsed LED (light emitting diode) lights combined with one silicon

photo diode detector. In the sorting process, the kernel was free-falling and the

LED lights were flashing at 2,000 Hz. In this setting the reflected light from the

kernel would be captured by the detector for about 20 cycles of the pulsed light

during the free-falling of the kernel. The resulting data was analyzed with linear

discriminant analysis and a classification accuracy of 78 % for Fusarium-damaged

kernels was reached. Even though the result was not comparable with the

previous study, this was a step forward toward a real operation and was an

improvement over the conventional bichromatic design (with 50 % efficiency).

Further study (Yang et al. 2009) enhanced the detection accuracy of the same

sorter system. The combined accuracy was 85 %. In another experiment (Wegulo

and Dowell 2008), the performance of a single-kernel near-infrared sorting

system (from Perten Instruments, Stockholm, Sweden) was compared with visual

sorting of Fusarium-damaged wheat kernels. The conclusion was that the sorting

system had better results due to its wider range of detection and greater

consistency.

The above classification of scab-damaged wheat kernels was based on spec-

trometer readings. Each single kernel was measured with one spectral reading.

A hyperspectral image, on the other hand, can provide hundreds of pixels

(or hundreds of spectral readings) for one wheat kernel. Thus with more spatial

and spectral information extraction capability, hyperspectral images were also

used for detecting scab in wheat. Image acquisition was usually achieved with

push-broom line scanning techniques. In one study, Delwiche and Kim (2000)

imaged three wheat sample varieties, each with 32 normal and 32 scab-damaged

kernels. The spectral range of the reflectance image was from 424 to 858 nm. The

wheat kernels were arranged in an 8 by 8 matrix on a black velvet cloth. The rows

of normal and scab kernels alternated in the arrangement. After image calibration

and preprocessing, the reflectance of each kernel was averaged into a single

reflectance number. It was found that scab-damaged kernels generally exhibited

higher reflectance than normal kernels. Statistical analysis included step-wise

discriminant analysis and discriminant analysis. The first process selected the

best 22 bands for classification. The best two-band combination from the 22 bands

was then selected for the discriminant analysis. The misclassification rate was

related to sample varieties ranging from 2 to 17 %. Alternatively, Shahin and

Symons (2011) used reflectance images (400–1,000 nm) for the detection of

Fusarium damaged kernels in Canada Western Red Spring wheat. In this work,

800 kernels were separated into three classes of samples: sound, mildly damaged,

and severely damaged. Images were analyzed with principal component analysis

and linear discriminant analysis. In a two-class (sound and damaged) scenario, an

overall accuracy of 92 % was achieved. This work also pointed out that the

performance of the reduced image space (6 wavelengths) and the full-spectrum

image was comparable.
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In order to exploit a wider range of spectral data, Polder et al. (2005) used both

VIS-NIR (430–900 nm) and SWIR (900–1,750 nm) hyperspectral images for the

detection of Fusarium in single wheat kernels. The imaging data recorded was

transmission spectra. In order to capture transmittance data, the two imaging systems

required different physical configurations. For sample preparation, 96 kernels were

selected from samples artificially inoculated with Fusarium culmorum, including
both damaged and healthy looking kernels. The actual infestation with Fusarium (i.e.,

the amount of F. culmorum DNA) was determined for each kernel through TaqMan

real-time PCR analysis. The spectral absorption data was analyzed through

unsupervised fuzzy c-means clustering and supervised partial least squares regres-

sion. The results indicated that the SWIR data had better performance than the VNIR

data. The analysis could clearly identify kernels with more than 6,000 pg (picograms)

Fusarium DNA.

In addition, wheat kernels infected with other fungi were also studied. Singh

et al. (2007) used near-infrared hyperspectral images in the wavelength range

1,000–1,600 nm for fungal detection in wheat. Fungal infection was introduced

with Penicillium, Aspergillus glaucus, and Aspergillus niger. PCA was applied to

reduce the image dimension. Classification was then implemented with K-means

clustering and discriminant analysis. An average of 97.8 % accuracy was obtained

to detect the infected kernels in a 2-class scenario. When four classes were used,

95 % of the Penicillium infected and 91.7 % of the healthy kernels could be

correctly identified. Misclassification happened to the kernels infected with Asper-
gillus glaucus and Aspergillus niger. With the same data, Zhang et al. (2007) used

support vector machine for the analysis. Accuracy for the above 4 classes, Penicil-
lium., A. glaucus, A. niger, and healthy kernels, was 99.3 %, 87.2 %, 92.9 %, 100 %,

respectively. Between the A. glaucus and A. niger classes, the misclassification rate

was 10 %.

6.4.1.5 Wheat/Barley Contaminated with Don

In addition to Fusarium head blight, the Fusarium fungi can produce a metabolite

called deoxynivalenol (DON), also known as vomitoxin. In the US, the FDA’s

regulation on the levels of DON in finished wheat products is 1 ppm for human

consumption and 5–10 ppm for livestock and poultry feed. Conventional methods

of detecting DON are chemical-based analytical methods such as HPLC or immu-

noassays (ELISA). Generally, rapid and non-invasive approaches are desired for the

detection, and ideally, quantification of the wheat samples.

Earlier research focused on using spectroscopic methods on single wheat kernels.

For example, Dowell et al. (1999) used a spectrometer (400–1,700) to measure

absorbance of wheat kernels infected with DON. The PLS model had a prediction

R2¼ 0.64 for DON. The model was developed with kernels when DON> 5 ppm.

The relationship between actual DON and spectral measurements of bulk samples

(more than one kernel) was also investigated. Ruan et al. (2002) utilized spectrometer

absorbance data (400–2,500 nm) for non-destructive determination of deoxynivalenol
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levels in barley. The focus was to develop neural-network models for the prediction.

Themodel R2 was 0.933 when the full spectrumNIR data was used. The R2was 0.912

when data from 700 to 1,000 nm was used. It was concluded that the neural network

approach performed better than PLS analysis. Pettersson and Aberg (2003) used NIR

transmittance data (570–1,100 nm) for the determination of DON in wheat kernels.

Both PCA and PLSmethods were used in the analysis. The best regressionmodel was

developed in the wavelength range 670–1,100 nm with a correlation coefficient of

0.984. In a more thorough approach, Beyer et al. (2010) first separated the Fusarium
damaged wheat kernels into 6 levels of damage, 0, 20, 40, 60, 80, and 100 %, based

on visual inspection. Each group had more than 120 kernels. Spectral reflectance

(350–2,500 nm) was collected with an ASD spectrometer and DON was determined

chemically (HPLC) for each group. Both partial least square regression and LDAwere

used in the analysis. The estimation R2 was 0.84. However, it was concluded that this

approach alone was not reliable enough to separate grain samples with DON contents

at the legal limit of 1.25 ppm (1.25 mg/kg, EU standard).

Work was also extended to automated detection and sorting of wheat kernels

with DON contamination. Delwiche et al. (2005b) worked on high-speed optical

sorting of soft wheat for reduction of deoxynivalenol. A commercial high-speed

bichromatic sorter was modified with two wavelengths, 675 and 1,480 nm. The

wavelength selection was based on prior studies on single wheat kernels. The sorter

had a capacity of 0.33 kg/ (channel-min) with a rejection rate of 10 %. After the first

run of sorting, the fraction of DON contamination level in the sorted wheat to that in

the original wheat ranged from 18 to 112 %. The mean fraction was 51 %. If a

multiple sorting approach was used, in which the samples are re-sorted, the fraction

could be reduced to 16 to 69 % of the original level. Peiris et al. (2010) evaluated an

automated single kernel new-infrared spectroscopic sorter for the estimating of

DON levels. The results indicated that single kernels could be predicted as having

low (<60 ppm) or high (>60 ppm) DON with ~96 % accuracy. For the kernels with

high DON concentration, the single kernel DON levels could be estimated

with R2¼ 0.87. The sorter could run at 1 kernel/s and could be helpful for breeders

with more information on the single seed.

6.4.1.6 Soybean Contaminated with Fungus

Wang et al. (2004) used NIR reflectance (400–1,700 nm) to classify single fungal

damaged soybean seeds. The reflectance was converted to absorbance for PLS and

NN analysis. The samples were 800 fungal-damaged and 500 healthy soybean

seeds manually selected by trained grain inspectors. The two-class PLS model in

the wavelength region of 490–1,690 nm had an accuracy of more than 99 %. The

study further worked on a five class model when the fungal-damaged seeds were

divided into 4 different categories based on the damage. In this case, the NN

model had better classification accuracy, which was 94.6 % for the validation

sample set.
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6.4.2 Produce

In addition to its application in the safety inspection of grains, hyperspectral

imaging has viable applications for implementation at critical control points of

food processing when inspecting for potential contaminants of produce. One of the

main food safety issues for fresh produce such as fruits and vegetables is fecal

contamination on the surfaces of the products. Thus the detection of such contam-

ination is of importance for the producers and processors.

6.4.2.1 Apple with Fluorescence Detection

Several early studies used apples to demonstrate the feasibility of using spectro-

scopic and imaging techniques to detect surface contaminants (Schatzki et al. 1997;

Wen and Tao 2000; Leemans and Destain 1998). In the 1990s, outbreaks of

Escherichia coli O157:H7, a bacterial strain that often leads to hemolytic uremic

syndrome, were found to be associated with unpasteurized apple juice and cider

(Steele et al. 1982; Besser et al. 1993; CDC 1996, 1997; Cody et al. 1999). Animal

droppings from cattle and deer were thought to be the main source of contamination

found in the fruit juices (Riordan et al. 2001; Uljas and Lngham 2000). Because

this presented a threat to the general US population and children in particular,

the FDA came out with a mandate in an attempt to reduce fecal contamination

of apples in the food chain (FDA 2001). The FDA also indicated a need for rapid

and non-invasive technology for the detection of fecal contaminants on apples.

In response to the federal mandate and request for an automated, non-destructive,

imaging system for quality and safety inspection of produce, researchers at the

USDA, Beltsville, Maryland developed lab-based (Kim et al. 2001, 2003b;

Lefcourt et al. 2005a) and in-line (Kim et al. 2008b) hyperspectral and multispectral

imaging systems for potential commercial application. Apples from different

cultivars were used as the test model for the evaluation of the various systems

and techniques.

An early study (Kim et al. 2001) compared fluorescence and reflectance images

of a normal apple and an apple with fungal contamination and bruises. The images

were acquired with a lab-based hyperspectral reflectance and fluorescence imaging

system specifically developed for food quality and safety research. With a spectral

range between 430 and 930 nm, spectral resolution of 10 nm and spatial resolution

of 1 mm2, the system was equipped with halogen as well as UV-A illumination

sources to measure both reflectance and fluorescence emission. The results of the

study provided baseline spectral features of unblemished Golden Delicious apples

and the effects due to contamination and defects from reflectance and fluorescence

emission images (Kim et al. 2001). In two follow up experiments, hyperspectral

reflectance (Kim et al. 2002a) and fluorescence (Kim et al. 2002b) data, acquired

with the above mentioned imaging system, was used to determine optimal wave-

lengths that may be used in an online multispectral system. Principal component
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analysis was used to aid in visualizing the hyperspectral data and to develop criteria

for multispectral detection. Four different cultivars of apples were selected (Red

Delicious, Fuji, Gala and Golden Delicious). Feces from a dairy farm were applied

onto apples in both a patch and a transparent invisible smear. Reflectance results

identified three VIS-NIR and two NIR wavelengths that could potentially be

implemented in a multispectral imaging system for fecal detection on apples.

Fecal contamination on apples for the different cultivars was classified with the

use of a single threshold method which worked well for the thick fecal smears, but

not as well for the transparent ones (Kim et al. 2002a).

In contrast, results from the fluorescence imaging experiment were more prom-

ising. Four multispectral bands (450, 530, 685, and 735 nm) were identified by PCA

and examination of fluorescence emission maxima as being optimal for discrimi-

nating contaminated apple surfaces. Additionally, a simple two-band ratio (685 to

450 nm) reduced variation on normal apple surfaces and emphasized the differ-

ences between contaminated and uncontaminated areas (Kim et al. 2002b). The

authors also noted that because auto-fluorescence from fecal matter is low,

enhancement of the fluorescence signal as well as using an excitation wavelength

more appropriate for fecal detection (410–420 nm, Kim et al. 2003b) would be

required in an in-line commercial application.

A larger scale experiment was conducted where 96 apples from the Golden

Delicious cultivar were treated with diluted (1:2, 1:20, 1:200) fecal matter prior to

fluorescence imaging (Kim et al. 2004). Fluorescence hyperspectral images were

acquired with an updated version of the original system (Kim et al. 2001) developed

for food safety research. The main difference in the imaging system was the

inclusion of a thermo-electrically cooled electronmultiplying charge coupled device

(EMCCD) camera, which was able to attenuate the low fluorescence signals

resulting in better signal to noise ratio, which replaced the original CCD camera.

Following hyperspectral imaging, PCA was used to determine several wavelengths

for the classification of feces on the apples. A two-band fluorescence ratio using

combinations of the PCA-selected wavelengths determined that the ratio images at

556 and 663 nm provided automated detection of several fecal dilutions on the

surfaces of Golden Delicious apples with a minimum of false positives. The results

were reproduced regardless of color variation of individual apples (Kim et al. 2004).

All the previously acquired information was utilized in the subsequent develop-

ment of multispectral imaging systems. The individual steps including algorithm

development and testing were outlined by Lefcout et al. (2006).

One of the multispectral imaging systems developed was a portable multispectral

fluorescence system which was used to isolate the optimal red bands for detecting

feces on RedDelicious apples (Kim et al. 2005a). The system consisted of a UV light

source, an intensified camera (ICCD) with a six-position filter wheel, and software

for controlling the system and automatic analysis of images (Kim et al. 2005a;

Lefcourt et al. 2005a). It was found that the best contrast between contaminated and

uncontaminated sites on apple surfaces was provided by fluorescence emission

bands at 670 nm. It was further demonstrated that the use of an unsupervised

automated threshold algorithm along with a two-band ratio multispectral fusion
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increased the power of detection of the system to 100 % (Kim et al. 2005a). The

system was exhibited in a demonstration at a public domain for the purpose of

increasing public awareness to the presence of fecal contamination that may not be

readily visible. In fact, the system was able to detect fecal remnants after the apples

were washed as long as the feces remained on the apple for at least 5 h before

washing (Lefcourt et al. 2005a).

6.4.2.2 Apple with Laser Induced Fluorescence Detection

The next step in the quest for automated detecting device for in-line inspection

of fecal contamination of apples was the introduction of the multispectral

laser-induced fluorescence (LIF) imaging system. The system was developed by

Kim et al. (2003a) and was intended for capturing multispectral fluorescence

emission images, at bands 450, 550, 678 and 730 nm in the blue, green, red, and

far-red regions, from large biological samples including meat and produce. The

system consisted of a pulse laser, a beam expander, a lens, a common aperture

adapter and a fast-gated intensified camera (Kim et al. 2003a; Lefcourt et al. 2003).

One of the applications for the multispectral laser-induced fluorescence imaging

system was to test the ability and sensitivity of laser-induced fluorescence in

detecting fecal contaminants on Red Delicious apples. Serial dilutions of fecal

matter from dairy cows, deer, and an abandoned cow pasture, were applied to the

apples. Images were acquired 1 day and 7 days after apple surface treatment and

after washing as well as after washing and brushing. Because a wide and steep

gradient in fluorescence surrounded the treated areas, a gradient method for detec-

tion was applied. The results revealed close to 100 % detection for the 1:2 and 1:20

dilutions, and over 80 % for 1:200 (<15 ng) dilutions 1 day after application. The

lowest detection was noted on apples contaminated with feces from the pasture that

were washed and brushed with detection for 1:2, 1:20 and 1:200 corresponding to

100 %, 30 % and 0 %, respectively. Analysis of the ratios of red band to blue band

images were found to improve detection of 1:2 dilutions, where as detection of

1:200 dilutions was better when only the red band images were used for analysis.

The results were encouraging and indicated that laser-induced fluorescence imag-

ing was a sensitive method for fecal contamination detection on apples including

obscure areas like the calyx (Lefcourt et al. 2005b), however, there were several

practical issues that needed to be addressed before a viable in-line inspection

system could be developed (Lefcourt et al. 2003).

The next few studies concentrated on perfecting detection methodology when

using the multispectral laser-induced fluorescence system for the specific applica-

tion of discriminating feces-contaminated from non-contaminated apples from

various cultivars. Lefcourt et al. (2005c) analyzed potential methods for increasing

selectivity and specificity of the LIF system using the previously determined

optimum excitation wavelength for feces of 417 nm (Kim et al. 2003b), and a

pulsed laser with a parametric oscillator for tuning to a particular wavelength. The

study examined the role of timing of the fluorescence responses to the pulsed laser
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excitation when detecting fecal contamination on apples. Results of the study found

that consideration of the timing was an important factor in enhancing the signal

from the feces-contaminated areas. Utilizing the time-dependence of the fluores-

cence signal, Kim et al. (2005b) examined the nano-scale fluorescence emission

decay characteristics of fecal matter on apples in order to find the optimal red band

and gate-delay time for detecting the contamination. The results revealed that the

optimum emission band providing the best difference in time-dependent fluores-

cence between treated and untreated apples was 670 nm and a gate-delay of 4 nm

from the laser excitation peak (Kim et al. 2005b). Ultimately, the optimal detection

was achieved after images underwent universal power transformation followed by

edge detection (Lefcourt et al. 2005b). The typical intensity variation between

apples was reduced by the transformation and contrast between contaminated and

uncontaminated areas was improved (Lefcourt and Kim 2006).

An updated time-resolved multispectral laser induced imaging system was

developed that incorporated tunable wavelength capability for excitation band

selection and nanosecond-scale characterization of fluorescence responses (lifetime

imaging). The system was tested on Red Delicious apples contaminated with cow

manure. Several excitation-emission wavelengths were employed and it was con-

firmed that 670 nm emission and 418 nm excitation bands provide the best

separation between clean and treated spots on apples (Kim et al. 2008a). Another

benefit of the system is a large field of view (13� 13 cm2) for the fluorescence

lifetime imaging that can accommodate relatively large biological samples (Kim

et al. 2008a).

6.4.2.3 Apple with Reflectance Detection

Although fluorescence hyperspectral and multispectral imaging was considered

more sensitive when applied to fecal detection on apples (Kim et al. 2001), studies

continued to explore reflectance image properties for potential food safety

applications.

An experiment with 153 samples was conducted by Mehl et al. (2002) where the

hyperspectral system (Kim et al. 2001) in reflectance mode, was used to isolate

three bands for the discrimination of normal and contaminated Golden Delicious,

Red Delicious, and Gala apples. The PCA and chlorophyll absorption peak methods

were used to elucidate the optimal spectral bands that were implemented in a

multispectral imaging system consisting of a three channel (RGB) prism-based

camera with specific band pass filters placed between the prisms and the three

CCDs to attain spectral specificity for the detection of various apple anomalies

including defects, disease and contamination. Good separation between normal and

contaminated apples was obtained for the Gala (95 %) and Golden Delicious (85 %)

samples; however, separation of the Red Delicious (76 %) apples was less satisfy-

ing (Mehl et al. 2002). Although PCA is the most frequently utilized multivariate

method when analyzing hyperspectral data, other approaches may be developed

depending on the need presented by the data set. Mehl et al. (2004) compared
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several methods for image analysis of hyperspectral reflectance data for the

detection of defects and contaminants on the surfaces of Red Delicious, Golden

Delicious, Gala, and Fuji apples. The authors also presented an asymmetric second

difference method which applied a chlorophyll absorption waveband at 685 nm and

two bands in the near-infrared region. The method provided detection of defects

and contamination on apples independent of apple color or cultivar with results

comparable to PC image analysis. Because the method required only three spectral

bands and considerably less processing time, it was considered suitable for appli-

cation in an in-line multispectral imaging system (Mehl et al. 2004).

Further experiments using hyperspectral reflectance (Liu et al. 2007) revealed

that the 675–950 nm VNIR region exhibited the most obvious spectral differences

between clean and fecal contaminated surfaces of Red Delicious and Golden

Delicious apples. The authors applied several image analyses methods and deter-

mined that the dual band ratio (725/811 nm) algorithm provided the best detection

of the contaminated areas on both cultivars. Because the two bands (725 and

811 nm) are away from the natural pigments, there is no interference from color

variations among apples of different varieties. In addition, the algorithm was

effective in identifying bruises on surfaces of the fruit. The development of the

potentially universal two-band algorithm advanced the possibility of using a reflec-

tance based application in an in-line detection system.

Results from the combined fluorescence and reflectance studies led to the testing

of an in-line system. The hyperspectral line-scan imaging system (Kim et al. 2004)

was integrated with a commercial apple sorting machine for the simultaneous

imaging of apples for both quality (cuts and bruises) and safety (fecal contamina-

tion). It was demonstrated that fluorescence imaging with two-band ratio analysis

achieved a 100 % detection rate of apples artificially contaminated with cow feces

and no false positives. A NIR two-band reflectance ratio coupled with a simple

classification method based on the heterogeneity of the ratio values achieved a

99.5 % apple defect classification with a false positive rate of 2 %. The system in

the hyperspectral mode achieved a speed of approximately three apples/s (Kim

et al. 2007). A subsequent “multitask” multispectral imaging system was developed

with an updated EMCCD camera designed to operate with a commercial apple

sorting machine. Details of the system are described in Kim et al. (2008b). Test

line-scan images were acquired with 200 s exposure time with processing speed

exceeding four apples/s. A total of 333 lines per second and 40 pixels per apple

resulted in sufficient spatial resolution for image based online inspection (Kim

et al. 2008b).

One problem that has not been adequately addressed is the ability of the camera to

see all of the surfaces of individual fruits on an automated inspection system. Reese

et al. (2009) proposed the use of concave parabolic mirrors, an idea that has merit

but will require some logistical adjustments to be of practical use. Software for

the automated online inspection multitask system is under development. The system

has the potential of incorporating several sorting components as well as the added

benefit of detecting fecal contaminants, thus making it suitable for both safety

and quality inspection of other food products besides apples (Kim et al. 2011).
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6.4.2.4 Other Fruit (Cantaloupes, Strawberries)

The hyperspectral system (Kim et al. 2001) in the fluorescence mode was also

utilized in the detection of fecal contamination of cantaloupes (Vargas et al. 2004,

2005) and strawberries (Vargas et al. 2004). Image analysis of the cantaloupe data

indicated that due to the natural variation of the fruit surfaces, both single band and

two-band ratio methods showed a number of false positives. Subjecting the entire

hyperspectral data set to the PCA method was more useful for discriminating

between fecal contamination and false positives as well as isolating specific

bands for potential multispectral application. The strawberry imaging was less

promising, assumedly, due to the combination of high moisture content of the

fruit and less than ideal lighting conditions (Vargas et al. 2004).

6.4.2.5 Vegetables (Leafy Greens, Cucumbers)

At least 26 outbreaks of E. coli infection reported in the US since the early1990s

were traced to contaminated leafy greens including spinach and lettuce (Maki 2009).

In spite of great efforts on the part of the various food safety agencies to prevent the

spread of these infections, the fact remains that every year in the US thousands of

people acquire E. coli infections, and many of them do not survive (Maki 2006).

Because of its non-invasive and adaptive nature, remote sensing may be ideally

suited for contamination monitoring of leafy greens as well as other vegetables.

To test this theory, hyperspectral technology was employed for classification of

fecal contamination on leafy greens, where fluorescence hyperspectral imaging

(421–700 nm) and a two-band ratio (666 nm/680 nm) image analysis method

successfully classified fecal contamination on spinach and lettuce leaves (Yang

et al. 2010). The imaging system was based on push-broom line-scanning with an

EMCCD camera. The samples were excited with 365 nm UV light. The leaf

samples were romaine lettuce and baby spinach leafs. Fecal contamination was

artificially introduced onto the surface of each leaf. The emission peaks of the leaf

were between 660 and 690 nm, which was related to the intensity of chlorophyll

emissions. Compared to the leaf peaks, the emission peak for fecal contamination

spots had a shift toward the shorter waveband, named blue shift. Chlorophyll in

general emits red and far red fluorescence under long wavelength UVA excitation.

This was in agreement with the observation of the study. An exhaustive search was

implemented over all possible two-band combinations and the bands with the

highest correlation between the two-band ratio (666/680 nm) and fecal contamina-

tion were selected to develop a classification algorithm. The result showed that

the classification accurately detected all of the contaminated spots, but not all the

contaminated pixels. A different study (Siripatrawana et al. 2011) conducted on

packaged fresh spinach contaminated with E. coli used hyperspectral reflectance to

develop a rapid detection method for quantifying E. coli infection with a combined

PCA and artificial neural network (ANN) chemometric analysis.
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Lu and Ariana (2011) applied reflectance and transmittance hyperspectral

techniques in order to detect fruit-fly infestation in pickling cucumbers. Partial

least square discriminant analysis was employed for the classification of infested

and un-infested samples. It was found that the hyperspectral imaging system

outperformed manual inspection accuracy (75 %) in either mode. In the reflectance

mode classification was between 82 and 88 %, and in the transmittance mode it was

88–93 %.

6.4.3 Tree Nuts

6.4.3.1 Almonds

Internally damaged almonds that brown after cooking are rejected by both the

almond industry and the consumer, mainly because of their unpleasant, bitter

taste and dark color. The damage is not readily apparent and it is difficult to

distinguish the affected nuts from normal ones. In 1999, Pearson found that he

could distinguish raw, internally damaged almonds from undamaged nuts with the

use of full spectrum (700–1,400 nm) transmission hyperspectral imaging. Although

promising, the methodology proved to be cumbersome due to the large data set

produced by the full spectrum of the hyperspectral system. A new feature selection

algorithm was recently developed for internally damaged almond detection that

requires only two sets of ratio features for classification. Results demonstrate that

the method gives a higher classification rate than using the best feature selection

subset of separate wavebands or when using a feature extraction algorithm where

all wavelength data is included (Nakariyakul and Casasent 2011). The method can

potentially be used in real-time practical multispectral sensor systems for other

applications including insect damage assessment in almonds, an occurrence linked

to aflatoxin contamination (Schatzki and Ong 2001).

6.4.3.2 Walnuts

Another specialty crop subjected to hyperspectral image sorting is the black walnut.

Because of risks associated with swallowing shell pieces, the application of auto-

mated discrimination between walnut shell and pulp has become a safety concern in

the walnut postharvest processing industry in the US. Jiang et al. (2007) employed

hyperspectral fluorescence imaging along with a Gaussian-kernel based support

vector machine (SVM) approach to classify the walnut shells and pulp. Results of

their experiments showed an overall 90.3 % recognition rate based on 6,257

samples. Zhu et al. (2007) used fluorescence hyperspectral imagery with

ICA-kNN optimal wavelength selection, to avoid data redundancy of hyperspectral

data, for classification of walnut shells and pulp. Results of both studies show the
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feasibility of using hyperspectral fluorescence for classification of black walnut

shells and pulp in order to prevent a possible choking hazard or an oral injury.

6.4.3.3 Pistachios

Because of their pleasing taste and many health benefits, pistachios are a popular

snack throughout the world and of economic importance in several countries.

Unfortunately, like other nuts subject to variable storage conditions, pistachios

are also prone to aflatoxin contamination associated with Aspergillus spp. fungal
infestation (Farsaie et al. 1978; Pearson and Schatzki 1998; RahaieI et al. 2010).

The acceptable export limits for pistachios worldwide are 10 ppb for aflatoxin B1

and 15 ppb for total aflatoxin (RahaieI et al. 2010). Early attempts at using

spectroscopic methods for differentiating between aflatoxin contaminated and

non-contaminated pistachios were made by Farsaie et al. (1978). Excitation and

emission spectra were derived from Iranian pistachios in order to develop an index

for sorting aflatoxin contaminated and uncontaminated nuts based on the natural

BGY fluorescence. Six indices were tested with excitation wavelengths at 360 and

420 nm. It was determined that the BGY fluorescence emission peak was at 490 nm

and was most probably due to a pure substance and was obviously different from

the other emission peaks. Thus the feasibility of using machine vision was demon-

strated. In a later study, Pearson and Schatzki (1998) used machine vision for

automated detection of pistachios also contaminated with aflatoxin, based on a

particular staining pattern of contaminated nuts. In their study the authors reported

that the automated image-based system they used outperformed hand sorting. There

were some unaddressed issues with their method. One obvious problem is that not

all pistachio varieties have the particular marking associated with aflatoxin con-

tamination described in the present study. There do not appear to be recent imaging

studies that address the aflatoxin problem in pistachios, yet the problem persists

(Rahaie et al. 2010).

6.4.3.4 Other Nuts (Hazelnuts, Peanuts)

Due to differences in allowable limits in exported goods, care must be taken when

exporting to certain countries. Europe, in particular, has very stringent aflatoxin

limits. Because aflatoxin contamination is highly heterogeneous and contaminated

seeds or nuts are often unevenly distributed, it would be useful to be able to

non-invasively prescreen goods meant for export and remove the contaminated

nuts or seeds instead of having to deal with the consequences of a rejected

shipment. In a recent study, Kalkan et al. (2011) applied multispectral imaging

techniques to detect aflatoxin contaminated hazelnuts. The authors used a

two-dimensional, local-discriminate bases algorithm that identifies the optimal

band-pass width and center frequencies of optical filters to be used in a multispec-

tral imaging system. The classification accuracy for aflatoxin contaminated and
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uncontaminated hazelnuts was 92.3 % with a resulting decrease of aflatoxin

concentration from 608 to 0.84 ppb. Hirano et al. (1998) used the transmittance

ratio of (T700/T1100 nm) when attempting to differentiate aflatoxin contaminated

from uncontaminated shelled peanuts.

6.4.4 Spices

The increased use of spices and herbal ingredients obtained through international

commerce brings to attention possible microbiological contamination of products

during prolonged storage or those that may have not received a proper processing

treatment. Outbreaks of salmonella linked to contaminated spices present a problem

especially when herbs and spices are added to foods ready for immediate consumption

(Sagoo et al. 2009). Other contaminants in spices may be in the form of mycotoxins

(Hernandez-Hierro et al. 2008). Although there exist established guidelines for sam-

pling and testing of dry herbs and spices (EC 2004; ICMSF 2005), practical applica-

tion and monitoring or enforcing the guidelines may be problematic. Currently,

prevention of microbial contamination of spices and herbs largely depends on good

hygiene practices during all stages of production from farm to the table. Reliance on

end product testing for compliance with costly analytical methods (e.g., HPLC) may

be avoided if an in-step monitoring system was employed to ascertain product

integrity. Spectroscopy based systems may present a viable rapid and cost-effective

option. A recent study in Turkey (Atas et al. 2010) used hyperspectral image data to

classify aflatoxin-contaminated chili peppers with the application of ANN for

detecting the mycotoxin aflatoxin. Their results led them to design a machine vision

system based on hyperspectral imaging and machine learning (Ataş et al. 2011).

Another study (Kalkan et al. 2011) used multispectral imaging for detecting

aflatoxin in red chili pepper flakes. With their two-dimensional, local-discriminant

bases algorithm, they achieved classification accuracy of 80 %. Another popular

spice susceptible to mycotoxins is the red paprika. Hernandez-Hierro et al. (2008)

found that using NIR spectroscopy for detecting aflatoxin and ochratoxin in paprika

was an alternative method offering lower cost and higher speed than conventional

chemical analysis methods.

6.5 Inspection Mode

6.5.1 In Research

Using hyperspectral imagery for food quality and safety inspections is a natural

extension from using this type of data in space or terrestrial remote sensing.

Different from traditional earth based hyperspectral remote sensing applications
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where solar radiation is the sole source for target illumination, the aforementioned

research activities all utilized artificial light. The artificial light can be fiber light

(Armstrong 2006; Cho et al. 2007; Kim et al. 2001; Lawrence et al. 2003b; Lu 2003;

Pearson and Wicklow 2006), tungsten halogen light (Haff and Pearson 2006;

Yao et al. 2008), tungsten halogen light in a diffuse lighting chamber (Naganathan

et al. 2008), or light emitting diode (Chao et al. 2007b; Lawrence et al. 2007).

Typically, this type of experiment is implemented in an indoor environment at a

close distance.

Among the applications utilizing hyperspectral imaging for safety inspection in

plant products, almost all follow a similar research to implementation track. The

research step would examine the full wavelength response from the samples under

different imaging modes (reflectance, transmittance, fluorescence) and lighting

conditions. Once sufficient knowledge is obtained regarding a certain subject, key

wavelengths can be selected to fit in specially designed inspection devices to speed

up the inspection process. The former task is generally carried out in lab conditions,

and the latter is applied in an online inspection setting.

In the lab, all of the imaging factors are well-controlled in order to collect the best

image data from the samples. Generally, the instrumentation used are spectrometers

or hyperspectral cameras (imaging spectrometers). Since inspection speed is not

of major concern in lab based research, full wavelength data is generally collected.

The artificial light is tuned to provide the best lighting conditions for the imaging

experiment. The samples are treated under controlled conditions set by the experi-

menter. Natural samples are carefully selected in order to provide a representative

sample of the real world conditions. Most of the above discussed applications fall

into the “research” category. A typical hyperspectral imaging camera used for

research purposes is presented in Fig. 6.7. The camera is based on push-broom

line-scanning.

Fig. 6.7 Hyperspectral

camera system showing the

CCD detector, the housing

for the prism-grating-prism

spectrograph, and the

motor-controlled lens

positioning assembly

(Lawrence et al. 2003b)
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6.5.2 Online Inspection

Online inspection uses spectral information for rapid safety inspection of large

quantities of a specific product. The application environment is generally in an

industrial or simulated industrial situation. In this case, the lighting condition is

pre-defined and well controlled. Large quantities of sample move at high speeds on

a conveyor-belt. The spectral information is generally narrowed to several key

wavelengths for rapid data acquisition. To collect spectral information at those

wavelengths, narrow band filters (Kise et al. 2008) or a filter wheel (Kim

et al. 2005a), wavelength switching devices such as LCTF (Gat 2000) or AOTF

(Acousto-optic tunable filters, Park et al. 2011), or wavelength addressing on a line

scanner (Yoon et al. 2011) can be used.

For online grain inspection, Fig. 6.8 provides a conceptual view of a corn inspec-

tion instrument for aflatoxin detection. The narrow band fluorescence wavelength

was selectedwith a LCTFmounted in front of the camera. In a study (Yao et al. 2011a)

that simulated the operation of the inspection instrument and tested the feasibility of

rapid detection, both 25 and 1,000 g corn samples were used. The detection accuracies

were generally in the range from 80 to 90 %.

One of the main applications in online inspection is sorting. In a test (Pearson

et al. 2004) using high-speed dual-wavelength sorting for the reduction of aflatoxin

and fumonisin contamination in corn, the absorbance at 750 and 1,200 nm were

used. The two wavelengths were selected from a discriminant analysis process using

full wavelength data. Filtering of the two wavelengths was implemented through a

dual-peak filter mounted in front of the silicon and indium-gallium-arsenide

(InGaAs) detectors equipped with a high-volume optic sorter. It was reported that

the sorter was able to reduce aflatoxin levels by 81 % from an initial average of

53 ppb. For fumonisin the levels were reduced by 85 % from an initial level of

17 ppm. In other work, Delwiche et al. (2005) modified a commercial high-speed

bichromatic sorter with two wavelengths 675 and 1,480 nm in order to implement

high-speed sorting of soft wheat for the reduction of Deoxynivalenol.

Camera

Lens

UV Bench Lamp

Filter-Box Adapter

Liquid Crystal Tunable Filter

Containment Box
Conveyor Belt

Corn

Fig. 6.8 Schematic of an automated instrument for aflatoxin inspection in corn
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Pasikatan and Dowell (2001) reviewed optical-based sorting systems for

detecting and removing seeds infested internally by insects or fungi. The focus of

the review was on sorting indices based on selected wavelengths for different grains

and applications. The subjects included A. flavus and aflatoxin, Fusarium, and
internal insects in grains. It was concluded that both wavelength identification

and proper selection of sorting criteria are important for high sorting accuracy.

The selection of sorting criteria is closely related to the nature of the products

because acceptable and unacceptable samples can have spectral characteristics

ranging from very pronounced to very subtle. The consequence is that products

are not clearly classified as “accept” and “reject”. Thus it is difficult to define the

cutoff point to reduce both false-positive and false-negative rate. False-positive is

defined as a good product mistakenly marked as contaminated, and vice versa for

false-negative. When the decision is for economic reasons, the commercial sorters

would provide the option to allow the operator to adjust the thresholds.

On line inspection of apples is an important application for the apple industry. For

apple defects detection, Cheng et al. (2003) used a dual-camera approach. Themethod

included the use of a near-infrared and a mid-infrared (MIR) camera. The results

demonstrated that theMIR camera could identify only the stem-end/calyx parts of the

apple, while the NIR camera could identify both the stem-end/calyx portions and

the true defects. When the two cameras worked together a 100 % recognition rate

for good apples and a 92 % recognition rate for defective apples was achieved. Kim

et al. (2008a) developed a line-scan imaging system to simultaneously acquire a

combination ofmultispectral reflectance and fluorescence for the inspection of quality

and safety attributes of apples. The system was capable of working on a sorting line

with a speed of three to four apples per second. In Figure 6.9 is described this

Fig. 6.9 Multispectral line-scan imaging inspection instrument for quality and safety applications

of apples (Kim et al 2008b)

6 Safety Inspection of Plant Products 159



inspection system. Two light sources, a UV-A (320–400 nm) lamp and a tungsten

halogen lamp, were used for fluorescence excitation and reflectance illumination.

When in operation, the system could collect fluorescence images in the visible

light range and reflectance data in the NIR range. The imaging system incorporated

an EMCCD camera and a spectrograph for line-scan imaging. The EMCCD

camera could be configured for wavelength addressing, indicating that a few

selected wavelengths could be acquired rather than imaging the full wavelength.

In the paper (Kim et al. 2008a) the fluorescence ratio from 665 to 530 nm was used

for fecal contamination detection. The reflectance ratio from 750 to 800 nm was

used for defect detection. This online system would be a good validation instru-

ment for testing results obtained from full wavelength hyperspectral imagery for

many food inspection applications.

A similar concept regarding online inspection is the Process Analytical Tech-

nology (PAT) initiative for the pharmaceutical industry. As described by Federal

Drug Administration (Kourti 2006), PAT are “systems for the analysis and control
of manufacturing processes based on timely measurements during processes of
critical quality parameters and performance attributes of raw and in-process
materials and processes to assure acceptable end product quality at the comple-
tion of the process”. The essential components of PAT including process analysis,

real time measurement and monitoring, multivariate statistical analysis, and

in-situ control are also suitable for the online inspection of agricultural products.

Gowen et al. (2007) reviewed the use of hyperspectral imaging as PAT imple-

mentation for food quality and safety control. Similar to the pharmaceutical

industry, it is expected that hyperspectral imaging will be increasingly adopted

as a PAT by the food industry. For example, in food processing industry, it is

important to maintain cleanliness of the work environment and keep the food

processing equipment free from contaminants. Specifically, bacteria can establish

a community of biofilm on food processing equipment surface materials such as

stainless steel. The biofilm can cause cross-contamination of the food being

processed. Although many methods are available for the detection of biofilms,

technology for rapid and non-invasive detection of biofilms on large equipment

surfaces is always in demand. One study (Jun et al. 2009) examined the feasibility

of using hyperspectral fluorescence imaging to inspect bacterial biofilms on the

surface of stainless steel material. In this work two biopathogen samples, E. coli
and Salmonella, were applied to the stainless steel surface. Under long

wavelength UV excitation (320–400 nm), both biopathogen films exhibited blue

emission peaks at around 480 nm. The emission peaks had the highest contrast

between the biopathogen films and the stainless steel background. The results

showed that the second principal component image from the hyperspectral

fluorescence data had the most distinguishable morphological differences

between the concentrated biofilm formations of E. coli and Salmonella. The
authors suggested this method could be used to pre-screen surfaces of food

processing equipment and could compliment the use of other biosensors designed

for specific microbial targets.

160 H. Yao et al.



6.5.3 Field/Remote Monitoring

Although previously discussed research was focused on controlled environments such

as those that exist indoors and under lab conditions, work has also been conducted in

out-door environments. Identifying or detecting food safety issues on plant products

with hyperspectral imaging techniques ismore challenging in this situation.This typeof

research typically used canopy reflectance collected fromin-fieldor remoteplatforms to

correlatewith the safety problems in question.Thusmany remote sensingmethodswere

used in the research. In this section, studies ranging from leaf level spectrometer

reflectance data to field level airborne hyperspectral data will be discussed.

Typically, vegetation indices are used for the analysis of vegetation reflectance.

Vegetation indices have been used widely in remote sensing. The most important

vegetation index is the normalized difference vegetation index (NDVI) calculated

by using the red and near-infrared wavelengths. The use of hyperspectral images

makes it possible to build more refined vegetation indices by using distinct narrow-

bands and improving the indices for the correction of the effects of soil background.

Many hyperspectral vegetation indices have been developed for different applica-

tions, with the simplest vegetation index being based on individual bands.

Some research used point measurement of spectral data. Muhammed and

Larsolle (2003) and Muhammed (2005) collected canopy reflectance with a spec-

trometer for fungal disease severity assessment in wheat. The wheat was naturally

infected with Drechslera tritici-repenti that can cause tan spot disease. Several

analysis methods including independent component analysis, PCA, and a nearest-

neighbor classification were used in the above research. There were two effects on

the spectral curve observed with increased disease severity. The first was a flatten-

ing of the green reflectance peak together with a general decrease in reflectance in

the near-infrared region. The second was a decrease of the shoulder of the near-

infrared reflectance plateau together with a general increase in the visible region

between 550 and 750 nm. Mahlein et al. (2010) also used a spectrometer to measure

reflectance spectra (400–1,050 nm) of leaves infected with the sugar beet fungal

pathogens Cercospora beticola, Erysiphe betae, and Uromyces betae causing

Cercospora leaf spot, powdery mildew and rust. The purpose of the study was to

examine the potential of hyperspectral sensor systems for the nondestructive

detection and differentiation of plant diseases. Among the vegetation indices

evaluated, the spectral vegetation indices NDVI, Anthocyanin Reflectance Index

(ARI) and modified Chlorophyll Absorption Integral (mCAI) differed in their

ability to assess the different diseases at an early stage of disease development,

or even before first symptoms became visible. The conclusion was that the use of

spectral vegetation indices for the differentiation of the three sugar beet diseases is

possible when using the combination of two or more indices.

Other research that took advantage of hyperspectral imaging used hyperspectral

images for the detection of Fusarium infection (head blight) in wheat Bauriegel

et al. (2011a, b). The hyperspectral images were acquired with a push-broom

line-scanning imaging system (400–1,000 nm). Instead of collecting canopy
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reflectance, single wheat ears were imaged (Fig. 6.10). The fungal infection

was introduced artificially and time series hyperspectral images were obtained.

It was found that the head blight could be readily detected with the imaging method

7 days after inoculation up to a disease severity of 50 %. The healthy and diseased

ears were hardly distinguishable after the beginning of ripening. The best time

for the detection was at the beginning of the medium milk stage. A head blight

index (HBI), which uses spectral differences in the ranges of 665–675 nm and

550–560 nm, was developed for the detection of head blight. The above results

provided useful information for possible selective harvesting operations.

Zhang et al. (2003) also applied hyperspectral remote sensing for disease

detection on a large scale in the field. The application was the detection of stress

in tomatoes induced by late blight disease. An airborne visible infrared imaging

spectrometer (AVIRIS) image with 224 bands within the wavelength range of 0.4–

2.5 m acquired during the growing season, together with field data, was used. It was

found, based on the spectral reflectance of the field samples (measured with a

spectrometer), that the near-infrared region, especially 700–1,300 nm, was much

more valuable than the visible region for detecting the crop disease. The disease

level was divided into four levels from light symptoms to severe damage. The

classification results based on SAM (Spectral Angle Mapper) showed that the late

blight diseased tomatoes at stage 3 or above could be separated from the healthy

plants while the less infected plants (at stage 1 or 2) were difficult to separate from

the healthy plants.

6.6 Summary/Conclusions

Advances in hyperspectral imaging technology have provided enormous opportu-

nity for the food industry and research community to develop rapid and

non-invasive inspection methods for food safety inspection. This chapter reviewed

Fig. 6.10 Sample classification of Fusarium infected wheat ears (a) RGB image, (b) grey-scale
image according to head blight index, (c) classification result (dark grey/red: diseased, light grey/
green: healthy) (Bauriegel et al. 2011a)
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and discussed different aspects of using this technology in safety inspection of plant

products. The global demand for fresh plant products is on the rise due to improved

living standards and increased health awareness. Among issues related to food

production, food safety is always of major concern. Three types of major contam-

inants including pathogens, chemical contaminants, and physical contaminants

related to food safety, are discussed in this chapter. Pathogen contamination in

food is caused by certain microorganisms such as bacteria, viruses, fungi, and

parasites. Consumption of pathogen contaminated food can easily lead to sickness

and even be fatal. Chemical contamination can occur either in natural or industrial

situations. Similar to pathogen contamination, the ingestion of food with chemical

contaminants, for example toxins, can also be deadly. Physical contamination of a

food product occurs when foreign objects are intermixed with food. Different from

the other two contamination sources, physical contaminants generally do not cause

acute biological reactions, but the contamination is still a very important food safety

problem. Current safety inspection methods may not adequately address all of the

aforementioned safety issues; therefore, there is a need for novel, preferably rapid,

non invasive and cost effective technology applicable to food safety. Research and

studies in safety inspection have demonstrated that hyperspectral technology is a

viable method to address the above food contaminants.

The following steps are generally used in application-based research using

hyperspectral technology: experiment design, sample preparation, image acqui-

sition, spectral pre-processing/calibration, sample ground truth characterization,

data analysis and information extraction. Within this framework, the full wave-

length response from the samples is normally studied first. When sufficient

knowledge is obtained for a certain subject, key wavelengths can be chosen for

specially designed inspection devices to speed up the inspection process. The

hyperspectral technology is used as a research tool which transfers knowledge

learned from the laboratory to real world conditions. Hyperspectral data in the

format of reflectance, transmittance, and fluorescence are generally used in

applying the technology for different plant safety inspection applications. The

reflectance data can be used for external inspection and evaluation of surface

contaminants, while the transmittance hyperspectral imagery can be useful for

studying internal safety issues of food. The fluorescence hyperspectral data is

suitable for studying the properties of sample constituents and also for chemical

composition related to safety inspection. In some cases the combination of

different spectral data can be used. For example, reflectance and fluorescence

were used for online inspection of apples (Kim et al. 2008b). In this application,

defects and diseases were detected with the reflectance data and fluorescence data

was used for detecting fecal contamination.

This chapter discusses utilizing hyperspectral imaging for potential safety

inspection of plant products such as grain, produce, nuts, and spices. The products

discussed are corn, wheat, barley, soybean, apple, vegetables, almond, walnut,

pistachio, peanut, spice, etc. The main contaminants discussed are aflatoxin,

fumonisin, fungal infection, and fecal contamination.
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With the development of innovative detection technology achieved by fusion of

different hyperspectral data, or the combination of sensors, the detection accuracy

of hyperspectral applications is expected to continue improving. It is therefore

expected that hyperspectral technology will be adapted and extended to more

food safety applications in the near future.
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Chapter 7

Foodborne Pathogen Detection

Seung-Chul Yoon

7.1 Introduction

Foodborne pathogens can cause various diseases and even death when humans

consume foods contaminated with microbial pathogens. Although foodborne path-

ogens can be originated from various sources, such as animals, environments, and

even humans, foods of animal origin are the primary source of many foodborne

pathogens, such as Salmonella (poultry, eggs, meat, and produce), Campylobacter

(poultry), Escherichia coli (ground beef, leafy green, and raw milk), Yersina (pork),

Vibrio (fish) and Listeria (deli meats, unpasteurized soft cheese, and produce).

According to the 2011 FoodNet report of the Centers for Disease Control and

Prevention (CDC), the aforementioned six pathogens were responsible for the

most foodborne diseases, in terms of prevalence rates (Centers for Disease Control

and Prevention).

Rapid detection and identification of food-borne pathogens is increasingly

important for development of intervention and verification strategies for the food

industry and regulatory agencies. Traditional culture-based direct plating methods

are still the “gold standard” for presumptive-positive pathogen screening (Dwivedi

and Jaykus 2011; Beauchamp and Sofos 2009; Meng and Doyle 1998; Gracias and

McKillip 2004). Direct plating methods provide good specificity, sensitivity, and

information about the number of viable cells in food samples, broth cultures or

liquid media at relatively low costs. However, a major challenge is that competitive

microflora often grow together with target microorganisms on agar media and can

appear morphologically similar. In practice, highly skilled technicians visually

choose presumptive-positive colonies by trial and error for microscopic, biochem-

ical, serological and molecular confirmation tests.

S.-C. Yoon (*)

U.S. Department of Agriculture, Agricultural Research Service, US National Poultry

Research Center, 950 College Station Road, Athens, GA 30605, USA

e-mail: seungchul.yoon@ars.usda.gov

© Springer Science+Business Media New York 2015

B. Park, R. Lu (eds.), Hyperspectral Imaging Technology in Food and Agriculture,
Food Engineering Series, DOI 10.1007/978-1-4939-2836-1_7

173

mailto:seungchul.yoon@ars.usda.gov


Although considerable research has been devoted to development and use of

optical, biochemical, serological, and molecular methods for confirmation of

presumptive-positive colonies, such as latex agglutination and polymerase chain

reaction (PCR), little research has been done to develop methods and techniques for

non-invasive screening of presumptive-positive colonies, while keeping them on

agar-filled Petri dishes (Gracias and McKillip 2004; Lazcka et al. 2007; Velusamy

et al. 2010; Mandal et al. 2011). Previous research on non-invasive detection of

presumptive-positive colonies was concentrated on measuring light scattering

(Bayraktar et al. 2006; Hirleman et al. 2008; Banada et al. 2009) and absorption

(Yoon et al. 2009, 2010, 2013a, b; Windham et al. 2012) characteristics of colonies.

Hyperspectral imaging is a non-destructive and non-contact optical imaging tech-

nique that combines aspects of conventional imaging and vibrational spectroscopy

so that data can provide two-dimensional spatial information on colony shapes and

spectral information at every pixel in each colony under test. The spectral “finger-

prints” of bacteria provided by hyperspectral imaging can be used for detection and

identification of pathogens. Researchers at the United States Department of Agri-

culture (USDA) Agricultural Research Service (ARS) have demonstrated the

potential and efficacy of hyperspectral imaging for detection and identification of

pathogenic colonies including Campylobacter (Yoon et al. 2009, 2010) and

Escherichia coli (E. coli) (Windham et al. 2012; Yoon et al. 2013a, b).

