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 Introduction

Because most studies do not have sufficient power to detect association with rare 
single nucleotide variants (SNVs), a number of approaches to jointly analyze SNVs 
have been proposed. The earlier approaches consisted of simply counting the num-
ber of rare alleles within a gene or pathway carried by each participant, and evaluat-
ing whether the count of rare alleles was associated with a trait or disease of interest. 
More sophisticated approaches followed, introducing weights to allow for some 
SNVs to have larger effects on the trait, and using of different definition of “rare” 
based on minor allele frequencies, described in detail in Chap. 13. However, these 
approaches had highest power when all rare SNVs had the same direction of effect 
on the trait studied, meaning that all SNVs were either detrimental or beneficial, 
and were seriously underpowered in situations where both detrimental and benefi-
cial SNVs had an influence on the trait of interest, or a large proportion of SNVs 
were neutral.

To remedy the shortcoming of the earlier collapsing approaches, a number of 
methods allowing for different direction of effects were proposed and have been 
evaluated in simulation settings. In the next section, we outline these approaches, 
with emphasis on their commonality, advantages, and disadvantages in the analysis 
of rare SNVs.
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 Methods

All approaches described in this section start from the following basic model:
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(1)

where Yi is the trait of interest, either a quantitative trait or a binary disease indicator, 
zic is the value of the cth covariate in individual i, γc is the effect of the cth covariate 
on the trait Y, Gi is the genotype at all SNVs within a functional unit (gene or path-
way) for individual i, and f(Gi) is a function on the genotypes. The function g(·) is a 
generalized linear model link function. For example, one may use the logit link 
function for binary traits and the identity link for quantitative traits.

More specifically, if f(·) is a linear function, then
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(2)

where Gij is the number of rare alleles carried by individual i at SNV j and βj is the 
effect of SNV j on the trait.

In joint tests of association, the typical hypothesis of interest can be written as 
H0: βj = 0 for all j, although the specific form of the null hypothesis and the choice of 
test statistic vary according to the approach. For example, a general collapsing test 
statistic may be obtained by setting βj = βwj, where wj is a weight assigned to the jth 
SNV. The wj are assumed to be known, although in practice they are often estimated 
from the observed data. When assuming βj = βwj, (2) can be written as
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(3)

and the null hypothesis becomes H0: β = 0. A Wald test, score test, or likelihood ratio 
test can be used to test the null hypothesis in a regression context. Using the notation 
and model defined in (1), we describe a number of methods for joint analysis of rare 
SNVs that go beyond the collapsing methods described in Chap. 13.

 The Data-Adaptive Sum (aSum) Test

The data-adaptive sum (aSum) test proposed by Han and Pan (2010) is one of the 
earliest approaches developed for the scenario when both deleterious and protective 
SNVs are present. The original model used by Han and Pan reduces to (3) without 
covariates although it is simple to extend the approach to include covariates. The 
novelty of Han and Pan’s approach rests in the definition of the vector of weight wj, 
which depends on the observed data in the following way. Han and Pan defined b̂Mj  
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as the estimate of the effect of SNV j in the model with a single SNV included (M 
stands for marginal model), and PMj as the p-value for the test H0: βMj = 0. Then, for 
a pre-specified cutoff α0, Han and Pan suggested setting wj = −1 if b̂Mj < 0  and 

PMj £a0 , and wj = 1 otherwise. The choice of threshold α0 will influence the power 

of the test. In the case of α0 = 0, all wj = 1 and the approach reduces to an unweighted 
collapsing test, where the rare SNV count is tested for association with a trait. In the 
case of α0 = 1, wj is set to the sign of b̂Mj , the marginal effect of each SNV.