This chapter covers research on the development of pathogen colony detection

and classification using visible and near-infrared (VNIR) hyperspectral imaging.

The first part of this chapter describes the important issues frequently encountered

in hyperspectral imaging study for pathogen colony detection, including bacterial

cultures, VNIR hyperspectral imaging system, and image acquisition and

preprocessing. The second part of the chapter then presents two case studies for

Campylobacter and E. coli colony detection.

7.2 Hyperspectral Imaging for Pathogen Detection

This section provides an overview of pathogens and agar media in a more general

context and the experiment protocol that was used and modified, as needed, for the

two case studies. The generic protocol included the sample preparation, imaging

system, image acquisition and preprocessing.

7.2.1 Pathogens and Agar Media

Campylobacter and E. coli are commonly found bacteria in poultry and ground

beef, respectively. Campylobacter is widespread in warm-blooded food-producing

animals, and the presence of Campylobacter in foods of animal origin has been the

most common cause of bacterially induced human gastroenteritis (diarrheal illness)
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in the United States (U.S.) and other developed countries. The most common

species among more than a dozen of Campylobacter species causing human illness

is Campylobacter jejuni (C. jejuni), followed by Campylobacter coli (C. coli) and
other species (National advisory committee on microbiological criteria for foods

(NACMCF) 2007). E. coli are bacteria living in the intestine of warm-blooded

animals and humans. Many E. coli strains do not cause human disease; there is

however, a pathogenic group of E. coli that produces Shiga toxin. Symptoms of

human illnesses caused by the consumption of Shiga toxin-producing Escherichia

coli (STEC) are diarrhea, stomach cramps, vomiting, and a potentially lethal kidney

complication called hemolytic uremic syndrome (HUS). The most prevalent and

commonly recognized STEC serotype is E. coli O157:H7; non-O157 STEC

serogroups such as O26, O45, and O103 are also increasingly recognized

(Bosilevac and Koohmaraie 2011; Griffin 1998). The U.S. Center for Disease

Control (CDC) estimated that as many as 265,000 STEC infections occur every

year in the U.S. alone, with about 64 % non-O157 STEC infections (Scallan

et al. 2011). According to a previous study, from 1983 to 2002, about 70 % of

non-O157 STEC infections were caused by six major serogroups, including O26,

O45, O103, O111, O121, and O145 (called “Big Six”) (Brooks et al. 2005).

Detection and isolation of bacteria are typically done in laboratories by growing

them in liquid or solid culture media. Liquid culture (or called growth) media are

typically used to grow a large amount of cells suspended in a nutrient broth. Some

of the cells grown in a nutrient broth are transferred to solid growth media such as

an agar plate (a Petri dish) that is typically used to detect, isolate and enumerate

pure cultures of bacteria that appear as individual colonies on the plate. Common

types of agar media are selective, differential, and non-selective. Selective media

refer to a type of growth media with specific antibiotics or nutrients for supporting

the growth of only certain types of microorganisms while inhibiting the growth of

others. The selective media are widely used to determine whether specific organ-

isms are present or not in a specimen. Differential media are used to distinguish

certain types of organisms from others with characteristic changes in appearance or

growth patterns, produced by adding dyes or chemicals, e.g. to change pH levels.

Non-selective media are also popular to harvest many different types of bacteria by

allowing the un-restricted growth of all microorganisms in the specimen that was

plated. A chromogenic agar medium is a differential medium that produces the

different coloration of certain bacteria colonies. A blood agar (BA) medium is a

non-selective growth medium that is mainly used to grow many types of bacteria.

The selection of appropriate agar media is usually determined by what types of

pathogens are used for a study.

Table 7.1 summarizes the types of common agar media used for detection of

Campylobacter and STEC and colony colors on each agar medium. Although most

agar media are both selective and differential, the degree of selectivity and differ-

entiation varies greatly among agar types. For example, Campy Line agar is more

selective than Campy-Cefex agar. Campy-Cefex agar is one of commonly used agar

media to isolate Campylobacter species from food sources. Campy-Cefex is more

selective than blood-supplemented agars. STEC O157:H7 colonies on both Sorbitol
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MacConkey agar and Rainbow agar are very selective and differential and,

therefore, easy to discern STEC O157:H7 colonies even when background

microflora are present on the same plate. However, in general, agar media for

Campylobacter and STEC non-O157 are not very effective in their selectivity and

differentiation of the targeted pathogens, especially when background microflora

are present together at the same plate.

7.2.2 Hyperspectral Imaging System and Image Acquisition

A pushbroom line-scan VNIR hyperspectral imaging system used in a laboratory

setting typically consists of a hyperspectral camera covering a spectral range of

400 to 1,000 nm, active illumination, and a translational motion control to move

either a stage or a lens. The VNIR hyperspectral imaging system used for the

studies described in this chapter had a moving lens set up (ITD, Stennis Space

Center, MS, USA). The system was equipped with a copy stand to attach a

hyperspectral camera, a computer for motion control and image acquisition, tung-

sten halogen lamps, and a Petri dish holder. The specifications of the VNIR image

system shown in Fig. 7.1 are as follows:

• Prism-grating-prism spectrograph (ImSpector V10E, Specim, Oulu, Finland) for

pushbroom line scanning

• 12-bit camera (SensiCam QE SVGA, Cooke Corporation, Auburn Hills, MI,

USA)

• C-mount objective lens

• Spectral range between 400 and 1,000 nm with a nominal spectral resolution of

2.8 nm and a bandpass of 2.95 nm

• Detector- 17 mm (2/3-in.) silicon-based CCD with 1280� 1024 pixel resolution

• A translation stage (STGA-10, Newmark Systems, Mission Viejo, CA, USA)

attached to the slit end of the spectrograph. The translation stage moves by a

Table 7.1 Types of agar media and typical colony morphologies

Pathogen Media Characteristics Colony color

Campylobacter Campy-Cefex agar Selective and

differential

Colorless to grayish or light

cream

Campylobacter Campy Line agar Selective and

differential

Pink

Campylobacter Blood agar Non-selective and

differential

Gray

STEC O157:

H7

Sorbitol

MacConkey agar

Selective and

differential

Clear

STEC O157:

H7

Rainbow agar O157 Selective and

differential

Black or gray

STEC

non-O157

Rainbow agar O157 Selective and

differential

Pink, magenta, gray, or

black
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motion controller (NCS-1S, Newmark Systems, Mission Viejo, CA, USA).

Thus, the motorized translation stage moves the lens assembly so that successive

lines of the Petri dish are scanned while the Petri dish remains stationary

For reflectance imaging, a Petri dish was laterally illuminated at about 45�

pointing down from the left and right sides with two 50 W tungsten halogen

lamps having a color temperature of 4,700�K. A white Teflon plate was placed

under the Petri dish holder to increase the apparent reflectance of thin layered

colonies on semi-transparent agar.

7.2.3 Hyperspectral Image Preprocessing

The acquired hyperspectral images were pre-processed to reduce the image size and

to suppress spectral noise. All images were binned down spatially and spectrally.

A Savitzky-Golay smoothing filter (window size: 25; order ofmoment: 4) was applied

to the spectrum at each pixel position independently to reduce the random noise.

50-W Tungsten 
halogen lamps 

VNIR HSI 
(400-1000 nm): 

Frontal lens moves 
via a translational 

motion control 

Sample holder 
(transparent):
12-cm height 

Agar plate (Petri dish) Teflon (white background)

Fig. 7.1 Imaging system designed for imaging spread plates
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The reflectance intensity value at each image pixel was calibrated to relative

reflectance value R with a 75 % reflectance Spectralon® target (13� 13 cm,

SRT-75-050, Labsphere, North Sutton, NH, USA). The relative reflectance value

R at each pixel and each wavelength band was obtained by a reflectance calibration

model below

R x; y; zð Þ ¼ Im x; y; zð Þ � Id x; y; zð Þ
Ir x; y; zð Þ � Id x; y; zð Þ � C

where Im is a measured raw value, Ir is a raw value measured with a reference target,

Id is a dark current value measured with a lens cap covered, and C is the nominal

average reflectivity of the target material that was set to 75 % for the case studies.

Percent reflectance calibration, spatial and spectral cropping and Savitzky-Golay

smoothing filtering are conducted within with HyperVisual software (ITD, Stennis

Space Center, MS, USA).

Calibrated images were arranged into a single image mosaic. An image mosaic

approach was adopted to facilitate data analysis and algorithm development

because a mosaic can be treated as a single hyperspectral image. In the mosaic,

images measured during the same date were vertically stacked. The stacked images

were then added to the mosaic in chronological order (latest right). The duplicated

plates were arranged in the adjacent rows.

A binary mask was made in order to suppress the background noise outside and

around the rim of each Petri dish. These binary masks were served as areas valid for

testing classification algorithms (i.e., cross-validation of classification algorithms)

and for facilitating other tasks, including image processing and analysis. In addi-

tion, ground-truth regions-of-interest (ROIs) were prepared in such a way that only

pure organisms could be selected in the ROIs. Glints and rim shadows were

excluded in the ROIs. Glints were usually observed around colony edges along

the direction of the lateral illumination. If possible, pixels that might have contained

mixed spectra of agar media and organisms were also excluded.

7.3 Detection of Campylobacter

This section describes the development of hyperspectral imaging techniques

for differentiating Campylobacter and non-Campylobacter contaminants

(i.e. background microflora) on spot plates, incubated for 48 and 24 h, respec-

tively. The first study was done with the 48 h cultures and the second study was

done with 24 h cultures for early detection.

For both 48 and 24 h cultures, a total of 17 different bacteria were used,

including 11 Campylobacter strains (Campy.) and six non-Campylobacter bacteria
(non-Campy.). The Campylobacter species used were C. jejuni (5 strains), C. coli
(5 strains), and C. lari (1 strain). The non-Campylobacter species were the bacteria
frequently found in poultry, such as Sphingomonas paucimobilis, Acinetobacter
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baumannii, Brevundimonas diminuta, Ochrobacterium sp., and Flavobacterium
odoratum. With the exception of the American Type Culture Collection (ATCC)

strains for 3 Campylobacter strains (1 C. jenuni, 1 C. coli, and 1 C. lari), all 14 other
bacterial cultures were isolated from poultry samples consisting of either whole-

carcass rinses or fecal specimens from conventionally reared broiler chickens or

processing plants (Line 2001; Siragusa et al. 2004; Stern et al. 2001). The strains

were maintained in frozen culture stock and propagated in culture tubes in 9 mL of

enrichment broth. Tubes were incubated at 42 �C for up to 72 h in a Campy-gas

atmosphere (85 % N2, 10 % CO2, 5 % O2) created by placing the tubes within a

re-sealable plastic bag, gas flushing three times, and refilling with the gas mixture

for dense liquid growth. Following the initial liquid culturing step for 3 days, 5 μL
spots (10 μL spots at the early stage of the study) were inoculated to the surface of

the respective agar plate and incubated in Campy-gas atmosphere at 42 �C for a

total of 48 h for the first study and 24 h for the second study. The recommended

incubation time for growing Campylobacter is 48 h (National advisory committee

on microbiological criteria for foods (NACMCF) 2007). Thus, the second study

was designed to investigate the possibility of early detection of Campylobacter
using hyperspectral imaging. Agars used were blood agar (BA; 5 % sheep’s blood

agar, Remel, Inc., Lenexa, Kans.), Campy-Cefex (Cefex) (Stern et al. 2001), and

Campy-Line agar (CLA) (Line 2001). Agar plates were inoculated with spots at

known and well-spaced locations on the agar surface. The primary reason for the

use of spot plating was to make it simpler to build a spectral library of pure spectral

signatures and use it for detection algorithm development, compared to spread

plating that will be described in the E. coli detection study later in this chapter. Spot
plating also made it easier to build ground-truth information of each pixel’s identity

by avoiding confluent growth and cross-contamination between colonies.

The 17 spots were inoculated on two separate plates with nine and eight spots,

respectively. Figure 7.2 shows an example picture of a spot plate (Campy-Cefex

agar) with full grown microorganisms at eight different spots (Campylobacter

Fig. 7.2 Example picture of (a) a spot plate and (b) ROIs: Campylobacter (top and bottom rows)
and background microflora (middle row) on Campy-Cefex agar
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spots at the top and bottom rows and non-Campylobacter spots at the middle row)

and an example of ROIs.

The hyperspectral imaging system used for both 48 and 24 h Campylobacter
culture studies was essentially the same as the one in Fig. 7.1 (Yoon et al. 2009,

2010). Two-dimensional spectral images (i.e., line-scan images) were captured by

2 (spatial)� 4 (spectral) binning and 90 ms exposure time. The resolution of one

hyperspectral image data was 640 (spatial)� 475 (scan lines)� 256 (spectral).

Then, the images were further cropped down to 421 (width: spatial)� 475 (height:

scan lines)� 194 (spectral). The 193 spectral bands in the range of 400–900 nm

were kept. After the reflectance calibration and spectral de-nosing, the images were

put into an image mosaic.

7.3.1 Detection of 48 h Campylobacter Cultures
on Spot Plates

The first hyperspectral imaging study for discriminating Campylobacter and back-

ground microflora was designed with pure cultures grown on spot plates for 48 h.

Eight experiments were repeated over 4 months, where one experiment took 5 days

from sample preparation (72 h + 48 h) to plate imaging. A total of 108 spot plates

(for all of three agar types: BA, Cefex, and CLA) were prepared for the four-month

period. Figure 7.3 shows an image mosaic of Cefex cultures, where color composite

images were created for a display purpose.

A spectral library consisting of mean reflectance spectra and their standard

deviations was obtained from the pixels confined in the ground-truth ROI masks

of all 17 organisms grown on the three types of agar media over the 400–900 nm

range, as shown in Fig. 7.4. First, there was no significant difference in spectral

Fig. 7.3 Hyperspectral image mosaic (Cefex cultures). Color-composite images are displayed
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responses between Campylobacter strains. Second, except CLA, there was no

significant difference in spectral responses between agar types as well. In the

cases of BA and Cefex, Campylobacter showed low reflectance responses (~5 %)

in the range below 650 nm and high reflectance (~35 %) in the near-infrared (NIR)

range beyond 700 nm. Third, non-Campylobacter showed a characteristic reflec-

tance feature at around 500 nm and their reflectivity was much higher than

Campylobacter in the 500-nm region. In the case of Cefex, the mean spectrum of

a particular non-Campylobacter organism Sphingomonas paucimobilis was very

similar to that of Campylobacter. The mean spectra of non-Campylobacter on CLA
were much different in the visible spectral range between 400 and 650 nm than on

BA and Cefex. From the examination of the spectral library, it was obvious that

Campy. and non-Campy. on both BA and Cefex plates could be well separable at

around 500 nm, whereas the spectra obtained from CLA may not provide the same

level of separability. Hence, it was hypothesized that the target organisms on

BA and Cefex plates would be statistically separable in the approximated range

of 450–550 nm. This hypothesis was evaluated by estimating the Bhattacharyya

distances at a few bands determined by the principal component analysis (PCA)

band weight analysis.

From the PCA-band weight analysis, two bands at 503 and 578 nm (the BA case)

and three bands at 501, 606, and 827 nm (the Cefex case) were found as local peaks.

Class separability in each of these bands was measured by the Bhattacharyya

distance which measures a statistical distance between two populations. In the BA

case, the band at 503 nm showed the largest statistical separability between Cam-
pylobacter and non-Campylobacter. In the Cefex case, the band at 501 nm was the

best. In the CLA case, the overall separability was smaller than the other agars, as

predicted from the spectral analysis. Hence, it was confirmed that Campylobacter
and non-Campylobacter was statistically well separable at 503 nm for BA cultures

and 501 nm for Cefex culture. Based on this statistical analysis, the development of

classification algorithms was done for discriminating Campylobacter and back-

ground microflora on BA and Cefex plates only. The detection methods described

next were designed as three-class classification algorithms that categorize the label

of each pixel in the ROIs into one of three classes: Campy., non-Campy. and agar.
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Fig. 7.4 Mean reflectance spectra of Campylobacter and background microflora on (a) BA,

(b) Cefex, and (c) CLA spot plates
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For BA cultures, a classification algorithm using a single wavelength band was

designed. The algorithm was applied to a 503-nm band for the 3-class classification,

and evaluated with the pre-defined ROI pixels. The algorithm was based on the

following classification rule: (1) BA if a reflectance value is below 3 % (T1¼ 3),

(2) background microflora (i.e. non-Campylobacter) if the value is greater than 7 %
(T2¼ 7), and (3) Campylobacter otherwise. The total number of the ground-truth

ROI pixels was 136,370, and the overall classification accuracy was 98.07 %

(133,740 pixels/136,370 pixels). The Kappa coefficient was 0.9703. The detection

accuracy of agar pixels was 100 %. When the agar pixels were excluded in the

accuracy calculation, the classification accuracy only with Campylobacter and

non-Campylobacter was 96.60 % (74,723 pixels/77,353 pixels). The classification

results with pseudo-color were mapped in the image domain.

For Cefex cultures, a two-step detection algorithm was developed by performing

(1) the aforementioned single band algorithm for 3-class classification with T1¼ 3

and T1¼ 10 and (2) a two-class minimum distance classifier using the Mahalanobis

distance measure, which used all 193 spectral bands. The Mahalanobis distance

classifier was applied to only the pixels predicted as Campylobacter, in order to find
a non-Campy strain (Sphingomonas paucimobilis). The resulting classification

results were again quantitatively evaluated against the ground-truth ROI pixels

and predicted on the image space. The total number of the ground-truth ROI pixels

was 264,984. The classification accuracy of the single band algorithm (first step)

was 96.81 % (256,529 pixels/264,984 pixels) when agar pixels were included and

94.99 % (160,157 pixels/168,612 pixels) when agar pixels were excluded in the

accuracy calculation. After the second step, the overall classification accuracy of

the two-step algorithm became 99.29 % (263,104 pixels/264,984 pixels) when agar

pixels were included and 98.58 % (166,221 pixels/168,612 pixels) when agar pixels

were excluded in the accuracy calculation. The Kappa coefficient was 0.9893.

Figure 7.5 shows a mosaic of classification images obtained by the two-step

algorithm for the Cefex cultures. At the spot level, all spots except one whose

prediction was mixed were correctly classified. At the pixel level, commonly

misclassified pixels, although they were not many errors, were observed either on

the Campylobacter and Sphingomonas paucimobilis spots. In conclusion, the clas-

sification results showed that hyperspectral imaging had a potential to be expanded

for early detection of Campylobacter and for detection of other pathogens grown on

agar media.

7.3.2 24 h Campylobacter Cultures on Spot Plates
for Early Detection Study

Although the 48-h incubation time was often used for growing Campylobacter
cultures in various studies such as the Food Safety and Inspection Service (FSIS)

baseline study (Food Safety and Inspection Service (FSIS) 2006) and the International
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Organization for Standardization (ISO) standard for detecting Campylobacter (Inter-
national Organization for Standardization (ISO) 2006), there was a need for a

hyperspectral imaging study with the cultures incubated for less than 48 h for more

rapid detection of Campylobacter.
Five replicates of experiments were carried out over the period of 6 months. The

imaging system and experimental protocol for the sample preparation and imaging

remained the same as the 48 h culture study throughout the experiments. The two

duplicate plates were prepared per agar type and per experiment. Therefore, a total

of 40 Petri dishes were prepared for imaging. Agars used were BA and Cefex.

Figure 7.6 shows the hyperspectral image mosaics in RGB color composites for a

display purpose.

A spectral library was also built for spectral analysis. The mean reflectance

spectra of both 24-h and 48-h cultures from both blood agar and Cefex agar are

presented in Fig. 7.7 for comparison. Although the locations of local maxima and

minima were not much different between the 24-h and 48-h cultures, the overall

reflectivity tended to decrease as the incubation time reduced from 48 to 24 h. In the

visible spectral range from 400 to 650 nm especially at around 425 and 460 nm,

there were pronounced local minimum and maximum features. In the red spectral

range from 650 to 700 nm, reflectance responses increased sharply. Finally, in the

near-infrared range from 700 to 900 nm, no prominent features were noticeable

except that 24-h cultures on blood agar showed a weak absorption at around

760 nm. This weak absorption feature disappeared in the mean spectra of the

48-h cultures nonetheless.

The hyperspectral imaging study with 48-h Campylobacter cultures found a

wavelength showing the statistical separability large enough to differentiate Cam-
pylobacter species from non-Campylobacter microorganisms. According to the

Campylobacter Non-Campylobacter Cefex Sample No. 12 Unclassified

Unclassified pixels

Fig. 7.5 Classification result to detect Campylobacter and background microflora on Cefex agar.

Sample No. 12 refers to a non-Campy. contaminant, Sphingomonas paucimobilis
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study, the wavelength was at 503 nm for blood agar and 501 nm for Cefex agar.

The same single-band thresholding algorithm was also evaluated in this 24-h

culture study as a reference algorithm.

The parameters for the single-band thresholding algorithm applied to the 24-h

culture images were slightly changed as follows: for the BA case, T1¼ 2 and T2¼ 5

(T1¼ 3 and T2¼ 7 for 48-h cultures) and for the Cefex case, T1¼ 3 and T2¼ 7

(T1¼ 3 and T2¼ 10 for 48-h cultures). In the 24-h BA case, the overall classification

accuracy at the pixel level was 94.54 %, about 4 % down from 98.07 % of the 48-h

BA case. In the 24-h Cefex case, the overall classification accuracy at the pixel level

was 85.95 %, about 11 % down from 96.81 % of the 48-h Cefex case. At the spot

level, 158 out of all 169 spots (93 %) on BA plates were correctly (at least by

majority) classified. Similarly, at the spot level, 107 out of all 124 spots (86 %) on

Fig. 7.6 Image mosaic showing 24-h spot cultures on (a) Blood agar and (b) Cefex agar.

RGB color composite images are shown for a display purpose
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Cefex plates were correctly (at least by majority) classified. Compared to the Cefex

agar (85.95 % and 86 % at the pixel and spot level, respectively), the blood agar

(94.54 % and 93 % at the pixel and spot level, respectively) was a better agar

medium in differentiating Campylobacter colony spots from non-Campylobacter
contaminants when the incubation time was reduced to 24 h. Although the detection

accuracy for BA cultures was over 90 %, there was a need to improve the detection

accuracy. Thus, a new algorithm using band ratio features obtained from continuum

removed spectra was developed.

The continuum-removal analysis is aimed to quantify absorption bands

departing from a common baseline (Clark and Roush 1984). The common baseline

(i.e. continuum) is defined as the convex hull surrounding the data points of a

reflectance spectrum. In other words, the continuum consists of piecewise contin-

uous lines connecting local maximum points of the reflectance spectrum (Fig. 7.8a).

Continuum removal is a procedure to isolate a particular absorption feature for

analysis by dividing the reflectance spectrum at each wavelength with the contin-

uum at the corresponding wavelength: RCR¼R/C where RCR is the continuum-

removed spectrum, R is the reflectance spectrum and C is the continuum (Fig. 7.8).

The continuum-removed spectral values range from 0 to 1. The first and last points

in the reflectance spectrum are always local maxima for the continuum. Hence, the

first and last points become 1 in the continuum-removed spectrum (Fig. 7.8b). After

continuum removal was applied, the parametric quantification of the absorption

band features can be done with the calculation of band depth, bandwidth and

wavelength position (Kruse 1988; Kokaly and Clark 1999). As shown in

Fig. 7.8b, the band depth D of each band can be calculated by subtracting the

continuum-removed reflectance from 1: D¼ 1�RCR (Kokaly and Clark 1999).

Therefore, the slope information of the continuum-removed spectrum was utilized

to enhance differences in the absorption features of Campylobacter and

non-Campylobacter organisms. This slope information was represented by a band

ratio (Fig. 7.8b).
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For band ratio computation of continuum-removed spectra, it is not always

necessary to apply the continuum removal to all wavelengths. For instance as in

Fig. 7.8, the continuum for the band ratio computation at λ1 nm and λ2 nm may only

need reflectance values at four wavelengths: 401 nm (approximation), λ1 nm, λ2 nm
and 701 nm (approximation), where λ1 nm, λ2 nm will be determined later. The

continuum removal at these four points does not affect the continuum-removed

spectra as long as the value at 700 nm is a local maximum for the continuum curve

and the values at λ1 nm, λ2 nm are not local maxima. Reduction of input wave-

lengths to compute the continuum may be useful for multispectral imaging. Both

the hyper-spectrum (all of 193 bands) and the multi-spectrum (4 bands at 401 nm,

λ1 nm, λ2 nm, and 701 nm) were compared for the continuum removal.

Figure 7.9 shows the continuum-removed mean reflectance spectra of Campylo-
bacter and non-Campylobacter cultures (24-h and 48-h) in two different agar media

(blood agar and Cefex), which were obtained from the mean reflectance spectra

shown in Fig. 7.7. The most prominent characteristic observed from the continuum-

removed spectra was the difference in slopes between Campylobacter and

non-Campylobacter spectra of blood agar cultures. Specifically, in the range

between approximately 420 nm and 465 nm of the spectra of the blood agar

cultures, the slope of non-Campylobacter was positive whereas that of Campylo-
bacter was negative (Fig. 7.9a). From this observation, it was straightforward to

adopt a band ratio technique using two bands. The bands for the band ratio were

chosen from wavelengths corresponding to local extrema of the non-Campy-
lobacter spectra. The extrema were at 426 nm (λ1, minimum) and 458 nm (λ2,
maximum). The same effect, however, was not observed from the Cefex-based

cultures. Nonetheless, the same band selection strategy was applied to the case of

Cefex 24-h cultures where the local extrema of the non-Campylobacter continuum-

removed spectra were observed at 423 nm (minimum) and 461 nm (maximum).

To find the optimal threshold value for the band ratio algorithm, a histogram

analysis was used. Figure 7.10 shows the histograms of the band ratio data obtained
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Fig. 7.9 Continuum-removed mean reflectance spectra of both 24 h and 48 h cultures on (a)
Blood agar and (b) Cefex agar plates
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by the continuum removal process. The histograms of Campylobacter and

non-Campylobacter band-ratio data in 24-h blood agar showed unimodal distribu-

tions without much overlap. Thus, from Fig. 7.10a, a threshold value (0.92)

dividing two distributions optimally was selected. The selected threshold value

(0.92) was very close to the mean (0.93) of the measured band ratio values. The case

of Cefex cultures was not simple because of the bimodal distribution of the

non-Campylobacter cultures as shown in Fig. 7.10b. Graphically, this bimodality

indicates the inefficiency of the use of band ratio in the case of Cefex cultures. Thus,

it was not desirable to use this band-ratio feature for classification of 24-h Cefex

culture data. The selection of the threshold at 1.4 for the case of Cefex cultures was

based on the constraint to get the better detection rate of Campylobacter. One can

mathematically obtain the optimal threshold value minimizing the classification

errors or theoretically use a receiver operating characteristic (ROC) curve which is

a graphical plot of the true positive rate versus the false positive rate for a binary

classifier system as a function of its discrimination threshold. However, it was

found that after experiments with different thresholds around heuristically chosen

values, the selection of the true optimal threshold using a theoretic optimization

framework such as the ROC curve and the Bayesian classifier was not necessary.

The best threshold values were determined after these preliminary experiments.

The overall classification accuracy of the developed band ratio algorithm on the

24-h blood agar-based cultures was 99.38 % (the hyperspectral continuum removal

case) and 97.21 % (the multispectral continuum removal case). In the hyperspectral

continuum removal (CR) case, two bands for band ratio were directly obtained from

the continuum removed spectral bands. However, in the multispectral continuum

removal (CR) case, note that four bands were first obtained from reflectance

hyperspectral bands at 401 nm, 426 nm (λ1), 458 nm (λ2), and 701 nm without

continuum removal, and then the continuum-removal was applied to these four

reflectance spectral bands. The band image at 503 nm was used for segmentation of

locations of blood agar, grown colonies and plates. Then, the band ratio data were
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classified by a single threshold value. The results suggested that the developed band

ratio technique could detect Campylobacter species and non-Campylobacter con-
taminants with 97–99 % accuracy in 24 h of incubation.

Figure 7.11 shows the classification result images of the developed band ratio

algorithm in the hyperspectral CR mode. All 169 spots were correctly classified

either entirely or at least by vast majority (100 %). Four Campylobacter spots

(enclosed with triangles in the third column) showed a small amount of

non-Campylobacter pixels. All four cross-contaminated Campylobacter spots

(circled) were correctly classified.

In conclusion, a hyperspectral image processing algorithm was developed for

detecting spot colonies of Campylobacter species and non-Campylobacter contam-

inants incubated for 24 h. The continuum-removed mean reflectance spectra of blood

agar-based cultures showed prominent difference in slopes between 426 and 458 nm.

The band ratio algorithm using two continuum-removed spectral bands at 426 and

458 nm was a key detection technique. The continuum-removed band ratio method

showed 97–99 % classification accuracy. Blood agar was the better culture medium

than Campy-Cefex agar in terms of Campylobacter detection accuracy. The exper-

imental results suggest the developed band ratio algorithm can detect Campylobacter
species and non-Campylobacter contaminants with up to 99 % accuracy in 24 h of

incubation. The developed imaging protocol is applicable to spread plating tech-

niques using chicken carcass rinses or other pathogen detection studies.

Campy.

Non-Campy.

Blood Agar

Fig. 7.11 Blood agar 24-h cultures: Classification results of the developed band ratio algorithm

using two bands obtained from continuum removal of hyperspectral bands (193 bands).

The markers indicate the spots that were classified incorrectly (box), partially incorrectly

(Campy: triangle and non-Campy: diamond). A circle encloses a cross-contaminated spot
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7.4 Detection of Non-O157 STEC

This section describes the development of hyperspectral imaging techniques for

differentiating the “Big Six” non-O157 STEC serogroups grown on spread plates

with Rainbow agar. Following the similar protocol developed for the Campylobac-
ter detection study mentioned previously, a study (Windham et al. 2012) using spot

plating was conducted for non-O157 STEC detection and a prediction model was

developed to classify the big six STEC serogroups on pure spot plates, where 5 μL
individual spots of each serogroup were used. However, when applied to an inde-

pendent test set obtained from spread plates, the model calibrated with spot plates

was sensitive to changes and variations in STEC populations and growth conditions

of spread plates. This problem was, in part, due to the fact that the model suffered

from insufficient spectral and spatial sampling of data over many different colony

populations. In this regard, spread plates provide more diverse and realistic colony

populations. Therefore, there was a need to study hyperspectral imaging with spread

plates. In this section, two studies using spread plating are described. The first study

was concerned with hyperspectral imaging for pure cultures separately spread on

each plate. The second study was hyperspectral imaging for mixed cultures.

In spot plating, shadows cast over agar were not a big problem because the

selection of ROIs was not greatly affected by the shadows. However, it was not the

case with spread plating because the colonies on semi-transparent agar cast a lot of

shadows, as shown in Fig. 7.12. Thus, a transparent sample holder was designed to

minimize shadows cast by colonies on spread plates. Other than the new sample

holder, hyperspectral image acquisition was performed with the same push-broom

line-scan VNIR hyperspectral imaging system (Fig. 7.1) that was used for the

Campylobacter study. The working distance from the objective lens to the Petri

dish was about 40 cm. On-camera binning was set to 2 (spatial)� 2 (spectral) with a

30-ms integration time.

Fig. 7.12 RGB color-composite images of (a) spot plate of the “Big Six” non-O157 STEC

serogroups and (b) spread plates of pure O103 and (c) O145 STEC cultures. The images have

shadows from earlier system configuration. Colonies in (b, c) show an example of similarities

within the STEC population
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Acquired hyperspectral images were calibrated with the 75 % reflectance

Spectralon target, and the size of each image was reduced. Then, the relative

reflectance value R was transformed to absorbance (log10 (1/R)) in order to reduce

non-linearity in reflectance measurements, and absorbance was used for model

development. The spectral dimension of each image was reduced to 473 spectral

bands ranging from 400 to 1,000 nm by removing extreme wavelength bands. Thus,

the resulting image size became 688 (W)� 500 (H)� 473 (λ). Finally, spectral
noise was reduced by a Savitzky-Golay smoothing filter (window size: 25; order of

moment: 4) at each pixel position (Savitzky and Golay 1964). After the aforemen-

tioned operations, all hyperspectral images were stitched together into a single

image mosaic.

To obtain absorbance spectra from colonies, regions-of-interest (ROIs) were

semi-automatically obtained with an interactive thresholding tool available in Fiji

(http://fiji.sc, an open source image processing package based on ImageJ). The

428-nm image was used for colony ROI segmentation because 428 nm had good

contrast between colony and background agar pixels. Glint pixels with specular

reflectance were not included in the ROIs. Touching segmentation objects were

separated with the ROI tool in ENVI software (Exelis Visual Information Solutions,

Boulder, CO, USA).

In supervised hyperspectral-image classification, sampling is concerned with the

selection of a subset of pixels. A total of six additional ROI sets were derived by

sub-sampling at each colony ROI in order to characterize spatial and spectral

variations in the pixel population of each colony. Figure 7.13 shows an example
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Fig. 7.13 Example of colony ROIs and their subsets. Dx (x¼ 1, 2, 3, 4) include all pixels within

the Euclidean distance x from the geometric center of each colony ROI in (a). (a) colony ROIs, (b)
Center, (c) D1, (d) D2, (e) D3, and (f) D4
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of colony ROIs and their corresponding subsets of ROI sets including the geometric

center (i.e. centroid), four ROIs defined by Dx (x¼ 1, 2, 3, 4) that was an ROI set of

pixels within the Euclidean distance x (a radius in pixels) from the geometric center

of each colony ROI. When extracting spectral data from pixel locations defined by

the ROIs, the data were reshaped into an M�N data matrix X whose values were

associated with M observations (samples) in row and N variables (wavelengths) in

column. A response vector y of 6 class labels was also created.

For model development, a data matrix X and a response vector ywere partitioned
into a training set and a validation set with a holdout approach without random

sampling because conventional cross-validation with random sampling tends to

partition homogeneous samples within each colony, thus leading to over-optimistic

results. In this scheme, all combinations of mosaic columns were used to split the

data into training and validation sets.

The data pre-treatment methods were applied as part of pre-processing to pre-

dictors X. The pre-treatment methods used were none (absorbance only), multipli-

cative scatter correction (MSC), standard normal variate and detrending (SNVD),

first derivative with a gap width of 11 points, moving average smoothing with a gap

width of 11 points before differentiation, and MSC-corrected first derivative, and

SNVD-corrected first derivative. The application order of the pre-treatment

methods was MSC (or SNVD), moving average, and differentiation when all

methods were used. In addition, preprocessed spectral data were transformed by

principal component analysis (PCA) to reduce the dimensionality of the feature

space and to perform supervised classification using either the Mahalanobis dis-

tance (MD) classifier or the k-nearest neighbor (kNN) classifier that was PC scores.

Thus, the number of principal components (PCs) used for classification was also

considered an important operating parameter. The optimal number of PCs was

studied in a previous study (Yoon et al. 2013a), where the minimum requirement

was 6 PCs and then the prediction performance was maxed out from 12 PCs.

Figure 7.14 summarizes the schematic block diagram of the imaging protocol,

preprocessing and classification algorithm for non-O157 STEC detection.

7.4.1 Pure Cultures on Spread Plates

The bacterial cultures were obtained from a culture collection at the Eastern

Laboratory of USDA Food Safety Inspection Service (FSIS). A total of six

non-O157 STEC strains were chosen with one strain from each representative

O-serogroup (O26, O45, O103, O111, O121, and O145). The specific STEC strains

were O26:H2 strain 4, O45:H2 strain 8, O103:H2 strain D, O111:H1 strain

16, O121:H19 strain A, and O145:H- strain K. The pathogenicity of all test strains

was confirmed by the presence of two genetic targets: one of two stx genes (stx1 and
stx2) and the intimin (eae) genes (USDA 2012). Working stocks of each culture

were stored on nutrient agar slants (Becton Dickinson, Sparks, MD, USA) at 4 �C.
Cell suspensions were prepared from cultures grown overnight on Blood agar
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(BA, Trypticase Soy Agar with 5 % sheep blood, Remel, Lenexa, KS, USA) at

37 �C. Cells were suspended in sterile saline (0.85 %) at an initial concentration of

approximately 109 colony forming unit (CFU) mL�1 (0.50 turbidity), with a Dade

Behring MicroScan Turbidity Meter (Dade Behring, West Sacramento, CA, USA).

Serial dilutions of each cell suspension were prepared in sterile saline. Then

approximately 50 and 100 CFU (50 and 100 μL aliquots of 103 CFUmL�1 dilutions)

were inoculated onto Rainbow agar plates (100-mm diameter) containing

10 mgL�1 novobiocin plus 0.8 mgL�1 potassium tellurite (RBA, Biolog, Inc.,

Hayward, CA, USA) by a spread plating technique. All plates were incubated at

37 �C for 24 h.

Following the above protocol, two replicate experiments were carried out over a

period of 2 months. Thus, a total of 24 plates (2 dilutions� 2 replicates� 6

serogroups) were prepared for this study.All plates exceptO121 andO145 of replicate

1 were pure cultures. Four spread plates mixed with O121 and O145 cultures

were prepared for the replicate 1 experiment only. All calibrated 24 hyperspectral

images were stitched together into a single image mosaic, as shown in Fig. 7.15.

The hyperspectral data cubes were arranged according to serogroups in rows, two

serial dilutions (duplicates) and data collection dates (replicates) in columns.

The mosaic file size was about 15 GB.

The total number of colony ROIs was 1,421. The total number of pixels

(i.e. observations or samples) in all colony ROIs was 51,173. Figure 7.16 shows

example RGB-color images that highlight the improved image quality, as well as

the ambiguity in the colony color and morphology within the six non-O157 STEC

serogroups. The first row shows color-composite reflectance images of each

serogroup, the second row shows absorbance and the third row shows colony

Agar plates with bacteria Hyperspectral image
acquisition

Calibration to reflectance

Size and noise reduction, image mosaicing,
and transformation to absorbance

Colony segmentation

Spectral data extraction
MSC or SNVD, first derivative, spectral

smoothing, mean centered

PCAClassification

Projection of predicted class labels onto
images

Post-processing: Decision making at
colony level

Fig. 7.14 Flowchart of multivariate hyperspectral image analysis for classification and prediction

of colonies
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ROIs with color codes. Compared to Fig. 7.12, most shadows were removed

although boundaries of each colony were still fuzzy due to the limitation of optics

in the hyperspectral imager. A quick visual observation of reflectance images

revealed that O26 and O145 colonies grew into two color tones (light magenta

and dark magenta), and O103 and O121 colonies showed similar pink colors

Rep1: 50µL  Rep1: 100µL  Rep2: 50µL Rep2: 100µL  Rep1: 50µL  Rep1: 100µL  Rep2: 50µL Rep2: 100µL

O26

O121

O45

O111

O103

O145

Fig. 7.15 Non-O157 STEC image mosaics (color-composites) of (a) reflectance, R and (b)
absorbance, log10(1/R) images

Fig. 7.16 Example RGB-color images of the “big six” non-O157 STEC colonies: Top:
reflectance, middle: absorbance, bottom: colony ROIs. (a) O26, (b) O45, (c) O103, (d) O111,
(e) O121, and (f) O145
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whereas O45 (close to black) and O111 (gray) were somewhat different from the

others in both color and morphology.

The mean ROI spectra of each serogroup are shown in Fig. 7.17. The serogroups

O26 (red) and O145 (magenta) had generally similar spectral characteristics to each

other with some differences in absorption (or reflectivity) from 470 to 650 nm. This

similarity also was consistent with the aforementioned visual assessment

(Fig. 7.16a, f). The serogroups O103 (blue) and O121 (cyan) had almost identical

spectral curves between 400 and 540 nm, but displayed subtle differences between

540 and 650 nm. The spectral similarity of O103 (blue) and O121 (cyan) at color

bands (e.g. 450, 550, 650 nm) produced similar color tones to human eyes as shown

in Fig. 7.16c, e. It was also interesting to observe that the absorption peak of O121

was near 550 nm (Fig. 7.7b), which was shifted to the right about 10 nm from the

absorption peaks of the other serogroups except the spectrally flat O111.

The classification results obtained by Mahalanobis distance and kNN classi-

fiers were mapped onto the agar plate images (not shown). Serogroups O111 and

O121 showed consistently over 99 % accuracy regardless of the classification

algorithm and preprocessing treatments. However, the classification accuracies of

serogroups O26, O45, O103, and O145 showed varying results from 84 % up to

100 %, depending on the preprocessing treatment adopted. Classification accu-

racy improvement due to scatter correction was about 10 % on average. The

preprocessing treatment with SNVD, first derivative with 11-point gaps and

moving average with 11-point gaps provided the best mean classification perfor-

mance (95.06 %) when applied to the 5-pixel ROI set defined around the centroid

of each colony ROI.

In conclusion,, a VNIR hyperspectral imaging technique for detection of

non-O157 STEC serogroups on agar plates was developed by building spectral

libraries and developing classification models. The detection accuracy of the

classification model was about 95 %.
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Fig. 7.17 Mean (a) reflectance and (b) absorbance spectra of six non-O157 STEC serogroups

from ground-truth colony regions (i.e., ROIs)
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7.4.2 Mixed Cultures on Spread Plates

A mixed culture is a laboratory culture that contains two or more identified species

or strains of microorganisms. Spread plates of mixed cultures may produce diverse

and realistic colony populations mimicking actual microbial populations of

contaminated food samples although mixed cultures are still laboratory control

samples. However, in hyperspectral imaging of colonies from mixed cultures,

performance of a classification model is much more difficult to validate than pure

cultures because it is unknown where specific bacteria grow on an agar plate due to

spreading of liquid cultures and bacterial competition for growth and survival

(Fredrickson 1977; Hibbing et al. 2010), and thus it is almost impractical to confirm

the identity of every colony with a genetic and/or a biochemical confirmation

method simply for validating classification models. This difficulty is in part because

there are too many (typically about 50–300) colonies per plate.

Cell suspension mixtures containing equal portions (500 μL aliquots of

103 CFU/mL) of serogroups O45, O111, and O121 were prepared from the indi-

vidual STEC serogroup serial dilutions. An equivalent concentration of a fourth

serogroup (O26, O103 or O145) was inoculated into the three strain mixture. The

reason why the mixed cultures were prepared with the mixture formula of three

easy serogroups plus each one of the three difficult serogroups, O45, O111, and

O121, was due to its simplicity in performance validation of the developed classi-

fiers. The aforementioned mixture formula was designed to build ground-truth

maps only from the measured images. For each mixture, 50 and 100 μL aliquots

were spread onto individual Rainbow agar plates. All plates were incubated at 37 �C
for 24 h.

Following the above protocol, one experiment was carried out. Thus, a total of

6 plates (2 cell concentrations� 3 mixtures) with mixed cultures and 12 plates

(2 cell concentrations� 6 serogroups) with pure cultures were used to evaluate the

developed classification models. The acquired hyperspectral images were

processed in the same way as the model creation process (see Fig. 7.15). All data

collected were used as independent test (interchangeably with validation) data for

the prediction models that were trained with the pure culture data mentioned in the

previous section. Figures 7.18 and 7.19 show the mosaics of the mixed and pure

cultures, i.e., the test (validation) set.

The circular forms (i.e. colony shapes) were observed from all colonies. Outer

boundaries of O121 colonies were more distinctive and less fuzzy than the others.

The color of O45 colonies was almost black and visually very different from the

other serogroups. Figure 7.20 shows the examples of colony appearance typically

observed from the measured reflectance and absorbance (transformed from reflec-

tance) images. The color of all colonies except O45 (dark green to black) and some

of O111 colonies (grayish blue tone similar to the agar background) was purple

varying from bright to dark. The center area of each colony was darker than the

perimeter. O111 colonies were grayish color on the agar plates with less cell

concentration (left column images of the mosaic) and light purple color on the
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Row1:  O26, O45, O111, O121
Row2: O103, O45, O111, O121
Row3: O145, O45, O111, O121

Column1:  50 µL aliquot
Column2: 100 µL aliquot

a b c

Fig. 7.18 Mixed cultures: Image mosaics (color-composites) of (a) reflectance, R, (b) absor-
bance, log10(1/R) images, and (c) ROIs (red: O26, green: O45, blue: O103, yellow: O111, cyan:
O121, and magenta: O145)

O26

O45

O103

O111

O121

O145

a b c
50 µL aliquot  100 µL aliquot 50 µL aliquot  100 µL aliquot 50 µL aliquot  100 µL aliquot

Fig. 7.19 Pure cultures: Image mosaics (color-composites). (a) Reflectance, R, (b) Absorbance,
log10(1/R), and (c) ROIs
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agar plates with more cell concentrations (right column images of the mosaic).

A further study is necessary to find the importance factors such as texture, surface

causing the differences in colony appearance and to incorporate them into the

multivariate classification models.

Figure 7.21 shows the mean spectra of each serogroup obtained from the ROIs of

the training and validation sets including both pure and mixed cultures. Overall

except O26, the spectral responses of the two validation sets were more similar than

the training set, which confirmed the previous study finding that replication

of experiments was the largest uncertainty to the predictive performance of the

classification models. The 600–700 nm shoulders of the pure O26 cultures

disappeared when O26 was mixed. One possible explanation for why O26 in

mixed cultures showed the spectral difference between 600 and 700 nm was the

bacterial competition for survival and growth (Fredrickson 1977; Hibbing

O26 O45 O103 O111 O121 O145

O121 O111

O26

O121 O103

O111

O45

O121

O111

O145

O26 O45 O103 O111 O121 O145

a

b

c

d

Fig. 7.20 Color composite examples of colonies. (a) Reflectance (color-composite): Example

colonies, (b) Absorbance (color-composite): Example colonies, (c) Variability: Color difference
of O111 colonies, and (d) Appearance differences of colonies
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et al. 2010). Although no quantitative analysis was made to measure the differences

or variability between the training and validation sets, it was assumed, from

Fig. 7.21, that the differences in mean-spectral responses between the training and

validation sets were not large enough to re-train the models.

A total of 16 prediction models (interchangeable with classification models) from

four preprocessing methods (MSC1, MSC2, SNV1 and SNV2), two classifiers

(Mahalanobis distance and kNN), and two detection levels (pixel and colony) were

evaluated with classification accuracy against the two validation sets of pure and

mixed cultures, respectively. In the case of the positive control set of pure cultures, all

16 prediction models produced over 95% prediction performance, ranging from 96 to

99.88 %. The average classification accuracy was 98.31 %. The colony-level decision

making algorithm showing 99.42 % accuracy was approximately 2 % better than the

pixel-level decision making. The performance variability among the four

preprocessing models was less than 1 %. The performance difference between two

classifiers was trivial (0.23 %). The best model was SNV1 or SNV2 with kNN and

colony-level decision making. In the case of the mixed cultures, the best performance

was obtained from the model adopting SNV2 (SNVD-corrected first derivative with a

gap width of 11 points, moving average with a gap width of 11 points) and kNN

(k¼ 3). The overall classification accuracy at pixel level was about 95.6%withKappa

coefficient 0.9457. Only eight out of 311 colonies in the mixed culture plates were

misclassified (thus, 97.58 % accuracy at the spot level decision making).
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In conclusion, the multivariate classification models developed using a training

set of pure spread plates were validated against two independent test sets with pure

and mixed cultures. The prediction power of the models was over 97 % in terms of

classification accuracy measured at the colony level.

7.5 Conclusions

In this chapter, the use of VNIR hyperspectral imaging was demonstrated for

detection of foodborne pathogens, such as Campylobacter and non-O157 STEC,

on agar plates. A thresholding algorithm using a spectral band at 501 nm for

Campy-Cefex agar or at 503 nm for blood agar was effective to differentiate

Campylobacter and common background microflora incubated for 48 h with over

99 % accuracy. A band ratio method using continuum removed reflectance spectra

was the most effective way for early detection of Campylobacter colonies incu-

bated for 24 h in blood agar. The limitation of these studies was to use spot plates.

Thus, future research will need to explore hyperspectral imaging to detect and

differentiate Campylobacter and background microflora colonies on spread plates.

Prediction models using hyperspectral imaging were developed from 1,421

non-O157 STEC pure cultures spread on 24 individual Rainbow agar plates. The

best overall mean classification accuracy of 95.06 % was achieved by a prediction

model that adopted a k-nearest neighbor classifier of principal component scores.

The developed models were validated with mixed and pure cultures spread on

6 and 12 Rainbow agar plates, respectively. The results showed 95 % overall

detection accuracy at pixel level and 97 % at colony level. Future research needs

to apply the models to detect and identify non-O157 STEC spiked into food

samples. The developed hyperspectral imaging technology showed potential to

increase the speed and accuracy of presumptive-positive screening of foodborne

pathogens with direct plating. The fully developed imaging system is expected to

automatically locate and identify foodborne pathogens grown on Petri dishes and

can be expanded to detect other pathogens like Salmonella grown on agar media.
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Chapter 8

Measurement of Food Optical Properties

Renfu Lu and Haiyan Cen

8.1 Introduction

The term optical properties has many different connotations or interpretations

within the scientific community. To many researchers in food and agriculture,

optical properties are often referred to as reflectance or transmittance measure-

ments. Reflectance and transmittance, like force or pressure, are extrinsic measure-

ments because they, although related to the intrinsic properties, depend on type of

instrument, sensing mode and setup, and sample size and shape. The optical

techniques based on this school of measurement principles are, herein, referred to

as empirical in order to differentiate from the other class of techniques that are

based on the fundamental radiation transfer theory. Accordingly, near-infrared

spectroscopy (NIRS), which is widely used for composition analysis, quality

inspection, and process monitoring and control of food and agricultural products,

is an empirical technique because it provides extrinsic measurements on the light

reflected back from or transmitted through the sample.
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The second, more rigorous definition of optical properties is based on the funda-

mental principle of light interaction with turbid or diffusive media and the radiation

transfer theory [broadly speaking, we may also include those phenomenological

models like the famous model developed by Kubelka and Munk (1931)]. With this

definition, light transfer is primarily dependent on two fundamental or intrinsic optical

parameters: absorption and scattering coefficients (when anisotropy factor can be

incorporated into the scattering coefficient, which is discussed in more detail in the

following sections). This fundamental definition of optical properties is widely

adopted in the biomedical research community and has led to completely different

measurement principles and techniques (Wang and Wu 2007). In this chapter, we are

mainly focused on the fundamental approach ofmeasuring the spectral absorption and

scattering properties of food and agricultural products.

With the fundamental approach, we attempt to measure and separate the absorp-

tion and scattering properties. In principle, this approach would give us more

complete characterization of the optical properties of biological materials, com-

pared to empirical techniques like NIRS. However, because the fundamental

approach generally requires more sophisticated instrumentation and computational

algorithms, there still exist considerable technical challenges in achieving accurate,

consistent measurements from intact biological tissues or food products. Intensive

research has been carried out over the past three decades in the development of

noninvasive techniques to measure the optical properties of biological tissues in the

biomedical field (Bykov et al. 2006; Welzel et al. 2004; Wilson and Patterson

2008). The methods that have been developed in the past include: time-resolved

(Patterson et al. 1989), frequency-domain (Patterson et al. 1991), and spatially-

resolved (Groenhuis et al. 1983b). Time-resolved technique is based on measuring

the attenuation, broadening and delay of a short light pulse, caused by the absorp-

tion and scattering events during photon propagation in highly scattering media. It

seeks to use the pathlength information implied by the time of escape to estimate or

determine the optical properties of tissue traveled by the photons. Frequency-

domain technique, on the other hand, provides information equivalent to that

obtained in the time domain. In the frequency domain, the propagation and mea-

surement of light are accomplished through sinusoidally modulated sources.

Spatially-resolved technique requires measuring the spatial distribution profiles of

diffuse reflectance generated by a continuous-wave (or steady-state) light source,

from which scattering and absorption coefficients are extracted. All three methods

have been extensively studied and each has its merits and shortcomings (Tuchin

2000; Wang and Wu 2007). Overall, time-resolved and frequency-domain methods

require more sophisticated instrumentation and have limited wavelength range

selections, but they are more suitable for measuring the optical properties of tissues

at a greater depth. Spatially-resolved method, on the other hand, is simpler in

instrumentation with broader wavelength range selections, but its measurements

are likely to be more influenced by the superficial layer of the medium.

So far, only limited research has been reported on measuring the optical absorp-

tion and scattering properties of food and agricultural products. In early studies,

researchers used the phenomenological models, like the Kubelka–Munk model
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(Kubelka and Munk 1931), to determine the optical absorption and scattering

properties of food and agricultural products (Birth 1978; Birth et al. 1976; Law

and Norris 1973). These early studies showed promising results in using the

absorption and scattering coefficients to predict quality of foods. But little further

research was reported in the late 1980s and 1990s. Two factors might have

contributed to the subdued interest in measuring the fundamental optical properties

of food and agricultural products during that time period. First, although the

phenomenological models, like the Kubelka–Munk model, are widely accepted,

they lack generality and can only be used under restricted experimental conditions

with special sample preparation procedures. Second and perhaps more importantly,

it is much more challenging in instrumentation and algorithm implementation for

accurate measurement of optical absorption and scattering properties for food and

agricultural products.

In the past decade, we have seen renewed interest in characterizing and mea-

suring the optical properties of food and agricultural products, due to the latest

advances in optical and computer technologies. Cubeddu et al. in Italy (2001)

applied time-resolved reflectance spectroscopy that was originally developed for

non-food applications to measure the optical properties of fruits. Over the years, the

Italy group has done extensive studies, in collaboration with horticulturists, to

promote the time-resolved technique as a new means for quality evaluation of

horticultural products (Rizzolo et al. 2010). Nicolai et al. (2008) used the time-

resolved technique developed by that group to predict soluble solids content (SSC)

and firmness of pears. Although a highly nonlinear relationship between the

reduced scattering coefficients at 900 nm and firmness was observed, no satisfac-

tory calibration model could be established between the absorption coefficient

spectrum and SSC. Another research group from the University of Missouri at

Columbia, Missouri, USA did a series of original research in using a spatially-

resolved method with a NIRS and a fiber optical probe to measure the optical

absorption and scattering properties of beef muscles for tenderness prediction (Xia

et al. 2007). The group also developed an imaging-based technique to quantify light

scattering patterns in meat analogs for assessing the structural or textural charac-

teristics (Yao et al. 2004). Other researchers used destructive techniques (i.e., total

reflectance and transmittance) to measure the spectral properties of apple fruit for

the spectral region of 350–2,200 nm (Saeys et al. 2008).

In the past few years, our research team has been using a different approach to

measure the optical properties of food and agricultural products (Cen and Lu 2010;

Qin and Lu 2006, 2008). This approach is based on the spatially-resolved principle,

coupled with hyperspectral imaging technology, to achieve fast and effective

measurement of the absorption and reduced scattering spectra for the region of

400–1,000 nm. Hyperspectral imaging, which combines conventional imaging and

spectroscopy techniques to acquire spatial and spectral information simultaneously,

is ideally suited for measuring spatially-resolved diffuse reflectance profiles for a

broad spectral region. Through extensive research (Cen and Lu 2010; Cen

et al. 2009; Qin and Lu 2006, 2007, 2008), we demonstrated that the hyperspectral

imaging-based spatially-resolved technique can provide accurate measurement of
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the spectral properties of food and agricultural products, and it is useful for

nondestructive quality evaluation of horticultural and food products (Cen and Lu

2012; Qin and Lu 2008).

In this chapter, we provide an overview of our recent research in the development

and application of hyperspectral imaging-based spatially-resolved technique for

measuring the optical absorption and scattering properties of food products. We

first introduce the principle and theory of spatially-resolved spectroscopic tech-

nique. We then present the development of a new optical property measuring

instrument and application examples of using the optical properties to assess the

maturity/quality of fruit products. Finally, recommendations are given for further

research in the measurement of optical properties for food and agricultural products.

8.2 Principle and Theory of Spatially-Resolved
Spectroscopic Technique

8.2.1 Light Absorption and Scattering

Light consists of a packet of particles, called photons, which carry electromagnetic

energy and momentum but have no rest mass. Light transfer in turbid or diffusive

biological tissues or food products is a complicated phenomenon, which involves

both absorption and scattering (Tuchin 2000). The fundamental optical parameters

for turbid biological materials include absorption coefficient, scattering coefficient,

and anisotropy factor. Absorption coefficient (μa) quantifies the conversion of light

energy into other forms of energy such as heat, electricity, or chemical energy.

Absorption or the decrease in the amount of electromagnetic radiation is propor-

tional to the incident light intensity and the distance over which the absorption takes

place in an absorbing-only medium with the unit in mm�1 or cm�1 (Fig. 8.1a).

A relationship between the absorption and the chemical composition may be

established, which could be used to evaluate quality, ripeness, and defects of

agricultural and food products. Scattering is a physical process that takes place

Absorption
µa

Scattering
µs

Length d Length d

Incident
intensity I0

Transmitted
intensity I

Incident
intensity I0

Transmitted
intensity I

a b

Fig. 8.1 Light interaction with matter: (a) absorption and (b) scattering
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when light interacts with scattering media, and the travelling path of the photons is

no longer direct as shown in Fig. 8.1b. Scattering coefficient (μs) quantifies the

probability of photons scattering unit path length, and is the inverse of the average

distance that light travels among scattering events. μs represents a probability per

unit length of a photon being scattered, which has the same units as μa in mm�1 or

cm�1. Light scattering in the tissue depends on many variables including the size of

scattering particles, the wavelength of the light, and the variation of the refractive

indices of the various tissue components. In agricultural and food products, scat-

tering is closely related to the cellular structures and characteristics, and therefore it

could provide useful information about their condition and quality. Anisotropy
factor (g) is defined as a measure of the amount of photons retained in the forward

direction after a single scattering event. In many biological materials, scattering is

dominant during a light transport process, which is known as the diffusion regime.

Because the photons encounter many scattering events in small steps before an

absorption event takes place, the total scattering could be considered as isotropic.

Hence the exact value of the anisotropy factor is no longer needed for the

description of light propagation in the tissues, and the reduced scattering coefficient

μ0
s ¼ 1� gð Þμs is commonly used. As a result, μa and μ

0
s are the only optical

parameters in the diffusion regime.

8.2.2 Diffusion Theory

Light propagation in biological materials is governed by the radiation transport

equation. Exact solutions to the equation are found only under a few very restricted

conditions. For most biological materials in which scattering is dominant (i.e., μ0
s

� μa), diffusion approximation is valid (Durduran et al. 1997; Ishimaru 1978). If we

further assume that the source-detector distance is greater than the transport mean

free path [mfp0, which is the inverse of total attenuation coefficient, or 1= μ0
s þ μa

� �
,

representing the mean free path between interactions] and the source term Q(r, ŝ, t)
is isotropic with an equal probability of scattering in all solid angles combined with

a net flux, then the radiation transport equation can be simplified to the following

diffusion equation (Haskell et al. 1994)

1

c

∂Φ r; tð Þ
∂t

� D∇2Φ r; tð Þ þ μaΦ r; tð Þ ¼ S r; tð Þ ð8:1Þ

where Φ r; tð Þ ¼
ð
4π
L r; ŝ; tð ÞdΩ is the fluence rate, D ¼ 3 μa þ μ

0
s

� �� ��1
is the

diffusion coefficient, and S r; tð Þ ¼
ð
4π
Q r; ŝ; tð ÞdΩ represents an isotropic source.

Under steady-state conditions (i.e., the light source remains constant or continuous-

wave over time), the first term on the left side of Eq. 8.1 is zero, and the term on the

right side of Eq. 8.1 is also zero when no light source exists in the medium. This leads
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to the steady-state diffusion equation, which is the theoretical basis for spatially-

resolved technique. Reynolds et al. (1976) first used the spatially-resolved theory to

quantify light propagation in turbid media. Later, Langerholc (1982) and Marquet

et al. (1995) suggested that spatially-resolved measurement could be used to deter-

mine the optical properties of biological tissues. Figure 8.2 shows the principle of

spatially-resolved technique. As a small continuous-wave light beam perpendicularly

illuminates the sample’s surface, photons will scatter in different directions or be

absorbed in themedium. Some of the photonswill remit from the area close to the light

incident point. By measuring the remitted light at different distances from the light

source, we can extract the optical coefficients using an appropriate analytical solution

of the diffusion equation coupled with an inverse algorithm.

For the case of steady-state spatially-resolved reflectance for a homogeneous

semi-infinite turbid medium, Farrell et al. (1992) derived an analytical solution

from the diffusion equation (Eq. 8.1) using the extrapolated boundary conditions, at

which the fluence is forced to zero by introducing a negative ‘image source’. The

diffuse reflectance from the medium is calculated as the current across the bound-

ary, and it is originated from a single isotropic point source located at a depth of one

transport mean free path in the medium. The final expression of the reflectance R at

the surface of the semi-infinite turbid medium is

R rð Þ ¼ a
0

4π

1

μ0
t

μeff þ
1

r1

� �
exp �μeff r1

� �
r21

þ 1

μ0
t

þ 4A

3μ0
t

� �
μeff þ

1

r2

� �
exp �μeff r2

� �
r22

" #

ð8:2Þ

where r is the source-detector distance, a
0 ¼ μ

0
s= μa þ μ

0
s

� �
is the transport albedo,

μeff ¼ 3μa μa þ μ
0
s

� �� �1=2
is the effective attenuation coefficient, and μ

0
t ¼ μa þ μ

0
s is

r

Spatial profile R(r)

Incident
light

Absorption & scattering
Turbid material (µa, µs')

Fig. 8.2 Measurement principle for spatially-resolved technique
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the total attenuation coefficient, r1 ¼ z20 þ r2
� �1=2

and r2 ¼ z0 þ 2zbð Þ2 þ r2
h i1=2

are the distances from the observation point at the interface to the isotropic source

and the image source, and z0 ¼ μa þ μ
0
s

� ��1
, and zb ¼ 2AD, in which D is the

diffusion coefficient and A ¼ 0:2190 for n ¼ 1:35, a typical value for most

biological materials, is the internal reflection coefficient related to the relative

index of the tissue-air interface n, which can be calculated from an empirical

equation developed by Groenhuis et al. (1983a).

Later, Kienle and Patterson (1997) proposed an improved analytical solution by

expressing the reflectance as the integral of the radiance over the backward hemi-

sphere based on the study of Haskell et al. (1994). In this case, the radiance can be

expressed as the sum of isotropic fluence rate and the flux, which is given below

R rð Þ ¼ C1

4πD

exp �μeff r1
� �
r1

� exp �μeff r2
� �
r2

" #

þ C2

4π

1

μ0
t

μeff þ
1

r1

� �
exp �μeff r1

� �
r21

þ 1

μ0
t

þ 2zb

� �
μeff þ

1

r2

� �
exp �μeff r2

� �
r22

" #

ð8:3Þ

where zb ¼ 2D 1þ Reff

� �
1� Reff

� ��1
for the extrapolated boundary condition, Reff

is the effective reflection coefficient, which is equal to 0.4498 for the refractive

index n ¼ 1:35. A thorough discussion of calculating Reff can be found in Haskell

et al. (1994). C1 ¼ 1
4π

ð
2π

1� Rfres θð Þ� �
cos θdΩ and C2 ¼ 3

4π

ð
2π

1� Rfres θð Þ� �
cos 2

θdΩ are constants determined by the relative refractive index mismatch at the

tissue-air interface, in which Rfres(θ) is the Fresnel reflection coefficient for a

photon with an incident angle θ relative to the normal to the boundary, and Ω is

the solid angle. For n¼ 1.35, C1¼ 0.1277 and C2¼ 0.3269 in Eq. 8.3.

In practice, spatially-resolved measurement employs a point light source or a

narrow collimated beam of the constant intensity and multiple detectors at different

source-detector distances. Optical fiber arrays and non-contact reflectance imagery

are two commonly used sensing configurations in spatially-resolved measurement

systems (Doornbos et al. 1999; Fabbri et al. 2003; Jones and Yamada 1998; Pilz

et al. 2008). The former requires multiple spectrometers or a single imaging

spectrometer to measure diffuse reflectance at different distances from the light

incident point. Optical properties at multiple wavelengths or over a specific spectral

region can be obtained using this method. Yet the measurements need good contact

between the detecting probes and the sample, which may not be suitable for

agricultural and food products. The second method usually uses a CCD (charge-

coupled device) camera to acquire diffuse reflectance from the scattering medium

generated by a point light beam. The measurement can be achieved without

contacting the investigated medium, which is particularly advantageous for food
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and agricultural products because of the safety and sanitation requirements. How-

ever, most research on non-contact reflectance imagery mode can only provide

optical property information at single or several wavelengths.

8.3 Instrumentation for Measuring the Optical Properties

Accurate measurement of scattering and absorption parameters depends on a

number of factors in the algorithm implementation and instrument design. A proper

inverse algorithm to the diffusion equation (Eq. 8.2 or Eq. 8.3) needs to be

developed and optimized. The system should be able to measure the optical

properties of turbid foods and biological materials for the visible and short-wave

near-infrared region of 500–1,000 nm, a spectral region that is rich in information

about the chemical composition and quality of food and agricultural products. Since

the shape and size of the light beam can directly affect measurement accuracies, it is

important to examine and optimize the light beam. Moreover, an appropriate

source-detector distance, including minimum source-detector distance and maxi-

mum source-detector distance, is critical for determining the range of the spatially-

resolved reflectance profile.

8.3.1 Optimization of the Inverse Algorithm and Optical
Designs

Extensive studies were carried out to evaluate and optimize the inverse algorithm

and optical designs for the development of a hyperspectral imaging-based spatially-

resolved system (Cen et al. 2009; Cen and Lu 2010).

Direct solutions to the diffusion equation (Eq. 8.2 or Eq. 8.3), called forward

problems, provide a quantitative description of light interaction with biological

materials, whereas estimating optical absorption and scattering properties from the

diffusion equation is an inverse problem (or parameter estimation). Inverse light

transport problems are much more complicated than forward problems, and some-

times they are ill-posed. Therefore, it is necessary to investigate the intrinsic

properties of the diffusion equation, develop an appropriate inverse algorithm and

evaluate the feasibility of estimating all parameters and the uniqueness of the

solution. Determination of optical properties based on the diffusion equation is

formulated as a nonlinear least squares optimization problem, which is

implemented based on several statistical assumptions that errors are constant,

uncorrelated and Gaussian distribution. The measured spatially-resolved reflec-

tance profiles of many biological materials exhibit a dramatic decrease along the

source-detector distance, which may violate the assumptions of Gaussian distribu-

tion errors and constant variance errors when the nonlinear least squares
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inverse algorithm is applied. Our optimization study showed that proper data

transformation and weighting methods can overcome the problem of assumption

violations since those methods can change the data pattern without changing the

nature of the best-fit curve (Cen et al. 2009). Several methods, including logarithm

and integral transformation and relative weighting, were tested for 29 combinations

of absorption and scattering coefficients that are typical for food and horticultural

products, to preprocess the raw reflectance profiles prior to the curve fitting. The

results showed that the errors of estimating μa and μ
0
s dramatically decreased

when the data transformation and weighting methods were applied to the 29 groups

of μa and μ
0
s. The logarithm transformation gives the best results with the average

errors of estimating μa and μ
0
s being 10.4 % and 6.6 %, respectively. In addition,

sensitivity analysis was performed by calculating the sensitivity coefficients

(Cen et al. 2009) to determine the feasibility of estimating the two parameters

and/or their uniqueness. It was found that the reduced scattering coefficient can be

estimated more accurately than the absorption coefficient.

In a separate study (Cen and Lu 2010), optimizations of light beam and the

source-detector distance were carried out for the hyperspectral imaging-based

spatially-resolved system. In the real system design, a finite size beam is usually

used to illuminate the sample, which deviates from the solution of the diffusion

equation that is derived for an infinitely small beam. Therefore, it is important to

investigate the effect of the incident beam on the determination of the optical

properties. The light beam optimization study was carried out using Monte Carlo

simulations, and the results showed that the error produced by the finite beam

relative to the infinitely small beam was less than 1 % for the beam size of less than

0.5 mm (Cen and Lu 2010). However, the error increased linearly with the beam

size larger than 0.5 mm. In general, a 1-mm beam would introduce around 5 % error

in μa and μ
0
s compared to the infinitely small beam. Hence the light beam in the

system should be less than 1 mm in size in order to control the error to within 5 %.

Laboratory tests were performed to characterize the actual beam size and profile

(Cen and Lu 2010). Figure 8.3 shows the measured 3-D beam profiles and 2-D

intensity contours at the wavelengths of 650 and 950 nm for a laboratory optical

property measuring system. The beam at the visible and short near-infrared region

has a good Gaussian distribution and its shape is circular with the roundness

Rd¼ 0.986 (�1). Based on the commonly accepted method for defining the size

of Gaussian beam, the beam size in this system is 0.83 mm, which would have

caused less than 4 % error in estimating μa and μ
0
s. A further optimization study was

performed on the source-detector distance including maximum source-detector

distance and minimum source-detector distance, using 12 model liquid samples

made up of Intralipid scattering material and two types of dye (Cen and Lu 2010). It

was found that the optimal minimum source-detector distance should be about

1.5 mm, and the optimal maximum source-detector distance should be equivalent

to 10–20 transport mean free paths or determined by the minimum signal-to-noise

ratio of 20.
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8.3.2 Instrument Development

An optical property measuring instrument, named ‘Optical Property Analyzer’

(OPA) (Fig. 8.4), was assembled by incorporating the optimal algorithm and optical

design parameters.

The OPA is a multi-purpose optical instrument; it can measure the optical

properties of food and biological materials or function as a regular hyperspectral

imaging system for acquiring hyperspectral images. This is achieved through the

use of two separate light sources: one line light is used for hyperspectral image

acquisitions and the other point light is specially designed for optical

properties measurements. Since this chapter is focused on optical properties

measurement, we will skip the hyperspectral imaging acquisition design fea-

tures/functions here.

The hardware of the OPA includes three main parts: imaging, illumination, and

sample positioning unit (Fig. 8.4b). The imaging unit is operated in line-scanning

mode, and is composed of a high performance electron-multiplying CCD (i.e.,

EMCCD) camera (LucaEM R604, Andor Technology plc., South Windsor, CT,

USA), an imaging spectrograph (ImSpector V10E, Spectral Imaging Ltd., Oulu,
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Fig. 8.3 Three-dimensional profiles (a, b) and two-dimensional (c, d) contours of the incident

light beam at wavelengths of 650 and 950 nm, where D1 is the direction along the scan line of the

optical system and D2 is perpendicular to the scan line (Cen and Lu 2010)
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Finland), and a prime lens. A tungsten halogen light bulb with the output of 20 W

(HL-2000-HP, Ocean Optics, Dunedin, FL, USA) is connected to a DC regulated

controller chip to provide point light, which covers a broad wavelength range of

369–2,000 nm. An optical fiber coupled with a specially-designed focusing lens is

used for delivering a circular beam with the diameter of 1 mm at the focal point.

The incident beam is arranged 1.5 mm away from the scanning line with the angle

of 15� with respect to the vertical axis, and it is parallel to the scanning line.

This lighting arrangement allows maintaining a constant offset distance between

the light incident point and the scanning line position, even when the height of the

sample changes slightly during scanning or when the sample is not placed at the

exact predetermined height. The sample positioning unit includes a motorized

linear horizontal stage, a manually adjustable vertical stage, and a sample holder

for positioning samples to the predetermined position. During the measurement,

each sample is first moved to the pre-determined height via the vertical stage, and it

then starts to move horizontally in synchronization with image acquisitions by the

imaging system. To improve the repeatability of measurements, the system is set in

default to take 19 scans from each sample at an increment of 0.5 mm horizontal

displacement for a total distance of 9 mm. The instrument provides automatic dark

subtractions and corrections for fruit geometry and non-uniform instrument

response.

The OPA software was developed using Microsoft Visual C#. It provides

functions for system control (light source, camera and stage), image acquisition,

real-time data analysis and on-screen display of 2-D images, 1-D scattering profiles,

Fig. 8.4 The multi-purpose Optical Property Analyzer (or OPA): (a) schematic and (b) the actual
instrument
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and the measured spectra of absorption and reduced scattering coefficients.

Figure 8.5a shows the window for setting parameters related to the camera, stage,

illumination and image saving functions for the optical properties measurement.

A user-friendly interface in the software allows the user to choose one of the two

diffusion models, i.e., Farrell model (Eq. 8.2) and the modified Kienle model

(Eq. 8.3), to calculate the spectra of absorption and reduced scattering coefficients.

The user first sets up all parameters in the left column of ‘Optical Properties

Computation Dialog’ and then selects the output directory and file name in the

right column of the dialog. Spectral properties computations are triggered with a

processing message window by clicking ‘Compute OP’.

Figure 8.6a shows a typical hyperspectral reflectance image for peach fruit

acquired by the OPA. A raw reflectance spectrum representing a vertical line at

the center spatial position is presented in Fig. 8.6b. Each horizontal line taken

from the image represents one spatially-resolved reflectance profile at a

specific wavelength (Fig. 8.6c), and hence the entire image, in effect, consists of

101 spatially-resolved reflectance profiles for the wavelengths of 500–1,000 nm at

an interval of 5 nm.

Since the spatially-resolved reflectance profiles are symmetric to the light

incident point, the two sides are first averaged in the extraction of optical properties

(Fig. 8.6d). Smoothing and normalization using the peak value for each profile are

also applied to the averaged profiles to reduce the noise and avoid the need for

Fig. 8.5 Display windows of the Optical Property Analyzer (OPA) for (a) imaging acquisition

setup and (b) optical properties computation
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Fig. 8.6 Hyperspectral reflectance image and optical absorption and scattering spectra of a peach

sample: (a) 2-D display of the original reflectance image, (b) a raw spectrum extracted for a

specific scattering distance, (c) a spatially-resolved reflectance profile extracted for a selected

wavelength, (d) pre-processed or averaged spatially-resolved reflectance profile at the selected

wavelength, (e) the spectrum of absorption coefficient (μa), and (f) the spectrum of reduced

scattering coefficient (μ0
s)
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absolute reflectance measurement. Each pre-processed spatially-resolved reflec-

tance profile for every wavelength is then fitted by the chosen diffusion model

using the least squares inverse algorithm, from which the spectra of absorption and

reduced scattering coefficients are obtained. The final μa and μ
0
s spectra are the

average over 19 scan measurements for each sample (Fig. 8.6e, f).

The OPA was evaluated for accuracy, stability, precision/reproducibility, and

sensitivity by using liquid model samples and following the procedures described in

Cen and Lu (2010). The average estimated errors for all model samples at 530–

850 nm were 24 % for μa and 7 % for μ0
s. The system reproducibility (or precision)

and the coefficient of variation (or CV) in the absorption peak at 555 nm were less

than 10 % and 4 % for μa and μ
0
s, respectively. It should be mentioned that the

absolute values of μa were very small at 700–850 nm for blue dye model samples,

and at 530–600 nm for green dye model samples, thus causing the relatively large

error of estimating μa compared with that of μ0
s. The main error sources for

estimating μa and μ
0
s could have come from the light beam, source-detector distance,

and inverse algorithm, according to our optimization studies of the inverse algo-

rithm and optical designs (Cen and Lu 2010; Cen et al. 2009). The result of

sensitivity measurements on μa is presented in Fig. 8.7. The minimum detectable

value of μa was 0.0117 cm�1. The sensitivity of μ0
s, as determined by the CV values,

was always less than 3 % because μ0
s is much larger than μa for the investigated

range of 7:0 � μ0
s � 39:9cm�1. These results showed that the OPA has achieved

acceptable accuracies for measuring the absorption and reduced scattering coeffi-

cients, which are either comparable to or superior to other reported studies using

time-resolved, frequency-domain, or other types of spatially-resolved instruments

(Spichtig et al. 2009; Svensson et al. 2005).
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Fig. 8.7 Coefficient of variation versus reordered ascending absorption coefficients of a model

sample at different wavelengths (Cen 2011)
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8.4 Optical Assessment of Fruit Maturity/Quality

In this section, we first present some typical absorption and scattering spectra for a

variety of food products (fruits, vegetables, meats and liquid food products) and

then show two application examples, in which the hyperspectral imaging-based

spatially-resolved system or the OPA was used to assess the maturity and quality of

peaches and apples.

Figure 8.8 shows the spectral absorption and scattering coefficient spectra for

five fruit and vegetable samples, three meat samples and three liquid food samples.

The μa spectra of ‘Golden Delicious’, ‘Delicious’, and ‘Granny Smith’ apples and a

‘Redstar’ peach fruit (Fig. 8.8a) had absorption peaks at 675 nm, which corresponds

to the chlorophyll absorption waveband, and the μa values ranged from 0.10 to

0.48 cm�1 at this wavelength. The ‘Granny Smith’ apple had the highest chloro-

phyll absorption due to its greenish skin and flesh. The ripened tomato did not show

an absorption peak at 675 nm, because chlorophyll in fully ripened tomatoes

decreases greatly or even disappears completely. In fully ripened tomatoes, antho-

cyanin becomes the dominant pigment, which absorbs light at 535 nm, as shown in

Fig. 8.8a. The absorption values of the fruit and vegetable samples for 720–900 nm

were relatively small and consistent, but they increased dramatically above 900 nm

and peaked at 970 nm due to the water absorption. For the beef, chicken and pork

samples, we also observed two prominent absorption peaks at 560 and 970 nm

(Fig. 8.8b). The absorption peak at 560 nm could be attributed to the combined

effect of myoglobin, oxymyoglobin, and metmyoglobin (Xia et al. 2007), while

absorption at 970 nm was due to the water in the meat samples. For two orange juice

samples, the absorption spectra over 550–900 nm were relatively flat, and only one

prominent absorption peak was found at 970 nm due to absorption by the water;

while for the milk sample, there are several small absorption peaks and one

dominant peak at 970 nm caused by the water absorption.

Compared to μa spectra, the reduced scattering coefficient spectra of these

samples were relatively flat and had fewer features. For most of the tested samples,

their μ0
s values decreased steadily with the increasing wavelength. This pattern of

changes is consistent with Mie scattering theory and other reported studies that

scattering is wavelength-dependent (Keener et al. 2007; Michels et al. 2008). The

apple samples had higher μ0
s values (9.0–17.0 cm�1) over the entire spectral region

from 500 to 1,000 nm, while the tomato had the lowest μ0
s values (4.5–6.0 cm�1)

(Fig. 8.8a). The three meat samples also had different μ0
s values over the entire

wavelengths; the beef had the highest μ0
s values, while the chicken sample had the

lowest (Fig. 8.8b). In addition, the milk sample had distinctly higher μ0
s values than

the orange juice samples over the spectral region of 500–1,000 nm. Fat globules and

casein micelles are the main, excellent scattering particles in milk. The ability of

scattering particles to scatter light depends on their density and size, according to

the empirical equation μ0
s ¼ aλ�b, which describes the relationship between μ0

s and

wavelength λ, where a is proportional to the density of the scattering particles, and
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b depends on the particle size (Mourant et al. 1997). Hence the value of μ0
s and its

pattern of change with wavelength can provide useful information about the

structural and physical characteristics of these samples, such as firmness in fruit,

tenderness in meat, and fat content in milk. In the following, we show two

application examples about using the optical properties to assess the maturity/

quality of peaches and apples.
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Experiments were carried out in the summer and fall harvest season of 2010.

Peach and apple samples were hand picked during the normal harvest time from

orchards of Michigan State University’s Clarksville Horticultural Experiment Sta-

tion in Clarksville, Michigan. For the maturity study, 500 ‘Redstar’ peaches were

harvested three times within a 1-week period, and optical and reference maturity

measurements were performed within the same day. For the apple quality study,

two cultivars, ‘Golden Delicious’ (GD) and ‘Delicious’ (DL), were harvested once

a week during six consecutive weeks. Eighty apples for each cultivar were tested

next day after each harvest, and the remaining apples were kept in refrigerated air

storage at 0 �C. Tests for the stored apples were begun 1 week after the last harvest

for up to 6 weeks. A total of 1,039 GD and 1,040 DL apples were used in the

experiment. Optical measurements were first performed on the peach or apple

samples using the OPA with the procedures described in the previous section.

Thereafter, standard destructive measurements, including Magness–Taylor firm-

ness test, Brix refractometry for soluble solids content (SSC), and color measure-

ment for peach skin and flesh using a digital chroma meter, were performed to

provide reference fruit maturity/quality measures. A detailed description of the

experimental procedures and destructive quality measurements is given in Cen and

Lu (2012a and 2012b).

To use the optical parameters to predict the maturity parameters of peach

samples, calibration models were developed using partial least squares (PLS)

regression for each optical parameter (μa and μ
0
s) and each of the three combina-

tions, i.e., μa& μ0
s, μa � μ0

s and μeff, where μa& μ0
s refers to the simple cascading of

the two parameter spectra into one spectrum for each sample, μa � μ0
s is the

multiplication of the two parameters wavelength by wavelength, and

μeff ¼ 3μa μa þ μ0
s

� �� �1=2
is the effective attenuation coefficient which reflects the

light penetration ability. The combinations of μa and μ
0
s were used for the calibration

model development, in view of the fact that the physiological process and hence the

maturation/ripening of peaches are normally accompanied with simultaneous

changes in the absorption and scattering properties. Finally, the calibration models

were used to predict the remaining samples (1/4 of the total samples) that were not

used in the calibration.

Table 8.1 shows PLS prediction results for the firmness, SSC, and skin and flesh

color of ‘Redstar’ peaches using μa, μ
0
s and their combinations (μa & μ0

s, μa � μ0
s and

μeff). μa and μ
0
s showed various levels of correlation with the maturity parameters,

with values of the correlation coefficient (r) varying from 0.420 to 0.855 for μa and
from 0.204 to 0.840 for μ0

s. In most cases, prediction results obtained from μa spectra
were better than those from μ0

s spectra. However, the PLS prediction models

developed for μ0
s are simpler with fewer factors, compared to those for μa. As

shown in Table 8.1, using the combined data of μa and μ
0
s generally improved

prediction results with r¼ 0.724 (standard error of prediction or SEP¼ 18.13 N)

for firmness, r¼ 0.458 (SEP¼ 0.96 �Brix) for SSC, r¼ 0.893 (SEP¼ 3.54) for the

skin color parameter L*, and r¼ 0.722 (SEP¼ 3.32) for the flesh color L*. Most of
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the improved results were obtained using the effective attenuation coefficient (μeff),
which is reciprocal of light penetration depth, and describes the extent to which the

light can penetrate a medium. Hence, it is not surprising to have better predictions

for the peach maturity parameters using μeff (except for SSC).
In this experiment, we also compared the OPA with a commercial desk-top

acoustic firmness sensor for measuring the firmness of peaches. The acoustic sensor

(AWETA, Nootdorp, the Netherlands) assesses the firmness of fruit by measuring

its resonant frequency and mass. The results in Fig. 8.9 showed that the OPA gave

better firmness predictions (r¼ 0.724 and SEP¼ 18.13 N) than the acoustic sensor

(r¼ 0.639). While results for peach maturity prediction still need improvement,

they have clearly demonstrated that the hyperspectral imaging-based spatially-

resolved technique is potentially useful for assessing the maturity of peaches.

For the apple study, the same calibration and prediction procedures as that for

peaches were used. Prediction results for the firmness of GD and DL apples using

μa and μ
0
s, and their combinations (μa& μ0

s, μa � μ0
s, and μeff) for the freshly

harvested, after-storage and combined groups are presented in Table 8.2. Likewise,

SSC prediction results using the optical properties for each group are summarized

in Table 8.3. Both μa and μ
0
s were correlated with the apple firmness and SSC for

each cultivar. Firmness prediction results obtained from μa spectra (r¼ 0.687–0.885

for GD, and r¼ 0.744–0.844 for DL) were better than those from μ0
s spectra

(r¼ 0.630–0.793 for GD, and r¼ 0.702–0.768 for DL) for each of the three sample

groups. This was also true for the SSC evaluation. The combinations of μa and μ
0
s

again improved the prediction of apple firmness and SSC in most cases. With the

best combination of μa and μ
0
s, the correlations for the firmness of DL and GD apples

for the three test groups were 0.692–0.892 and 0.788–0.863, respectively, and they

were 0.741–0.791 and 0.536–0.842 for SSC, respectively.

Fig. 8.9 (a) Prediction of Magness–Taylor (MT) firmness of ‘Redstar’ peaches using the effective

attenuation coefficient (μeff) and (b) correlation between the acoustic and MT firmness measure-

ments [Cen and Lu (2012a)]
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Table 8.2 Firmness prediction results for ‘Golden Delicious’ and ‘Delicious’ apples for the

freshly harvested, after-storage and combined groupsa [Cen and Lu (2012b)]

Optical parameter

Golden Delicious Delicious

Factors r SEP Factors r SEP

Freshly harvested μa 16 0.687 6.10 20 0.785 8.43

μ0
s

6 0.630 6.49 7 0.764 8.68

μa& μ0
s

12 0.651 6.37 18 0.809 7.91

μa � μ0
s

17 0.692 6.06 19 0.813 7.83

μeff 16 0.687 6.10 22 0.822 7.67

After-storage μa 17 0.726 6.11 25 0.744 9.36

μ0
s

7 0.689 6.44 7 0.702 9.90

μa& μ0
s

14 0.712 6.24 17 0.788 8.57

μa � μ0
s

17 0.734 6.02 20 0.765 9.00

μeff 18 0.730 6.07 29 0.762 9.10

Combined μa 34 0.885 8.14 34 0.844 9.56

μ0
s

9 0.793 10.60 9 0.768 11.35

μa& μ0
s

38 0.881 8.29 19 0.852 9.31

μa � μ0
s

39 0.892 7.89 35 0.857 9.12

μeff 33 0.884 8.16 38 0.863 8.94
aSEP standard error of prediction. See the footnotes of Table 8.1 for explanation of the optical

parameters

Table 8.3 Prediction results for the soluble solids content of ‘Golden Delicious’ and ‘Delicious’

apples for the freshly harvested, after-storage and combined groupsa [Cen and Lu (2012b)]

Optical parameter

Golden Delicious Delicious

Factors r SEP Factors r SEP

Freshly harvest μa 16 0.787 0.70 17 0.823 0.76

μ0
s

6 0.489 0.99 7 0.784 0.84

μa& μ0
s

12 0.781 0.70 17 0.842 0.73

μa � μ0
s

17 0.791 0.69 20 0.816 0.78

μeff 16 0.777 0.72 22 0.821 0.77

After-storage μa 18 0.713 0.95 14 0.533 0.88

μ0
s

7 0.561 1.12 6 0.460 0.92

μa& μ0
s

14 0.741 0.92 13 0.518 0.89

μa � μ0
s

18 0.732 0.93 11 0.502 0.90

μeff 19 0.726 0.94 18 0.536 0.87

Combined μa 20 0.760 0.84 23 0.812 0.88

μ0
s

8 0.544 1.09 8 0.750 0.99

μa& μ0
s

16 0.768 0.83 19 0.825 0.85

μa � μ0
s

23 0.778 0.82 21 0.804 0.89

μeff 22 0.773 0.83 27 0.805 0.89
aSEP standard error of prediction

See the footnote of Table 8.1 for explanation of the optical parameters
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For the freshly harvested and after-storage groups, the correlations were rela-

tively low because of smaller firmness variations for each group. However, when

the data from these two groups were pooled, improved correlations for the firmness

prediction of both cultivars were obtained, although the SEP values increased

slightly due to larger firmness variations in the combined group. For SSC, the

best predictions were achieved for the freshly harvested group with r¼ 0.791

(SEP¼ 0.69 �Brix) for GD and r¼ 0.842 (SEP¼ 0.73 �Brix) for DL. Comparable

results were obtained for the combined group because the SSC in the apple fruit did

not change significantly during storage. Figure 8.10 shows the firmness and SSC

predictions for GD and DL apples obtained with the best combination of μa and μ
0
s

for the combined group. Better predictions of firmness for GD and DL apples with

the correlation of 0.892 and 0.863, respectively, were obtained than for SSC pre-

dictions with r¼ 0.778 and 0.825. These results are comparable with other reported

studies using hyperspectral scattering technique (Mendoza et al. 2011; Qin

et al. 2009).

Fig. 8.10 Prediction of fruit firmness (a, c) and soluble solids content or SSC (b, d) using the best

combinations of μa and μ
0
s for the combined group of ‘Golden Delicious’ (GD) and ‘Delicious’

(DL) apples [Cen and Lu (2012b)]
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8.5 Concluding Remarks

In the chapter, we have described hyperspectral imaging-based spatially-resolved

technique for measuring the optical properties of food products and other biological

materials. Compared to other techniques like time-resolved and frequency-domain,

this technique is faster and simpler in instrumentation and also covers a broader

spectral region. It also demonstrated the ability to assess the maturity and quality of

peaches and apples. Further research is, however, still needed in order to make this

new technique available for property and quality evaluation of a wide range of food

and agricultural products.

Optical measurements using the current system still show relatively large vari-

ability for the same sample. This variability is related to several factors, including

the roughness and geometric irregularities on the surface of fruit and the inherent

shortcomings (e.g., use of small light beam) with the method itself. Hence further

study should be carried out to evaluate and improve the measurement accuracy and

repeatability of the technique and minimize the effect of sample surface condition

(i.e., roughness, unevenness, or irregularity) on optical measurements. Moreover,

the performance of the diffusion model is also dependent on the scattering and

absorption characteristics of samples because the model is based on certain assump-

tions (i.e., scattering dominant, isotropic source, and source-detector distance being

greater than one transport mean free path, etc.). Hence we need to further evaluate

the limitation and application scope of the diffusion model for food and agricultural

products.

Many biological materials, such as fruit, are composed of two layers of distinc-

tive tissues (e.g., skin and flesh). The current system is only suitable for evaluating

homogenous media. Further research is thus needed to develop an effective method

for measuring the optical properties of heterogeneous or multi-layer biological

materials and to reduce the computational complexity and time for estimating the

absorption and reduced scattering coefficients.
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Chapter 9

Quality Evaluation of Plant Products

Jasper G. Tallada, Pepito M. Bato, Bim P. Shrestha, Taichi Kobayashi,

and Masateru Nagata

9.1 Introduction

Hyperspectral imaging or imaging spectrometry combines the strengths of computer

vision technologywith optical spectroscopy. It is primarily suited formeasurement of

parameters that vary spatially both at the external surface of samples and internally

within the samples. The parametersmay be physical features such as incipient bruises

or surface contamination, or chemical constituents such as sugar and acidity. While

the acquisition of images generally follows the procedures of machine vision, adding

a spectral dimension would require the rigor of multivariate statistics, also known as

chemometrics, to find functional relationships between the measured values and

target parameters. Its application to agriculture, particularly to post-harvest

processing, has recently been explored by university research laboratories in order

to develop new techniques for non-destructive measurement of quality.

Hyperspectral imaging has opened up new opportunities and challenges for

measurement of internal and external quality parameters for fruits and vegetables.
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For instance, accurately measuring the spatially varying sweetness and sourness as

primary components of taste of fruits would enable more efficient grading, thus

increasing the confidence in marketing the produce. The increasing preferences of

the Japanese consumers for the best quality fruits and vegetables are not only

related to their changing personal interests but are also rooted in their cultural

tradition of giving the best gift as possible. Thus guaranteeing the premium quality

of fruits is of utmost importance. There are many dimensions of quality for different

kinds of commodities, which often require new and better non-destructive mea-

surement techniques. For example, the increasing awareness for the health benefits

of anthocyanins by certain segments of the market had prompted research work on

accurately quantifying the internal pigment contents in strawberries, carrots and

certain varieties of sweet potatoes. Increasing concerns for food safety have also

ushered development of more powerful technologies that can be placed in-line at a

packing house operation. Incipient bruises in fruits can lead to early rot, which can

potentially lead to the rejection of not only the suspicious fruits but of the entire

batch. Since bruises are not easily recognized at the fruit surface, hyperspectral

imaging and its complementary technology, multi-spectral imaging, offer a unique

way of detecting these types of fruit damage.

The main goal of this chapter is to present several specific techniques of

hyperspectral imaging for non-destructive quality measurement of fruits and veg-

etables. Discussions are given on the hardware design, components selection,

preparatory protocols and analytical techniques.

9.2 Hyperspectral Imaging Setup

The design and construction of an imaging system is crucial for the success of any

hyperspectral imaging study. There are two distinct types of hyperspectral imaging

systems, namely the pushbroom and the area scan. The pushbroom system is

exemplified by the ImSpector device (Spectral Imaging Ltd., Oulu, Finland) having

a prism-grating-prism optical assembly that permits collection of spectra for a line

of pixels from an object on a moving stage. The speed of the moving stage defines

the spatial resolution of the system in the moving direction. One-time spatial

corrections are needed in order to view the entire object for each wavelength. The

area scan system, on the other hand, places an electronic variable filter unit in front

of a monochrome camera; each time the system takes two-dimensional image for a

narrow waveband selected by the filter. This is similar to the more common special

effects technique that is used in popular photography, for example by placing an

interference green or long-pass infrared filter in front of the camera lens. The

electronic filter may either consist of a liquid crystal tunable filter (LCTF) or an

acousto-optical tunable filter (AOTF). The Cambridge Research and Instrumenta-

tion Inc. (Woburn, MA, USA) produces LCTFs under its Varispec line of filters as

shown in Fig. 9.1. There are two models available: one model operates in the visible

range from 400 to 700 nm with a 10 nm FWHM (full width at half maximum)
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bandwidth (VS-V153-10-HC-20) and another operates in the visible-near infrared

range from 650 to 1,100 nm also with a 10 nm FWHM bandwidth (VS-NIR-20-10).

The center wavelengths of these filters are set by keying in the values in their

accompanying hand-held CRI Electronic Controller Box. Alternately, the controller

may be connected to a serial port (RS-232 protocol) of a personal computer with a

program that remotely sets the wavelength.

There are some positive points in using an area scan system. Firstly, the number

and interval resolution of the acquisition can be easily configured. For example, one

may decide to get images, say, from 400 to 700 nm inclusive at 1 nm intervals to

produce 301 sets of spectral images for a particular sample, or in another applica-

tion from 500 to 650 nm at 10 nm intervals (16 images total). This would have

dramatic effect on the speed and time in getting the hyperspectral image cube sets.

Secondly, no complicated geometric correction has to be made since the object

remains stationary throughout the acquisition process (Lawrence et al. 2003). The

overall system design is not overly complicated, compared to moving stages in a

pushbroom system. Control of components would be much easier and failure of

parts can be placed at a minimum cost. Finally, since the center wavelength is

randomly selectable, the hyperspectral imaging area scan system can be easily

re-configured into a multi-spectral imaging system especially if the research aims

to identify optimal wavelengths for discrimination or measurement.

Fig. 9.1 A Varispec liquid crystal tunable filter
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Our laboratory assembled two imaging systems for the two Varispec LCTFs.

The visible range hyperspectral system comprises a Sony AVC-D5 CCD video

camera having a Cosmicar television lens with the Varispec VS-153-10-HC-20

filter fitted in front. Lighting is provided by two machine vision grade tungsten

halogen lights with an infrared filter and cooling fans. In the absence of an

appropriate digitizing board, the image signal was fed into a Sony digital video

camera (DCR-PC 100) and saved into a memory stick in JPEG format (8-bit

resolution). During the early stage of building the setup, specular reflections from

shiny surfaces of strawberry and eggplant samples had presented difficulties in

acquiring clean images. A polarizing filter was placed in front of the camera lens to

complement with the pre-built polarizing filters in the light sources. By correctly

adjusting the filters through trial and error, specular reflections were eliminated

from the images. The enclosure was covered around by black poster boards, and the

front by a black textile to seal off the system against ambient light.

The second hyperspectral imaging system (Fig. 9.2) was built for the visible-

near-infrared range comprising an Apogee AP2E camera (Apogee Instruments,

Inc., Auburn, CA, USA) with a Nikkor f/1.2 optical lens to which the Varispec

VS-NIR-20-10 was attached. The camera was mounted to a standard photography

Fig. 9.2 Hyper-spectral

imaging setup consisted

of (a) Apogee AP2E
camera, (b) Nikkor lens,
(c) CRI NIR Varspec LCTF,

(d) cooler exhaust, (e)
Dolan-Jenner Fiber-Lite

light source, (f) Varispec
Controller Box, and (g)
sample stage
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frame which allows vertical and horizontal height adjustments. Lighting was

provided by a Dolan-Jenner Fiberlite PL950 DC-regulated Illuminator (Dolan-

Jenner Industries, St. Lawrence, MA, USA) with a 150 W tungsten-halogen bulb

through its fiberoptic light guide. This illuminator allowed smooth and continuous

wavelengths of light from the visible to the near-infrared. An air-conditioned

cooling system maintains the chamber temperature (at about 22 �C) to minimize

the effects of varying temperature on the image quality. Similarly, the Varispec was

controlled by software through the serial RS-232 connection and image data are

acquired using the accompanying Maxim/DL software of the Apogee. Image files

were saved using the FITS format (Flexible Image Transport System) to maintain

the 14-bit raw resolution of image data. The whole system was placed in a rigid

metal frame surrounded by a photographic dark curtain to completely isolate it from

stray lights.

9.3 Procedures for Acquiring Hyperspectral Image Cubes

The basic principles used in collecting hyperspectral imaging data are similar to the

general methods employed by optical spectroscopy. Since there are two spatial

dimensions (x and y) in the images in addition to the spectral dimension, the

one-dimension single-point spectroscopic methods must be extended to the spatial

region. Generally, the procedures follow discrete sequential steps. Firstly, the

system must be adequately stabilized since the electronic components (light source,

the LCTF and camera particularly) vary in performance with temperature. The

components should be allowed to stabilize for 20–60 min after they are powered on.

Second, dark images are acquired to account for the electronic DC voltage offset

of the sensor. This is achieved by either switching off the light source or through a

simpler approach of placing a dark opaque cover onto the lens (such as the lens cap)

or keeping close the shutter mechanism of the camera. Switching off the light

source would require longer times to stabilize its intensity. While it is quite feasible

to use a single dark image for the entire wavelength range, conventionally we get

separate dark images for each of the center wavelengths designed for the study.

Thirdly, light reference images are acquired to establish a reference but not

necessarily the maximum signal each pixel of sensor has at each wavelength. This

will define not only the spectral pattern of the light source but also the interaction of

this spectral pattern with the other components of the imaging system especially the

lens sub-system. Reference images are taken from a reference panel usually made

of a very stable diffusely emitting material such as a Spectralon (Labsphere Inc.,

North Sutton, NH, USA) or Teflon (poly-tetrafluoroethylene) material. Normally,

these materials have well defined reflectance characteristics traceable to NIST or

other measurement standards. There can be several gray levels of these materials

which should be accounted for in the computation. For example, the Spectralon

panels are prepared by LabSphere in 99.9, 80, 50, and 20 % average diffuse

reflectance over the visible and near-infrared range. Typically, the 99.9 %
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reflectance standard is used for imaging studies. Since the electronics will age

during the acquisition of imaging data, both reference and dark image sets have to

be collected regularly to account for any electronic drifts. The researcher may

decide the re-collection either at fixed time intervals or after working on a certain

number of samples.

Finally, images of the samples are acquired by either manually keying in the

center wavelengths in the handheld controller or in an automated fashion using a

controller program. The same collection procedure should be used with dark and

reference images acquisition, that is, all images are obtained using the same

exposure or integration time.

Prior to experimentation, optimization procedures should be done to define the

geometric parameters of the image acquisition. Firstly, the camera and lens field of

view must be inspected to define the camera height, focus and shutter opening.

Along this, the correct background of the samples (usually black) on the stage must

also be defined. Secondly, the size of the fruit samples must be considered in the

optimization of heights of camera and light source, and more importantly, the

Spectralon panel should be large enough to accommodate the largest of the samples

or the target area of the samples. Some of the mango fruit samples that we have

dealt with were too large for the available Spectralon panel that primarily justified

our move then to limit analyses to an area of interest around the central equatorial

portion of the fruits. Thirdly, the collection wavelength intervals must be carefully

decided upon which will dictate the total collection time for the samples and the

resolution of the spectral acquisition. Note that there is a very high correlation of

reflectance values between adjacent wavelengths.

An important procedure prior to experimentation is the establishment of the

exposure time. This is an important optimization step to avoid saturation and

blooming of pixels of the sensor. To accomplish this, at a certain fixed exposure

time, reference images are taken off the reference panel across at constant wave-

length interval. Using the image viewing program, the wavelength image that gives

the maximum sensor value is selected. In a trial-and-error fashion, more images are

acquired at this wavelength at different exposure times to identify the optimal time.