Han and Pan recommended using a score test to evaluate the association between 

j
j ijw Gå  and the trait of interest. However, because the wj’s are selected based on  

the significance and sign of the single SNV estimated effects, using the asymptotic 
distribution to assess the significance of the score test would lead to inflated type-I 
error rate. To surmount this problem, Han and Pan proposed a permutation approach, 
where phenotypes (and covariates if applicable) are permuted among unrelated indi-
viduals and the procedure is repeated, selecting the most appropriate wj for each 
permuted dataset and computing the score statistic for association. Because signifi-
cance thresholds in gene-based genome-wide studies are typically in the order of 
10−6, a large number of permutations would need to be performed in order to get 
accurate permutation p-values, which could render this procedure impractical. To 
alleviate this issue, Han and Pan evaluated a second approach to estimate the signifi-
cance of their adaptive test by assuming that the distribution of the score statistic 
follows a shifted chi-square distribution of the form a bc1

2 + , where a and b are 
parameters estimated from the permutation distribution. Estimation of a and b can 
be performed with a few hundred permutations, and this greatly increases the effi-
ciency of the procedure. In their evaluation, Han and Pan used only 100 permuta-
tions to estimate a and b, and compared the p-value obtained under the shifted χ1

2 
assumption to a more typical permutation test with thousands of permutations.

Han and Pan performed extensive simulation studies, showing that their approach 
outperforms collapsing tests in many scenarios. Although the evaluation of aSum 
using the reduced number of permutations and the shifted χ1

2 assumption appears to 
yield the correct type-I error, they cautioned that this approach should be more thor-
oughly studied and that the permutation distribution without this shifted χ1

2 assump-
tion is preferable, when feasible, to assess the significance of the test statistic. Given 
that Han and Pan explored the accuracy of the shifted χ1

2 distribution at the α = 0.05 
level only, and not in the tail when the accuracy is most important, this warning by 
the authors seems warranted.

The greatest advantage of the Han and Pan’s approach is the gain in power  
over collapsing approaches when both deleterious and protective SNVs influence 
the trait of interest. However, there are a number of shortcomings to the approach. 
First, the permutation procedure greatly increases the computational burden. 
Second, the method is only applicable to unrelated individuals because the permuta-
tion procedure assumes that observations are interchangeable, and hence indepen-
dent. This assumption will be violated in family samples and may be too restrictive 
in  unrelated samples with cryptic relatedness, as would be present in population 
isolates. Finally, Han and Pan’s approach will be most powerful when all SNVs 
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have the same magnitude of effects because of the simple +1/−1 weighting scheme. 
Because it is expected that some SNVs may have a large effect on the trait of inter-
est, and that some SNVs may have no effect at all, a number of approaches were 
proposed to address this weakness.

 Step-Up Method

Hoffmann et al. (2010) proposed a general step-up approach to allow SNVs to 
have different effect on the trait, taking into consideration that some SNVs may 
have no effect at all. Model (3) is also the basis for the step-up approach, although 
their original model does not allow for inclusion of covariates. However, the 
approach could easily accommodate covariate adjustments. Again, the difference 
in the step- up approach from other proposed rare SNV methods comes down to 1) 
the choice of test statistic, and 2) the choice of weights wj.

To evaluate the association between SNVs and trait, Hoffman et al. (2010) sug-
gested using the score test with empirically derived variance:
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ciently for both binary and quantitative traits. Inclusion of covariates can be accom-
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null hypothesis of no rare variant influence on the trait. When the weights are 
known, this score statistic follows asymptotically a χ1

2 distribution. However, the 
optimum weighting scheme is usually unknown, and the authors proposed various 
ways of setting the weights wj to maximize power.

Hoffman et al. (2010) proposed to use weights of the form w a s vj j j j= , where 
aj is a continuous weight, sj depends on the direction of effect, as in the Han and 
Pan’s approach above, and vj is an indicator variable specifying whether SNV j 
belongs in the model (i.e., has a nonzero effect on the trait studied). This model 
addresses two of the shortcomings of the Han and Pan’s approach. First, it takes 
into account that some SNVs may be “noise” SNV and have no effect on the trait. 
Secondly, the aj ’ s allow for SNVs to have different effect sizes. Although this is a 
very general model, one has to define aj, sj, and vj in order to perform a test of 
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association. In the next paragraph, we describe some options that Hoffmann et al. 
(2010) proposed for setting the components aj, sj, and vj.