Typically, the optimal time is selected that will correspond to either two-thirds or

three-fourths of the maximum sensor response. For example, the Apogee AP2E

camera has 14 bits of resolution corresponding to a maximum of 16,383 value

(214� 1 or 16,384� 1), so the maximum pixel values should be about 12,000–

14,000 digital value. A fixed level of exposure time is usually used for all image

acquisitions (dark, reference and samples) at the entire wavelength range during

experimentation. A shortcoming of using a single exposure time, however, is that

the dynamic response of the sensor gets only optimized at a single wavelength as

explained above, which would penalize the dynamic response efficiency of the

system for the other center wavelengths since the camera sensor can have wider

response at longer exposure times. Thus, another method is needed to establish the

appropriate exposure time at each center wavelength. This will involve greater

preparation efforts since each wavelength interval or a short range of wavelengths

will be inspected separately. Also the exposure time has to be plugged into the
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camera control software which again will take some efforts of the researcher during

operation, or the controlling program must be modified to accommodate varying

exposure times.

9.4 General Approaches to Analysis

A diagram showing the general processing of the hyperspectral imaging data is

shown in Fig. 9.3, which depicts a combination of simple methods of image

processing, spectroscopy, and mathematical or statistical procedures.

9.5 Image Processing

Matlab has an image processing toolbox that greatly facilitates the analysis of

hyperspectral images. A basic initial step in the analysis is to isolate or segregate

the pixels of the target object from the background by simple image grayscale

thresholding technique. From this step a binary mask image (a 1 represents the

target object and a 0 as the background) for the entire image cube is generated from

a selected wavelength image in the hyperspectral image cube. Such mask image

must define either the extents of the entire sample or an area-of-interest of the

samples. The images from the Sony camera can be processed using one of the

planes of the RGB image. On the other hand, the Apogee images had a resolution of

14 bits and must be converted into 8-bit bitmapped grayscale images (BMP

extension name) prior to thresholding. The critical level of threshold can be decided

Hyperspectral
Imaging

Hyperspectral
Image Cube

(400-1000nm)

716nm
(14-bit)

Pixel Masking

Spectral Profile
Extraction

Apogee CCD
Camera

Randomization,Wavelength Selection

LDA ND ANN

Judgment
Methods

R

B
G

Quality Evaluations

Fig. 9.3 A diagram of hyperspectral image data acquisition and analysis for identification of

optimal wavelengths for fruit and vegetables
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through a logical experimentation or through an automated means (e.g., Gryathresh

procedure of Matlab). Along with thresholding, it is sometimes necessary to erode

or shrink the masked object especially if the entire fruit object is the target. This will

remove noisy image data in the edges due to shadow effects or complicated

acquisition geometry. A simple image erosion using a disc pattern at a fixed radius

(imerode method) will accomplish the task.

Specific to the bruised fruits study, using the Microsoft Paint program, the pixels

are selected by manually identifying and coloring the bruised pixels (in red color)

and non-bruised pixels (in blue color). In a similar manner, the target area for the

sugar content or firmness studies was normally confined to a circular area on the

equatorial region of the fruits. The mask was defined by manually colorizing

the area so that spectral extraction can be automated.

9.6 Spectral Processing

The next general step is to extract the spectral data and prepare them for the

mathematical and statistical analyses. Guided by the mask image, the x and y

(horizontal and vertical) coordinates of the target pixels will identify the points

from which the relative reflectance data are computed upon. Either each pixel will

comprise one spectral set (for example for the bruising study) or the average of the

reflectance for all themasked pixels (for example in sugar contents study). Known as

the flat field corrected relative reflectance spectra, the data is computed as follows:

Inorm x; yð Þ ¼ Isample x; yð Þ � Idark x; yð Þ
Ireference x; yð Þ � Idark x; yð Þ � m ð9:1Þ

where, Inorm(x, y) is the normalized pixel value (relative reflectance) at pixel

location (x, y); Isample(x, y), Ireference(x, y), Idark(x, y) are the pixel values for the

sample, reference and dark images, respectively, at the same location (x, y); and
m is a factor with a value of 1.0 based on the Spectralon reference panel that has

average diffuse reflectance of 99.9 % through a wide range of wavelength of light.

There are other reference panels of intermediate reflectance properties. Thus, the

m factor will change proportionately. The spectral data will then be merged with the

constituent values to prepare them for consequent analysis.

9.7 Mathematical and Statistical Analysis

Using some chemometric methods, predictive models for the target constituents or

discrimination are derived from the spectral data. For simple constituent prediction,

stepwise multiple linear regression will not only identify a limited set of wave-

lengths but also compute for the model coefficients to define the predicting
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equation. In the bruising study, stepwise linear discriminant analysis was also used

to identify the important wavelengths. Prior to these analyses, spectral

pre-treatment such as mean centering, smoothing, multiplicative scatter correction

and derivatives may be applied on the data as suggested by earlier researches.

In some cases, the dataset may be divided into calibration and prediction or

validation sets to better assess the performance of the predictive models. The

validation set may be obtained from the samples not utilized in the formulation of

the models. Some samples may be separately obtained to specifically serve the

purpose for validation. Using this approach, the following parameters were

computed:

SEC ¼
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Ŷi

 !2
v

u

u

t

ð9:5Þ

RP ¼
NP

X

NP

i¼1

YiŶi �
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where, Yi and Ŷi are the measured and predicted experimental values, respectively

for sample i; p is the number of wavelengths in the model, NC and NP are the

number of samples in the calibration and prediction sets, respectively. SEC is

the standard error of calibration with its corresponding correlation coefficient Rc,

while SEP is the standard error of prediction that is corrected for bias and its

corresponding correlation coefficient, Rp.
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9.8 Detection of Bruises

9.8.1 Strawberry

The presence of incipient bruises may affect the economic value of fruits and

vegetables directly because consumers will pick out only those items that are free

of visible surface bruises and other imperfections. The effect may also be indirect

because bruises can facilitate the growth of fungi and bacteria that can potentially

lower the quality and hence the prices of the commodity. Detection of bruises is

important in the early stages of post-harvest handling to increase the economic

potential of the produce while avoiding any deleterious effects on public health and

consumer confidence.

Strawberries may be harvested by hand at different ripeness levels depending on

the judgment of the farmers. Riper fruits are more susceptible to mechanical

bruising. But these bruises are not immediately visible and, thus, an effective

optical technology must be employed.

An early work of Shrestha et al. (2002a, b) has shown the feasibility of detecting

bruised areas on strawberries using near-infrared imaging rather than color imag-

ing. The preliminary work identified a 960 nm long pass filter coupled to a near-

infrared sensitive Hamamatsu camera. But machine vision techniques were

severely limited for an efficient method to discriminate bruised from non-bruised

surfaces on the fruits. Based on this preliminary work, further hyperspectral imag-

ing studies were initiated, first on strawberries (Tallada et al. 2006a, b; Nagata et al.

2006b) and later on mangoes and peaches (Tallada 2006).

Controlled bruising forces (ranging from 0 to 3.0 N) were applied to strawberries

of two ripeness levels, using a 25 mm spherical tip in an Orientec STA-1150

universal testing machine, as shown in Fig. 9.4. Immediately after the application

of bruising, hyperspectral images were taken from 650 to 1,100 nm at 10 nm

intervals. Images were taken again for the following four more days to examine

the temporal dynamics of bruise development. As shown by the earlier work, NIR

images (960 nm and longer) can reveal the presence of bruised tissues in fruits.

Inspecting the hyperspectral images in the NIR region showed that the 980 nm

(bandpass) can distinctly show the bruised tissues yet working on this wavelength

alone cannot provide an efficient means for bruise detection because of possible

variations of light conditions and geometry of image acquisition. To obtain the

optimal wavebands for discriminating bruises, a systematic approach involved

deriving a color image from the 980 nm image by usual image conversion methods

of Matlab. The pixels of the bruised and non-bruised tissues were marked using the

Microsoft Paint program (blue for bruised and red for non-bruised). Using this

mask, reflectance spectra of pixels were extracted and then sampled for linear

discriminant analysis. Expectedly, the 980 and 825 nm (spectral maximum)

wavebands were found optimal for bruise detection, and from these bands, the

efficiency of three bruise detection algorithms: linear discriminant analysis,
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normalized difference and neural network were compared. All the three models had

worked equally well as shown in Fig. 9.5, but neural network gave better detection

of the extent of bruised areas, followed by normalized difference. An area-of-

interest (lighted square areas in the figures) was marked because the oblate shape

Fig. 9.4 The Orientec

STA-1150 universal testing

machine comprised the

bruising set-up for

strawberry using a 25-mm

diameter ball tip (inset)

Fig. 9.5 Bruises on a strawberry fruit sample detected using three methods of judgment on a

70–80 % ripe level strawberry receiving a 2.0 N bruising force. aLinear discriminant analysis.
bNormalized difference. cArtificial neural network
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had resulted to false positives near the fringes of the fruits. Bruises were detected

because the non-bruised tissues appeared as a uniform field in the images. When

bruising happens, the expelled cellular contents spilled and concentrated into areas

that attenuated the absorbance of light and hence appear darker in the NIR images.

The spectral region around 980 nm has been previously identified as an absorption

band for water.

The fruits were held fixed into their carrying trays to enable collection of images

in the same fruit pose and position for several days. When the bruised areas were

compared over time, there was a gradual reduction of detected bruised areas due to

either re-absorption of the expelled water by adjacent tissues or the drying up of the

bruised areas.

9.8.2 Peach and Mango

The same experiment was carried out for mangoes and peaches as shown in Fig. 9.6.

The spectral images were processed using the Image Processing Toolbox of

MATLAB version 6.5 (The Mathworks, Inc., Natick, MA). Through an observa-

tion, bruised areas were easily noticed from the 980 nm images such that eight-bit

RGB images were derived for masking (and classifying) of pixels. Using the

Microsoft Paint software, bruised tissues were manually marked with blue color

while non-bruised tissues with red color as shown in Fig. 9.7.

The relative reflectance profiles for the bruised and non-bruised fruit areas for

peaches and mangoes are shown in Fig. 9.8. A stronger absorption at 675 nm was

observed from the peach samples than the mango samples. This is the wavelength

where the absorption peak of chlorophyll occurs (McGlone et al. 2002; Merzlyak

et al. 2003). Bruised tissues had consistently lower relative reflectance starting from

about 700 nm and continued to the near-infrared range with the maximum differ-

ence occurring at a valley between 960 and 980 nm that represents the absorption

peak of water (McGlone et al. 2002; Shrestha et al. 2002b; Zwiggelaar et al. 1996).

Bruising of tissues causes an expulsion of cellular materials and water out into the

extra-cellular spaces within a local area that dramatically increases the absorption

of light at around 960–980 nm, thus making the region more contrastingly distinct

than the surrounding areas. Greater differences were observed between bruised and

non-bruised areas in peaches than in mangoes. This observation alone suggests that

it would be quite challenging to discriminate bruises in mangoes based on the levels

of applied forces.

Similar results were obtained for peaches probably because their thin pericarps

were comparatively similar to strawberries. Detection of bruises on mangoes is

difficult because of the leathery texture of the exocarp.
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Fig. 9.6 Controlled

application of bruising

forces using a 25-mm ball

tip on peaches (up) and
mangoes (down)
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9.9 Measurement of Firmness in Strawberry

Firmness in strawberry fruits provides an indirect measure of fruit ripeness, fresh-

ness and bruising potential. From 210 pieces of Akihime variety in three ripeness

groups (50–60 % ripe, 70–80 % ripe and full ripe), hyperspectral images were taken

from 650 to 1,100 nm at 5 nm intervals with varying exposure times from 0.70 to

7.25 s. Firmness measurements were taken using the same Orientec universal

testing machine as shown in Fig. 9.9.

The NIR spectral profiles of three strawberries of different ripeness levels are

shown in Fig. 9.10. The spectra are marked with a strong absorption by chlorophyll

at around 675 nm (Chen et al. 2002; McGlone et al. 2002), and by water and starch

at around 980 nm. The large reflectance data variability at 675 nm was likely caused

Fig. 9.7 Bruised (blue) and
non-bruised (red) areas
were marked using Paint

software
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by different levels of ripeness of the fruits. The peak of reflectance had occurred in

the near-infrared region at around 800–840 nm.

The results of the stepwise linear regression modeling are shown in Table 9.1

for different waveband combinations for the two ripeness ranges. The 50 % to full

ripe range gave higher correlation but lower standard error (0.79 and 0.35 MPa
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respectively) as compared to the 70 % to full ripe range (0.60 and 0.26 MPa

respectively).

Validating the earlier results of the study done by Shrestha et al. (2002a), the

670–685 nm range accounted for a greater proportion of variations in firmness that

again accentuated the importance of chlorophyll content as an indicator of degree of

Fig. 9.9 (a) Firmness

measurements were taken

using a 3 mm diameter steel

probe tip from a central

point in-between fruit

achenes; (b) relative
reflectance spectral data

were obtained from the

same area using a

circular mask
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Fig. 9.10 Diffuse relative reflectance profile with respect to a white reference tile from 650 to

1,000 nm spectral images of strawberries at open triangle 50–60 % ripe, open square 70–80 % ripe

and open circle full-ripe maturity levels
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ripeness, and hence the firmness of strawberries. The inclusion of the NIR range of

985–990 nm into the models further improved the prediction capability of the

model. The additional model component suggested a minor but still important

role of water as determinant of the turgidity of the cells that has a relationship to

Table 9.1 Characteristics of prediction models having different number of wavelengths for

estimation of firmness

Predictors (nm) SECa RC
b SEPc Rp

d Bias

70% to full-ripe maturity level fruits group

1 680 0.252 0.702 0.241 0.645 0.025

2 680, 990 0.235 0.750 0.262 0.588 0.041

3 680, 990, 650 0.233 0.760 0.258 0.599 0.033

50% to full-ripe maturity level fruits group

1 685 0.356 0.783 0.344 0.796 0.046

2 685, 985 0.342 0.803 0.344 0.794 0.057

3 685, 985, 865 0.338 0.809 0.350 0.786 0.050
aStandard error of calibration, MPa
bCorrelation coefficient of calibration
cStandard error of prediction, MPa
dCorrelation coefficient of prediction

Firmness, MPa

- >3.0

- 2.6

- 2.2

- 1.8

- 1.4

- < 1.0

Fig. 9.11 Pseudo-color

maps of firmness

distribution in strawberries

9 Quality Evaluation of Plant Products 243



the firmness of fruits. The derived regression equation for the entire range of

samples was:

Yp ¼ �6:786 R685� 6:165 R865þ 13:810 R985þ 2:750 ð9:7Þ

where Yp is the predicted firmness value, and R685, R985 and R865 are the

reflectance values at 685, 865 and 985 nm, respectively.

As an aid to visualize the distribution of firmness in the fruits, image maps were

generated using Eq. 9.7 to show the distribution of firmness throughout the fruit

body. Figure 9.11 shows some examples of these pseudo-color maps that interest-

ingly identify hard and soft regions on the fruits.

In the final end through this firmness study, hyperspectral imaging in the visible

and NIR ranges was found useful for non-destructive and non-contact estimation of

the firmness of fruits. Statistical analyses showed that the three-wavelength model

(685, 865, and 985 nm) could predict firmness in strawberries. More thorough

regression analyses showed that combination of the three wavelength ranges of

670–685 nm, 755–870 nm, and 955–1,000 nm gave better estimate of fruit firmness.

9.10 Measurement of Soluble Solids Content
in Strawberry, Peach and Mango

Soluble solids content as an estimate of fruit sweetness is an important indicator of

eating quality of fruits, which can be measured non-destructively by NIR spectros-

copy as an alternative to the usual chemical methods (Kobayashi et al. 2005).

Experiments were carried out to measure SSC in strawberries (Nagata et al.

2004, 2005), mangoes and peaches using hyperspectral imaging within the short

Vis-NIR region.

9.10.1 Strawberry

For strawberries, the spectral resolution at 5-nm intervals was explored for establishing

prediction models. The results of stepwise multiple regression are shown in Table 9.2

Table 9.2 Prediction models for SSC for strawberries at 5 nm intervals

Model Predictors SEC Rc SEP Rp Bias

1 915 0.533 0.548 0.797 0.320 0.322

2 915, 765 0.502 0.623 0.731 0.484 0.293

3 915, 765, 870 0.457 0.711 0.645 0.637 0.356

4 915, 765, 870, 695 0.383 0.811 0.586 0.712 0.259

5 915, 765, 870, 695, 860 0.288 0.900 0.430 0.870 �0.037
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for strawberries. The five-wavelength prediction models at the two resolutions are

shown in Eq. 9.8.

SSCS5 ¼ 9:402þ 82:838R915 þ 88:848R765

� 158:916R870 � 122:984R695 � 332:882R860

ð9:8Þ

9.10.2 Peach

For peaches, the resolution at 2-nm intervals was explored for forming prediction

models. The results of stepwisemultiple regression are shown in Table 9.3 for peaches.

The five-wavelength prediction models at the two resolutions are shown in Eq. 9.9.

SSCP2 ¼ 16:450þ 54:259R680 � 75:509R684

� 4:931R686 � 41:644R666 þ 65:543R672

ð9:9Þ

9.10.3 Mango

For mango, the resolution at 2-nm intervals was explored for forming prediction

models. The results of stepwisemultiple regression are shown in Table 9.4 forMango.

The five-wavelength prediction models at the two resolutions are shown in Eq. 9.10.

SSCM2 ¼ 17:053� 46:018R726 þ 67:241R790

þ 43:261R710 � 43:875R718 � 22:339R776

ð9:10Þ

Table 9.3 Prediction models for SSC for peaches at 2 nm intervals

Model Predictors SEC Rc SEP Rp Bias

1 680 1.045 0.603 1.222 0.464 0.207

2 680, 684 0.897 0.732 1.007 0.681 0.168

3 680, 684, 686 0.874 0.750 0.982 0.699 0.142

4 680, 684, 686, 666 0.863 0.759 0.913 0.747 0.109

5 680, 684, 686, 666, 672 0.841 0.775 0.862 0.779 0.124

Table 9.4 Prediction models for SSC for mangoes at 2 nm intervals

Model Predictors SEC Rc SEP Rp Bias

1 726 2.274 0.397 2.114 0.504 0.222

2 726, 790 1.604 0.766 1.784 0.697 0.117

3 726, 790, 710 1.315 0.852 1.420 0.815 0.081

4 726, 790, 710, 718 1.244 0.871 1.319 0.842 0.052

5 726, 790, 710, 718, 776 1.200 0.882 1.289 0.849 �0.041
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9.11 Measurement of Anthocyanins in Strawberry,
Sweet Potato and Eggplant

There was good interest in the health benefits of consuming polyphenols amongst

the Japanese. Anthocyanin is a class of polyphenolic pigment that is commonly

found in fruits such as strawberry, vegetables such as in eggplant and root crops

such as purple-fleshed sweet potato. An objective non-destructive method was

developed based on hyperspectral imaging to quantify the amount of anthocyanins

in strawberries (Kobayashi et al. 2006a), purple sweet potatoes (Nagata et al.

2006a), and eggplants (Kobayashi et al. 2006b). Using the visible range

VS-153-10-HC-20 Varispec LCTF fitted in front of the Apogee AP2E camera,

images were taken from 400 to 700 nm at 1 nm interval. Using a mask, areas were

selected from the objects from which a sub-sample was taken for pigment extrac-

tion. The samples were diced and placed in 50 % acetic acid solution for at least

20 h to allow diffusion out of the pigments. Aliquot samples were placed in round

cuvettes from which absorbance spectra were taken using an Avantes Avasepc-

2048 spectrophotometer. Relative concentration of the pigments was computed

from the peak values in the neighborhood of 525 nm of the absorbance spectra.

Following the stepwise linear regression analysis, optimal wavelengths were

selected from the second derivative of the computed absorbance spectra obtained

from the hyperspectral image cubes.

9.11.1 Strawberry

For strawberries, the spectral images were taken at 1-nm interval to form the

prediction models for anthocyanin contents. The results of stepwise multiple

regression are shown in Table 9.5. A five wavebands (508, 506, 507, 531 and

533 nm) had an SEC and SEP of 0.165 and 0.213 relative pigment concentration,

respectively with a correlation coefficient of 0.93.

Table 9.5 Prediction models for anthocyanins for strawberries, sweet potatoes and eggplant

Model Wavelength prediction models SEC Rc SEP Rp Bias

Strawberries 5 (508, 506, 507, 531, 533) 0.165 0.957 0.213 0.932 0.032

Sweet potatoes 5 (523, 592, 564, 539, 516) 0.045 0.921 0.052 0.921 0.010

Eggplant 1 (716) 0.077 0.973 0.054 0.969 –
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The five-wavelength prediction model is:

Anthocyanins Strawberriesð Þ ¼ �0:313� 33:699R508 þ 22:694R506

� 2:935 R507 þ 48:350R531 � 43:790R533

ð9:11Þ

9.11.2 Sweet Potato

Similarly for sweet potatoes, images were acquired at 1-nm spectral resolution. The

results of stepwise multiple regression are shown in Table 9.5. In the case of two

varieties of purple fleshed sweet potato (Ayamurasaki and Murasakimasari), better

five-wavelength prediction model (523, 592, 564, 539, and 516 nm) was obtained

from Ayamurasaki with an SEC and SEP of 0.045 and 0.052 relative pigment

concentration, respectively, with a correlation coefficient of 0.92. The five-

wavelength prediction model is :

Anthocyanins SweetPotatoesð Þ ¼ 2:111� 5:393R523 þ 15:277R592

� 64:426R564 � 40:283R539 þ 32:212R516

ð9:12Þ

9.11.3 Eggplant

Finally in the case of eggplants, the single wavelength model at 716 nm (Eq. 9.13)

for the anthocyanin pigment concentration had the produced the correlation coef-

ficient of 0.969 with a standard error of prediction (SEP) of 0.054 concentration

units. The results of stepwise multiple regression are shown in Table 9.5. The

one-wavelength prediction models is:

Anthocyanins Eggplantð Þ ¼ 3:471R716 þ 0:596 ð9:13Þ

Using this model, pseudo-color distribution maps of anthocyanin pigment

concentrations were derived to show the spatial variation of the pigment content

throughout the eggplant. To investigate the effects of fruit sizes, the vertical

distance between the camera and samples was varied by around 30 mm based on

the average radius of eggplants. The results showed that varying camera heights by

30 mm did not significantly affect the measured values of anthocyanin pigment of

the fruits.
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9.12 Further Work

Many of the work done on hyperspectral imaging on fruits and vegetables were

confined in the visible to shorter near infrared region. Near infrared spectrometric

research showed that more powerful prediction and discrimination models for a

wider array of constituents and non-chemical parameters can be developed in the

longer regions of the NIR. With the evolution of better sensor technologies such as

the use of extended indium-gallium-arsenide, lead-sulfide or lead-selenide image

detectors, a wider array of applications can be opened up for hyperspectral imaging

because of their increased sensitivities in the region closer to the mid-infrared part

of the electromagnetic spectrum. Finer constituents can then be measured such as

amino acid or fatty acid in heterogenous samples to better estimate their composi-

tional levels. Along with improvements of imaging electronics, better approaches to

model development would be essential such as the use of both linear and non-linear

models. All of these will certainly make the science and technology of

hyperspectral imaging more responsive to the development needs of the industry.
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Chapter 10

Quality Evaluation of Beef and Pork

Govindarajan Konda Naganathan, Kim Cluff, Ashok Samal,

Chris Calkins, and Jeyamkondan Subbiah

10.1 Introduction

The meat industry is the largest food industry in the United States. There exists a

need for objective, non-invasive systems for sorting meat based on quality traits to

facilitate marketing. Hyperspectral imaging has a great potential to fulfill the need,

as it can collect both spatial (structural) and spectral (biochemical) information on

the meat surface. This section will focus on hyperspectral imaging of beef and pork.

10.2 Beef

The beef industry makes up the single largest segment of American agriculture

(NCBA 2009). In 2008, the United States of America beef industry was responsible

for producing $76 billion in retail sales, as well as $2.98 billion in beef exports

(USDA 2008). The driving force of this industry is customer satisfaction, which in
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turn influences repurchasing. Studies have found that customers are not pleased

with the inconsistencies in beef tenderness. Roughly 15–20 % of the steaks that

reach consumers are tough (Miller et al. 2001) and customers can distinguish

between tender and tough samples (Boleman et al. 1997). Furthermore, consumers

are willing to pay more if the steak is guaranteed to be tender (Lusk et al. 2001).

Consumers’ willingness to pay more for guaranteed tenderness represents an

opportunity to add value to tender carcasses, thereby benefiting the beef industry

as well as increasing customer satisfaction. The fact that tenderness is not consistent

should not be a surprise given that tenderness is not even measured during meat

quality grading.

One of the difficulties in determining tenderness is that its measurement is

inherently destructive. Furthermore, the only truly accurate method of measuring

tenderness is to use a trained sensory panel (Shackleford et al. 2005). However, this

is not a reasonable method to measure tenderness in a beef processing plant. The

second best method is to measure the force required to shear the meat sample, using

the Warner–Bratzler shear (WBS) force (AMSA 1995) or slice shear force (SSF)

methods (Shackleford et al. 1999). The beef industry mostly follows the SSF

procedure method because it is faster than the WBS procedure. In the SSF proce-

dure, a 1-in. thick steak is excised from a beef carcass, cooked, sliced, and then

sheared using a texture analyzer (Fig. 10.1). The force required to slice the sample

is recorded as the SSF value. Unfortunately these methods are also not reasonable to

use online in meat packing plants, because they are destructive. Hence, the industry

needs a non-destructive, rapid, accurate, and online method of predicting tender-

ness. Light-based, non-destructive techniques may provide the solution.

Beef tenderness is an important trait related to consumer satisfaction. In fact,

committees, organizations, and associations have been assembled with the primary

purpose of improving customer eating experiences. According to the National Beef

Quality Audit conducted in 2000, tenderness is one of the biggest challenges in

meat quality (McKenna et al. 2002). During the late 1950s, the beef industry began

to recognize the importance of palatability traits in meats, such as tenderness,

juiciness, and flavor (Webb et al. 1964). In an attempt to control and monitor

meat quality, the American Beef Cattle Performance Registry Association

(ABC-PRA) was organized in 1955 (Lipsey 1999). Additional organizations were

formed, such as the American Polled Hereford and Angus Associations and the

Beef Improvement Federation (BIF), each with the objective to improve beef

quality for the consumer. Customer satisfaction is seen as the ultimate force that

drives markets to improve. In the beef industry, researchers have been trying to

improve the end users experience for decades. However, inconsistency in tender-

ness and lack of quick, reliable methods of evaluating beef tenderness continue to

be problems. This situation has caused some scientists within the U.S. beef industry

to exclaim, “is our industry forever shackled to the fact that a proportion of all beef

we produce will be less than satisfactory to consumers?” (Lipsey 1999). Hence it is

no understatement to say that there is a thriving need to develop a system that can

monitor tenderness accurately, quickly and efficiently.
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10.2.1 Video Image Analysis

Video image analysis (VIA) has been used in an attempt to predict beef tenderness. A

VIA and the RGB image generated by a VIA system are shown in Figs. 10.2 and 10.3,

respectively. A system known as the BeefCam® was developed by Colorado State

University to acquire RGB images of beef steak and extract L*, a*, and b* (lab color

space) values from the images (Belk et al. 2000). These color features were then used

to find a correlation with beef tenderness. The system was evaluated by Wyle

et al. (1999, 2003) and Vote et al. (2003). They were able to predict Warner–Bratzler

shear (WBS) force values with an R2 of less than 0.21. They concluded that the

BeefCam® could be useful in reducing the likelihood that a consumer would receive a

tough steak, but that the system needed further refinement (Belk et al. 2000). One of

the downfalls to using simple VIA analysis is that it has low spectral resolution,

generally displaying only red, green, and blue bands. Therefore, it cannot be used to

identify the biochemical basis for tenderness.

Fig. 10.1 Slice shear force (SSF) procedure to determine beef tenderness (Source: Subbiah 2004

and Shackelford et al. 1999)
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10.2.2 Near Infrared (NIR) Spectroscopy

Spectroscopy is performed by measuring the reflectance or absorbance of light in a

very small spatial area. The reflectance or absorbance of light is averaged over that

spatial area and the spectral profile is displayed as intensity vs. wavelength. There-

fore, spectroscopy results in high spectral resolution displaying how absorbance

changes with respect to wavelength. Figure 10.4 shows a spectroscopic instrument

collecting spectral reflectance signals of beef ribeye muscle. Tender beef reflects

comparatively more light compared to the tough beef (Fig. 10.5) (Subbiah 2004).

Near infrared (NIR) spectroscopy has been tested as an instrument to predict

tenderness (Byrne et al. 1998; Hildrum et al. 1994, 1995; Mitsumoto et al. 1991;

Fig. 10.3 RGB image of a

beef steak (Source:
Subbiah 2004)

Fig. 10.2 A video image

analysis for capturing RGB

images of beef (Source:
Research Management

Systems, USA Inc., Fort

Collins, CO)
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Naes and Hildrum 1997; Park et al. 1998). Shackleford et al. (2005) performed a

study in which they collected spectra on 292 longissimus steaks. They validated

their system with 146 steaks and were able to predict slice shear force (SSF) values

with an R2¼ 0.22. They concluded that NIR spectroscopy might be useful in

identifying tender USDA Select carcasses. Some of the downfalls of using spec-

troscopy are that it can collect signals from a limited sample area and the measure-

ments can be influenced by fat flecks.

Fig. 10.4 A spectroscopic

system for acquiring NIR

spectra of a beef sample

(Source: Subbiah 2004)

Fig. 10.5 Typical spectra of tender, intermediate, and tough beef ribeye steaks (Source: Konda
Naganathan et al. 2008)

10 Quality Evaluation of Beef and Pork 255



10.2.3 Hyperspectral Imaging

Hyperspectral imaging has also been used as a method of predicting beef tender-

ness. Hyperspectral imaging is a mode of imaging that essentially combines

spectroscopy and video image analysis. Specifically, a hyperspectral image is

a compilation of a set of images where each image represents reflected light in a

narrow band of wavelengths. Hyperspectral imaging is unique in that it is capable

of capturing both spatial and spectral information at high resolutions. With

a hyperspectral image, a spectrum can be obtained for each pixel (Fig. 10.6) and

a grayscale image can be obtained for each wavelength (Fig. 10.7).

Fig. 10.6 A hyperspectral image of a beef-steak showing typical spectral signatures of lean and

fat pixels (Source: Konda Naganathan et al. 2008)

Fig. 10.7 Tonal images of a beef-steak at selected wavelengths (Source: Konda Naganathan

et al. 2008)
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A hyperspectral imaging system (Fig. 10.8) generally consists of a camera with a

2D sensor array and an imaging spectrograph. Spectral data are obtained by allowing

only a thin line of light into a slit on the spectrograph. The spectrograph disperses the

light into wavelengths and then casts the dispersed wavelengths onto the 2D sensor

array of the camera. The result is an image displaying the line of light as it would

appear at each different wavelength. In a line-scan hyperspectral imaging system, by

moving the sample across the hyperspectral camera at a preset speed, a hyperspectral

image can then be compiled. The compiled image consists of a complete 2D spatial

image with a third axis containing spectra at each and every pixel. Therefore, both

very high spatial and spectral resolutions can be achieved with a hyperspectral

imaging system. Generally, hyperspectral imaging systems can achieve spectral

resolutions ranging from macro-scale, imaging very large objects such as the Earth,

down to microscopic-scales, imaging very small objects such as human tissues.

Hyperspectral imaging systems are capable of extracting both structural features

and biochemical signatures from images (Konda Naganathan et al. 2006b). Struc-

tural and textural features can be extracted from a hyperspectral image because the

image preserves the full spatial frame (Konda Naganathan et al. 2006a). Likewise,

biochemical fingerprints can be extracted because a hyperspectral image can

provide a spectrum for every pixel within the image and particular wavelengths

are related to specific biochemical constituents.

Konda Naganathan et al. (2008) developed a push broom hyperspectral imaging

system (Fig. 10.8) with the purpose of predicting tenderness on (n¼ 111)

longissimus steaks. Their system consisted of a CCD digital video camera, linear

slide, diffused flood lighting chamber, and spectrograph providing a spectral range

between 400 and 1,000 nm. They used principal component analysis and gray-level

co-occurrence matrix analyses to extract image textural features from the imaged

hypercubes (Fig. 10.9). Finally, they used a canonical discriminant analysis to

develop a model to correlate tenderness categories to the extracted textural features.

Fig. 10.8 Spectrograph-based bench-top hyperspectral imaging system (Source: KondaNaganathan
et al. 2008)
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With a leave-one-out cross-validation procedure their model was able to predict

tenderness categories with 96.4 % accuracy. They concluded that this method could

classify steaks into three tenderness categories based on current status of tender-

ness, but further study was needed to forecast aged beef tenderness.

Konda Naganathan et al. (2008) carried out a further study with a larger sample

set (n¼ 319) in which they forecast 14-day aged cooked beef tenderness. They

developed a system that consisted of an InGaAs camera, spectrograph sensitive to

Fig. 10.9 Hyperspectral image textural feature extraction methodology. (a) Uncalibrated image.

(b) Calibrated image. (c) Region of interest image. (d–h) Principal component images 1 through

5. (i–p) Textural images. (i) Mean. (j) Variance. (k) Homogeneity. (l) Contrast. (m) Dissimilarity.

(n) Entropy. (o) Second moment. (p) Correlation (Source: Konda Naganathan et al. 2008)
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light in the NIR region (λ¼ 900–1,700 nm), a linear slide, and a diffuse flood

lighting chamber. In their investigation, images of ribeye steaks were acquired at

3–5 days postmortem and then aged to 14 days postmortem. They used partial least

squares regression and gray-level textural co-occurrence matrix analysis to forecast

14-day postmortem slice shear force values on the cooked beef samples. Using a

leave-one-out cross-validation they were able to correctly classify tender, interme-

diate, and tough samples with an overall accuracy of 77 %. When they grouped the

categories into tender and tough they were able to correctly identify 96.3 % of the

tender samples and 62.5 % of the tough samples with an overall accuracy of 94.5 %.

They concluded that hyperspectral imaging has considerable promise in beef

tenderness prediction, but that further studies should be carried out with a wider

range of samples to validate the model.

As hyperspectral images are acquired at a narrow wavelength interval, they tend

to have redundant information. So, hyperspectral image analysis involves a dimen-

sionality reduction method such as principal component analysis. A dimensionality

reduction procedure first computes Eigen values and vectors (Fig. 10.10). The

Eigen vectors are multiplied with the hyperspectral images to create transformed

images such as principal component images. The peaks and valleys of the Eigen

vectors may correspond to important biochemical properties. In Fig. 10.10, the

peaks and valleys corresponding to protein, fat, and water are highlighted.

Fig. 10.10 Loading or Eigen vectors of a dimensionality reduction method such as principal

component analysis (Source: Konda Naganathan et al. 2008)
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10.2.4 Optical Scattering

Electromagnetic waves that encounter biological materials create complex interac-

tions with charged particles (Pedrotti 2007). The complex nature of light, which has

the dual ability to act as a wave of energy and a particle, presents complications in

understanding the exact nature of the interactions of light with charged particles of a

given medium. Despite the lack of knowledge of the exact nature of light, it is clear

that interaction of electromagnetic energy radiated by luminous objects can be used

to identify properties of biochemical compounds (Burns and Ciurczak 2001). Spe-

cifically, light in the ultraviolet and near-infrared regions are especially useful in

identifying organic compounds. Light interaction with biochemicals at the molec-

ular level result in changes of the energy state due to light energy being absorbed.

The absorbed energy causes electrons to transition from one orbital to another.

Light scattering occurs when energy from an incident wave of light is removed by

a scattering medium via absorption followed by some portion of that energy being

reemitted in many directions (Pedrotti 2007). Scattering is more effective when

scattering centers are small particles in comparison to the wavelength of the elec-

tromagnetic radiation. Rayleigh scattering is scattering that is predominantly due to

particles whose dimensions are smaller than the radiation wavelength (Wolfson

1999). Therefore, Rayleigh scattering is not the predominate source of light scatter-

ing in beef muscle tissue. An example of Rayleigh scattering is the scattering that

occurs when sunlight interacts with oxygen and nitrogen molecules in the atmo-

sphere (Wolfson 1999). It has been found that scattering is more effective at shorter

wavelengths and higher frequencies (Pedrotti 2007). This is apparent in the sky

appearing as blue; higher frequency blue light is scattered more so than lower

frequency red light. In fact, the scattering power of violet light (λ¼ 400 nm) is

approximately ten times as great as that of red light (λ¼ 700 nm) (Pedrotti 2007).

Light scattering that occurs due to larger particles, whose size is larger relative to

the wavelength of light, is known as Mie scattering. Light scattering in beef muscle

tissue is predominantly due to Mie scattering. Materials that have predominately

Mie scattering centers have less scattering power, however, the density of oscilla-

tors leads to considerable signal scattering that may be useful to characterize such

materials (Pedrotti 2007).

10.2.5 Optical Scattering Measurements
to Predict Tenderness

Thus far, limited work has been performed on investigating the interactions of

optical scattering on beef muscle tissue. Electromagnetic radiation interaction with

turbid biological objects produces phenomenon that includes both scattering and

absorption (Xia et al. 2008). Light is able to penetrate a few millimeters into the

surface of the steak. The energy from the light excites the biomolecular components
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within the muscle tissue elevating them to a higher electron state. Because chemical

compounds like to exist at the lowest energy state possible they reemit the light in

many directions. Hence the illuminated area around the incident beam of light is

due to optical scattering, as seen in Fig. 10.11.

Xia et al. (2007) performed a study in which they used spatially-resolved optical

scattering and spectroscopy to predict the Warner–Bratzler shear force of 32 cooked

beef muscle samples. In their study, two fiber optic probes were used, one to cast an

incident beam of light at an oblique incident angle, and the other to collect the back-

scattered light. They used the oblique incident theory developed byWang and Jacques

(1995) to extract absorption and scattering coefficients from 13 points along the

optical scattering on the beef muscle tissue (Wang and Jacques 1995; Lin

et al. 1997). They used an optical diffuse equation where the first parameter, the

Optical scattering in beef muscle tissue

Scattering profile of light on beef muscle tissue

INCIDENT BEAM
OF LIGHT
HIGH INTENSITY

ILLUMINATED AREA DUE
TO BACKSCATTERING OF
LIGHT
LOW INTENSITY

17 
oIncident beam

Optical Scattering

Side View

Top View

a

b

Fig. 10.11 Light is able to (a) penetrate a few millimeters into the surface of the steak.

(b) The illuminated area around the incident beam of light is due to optical scattering (Source:
Cluff et al. 2008)
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absorption coefficient, was a function of the effective attenuation of scattered light in

the muscle tissue. The scattering coefficient was then derived as a function of the of

the absorption coefficient. The scattering and absorption coefficients essentially

represented the probability that a photon was scattered or absorbed within the beef

muscle tissue. Chemical compositions such as myoglobin and its derivatives

influenced the beef absorption coefficient, whereas muscle structure such as sarco-

mere length and collagen content influenced the scattering coefficient (Xia et al. 2006,

2007). With these two parameters they were then able to predict tenderness WBS

scores, in a training data set, with a coefficient of determination (R2) of 0.59.

In another study performed by Peng and Wu (2008), hyperspectral scattering

profiles were used for prediction of beef tenderness. They used a hyperspectral

imaging system to measure optical scattering of beef muscle tissue. They used a

laboratory hyperspectral imaging system consisting of a high performance CCD

camera and imaging spectrograph with a spectral resolution of 2.8 nm. Their system

was sensitive to light ranging from 400 to 1,100 nm in the electromagnetic spectrum.

They used an incident beam of light of 3 mm in diameter that was cast upon the

surface of a prepared sample cut (4 cm� 6 cm� 2.5 cm) of the strip loin. In total,

21 beef steak samples were used to collect hyperspectral scattering images. From the

hyperspectral scattering images, they averaged all spectral data from every pixel

resulting in onemean reflectance spectra for each sample steak. Themean reflectance

spectra were then converted to absorbance spectra fromwhich the first derivative was

taken. Four key wavelengths were identified by plotting the correlation coefficient

between the WBS scores and the first-order derivative of the averaged reflectance

spectra. Multiple linear regression was then used to train a model that could predict

the WBS scores. In their study, only 21 samples were used, 15 for training and 6 for

validation. Their training model was able to predict WBS scores (n¼ 15) with a

correlation coefficient of r¼ 0.82. Finally, they validated the model with n¼ 6 and

were able to predict WBS scores with a correlation coefficient of r¼ 0.94. They

concluded that their prediction results were satisfactory, but that further research was

necessary with a larger set of samples and a wider range of WBS scores.

Cluff et al. (2013) developed a non-destructive method for classifying cooked-

beef tenderness using hyperspectral imaging of optical scattering on fresh beef

muscle tissue. Figure 10.12 presents a line scan hyperspectral imaging system

(λ¼ 922–1,739 nm) that was used to collect hyperspectral scattering images of

the longissimus dorsimuscle (n¼ 472). A modified Lorentzian function was used to

fit optical scattering profiles at each wavelength (Fig. 10.13). After removing highly

correlated parameters extracted from the Lorentzian function, principal component

analysis was performed. Four principal component scores were used in a linear

discriminant model to classify beef tenderness. In a validation data set (n¼ 118

samples), the model was able to successfully classify tough and tender samples with

83.3 % and 75.0 % accuracies, respectively. They also investigated the effect of fat

flecks (Fig. 10.14) on the tenderness classification accuracy when various levels

(0, 25, 50, and 75 %) of higher intensity fat scattering profiles were removed. They

concluded that the presence of fat flecks did not have a significant effect on beef

tenderness classification accuracy. Their results demonstrate that hyperspectral
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imaging of optical scattering is a viable technology for beef tenderness classifica-

tion. The primary factors that influence optical scattering in steak are muscle fiber

ultrastructure, fat content, collagen, and other organic functional groups. Similarly,

the primary factors that influence beef tenderness are muscle fiber ultrastructure, fat

content, and collagen content. Therefore, measurements of optical scattering with

hyperspectral imaging could potentially be used as an indicator of beef tenderness.

Extensive research has been performed on evaluating video image analysis andNIR

spectroscopy as non-destructive instruments to predict beef tenderness.However, these

systems have not been able to attain the necessary tenderness prediction accuracies

desired by the beef industry. Hyperspectral imaging is a relatively new technology and

is just beginning to emerge as an instrument that can evaluate the quality of agricultural

food products. Among the instruments developed for non-destructive measurement of

beef tenderness, hyperspectral imaging appears to have the most promise.

1

9
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5

7

6

Direction of travel

Fig. 10.12 Schematic of line scan hyperspectral imaging system used to collect hyperspectral

optical scattering images of the longissimus steak muscle tissue. (1) InGaAs camera. (2) Spectro-
graph. (3) FOV of line scan camera offset 5mm from center of incident beam of light. (4) Steak
sample. (5) Automated vertical stage. (6) Linear slide, moved the sample under the line scan in the

direction of travel. (7) Incident fiber optic cable. (8) Light source tungsten halogen lamp. (9)
Photoelectric switch (Source: Cluff et al. 2013)
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10.3 Pork

Pork is the third highest consumed meat in the United States of America following

beef and chicken. The economic impact that the pork industry has on the American

economy has a total retail value of $51.7 billion dollars (USDS-ERS 2011). Over

the last decade (2000–2008), pork consumption by Americans has averaged 50.3 lb

per person (USDA-ERS 2010). Historically, pork consumption in the U.S. has only

fluctuated mildly; however, a decrease in consumption is expected based on

changes in America’s racial/ethnic landscape, increasing elderly population, and

an overall increase in health consciousness (Lin et al. 2003). Hence, there is a need

within the pork industry to improve the product to minimize economic losses and

maintain quality standards.

Understanding the underlying factors that influence pork consumption will

enable the pork industry to provide a satisfactory product. Currently, pork is not

graded with USDA quality grades and has traditionally received qualitative char-

acteristics based on color, texture, and exudation as primary considerations in

purchasing of fresh pork. As per the pork quality standards published by National

Pork Board (NPB 2002), pork quality is generally characterized by four quality

classes, namely RFN (reddish pink, firm, non-exudative), PFN (pale, firm, and

non-exudative), RSE (reddish, soft, and exudative), PSE (pale pinkish gray, soft,
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Fig. 10.13 Curve fitting of optical scattering profile to the modified Lorentzian distribution

(MLD) function at λ¼ 1,051 nm. Fitted MLD parameters a, b, c, d were extracted from the fitted

scattering profile to build the model for predicting tenderness (Source: Cluff et al. 2013)
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and exudative), and DFD (dark purplish red, very firm, and dry). Pork chops

classified as RFN have desirable color, and have normal texture with good water-

holding capacity. Pork classified as PFN has the desired firmness and good texture

but it has an undesirable color. Pork classified as RSE has the desired color of good

meat but lacks the desired firmness and water-holding capacity. Pork chops with a

classification of PSE have undesirable appearance and lack firmness with excessive

drip loss. Similarly, DFD classified pork chops are undesirable as they are very firm

with a sticky surface and are very dry. Figure 10.15 shows a set of typical pork

images of different quality.

a

Fat
Fat

Fat Fat
Fat

Fat

LeanLean Lean

b

c

Fig. 10.14 Fat optical scattering and lean muscle optical scattering. (a) Incident beam of light

streaked across steak surface (λ¼ 1,158 nm). (b) Textured surface plot of fat and lean light

scattering. (c) Scattering profiles of fat and lean—ruled XZ wireframes (Source: Cluff et al. 2013)
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10.3.1 Objective Evaluation of Pork Quality

Many objective measures have been developed to aid in the assessment of quality

attributes of pork meat quality. Van Laack et al. (1994) classified these five pork

quality classes in terms of L-value. However, they concluded that brightness was

Fig. 10.15 Pork quality grades (Source: Kauffman et al. 1993)
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not necessarily a reliable predictor of quality. They presented a table of L-values

that were associated with quality classes of pork. The measure of acidity or basicity

(pH) has been a common measurable quality attribute, but Channon et al. (2000)

concluded that pH alone was not sufficient to characterize pork meat quality. They

suggested the need for additional measurements of other quality attributes to create

a satisfactory model for sorting pork into different eating quality classes. In

addition, sophisticated laboratory-based techniques (chemical methods for analyz-

ing water holding capacity, protein, and fat) have been developed, but are not

suitable for large volumes of meat and high-speed processing in meat production

facilities.

10.3.2 Near Infrared (NIR) Spectroscopy

Spectroscopy deals with the changes in molecular vibrational energies that occur

when light interacts with matter, and produces unique absorbance spectra. Visible/

Near infrared (Vis-NIR) spectroscopy deals with spectroscopic interactions that

occur in the Vis-NIR region (350–2,500 nm) of the electromagnetic spectrum.

Xing et al. (2007) performed an investigation using visible spectroscopy (400–
700 nm) to classify pork meat into four quality categories namely RFN (red, firm,

and non-exudative, RSE (red, soft, and exudative), PFN (pale, firm, and

non-exudative), and PSE (pale, soft, and exudative). They were able to successfully

separate pale meat from red meat and distinguish between PFN and PSE meat.

However, they were not able to successfully classify all four quality groups,

although they did report that visible reflectance spectroscopy was able to better

classify meat qualities than L*, a*, and b* values. In continuation, Monroy

et al. (2010) used a wider spectral range from 350 to 2,500 nm to classify pork

quality grades and achieved an overall classification accuracy of 79 %. Figure 10.16

shows reflectance spectra of different pork grades.

10.3.3 Hyperspectral Imaging

Emerging technologies such as hyperspectral imaging include both physical and

biochemical features. So, hyperspectral imaging has the potential to measure a

number of quality traits. It has been used for predicting quality grades such as

RFN, RSE, PFN and PSE, marbling levels, drip-loss, pH, color, and tenderness

of pork.
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10.3.3.1 Marbling Scores

According to the pork marbling standards established by the National Pork Board,

there are seven levels—1.0 (Devoid) to 6.0 and 10.0 (Abundant). Figure 10.17

shows the pork marbling standards released by the National Pork. In a study

conducted by Qiao et al. (2007a), hyperspectral images of pork loins (n¼ 40) in

the 400–1,000 nm spectral range with a spectral resolution of 2.8 nm were obtained.

After analyzing each hyperspectral image band for highest contrast between lean

and marbling, they used the band 661 nm for predicting marbling scores. On the

661 nm image, a rectangular region-of-interest (ROI) was defined and a textural

feature, angular second moment, was calculated and used to predict marbling

scores. They concluded that the angular second moment was able to discriminate

all marbling scores except Abundant. They also indicated the need to use large

sample size to further validate and improve the marbling prediction.

10.3.3.2 Drip-Loss, pH, and Color

In another study conducted by the same group (Qiao et al. 2007b), hyperspectral

images of pork loins were used to predict the drip-loss, pH, and color of pork. On

the hyperspectral pork images, a circular ROI covering 10,000 pixels around the

image center was defined. Prior to defining the ROI, the images were calibrated for
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Fig. 10.16 Reflectance spectra of pork samples representing different quality grades (Source:
Monroy et al. 2010)
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reflectance using the dark and white reference images. For each band, average

intensity of the ROI pixels was calculated. In addition, normalized intensity was

calculated by dividing a band intensity by the sum of intensities of all the bands.

The raw and normalized intensity values were used separately in neural network

models to predict pH, drip-loss, and color of pork. Then the correlations between

the intensity values and quality traits were examined in a band-by-band fashion and

a set of pertinent bands were identified for predicting each trait: drip loss (459, 618,

655, 685, 755 and 953 nm), pH (494, 571,637, 669, 703 and 978 nm) and color

(434, 494, 561, 637, 669 and 703 nm). The correlation coefficient values obtained

using the normalized intensity values were 0.77, 0.55, and 0.86 for drip-loss, pH,

and color, respectively. The normalized intensity values provided slightly better

prediction results than the raw intensity values.

Fig. 10.17 Pork marbling standards published by National Pork Producers Counsil (NPPC)

showing various levels of intramuscular fat content: 1% (a), 2% (b), 3% (c), 4% (d), 5% (e),
6% (f), and 10% (g).
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10.3.3.3 Quality Grades

Qiao et al. (2007a) acquired hyperspectral images of 40 pork chops, 10 in each of the

four grades such as RFN, RSE, PFN, and PSE, in the spectral range from 400 to

1,000 nm. On each image, a circular ROI of 10,000 pixels was defined and average

spectral reflectance was calculated by averaging the ROI pixels. Then principal

component analysis was conducted to reduce the spectral dimensionality. The

principal component scores were sent to a neural network algorithm to obtain the

final classification. This method provided an overall classification accuracy of 75%,

75 %, and 80 % when using the first 5, 10, and 20 principal component scores,

respectively. With the same dataset, incorporating Gabor features increased the

accuracy to 84 % in cross-validation (Liu et al. 2010). The same group conducted

another study (Qiao et al. 2007c) with 80 pork chops, 20 in each quality grade. They

compressed the spectral dimensionality with principal component analysis and step-

wise selection. They repeated the same analysis with the first derivative spectra. First

derivative followed by principal component analysis yielded an overall classifica-

tion accuracy of 87.5 %. Additionally, Barbin et al. (2012) acquired NIR

hyperspectral images (900–1,700 nm) of 75 pork chops, extracted spectral reflec-

tance values, obtained second derivative spectra, and used them to classify PSE,

RFN, and DFD. They achieved an overall classification accuracy of 96 %. They also

noted that there were significant reflectance variations among these quality grades at

960, 1,074, 1,124, 1,147, 1,207, and 1,341 nm.

10.3.3.4 Tenderness

Tenderness is an important trait related to consumer satisfaction. Barbin

et al. (2011) used a hyperspectral imaging system sensitive in the spectral range

from 900 to 1,700 nm to predict sensory tenderness of pork. They obtained

hyperspectral images of 30 pork loins and conducted partial least squares regres-

sion to predict sensory tenderness and juiciness. They reported an R2 value of 0.49

and 0.54 for juiciness and tenderness, respectively, in a cross-validation analysis.

When they classified samples into two groups based on tenderness namely tender

and tough, the R2 value increased to 0.82. Similarly, when classifying samples

based on juiciness as juicy or dry, they achieved an R2 value of 0.67. In 2013, the

same research group conducted a study with 90 pork loins to relate the NIR

reflectance measurements (900–1,700 nm) and textural features obtained from

discrete wavelet transforms to pork tenderness. They achieved a R2 values 0.63

and 0.48 when using the NIR reflectance measurements and wavelet textural

features separately. When both the measurements were combined, the R2 value

increased to 0.75 (Barbin et al. 2013).

While both the studies mentioned above used reflectance mode of hyperspectral

imaging, Tao et al. (2012) used scattering measurements acquired in the

400–1,100 nm range to pork tenderness. After acquiring the scattering signals,
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they used a three-parameter Lorentzian function to fit the scattering profile.

Using the three fitting parameters were a (asymptotic value), b (peak value), and

c (full width at half maximum), they developed multiple linear regression models to

predict pork tenderness. The parameters combinations a, b, (b� a), and (b� a)/c
yielded a R2 values of 0.83, 0.86, 0.86, and 0.93, respectively, in cross-validation

analysis. They also identified a set of optimal wavelengths: 612, 632, 708, 770,

786, and 814 nm, for the (b� a)/c parameter model.

10.4 Conclusions

Hyperspectral imaging has potential to characterize meat muscle tissue. In beef,

tenderness is a major trait. The industry is looking for a non-destructive instrument

for forecasting 14-day aged cooked beef tenderness by scanning the exposed ribeye

on the hanging carcass in a beef packing plant at 2–3 day postmortem. Because

hyperspectral imaging extracts both spatial (structural) and spatial (biochemical)

information from the ribeye, it has potential to evaluate muscle structure and

biochemical information related to aging. At the laboratory level, the hyperspectral

imaging has been shown to forecast beef tenderness. There is a need to build a

commercial system that can work in a beef packing plant to acquire the images at

line speed and predict beef tenderness real-time. Hyperspectral imaging has also

shown to predict pork quality grades, color, water holding capacity and tenderness.
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Chapter 11

Plant Health Detection and Monitoring

Won Suk Lee

11.1 Introduction

Plant health detection and monitoring is one of the main applications of

hyperspectral imaging to agriculture, which include detection of water content,

nutrient status, and pest damages including disease infections and insect damages.

Different ground-based, airborne, and spaceborne sensing systems are used to

detect and monitor plant health. Airborne and spaceborne imaging spectroscopy

was established in the 1990s (Ustin et al. 2004). These systems basically can

measure electromagnetic radiation from different crop plants to determine their

status of water, nutrition, and degree of pest infestation using specific spectral

signatures of different plant status.

Ustin et al. (2004) provided an excellent overview by describing advances in

airborne and spaceborne imaging spectrometers to observe and monitor different

processes and properties in ecosystems along with various applications. They

reported that detection of photosynthetic pigments (chlorophyll, xanthophylls,

carotenes, and algal pigments) in the visible range shows great potential for various

applications; in the NIR range, strong absorption exists by water (870 and

1,240 nm) and leaf compounds such as cellulose, lignin, and carbohydrates. In

1,100–2,500 nm, carbon compounds including cellulose, lignin, nitrogen, starches,

and sugars exhibit strong absorption. These chemical differences can be used to

create a vegetation map with different types of stresses. When plants lose chloro-

phyll, reflectance in the visible and NIR ranges increases, and the red edge is shifted

up to 25 nm toward shorter wavelengths (named as the “blue shift”). Figure 11.1

shows an example of plant pigment extraction using the Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS). For plant water content detection, several water
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absorption bands (1,450, 1,940, and 2,500 nm) can be used as well as different

band ratios such as the normalized difference water index (NDWI) and plant water

index (PWI).

Sankaran et al. (2010) reviewed different techniques for detecting plant diseases.

They reported that no commercial sensor exist for tree health conditions, and

presented the need for a rapid and reliable sensor system. They reported two

different approaches for detecting plant diseases: (1) direct methods including

serological and molecular methods, and (2) indirect methods including imaging

and spectroscopic techniques, biomarkers using volatile organic metabolites, and

plant properties/stress based disease detection. They pointed out one of the chal-

lenges in hyperspectral image analysis is to choose proper disease-specific spectral

bands and statistical method, and that imaging technique can be used with an

autonomous agricultural vehicle for automatic real-time monitoring.

Lee et al. (2010) reviewed plant disease detection methods for specialty crops,

and mentioned that any disease causing differences in spectral characteristics can be

detected using remote sensing. They mentioned that remote sensing of plant disease

could be used more effectively for damage assessment than identifying early disease

infection, as early detection would be difficult or impossible in some situations.

They also mentioned that more research is needed for developing efficient disease

detection algorithm for practical farming operations and distinguishing the diseases

from other stresses. The following describes different applications of plant health

detection for agricultural crop production.

Fig. 11.1 Example of plant pigments extraction from a hyperspectral image cube using the

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (adapted from Ustin et al. 2004)
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11.2 Water Status Monitoring

Water plays a very important role for optimal plant growth. With strong water

absorption bands in the electromagnetic spectrum, hyperspectral imaging has been

used for monitoring plant water status. Allen et al. (1969) defined the equivalent

water thickness (EWT) as “the hypothetical thickness of a sheet of liquid water in

the target”. From this definition, Jacquemoud and Baret (1990) calculated the EWT

of plant biomass as:

EWTBiomass cmð Þ ¼ Fresh mass cm3ð Þ � Dry mass cm3ð Þ
Leaf area cm2ð Þ

Champagne et al. (2003) developed a physical model to estimate the canopy

equivalent water thickness from airborne hyperspectral imaging with the Probe-1

sensor using a spectrum matching technique and look-up table approach. They

tested the model using various crops (wheat, canola, corn, beans, and peas) by

comparing EWT estimation (Fig. 11.2) and actual crop water status, and reported an

RMSE of 0.052 cm. They observed that the model was more sensitive to water

content in leaf than the water content in the whole plant. Further, Cheng

et al. (2006) investigated the relationships between canopy water content and the

EWT using three linked leaf and canopy radiative transfer models with different

canopy structures: closed, row-structured, and forest canopy architectures. They

estimated EWT from the AVIRIS imagery and found good agreement of EWT for

agricultural crops with enhanced vegetation index (EVI), however better agreement

was observed for conifer forest between EWT and normalized difference water

index (NDWI) and shortwave infrared water stress index (SIWSI) than EVI,

indicating canopy architecture should be considered when estimating EWT. As a

recent study, Kim et al. (2010) utilized spectral indices from hyperspectral images

Fig. 11.2 Example equivalent water thickness derived from an airborne hyperspectral image

(adapted from Champagne et al. 2003)
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to monitor water stress of young apple trees in a greenhouse, and reported red edge

normalized difference vegetation index (NDVI) at 705 and 750 nm, and NDVI at

680 and 800 nm yielded the highest correlation with the water stress.

11.3 Nutrient Status Monitoring

Plant nutrient monitoring is also a very important application of hyperspectral

imaging for agricultural crop production. Applications include estimation of leaf

pigments such as chlorophylls and carotenoids, and nitrogen content.

In early 2000s, Zarco-Tejada et al. (2002) used the fluorescence–reflectance–

transmittance (FRT) and PROSPECT leaf models to mimic reflectance which were

able to estimate chlorophyll fluorescence and chlorophyll a + b content. They

developed a derivative chlorophyll index (DCI¼D705/D722, where D is derivative

of reflectance) based on double peak feature of derivative reflectance, which could

be used to estimate plant stress. Further Zarco-Tejada et al. (2003) conducted

experiments in controlled environments to observe natural chlorophyll fluorescence

emission, and identified that the double-peak feature between 688, 697, and 710 nm

of canopy derivative reflectance was due to chlorophyll fluorescence (Fig. 11.3).

This double peak feature could be used to monitor plant stress by detecting changes

in pigment and canopy structure.

In another study, Haboudane et al. (2004) investigated different vegetation

indices (VIs) to green leaf area index, developed new VIs and reported that two

newly developed VIs (a modified triangular vegetation index (MTVI2) and a

modified chlorophyll absorption ratio index (MCARI2)) worked well to predict

green leaf area index (LAI). Blackburn (2007) discussed the importance of leaf

pigments such as chlorophylls and carotenoids, different remote sensing platforms

for measuring them, various issues in measuring pigments, new methods for

Fig. 11.3 Double-peak feature between 688, 697, and 710 nm of canopy derivative reflectance

due to natural chlorophyll fluorescence emission (adapted from Zarco-Tejada et al. 2003)
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analyzing hyperspectral data, and emerging applications including determination of

crop N requirements, identification of high yielding genotypes, and mapping

in-field crop yield variability.

For plant nitrogen status detection, Goel (2003) investigated detection of nitro-

gen status and weeds in corn and soybean using aerial hyperspectral imaging, and

found that 498 and 671 nm were highly related to N levels. They also reported that

701 and 839 nm were found to be important in yield prediction models, and

decision trees and artificial neural networks showed strong potential for agricultural

remote sensing applications. Min and Lee (2005) investigated reflectance charac-

teristics of citrus leaves of varying nitrogen (N) concentrations, and identified

important wavelengths (448, 669, 719, 1,377, 1,773, and 2,231 nm) for N detection

using stepwise multiple linear regression (SMLR) and partial least squares (PLS)

regression. Further Min et al. (2008) developed a portable hyperspectral sensing

system in 620–950 nm and 1,400–2,500 nm to measure citrus nitrogen concentra-

tion using detector arrays, linear variable filters, a halogen light, and data acquisi-

tion cards. The sensor system had good linearity and stability, and was able to

estimate citrus N content with a root mean square difference (RMSD) of 1.69 g/kg.

11.4 Detection of Plant Disease and Insect Damage

Plant disease and insect damage detection are the mostly adopted application for

hyperspectral imaging in agriculture. Plant disease detection includes fungal infes-

tation, stem rot disease, yellow rust in winter wheat, rice brown spot disease, citrus

canker disease, citrus greening disease (also known as Huanglongbing or HLB),

apple scab disease, and diseases in rice, potato, and tomato. Lee et al. (2010)

described different measurement techniques of foliar plant diseases based on their

infection stages, as shown in Fig. 11.4.

For fungal disease detection, Muhammed (2002) investigated discrimination of

healthy and diseased plants, and estimation of level of infection of the fungi

• from photosynthesis to respiration

• deriving nutrient flows

• pigmentation and chlorophyll loss

• cell wall collapse

• stomatal closure

1. infection

2. metabolic changes

fluorescence

reflection sensing

thermography

3. early senescence

4. overall plant stress

Fig. 11.4 Illustration of

different techniques to

identify foliar diseases

based on infection stages

(adapted from Lee

et al. 2010)
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infested plants through simple steps of pre-processing and nearest neighbor classi-

fication, using correlation and sum of squared differences between a reference and

unknown spectra. Laudien et al. (2003) studied detection of sugar beet disease by

fungal infection using a ground-based hyperspectral spectroradiometer and were

able to identify the disease using red edge (a ratio between reflectance at 750 and

700 nm) and modified chlorophyll-absorptions-integral (mCAI) index (an area of

the trapeze of reflectance between 545 and 752 nm).

mCAI ¼ R545þ R752ð Þ
2

* 752� 545ð Þ �
XR752

R545

R * 1:158ð Þ

As an example of stem rot disease detection, Vigier et al. (2004) utilized a narrow-

band spectrometer to detect sclerotinia stem rot diseases in soybean and reported the

red narrow band (R675–R685) was the most contributable to damage estimation.

For yellow rust disease detection for winter wheat, Moshou et al. (2005) inves-

tigated fusion of ground based multispectral and hyperspectral fluorescence imag-

ing to detect crop disease (yellow rust in winter wheat) in an early stage before no

visible symptoms show, and reported that disease presence could be detected by

comparing fluorescence images at 550 and 690 nm. The overall classification error

between healthy and diseased plant reduced to 1 % after data fusion using a Self-

Organizing Map (SOM) neural network. Huang et al. (2007) evaluated the photo-

chemical reflectance index (PRI¼ (R531�R570)/(R531 + R570)) to quantify yellow

rust disease in winter wheat and reported an R2 of 0.97 between PRI and measured

spectral data, and an R2 of 0.91 between PRI and airborne hyperspectral data.

For the citrus canker disease detection, Qin et al. (2008) utilized principal

component analysis (PCA) to detect citrus canker disease from hyperspectral images

acquired by a portable hyperspectral imaging unit, and identified four important

wavelengths (533, 677, 718, and 858 nm), while reporting an overall 92.7 %

detection accuracy. Further Qin et al. (2009) applied spectral information diver-

gence (SID) classification method to detect citrus canker and other citrus surface

conditions, and reported an overall accuracy of 96.2 % for citrus canker detection.

Balasundaram et al. (2009) identified that wavelengths in 500–800 nm range showed

the highest discriminatory power to detect citrus canker disease in grapefruit, and

reported that wavelengths above 1,100 nm did not contain significant wavelengths.

Citrus greening disease or Huanglongbing (HLB) is a catastrophic disease in

Florida, since there is no cure. The disease was first found in 2005 in Florida and is

spread most of Florida and other states in the USA. Currently ground inspection is

being conducted to identify infected tree canopies, however it is subjective, time

consuming, and labor intensive. Therefore, aerial hyperspectral imaging can be

well applied for the HLB detection, which can provide a rapid detection over a

wider area. As a first step for the disease detection, Mishra et al. (2007) measured

HLB infected tree canopies with a handheld spectrometer (FieldSpec UV/VNIR,

Analytical Spectral Devices, Boulder, CO) in 350–2,500 nm, and reported that

wavelengths of 530–564, 710–715, 1,041, and 2,014 nm showed higher discrimi-

nant capability between healthy and infected canopies. Then, Lee et al. (2008)
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compared laboratory and ground measurement spectra of healthy and infected

citrus tree canopies to detect the citrus greening disease, and reported that reflec-

tance differences existed at 550 nm for healthy, diseased, and zinc-deficient cano-

pies. HLB infected tree canopy could be detected based on first derivative peak near

730 nm. Also ANOVA analysis showed significant difference was found between

healthy and infected tree canopies. However, variability of healthy and HLB

infected canopies and georeference errors were main obstacles in detecting the

disease. Kumar et al. (2009) investigated detection of the HLB disease using

airborne hyperspectral images in 400–1,000 nm. Different algorithms including

image-derived spectral library, mixture tuned match filtering (MTMF), spectral

angle mapping (SAM), and spectral feature fitting (SFF) were employed. They

reported an overall accuracy of 60 % using SAM, largely attributed to the inaccu-

racies of ground truthing. Further, Kumar et al. (2010) acquired aerial multispectral

and hyperspectral images to detect the citrus greening disease, constructed spectral

library for healthy and HLB infected canopies, applied SAM, MTMF, and linear

spectral unmixing (LSU), and reported detection accuracies of 60–87 %, 73–80 %,

and 53–73 % for SAM, MTMF, and LSU, respectively, depending on validation

subset images. In a recent study, Li et al. (2011) investigated several classification

algorithms for detecting HLB disease from airborne multispectral and

hyperspectral images, and reported that the HLB infected canopy showed higher

reflectance in the visible range, and that detection accuracies were ranged from

55 to 95 %, however simpler algorithms such as minimum distance and

Mahalanobis distance worked better than other algorithms such as SAM or spectral

information divergence. Figure 11.5 shows average reflectance spectra of healthy

Fig. 11.5 Spectral signatures of healthy and the HLB infected citrus canopies along with other

objects found in a citrus grove. Numbers in a parenthesis indicate the number of samples used for

averaging (adapted from Li et al. 2011)

11 Plant Health Detection and Monitoring 281



and HLB infected citrus canopies, and other objects in a citrus grove which were

acquired using an airborne hyperspectral imaging system.

For an application of hyperspectral imaging to apple, Delalieux et al. (2009)

detected apple scab disease using hyperspectral images and reported that ratios of

reflectance at R440/R690 and R695/R760 yielded good separation between healthy and

more developed infection. For early detection, ratio at water band performed well.

They reported 570, 1,460, 1,940, and 2,400 nmwere important to identify the disease.

Sugar beet disease could be detected by hyperspectral imaging. Mahlein

et al. (2010) investigated detection of sugar beet diseases by using three different

VIs: NDVI, anthocyanin reflectance index (ARI¼ (1/R550)� (1/R700)), and modi-

fied chlorophyll absorption integral mCAI ¼ R545 þ R752ð Þ=2� 752� 545ð Þð �
XR752

R545
Rþ 1:423ð ÞÞ and found that combination of those VIs were able to assess

the different diseases for sugar beet. Also Rumpf et al. (2010) adopted support

vector machine (SVM) and VIs to detect diseased sugar beet leaves and achieved

early disease detection using SVM with a radial basis function. They reported 97 %

detection accuracy between healthy and diseased leaves, and 65–90 % for different

types and degrees of infections.

Hyperspectral imaging could be applied for disease detection for other crops such

as rice, potato, and tomato. For rice disease detection, Liu et al. (2007) utilized

stepwise regression, principal component regression (PCR), and PLS to identify

severity of rice brown spot disease, and reported root mean square errors of 5.8 %,

13.9 %, and 2.0 % for the three methods, respectively. Liu et al. (2010a) applied

neural networks and PCA to detect fungal disease of rice panicles in hyperspectral

images in 350–2,500 nm acquired in a laboratory, and reported that four different

infection levels were classified with 86–100% accuracies. Liu et al. (2010b) adopted

principal component analysis (PCA) and support vector machine (SVM) to classify

healthy and infected rice panicles by rice false smut (U. virens), whose hyperspectral
images were acquired in the visible and NIR ranges in a laboratory, and reported

over 96 % accuracies using the original spectral data, first derivatives, and second

derivatives. For potato disease detection, Ray et al. (2011) investigated detection of

potato late blight disease using a hand-held spectroradiometer in 325–1,075 nm,

utilized stepwise discriminant analysis and different VIs (NDVI, simple ratio (SR),

soil adjusted vegetation index (SAVI), and red edge). They reported that 540, 610,

620, 700, 710, 730, 780, and 1,040 nm were optimal wavebands for the disease

detection. For tomato, Zhang et al. (2003) employed aerial hyperspectral imaging

(AVIRIS) to detect different infection levels of late blight in tomatoes, and observed

more difference in reflectance in the NIR range than the visible range. They utilized

the minimum noise fraction (MNF) and SAM for the disease detection and reported

that severe infection could be identified, however it was not easy to detect less

infected plants. They expected that more hyperspectral imaging would be used to

detect plant disease on large-scale farms, if proper and fast image processing

algorithms were developed. Also Jones et al. (2010) investigated detection of tomato

disease using ultra violet, visible, and near infrared (NIR) reflectance spectroscopy,
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and employed PLSwith B-matrix, correlation coefficient, and SMLR. They reported

an RMSE of 4.9 % and an R2 of 0.82 for the best disease prediction model.

Hyperspectral imaging could be applied for detection of insect damage. Carroll

et al. (2008) studied different VIs to detect European corn borer infestation using

airborne hyperspectral imaging. They reported that better detection could be achieved

as the disease progressed more, and that chlorophyll related VIs were more closely

related to the disease detection than VIs for anthocyanin and carotenoids. Also Singh

et al. (2009) investigated detection of insect damaged wheat kernels using statistical

image features and histogram features obtained from images taken at 1,101 and

1,305 nm which were selected from a PCA analysis, and reported that discriminant

analyses were able to correctly classify 85–100 % infected wheat kernels.

11.5 Other Applications

Hyperspectral imaging has been applied for other plant health monitoring and

detection such as heavy metal contamination, weed, fruit quality, acid rain stress,

sprouting, fruit defect, immature fruit detection, and fruit maturity status.

For heavy metal contamination detection, Schuerger et al. (2003) studied the

growth of bahiagrass under the stress of heavy metal (zinc) contamination. They

utilized four handheld devices for hyperspectral imaging (two imaging systems),

laser-induced fluorescence spectroscopy, and laser-induced fluorescent imaging.

They reported that NDVI and ratio vegetation index (RVI¼R750/R700, where R is

reflectance) were able to predict chlorophyll concentrations in bahiagrass. Also

Wilson et al. (2004) applied support vector classification (SVC), partial least

squares (PLS) and logistic discrimination (LD) to classify different levels of

heavy metal or petroleum exposed plants, and reported that SVC was better in

classifying the images than PLS/LD.

For weed detection, Williams and Hunt (2004) utilized AVIRIS images to

distinguish leafy spurge (Euphorbia esula L.), a noxious perennial weed, using

mixture tuned matched filtering (MTMF) method and reported an overall detection

accuracy of 95 %.

As an example of fruit quality detection, Mehl et al. (2002) studied detection of

defects for three apple varieties by applying hyperspectral images to identify

multispectral bands and to develop a multispectral imaging system. The multispec-

tral imaging system with 705, 460, and 575 nm was able to detect 76–95 % of

contaminated apples. Also Lenk et al. (2007) investigated multispectral fluores-

cence imaging in the blue, green, read, and far red, and reflectance imaging in the

green and NIR regions and discussed applications such as detection of fruit quality,

photosynthetic activity, disease symptoms, and leaf tissue structure along with

different instrumentations. As an another example of quality detection, Xing

et al. (2010) investigated detection of sprouted wheat kernels, identified a reflec-

tance ratio of 878 nm over 728 nm as a feasible index to distinguish sprouted

kernels, and also reported that four wavelengths identified from PCA loadings

11 Plant Health Detection and Monitoring 283



could be used to evaluate quality of wheat kernels. Figure 11.6 shows principal

component score images of sound and sprouted wheat kernels.

Hyperspectral imaging was applied for acid rain stress detection. Song

et al. (2008) conducted ground-based hyperspectral imaging to detect acid rain

stress on native forest by employing continuum removal, VIs, and PCA, and used

two new chlorotic indices (RGY¼RG/RY and RGO¼RG/RO where RG, RY, and RO

are reflectance at green, yellow, and orange wavebands) to explain leaf chlorosis

from acid deposition stress.

Immature fruit detection was conducted using hyperspectral imaging. Okamoto

and Lee (2009) utilized a hyperspectral imaging system to detect green immature

citrus fruit of three different varieties, and reported 80–89 % correct identification

of foreground fruit by employing pixel discriminant function and spatial image

processing steps.

For fruit maturity detection, Yang et al. (2012) investigated spectral signatures

of blueberry fruit and leaves of seven different varieties by measuring their reflec-

tance using a spectrophotometer in 200–2,500 nm, and reported that significant

differences were identified among mature fruit, intermediate fruit, immature fruit,

light-green leaf and dark-green leaf, enabling monitoring fruit maturity status, as

shown in Fig. 11.7. They developed normalized vegetation indices to find signifi-

cant bands for identifying different maturity status, used classification tree and

Fig. 11.6 Hyperspectral images of sound and sprouted wheat kernels represented by a principal

component score (adapted from Xing et al. 2010)
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multinomial logistic regression with principal components, and achieved 95–100 %

prediction accuracy of fruit maturity status.

In conclusion, hyperspectral imaging provides a wide variety of applications for

plant health detection and monitoring in agricultural crop production, and will

continue to show great potential in future applications as hyperspectral sensing

technology improves and equipment cost decreases.
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Chapter 12

Hyperspectral Imagery for Mapping Crop
Yield for Precision Agriculture

Chenghai Yang

12.1 Overview of High Resolution Imagery
for Yield Estimation

Airborne multispectral imaging systems provide image data at fine spatial

resolutions from less than a meter to a few meters and at up to 12 narrow spectral

bands in the visible to middle-infrared region of the spectrum. Airborne multispec-

tral image data have been related to crop yield samples to generate yield maps

(Richardson et al. 1990; Yang and Anderson 1999; Shanahan et al. 2001; Leon

et al. 2003; Inman et al. 2008). The availability of both yieldmonitor data and remote

sensing imagery allows the relations between yield and image data to be evaluated

more thoroughly than the use of limited numbers of yield samples. Many researchers

have evaluated the relationships between yield monitor data and airborne multi-

spectral imagery (Senay et al. 1998; Yang et al. 2000; Yang and Everitt 2002;

Dobermann and Ping 2004). Based on yield monitor data and multispectral imagery

acquired from sorghum fields on multiple dates during a growing season, Yang and

Everitt (2002) found that relations of yield to imagery reached the strongest around

the peak vegetative development, indicating imagery taken during this period

(approximately 1 month) would be the best indicator of yield for grain sorghum.

Imagery from high spatial resolution satellite systems such as IKONOS,

QuickBird, and SPOT 5 has opened up new opportunities for mapping within-

field variability. IKONOS, launched by Space Imaging (now part of GeoEye) in

1999, provides multispectral data in three visible bands and one near-infrared (NIR)
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band at 4-m resolution. QuickBird, launched in 2001 by DigitalGlobe, delivers

multispectral imagery with 2.4 m (at nadir) or 2.8 m (off nadir) resolution in four

spectral bands similar to those of IKONOS. SPOT 5 was launched in 2002 to

acquire multispectral data in two visible bands (green and red) and one NIR band at

10-m resolution and one short-wave infrared (SWIR) band at 20-m resolution.

These satellite sensors have significantly narrowed the gap in spatial resolution

between satellite and airborne imagery. Imagery from these sensors has been

evaluated for assessing crop yields (Chang et al. 2003; Dobermann and Ping

2004; Yang et al. 2006, 2009). Newer satellite systems such as GeoEye and

WorldView-2 provide multispectral data at even higher spatial resolution and

have great potential for this type of applications.

Hyperspectral imaging sensors can collect image data in tens to hundreds of very

narrow, continuous spectral bands throughout the visible, NIR, mid-infrared and

thermal infrared portions of the spectrum. These systems offer new opportunities

for better differentiation and estimation of biophysical attributes for a variety of

remote sensing applications. Many commercial airborne hyperspectral sensors such

as AVIRIS, CASI, HYDICE, HyMap, ASIA, and HySpex have been developed and

used for various remote sensing applications. Advances in charge coupled device

(CCD) cameras, frame grabber boards, and modular optical components have also

led to developments of low-cost airborne hyperspectral imaging systems from off-

the-shelf products (Mao 1999; Yang et al. 2003). Despite significant progress in

airborne hyperspectral remote sensing, hyperspectral imagery has not been used as

widely as multispectral imagery partially due to higher costs for image acquisition

and special needs for handling and processing vast volumes of data.

Hyperspectral imagery provides additional information that multispectral data

may have missed. Several researchers have evaluated airborne hyperspectral imag-

ery for estimating crop yields. Goel et al. (2003) examined the potential of 72-band

airborne hyperspectral imagery for estimating corn yield and other biophysical

parameters and found that yield was significantly related to the image data taken

at the tasseling stage. Yang et al. (2004a) applied stepwise regression analysis on

grain sorghum yield monitor data and 102-band airborne hyperspectral imagery to

identify optimum band combinations for mapping yield variability. They also used

principal component analysis and stepwise regression to select the significant

principal components to explain the variability in yield. To demonstrate the advan-

tage of narrow hyperspectral bands over broad multispectral bands for yield esti-

mation, Yang et al. (2004b) aggregated hyperspectral bands into Landsat-7 ETM+

sensor’s four broad visible and NIR bands and found that the combinations of

significant narrow bands explained more variability in cotton yield than the four

broad bands. Zarco-Tejada et al. (2005) calculated a number of vegetation indices

(VIs) using selected narrow bands from airborne hyperspectral imagery to estimate

cotton yield.

Yang et al. (2007, 2008) derived all 5,151 possible narrow-band normalized

difference vegetation indices (NDVIs) from 102-band hyperspectral images

and related them to yield. They also applied spectral angle mapper and linear

spectral unmixing techniques to the 102-band hyperspectral images to generate
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single-layer spectral angle images and plant cover fraction images, respectively,

for mapping the variation in crop yields. Their results showed that the spectral

angle images and plant cover fraction images provided better r-values with yield

than the majority of the narrow-band NDVIs derived from the hyperspectral

images. Ye et al. (2007) used partial least squares (PLS) regression models to

predict the yields of citrus trees from their canopy features obtained from airborne

hyperspectral imagery as compared with VIs and multiple linear regression

models. Their results showed that VIs and multispectral regression models failed

to predict citrus yield, but PLS models successfully predicted citrus yield with

r-squared values of 0.51–0.90.

The rest of the chapter will describe the methods and procedures for

hyperspectral image acquisition and processing and illustrate with an example

how airborne hyperspectral imagery can be used for crop yield estimation based

on the work by Yang et al. (2004a, 2007, 2008, 2010).

12.2 Hyperspectral Image Acquisition, Processing
and Analysis

12.2.1 Image Acquisition

An airborne hyperspectral imaging system described by Yang et al. (2003) was used

for image acquisition. The system consists of a digital CCD camera, a prism-

grating-prism imaging spectrograph, and a PC equipped with a frame grabbing

board and camera utility software. The CCD camera provides 1,280(h)� 1,024

(v) pixel resolution and 12-bit dynamic range. The imaging spectrograph is attached

to the camera via an adapter to disperse radiation into a range of spectral bands. The

effective spectral range resulting from this integration is from 457.2 to 921.7 nm.

The hyperspectral imaging system is configured with a horizontal binning of 2 and a

vertical binning of 8 to capture images with a 640-pixel width and 128 bands at a

bandwidth of 3.63 nm.

Hyperspectral image acquisition requires careful planning and preparations.

First, optimum exposure time and aperture settings were determined based on

various imaging experiments so that the images for all bands were not too dark or

saturated for ground cover conditions. These optimum settings were then set and

used for all hyperspectral image acquisitions. A Cessna 206 single-engine and a

Cessna 404 twin-engine aircraft were used as the platform for image acquisition.

The hyperspectral imaging system was mounted on a light aluminum frame along

with a three-camera color-infrared (CIR) imaging system. No stabilizer or inertial

measurement device (IMU) was used to dampen or measure platform variations,

but care was taken to minimize the effects of winds and changes in the aircraft’s

speed and flight direction. Images were acquired between 11:00 and 15:00 h local

time under calm and sunny conditions.
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For hyperspectral image acquisition, aircraft speed and flight height have to meet

certain conditions to obtain images with square pixels and to avoid forward skip for

this type of hyperspectral imaging systems. Based on the camera parameters and

requirements for pixel size and ground coverage, the imaging system was flown at

a height of 1,680 m above ground level and at a speed of 150 km/h. The aircraft

was stabilized at the predetermined flight height, speed, and direction before taking

each image and was maintained throughout the scanning process. The swath of the

imagery was approximately 840 m and the ground pixel size achieved was 1.3 m.

12.2.2 Image Correction, Rectification and Calibration

The hyperspectral imaging system captures one line image for all the bands at a

time and the aircraft serves as a mobile platform to carry out pushbroom scanning in

the along-track direction. All the line images captured in a scanning process are

combined to form a three-dimensional hyperspectral image. A moving aircraft has

six degrees of freedom, that is, speed changes in the along-track direction, move-

ments in the across-track direction, variations in altitude, pitch, roll, and yaw. The

pitch refers to the movement of the airplane’s nose either up or down. Roll is known

as the rising or dipping of the airplane’s wing. The yaw allows the airplane to move

towards the left or right while in flight. Since no IMU was used to measure platform

variations, a reference line approach described by Yang et al. (2003) was used for

geometrical correction. A reference line, such as a straight field boundary or a road

within the image approximately parallel to the flight line, is first identified and

overlaid on the corresponding distorted line on the raw image. Then the distances in

pixels between the reference line and the distorted line are determined for each row

of the raw image. Finally, each row is shifted in the across-track direction by the

number of pixels determined. Although this approach can only correct the distor-

tions due to variations in roll and movements in the across-track direction, it has

been used successfully for geometric correction if the variations in the other degrees

of freedom are minimal. Besides, this approach requires a reference line approxi-

mately parallel to the flight line in the imaging area. This may not be a problem for

crop fields because straight field boundaries can be found in most fields.

Geometrically corrected images were then rectified to the Universal Transverse

Mercator (UTM), World Geodetic Survey 1984 (WGS-84), coordinate system

using a set of ground control points collected with a submeter-accuracy GPS

receiver or already georeferenced aerial photographs or airborne images covering

the hyperspectral images. The hyperspectral images were generally resampled to

1 m pixel resolution using the nearest-neighbor algorithm during the rectification

process. The root mean square (RMS) errors were within 3–4 m for the

hyperspectral images based on first order polynomial transformations. If the RMS

errors were over 4 m, a rubber sheeting procedure was applied for rectification.

For radiometric calibration of the images, three 8 m by 8 m tarpaulins with

nominal reflectance values of 4 %, 32 %, and 48 %, respectively, were placed near
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the fields during image acquisition. Actual reflectance values from the tarpaulins

were measured using a FieldSpec HandHeld spectroradiometer (Analytical Spectral

Devices, Inc., Boulder, Colorado), which covers the spectral region of 350–

1,050 nm. The rectified hyperspectral images were converted to reflectance based

on 128 empirical line calibration equations relating reflectance values to the digital

count values extracted from the three tarpaulins in the images. Because the

hyperspectral camera had low quantum efficiency near the NIR end of the observed

spectrum, the reflectance values for wavelengths greater than 845 nm dropped

sharply. In addition, the first few bands in the blue region appeared to be noisy.

Therefore, bands 1–5 and 108–128 (a total of 26 bands) were removed from each

hyperspectral image and the remaining 102 bands with wavelengths from 475 to

845 nm were used for analysis.

12.2.3 Yield Data Collection

A Yield Monitor 2000 system (Ag Leader Technology, Ames, Iowa) was used to

collect yield data from grain sorghum fields. A submeter AgGPS 132 receiver

(Trimble Navigation Limited, Sunnyvale, California) was integrated with the

yield monitor for position data collection. The yield monitor was calibrated to

ensure data accuracy before data collection. Instantaneous yield and GPS data were

simultaneously recorded at 1-s intervals. The data were then viewed, cleaned and

exported in text files for further analysis using SMS Basic software (Ag Leader

Technology, Ames, Iowa).

12.2.4 Calculation of Narrow-Band NDVIs

NDVI is typically formed from a NIR band and a red band. For a hyperspectral

image, a large number of NDVIs can be derived. To generalize, a narrow-band

NDVI-type index can be formed from any two different bands. Narrow-band

NDVIs involving all possible two band combinations can be calculated using the

following formula:

NDVIi, j ¼ Ri � R j

Ri þ R j
ð12:1Þ

where Ri is the reflectance for band i, i¼ 1, 2, . . ., n� 1, j¼ i+ 1, . . ., n, and
n¼ number of bands. The images from the airborne hyperspectral imaging system

contained 102 usable spectral bands. Thus the number of NDVIs that can be derived

from a 102-band hyperspectral image is 102!/(100!2!)¼ 5,151.
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12.2.5 Linear Spectral Unmixing

When a pixel is composed of one single surface component such as pure plants or pure

soil, the spectrum from the pure pixel can be regarded as the signature for the

component. However, if a pixel contains two or more components, the spectrum

from the mixed pixel is a spectrally mixed response of all the components represented

by the pixel. A hyperspectral image can be viewed as a collection of individual band

images, and each image pixel contains a spectrum of reflectance values for all the

wavebands in the image. These spectra can be regarded as the signatures of ground

components such as crop plants or soil, provided that a component occupies the whole

pixel. Spectra frommixed pixels can be analyzedwith linear spectral unmixing, which

models each spectrum in a pixel as a linear combination of a finite number of spectrally

pure spectra of the components in the image, weighted by their fractional abundances

(Adams et al. 1986). The unique ground components are referred to as endmembers

with their unique spectra as endmember spectra. A simple linear spectral unmixing

model has the following form:

yi ¼
Xm

j¼1

ai jx j þ εi, i ¼ 1, 2, . . . , n; ð12:2Þ

where

yi is the measured reflectance in band i for a pixel,
aij is the known or measured reflectance in band i for endmember j,
xj is the unknown cover fraction or abundance for endmember j,
εi is the residual between measured and modeled reflectance for band i,
m is the number of endmembers, and

n is the number of spectral bands.

Equation 12.2 is referred to as the unconstrained linear spectral unmixing model.

For fully constrained linear spectral unmixing, the following additional conditions

should be satisfied: (a) the abundance sum-to-one constraint,
Xm

j¼1
x j ¼ 1 and

(b) the abundance non-negativity constraint, x j � 0, j ¼ 1, 2, . . . ,m. Assuming

that the endmembers are not linearly dependent, the fractions can be determined

from the data.

The fractions determined by linear spectral unmixing might be preferred to band

ratios and NDVIs for identifying spectrally defined components as it uses all the bands

in the data (Bateson and Curtiss 1996).When linear spectral unmixing is applied to an

image, it produces a suite of images of the fractions, one for each endmember in the

model. Each fraction image shows the spatial distribution of the spectrally defined

component as a NDVI image does. Different types of linear spectral unmixing have

been used with multispectral and hyperspectral imagery for mapping the distributions

of geological materials and vegetation types (Adams et al. 1986, 1995; Roberts

et al. 1998; Lobell and Asner 2004). As VIs are indicators of plant vigor and canopy
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cover, the fractional abundance of crop plants determined from linear spectral

unmixing is a more direct measure of plant cover and provides a more intuitive link

between the image data and ground observations.

Linear spectral unmixing analysis requires the spectra of the known

endmembers. They can be obtained directly from the image, measured on the

ground or derived from a spectral library. In our studies, crop plants and bare soil

were selected as the relevant endmembers. A pair of plant and soil spectra was

extracted from each image to represent pure and healthy plants and bare soil, and

was used as endmember spectra for spectral unmixing analysis for each field. To

obtain pure spectra for crop plants, 100 pixels that had a bright red color on a CIR

image (corresponding to healthy plants and high yielding areas) were first identified

from each image. Similarly, 100 pixels that contained pure bare soil were identified

from each image. The endmember spectra for plants and soil for each image were

then obtained by averaging the spectra of the respective training pixels from that

image. Both unconstrained and constrained linear spectral unmixing models were

applied to each image, and four abundance images (two unconstrained and two

constrained) were generated for each image.

12.2.6 Statistical Analysis

Considering the coarse yield data resolution and positional errors, the hyperspectral,

NDVI, and abundance images were aggregated from 1-m pixels to 9-m pixels to be

comparable with the effective cutting width of the harvester. The yield values were

similarly averaged from the data points within each larger pixel area. Correlation

coefficients with yield were calculated for the 5,151 NDVIs and the four abundance

images for each hyperspectral image. Stepwise regression was used to relate yield to

the 102 bands and to identify the significant bands for each image.

12.3 Relationship Between Yield and Airborne
Hyperspectral Imagery

12.3.1 Hyperspectral Imagery and Yield Monitor Data

Figure 12.1 shows three band images (NIR, red and green) and their CIR composite

extracted from a 102-band hyperspectral image for a 14-ha grain sorghum field

(26�280 5500 N, 98�0202800 W) in south Texas. The center wavelengths of the green,

red, and NIR bands were 560.6, 629.6, and 829.2 nm, respectively. The

hyperspectral image was taken around the peak plant development for the crop.

Both the individual band images and the CIR image reveal distinct spatial patterns

of plant growth. On the NIR band image, healthy plants have a light gray color,
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while areas with more bare soil exposure have a dark gray tone. On the red and

green band images, healthy plants have a dark gray color, while areas with more

bare soil exposure have a light gray tone. On the CIR image, healthy plants have a

reddish response, while the problem areas exhibit a bluish color. The problem areas

in the field were mainly due to the very sandy soil. Plants in those areas had poor

stand and low canopy cover because of the low water and nutrient holding capa-

bility of the sandy soil.

Fig. 12.1 Black-and-white images for a near-infrared (NIR) band, a red band, and a green band
and their color-infrared (CIR) composite extracted from a 102-band hyperspectral image for a

14-ha grain sorghum field in south Texas
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Figure 12.2 presents the yield map generated from yield monitor data for the

field. Yield varied from essentially 0 to approximately 6,000 kg/ha with a mean of

3,440 kg/ha and a standard deviation of 1,480 kg/ha, indicating there existed large

variability in yield within the field.

12.3.2 Yield Correlations with Narrow-Band NDVIs

Figure 12.3 shows a NDVI map derived from a NIR band (800 nm) and a red band

(668 nm) for the field. NDVI ranges from 0.1 to 0.8 with the low NDVI values

corresponding to low yield and high NDVI values to high yield. The correlation

coefficient between yield and the NDVI was 0.83.

Figure 12.4 shows a contour map of absolute r-values between yield and all

5,151 possible NDVIs derived from the 102-band image for the field. The contour

map is symmetrical about the diagonal line and clearly illustrates the r-value

distributions for all the band pairs. The absolute r-values vary from essentially

0 for the band pair of 778 and 822 nm to 0.88 for the band pair of 742 and 789 nm.

The median of the r-values is 0.82, indicating 50 % of the NDVIs have r-values

higher than 0.82. The r-values are generally high (>0.825) when one band has

wavelengths below 730 nm and the other band has wavelengths above 730 nm for

this particular field. However, the best r-values (>0.85) occur when one band has

Fig. 12.2 Yield map generated from yield monitor data for a grain sorghum field
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Fig. 12.3 NDVI map derived from a NIR band (800 nm) and a red band (668 nm) from a

102-band hyperspectral image for a grain sorghum field

Fig. 12.4 Contour map showing absolute correlation coefficients between yield and all possible

narrow-band NDVIs derived from a 102-band airborne hyperspectral image for a grain sorghum

field. When band i¼ band j, NDVIij¼ 0 and r values do not exist (shown by the diagonal line)



wavelengths between 730 and 750 nm and the other band has wavelengths above

760 nm. Also large r-values (>0.825) occur when one band in a pair has wave-

lengths between 550 and 575 nm and the other has wavelengths between 575 and

690 nm. Based on the contour map of r-values, better NDVI images are more

likely to be obtained by selecting one band in the visible region and the other in

the NIR region.

It should be noted that the best NDVI identified for this field may not be the best

for another field because of different field conditions. For example, Yang

et al. (2008) found that the center wavelengths that resulted in the highest r-value

for another field was 543 and 728 nm. Nevertheless, a NDVI calculated from a

visible band and a NIR band can generally be a better representation than that

derived from two visible bands or two NIR bands despite the fact that band pairs

from either visible or NIR bands can result in better r-values.

12.3.3 Yield Relation with Plant Abundance

Table 12.1 gives the univariate statistics of unconstrained and constrained plant and

soil abundance fractions derived from the hyperspectral image for the field. Ideally,

abundance fraction values should be within the 0–1 range, but in unconstrained

fraction images they can be negative or exceed 1. For example, the unconstrained

plant abundance ranges from �0.15 to 1.01 and the unconstrained soil abundance

ranges from 0.02 to 1.16 for the field. This is because spectral unmixing results

can be affected by the purity of the endmembers and the number of endmembers.

The linearity assumption of linear spectral unmixing is at best an approximation of

the generally non-linear mixing of surface components. The fully constrained

fractions have values in the range of 0–1. Figure 12.5 presents a constrained plant

abundance fraction image derived from the hyperspectral image for the field. Red

areas have small plant abundance values and represent pixels with large soil

exposure and sparse plant cover. Conversely, green areas indicate large plant

abundance values and represent pixels with dense plant cover.

Table 12.1 Univariate statistics of unconstrained and constrained plant and soil abundance

fractions derived from a 102-band airborne hyperspectral image for a grain sorghum field based

on a pair of plant and soil endmember spectra extracted from the image

Endmember fraction Mean Standard deviation Minimum Maximum

UPFa 0.63 0.28 �0.15 1.01

USF 0.32 0.25 0.02 1.16

CPF 0.64 0.26 0.00 1.00

CSF 0.36 0.26 0.00 1.00
aUPF unconstrained plant fraction, USF unconstrained soil fraction, CPF constrained plant

fraction with the sum-to-one and positivity constraints, CSF constrained soil fraction with the

sum-to-one and positivity constraints
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The mean unconstrained plant and soil abundance fractions are 0.63 and 0.32,

respectively, indicating mean plant canopy cover was approximately 63 % at the

time of the image acquisition. Although the unconstrained model does not force the

endmember abundance fractions to sum to 1, the sum (0.95) is close to 1, indicating

the unconstrained two-endmember linear unmixing model is appropriate for char-

acterizing plant and soil cover in the images. The mean constrained plant and soil

abundance fractions are 0.64 and 0.36, respectively, with a sum of 1 as expected.

Yield is positively related to unconstrained and constrained plant abundance

fractions, and negatively related to the unconstrained and constrained soil abun-

dance fractions. Unconstrained plant abundance fractions have slightly stronger

correlations with yield than the unconstrained soil abundance fractions, whereas

constrained plant and soil abundance fractions have identical absolute correlations

because they sum to unity. The correlation coefficient for the unconstrained plant

abundance fraction is 0.85, whereas the r-value for the unconstrained soil abun-

dance fraction is�0.82 for the field. The r-values for the fully constrained plant and
soil abundance fractions are both 0.85.

The best NDVI has a larger r-value (0.88) with yield than the best abundance

fraction for this field. Nevertheless, the best abundance fraction-based r-value
(0.85) is better than 97.1 % of the 5,151 NDVI-based r-values for the field. If the

objective of a study is to determine the best correlation based on actual yield data,

Fig. 12.5 Constrained plant abundance fraction images derived from a 102-band airborne

hyperspectral image for a grain sorghum field based on a pair of plant and soil endmember spectra

extracted from the image
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all possible narrow-band NDVIs could be derived to identify the best NDVI.

However, if the objective is to generate a spectral map from a hyperspectral

image to characterize the spatial variation in yield without knowing the actual

yield, an unconstrained or constrained plant fraction image based on a pair of plant

and soil spectra will be a better choice. This is because a NDVI image uses only two

narrow bands, whereas a plant fraction image is based on all bands in the image.

Moreover, the best NDVI can only be identified if the yield is known and all

possible narrow-band NDVIs are calculated. On the other hand, the plant fraction

image can be generated using all the bands and a pair of plant and soil endmember

spectra without the need to know the actual yield.

12.3.4 Stepwise Regression of Yield with Image Bands

Table 12.2 summarizes the stepwise regression statistics for multiple linear models

relating grain yield to the 102 bands. Seven of the 102 bands were identified to be

significant in the final regression equation. The best single band was 782 nm and

explained 71 % of variability in yield. The best two-band combination was 738 and

782 nm and the R2-value increased by 7.6 % with the addition of the second band.

The best three-band combination was 713, 731, and 782 nm and explained 80.4 %

of the variability. The R2-values only improved by 2 % with the addition of the third

band and subsequent significant bands contributed even less. All seven significant

bands explained about 82 % of the variability in yield. It should be noted that these

optimum bands were only the best for the image and yield data from which they

were derived and might not be the best for different datasets. For example, in the

same study, Yang et al. (2004a) identified four significant bands for another grain

sorghum field, which were completely different from the seven significant bands

identified for the 14-ha field.

Table 12.2 Stepwise regression results for relating grain yield to 102 bands of a hyperspectral

image for a grain sorghum field

No. of bands Significant wavelengtha (nm) Model R2

1 782 0.709

2 738, 782 0.785

3 713, 731, 782 0.804

4 481, 713, 731, 782 0.808

5 481, 543, 713, 731, 782 0.817

6 481, 543, 713, 731, 735, 782 0.819

7 481, 543, 713, 731, 735, 771, 818 0.824
aStepwise regression was applied to a full linear model with 102 variables (wavebands). The best

fitting one-, two-, . . ., and seven-variable models and all the variables remaining in the models

were significant at the 0.0001 level. No other variable could be added to the seven-variable model

and remain significant at the 0.0001 level
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Figure 12.6 presents a yield map generated from the hyperspectral image with

the regression equation relating yield to the seven significant bands. The spatial

pattern displayed on the yield map is similar to that from yield monitor data

(Fig. 12.2). Regression analysis can be used to identify the best NDVI and the

best combinations of bands for estimating yield if yield data samples are available.

However, if yield data are not available, either a NDVI image derived from a NIR

band and a visible band or a plant abundance image derived from the all the bands

can convert a hyperspectral image to a single-layer image to represent relative

yield.

12.4 Summary

This chapter has provided an overview of high resolution remote sensing imagery

for mapping crop yield variability, described the methods and procedures for

hyperspectral image acquisition, processing and analysis, and illustrated how

airborne hyperspectral imagery can be used for crop yield estimation based on

narrow-band NDVIs, stepwise regression, and linear spectral unmixing.

Research has demonstrated that high resolution remote sensing imagery can be

useful for estimating and mapping within-field crop yield variability. Both

Fig. 12.6 Yield map generated based on seven significant bands in a 102-band hyperspectral

image for a 14-ha grain sorghum field
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multispectral and hyperspectral images can be used to determine the spatial patterns

in plant growth and yield before harvest. Nevertheless, hyperspectral imagery has

the potential to provide additional information that multispectral data may have

missed. Depending on the availability of yield sampling data, hyperspectral imag-

ery can be used to generate absolute or relative yield maps to characterize spatial

variations in crop yields. These maps are important for site-specific crop manage-

ment in precision agriculture. As more high resolution multispectral and

hyperspectral imagery, including the high resolution multispectral imagery from

newly launched satellite sensors (i.e., GeoEye-1 and WorldView-2), is becoming

more available and less expensive, more research is needed to compare different

types of image data and analysis techniques for yield estimation and other precision

agriculture applications for different crops and growing conditions.
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Chapter 13

Real-Time Hyperspectral Imaging
for Food Safety

Bosoon Park and Seung-Chul Yoon

13.1 Introduction

Hyperspectral imaging (HSI) is an emerging platform technology that integrates

conventional imaging and spectroscopy to attain both spatial and spectral informa-

tion from an object. Although HSI was originally developed for remote sensing, it

has recently emerged as a powerful process analytical tool for non-destructive food

analysis (Gowen et al. 2007). This technique is capable of providing an absolute

radiometric measurement over a contiguous spectral range for every pixel of an

image. Thus, data from a hyperspectral image contain two–dimensional spatial

information, as well as spectral information. These data are considered as a three–

dimensional hypercube, or datacube that can provide physical and/or chemical

information on an object or material under test. This information includes physical

and geometric observations of size, orientation, shape, color, and texture, in addi-

tion to chemical/molecular information such as water, fat, proteins, and other

hydrogen–bonded constituents. Since hyperspectral imaging has been developed

as a powerful technique in earth remote sensing during past decades, this technique

continues to be utilized in medical, biological, agricultural, and industrial areas.