The term aj allows for SNVs to have different magnitude of effect on the trait. 
If one assumes that rarer SNVs have a larger effect on the trait, a natural choice 
for aj  is the Madsen–Browning weight function (2009) that depends on the allele 

frequency and are proportional to 
1

1ˆ ˆp pj j-( )
, where p̂ j  is the estimated minor 

allele frequency of SNV j. A more general form for aj is the beta function with 
parameters α and β. Setting α = β = ½ is equivalent to the Madsen–Browning weight 
(2009). Wu et al. (2011) proposed using α = 1 and β = 25. If one assumes that all 
SNVs have the same effect on the trait, then one should give equal weights to all 
SNVs by setting aj =1 . A comparison of these three weighting schemes is pre-
sented in Fig. 1.

The other components of the weighting function, sj, allow for SNVs to have dif-
ferent direction of effect sj = - +( )1 1or . Values of sj are usually set based on the 
observed data. As described above, Han and Pan (2010) proposed an approach for 
setting sj based on the sign (and significance) of the regression coefficient. Hoffmann 
et al. (2010) proposed a modified approach that is computationally more efficient 
when there are no covariates. For binary traits, sj = -1  when the SNV is more 
prevalent in controls, and +1 otherwise. For continuous traits, sj is the sign of the 
correlation coefficient between the additively coded SNV and trait.

The final components of the weighting function, vj, determine which SNVs are 
allowed to enter the model and hence are assumed to influence the trait. Values of vj 
may be determined using prior information, such as functional annotation (e.g., vj 
for non-synonymous SNVs), or may be data-driven (e.g., v pj j= <1 0 01if ˆ . ). 
Hoffmann et al. (2010) proposed an iterative procedure for setting vj  called the 

Fig. 1 The weighting 
schemes as a function of 
minor allele frequency 
(MAF)
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“step-up” approach that is akin to forward selection in regression. First, all models 
with only one SNV are evaluated and the model with the largest score statistic is 
selected. Then, all models including that first selected SNV and one other SNV 
are evaluated. The score statistic for the best model with two SNVs is compared to 
the score statistic including only the best SNV; if the model with two SNVs has a 
higher score statistic than the model with one SNV, the procedure continues includ-
ing SNVs in the model in this iterative fashion until the score statistic no longer 
increases.

Statistical significance of the final score statistic is evaluated empirically, per-
muting the trait values among all individuals and performing the step-up procedure 
for each permutation. The final p-value is the proportion of permutation datasets 
with a score statistic higher than the observed score statistic. The procedure has been 
implemented in an R package thgenetics (http://cran.r-project.org/web/packages/
thgenetics/index.html). Although the R package does not allow for covariate adjust-
ment, there is nothing in the theoretical development of the approach that would 
prevent inclusion of covariates. The R package is fairly efficient when analyzing a 
moderate number of SNVs (~20), but becomes highly computationally intensive 
with larger number of SNVs (~100) although the implementation allows the users 
to analyze subsets of SNVs that are then combined into a single test statistic (the 
“pathway” option).

The step-up approach is very general and encompasses many of the previously 
described collapsing tests and approaches. For example, if sj is set according to the 
sign and significance of the regression coefficient from the marginal model, with 
vj =1 , we are back to the Han and Pan’s approach. If the aj is set to the Madsen–
Browning weights, also with vj =1 , then we get the Madsen–Browning test. 

However, the permutation procedure required by both the Hoffman et al. and the 
Han and Pan’s approaches poses a challenge for their genome-wide implementation. 
Moreover, the permutation approach is valid when observations are independent 
and therefore not appropriate for family samples without omitting related samples 
or adapting the permutation procedure to account for correlated observations, an 
issue that remains a challenge.