Although hyperspectral imaging technology was mainly used in the field of

remote sensing, recently hyperspectral imaging technology is emerging on food

quality (Kim et al. 2001; Ariana et al. 2006; Lu and Peng 2006; Nicolai et al. 2006;

El Masry et al. 2007; Qiao et al. 2007) and safety (Park et al. 2002; Kim et al. 2004;

Yoon et al. 2010) evaluation with a unique platform that integrates spectral as well
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as spatial information of the scene. Although hyperspectral imaging technology has

the potential for food safety inspection and quality control, there exist several

limitations to widely adoption in the food industry. The most limiting factors

are a relatively longer time necessary for data acquisition, processing, and costs.

Since process control in food industry is crucial to maintain quality and safety, it

would be beneficial to have an instrument that is able to detect directly the spatial

distribution of various chemical and biological components from a surface in real-

time. To accomplish this, a real-time hyperspectral scanning method is needed.

However, the challenge with hyperspectral cameras is that the datacubes are too

large to process in real-time. Therefore, minimizing the datacube by eliminating

redundant data from the chemometric model, which is applicable directly every

time the camera collects spectra is needed for real-time hyperspectral imaging

platform (Kester et al. 2011).

For biological hyperspectral imaging, Fletcher-Holmes and Harvey (2005)

demonstrated a new, biologically inspired approach, in which a compact

hyperspectral fovea is embedded within a conventional panchromatic periphery.

The system enables hyperspectral imaging to be applied only to small regions of

interest previously identified using the panchromatic periphery with an intelligent

scanning system, resulted in improving the efficiency for object recognition.

A Real-time hyperspectral imaging endoscope has also been developed for

resolving a vasculature pattern of the lower lip, while simultaneously detecting

oxy-hemoglobin based on an imagemapping technique capable of addressing parallel

high throughput nature, which enables the system to operate at the rate of 5.2 frames

per second with a datacube size of 350� 350� 48. The most challenging obstacle for

real-time hyperspectral imaging is how to record a three-dimensional datacube with a

conventional two-dimensional detector array, and how to most efficiently transmit

the spectral datacube through the information bottleneck constituted by the detector’s

limited space (Fletcher-Holmes and Harvey 2005). For another real-time

hyperspectral application, the Dark HORSE 1 (Hyperspectral Overhead Reconnais-

sance and Surveillance Experiment 1) flight tests have demonstrated autonomous,

real-time visible hyperspectral detection of military ground targets, with real-time

cuing of a high-resolution framing camera (Stellman et al. 2000).

13.2 Imaging Platform for Real-Time Applications

Prior to real-time hyperspectral imaging technology, more adequate real-time

processing was possible with a multispectral imaging system with pre-selected and

pre-assembled platforms such as a common aperture camera (Park et al. 2006).

For instance, it was needed to develop an online real-time poultry inspection system

to detect condemned birds due to either feces or diseases, in order to increase

production yield by eliminating or re-washing birds. Researchers have studied

hyperspectral imaging methods for fecal detection and found three key wavelengths

of 517, 565 and 802 nm, for maximizing detection accuracy on surface fecal contam-

ination (Park et al. 2002).
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The detection algorithm for fecal matter with selected band ratios using 567-nm/

517-nm, followed by an advanced fecal detection algorithm using the additional

band ratios of 802-nm/517-nm was developed to increase the overall performance

of fecal detection by reducing false positive errors (Park et al. 2006). However,

the development of real-time multispectral imaging systems with selected bands

poses a challenge to both researchers and real-time system designers, because the

hyperspectral imaging system platform used for research was not appropriate for

high-speed real-time multispectral imaging applications. In the past, a real-time

imaging system using a common aperture camera for pre-selected bands was

developed (Park et al. 2004). However, the disadvantage of a common aperture

multispectral imaging platform is that once the optic lens with selected bands is

assembled, it is impossible to replace them with other bands, without replacing all

optical components, which are expensive. Therefore, the development of a real-

time hyperspectral imaging platform will benefit to researchers and food industry.

13.2.1 Real-Time Multispectral Imaging

Real-time multispectral imaging technology is a candidate for food safety inspec-

tion in food industry. For example, fecal contamination on broiler carcasses is the

primary avenue for contamination by foodborne pathogens, because pathogens may

reside in fecal materials potentially found in both the gastrointestinal tract and

exterior surfaces of the poultry carcasses. During slaughter and processing, the

edible portions of the carcass can be contaminated with bacteria causing illness in

human. For science-based food safety inspection in the food industry, researchers

have developed multispectral imaging technology for online contaminant detection

during food processing (Windham et al. 2003a, b; Park et al. 2004). Based on the

principles and technologies from real-time multispectral imaging, the researchers

developed the common aperture multispectral imaging system (Park et al. 2004)

and portable multispectral imaging system (Kise et al. 2007) for online applications

of fecal contaminant detection. After several upgrades of the system hardware and

software, the real-time online multispectral imaging system (Park et al. 2007a) was

developed and tested at commercial poultry processing plants. The prototype real-

time multispectral imaging system utilized a common aperture camera, with three

selected optical filters that were pre-installed into the camera assembly.

Pilot-scale tests demonstrated the potential of multispectral imaging system at

poultry processing plants for detection of fecal and ingesta contamination with

commercial processing speed of 140 birds per minute. However, the challenges for

real-time imaging system development are to eliminate false positive errors caused

by variability of carcasses and instability of detectors. To eliminate false positive

errors, both hardware and software solutions are needed. For hardware solutions, an

additional optical interference filter such as 802 nm can be added (Heitschmidt

et al. 2007), which can remove most false positive errors caused by the carcasses

cuticles. However, adding the filter to existing common aperture camera assembly
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is not cost-effective and has additional technical difficulties. Therefore, although

their limitation for improving performance to eliminate false errors, various

algorithms including dynamic thresh-holding methods (Park et al. 2005) such as

fisher linear discriminant analysis (Park et al. 2007b), kernel density estimation

(Yoon et al. 2007), and textural analysis of hyperspectral images (Park et al. 2008)

were examined for software solutions. The implication of those algorithms was not

easy for real-time in-line system because of limited image processing time for the

task. Recently, an adaptive image processing method has been tested with a success

to reduce false positive errors, particularly cuticle filtering (Park et al. 2009).

This image processing method for real-time application included band ratio, bin-

ning, cuticle filtering, median filtering as well as morphological image processing.

In-plant tests have also demonstrated the real-time multispectral imaging system

performed with over 91 % detection accuracy and 3.3 % false positive errors at the

processing speed of 150 birds per minute. Thus, the performance of a real-time

on-line imaging system for contaminant detection on food can be improved by

adopting a high quality camera, which has a higher signal-to-noise ratio, such as

line-scan real-time hyperspectral imaging system.

13.2.2 Real-Time Hyperspectral Imaging

Researchers have developed a spectral line-scan imaging system for high-speed

non-destructive inspection of wholesome broilers (Chao et al. 2007, 2010), and a

real-time online multispectral imaging system for fecal contaminant detection,

during poultry processing (Park et al. 2004). Due to the similarity of technology

and industry demands, a common platform imaging system that has the ability of

detecting both wholesomeness and contaminants (Park et al. 2011), benefits the

poultry industry in terms of food safety inspection and quality control. In doing

those two different tasks, a line-scan hyperspectral imaging platform can be used

for systemic diseased carcass inspection and contaminant detection without any

system hardware modification required at poultry processing plants. Thus, the

advantage of a real-time hyperspectral imaging system is that the system is able

to conduct multiple tasks with simple appropriate image processing modules

(or system software) that have already been implemented in the system. Therefore,

a line-scan hyperspectral imaging system with appropriate image processing algo-

rithms has the potential for real-time applications in the food industry.

In general, a real-time hyperspectral imaging system consists of a line-scan

hyperspectral camera; including an imaging spectrograph, a camera sensor, an

objective lens, lighting sources (tungsten-halogen or LED, depending on band

selection), power supplies, and a computer for camera control and image acquisition.

The line-scan real-time hyperspectral imaging system performed with data binning

utilizes the unique feature of the electron-multiplying charge coupled device

(EMCCD) sensor for random access to user-defined areas on the CCD sensor, and

multitasking software that is crucial for system customization for various applications.

Both hardware and software of the system are major considerations for designing and
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implementing real-time hyperspectral and multispectral imaging system. For system

hardware, the challenge is to determine whether a given hardware platform could

produce quality images and quantity data that are good enough for real-time applica-

tions. In contrast, for system software, the challenge is determining how to implement

algorithms developed at off-line computing environments for application in a real-

time on-line version.

Although real-time multispectral imaging solutions based on line-scan

hyperspectral imaging platforms are not quite common, line-scan based hyperspectral

imaging systems have been used for several applications; such as industrial polymer

sorting (Leitner et al. 2003), cellulose-basedmaterial sorting (Tatzer et al. 2005), apple

sorting (Kim et al. 2007; Noh and Lu 2007), diseased chicken sorting (Chao

et al. 2007) and contaminant detection for poultry carcasses (Park et al. 2011).

When real-time hyperspectral imaging systems are developed, several steps such as

real-time application requirements, design methodology and strategies, hardware

platforms, software architecture, and algorithm implementations need to be prepared.

13.3 High-Speed Hyperspectral Imaging System

The transportable hyperspectral imaging system can be designed and assembled for

food industry application as shown in Fig. 13.1. Specifically, for food production

inspection applications, a pushbroom hyperspectral imaging instrument operates

similar to a line scanner, producing spectral responses aligned with the target

objects to be scanned.

13.3.1 Real-Time Hyperspectral Imaging Platform

The common platform for real-time hyperspectral imaging to scan moving objects

is a pushbroom hyperspectral imager for real-time monitoring objects moving in

the shackles or conveyer belts during processing. As shown in Fig. 13.1, the

Fig. 13.1 Line-scan

hyperspectral camera

attached with spectrograph
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hyperspectral imager can be consisted of a spectrograph (HyperSpec VNIR,

Headwall Photonics, Fitchburg, MA, USA), an electron-multiplying charge coupled

device (EMCCD) detector (Luca-R, Andor Technology, Belfast, UK) and an

objective lens (CNG f-1.4/12 mm, Schneider Optics, Hauppauge, NY, USA). The

spectrograph and the detector are usually pre-aligned by the spectrograph manufac-

ture for the end-users without any further adjustment. In order to construct a

two-dimensional scan area, samples moving in shackles need to be scanned while

the imaging system is stationary. The hyperspectral imager is installed on top of a

monopod to scan surface of objects hung in moving shackles line by line. As a result,

the long side of the spectrograph’s entrance slit is perpendicular to the movement

direction of shackles, and running parallel to the scanning direction so that lights

passed through the line slit are dispersed onto the image sensor, at which one axis of

the two-dimensional sensor array is the spatial dimension and the other axis is the

spectral dimension. An industrial portable computer is usually used for camera

control and software operation in field applications.

The spectrograph operates in the visible and near-infrared (VNIR) wavelength

range between 400 and 1,000 nm, and short wavelength infrared (SWIR) is also

available up to 2,500 nm depending on the applications. The spectrograph is based

on holographic diffraction gratings and aberration-corrected to minimize spatial and

spectral image distortion due to smile and keystone effects. Therefore, no additional

fixation for aberration problems is needed to increase the spatial and spectral image

fidelity. The entrance slit (or thin-line opening) of the spectrograph can be 18 mm

high and 40 μmwide, resulting in 4 nm spectral resolution (measured as full width at

half maximum, FWHM) of the spectrograph. The EMCCD detector is a mono-

chrome megapixel camera and thermoelectrically cooled (�20 �C). The EMCCD

camera has a USB 2.0 port and 1004� 1002 pixels (8� 8 μm square pixels on an

8� 8 mm sensor) with 14-bit digitization. The frame rate of the camera is 12.4

frames/s at the full-frame resolution. The pixel readout rate of the camera is

13.5MHz. The lens mounted in front of the spectrograph’s entrance slit is a compact

C-mount lens with 12-mm focal length, and suitable for 1/2- and 2/3-in. imager.

13.3.2 Line Scan Rate of Hyperspectral Imager

The minimum scan size is defined as the size of the smallest area that a pixel on the

EMCCD camera can map, which is different from a sample size. Therefore, the

minimum scan size is affected by several factors such as the focal length of the lens,

the slit width of the spectrograph, and the working distance to an object from the

lens. For example, if the working distance is fixed with 48 cm, the lens with 12-mm

focal length is able to fully sample the object from top to bottom. When the 12-mm

focal length, the 40-μm slit width and the 48 cm working distance are used, the field

of view (FOV) of the hyperspectral imager along with the scan line is approxi-

mately 32 cm. In this case, the instantaneous field of view (IFOV) across the scan

line is approximately 1.6 mm. When the samples are not moving during image
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acquisition, the area scanned by the imager is long narrow rectangle with the

dimension 1.6 mm (width)� 32 cm (height). Hence, one pixel on the EMCCD is

mapped to an area with the dimension 1.6 mm (width)� 0.3 mm (height) that is also

the minimum scan size, which has an aspect ratio of 5 and minimum scan area of

0.48 mm2 that is mapped to a square pixel on the imager.

When the lateral movement of objects in the shackles is considered, a scanning

rate is an important parameter for system design, to prevent a under sampling

problem. For instance, if the minimal scan size is already known from a sample,

and the minimum scanning rate is 95 scans per sample (i.e. 1 scan per every 1.6 mm

distance) at 140 samples per minute from 15.24 cm/1.6 mm, and the number of

scans is less than 95, the area becomes under sampled (scanning less than target

sample). In practice, the over sampling is usually recommended because it will

increase the detectability of small features by increasing spatial resolution. Usually

an optimum scanning rate is an additional 25 % more than actual scan, considering

the size. If 25 % additional scans are added, the number of scans becomes 119 per

sample, so that the line-scan rate is controlled between 95 and 119 scans per sample.

Based on the optimum scan rate, the system can be designed to meet this line-scan

rate requirement by reducing exposure time, binning, image processing algorithm

and multitasking strategy.

13.3.3 Frame Rate of Hyperspectral Imager

The frame rate of a hyperspectral imager is defined as the number of CCD image

acquisition per second that includes time required for exposure, readout, data transfer,

as well as any delay. For instance, at the processing speed of 140 samples per minute

(SPM), the total processing time required is 4.5 ms per line that is equivalent to

222 line scan per second. Hence, the frame rate of the camera must at least support

the minimum frame rate 222 Hz (frames/s) to avoid an under sampling problem.

Since the EMCCD camera has a 12.4 Hz frame rate, image binning is required to

achieve the desired frame rate. With each line scan without binning, the data size is

approximately 1-mega pixels (1,004� 1,002). If the full spatial dimension

(1,004 pixels) of the CCD is binned down to half resolution (502 pixels) and the

spectral dimension is binnedwith three selected non-contiguous bands using a random

track mode at λ1 nm, λ2 nm and λ3 nm, the frame rate will be met as required.

Through the software development, any spectral bands can be selected at

random processing locations for a spectral dimension, along with their bandwidths.

After binning, the spectral image resolution becomes 3 (spectral)� 502 (spatial) per

scan. If the width of sample to be scanned is assumed as N pixels, the size of final

hypercube becomes N (sample width)� 512 (sample height)� 3 (spectral bands).

Based on this approach, the frame rate is 286 Hz with 3.5 ms per line, for 180 SPM

and 317 Hz for 200 SPM. In this case, the data transfer rate; i.e. the amount of data

transferred by a 3-band images per sample will be 16 Mbps with the 286 Hz and

28 Mbps with the 500 Hz frame rate, respectively.
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13.3.4 Lighting System of Hyperspectral Imager

Tungsten-halogen line-light is a resource for the transportable real-time

hyperspectral imaging system as shown in Fig. 13.2. Tungsten halogen lighting

has been proven to be a reliable light source for illumination at the visible-near

infrared spectral range. White light-emitting diode (LED) may be an alternative

lighting resource, although white LED lighting does not produce light energy in the

near-infrared (NIR) spectral range, so additional NIR LED lighting is required for

LED illumination at the NIR spectral range, if necessary. The tungsten halogen

light source for a transportable imaging system uses two 150-W fiber optic line

illumination modules (Fiber Lite A-240L and A-240P, Dolan-Jenner Industries,

Boxborough, MA, USA) focusing the lines to be scanned.

Figure 13.3 shows an industrial scale line-scan hyperspectral imaging system

setup to acquire real-time on-line image data for contaminate detection on broiler

carcasses, with a commercial line speed. The components of imaging system except

lighting and monitor were enclosed for running in harsh food processing environ-

ment. Two high intensity LED line lights (LL6212, Advanced Illumination, Roch-

ester, VT) are attached to the system for distributing uniform intensity for quality

image acquisition. Each line light had 12 LED elements. The optimal working

distance of lights is between 15 and 60 cm.

Figure 13.4 shows the devices inside the enclosure including EMCCD

camera (Luca, Andor Technology Inc. CT, USA), which has the detector of

1,004� 1,002 pixels, 8 μm pixel size and 12.4 fps coupled with a 14-bit digitizer

board at a 13.5 MHz readout rate. An imaging spectrograph (400–1,000 nm,

Hyperspect-VNIR, Headwall Photonics Inc., Fitchburg, MA) and C-mount lens

(1.4/23mm, Schneider, Germany) in the enclosure is attached to the EMCCD camera.

Spectrograph

EMCCD
Camera

Tungsten-Halogen
Line Light

Tungsten-Halogen
Line Light

LED
Line Light

LED
Line Light

Industrial
Computer

Fig. 13.2 Transportable real-time hyperspectral imaging system for poultry safety inspection
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13.4 Real-Time Hyperspectral Image Processing

Hyperspectral imaging for practical applications requires real-time processing of large

data volumes recorded by a hyperspectral imager. The use of graphics processing units

(GPU) is a candidate for real-time processing (Tarabalka et al. 2009). In particular,

real-time processing with GPU is effective for a hyperspectral anomaly detection

algorithm, based on normalmixture modeling of the background spectral distribution,

a computationally demanding task, relevant to target detection and numerous

other applications. Overall, the GPU implementation runs significantly faster,

particularly for highly data-parallelizable and arithmetically intensive algorithms.

Detection results on the actual data set demonstrate that the total speedup provided

by the GPU enables real-time anomaly detection with normal mixture models for

airborne hyperspectral imager with high spatial and spectral resolution.

Fig. 13.3 Real-time high-

speed hyperspectral

imaging system with LED

lights

Fig. 13.4 Enclosed line-

scan hyperspectral camera

with spectrograph
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Real-time image processing requires high computational and input/output (I/O)

throughputs obtained by an optoelectronic system. A novel architecture that uses

focal-plane optoelectronic-area I/O with a fine-grain, low-memory, single-instruc-

tion-multiple-data (SIMD) processor array is presented as an efficient computa-

tional solution for real-time hyperspectral image processing. The focal-plane SIMD

architecture is capable of supporting real-time performance with sustained

operation throughputs between 500 and 1,500 giga-operations per second (Chai

et al. 2000). A linearly constrained minimum variance (LCMV) beam forming an

approach to real-time processing algorithms has been presented for target detection

and classification in hyperspectral imagery. The idea is to design a finite impulse

response (FIR) filter to pass through the targets using a set of linear constraints,

while also minimizing the variance resulting from unknown signal sources (Chang

et al. 2001). Real-time enhancement of local anomalies in images of the over flown

scene can be presented to the operator to facilitate the decision making process.

Within this framework, one of the ultimate research interests is the design of

complexity-aware anomaly detection algorithm architectures capable of assuring

real-time processing with a fast decision making algorithm (Acito et al. 2013).

A real-time, parallel version of optical real-time adaptive spectral identification

algorithm is available for adaptive, accommodating changing lighting conditions

and terrain for ground based real-time analysis and visualization system (Bowles

et al. 1997). An effective approach to speed up real-time implementation can be

conducted by using a small portion of pixels in reduced computational complexity,

with a simplified hardware for remotely detection of objects using hyperspectral

imagery (Du and Nekovei 2009).

A constrained linear discriminant analysis (CLDA) approach to hyperspectral

image detection and classification as well as its real-time implementation is also

available. The basic idea of CLDA is to design an optimal transformation matrix

that can maximize the ratio of inter-class distance to intra-class distance, while

imposing the constraint that is different class centers, after transformation, along

with different directions can be better separated. The CLDA approach is useful for

both detection and classification problems. With a CLDA the real-time imple-

mentation can be developed to meet the requirement of on-line image analysis

when the immediate data assessment is critical (Du and Ren 2003). For real-time

processing of hyperspectral images, two artificial intelligence algorithms for

target detection have been studied. Both algorithms are based on the application

of artificial neural networks to the hyperspectral data. The first neural network

algorithm is applied at the level of individual pixels within an image, and the

second algorithm is a multi-resolution based approach to scale invariant target

identification using hierarchical artificial neural network architecture (Heras

et al. 2011). Two optimized implementations of the principal component analysis

(PCA) algorithm, primarily targeted on spectral image analysis in real-time were

reported. The implementations are evaluated and compared with a multithreaded

C implementation, compiled by an optimizing compiler and the results show

speed-ups of approximately ten times that allows for using PCA on RGB and

spectral images in real-time (Josth et al. 2012). The development of new real-time
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hyperspectral endoscope (called the image mapping spectroscopy endoscope)

based on the image mapping technique has been reported. The parallel high

throughput nature of this technique enables the device to operate at 5.2 frames

per second with a datacube size of 350� 350� 48. Using this technology tissues

in vivo are imaged for resolving a vasculature pattern of the lower lip, while

simultaneously detecting oxy-hemoglobin (Kester et al. 2011). In recent years,

several efforts have been directed towards the incorporation of high-performance

computing (HPC) systems and architectures in real-time remote sensing research.

With the aim of providing an overview of parallel and distributed systems for

remote sensing applications, three HPC-based paradigms for efficient implemen-

tation of the Pixel Purity Index (PPI) algorithm have been explored. Several

different parallel programming techniques are used to improve the performance

of the PPI on a variety of parallel platforms, including a set of message passing

interface (MPI)-based implementations (Plaza et al. 2010).

Hyperspectral image analysis algorithms exhibit inherent parallelism at multiple

levels, and map nicely on high performance systems such as massively parallel

clusters and networks of computers. An exciting new development in this field is

the emergence of programmable graphics hardware. Setoain et al. (2008) investi-

gated graphics processing units (GPU)-based implementations of a morphological

endmember extraction algorithm, which is used for joint spatial/spectral techniques

for hyperspectral analysis. Both endmember extraction accuracy and parallel effi-

ciency are quantitatively compared and assessed in terms of implementing

hyperspectral imaging algorithms on commodity graphics hardware. For real-time

visible hyperspectral detection of military ground targets with real-time cuing of a

high-resolution framing camera, the system hardware components with an empha-

sis on the visible hyperspectral sensor and the real-time processor were developed.

The results from field experiments are described along with an analysis of the

collected data and demonstrate the improved performance obtained by operating

two detection algorithms simultaneously (Stellman et al. 2000). N-finder algorithm

(N-FINDR) (Wu et al. 2010) is also widely used for endmember extraction in

hyperspectral imagery. When it comes to practical implementation, four major

obstacles including the number of endmembers, initialization of N-FINDR, dimen-

sionality reduction, and computational cost need to be considered. Thus, real-time

image data processing is a popular research area for hyperspectral remote sensing.

In particular, target detection surveillance, which is demanding real-time or at least

near real-time processing. However, the massive amount of hyperspectral image

data limits the processing speed so that a strategy of spatial-spectral information

extraction (SSIE) that is composed of band selection and sample covariance matrix

estimation is needed for fast hyperspectral image processing (Zhang et al. 2012).

Band selection utilizes the high-spectral correlation in spectral image, while sample

covariance matrix estimation fully utilizes the high-spatial correlation in

hyperspectral image. In order to overcome the inconsistent and irreproducible

shortage of random distribution, a scalar method can be used to select sample

pixels and implemented target detection algorithm based on the SSIE strategy on

the hardware of a digital signal processor.
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13.4.1 Software Architecture for Real-Time
Hyperspectral Imaging

Using a random track mode, selected wavelengths at λ1, λ2, and λ3 nm are trans-

ferred from the camera buffer to the computer memory. Real-time image

processing is possible by adopting a ping-pong memory technique as well as a

circular buffer technique embedded in the software. The ping-pong memory archi-

tecture enables the operation of image acquisition and processing simultaneously.

Multithreading of Microsoft Visual C++ 6.0 (Microsoft Foundation Class or MFC)

can be used to implement a ping-pong memory. A thread is assigned to an image

acquisition module while another thread process a newly acquired image from a

circular buffer. There is delay of one object at the beginning, until first acquisition

begins. After acquisition is started, the processing module processes the previous

object while the acquisition module acquires the following object. A circular

memory buffer allows an access to data previously scanned up to 8–10 objects

while acquiring new data. The size of the circular buffer is 1,004� 1,004�M,

where M is the number of random tracks (i.e. number of bands selected).

The OpenCV™ that is a library of open source C/C++ programming functions

for real-time computer vision can be used for implementing basic image processing

operations such as median filter.

13.4.2 Hyperspectral Image Calibration

Spectral calibration is usually completed by manufactures of the hyperspectral

imager nowadays. For a calibration task, dark current and 99 % reflectance panels

(SRT-99-120, Spectralon, North Sutton, NH, USA) are usually imaged to calibrate

the measured images to obtain percent reflectance. For data analysis, regions of

interest (ROI) are manually obtained as a ground-truth, and used for evaluating

performance of image processing algorithms.

13.4.3 Software for Real-Time Image Acquisition

Software for camera control and image acquisition can be developed using a

software development kit (SDK) provided by the camera manufacturer with the

Microsoft Visual Basic programming environment. The spectral information of

each pixel is collected in the vertical (traverse) direction of the EMCCD. Although

push-broom-based line-scan method acquires a full range of hyperspectral images,

multispectral images with a few selected wavelengths can be acquired for the real-

time in-line applications. The spectral interval and resolution are determined by

vertical binning in a multispectral mode. For real-time applications with
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multispectral mode, the vertical pixel shift rate of the EMCCD is one of the limiting

factors along with exposure time and the number of lines scanned for the sample.

13.4.4 Image-Based Polling Algorithm

An image-based polling algorithm can be developed to determine the start and end

position of the object. The algorithm is based on monitoring scanned lines to find if

the object enters or leaves the field of view. The fundamental assumption for polling

is that there must be a gap or space between the objects. The contacts between

neighboring objects are usually observed at one end and the other end of objects in

moving shackles. The scheme of polling algorithm can be developed as follows.

One selected band is usually used for the polling algorithm. After reflectance

calibration is completed, a pixel position is selected from the current scanned

line. A position between middle and top of the field of view, preferably 40 %

down from the top is selected. Then, reflectance calibration values of several pixels

upward and down from the selected pixel position are examined to poll the number

of dark background pixels within the range previously selected. A threshold value is

used to determine the pixel as background or not. If the piece of line examined is

greater than the threshold value, the polling for the start of an object ended,

followed by imaging the object. The polling for the end of the object is opposite,

i.e. if the area of location examined becomes dark from bright, the polling for the

end of the object ended, then finish to image the object. The determination of bright

or dark is based on the count of bright or dark pixels within the search limit from the

position with appropriated calibration.

13.4.5 Hyperspectral Image Processing Algorithm
for Contaminant Detection

The fundamental fecal detection algorithm is based on the band ratio algorithm of

λ2/λ1. The enhanced fecal detection algorithm is the dual band ratio algorithm with

λ2/λ1 and λ3/λ1 followed by a threshold value. The dual band ratio algorithm

performs to remove false positive errors, especially cuticles on samples. A cali-

brated λ1 band image is used for background masking and polling. Both mask and

polling threshold is 1.5 % of reflectance. Various techniques can be applied

and compared in terms of eliminating or reducing false errors that are major

cause of false positives in the two-band imaging system. In case of poultry

contaminant detection application, the algorithms could be two-band ratio (λ2/λ1)
with a threshold without further filtering, three-band ratios (λ2/λ1) and (λ3/λ1) with
two selected thresholds without further filtering, and two-band ratio (λ2/λ1)
with software cuticle removal filter with threshold of 40 % reflectance applied
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to λ1 without further filtering. For optimum algorithms to detect contaminants, both

basic and enhanced band-ratio algorithms can be applied and compared for

hyperspectral imaging systems in a real-time multispectral imaging mode.

13.5 Performance of Real-Time Hyperspectral
Imaging System

13.5.1 Speed Performance

In order to measure the frame rates of the imaging system as a function of exposure

time, the following variables are considered: a trigger mode (internal or external), a

random track mode (two bands or three bands) from the camera manufacture’s

software. After the frame transfer mode is turned on, two random tracks

(i.e. spectral bands) are selected from the bands corresponding to λ1 and λ2 or

three tracks are selected from the bands at λ1, λ2 and λ3. The bandwidth for the two
bands is just one track; whereas the bandwidths for three bands are 13, 13, and

26 tracks centered at λ1, λ2 and λ3, respectively. Several experiments need to be

conducted for understanding the frame rate limit of the camera system and finding

an exposure time range meeting the minimum frame rate requirement such as

222 Hz at 140 SPM and 286 Hz at 180 SPM. With an external trigger mode, pulses

generated by a 4 MHz sweep function generator (4003A, B&K Precision, Yorba

Linda, CA, USA) can be used with a singe continuous image acquisition mode. The

actual frame rate is automatically computed by software and a number is read at

arbitrary time, because the frame rate is almost constant over the time unless the

operator interrupts the image acquisition process.

As shown in Table 13.1, any exposure time below 100 μs exceeds the minimum

requirement of frame rate (>222 Hz). The external triggering has faster frame rate

than internal triggering. The minimum frame rate requirement of 286 Hz for

180 SPM may not be met if internal triggering is used. However, if 1� 2 spatial

binning is used for spatial domain, it is expected to achieve the frame rate of

286 Hz.

Additional experiments are conducted to evaluate the performance speed of the

software with a higher processing speed of 200 SPM. The software for contam-

inant detection is used for grabbing and processing images with a multitasking

environment. Both image grabbing and processing time are measured and

recorded in a text file as output. For this task, the grabbing time refers to the

time for which the software grabbing module spent to transform a three dimen-

sional data cube of N (width)� 512 (height)� 3 (bands/tracks), where N is 128 or

118 scans per sample. If the software grabs more than 95 lines per sample, and

processes within 300 ms, the software meets the requirement of minimum speed

of 200 SPM. If the software continuously runs for 1 h, the number of datacubes

created is 12,078 that is equivalent to the speed of approximately 201 SPM.
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Since the grabbing time for 128 lines is greater than 300 ms and there is a delay for

image grabbing, race condition occurs and causes incorrect and unexpected

results. On the other hand, grabbing 118 lines per sample requires 282 ms. In

this case, the processing time is approximately between 47 and 86 ms, resulting in

more than 200 ms for other tasks. For this processing, the CPU usage is approx-

imately 6–11 % with memory usage of 92 KB without any software issues such as

memory leaks. Thus, the software can handle 200 SPM processing speed with

high resolution images of 118 (width)� 512 (height)� 3 (bands).

13.5.2 Algorithms for Removing False Errors

Figure 13.5 demonstrates the real-time image processing for cuticle removal with

three algorithms discussed in previous section, and Table 13.2 summarizes the

performance of the algorithms. The dual band ratio algorithm using three bands

can remove the cuticles completely with only 2 pixels remaining as shown in

Fig. 13.5a, b. The software filtering is able to remove most cuticles except

boundary pixels that are darker than pixels from samples. The false positives

(red) except the cuticles (cyan) are along with the boundaries of poultry carcasses.

These isolated pixels along the boundaries of samples can be removed by a

morphological erosion algorithm such as the median filter that is effective to

remove most small false positive pixels. Optical density of cuticles affects mostly

the camera, in addition to the sample size, i.e. the thicker the cuticles are, the more

false positives. The three-band algorithm performs well for removing cuticles

with post-processing filtering as shown in Table 13.2. To visualize false positive

errors removal, scatter plots are used to analyze data distribution of cuticles in

two-dimensional space.

Table 13.1 Relationship between exposure time and frame rate of real-time hyperspectral

image acquisition

Frame rate (Hz)

External trigger Internal trigger

Two bands Three bands Two bands Three bands

Exposure time (μs) 10 518.1 395.3 269.5 232.0

40 510.2 390.6 267.4 230.4

50 507.6 389.1 266.7 229.8

100 495.0 381.7 263.2 227.3

1,000 342.5 212.8 284.1 188.7
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13.5.3 Distribution Analysis of False Positive Errors

In order to find out how the false positive errors are distributed statistically, the

scatter plots are used to visualize the statistical distributions of false positives. For

scatter plots, all 293 pixels from cuticles on the images from three samples in

Fig. 13.5 are assigned to one group and 953 pixels from false positives are assigned

to the other group. Figure 13.6 demonstrates a scatter plot of λ1 (517 nm) and λ3
(802 nm) bands. As shown in the figure, cuticles and most false positives can be

removed by selecting decision boundary of 1.5 threshold. The cuticle pixels

(represented with ‘red’) are distributed relatively evenly from 0.35 to 0.5. However,

the pixels below 0.15 shown at λ1 (517 nm) are not removed by this decision

boundary. Most of these false positive pixels are from background and body

contours, so erosion of the sample masking image is effective for removing false

positive errors caused by the boundary of samples. Alternatively, a modified

decision boundary (piecewise linear) by adding a line as shown in Fig. 13.6 and

median filtering can remove the remaining false positives.

Fig. 13.5 Comparison of three algorithms for cuticle detection using two bands, three bands, and

two bands with software cuticle filtering from left to right, respectively. Note: the cyan pixels are

false positives from cuticles and the red pixels are false positives from boundaries. (a) Color
composite with false positives; (b) False positives only

Table 13.2 Comparison of three algorithms performance

False positives

(pixels)

Cuticles

(pixels)

Cuticle rate among

false positives (%)

Two bands 575 225 39.1

Three bands 154 2 1.3

Two bands with software filtering 517 66 12.8
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13.5.4 Algorithms for Contaminant Detection

Figure 13.7 demonstrates a mosaic of pseudo-color composite images generated

from 3-band images acquired by the real-time hyperspectral imaging system.

Twelve birds are used to examine the efficacy of both fundamental and enhanced

algorithms for fecal detection on poultry carcasses. The system parameters used

for the experiment are the dimension of 118 (width)� 512 (height)� 3 (bands),

the exposure time of 1.68 ms and the EM gain of four to collect the spectral

images of three bands from λ1 (517 nm, 13 bandwidths, BW), λ2 (565 nm, 9 BW)

and λ3 (802 nm, 21 BW), respectively. Sample contaminants for testing algo-

rithms include duodenum, ceca, colon and ingesta collected from poultry carcass

intestines. The images at the top row in Fig. 13.7 are acquired with 180 SPM and

the images at the bottom are acquired with 140 SPM. As seen in the figure, the

image differences of bird widths are caused mainly by different processing line

speeds of shackles (180 vs. 140 SPM). The image polling algorithm performs

well, and the processing time of the software meets the requirement. The images

are overlaid by the pixels in the regions of interest (ROI) that are color coded as

green or red. The sizes of ROI from skin, feces, and cuticles are 6115, 3098 and

293 pixels, respectively.
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Fig. 13.6 2-D scatter plot of false positives from cuticles (red) and background, body contours

(blue) found in the 517 and 802-nm bands. Note: the red line is a decision boundary determined by

the threshold of 1.5
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Figure 13.8 demonstrates 2-D scatter plots of the ROIs acquired from the

samples in Fig. 13.7. The data from the ROIs are based on two wavelength

combinations of λ1 and λ2 (517 vs. 565 nm) and λ1 and λ3 (517 vs. 802 nm). In

addition, the ROIs used for cuticle-skin distribution analysis are added to the ROIs

data for Figs. 13.8a, b. The scatter plots in Figs. 13.8c, d are acquired from the ROI

pixels after additional image processing with a 3� 3 morphological erosion filter

applied to the ROI pixels in Figs. 13.8a, b. All pixels above the lines in the scatter

plots are considered as feces, although some false positives are included, especially

in Figs. 13.8a, b. The eliminated false positives in Figs. 13.8c, d are the pixels from

cuticles as well as dark background, which have reflectance values less than 0.2. As

shown in Figs. 13.8c, d, the morphological erosion algorithm can remove true fecal

pixels, as well as false positives. Most of false positives other than cuticles are

observed from the boundaries of true fecal ROIs. Due to the nature of erosion

algorithm, most of eliminated pixels along the fecal ROI boundaries are spectrally

mixed. Therefore, the advanced fecal detection algorithm using three bands can

separate cuticles and feces using the ratio of λ3 and λ1 (802 vs. 517 nm) spectral

images with the threshold value of 1.5. However, when the pixels are linked to

optically less opaque feces such as duodenums or small size of feces, the advanced

fecal detection algorithm may also remove mixed pixels around feces. Thus,

boundary pixels of small fecal spots are prone to the thresholding operation of the

second band-ratio algorithm using λ3 (802 nm), because median filter possibly

wipes out the remaining small pixels.

Fig. 13.7 Mosaic images of contaminated birds with feces. Note: region of interest (ROI)

represents feces (red) and clean surface (green)
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13.6 Consideration of Real-Time Hyperspectral
Imaging Applications

For real-time hyperspectral imaging applications, it is important to understand real-

time operation for both hardware and software. For the hardware point of view, the

challenge is to determine whether a given hardware platform can produce the data

with quality and quantity required by real-time applications. For the software, the

challenge is to implement the algorithms developed at non-real-time computing

environments into a real-time version.

From the initial feasibility test for common platform imaging technology, a

high-speed line-scan hyperspectral imaging system can be used for the application

of online detection. Among the several issues need to be addressed for field

applications of a real-time system, some observations about the imagery from
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Fig. 13.8 Scatter plots of skin (blue), feces (red) and cuticles (cyan). Note: decision boundary

lines are overlaid with band-ratio thresholds (a) 1.05 and (b) 1.5; and the scatter plots in (c) and
(d) are acquired from ROIs with 3� 3 morphological erosion algorithms. (a) 517 vs. 565 nm,

(b) 517 vs. 802 nm, (c) Eroded ROIs: 517 vs. 565 nm, (d) Eroded ROIs: 517 vs. 802 nm
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initial tests in the laboratory include system calibration, as usual for the case of most

instruments. Although large contaminants appear to be detected at uncalibrated

image ratio of two bands of λ2 (565 nm) and λ1 (517 nm), about 30 % of the

calibration images are saturated at the λ1 (517 nm) band. Therefore, more precise

calibration methods are needed for line-scan image acquisition, because it is not

easy to assess the performance of standard threshold values for the uncalibrated

imagery. If spatial resolution is very low across the sample, false negative errors

could increase. In order to eliminate both false positive and false negative errors,

the optimum spatial resolution needs to be determined for line-scan camera setting

throughout the image acquisition process.

13.6.1 Calibration Issues of Line-Scan Camera

Based on the modification of image analysis software with Interactive Data Lan-

guage (IDL) programming environment, on-line reflectance and dark current

images are used to calibrate the composite images of samples. Since there are

differences between λ1 (517 nm) and λ2 (565 nm) in dark current data and

considerable inconsistency from top to bottom of the sensor, calibration is neces-

sary step for real-time hyperspectral imaging system for on-line applications. For

instance, the image could be saturated at λ1 (517 nm) band so that this results in

false positives, especially in the poorly lit and saturated areas. Sometimes there is

significant shadowing and also tapering off of the light that follows the curvature of

the samples, resulting in false positives along the edges of the sample such as wings

and legs of poultry carcasses. Therefore, an accurate calibration procedure for real-

time imaging needs to be carefully taken care of for better detection accuracy.

13.6.2 Issues of Real-Time Hyperspectral Imaging
System for Contaminant Detection

In order to accomplish contaminant detection for a real-time online mode, several

factors need to be considered and resolved prior to implementing at commercial

processing plants. For the specification of sample measurement, the minimum

weight of fecal matter correlated with microbial counts need to be determined.

A second factor to consider is the detectable minimal pixel size of fecal contam-

inates. According to the observation from spot size studies (Windham et al. 2005),

the detectable fecal size is approximately 10 pixels, which can be generated from

a 5 mg cecal sample. Although the optimum camera setting is dependent on

specifications of the primary detecting module such as a camera sensor and
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corresponding optics, the parameter setting of hyperspectral camera can be 125 ms

of exposure time, with 27 in. working distance, 4� 2 binning for 380 lines scan that

covers the whole poultry carcass, for example, with 23-mm lens.

Lighting is another key subsystem for quality image acquisition, specifically the

high-speed line-scan hyperspectral imaging system. Both tungsten halogen

(TH) and light-emitting device (LED) are good candidates, because of their char-

acteristics of high excitation intensity at 517, 565 and 802 nm, which are adequate

for fecal contaminant detection. For three-band spectral image data acquisition, the

spectral range of the hyperspectral imager needs to be optimized at the wavelengths

of 512–522, 560–570, and 729–812 nm for a line-scan hyperspectral imaging

system with the slit width less than 40 μm.

13.6.3 Real-Time Fecal Contaminant Detection
with Different Lighting Sources

Figure 13.9 demonstrates pseudo-color composite images with contaminants and

corresponding binary images that indicate contaminants tested with pilot-scaled

online processing, with a real-time in-line hyperspectral imaging system. In this

test, spectral images selected with three bands at 517, 565 and 600 nm (or 802 nm)

are used to create color composite images. Since the 802 nm band validated false

positive removal from the study of optical filter-based common aperture camera

research (Heitschmidt et al. 2007), the 802 nm band form line-scan hyperspectral

imaging system is tested to determine if similar results in terms of eliminating

false positive errors caused by cuticles could be obtained. From this study, 600 nm

is an alternative instead of 802 nm, which indicates that the tungsten halogen line

lights can be simply used for lighting sources instead of additional 802 nm LED

light. Yet, more lighting tests are needed to validate which lighting system is

optimum for a line-scan hyperspectral imaging system for quality image acquisi-

tion and performance for other contaminant detection. For example, various

contaminants from poultry carcasses such as ingesta, colon and ceca are detected,

except duodenum that is not distinct in the composite color images. The size of

contaminant from colon is approximately 12 mm2, and corresponding image size

of the same spot is 15 pixels with 600 nm band, but only 7 pixels with 802 nm

band. Thus, same size of contaminants is detected differently depending on

lighting sources. Although the results with 600 nm are better than 802 nm in

this sample, the overall performance of 600 nm is similar to that of 802 nm,

because the dominant algorithm is still based on the image ratio from 517 to

565 nm bands. The white spots in Figs. 13.9b, c demonstrates fecal and ingesta

contaminants and a yellow marker that indicates ground truth for contaminated

samples.
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13.6.4 Technical Requirement of In-Line Hyperspectral
Imaging System for Contaminant Detection

In order to meet the high throughput across processing lines consistent with food

safety inspection regulation, in-line fecal inspection instruments need functional

and technical specification with enhancements for real-time processing at com-

mercial poultry processing plants. With high speed data acquisition and real-time

image processing algorithms, the in-line hyperspectral imaging system is able to

inspect poultry at least 140 birds per minute with fecal contaminants of larger than

3-mm spot size, which is corresponding with approximately about 5 mg fecal

mass. The imaging system includes a CCD detector, spectrograph, lens, power

supply, electronic control system, thermal control system, and enclosure to

protect electronic modules in the harsh environment of a poultry slaughterhouse.

The recommended camera lens is 25-mm, f/2 and illumination system includes

LED light with 24 VDC if all excitation spectral bands meet the minimum

requirement (517, 565, and 600 nm for fecal contaminants) as a lighting source.

The spectral range of the spectrograph is between 450 and 900 nm with a 6-nm

spectral resolution. Overall image distortion must be less than 0.1 pixel for smile

and keystone effect and less than 5 % for vignetting for hyperspectral imager. The

CCD detector has non-cooling with 1004� 1002 pixel format, 8-mm square pixel

size, 8� 8 mm focal plane array (FPA), custom defined binning option, minimum

frame speed of 12 fps and USB2 interface functionality. The software for initial

testing is based on Visual Basic, but C++ programming environment is feasible

for a common platform system configuration for universal purpose.

Fig. 13.9 Test results for fecal contaminant detection with line-scan hyperspectral imaging

system; (a) pseudo-color composite image with various contaminants of duodenum, cecum,

colon and ingesta; (b) three bands of 517, 565 and 600 nm; (c) three bands of 517, 565 and 802.

Note: Third band was selected for false positive removal and yellow marker was used for ground

truth indicating a contaminated carcass
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13.7 Concluding Remarks

The high-speed line-scan hyperspectral imaging system has the potential for

real-time online inspection during food processing. Specifically, this technology

benefits the poultry industry for fecal contaminant as well as unwholesomeness

detection. To improve detection accuracy and performance, fully calibrated (spa-

tially and spectrally) images need to be acquired for further image processing. In

addition, either external or internal mode for triggering imagers is required for real-

time implementation with appropriate image processing methods. Software trig-

gering methods based on the shape of an object are candidates for online applica-

tion. In doing this, the entire processing speed from line-scan image acquisition

until analysis to identify contaminant spots should meet the industry requirement of

140 birds per minute. For quality image acquisition in real-time applications, a

lighting system, either tungsten halogen or LED (LED preferred for industry

application) is crucial. In conclusion, high-speed line-scan hyperspectral imaging

system can be used for food safety inspections such as fecal contaminant and

unwholesomeness detection as a common platform imaging system along with

other quality inspections based on industry standards. For advances in the real-

time hyperspectral imaging platform, more research needs to be done to fully

validate performance of the system to meet industry requirements. For example,

in the case of fecal contaminant detection, the ground truths for high detection

accuracy with minimum false positive errors need to be validated for commercial

implication. For this task, several markers as ground truths based on confirmation

by human inspector or other instrumental methods can be tested, and on automatic

link with ground truths using a CCD color camera as a reference can be further

investigated.
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Chapter 14

LCTF Hyperspectral Imaging for Vegetable
Quality Evaluation

Changying Li and Weilin Wang

Abstract This chapter discusses the liquid crystal tunable filter (LCTF)-based

hyperspectral imaging technology and its application in vegetable quality inspection

by using onion as a case study. A brief overview is provided on using the destructive

and nondestructive methods for vegetable quality measurement. A detailed descrip-

tion of the LCTF technology, including system components and calibration, is

presented. Two examples are given on using the LCTF technology for onion quality

evaluation: one is to detect sour skin disease on the onion surface, and the other is to

predict onion internal quality (soluble solid content and dry matter content) using the

LCTF system. A brief conclusion is provided at the end of the chapter.

14.1 Introduction

It has been well recognized that increasing fresh vegetables in diet could prevent

noncommunicable diseases such as cancer and cardiovascular diseases which

contribute to two thirds of all deaths in the world (Ezzati and Riboli 2012). Partly

driven by the health benefits of fresh vegetables, the production of vegetables in the

world has almost quadrupled in the past four decades (Food and Agriculture

Organization of the United Nations 2012). In the past 3 years (2009–2011), the

production value of American fresh vegetables has consistently exceeded $10.5

billion (USDA-NASS 2012). The top three most valuable fresh vegetables are

lettuce, tomato, and onions, which together account for about 40% of the total

farm-gate value of the U.S fresh vegetables. As consumption rises, consumers are

more concerned about the quality of vegetable products, which makes the
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marketing even more competitive. As for fresh vegetables, five general quality

factors are appearance, flavor, texture, nutritive values, and defect factors, which

largely determine consumer acceptability and the value of the product.

In the postharvest handling system of vegetables, quality inspection and sorting

plays a central role and virtually affects all stakeholders. Consumers demand high-

quality product and would pay premium prices for products with uniform size and

appearance. Any surface blemishes, diseases, or internal defects would reduce

consumers’ satisfaction. For growers, defective products may result in discounting

or even rejection of the entire batch of produce, which is a significant loss. For

processors, latent damage or internal defects detected by consumers could be

economically devastating and may also have a long-lasting effect on brand reputa-

tion. For packers, storing blemished or defective produce wastes valuable storage

space and decreases profit margins. Thus, maintaining high-quality products is

crucial to the economic survival of the vegetable industry. To ensure high quality,

defective products must be separated and removed from the wholesome ones by

postharvest sorting and packing.

As one of the major fresh vegetables worldwide, the onion (Allium cepa L.) has

been cultivated for both culinary and medicinal use for thousands of years on earth.

Currently, it is grown in more than 20 states in the United States. The annual farm-

gate value of the onion in the U.S. reached over $1 billion in 2003 and 2005 and has

been consistently exceeding $800 million in the past 5 years (USDA-

NASS 2006; National Onion Association 2008; USDA-NASS 2012). Onion con-

sumption has been growing continuously, due in part to their well documented

health benefits and the booming American fast food industry.

At present, only a few onion packinghouses are equipped with machine vision

systems to sort onions by size or outside appearance. In most onion packinghouses

in the U.S., onions are evaluated for external quality (such as blemishes or surface

split) only by human visual inspection. Human visual inspection varies from person

to person and is subject to error due to human fatigue. In addition, human inspectors

are unable to evaluate internal quality (such as dry matter content) and defects (such

as center rot). Human inspectors are not only ineffective in some cases and prone to

error, but also costly. Nearly 50% of onion packinghouse operational cost is related

to human labor and management cost (personal communication). This labor-

intensive handling system becomes more problematic in light of the looming

labor shortage across the U.S.

This chapter discusses the liquid crystal tunable filter (LCTF)-based

hyperspectral imaging (HSI) technology and its application in vegetable quality

inspection with onion as a case study. A brief overview is provided on destructive

and nondestructive methods for vegetable quality measurement. A detailed descrip-

tion of LCTF technology, including system components and calibration, is

presented. Two examples are given on using LCTF technology for onion quality

evaluation: one is to detect sour skin disease on the onion surface, and the other is to

predict onion internal quality (soluble solid content and dry matter content) using

the LCTF system. A brief conclusion is provided at the end of the chapter.
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14.2 Onion Quality and Evaluation Methods

14.2.1 Onion Quality Factors

The quality aspects of onions can be classified into external and internal factors.

The important external quality factors of onions include: size, shape, color, unifor-

mity, and outside defects. The key internal quality factors are firmness, dry matter

content, soluble solid content, and internal defects (internal rottenness, void, etc.).

Since external quality inspection has been the target of current sorting technologies,

whereas internal quality has not been as well investigated, this section only focuses

on the discussion of those internal quality factors.

Roughly 13% of the total onion production in the U.S., accounting for more than

$100 million revenues, goes to dehydration and processed market (USDA-

NASS 2012). In the dehydration process, higher profit is achieved by using onions

with high percentage of dry matter. To provide onions with high dry matter, onion

breeders need tools to rapidly screen onion cultivars with high dry matter content.

Although there exist automated systems (electronic or vision) to measure onion size

and weight, it is still difficult to nondestructively estimate onion internal quality.

Currently the internal qualities of onions (and most vegetables) are measured by

destructively testing random samples. For instance, the firmness of most fruits and

vegetables is usually measured by the Magness-Taylor (MT) method, in which a

steel probe is penetrated into the fruit or vegetable at certain depth (e.g., 9mm) with

certain loading speed (e.g. 2mm/s). The maximum force recorded during this

process is used as a measure of firmness for the product.

Soluble solid content, another important internal quality property of most fruits

and vegetables, is usually measured by a refractometer with automatic temperature

correction. One or two drops of juice are extracted from a vegetable sample, and

then the juice is spread onto the glass slide of the refractometer to read soluble solid

content (SSC) values in∘Brix.

Dry matter (DM) content is usually measured by heating the vegetable sample in

a forced draft oven at 75 ∘C for 12 h. The dry matter content is calculated as the ratio

between the weight of the vegetable samples after and before the oven drying.

Apparently, all these methods require destroying the vegetable sample. There

are two main drawbacks of the destructive testing approach: (1) the tested samples

cannot be used or sold after testing; (2) it can only test a limited number of samples

and leaves many defective products undetected. In contrast, nondestructive testing

methods can potentially measure each and every vegetable sample without damag-

ing the product. Therefore, it would be of great value if a rapid and nondestructive

method is available to evaluate onion internal quality such as dry matter, SSC, and

firmness.
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14.2.2 Onion Postharvest Diseases

Almost 60% of non-processed onions in the nation are put in storage and consumed

weeks ormonths later to extend the season and capitalize on amore favorablemarket

window (Burden 2008; National Onion Association 2008). Normally, onions can be

stored in a cold, dry, and well ventilated room for several months with a marketable

quality. However, fungal and bacterial diseases affect stored onions and cause sub-

stantial losses in storage. Outbreaks of these fungal and bacterial diseases are usually

caused by a few damaged and infected onions which eventually spread the pathogen

and spoil nearby wholesome onions in storage. Due to the lack of detection methods,

onion handlers are unaware of the presence of these diseases in the early stage until the

onions exhibit visual symptoms that make them unsalable at the end of the storage

period. For instance, Botrytis neck rot (caused by Botrytis allii), a virtually

undetectable fungal disease, can cause as high as 50–70% storage losses in some

years (Ceponis et al. 1986; Boyhan and Torrance 2002). Another disease, known as

sour skin, caused by bacteria Burkholderia cepacia (Burkholder 1950), is one of the

most serious onion diseases that can affect most onion varieties (Schwartz and

Mohan 2008). Not surprisingly, both fungal and bacterial diseases are identified by

stakeholders as two of the most serious problems that are afflicting the onion industry.

However, it is difficult to detect bacteria or fungi induced diseases in onions by human

visual inspection because the symptoms of the onion diseases usually remain latent

until the environment becomes favorable (Schwartz and Mohan 2008). To control

fungal and bacterial diseases and to reduce massive storage losses, a more effective

nondestructive sensing method is in demand.

14.2.3 Nondestructive Sensing Methods

Nondestructive measurement is a technique to obtain the quality information

without changing the physical and chemical properties of that product (Shewfelt

and Prussia 1993; Florkowski et al. 2009). There are several nondestructive tech-

niques that have been investigated for vegetable quality and safety sensing, such as

NIR spectroscopy (Osborne and Fearn 1986), X-ray imaging, magnetic resonance

imaging (Cho et al. 1990), machine vision (Liao et al. 1994; Tao 1998), and

electronic nose (Li et al. 2009). For instance, X-ray imaging has been studied for

detecting internal defects in Vidalia sweet onions, including voids and foreign

inclusions (Shahin et al. 2002). Li et al. (2009) reported a method of using the

gas sensor array to detect the sour skin disease in onions by measuring the

headspace gas. It achieved 85% correct classification rate when six gas sensors

were used. Although this technology showed promise to detect sour skin, the gas

sensors are more suitable in confined environment than on packing lines.

Among various nondestructive sensing methods, the machine vision technology

has been most extensively studied and successfully applied in the postharvest
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handling sector to inspect the quality of fruits and vegetables, such as size, shape,

volume, color, or texture (Cubero et al. 2011). Machine vision technology, how-

ever, cannot detect the internal quality or latent diseases of the fresh produce.

Near infrared (NIR) spectroscopy was first used in food and pharmaceutical

industry in the mid of 1960s (Williams and Norris 2001; Reich 2005), and it has

been increasingly used in nondestructive measurement of internal qualities of fruits

and vegetables in the past two decades (Nicolaı̈ et al. 2007). NIR spectroscopy has

been particularly successful in estimating soluble solids and dry matter content of

fruits and vegetables due to the absorption of sugar and water in the near infrared

spectral region. For instance, NIR spectroscopy has shown promising results in

predicting sugar content in apples (Lu et al. 2000; Park et al. 2003), cantaloupes

(Dull et al. 1989), papayas (Birth et al. 1984), fresh prunes (Slaughter et al. 2003),

tomatoes (Slaughter et al. 1996), and sweet cherries (Lu 2001). It has also demon-

strated success in dry weight prediction of kiwifruit (Slaughter and Crisosto 1998),

and potato tubers (Dull et al. 1989), and onions (Birth et al. 1985).

However, traditional NIR spectrometry can only collect spectra from one spatial

point or small area at a time, which may not be representative of the entire sample

given the spatial variation within a vegetable sample. This drawback could be

overcome by hyperspectral imagingwhich combines the strengths of machine vision

(with spatial information) and spectroscopy (with spectral information) (Lu 2003).

The three-dimensional hyperspectral image (two-dimensional spatial and

one-dimensional spectral information) not only provides physical and geometric

properties of an object such as size, shape, color and texture, but also

provides chemical and molecular characteristics such as sugar, protein, and other

hydrogen-bonded components (van de Broek et al. 1995; Kazemi et al. 2005). In the

past 10 years, extensive studies have been done to apply the hyperspectral imaging

technique for quality evaluation of fruits, vegetables, and nuts (Kim

et al. 2001; Lorente et al. 2012; Park et al. 2001, 2002; Qin and Lu 2005; Ariana

et al. 2006; ElMasry et al. 2007; Jiang et al. 2007; ElMasry et al. 2008). Most of the

applications were for qualitative classification or detection of certain defects on the

fresh produce. A handful of studies investigated internal quality estimation of

strawberry, grape skin, and banana using the hyperspectral imaging technique

(ElMasry et al. 2007; Fernandes et al. 2011; Rajkumar et al. 2012). Lu’s group

explored using the scattering profile of the diffuse reflectance from the hyperspectral

images to predict firmness and sugar content of fruits (Lu 2004; Lu and Peng 2006).

Push-broom-based HSI systems were used in most of the above cited literature,

while the electronic tunable filter-based HSI systems have been studied and used in

only a few cases. For instance, an LCTF-based spectral imaging system (650–

1050 nm) was developed to study plant health (Evans et al. 1998); a similar HSI

system (460–1020 nm) was used to detect the rottenness in mandarins (G�omez-

Sanchis et al. 2008). A group of studies explored using the LCTF-based HSI system

for wheat kernel quality (such as constituents, hardness, color, insect-damage)

inspection (Cogdill et al. 2004; Archibald et al. 1999; Williams et al. 2009; Mahesh

et al. 2008; Singh et al. 2009). The LCTF-based HSI system, however, has its unique

advantages over the push-broom-based HSI system, which will be introduced in

detail in the following sections.
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14.3 LCTF-Based Hyperspectral Imaging

A liquid crystal tunable filter is a multistage Lyot-Ohman type polarization

interference filter, which has a stack of polarizers, birefringent elements, and

electronically tunable liquid crystal (LC) wave plates (Gat 2000). Since the filtering

elements of the LCTF have selective transmissions, only a narrow bandpass of light

can pass through the LCTF and the other light is eliminated. By applying different

electric fields to control the retardances of LC elements, the bandpass of the LCTF

could be tuned to the desired spectral region.

As a solid-state electronically tunable bandpass filter, LCTF is a major type of

electronic filter used for hyperspectral imaging due to its superior image quality.

Compared to the latest line-scan HSI systems, LCTF-based HSI systems are often

less competitive in terms of transmittance throughput and spectral resolution.

However, the LCTF-based HSI system also has its unique advantages over the

line-scan HSI system because the former:

1. is a natural extension of the multispectral imaging system, which provides

versatility to the system to be used for either hyperspectral or multispectral

imaging applications;

2. has an area field of view (FOV), whereas the line-scan HSI system can only see

one line of the test object at a time;

3. can access wavelength bands randomly and quickly, and thus have superiority

for instantaneous imaging applications requiring selective spectral information;

4. has configuration parameters (i.e. the exposure time of the camera) that are

dynamic and adjustable over each spectral band during scans, while a line-scan

system often has to keep its parameter settings constant during scanning;

5. is easier to be integrated with other systems since they don’t rely on any moving

mechanical part such as a linear conveyor.

Particularly, the LCTF-based hyperspectral imaging system is appealing to some

research labs since it could be built upon an existing camera system by including an

LCTF unit and an extended data acquisition program, which provides a cost-

efficient alternative for investing a completely new HSI system.

14.3.1 Major Components of the LCTF-Based
Hyperspectral Imager

Developing an LCTF-based spectral imaging system requires a complicated pro-

cess of system design, integration, and calibration. In system design, the key task is

to select proper components for the hyperspectral imager, which mainly consists of

LCTF, lens, and camera (Fig. 14.1).
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14.3.1.1 Detector

LCTF-based hyperspectral imager requires an area detector. The criteria of

selecting a detector for an LCTF-based hyperspectral imager are mostly similar

to those for other types of HSI systems. In the Vis-NIR spectral region

(400–900 nm), CCD cameras are dominantly used. One particular concern is that

the detector should have high sensitivity since LCTF would block more than 90%

of the light. Thus, regular CCD cameras may not be sufficient in low lighting

circumstances. In recent years, high performance CCD cameras such as electron

multiplying CCD (EMCCD) were increasingly employed in reported HSI applica-

tions (Park et al. 2012; Kim et al. 2011; Yoon et al. 2011). For NIR HSI imaging,

two types of high performance photodiode detectors are generally used: the indium

gallium arsenide (InGaAs) sensor and the mercury cadmium telluride (HgCdTe)

sensor. Both the InGaAs and HgCdTe sensors have high quantum efficiency in the

NIR spectral region. The HgCdTe detector covers a broad spectral region of

1000–12,000 nm, but it’s quite expensive and needs to be operated at a high

temperature. In comparison, the InGaAs detector has a limited detection range

(900–1700 nm) while the cost is much lower than the HgCdTe detector.

14.3.1.2 LCTF

The tunable spectral range and the aperture size are two fundamental parameters of

the LCTF. Generally, due to the low optical throughput of the LCTF, a large

aperture LCTF is preferred. Two other important parameters for the LCTF are the

tuning speed and the average bandwidth, which often vary across wavelengths.

Moreover, the angle of view (AOV) of the LCTF might alter the AOV of the

hyperspectral imager. Overall, the off-the-shelf products of LCTF are still quite

limited, and users might have to select the optimal one based on the availability.

Camera LCTFLens

Focal
length

f

Distance from object to the imager

D

Distance between the lens
principal point and the
front plane of LCTF

 2f

Angle of View

h2

h1

Magnification = h2/h1  f/(D+2f)

Fig. 14.1 The schematic of the LCTF-based spectral imager. Reproduced with permission from

Wang et al. (2012); ©2012 Elsevier
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14.3.1.3 Lens

The lens of the hyperspectral imager is a critical component that directly determines

several essential parameters of the spectral imager, such as the focal length (f),

angle of view (AOV), field of view (FOV), and the magnification (M). Similar to

the conventional camera system, these parameters can be estimated by using the

pinhole model of the camera (Fig. 14.1). However, it should be aware that the AOV

of the hyperspectral imager could also be affected by the AOV of the LCTF.

A couple of other things should be considered in the selection of the lens: a fast

lens (with large aperture) is often preferred since the LCTF absorbs a great amount

of light, and the lens should have proper coating to enhance the throughput and

reduce the image distortion in the desired spectral region.

14.3.1.4 Layout of the Hyperspectral Imager

There are two common layouts (Fig. 14.2) for the LCTF-based hyperspectral

imager: (I) the lens is placed between the LCTF and the camera, and (II) the lens

is put in front of the spectral imager. The assembly layout of the hyperspectral

imager (the camera, the LCTF, and the lens) should be determined before selecting a

lens, since different assembly layouts would have different requirements of the lens.

(I)

(II)

LCTF

Camera

Lens
Relay
Optics

LCTFLens

Camera

FPA

FPA

Focal
length

f

FFD

Distance from object to the imager

D

Fig. 14.2 Two common layouts for the LCTF-based spectral imager: (a) the lens is placed

between the LCTF and the camera, and (b) the lens is in front of the LCTF, and relay optics is

used to focus the image of the object on the camera. Reproduced with permission from Wang

et al. (2012); ©2012 Elsevier
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For the layout I, due to the long and narrow light-path inside the LCTF, the light

could be easily blocked by the filter, resulting in reduced light at the edge of the lens

(mechanical vignetting). As a result, the edges of the captured images could be

blurry. A lens with a large f could mitigate the vignetting problem, but it would

require a longer object-to-camera distance due to the smaller angle of view.

Therefore, in some applications, the f of the lens would be a trade-off between

minimizing image vignetting and maximizing the AOV.

For the layout II, it’s necessary to use a lens of a long flange focal distance (FFD)

to focus the object on the focal plane arrays (FPA) of the camera. The FFD of a lens

refers to the distance between the lens rear flange and the focal plane of the camera.

Currently, the thickness of the LCTF is often greater than the FFD of most off-the-

shelf lenses. Thus, this layout often requires a custom relay optics to refocus the

light to the FPA of the detector, which would greatly increase the complexity, size,

and design cost of the spectral imager.

14.3.1.5 Illumination

LCTF-based hyperspectral imaging systems require area illumination. A good area

illumination for the hyperspectral imaging should provide stable spectral output and

uniform lighting in the illuminated area. Tungsten halogen lamps and LEDs are two

most common light sources used for the hyperspectral imaging system (Lawrence

et al. 2007). Besides high performance lighting bulbs, stabilized DC power supply

is often desired to keep the spectral output of the lamps stable. Similar to conven-

tional machine vision systems, light uniformity can be enhanced by using multiple

lamps and arranging them with suitable geometry, and by applying optic diffusers,

reflectors, etc. In many applications, chambers with high reflectance coating were

also used to enhance the light uniformity.

14.3.1.6 Data Acquisition Program

Another major effort of integrating the LCTF-based HSI system is data acquisition

program, which synchronizes the camera and the LCTF to collect 2-D images

sequentially, and constructs the 3-D hyperspectral image cube ((x,y) in spatial

and λ in spectral axis) in the meantime. To develop data acquisition program for

an HSI system, many programming languages could be used, such as C++ (Yoon

et al. 2011), Microsoft Visual Basic (Kim et al. 2001), and LabVIEW (Wang

et al. 2012). The selection of the programming language depends on many factors,

such as the developer’s expertise and the availability of the hardware drivers.

The key function of the data acquisition program is to construct the 3-D image

cube in the format that could be recognized by other HSI data analysis programs.

Currently, there are three common formats to encode a spectral image: band
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interleaved by pixel format (BIP), band interleaved by line format (BIL), and band

sequential format (BSQ). The BIP format first stores the spectrum of the first pixel

across all bands, and then saves the spectrum of the next pixel in succession until the

last pixel. The BIL format uses line as the processing unit: save the first line of

the image at the first band, and then iteratively process the same line of the image at

the following bands. Then, it saves the remaining lines for all bands successively. The

BSQ format stores 2-D spatial images band by band in a sequential order. Although

all three formats are inter-convertible, for the LCTF-based spectral imaging system,

it’s most efficient to encode the spectral images in BSQ format.

The data acquisition program should be user-friendly and reliable. If needed,

data pre-processing, post-processing, and data analysis functions could also be

included. Figure 14.3 illustrates an LabVIEW data acquisition program for an

LCTF-based spectral imaging system (Wang et al. 2012), which was designed to

acquire either hyperspectral or multispectral images over the spectral range of 900–

1700 nm. The program also provides certain advanced functions to enhance the

usability of the system, such as the spectral sensitivity correction, noise reduction,

selection of region of interest, ensemble averaging (co-adding), and band ratio

image, etc.

Fig. 14.3 An LabVIEW data acquisition program for an LCTF-based spectral imaging system
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14.3.2 System Calibration

Similar to other types of spectral imaging system, an LCTF-based hyperspectral

imaging system should be calibrated in both spatial and spectral domains. The main

aspects of an HSI system that should be calibrated include: the spectral accuracy,

resolution, sensitivity, linearity, stability of the system, the spatial resolution, field

of view, spatial pattern noise, and image distortion, etc. (Lawrence et al. 2003; Lu

and Chen 1998; Wang et al. 2012).

14.3.2.1 Calibration in Spectral Domain

• Spectral sensitivity

For an HSI system, its spectral output should be similar at the wavelength

bands where the object has identical spectral characteristics. In reality, the

system’s spectral sensitivity varies across the spectral bands because each

component of the system responds differently at different wavelengths. For the

LCTF-based spectral imaging system, its spectral sensitivity is determined by

the spectral output of the light source, the transmittance of the LCTF, the

transmittance of the lens, and the sensitivity of the camera. Since calibrating

each unit individually could be formidable, the spectral sensitivity correction of

the HSI system is often conducted by considering the HSI system as an integral

unit. For the line-scan HSI system, the spectral sensitivity correction mainly

counts on the flat-field correction. For the LCTF-based HSI system, in addition

to the flat-field correction in the image post-processing stage, the correction

spectral sensitivity could be conducted by adjusting the camera’s exposure time

and digital gains during the data acquisition.

• Linearity

The calibration of the system’s spectral linearity is often carried out by

measuring multi-step contrast standards. A multi-step contrast target often

consists of multiple side-by-side sub-panels, which have different levels of

known reflectance rates (in percentage). These sub-panels and a white reference

target should be scanned under the same circumstances (lighting, position,

temperature, etc.). Then, the reflectance values of the sub-panels can be

converted to relative values (the system’s responses to these targets) using flat-

field corrections. The linearity of the HSI system can be evaluated by testing the

linear relationship between the measured reflectance values and the actual values

of the targets band by band.

• Stability

The stability of an LCTF-based HSI system can be evaluated by the same

methods used for other spectroscopic/imaging systems: repeatedly measuring a

target of standard reflectance material (i.e., a certified white reference panel or a

Teflon board) within a certain period. Then the variances could be evaluated in

the spectra point by point, or in the images band by band. If the system tends to

be unreasonably unstable, it’s critical to identify the reason. There are several
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factors that could greatly affect the stability of an LCTF-based HSI system: the

stability of the power source, the performance of the illumination unit, and the

operation temperature of the LCTF/the camera. Sometimes, improper

processing algorithm in software could also affect the stability of the system.

• Denoising

There are many methods that can be applied to reduce the spectral noises of an

HSI system. The most common one is ensemble averaging (co-adding), which

simply averages multiple scans so that the random noises in scans could coun-

teract each other. In the LCTF-based hyperspectral imaging, this could be done

in either spatial domain (by scanning and averaging multiple images at each

band) or spectral domain (by binning the pixels after scanning).

14.3.2.2 Calibration in Spatial Domain

• Angle of view (AOV)/Field of view (FOV)

The FOV/AOV of the LCTF-based hyperspectral imaging system are affected

by multiple components (the LCTF, the lens, and camera). Thus, for an LCTF-

based hyperspectral imaging system, instead of calculating based on the param-

eters of the components, it is better to measure its effective FOV as a function of

distance and then calculate the AOV of the system.

• Spatial pattern noises

Due to the non-uniformity of the illumination and the noises in the FPA of the

detector, the HSI system often has significant responsivity variations in the

spatial domain, known as “pattern noise”. In spectral imaging, this kind of

noise is often corrected in the image post-processing stage by the flat-field

correction, which converts raw spectral images to percentage spectral images

using the “white-reference” and “dark” images (Lu and Chen 1998).

• Spatial resolution

The spatial resolution of this system can be easily measured by using the

standard image resolution targets such as USAF 1951 and NBS 1963A resolu-

tion targets. However, the focus point of the LCTF-based HSI system could vary

at different wavelengths. The spatial resolution in the defocused images could be

much lower than that of in the well-focused images. Thus, it is necessary to

measure the spatial resolution of the system across the wavelength bands.

• Image distortion and shift

In an LCTF-based HSI system, the image distortion/shift in the spectral

images is mainly caused by the chromatic aberration and geometric distortion

of the lens. To calibrate these errors in hyperspectral images, a simple approach

is to extend the conventional lens distortion correction method in the 2-D image

to the 3-D hyperspectral image. Usually, a target with certain pattern(s) should

be scanned from different perspectives, and then the lens distortion can be

measured by using certain algorithms band by band. A number of geometric

controlled points in the target could be used to evaluate the image shift by

comparing the pixel positions of these points at different wavelengths.
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14.4 Applications of LCTF-Based Hyperspectral
Imaging to Fresh Vegetables

14.4.1 Detecting Sour Skin in Onions

Sour skin (Burkholderia cepacia) is a major bacterial disease in onion postharvest.

The exposure of onions to sour skin infection is particularly dangerous in storage

rooms since the pathogen will spread gradually and affect other clean onions,

resulting in substantial storage losses. Moreover, some strains of Burkholderia
cepacia (B. cepacia) are human pathogens, which were deemed as leading causes

for death in individuals with cystic fibrosis (Holmes et al. 1998). Thus, it’s

important to identify and eliminate sour skin-infected onions on the onion sorting

lines so that B. cepacia could not enter the storage room and not been consumed by

human. Conventional automatic classification systems for vegetables, however, are

not capable to screen sour skin-infected onions from clean ones due to the compli-

cated presence of the outer dry skins on onions.

Wang et al. (2012) reported an application of detecting sour skin-infected onions

by LCTF-based spectral imaging. The study demonstrates the efficacy of using

LCTF-based spectral imaging to develop classification models for the quality

inspection of vegetables.

14.4.1.1 NIR Hyperspectral Imaging System

An LCTF-based NIR spectral imaging system (Wang et al. 2012) was integrated

to acquire hyperspectral reflectance images of onions in the spectral region of

950–1650 nm. The system mainly consisted of the following hardware components:

• An LCTF (LNIR 20-HC-20, Cambridge Research & Instrumentation, Cam-

bridge, MA, USA), which can select a narrow bandpass of light from 850–

1800 nm, with 20 nm bandwidths on average.

• An indium gallium arsenide (InGaAs) camera (SU320KTS-1.7RT, Goodrich,

Sensors Unlimited, Inc, Princeton, NJ, USA).The camera has 320�256 pixels

focal plane array (FPA) with 25 μm pitches, with a maximum speed of 60 fps and

12-bit digital output.

• A near-infrared lens (SOLO 50, Goodrich, Sensors Unlimited, Inc, Princeton,

NJ, USA). The lens (50mm focal length, f/1.4 aperture) has high throughput in

the spectral region of 900–1700 nm.

• Four 12-V 50 watt DC quartz halogen lamps (S4121, Superior Lighting, Fort

Lauderdale, FL, USA) for providing a NIR lighting source. Ground glass

diffusers were applied to increase the uniformity of the lighting.

• A Camera Link frame grabber (NI PCI-1426, National Instruments, Austin, TX,

USA) for acquiring images from the InGaAs camera.

14 LCTF Hyperspectral Imaging for Vegetable Quality Evaluation 343



Figure 14.4 shows the hardware layout of the LCTF-based hyperspectral

imaging system. The system was enclosed in a 600 � 600� mm (L�W�H)

aluminum chamber. The chamber was covered by black cloth to avoid the outside

ambient light. An image acquisition program was developed in LabVIEW graphical

programming language (National Instruments, Austin, TX, USA) and was installed

on a desktop computer (Intel Duo processor E8200 and 4GB RAM). This system

was calibrated in both spatial and spectral domains, the detail procedure and

techniques for calibrating the system are described in Wang et al. (2012).

14.4.1.2 Sample Preparation and Image Acquisition

In total, 75 medium/jumbo sweet onions (c.v. Savannah Sweet) were used. Onions

were harvested from the state of Georgia, USA in May 2010. All onions were

manually selected and inspected to be clean. The selected onions were stored

individually in plastic bags and labelled by sequential integer numbers written on

the bags. The onions were randomly divided to two groups: 70 samples (group 1)

Fig. 14.4 The hardware

layout the LCTF-based

hyperspectral imaging

system for detecting sour

skin in onions. Reproduced

with permission from Wang

et al. (2012); ©2012
Elsevier
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and 5 control samples (group 2). A suspension of B. cepacia was prepared in

sterilized tap water as sour skin inoculum. B. cepacia was originally isolated

from sour skin-infected onions harvested in Georgia and cultured on potato dex-

trose agar medium.

On day 0, all 75 onion samples were scanned in 950–1650 nm (2 nm intervals)

using the LCTF-based HSI system. Each onion was scanned three times and the

averaged hyperspectral image was used. After scanning, the 70 onions in group

1 were inoculated with the B. cepacia inoculum. The 5 onions in group 2 were

inoculated with sterilized tap water as control samples. Inoculated onions were stored

in plastic bags individually to avoid cross contamination. All samples were placed in

an incubator at 30 � 1 ∘C and 80% relative humidity. This inoculation/incubation

procedure intended to mimic the natural process of sour skin infection, which could

result in the early sour skin symptoms on onion surface in 4–5 days.

On the fifth day after the inoculation (DAI), all onion samples were scanned

again using the LCTF-based HSI system, with the same configurations on day

0. After all scans, onions were cut in half from the neck to root to confirm the real

infection areas. In total, 150 hyperspectral images were collected from 75 onion

samples on 2 days. All hyperspectral images were converted to relative images

using flat-field corrections.

14.4.1.3 Wavelength Selection

In non-destructive quality inspection of vegetables, scanning time is often desired

to be short. Thus, for many applications of using hyperspectral imaging for quality

inspection of vegetables, wavelength selection should be conducted to identify

the key wavelengths contributing to the classification. In the other words, the

wavelengths that have no or small discrimination power should be eliminated to

improve the efficiency of the data processing.

In this application, 5 onions inoculated with B. cepacia were selected for

wavelength selection. The hyperspectral images of the selected onions on day

0 were used to extract the spectra of healthy onion and the ones on 5 DAI were

used to acquire the spectra of sour skin-infected onions. Four regions of interest

(ROIs) (6�6 pixels) were manually selected from the neck area and shoulder bulb

area on each onion. Spectra were extracted from the selected ROIs using the ENVI

software (ITT Visual Information Solutions, Boulder, CO, USA), respectively. The

extracted reflectance spectra were averaged and converted to absorption spectra by

using log(1/R) (Fig. 14.5), in which R refers to the mean reflectance spectrum of

that type of onion tissue.

When onions were sour skin-infected, the absorbance spectrum of neck tissues

was about 26–62% higher than that of the healthy ones in 950–1650 nm. The

largest disparity occurred in the spectral region of 1410–1460 nm, which mostly

caused by the difference of the moisture content in healthy and diseased neck

tissues. Based on the direct observations on these spectra, the neck tissues are

more indicative to sour skin.
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To determine a minimum number of key wavelengths, principal component

analysis (PCA) was used to analyze the spectral data. PCA is a classic

eigenvector-based algorithm for feature selection and dimension reduction, in

which the variance of the original data set are explained by a number of principal

components (PCs). The loadings (coefficients) of PCs determine the weights

(importance) of original variables in the PCs.

In this application, PCAs were conducted on the datasets of the extracted spectra

of the tissues on the onion neck area and the tissues on the bulb area, respectively.

For the neck tissues, the first and second PC accounted for 83.53% and 15.12%

variance of the dataset, respectively. For the bulb tissues, the first and second PC

represented 95.26% and 4.24% variance of the dataset, respectively. That means,

for either PCA model, the majority of the variance can be described by the first two

PCs. Therefore, wavelength selection was conducted based on the loading values of

the first and second PC (Fig. 14.8). As a common practice, the maxima and minima

of their PC loadings were identified as the potential key spectral bands. As a result,

two pairs of important wavelengths (1070 and 1420 nm) and (1070 and 1400 nm)

were identified from the PCA models on the spectra of onion bulb tissues

(Fig. 14.8a) and the spectra of onion neck tissues (Fig. 14.8b), respectively.

The wavelength pair of 1070 and 1400 nm was finally selected for the following

justifications: (1) from the direct observations in Fig. 14.5, the neck tissue is more

indicative; (2) the spectral characteristics of onion tissues at wavelengths 1400 and
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Fig. 14.5 The representative spectra for disease-free (healthy) bulb tissues and neck tissues, sour

skin-infected (diseased) bulb tissues and neck tissues of onions. Reproduced with permission from

Wang et al. (2012); ©2012 Elsevier
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1420 nm are quite close. Thus, there is no need to include both images at 1400 and

1420 nm in classifications.

14.4.1.4 Image Processing for Features Extraction

After the key wavebands were determined, image processing techniques were

applied to extract features for classifications (Fig. 14.6). Onion images at two

selected wavelengths (1070 and 1400 nm) were extracted from their hyperspectral

images, and then combined to a single grayscale image by applying the logarithmic

conversion of the ratio (log-ratio): IR ¼ log10
I1070
I1400

. To avoid infinite values in ratio

images, the pixels with zero values in the image at 1400 nm were excluded from

computation, and the 3�3 median filter was applied to pre-process both images

Fig. 14.6 Flowchart of the imaging processing procedure for the feature selection and the

detections of sour skin-infected onions. Reproduced with permission from Wang et al. (2012);

©2012 Elsevier

14 LCTF Hyperspectral Imaging for Vegetable Quality Evaluation 347



before log-ratio conversions. Compare to regular band ratio methods, the advantage

of using log-ratio conversion is that it can transform the residual multiplicative

speckle noise to an additive noise component (Chen 2007).

Figure 14.7 illustrates the log-ratio images of three onion samples inoculated

with B. cepacia and one control sample inoculated by tap water. For the onion

samples inoculated with B. cepacia, the neck area on their log-ratio images on

5 DAI was much brighter than the body area, while this difference was not observed

in the images before inoculation. The log-ratio images of the control sample (onion

4 in Fig. 14.7) before inoculation and on 5 DAI, in contrast, are quite close.

Therefore, the bright neck areas (high ratio values) in the log-ratio images of sour

skin-infected onions were associated with the sour skin symptoms appearing on the

neck area of the onions.

The bright region on the bulb area of the onions are also indicative of the

infection of sour skin. However, the contrast of sour skin-infected tissue to healthy

tissue in body area was not as apparent as that in the neck area. This could be

explained by the physical structure of the onion bulb. When an onion is infected by

sour skin, the fluid released from rot onion tissues flows in the spaces between

internal scales of the onion. Compared to dry skins/flesh scales on body area, dry

neck tissues of onions could more easily absorb and hold the fluid, which results in a

higher light absorbance at 1400 nm (a strong light absorption band of water). In

sum, the presence of the sour skin changed the reflectance intensity with different

rates at 1070 and 1400 nm, which are detected by the log-ratio images. Therefore,

these log-ratio images are useful to distinguish the sour skin onions from

healthy ones.

Onion 1

Before
Inoculation

5 days after
Inoculation

Onion 2 Onion 3 Onion 4 (control)

Fig. 14.7 Log-ratio images of four onion samples. Onions 1–3 were inoculated with B.cepacia
and onion 4 was inoculated with sterilized tap water. The images at the top row were extracted

from the HSI images of onions before inoculation, and the ones at the bottom row was obtained

from the HSI images taken on 5 days after inoculation. Reproduced with permission from Wang

et al. (2012); ©2012 Elsevier
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As illustrated in Fig. 14.6, two types of image features were further extracted

based on the log-ratio image of onions: one directly segregated the diseased areas of

onions and used the total pixel number as the feature, and the other extracted the

statistical and textural image features from the log-ratio images. The first approach

basically estimated the size of areas that show sour skin symptom. As for the second

approach, three statistical or textural image features were used: max, contrast, and

homogeneity, which were selected from 12 common image features (max, min,

range, median, mean, standard deviation, skewness, kurtosis, entropy, contrast,

energy, and homogeneity) by applying stepwise discriminant analysis. The feature

“max” describes the largest difference in intensity between the onion images at the

wavelengths of 1070 and 1400 nm. For a sour skin-infected onion, this parameter is

related to the most serious sour skin infection area that gives the maximal value in

log-ratio images. The feature “contrast” measures the local gray level variations

among pixels and the last parameter “homogeneity” measures the closeness of local

gray values. The “contrast” and “homogeneity” are related to both the size and the

level of the infection of overall sour skin infection area on the log-ratio images. For

example, if an onion has a larger infection area and higher infection level than

others, its log-ratio image should have a high “contrast” and low “homogeneity”

values. In sum, the combination of “max”, “contrast”, and ‘homogeneity” consid-

ered both the size of the infected area and the infection level of sour skin in onions.

14.4.1.5 Classification

Two types of supervised classifiers were developed to classify healthy and sour

skin-infected onions. The first type of classifier used Fisher’s linear discriminant

analysis (LDA) to make discriminations, based on the pixel number of the segre-

gated diseased areas in onion log-ratio images. The second type of classifier was

developed on support vector machine (SVM) based on the three image features

extracted from the onion log-ratio images. The optimal configurations of the LDA

and SVM classifiers were searched and evaluated using the tenfold cross validation,

in which 126 log-ratio images were used for training and 14 log-ratio images were

used for classification in each fold. The classification results are listed in Table 14.1

Table 14.1 The classification results of the LDA and the SVM classifiers

LDA SVM

Healthy Sour skin Accuracy Healthy Sour skin Accuracy

Actual Healthy 68 2 97.14% 57 13 81.43%

Sour skin 26 44 62.86% 5 65 92.86%

Sum 94 46 80% 62 78 87.14%

Reproduced with permission from Wang et al. (2012); ©2012 Elsevier

LDA linear discriminant analysis based on the pixel number after thresholding (threshold¼ 0. 45),

SVM support vector machine using three image parameters (max, contrast, and homogeneity)
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For the approach of using LDA, the best classifier using the global threshold 0.45

achieved a classification rates of 80%, with a relatively high false negative (26 out

of 70) and low false positive (2 out of 70). The mis-classifications were mainly

caused by the pixels of the wet flesh (no dry skin) of healthy onion, which has high

log-ratio values due to high water content. For instance, on the onion 3 in Fig. 14.7,

there is an small onion bulb area where the dry skin fell off. The exposed flesh scale,

due to its high moisture content (> 80%), also showed higher log-ratio values

similar to the sour skin-infected tissues. Due to these false positive areas, the global

threshold value determined by the LDA was relatively high. As a result, the onion

samples with relatively small infection area were mis-classified as healthy onions.

The optimal SVM classifier (RBF kernel, γ¼ 1. 5) using three image features

achieved a higher classification accuracy of 87.14%. It performed a little better

than the LDA classifier because that the SVM classifier using three image features

considered both the size and the infection level of onion sour skin infections,

whereas the LDA method can only count on the total size of sour skin infected

areas. Thus, the SVM classifier achieved a better balance between false negative

(5 out of 70) and false positive (13 out of 70). Similar to the LDA classifier, the

relatively high false positive of the SVM classifier was mostly caused by those

healthy onions with wet flesh scales on the bulb areas. Therefore, to further improve

the performance of the proposed algorithm, the wet flesh scales on onions should be

identified and excluded before classification.

In sum, this application illustrates an example of using the LCTF-based HSI to

detect sour skin-infected onions. The log-ratio image utilizing two optimal wave-

lengths (1070 and 1400nm) was proven to be effective in magnifying the spectral

differences between healthy and sour skin-infected onions. Moreover, the application

shows the flexibility of the LCTF-based spectral imaging system, which could be used

as the hyperspectral imaging system to develop the inspection approach, and then be

used as the multispectral imaging system for verifying the developed method.

14.4.2 Onion Internal Quality Prediction

The second application example is provided to demonstrate onion internal quality

prediction using the LCTF-based HSI system.

A total of 308 onion samples harvested in three states in the United States in

2011 were used to develop calibration models in this study. All onion samples were

stored in a cold storage room (2 � 1 ∘C and relative humidity 70%) in the Vidalia

Onion Lab of the University of Georgia until experiments were conducted. The

onions were moved to a room with an ambient temperature of 23.9 ∘C about 2 h

before data acquisition. All onions were cleaned by removing the surface dirt and

dry leaves before imaging. Firmness reference was measured manually using the

Magness-Taylor testing platform (FT 30, Wagner Instruments, Greenwich, Con-

necticut, USA) with a 11mm in diameter probe. The squeezed onion juice was

tested with a refractometer (range of 0–30∘Brix) for the soluble solids content.

Onion samples were placed in aluminum cups and were heated in an oven
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(Model 845, Precision Scientific Company, Winchester, IL, USA) with a temper-

ature of 75 ∘C for 12 h. The dry matter content was calculated as the ratio of the

onion weight after and before the oven drying.

The LCTF-based NIR hyperspectral imaging system was developed by the Bio-

Sensing and Instrumentation Lab at the University of Georgia, which was the same

as used in the first case study (Sect. 14.4.1). Diffuse reflectance mode was used for

image acquisition. Onions were sampled at two points (180∘ apart) when the root-

neck axis was placed horizontally. A total of 616 hyperspectral images were saved

for 308 onion samples. Dark spectra images with lens covered and white spectra

images of the standard white board (Spectralon, Labsphere, Inc., North Sutton, New

Hampshire, USA) were collected for every 10 onions. Then, the flat-field correction

was conducted for each of the spectra image of onions (Fig. 14.8).

The spectra of onions were extracted from five regions of interests (ROI) in the

onion image (Fig. 14.9). Each ROI was a 10 � 10 pixel square, corresponding to

0.12
0.10
0.08
0.06

PC 1 loadings
PC 2 loadings

PC 1 loadings
PC 2 loadings

900 1000 1100 1200 1300 1400 1500 1600 1700 900 1000 1100 1200 1300 1400 1500 1600 1700

0.04
0.02

P
C

 L
o

ad
in

g

Wavelength (nm)

1070 nm 1420 nm 1070 nm 1400 nm

Wavelength (nm)

P
C

 L
o

ad
in

g

0.00
−0.02
−0.04
−0.06
−0.08
−0.10
−0.12

0.12
0.10
0.08
0.06
0.04
0.02
0.00

−0.02
−0.04
−0.06
−0.08
−0.10
−0.12

a b
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permission from Wang et al. (2012); ©2012 Elsevier

Fig. 14.9 ROI selection on

a reflectance image. The

numbers indicate the

distance between two ROIs
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100 individual spectra. In order to reduce the amount of data and enhance the signal

to noise ratio, the 100 spectra in each ROI were averaged as one individual

spectrum for later analysis.

Partial least square regression (PLSR) technique was used to utilize the spectral

data for onion internal quality prediction. The extracted spectra were preprocessed

using wavelet smoothing and multiplicative scatter correction. The Interactive

Dynamic Language (IDL) programming language (ITT Visual the Information

Solutions, Boulder, CO, USA) was used to pre-process the spectral images.

MATLAB 2009b (the Math Works Inc., in Natick,, Massachusetts, USA) was

used for PLSR model development.

The performance of the calibration and validation model for onion internal

quality prediction was presented in Table 14.2. The prediction of SSC and DM

were comparable (R2¼ 0.81–0.83), both of which were substantially better than

firmness (R2¼ 0. 46). The RPD (ratio of SEP to SD) is an indicator of robustness of

the model. The RPD value of the validation for both SSC and DM was greater than

2, suggesting that both modes could achieve a reasonable prediction accuracy

(Nicolaı̈ et al. 2007). Several studies have reported that SSC can be reliably

predicted using NIR spectroscopy for several fruits such as kiwifruits

(SEP¼ 0.80∘Brix) (Schaare and Fraser 2000), apples (SEP¼ 0.28–0.56∘Brix)

(Park et al. 2003), and sweet cherries (SEP¼ 0.65–0.71∘Brix) (Lu 2001). Although

the SSC prediction presented in this study was not as good as those for other fruits

in the literature, it was better than that in a similar study done on onions

(SEP¼ 3.41∘Brix) (Birth et al. 1985).

Given the high correlation between the DM and the SSC, it is not surprising that

the performance of the calibration models for DM prediction was comparable to

that of the SSC prediction. In Birth et al.’s study (Birth et al. 1985), the SEP of DM

prediction was between 0.79 and 1.73%, which was better than the result obtained

in this study. Provided that the spectral imaging system typically has lower SNR

than the spectrometer, the result obtained from this study was respectable.

It seemed that firmness could not be well predicted using the NIR spectral

imaging system with reflectance mode. This could be due to two reasons: (1) firm-

ness is determined by cellular structure of the tissue, which is more of a physical

property than a chemical property, whereas the strength of the NIR spectroscopy

lies in measuring chemical properties, such as sugar and water content; (2) the

reference measurement of firmness could be prone to error. As Lu et al. (2000)

acknowledged, there was a poor correlation between apple firmness and the max-

imum force of Magness-Taylor (MT) firmness measurement (a penetration test). In

addition, the multi-layer structure of the onion may also pose a challenge for

accurate firmness measurement.
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14.5 Conclusion

The hyperspectral imaging system based on the liquid crystal tunable filter has its

unique advantages over the line scan systems. First, the filter based HSI system does

not have moving parts, which can be easily implemented in certain applications.

Second, an existing CCD or NIR camera system could be readily retrofitted into a

hyperspectral imaging system by adding the LCTF component. Therefore, LCTF-

based spectral imaging provides an alternative and competitive nondestructive

solution compared to other hyperspectral imaging systems. As demonstrated in

two cases of this chapter, the HSI system based on the LCTF showed great promise

to detect invisible bacterial diseases and to predict internal qualities of onions. We

expect that the LCTF-based HSI systems will have more applications in vegetable

quality evaluation in the future. There are many aspects that LCTF HSI systems can

be further improved, such as having a faster tuning speed, larger working aperture,

and broader wavelength range.

Acknowledgements Authors would like to thank Dr. Haihua Wang for his work on some of the

data presented in this chapter.

References

Archibald D, Thai C, Dowell F (1999) Development of short-wavelength near-infrared spectral

imaging for grain color classification. Proc SPIE 3543:189–198

Ariana D, Lu R, Guyer DE (2006) Near-infrared hyperspectral reflectance imaging for detection of

bruises on pickling cucumbers. Comput Electron Agric 53:60–70

Birth G, Dull G, Magee J, Chan H, Cavaletto C (1984) An optical method for estimating papaya

maturity. J ASHS 109(1):62–66

Birth G, Dull G, Renfroe W, Kays S (1985) Nondestructive spectrophotometric determination of

dry matter in onions. J ASHS 110(2):297–303

Boyhan GE, Torrance RL (2002) Vidalia onions–sweet onion production in southeastern georgia.

HortTechnology 12(2):196–202

van de Broek W, Wienke D, Melssen W, de Crom C, Buydens L (1995) Identification of plastics

among nonplastics in mixed waste by remote sensing near-infrared imaging spectroscopy.

1. Image improvement and analysis by singular value decomposition. Anal Chem 67

(20):3753–3759

Burden D (2008) Onion profile. http://www.agmrc.org. Retrieved on 6 Aug 2008

Burkholder WH (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40(1):115

Ceponis M, Cappellini R, Lightner G (1986) Disorders in onion shipments to the New York

market, 1972–1984. Plant Dis 70(10):988–991

Chen C (2007) Image processing for remote sensing. Taylor & Francis, Boca Raton

Cho SI, Krutz GW, Gibson HG, Haghighi K (1990) Magnet console design of an NMR-based

sensor to detect ripeness of fruit. Trans ASAE 33(4):1043–1050

Cogdill RP, Hurburgh Jr, CR, Rippke GR (2004) Single-kernel maize analysis by near-infrared

hyperspectral imaging. Trans ASAE 47(1):311–320

Cubero S, Aleixos N, Molt�o E, G�omez-Sanchis J, Blasco J (2011) Advances in machine vision

applications for automatic inspection and quality evaluation of fruits and vegetables. Food

Bioprocess Technol 4:487–504

354 C. Li and W. Wang

http://www.agmrc.org


Dull G, Birth G, Leffler R (1989) Use of near infrared analysis for the nondestructive measurement

of dry matter in potatoes. Am Potato J 66:215–225

Dull GG, Birth GS, Smittle DA, Leffler RG (1989) Near infrared analysis of soluble solids in intact

cantaloupe. J Food Sci 54(2):393–395

ElMasry G, Wang N, ElSayed A, Ngadi M (2007) Hyperspectral imaging for nondestructive

determination of some quality attributes for strawberry. J Food Eng 81(1):98–107

ElMasry G, Wang N, Vigneault C, Qiao J, ElSayed A (2008) Early detection of apple bruises on

different background colors using hyperspectral imaging. LWT - Food Sci Technol

41:337–345

Evans M, Thai C, Grant J (1998) Development of a spectral imaging system based on a liquid

crystal tunable filter. Trans ASAE 41(6):1845–1852

Ezzati M, Riboli E (2012) Can noncommunicable diseases be prevented? Lessons from studies of

populations and individuals. Science 337:1482–1487

Fernandes A, Oliveira P, Moura J, Oliveira A, Falco V, Correia M, Melo-Pinto P (2011)

Determination of anthocyanin concentration in whole grape skins using hyperspectral imaging

and adaptive boosting neural networks. J Food Eng 105(2):216–226

Florkowski WJ, Shewfelt RL, Brueckner B, Prussia SE (2009) Postharvest handling a system

approach, 2nd edn. Academic, New York

Food and Agriculture Organization of the United Nations (2012) World onion production 2010.

http://faostat.fao.org/site/567/default.aspx. Retrieved 10 Nov 2012

Gat N (2000) Imaging spectroscopy using tunable filters: a review. Proc SPIE 4056:50–64

G�omez-Sanchis J, Gomez-Chova L, Aleixos N, Camps-Valls G, Montesinos-Herrero C, Molt E,

Blasco J (2008) Hyperspectral system for early detection of rottenness caused by Penicillium
digitatum in mandarins. J Food Eng 89(1):80–86

Holmes A, Govan J, Goldstein R (1998) Agricultural use of Burkholderia (Pseudomonas) cepacia:

a threat to human health? Emerg Infect Dis 4(2):221–227

Jiang L, Zhu B, Rao X, Berney G, Tao Y (2007) Discrimination of black walnut shell and pulp in

hyperspectral fluorescence imagery using gaussian kernel function approach. J Food Eng

81:108–117

Kazemi S, Wang N, Ngadi M, Prasher SO (2005) Evaluation of frying oil quality using VIS/NIR

hyperspectral analysis. Agric Eng Int VII

Kim MS, Chen YR, Mehl PM (2001) Hyperspectral reflectance and fluorescence imaging system

for food quality and safety. Trans ASAE 44(3):720–729

Kim MS, Chao K, Chan DE, Jun W, Lefcourt AM, Delwiche SR, Kang S, Lee K (2011) Line-scan

hyperspectral imaging platform for agro-food safety and quality evaluationl system enhance-

ment and characterization. Trans ASABE 54(2):703–711

Lawrence KC, Park B, Windham WR, Mao C (2003) Calibration of a pushbroom hyperspectral

imaging system for agricultural inspection. Trans ASAE 46(2):513–521

Lawrence KC, Park B, Windham G, Thai CN (2007) Evaluation of LED and tungsten-halogen

lighting for fecal contaminant detection. Appl Eng Agric 23(6): 811–818

Li C, Gitaitis R, Tollner B, Sumner P, MacLean D (2009) Onion sour skin detection using a gas

sensor array and support vector machine. Sens Instrumen Food Qual 3(4):193–202

Liao K, Paulsen M, Reid J (1994) Real-time detection of colour and surface defects of maize

kernels using machine vision. J Agric Eng 59:263–271

Lorente D, Aleixos N, G�omez-Sanchis J, Cubero S, Garcı́a-Navarrete O, Blasco J (2012) Recent

advances and applications of hyperspectral imaging for fruit and vegetable quality assessment.

Food and Bioprocess Technol 5(4):1121–1142

Lu R (2001) Predicting firmness and sugar content of sweet cherries using near-infrared diffuse

reflectance spectroscopy. Trans ASAE 44(5):1265–1271

Lu R (2003) Imaging spectroscopy for assessing internal quality of apple fruit. In: ASABE annual

international meeting, Las Vegas. Paper Number 036012

Lu R (2004) Multispectral imaging for predicting firmness and soluble solids content of apple fruit.

Postharvest Biol Technol 31(2):147–157

14 LCTF Hyperspectral Imaging for Vegetable Quality Evaluation 355

http://faostat.fao.org/site/567/default.aspx


Lu R, Chen YR (1998) Hyperspectral imaging for safety inspection of food and agricultural

products. Proc SPIE 3544: 121–133

Lu R, Peng Y (2006) Hyperspectral scattering for assessing peach fruit firmness. Biosyst Eng

93:161–171

Lu R, Guyer D, Beaudry R (2000) Determination of firmness and sugar content of apples using

near-infrared diffuse reflectance. J Texture Stud 31(6):615–630

Mahesh S, Manickavasagan A, Jayas DS, Paliwal J, White NDG (2008) Feasibility of near-

infrared hyperspectral imaging to differentiate canadian wheat classes. Biosyst Eng 101

(1):50–57

National Onion Association (2008) About onions: bulb onion production. http://www.onions-usa.

org/about/season.asp. Retrieved 2 Aug 2008

Nicolaı̈ BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J (2007)

Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a

review. Postharvest Biol Technol 46(2):99–118

Osborne B, Fearn T (1986) Near infrared spectroscopy in food analysis. Longman Scientific and

Technical, Harlow

Park B, Lawrence KC, Windham WR, Buhr RJ (2001) Hyperspectral imaging for detecting fecal

and ingesta contamination on poultry carcasses. In: ASAE annual international meeting,

Sacramento. Paper Number 013130

Park B, Lawrence K, Windham W, Buhr R (2002) Hyperspectral imaging for detecting fecal and

ingesta contamination on poultry carcasses. Trans ASAE 45(6):2017–2026

Park B, Abbott J, Lee K, Choi C, Choi K (2003) Near-infrared diffuse reflectance for quantitative

and qualitative measurement of soluble solids and firmness of delicious and gala apples. Trans

ASAE 46(6):1721–1732

Park B, Yoon SC, Lee S, Sundaram J, WindhamWR, Lawrence KC (2012) Acousto-optic tunable

filter hyperspectral microscope imaging method for characterizing spectra from foodborne

pathogens. Trans ASABE 55(5): 1997–2006

Qin J, Lu R (2005) Detection of pits in tart cherries by hyperspectral transmission imaging. Trans

ASAE 48(5):1963–1967

Rajkumar P, Wang N, EImasry G, Raghavan G, Gariepy Y (2012) Studies on banana fruit quality

and maturity stages using hyperspectral imaging. J Food Eng 108:194–200

Reich G (2005) Near-infrared spectroscopy and imaging: basic principles and pharmaceutical

applications. Adv Drug Deliv Rev 57(8):1109–1143

Schaare P, Fraser D (2000) Comparison of reflectance, interactance and transmission modes of

visible-near infrared spectroscopy for measuring internal properties of kiwifruit (actinidia

chinensis). Postharvest Biol Technol 20(2):175–184

Schwartz HF, Mohan SK (2008) Compendium of onion and garlic diseases and pests, 2nd edn. The

American Phytopathological Society, St. Paul

Shahin MA, Tollner EW, Gitaitis RD, Sumner DR, Maw BW (2002) Classification of sweet onions

based on internal defects using image processing and neural network techniques. Trans ASAE

45(5):1613–1618

Shewfelt RL, Prussia SE (1993) Postharvest handling a system approach. Academic, San Diego

Singh CB, Jayas DS, Paliwal J, White NDG (2009) Detection of insect-damaged wheat kernels

using near-infrared hyperspectral imaging. J Stored Prod Res 45(3):151–158

Slaughter D, Barrett D, Boersig M (1996) Nondestructive determination of soluble solids in

tomatoes using near infrared spectroscopy. J Food Sci 61(4):695–697

Slaughter D, Crisosto CH (1998) Nondestructive internal quality assessment of kiwifruit using

near-infrared spectroscopey. Semin Food Anal 3:131–140

Slaughter D, Thompson J, Tan E (2003) Nondestructive determination of total and soluble solids

in fresh prune using near infrared spectroscopy. Postharvest Biol Technol 28(3):437–444

Tao Y (1998) Closed loop search method for on-line automatic calibration of multi-camera

inspection systems. Trans ASAE 41(5):1549–1555

356 C. Li and W. Wang

http://www.onions-usa.org/about/season.asp
http://www.onions-usa.org/about/season.asp


USDA-NASS (2008) 2004–2005 statistical highlight of US agriculture: crops. http://www.usda.

gov/nass/pubs/stathigh//2005/cropindex.htm. Retrieved 23 July 2008

USDA-NASS (2012) U.S. Onion Statistics (94013). http://usda.mannlib.cornell.edu/MannUsda/

viewDocumentInfo.do?documentID¼1396. Retrieved 3 Jan 2012

Wang W, Li C, Tollner EW, Gitaitis R, Rains G (2012) A liquid crystal tunable filter based

shortwave infrared spectral imaging system: design and integration. Comput Electron Agric

80:126–134

Wang W, Li C, Tollner EW, Rains GC, Gitaitis RD (2012) A liquid crystal tunable filter based

shortwave infrared spectral imaging system: calibration and characterization. Comput Electron

Agric 80:135–144

Wang W, Li C, Tollner EW, Rains GC (2012) Development of software for spectral imaging data

acquisition using LabVIEW. Comput Electron Agric 84:68–75

Wang W, Li C, Tollner EW, Gitaitis RD, Rains GC (2012) Shortwave infrared hyperspectral

imaging for detecting sour skin (Burkholderia cepacia)-infected onions. J Food Eng 109

(1):38–48

Williams P, Norris K (2001) Near-infrared technology in the agricultural and food industries.

American Association of Cereal Chemists, St. Pual

Williams P, Geladi P, Fox G, Manley M (2009) Maize kernel hardness classification by near

infrared (NIR) hyperspectral imaging and multivariate data analysis. Anal Chim Acta 653

(2):121–130

Yoon SC, Park B, Lawrence KC, WindhamWR, Heitschmidt GW (2011) Line-scan hyperspectral

imaging system for real-time inspection of poultry carcasses with fecal material and ingesta.

Comput Electron Agric 79(2):159–168

14 LCTF Hyperspectral Imaging for Vegetable Quality Evaluation 357

http://www.usda.gov/nass/pubs/stathigh//2005/cropindex.htm
http://www.usda.gov/nass/pubs/stathigh//2005/cropindex.htm
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1396
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1396
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1396


Chapter 15

AOTF Hyperspectral Imaging for Foodborne
Pathogen Detection

Bosoon Park

15.1 Introduction

Hyperspectral imaging is an imaging technique that combines conventional imaging

with spectrophotometry and radiometry. The technique is capable of providing

absolute radiometric measurements over a contiguous spectral range for every

pixel of an image from target objects. Hyperspectral imaging, which was first

developed for earth remote sensing (Melgani and Bruzzone 2004), is now being

utilized in medical diagnosis (Lawlor et al. 2002; Carrasco et al. 2003; Sorg

et al. 2005; Dicker et al. 2006; Liu et al. 2007a) and biological (Burger and Geladi

2006), agricultural (Gowen et al. 2007), and industrial (Tatzer et al. 2005) applica-

tions. Since hyperspectral images contain physical and geometric observations of

size, orientation, shape, color, and texture in the visible spectral range, in addition to

chemical/molecular information such as water, fat, proteins, and other hydrogen–

bonded constituents in near-infrared spectral regions, hyperspectral imaging has

been extensively researched for food safety inspection (Kim et al. 2001; Vargas

et al. 2005; Yao et al. 2006; Park et al. 2006, 2007a, b; Kong et al. 2006; Liu

et al. 2007b; Jun et al. 2009; Peng et al. 2011; Feng and Sun 2012), quality evaluation

(Mehl et al. 2004; Nagata et al. 2006) and food processing (Park et al. 2002). Most

recently, hyperspectral imaging techniques have been developed for detecting or

identifying foodborne pathogens from poultry andmeat (Windham et al. 2012; Yoon

et al. 2009, 2011, 2013).

Food safety is an important issue for public health; about 3,562 outbreaks of food

commodities including poultry, egg, beef, pork, leafy greens, fruits, nuts, and dairy
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occurred during the past decade in the U.S. (CDC 2012), causing illness to a large

number of people. Germs and related foods responsible for most foodborne ill-

nesses are Salmonella in eggs, poultry, meat, produce; Campylobacter in poultry;

E. coli O157 in ground beef, leafy greens and raw milk; Listeria in deli meats,

produce; Vibrio in raw oysters; Norovirus in sandwiches, salads; and Toxoplasma in
meats.

In 2011, about 48 million incidences of foodborne illness occurred, resulting in

128,000 hospitalizations and 3,000 deaths in the United States. The cost of

foodborne illness in the U.S. is estimated to be approximately $77.7 billion a year

(Scharff 2012). Among the serious outbreaks from foodborne pathogens, Salmo-
nella had the most infections and incidence cases (15.1 %) followed by Campylo-
bacter (13 %) (CDC 2010). Challenges for food safety continue to arise in

unpredictable ways due to changes in food production and supply, changes in the

environment causing food contamination, rising numbers of multi-state outbreaks,

new and emerging germs, toxins and antibiotic resistance, and new and different

contaminated foods such as prepackaged raw materials.

Current detection methods for foodborne pathogens include ISO method 6579

(ISO 6579 2002), direct fluorescence antibody detection (Munson et al. 1976),

immunodetection such as enzyme-linked immunosorbant assay (ELISA) (Tian

et al. 1996), and polymerase chain reaction (PCR) (Correa et al. 2006). One of the

most widely applied methods of subtyping is pulsed-field gel electrophoresis

(PFGE), a technique in which fragments of the bacterial chromosome generated

by digestion with a restriction enzyme selected to cut the DNA into 20–25 pieces

are separated by electrophoresis (Gerner-Smidt et al. 2006; Swaminathan

et al. 2006; Terajima et al. 2006). However, all these methods have limitations

as field testing tools due to the time-consuming, cumbersome procedures for

obtaining results and sensitivity concerns. Hence traditional culture-based

methods still remain the most reliable and accurate “gold standard” techniques

for pathogen detection (Velusamy et al. 2010). This method involves the culturing

of an inoculum to amplify the microbial cell numbers followed by plating on a

selective or differential media to generate colonies that can be detected based on

their distinct colony morphologies. Culture-based methods are very sensitive with

good specificity and relatively inexpensive; and they also can give both colony

count estimations and qualitative information of the microorganisms present in

food samples. However, culture-based methods are labor intensive and take at

least 2–3 days for the microorganisms to multiply to visible colonies for a

presumptive positive result. Another challenge for culturing methods is that

unwanted background microflora grow together with target microorganisms on

agar media and often look similar. Hence, highly skilled personnel are required to

pick up presumptive-positive colonies by trial and error. However, this limitation

can be improved if it is coupled with optical detection methods such as

hyperspectral imaging, because they are more sensitive, accurate and rapid for

detecting foodborne pathogens.

The research group at the USDA Agricultural Research Service (ARS) facility in

Athens, Georgia has developed a macro-scale hyperspectral imaging technique to
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identify shiga toxin-producing Escherichia coli (STEC) serogroups by acquiring

both spatial and spectral information from colonies of each STEC serogroup on

Rainbow agar plate (Windham et al. 2012; Yoon et al. 2013). The spectral finger-

prints of bacteria obtained by a hyperspectral imaging method can be used for

detection and identification of pathogens grown on agar media. In particular, a

visible/near-infrared hyperspectral imaging technique with multivariate classifica-

tion models was developed to differentiate colonies of non-O157 STEC as well as

Campylobacter (Yoon et al. 2009). They found that hyperspectral imaging tech-

nique has the potential for rapidly identifying colonies of non-O157 STEC

serogroups on Rainbow agar plates inoculated with mixed cultures. Spatial and

spectral data analysis demonstrated that differences in the appearance of the

non-O157 STEC serogroup colonies are mainly due to the differences in absorption

bands and color tones from each colony. Color is the major feature exploited in the

classification model for STEC detection with 97 % classification accuracy (Yoon

et al. 2013). However, this macro-scale hyperspectral imaging method requires

incubation process at least 24 h. for fully grown bacterial colony on agar plates for

measurement. With micro-colonies grown in agar media, ARS scientists developed

a micro-scale optical method to identify foodborne pathogens with acousto-optic

tunable filter (AOTF)-based hyperspectral microscopic imaging technology. In this

chapter, we describe a new optical method of detecting and identifying foodborne

pathogenic bacteria with hyperspectral microscopic imaging technique and classi-

fication methods.

15.2 Hyperspectral Microscope Imaging Technology
and Hyperspectral Imaging Platform

A non-invasive optical method with hyperspectral microscope imaging is promis-

ing for real-time, in-situ foodborne pathogen detection with less colony biomass or

microcolony by minimizing incubation time (Park et al. 2012a, b). In order to

understand optical properties of foodborne pathogenic bacteria, a hyperspectral

microscope imaging (HMI) system that provides both spatial and spectral informa-

tion of bacterial samples at the cell level can be an effective tool (Park et al. 2011a).

Hyperspectral microscopy has been studied for biological and medical applications

(Huebschman et al. 2002; Zimmerman et al. 2003; De Beule et al. 2007; Ibraheem

et al. 2006; Vermaas et al. 2008; Gehm and Brady 2009), yet no successful results

have been obtained for bacterial live cell identification.

There are several different platforms for hyperspectral imaging, including

pushbroom, acousto-optic tunable filter (AOTF), filterwheel, and liquid crystal tunable

filter (LCTF). In selecting a platform, we need to consider several parameters, includ-

ing imaging technique, spectral and spatial resolution, data capturing mode or speed,

transmittance intensity, switching speed of the filter, and so on. A pushbroom-based

platform commonly uses a dispersive and grating-prism-grating scanning method.
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The pushbroom technique has a high spectral resolution and relatively high

transmission and variable switching speed for image acquisition. In contrast, AOTF

uses solid-state non-linear crystal to generate hyperspectral images. It has a dynami-

cally variable spectral resolution, and a variable sequential band-pass width with a

randomaccess ability.ALCTF-based platform, however, has a fixed and priori defined

spectral resolution and fixed sequential band-pass with a random access image acqui-

sition. This platform has relatively low transmission. Similar to the AOTF platform, a

switching speed is not fast. Thus, the selection of hyperspectral imaging platform is

fully dependent on applications. TheARS research group developed twohyperspectral

imaging platforms including pushbroom (Windham et al. 2012; Yoon et al. 2013) and

AOTF (Park et al. 2012a, b) for the detection of fecal contaminants (Yoon et al. 2011)

and foodborne pathogens (Park et al. 2012a, b;Windham et al. 2012;Yoon et al. 2013).

They demonstrated the two different hyperspectral imaging platforms, i.e., the

pushbroom platform for bacterial colony on agar plates (Windham et al. 2012;

Yoon et al. 2013) and AOTF for microscopic imaging for live bacterial cells from

micro-colonies on agar plates (Park et al. 2012a, b), respectively.

15.3 AOTF Hyperspectral Microscope Imaging System

Figure 15.1 shows hyperspectral microscope imaging (HMI) system (ChromoDy-

namics HSi-400, Lakewood, NJ) for spectral image acquisition from foodborne

bacterial samples on the glass slides.

The HMI system consists of a Nikon upright microscope (Eclipse e80i, Lewisville,

TX), acousto-optic tunable filters (AOTF) (HSi-400, Gooch & Housego, Orlando,

FL), a high performance cooled electron-multiplying charge coupled device

(EMCCD) 16-bit camera (iXon, Andor Technology, Belfast, Northern Ireland), and

dark-field illumination lighting sources (CytoViva 150 Unit, 24W Metal Halide,

CytoViva, Auburn, AL). The AOTF used for HMI research has a high-speed,

high-throughput, random-access solid-state optical filter with an adjustable optical

pass-band and exceptionally high rejected light levels. AOTF delivers diffraction

limited image quality with a variable bandwidth resolution as low as 2 nm in the

spectral range from 450 to 800 nm. An AOTF-based hyperspectral microscope is

scanning spectrophotometers with nomoving parts, capable of high speed of scanwith

random access to any number of wavelengths selected prior to scanning samples.

15.3.1 Principle of Acousto-Optic Tunable Filter

For AOTF modules, a piezoelectric material is attached to one end of the crystal

under excitation from an external radio frequency (RF) signal, which produces an

acoustic wave that propagates through the crystal. The acoustic wave produces a

periodic variation of the refractive index of the crystal in a frequency determined by

the RF signal. The interaction of the electromagnetic wave and the acoustic wave
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causes the crystal to refract selectively a narrow wavelength band. The relationship

between diffracted radiation wavelength (λ) and frequency of the acoustic wave

(Fa) is given by λ ¼ Δv α va
Fa

, where Δv is the difference in the refractive indexes of

the bi-refringent crystal, va is the velocity of the acoustic wave, and α is an AOTF

design parameter.

15.3.2 Microscope Light Sources

Two different lighting sources, but not limited to, such as metal-halide and

tungsten-halogen, are available for hyperspectral microscope. A metal-halide

lamp is an electric light that produces light by an electric arc through a gaseous

mixture of vaporized mercury and metal halides. Metal-halide lamps have high

luminous efficacy of around 75–100 lm/W that is about twice that of mercury vapor

lights and 3–5 times that of incandescent lights, and produce an intense white light.

The output spectrum of a typical metal-halide lamp shows peaks at 385, 422,

497, 540, 564, 583 nm (highest), 630, and 674 nm.

Whereas, a tungsten-halogen lamp is operated at a higher temperature than a

standard gas-filled lamp of similar power and operating life, producing light of

a higher luminous efficacy and color temperature. A halogen lamp produces

a continuous spectrum of light from near ultraviolet to deep into the infrared.

Since the lamp filament can operate at a higher temperature than a non-halogen

lamp, the spectrum is shifted toward blue, producing light with a higher effective

color temperature. Figure 15.2 illustrates hyperspectral microscopic images of

EMCCD Camera

AOTF

AOTF Controller

Light Source
Stage

Microscope

Fig. 15.1 A schematic of

AOTF hyperspectral

microscope imaging system
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Salmonella Enteritidis and Typhimurium scanned with metal-halide and tungsten-

halogen lighting sources. Spectral patterns from S. Enteritidis and S. Typhimurium

are different depending on lighting excited to bacteria samples. Figure 15.3 illus-

trates spectral difference between metal-halide and tungsten-halogen as lighting

sources. Also, different peaks of scattering intensity from the cells of S. Enteritidis
and S. Typhimurium are observed at various electromagnetic spectral bands. Thus,

selection of lighting source is important for HMI applications, especially for

pathogenic bacteria identification and characterization, because the spectral char-

acteristics change with lighting sources.

Fig. 15.2 Illustration of Salmonella Enteritidis (a, b) and Salmonella Typhimurium (c, d) scanned
by a hyperspectral microscope imaging system with two different light sources; metal-halide (a, c)
and tungsten-halogen (b, d). Note: each image contains sub-image from a single cell in the

left corner
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15.3.3 Bright-Field and Dark-Field Illumination

Among the bright-field, dark-field, and fluorescence microscopic methods, dark-

field describes an illumination technique used to enhance the contrast for unstained

samples. Optical microscopy with dark-field illumination is useful for biological
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Fig. 15.3 Illustration of uncorrected, raw spectra from S. Enteritidis and S. Typhimurium with

(a) metal-halide and (b) tungsten-halogen
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sample measurement, because it is effective in terms of image collection from live

and unstained foodborne bacterial cell organisms. Also, the quality of images

obtained from this method using scattering phenomena is better for bacteria detec-

tion, while the main limitation of dark field microscopy is its low light levels.

However, this limitation can be mitigated by the flexible gain and integration time

control capability with an electron multiplying charge-coupled device (EMCCD)

detector of the hyperspectral microscope imaging system. A dark-field illumination

technique produces a dark background with bright objects that can show bacterial

cells distinctively. In contrast with bright-field illumination that measures absor-

bance of target objects, dark-field illumination measures scattered intensity from

the bacterial cells. For the upright microscope, light enters the microscope to

illuminate the bacterial cell. A specially designed disc blocks some light from the

light source (metal-halide or tungsten halogen) and light leaves an outer ring of

illumination. The condenser lens focuses the light towards the cells to allow it to

enter the cell organisms. At this stage, most energy is directly transmitted,

while some is scattered from the cell. The scattered light enters the objective

lens, while the directly transmitted light that misses the lens is not collected due

to a direct illumination block. Thus, only the scattered light produces the images,

while the directly transmitted light is omitted as shown in Fig. 15.4.

15.3.4 Region of Interest of Gram-Negative Images

Figure 15.5 illustrates a hyperspectral microscope image with a region of interest

(ROI) from Salmonella Enteritidis serotype. To compare spectral signatures

between inner and outer cell region from the cell, two scattered imge ROIs, one

from inner cell region and the other from outer cell region are acquired from S.
Enteritidis bacterial cells.

Fig. 15.4 Illustration of sample from (a) dark-field illumination; (b) bright-field illumination

(courtesy of Google image®)
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15.3.5 Region of Interest of Gram-Positive Images

Figure 15.6 illustrates a hyperspectral microscope image with a ROI from Staph-
ylococcus aureus species. In contrast to the gram-negative bacteria, these species

have round shapes. Similar to the Salmonella, two ROIs, one from inner region

(green) and the other from outer region (red) of the cell, are acquired from

Staphylococcus aureus bacterial cells to compare spectral signatures between the

inner and outer cells of gram-positive bacteria.

15.4 Preparation of Bacteria Cell Cultures

For the hyperspectral microscopic image acquisition, foodborne pathogenic bacte-

ria cell cultures are prepared by inoculating pure isolates form poultry carcass rinses

into trypticase soy broth (TSB) tubes and incubated at 35 �C for 18–24 h. The

culture of bacteria species grown overnight are centrifuged at 5000 rpm for 10 min.

The bacterial pellet is re-suspended in water. From the culture of serotypes or

serogroups of bacteria species, tenfold serial dilutions are prepared in 0.1 %

peptone water and 10�6 final dilutions are plated onto selective agar media such

as brilliant green sulfa (BGS) agar plates in duplicate for Salmonella (gram-

negative) and Staphylococcus (gram-positive). From the plates incubated at 35 �C
for 24 h, one colony is picked from BGS plate of each Salmonella serotype and

re-suspended in 10 μL of water. For hyperspectral microscope imaging, 3 μL of

Fig. 15.5 Hyperspectral

microscope image with a

region of interest (ROI) (a)
inner cell region (green) and
(b) outer cell region (red)
from gram-negative

(Salmonella Enteritidis)

bacterial cells
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bacterial suspension from the samples are spread on microscopic glass slide in the

area of approximately 20� 20 mm. The slide is dried for 10 min in the biosafety

cabinet (Nuaire, Labgard Class II, Type A2 BSC, Plymouth, MN) followed by

adding 0.8 μL water on the center for a cover slip prior to scanning the sample.

Figure 15.7 illustrates bacterial cultures grown on selective agar media XLT4

(Xylose Lysine Tergitol-4) for Salmonella and rainbow agar (RBA) for E. coli.

15.5 Bacterial Sample Fixation for Microscope

To prepare bacterial samples for HMI scan, 200 μL of 1� PBS (Phosphate-

buffered saline) (filter sterile) in 1.5 mL centrifuge tube is added to the culture.

A few colonies are scrapped and re-suspended in PBS buffer followed by vortex

Fig. 15.6 Hyperspectral

microscope image with a

region of interest (ROI) (a)
inner cell region (green) and
(b) outer cell region (red)
from gram-positive

(Staphylococcus aureus)
bacterial cells

Fig. 15.7 Illustration of bacteria growth (a) Salmonella Enteritidis, (b) Salmonella Typhimurium

on XLT4 (Xylose Lysine Tergitol-4) agar media, and (c) STEC on RBA (rainbow agar)

368 B. Park



mixing for 3–5 s for homogeneous mixture. For formalin fixed samples, 6 μL of

formalin (2 % final concentration) in 100 μL bacterial suspension is added and

waited for 1 h before making a slide for scan. For live and wet mount slide

preparation, 10 μL of PBS is applied on the top of the bacterial suspension and a

cover slip is placed on the slide. Samples are then scanned under the hyperspectral

microscope immediately with oil drops on top of the cover slip. For dry slides,

10 μL of bacterial suspension is applied on the slide followed by drying for 15 min

in the biosafety cabinet.

15.6 Immobilization of Live Bacterial Cells

Figure 15.8 illustrates bacterial live cells with different treatments of fixation.

Since hyperspectral image acquisition at the wavelengths between 450 and

800 nm with a 4-nm increment requires longer time than regular microscope

imaging, the challenge of the HMI method is to completely immobilize live

cells during image acquisition; otherwise, hyperspectral data or hypercube are

unable to represent spectral characteristics of live bacterial cells. Thus, immobi-

lization of live bacterial cell is the most crucial aspect to acquire high quality

microscopic images.

For cell immobilization on a glass slide, three types of cell movements can be

observed: (1) motility of bacterial cell, (2) Brownian motion (Li et al. 2008)

caused by bombardment of the bacteria from water molecule that causes signif-

icant movement even if cells are immotile, and (3) bacteria movement with the

flow of liquid media. For quality hyperspectral image acquisition, five different

methods are examined for cell fixation on the glass slide during the scan as

follows.

Formalin Fixation: Bacterial cells can be fixed with formalin (2 % concentration).

Usually, this method shows no effect on the movement of cells; however, Brownian

motion is still causing significant movement of cells even if the cells are immotile.

Adhesive Trapping with Poly (L-lysine) Coated Glass Slide: Poly (L-lysine) is a

cationic polymer (positively charged) being used for attaching and immobilizing

cells onto the glass substrates. As bacterial cells are negatively charged, cells are

able to adhere to positively charged slide. However, this method allows wiggling as

well as Brownian motion (Fig. 15.8a).

Agar Coated Slide: Glass slides are coated with 2 % agar which absorbs the water of

the cell. With this method cells can be immobilized, yet are not clear, and the

background is saturated under the light source of the imaging system.

Dry Method: For this process, approximately 3–10 μL of bacterial suspension

is applied on the slide. Cells are dried in the biosafety cabinet for 15 min followed

by adding 1 μL of oil on the sample before the sample is covered with a cover slip.

One drop of oil is applied onto the cover slip prior to scanning. With this method
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only small bright dots instead of shape of cells under the microscope are observed,

yet crystallization effect due to the PBS buffer is observed (Fig. 15.8b).

Modified Dry Method: In addition to sample slides prepared by dry method,

approximately 1 μL of sterilized deionized (DI) water is applied under the cover

slip instead of oil, and then the cover slip is pressed firmly for 30 s to confirm no air

bubble remains between sample slide and a cover slip. Although sometimes

Brownian motion is observed, most bacteria cells are thoroughly immobilized

during the scan for 45 s at least. Hyperspectral microscope images can be success-

fully acquired without any bacterial mobility during the scan with this method

(Fig. 15.8c).

15.7 Gram-Negative and Gram-Positive Bacteria

Bacteria are traditionally divided into two main groups, gram-negative and gram-

positive based on their gram-stain retention. This classification system is ambigu-

ous, as it can refer to three distinct aspects including staining result, cell-envelope

organization and taxonomic group. Compared to gram-positive bacteria, gram-

negative bacteria are more resistant against antibodies because of their impenetra-

ble cell wall from additional outer cell region. For the hyperspectral microscope

imaging, Salmonella and Staphylococcus are demonstrated as gram-negative and

gram-positive samples. Figure 15.9 illustrates hyperspectral microscopic composite

images based on the wavelengths of 648 nm (red), 550 nm (green), and 436 nm

(blue) from Staphylococcus aureus (Fig. 15.9a) and Salmonella Enteritidis

(Fig. 15.9b). These images have different morphology with round shape for

gram-positive and ellipse shape for gram-negative bacterial cells.

Fig. 15.8 Illustration of bacterial live cells with different treatments of fixation; (a) cell moved,

(b) buffer crystallized, (c) cell fixed
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15.8 Hyperspectral Microscope Image Acquisition
and Analysis

Figure 15.10 illustrates the procedure of hyperspectral microscope image acquisi-

tion and analysis from live bacterial cells. Hyperspectral images from five gram-

negative Salmonella serotypes (Enteritidis, Typhimurium, Heidelberg, Kentucky,

and Infantis) and five gram-positive Staphylococcus species (aureus, haemolyticus,

hyicus, sciuri, and simulans) are acquired with an AOTF-based hyperspectral

microscope imaging (HMI) system. Visible/NIR hyperspectral microscope images

are collected with a TIFF format at the wavelength ranges from 450 to 800 nm with

2 nm bandwidth, 4 nm spectral intervals with a scanning exposure time of 250 ms

and a gain of 9 selected from parameter optimization for quality image acquisition

(Park et al. 2012a, b). All images are acquired with a dark-field illumination

equipped with metal-halide lighting in spectral sweep mode for collecting 89 con-

tiguous spectral images (Park et al. 2012b). The images acquired with TIFF format

are converted to hyperspectral image format or hypercube with HSiAnalysis™
software (Gooch & Housego, Orlando, FL) for further processing and analysis.

Figure 15.11 illustrates the overview of hyperspectral microscope image

acquisition scheme with an AOTF platform. Three selective spectral images at

550, 590, 670 nm and their corresponding spectra from E. coli are illustrated. The
intensities of spectral images at 550, 590 and 670 nm are higher than their

neighboring spectral bands. This information can be used for identification of

specific bacterial serotypes as well as species with further multivariate data

analysis using their spectral signatures.

Fig. 15.9 Illustration of hyperspectral composite images from (a) gram-positive (Staphylococcus
aureus) and (b) gram-negative (Salmonella Enteritidis)
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STEP �

Analyze data with classification algorithms

STEP �

Save scattering intensity data from ROIs of bacterial cells

STEP �

Browse spectral image (@546 nm) for ROI selection with auto-
threshold using ENVI software

STEP �

Convert 89 TIFF images to contiguous hyperspectral image format 
with HSiAnalysis software

STEP �

Image acquisition with AOTF HMI 450-800 nm (Each spectral 
image is TIFF format)

Fig. 15.10 A flow diagram

of procedure for

hyperspectral microscope

image acquisition and

analysis from live bacterial

cells

Fig. 15.11 Schematic of AOTF hyperspectral microscope image acquisition
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Selected spectral images at the wavelength of 458, 498, 522, 546, 574, 590, and

670 nm that show scattering peak intensities from Salmonella Enteritidis and

Staphylococcus aureus are illustrated in Fig. 15.12. Higher scattering intensities

at 546 nm are observed than at other wavelengths for both bacterial samples.

After image conversion from TIFF to hypercube, one spectral image of 546 nm

(Fig. 15.12d) is selected to create a region-of-interest (ROI) from bacterial cells

with ENVI (Exelis Visual Information Solutions, Inc., Boulder, CO) software

(version 4.8). The scattering intensity data from the ROI of each cell are saved

for further analysis for classification model development.

15.9 Classification Methods

Open-source R software (version 3.0.1) is used for developing classification models

with five different algorithms such as Mahalanobis distance (MD), k-nearest neigh-

bor (kNN), linear discriminant analysis (LDA), quadratic discriminant analysis

(QDA), and support vector machine (SVM) to identify different species and

serotypes using their spectral signatures collected by the HMI system. In addition,

Matlab (Mathworks, Natick, MA) software is also used for analyzing spectral

characteristics from bacteria to develop classification models to identify bacterial

species and serotypes with their spectral signatures.

15.9.1 Mahalanobis Distance

Mahalanobis distance (MD) (De Maesschalck et al. 2000) is commonly used for

distance measure with multivariate chemometric techniques in the principal com-

ponent (PC) space. MD is used for several different purposes such as the detection

of outliers, the selection of calibration samples from a large set of measurement,

and the observation of difference between two data sets. In pattern recognition, MD

Fig. 15.12 Image comparison of Salmonella Enteritidis (top) and Staphylococcus aureus (bottom)
at wavelength of (a) 458, (b) 498, (c) 522, (d) 546, (e) 574, (f) 590, and (g) 670 nm
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is applied to the clustering techniques such as the k-nearest neighbor method (kNN)

(Vandeginste et al. 1998), in discrimination techniques such as linear and quadratic

analysis (LDA and QDA) (Wu et al. 1996). The MD measures the distance using

variance-covariance of two points as MDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xð ÞC�1
x xi � xð ÞT

q

, where Cx is

the variance-covariance matrix of two variables, x1 and x2. The ellipse represents

the equal MDs towards the center point of data. In order to discriminate two classes,

a threshold value is determined using a prior knowledge.

15.9.2 k-Nearest Neighbor

k-nearest neighbor (kNN) (Vandeginste et al. 1998) is one of the simplest methods

for pattern classification. It is a non-parametric method for classifying objects based

on the closest training data in a feature space. For high-dimensional data sets

(i.e. with more than ten number of dimensions), dimension reduction is usually

performed prior to applying the kNN algorithm. The k-nearest neighbor assigns a

given unlabeled data based on their closeness with the k closest labeled data in the

training data set. Integer k means the number of samples to measure the distance

from unknown data. The kNN measures the distance using Euclidean distance from

unknown data to the closed samples.

15.9.3 Linear Discriminant Analysis

Linear discriminant analysis (LDA) (Dixon and Brereton 2009) is a method to find a

linear combination of features that separates two or more classes of objects. Similar

to principal component analysis (PCA) and factor analysis, LDA is looking for

linear combinations of variables that best explain the data, so that LDA explicitly

attempts to model the difference between the classes of data. LDA seeks for

reducing dimensionality of data matrix while preserving as much of the class

discriminating information as possible. In order to find maximum distance between

two classes, LDA utilizes the Mahalanobis distance (Park et al. 2007a).

15.9.4 Quadratic Discriminant Analysis

Quadratic discriminant analysis (QDA) is a more general version of the linear

classifier, so that it is used in statistical classification to separate two or more

classes of objects by a quadric surface. Similar to LDA, QDA assumes the mea-

surements from each class are normally distributed. Unlike LDA, however, there is

no assumption that the covariance of each class is identical in QDA. QDA is based
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on the Mahalanobis distance to measure the discriminating information between

two classes as LDA (Dixon and Brereton 2009). In contrast, even though the

distributions are significantly non-Gaussian, in the hyperbolic space, the QDA

projections may preserve complex structures in the data for classification.

15.9.5 Support Vector Machine

Support vector machine (SVM) (Furey et al. 2000) is a supervised learning algo-

rithm with associated learning algorithms that analyze data and recognize patterns

used for classification. SVM can efficiently perform a non-linear classification in

high-dimensional feature spaces, and constructs a hyperplane in a high-dimensional

space that can be used for classification. Intuitively, a good separation is achieved

by the hyperplane that has the largest distance to the nearest training data point of

any classes. SVM solves binary classification problems by creating an optimal

hyperplane that maximizes the distance between the boundary points of two classes.

It can be used to solve both linear and non-linear problems. The hyperplane is

defined as

f xð Þ ¼ xTwþ b0 ¼ 0;

where, x is training data set, w is normal to the hyperplane, xTw is inner product

between x and w. 1/||w|| is the perpendicular distance from the hyperplane to the

boundary of each class.

To evaluate classification models developed, cross validation needs to be

conducted. For instant, the entire data can be divided into 30 data groups for the

cross validation purpose. For every single cross validation, 30 % of all data are used

for calibration, and the other 70 % of the data are used for validation. This process

can be iterated ten times to complete the validation.

15.10 Spectral Data Collection from Bacterial Cells

In order to collect spectral image data from bacterial cells for further processing

and analysis, an auto-threshold method is used. Figure 15.13 illustrates a

hyperspectral microscope image, along with a ROI, collected from Staphylococ-
cus simulans species with the selected threshold method. It is important to select

an optimum threshold value for data collection from the cells. For instant,

the ROIs for Staphylococcus simulans (Fig. 15.13b) are selected with the thresh-

old values of minimum 9,000 and maximum 20,000 from the spectral image

at 546 nm. The threshold values vary with species and serotypes of bacteria.

For Salmonella serotypes, the minimum threshold values of 4,000 for

Typhimurium, 5,000 for Heidelberg and Infantis, and 6,000 for both Enteritidis

15 AOTF Hyperspectral Imaging for Foodborne Pathogen Detection 375



and Kentucky are selected. However, maximum value is fixed as 15,000 for

collecting spectral data from Salmonella. Whereas, for Staphylococcus species,
different minimum threshold values are selected at 5,000 for haemolyticus, 6,000
for sureus, 7,000 for hyicus, 8,000 for sciuri, and 9,000 for simulans species.

In the case of Staphylococcus, the maximum threshold is selected as 20,000 for

all species.

15.10.1 Spectral Characteristics of Salmonella

Figure 15.14 illustrates mean spectra and standard deviation (SD) of scattering

intensity from Salmonella Enteritidis serotype. As seen in the figures, the spectral

signatures from both outer cells (Fig. 15.14a) and inner cells (Fig. 15.14b) are

similar to each other, and spectral peaks are observed at the wavelengths of

462, 498, 522, 546, 574, 598, 642, 670, and 690 nm, respectively. However, the

variability of each spectrum depends on the scattering wavelength of S. Enteritidis
bacterial cells.

Based on the spectral data from Salmonella Enteritidis serotype, less spectral

variation from inner cells is observed than from outer cells. Specifically, spectral

variation for both inner and outer cells of Salmonella is much less at near-infrared

wavelengths than at the visible wavelength range. The largest variation for inner

cells is observed at 598 nm, followed by 546 nm. Also, the largest variation for

outer cells is observed at 598 nm followed by the wavelength of 642 nm. The range

of spectral variation is between 24 and 29 % for inner cells; whereas, the spectral

variation for outer cells is slightly higher than for inner cells. This higher scattering

variability from outer cells could be caused by the additional cell region at the outer

cells of gram-negative bacteria.

Fig. 15.13 Hyperspectral microscope image with a region of interest (ROI) collected

from Staphylococcus simulans using an auto-threshold method (min: 9,000 and max: 20,000);

(a) composite cell image; (b) ROI for spectral data collection; (c) magnified cells with ROI
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15.10.2 Spectral Characteristics of Staphylococcus

Figure 15.15 illustrates mean spectra and standard deviation (SD) of scattering

intensity from Staphylococcus aureus species. From the figures, the spectral pat-

terns of both inner and outer cells are similar to each other. The spectral peaks for

Salmonella outer membrane (n=12846)
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Fig. 15.14 Mean and standard deviation of spectra from (a) outer and (b) inner cell regions of
gram-negative (Salmonella Enteritidis) bacterial cells. Note: Dot-line represents one standard

deviation for the data
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both cases are observed at the wavelengths of 458, 498, 522, 546, 574, 590,

646, 670, and 690 nm, respectively. However, the SD of each spectrum varies

with the wavelength of the Staphylococcus aureus cells.
In contrast to gram-negative bacteria (Salmonella), higher spectral variation

from both inner and outer cells is observed than for gram-positive bacteria

Staphylococcus outer membrane (n=11901)
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Fig. 15.15 Mean and standard deviation of spectra from (a) outer and (b) inner cell regions of
gram-positive (Staphylococcus aureus) bacterial cells. Note: Dot-line represents one standard

deviation for the data
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(Staphylococcus). Based on the spectral data from Staphylococcus aureus species,
higher spectral variation from inner cells is observed than from outer cells. More

specifically, spectral variation for both inner and outer cells of Staphylococcus is
much less at 546 nm, which represents the strongest excitation band for the

hyperspectral microscopic images generated by the metal-halide lighting source.

The highest variation of inner cells is observed at 590 nm followed by 458 nm,

646 nm, and 670 nm, respectively. However, the highest variation of outer cells is

observed at 458 nm followed by 646 nm. For gram-positive bacteria, the range of

spectral variation at other scattering peaks are between 40 and 45 % for inner cells;

whereas, the spectral variation (between 33 and 44 %) for outer cells is broader than

for inner cells. The higher scattering variability from the outer cells could be due to

the fact that they are more sensitive to dark-field illuminator than inner cells of

gram-positive bacteria.

15.10.3 Spectral Characteristics of Escherichia coli

Figure 15.16 illustrates average spectra of shiga toxin-producing E. coli (STEC),

particularly O121 serogroup from inner and outer cells. The scattering intensity for

outer cells is brighter than for inner cells, except at 546 nm and beyond 700 nm. The

brightness at 546 nmmight be due to stronger scattering from inner cells or possibly

the stronger back-illumination of the metal halide lighting source. The cause for the

peak at 546 nm can be determined using a different light source such as quartz

halogen. Similar spectral patterns are observed between inner and outer cells,

except for the wavelength region of 450–500 nm.
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In order to analyze spectral variability of each cell within and across the sample

treatments, the spectra of ROIs are obtained from STEC O121 serogroup cells of

each treatment A and B (Fig. 15.17). The size of ROIs of each cell varies from

345 to 666 pixels in treatment “A” samples; whereas, the sizes of cells in treatment

“B” are more uniform varying between 408 and 490 pixels. Regardless of the size

of cells, no significant differences in the spectral signatures between samples

collected from different agar plates are observed, which means the spectral signa-

tures of STEC O121 are replicable and independent of cell size.
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Fig. 15.17 Mean spectra and corresponding regions of interest (ROIs) from the replicate samples
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15.10.4 Spectral Characteristics of STEC Serogroups

Figure 15.18 illustrates the mean spectra and corresponding hyperspectral images

collected from six different shiga toxin-producing E. coli (STEC) serotypes of O26,
O45, O103, O111, O121, and O145 with an exposure time of 250 ms and gain of

9 for the HMI system. The ROIs of each serotype are acquired with a threshold from

the hypercube. The spectra of each serogroup are generated from as many cells as

possibly to minimize the variation among the cells. The spectra are averaged for

O26 (14,652 pixels), O45 (13,755 pixels), O103 (16,797 pixels), O111

(11,955 pixels), O121 (12,253 pixels), and O145 (10,409 pixels), respectively.

Overall, all spectra have similar patterns with the scattering intensity peaks at

458, 498, 522, 546, 574, 590, 670, and 690 nm. Spectral intensity from the cells

of O45 serogroup is higher than for other serogroups, while the spectral intensity

from O121 serogroup is lowest at the wavelengths between 450 and 500 nm.

However, the intensities of six serogroups between 540 and 560 nm are similar.

Distinct peaks at 546 and 574 nm are observed from the spectra. The identical peaks

at 546 nm regardless of bacteria serotypes can be explained by the strong excitation

of the metal-halide lighting source used for the experiment. The spectral
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characteristics of this pattern can again be confirmed if another lighting source such

as quartz halogen is utilized.

The spectra for the O145 serogroup have much higher scattering intensity than

for any other serogroups above 590 nm. The spectral patterns, however, are similar

to each other with the peaks at 670 and 690 nm, respectively. At these wavelengths,

the intensity from the O121 serogroup is the lowest. No significant patterns,

however, are observed from all serogroups beyond 750 nm.

Since the growth pattern of cells for each serogroup is not uniform during the

incubation process, the size and number of cells are possibly different when the

samples are immobilized on the slides for hyperspectral image scanning as shown

in Fig. 15.18a–f. The aggregation of cells is also observed from the serogroups of

O45 (Fig. 15.18b), O111 (Fig. 15.18d), and O145 (Fig. 15.18f).

15.10.5 Comparison of Spectral Signatures Between
Salmonella and Staphylococcus

Figure 15.19 illustrates the comparison of spectra between inner and outer cell

regions of Staphylococcus and Salmonella bacteria. As seen in Fig. 15.19, scatter-

ing intensity from the inner cells of Staphylococcus is higher than any other

scattering intensity at 458, 642, 670, and 690 nm, respectively, yet the highest

scattering intensity peaks are observed at 496, 546, 574 and 590 nm for the outer

cells of Staphylococcus.
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Fig. 15.19 Comparison of spectra between the inner and outer cell regions of Staphylococcus and
Salmonella bacteria
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The variation of scattering intensity from Salmonella is lower than that from

Staphylococcus. The intensity variation of Salmonella at near-infrared is much

lower than at visible wavelengths. The highest variation is observed at 594 nm

followed by 498 and 522 nm. Whereas, the lowest variation of scattering intensity

of Staphylococcus is observed at 546 nm which is close to the highest excitation

intensity of the metal-halide lighting source and the highest intensity variation is

observed at the wavelength of 458 nm followed by 498 nm, 646 nm, and 670 nm,

respectively.

15.11 Classification of Bacteria Species and Serotypes

15.11.1 Accuracy for Identification of Gram-Negative
and Gram-Positive Bacteria

For differentiation between gram-negative (Salmonella) and gram-positive (Staph-
ylococcus), all classification methods including kNN, LDA, QDA, SVM, and MD

demonstrate high accuracy (above 99 %) to classify Salmonella and Staphylococ-
cus. These classification models have low overall errors (less than 0.45 %). Spe-

cifically, Salmonella bacteria are perfectly classified from Staphylococcus using

LDA and MD models; whereas, Staphylococcus bacteria are identified with 100 %

classification accuracy using QDA and SVM. The highest classification accuracy is

obtained from SVM (99.99 %), followed by MD (99.98 %), kNN (99.98 %), LDA

(99.98 %), and QDA (99.75 %), with the corresponding Kappa coefficients of

0.9998, 0.9995, 0.9995, 0.9995, and 0.9937, respectively. Thus, all models dem-

onstrate an outstanding performance for the classification of gram-negative and

gram-positive foodborne bacteria.

15.11.2 Classification of Salmonella Serotypes

Figure 15.20 illustrates spectral differences for the five Salmonella serotypes.

Classification accuracies range between 73.6 % from MD model for S. Heidelberg
and 97.6 % from SVMmodel for S. Typhimurium. The best classification model for

Salmonella serotypes is SVM, which has 93.8 % accuracy. Among the five Salmo-
nella serotypes, Typhimurium is better classified (93.1 % accuracy) than others

(88.5 % or below). Table 15.1 summarizes the classification accuracy of each

serotype with the five different models.
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15.11.3 Classification of Staphylococcus Species

Figure 15.21 illustrates the spectral differences for the five Staphylococcus
species. All five classification algorithms perform better for Staphylococcus
than for Salmonella. The classification accuracies range between 91.3 % for

S. haemolyticus and 99.7 % for S. hyicus. The SVM model again achieves the

best classification of 99.7 %. Among the five Staphylococcus species, hyicus is
slightly better classified (97.0 % accuracy) than other species. Table 15.2 sum-

marizes classification accuracies for each species of Staphylococcus with the five

classification models.

Fig. 15.20 Comparison of spectra from five different Salmonella serotypes

Table 15.1 Classification accuracies (in percent) of Salmonella serotypes with five classification

algorithms

Serotypes MD kNN LDA QDA SVM Mean

S. Enteritidis 87.9 89.7 88.1 83.6 93.6 88.5

S. Typhimurium 91.6 92.5 92.5 91.7 97.6 93.1

S. Kentucky 80.7 85.9 78.2 84.7 90.7 84.0

S. Heidelberg 73.6 88.4 84.7 81.1 93.0 84.1

S. Infantis 86.4 88.0 87.3 82.8 94.2 87.7

i.e., Mahalanobis distance (MD), k-nearest neighbor (kNN), linear discriminant analysis (LDA),

quadratic discriminant analysis (QDA), support vector machine (SVM)
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15.11.4 Classification of STEC Serogroups

The SVMalgorithm performs better than the other four algorithms in the classification

of STEC serotypes. The highest accuracy (92 %) is obtained from O45 serogroup

followed by O26 (89 %), O145 (84 %), and O111 (72 %), respectively. Classification

accuracies, however, are low fromO103 (57%) andO121 (16%). In conjunction with

spectral patterns (Fig. 15.18), the scattering intensity of O45 serogroup between

450 and 500 nm has major contributions to the classification accuracy. For STEC

serogroups, using average spectral data obtained from ROIs instead of individual

pixels from cell images would help improve classification performance.

A Sparse Kernel-based Ensemble Learning (SKEL) algorithm (Park

et al. 2014) is another candidate for the classification of STEC serogroups. Similar

Table 15.2 Classification accuracy (in percent) of Staphylococcus species with five classification
algorithms

Serotypes MD kNN LDA QDA SVM Mean

S. aureus 94.9 96.5 95.5 91.6 99.5 95.6

S. haemolyticus 94.7 97.4 95.7 91.3 99.1 95.6

S. hyicus 95.1 95.3 98.7 96.5 99.7 97.0

S. sciuri 94.7 94.6 94.3 96.4 98.7 95.7

S. simulans 94.0 96.5 93.5 98.1 99.1 96.2

i.e., Mahalanobis distance (MD), k-nearest neighbor (kNN), linear discriminant analysis (LDA),

quadratic discriminant analysis (QDA), support vector machine (SVM)

Fig. 15.21 Comparison of spectra from five different Staphylococcus species
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to the SVM results, the highest accuracy (92 %) is obtained for O45 serogroup

followed by O26 (87 %), O145 (84 %), and O111 (73 %), respectively. The

classification accuracies, however, are relatively low for O103 (57 %) and O121

(16 %) serogroups. The low classification accuracies are possibly caused by the

variability of spectral image data obtained from the image pixels. To improve

classification performance, averaged spectral data obtained from ROIs of each

serogroup should be further tested with the SKEL algorithm.

15.11.5 Graphical Description of Classification Performance
of STEC Serogroups

Figure 15.22 illustrates the separability of the SVM algorithm for STEC bacteria

from the hyperspectral microscope imagery using a graphical description for better

understanding of poor classification of STEC O121 serogroup. In the plot, PCA is

first applied on the training data set and the first two-dimensions (maximum

variance) are extracted. All classes are projected onto these two dimensions. The

data are then projected onto a higher dimensional space using Gaussian RBF (radial

basis function) kernel where SVM is applied, and then a separating hyperplane

(linear in higher dimensional space but non-linear in input space) is built to separate

the particular sample. This separating hyperplane is plotted along with the data on

two-dimensional spaces. In the figure, the plot illustrates good separability of STEC

O45 serogroup (Fig. 15.22a) from other serogroups. According to the separating

hyperplane, the separability of STEC O121 serogroup (Fig. 15.22b) from other

serogroups is very poor, which confirms the low classification accuracy of this

serogroup.

Fig. 15.22 Separability of the support vector machine (SVM) algorithm for (a) STEC O45 (red)
and (b) STEC O121 serogroup (red) on two-dimensional hyperplane
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15.12 Concluding Remarks

To acquire spectral information from live bacterial cells using hyperspectral

microscope imaging (HMI) technique, it is important and also challenging to

immobilize live cells on glass slides until the scanning has been completed. If

live cells move during scanning, all hypercube data would be invalid. Since AOTF-

based HMI is able to scan whole cells at different bands, hyperspectral images can

be obtained, depending on the AOTF scanning wavelength range and the sensitivity

of the detector used. The speed of acquiring hyperspectral images depends upon

number of scans and exposure time of the imaging system. With HMI technology,

we are able to acquire quality hyperspectral images from foodborne bacterial cells,

using a protocol for live cell immobilization on a glass slide. The scattering

intensity of hyperspectral images obtained with dark-field illumination for visible

and near-infrared spectral ranges can be used for differentiating bacteria species

and serotypes. Both spatial and spectral information can be further analyzed to

identify and classify the signatures of foodborne pathogenic bacteria with appro-

priate classification algorithms. However, more research needs to be conducted to

understand spectral variability from bacterial cells, optimize parameter selection of

the imaging system including light sources. Also, additional algorithms need to be

evaluated for hyperspectral image data analysis to improve classification accuracy.

For the identification or classification of unknown foodborne pathogen samples, the

ground truth regions of interest can be selected as “spectrally pure fingerprints” for

bacteria serotypes as well as species. These fingerprints can be compiled into a

spectral library for further identification of unknown samples from food matrices.

Mention of trade names or commercial products in this article is solely for the

purpose of providing specific information and does not imply recommendation or

endorsement by the U.S. Department of Agriculture.
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