 Sequence Kernel Association Test

Despite both the Han and Pan (2010) and Hoffman et al. (2010) approaches not having 
an implicit assumption that all SNV effects are in the same direction, the computa-
tional limitation imposed by the required permutation procedure is a drawback. Wu 
et al. (2011) proposed the sequence kernel association test (SKAT), a method that 
accommodates SNVs with different direction of effects and does not require permu-
tation. SKAT is based on model (2), and the null hypothesis of interest is H0: βj = 0 
for all j. However, because βj cannot be reliably estimated for rare SNVs, Wu et al. 
(2011) assume that each βj follows an arbitrary distribution with a mean of zero and a 
variance of wj

2τ, where wj is a known weight for SNV j and τ is a variance component. 

H. Chen and J. Dupuis

http://cran.r-project.org/web/packages/thgenetics/index.html
http://cran.r-project.org/web/packages/thgenetics/index.html


155

A test of H0: βj = 0 for all j is equivalent to testing H0: τ = 0. Wu et al. (2011) propose 
to perform a test of this latter hypothesis using a variance- component score test for 
a mixed model, assuming γc are fixed effects and βj are random effects. The test 
statistic Q Y GWWG Y= -( ) -( )¢¢

ˆ ˆm m , where m̂  is the predicted mean of Y under 
the null hypothesis, K = GWWG’ is the weighted linear kernel matrix, W is a matrix 
whose diagonal elements are wj and non-diagonal element are 0, and G is the N × J 
matrix of additively coded genotype. Note that ˆ ˆ ˆm g g= +å0

c
c cz  for continuous 
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c cz  for binary traits. In the special case where Y is 

binary and there are no covariates, the SKAT statistic is equivalent to the C-alpha 
test proposed by Neale et al. (2011). In the C-alpha statistics, each rare SNV has the 
same probability of occurring in cases and controls under the null hypothesis of no 
association. Excess occurrence in cases or in controls is taken as evidence for asso-
ciation. A measure of excess occurrence is aggregated over all SNVs to create the 
C-alpha statistic. The SKAT statistic can be seen as a generalization of the C-alpha 
test, allowing for continuous traits and covariates or equivalently, the C-alpha test is 
a special case of a SKAT statistic. Under the null hypothesis, Q follows a weighted 

sum of χ1
2 statistics, Q

j

J

j j~ ,
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2l c  with λj estimated from the eigenvalues of a func-

tion of the weighted genotype covariance matrix. Therefore, evaluation of the sig-
nificance of Q can be achieved analytically without resorting to permutation. The Q 
statistic can be re-written as the sum of the score test for each individual SNV: 
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m̂ . When using equal weights (W is the iden-

tity matrix, all wj = 1), the SKAT statistic is equivalent to the sum of squares of the 
marginal score statistics (SumSqU, or SSU) proposed by Pan (2009). This form of 
the Q statistic is extremely useful when analyzing multiple cohorts. For example, 
one could use inverse variance weighted meta-analysis to obtain a pooled estimate 
of the score statistic for each variant, and use the meta- analyzed scores in the com-
putation of the Q statistics. Similarly, the asymptotic distribution of the meta-ana-
lyzed Q could be obtained by pooling the genotype covariance matrix to evaluate 
significance.

More generally, instead of the linear function in model (2), SKAT can also take 
a more flexible function f(Gi) in model (1), thus allowing for interactions among 
variants. Assuming the vector f(G) of size N follows a distribution with mean 0 and 
covariance matrix τK, the test statistic Q Y K Y= -( ) -( )ˆ ’ ˆm m  may be used to evalu-
ate the null hypothesis H0 0:t = .

SKAT offers many advantages over other approaches. First, the computational 
efficiency that results from using asymptotic rather than empirical distribution of 
the test statistic under the null hypothesis makes it feasible to apply to genome-wide 
studies. Moreover, the robustness of the test statistic to the direction and magnitude 
of effects offers increased power in scenarios where both deleterious and protective 
SNVs are at play. However, when most SNVs have the same direction of effect, 
SKAT has been shown to be less powerful than a simpler burden tests. For this reason, 
a combination of burden test and SKAT statistic may offer better power.
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 SKAT-O

When most SNVs included in the analysis are functionally related to the trait of 
interest and have the same direction of effect, then a burden test may outperform 
SKAT. Lee et al. (2012) proposed an extension to the SKAT statistic to deal with 
this scenario. They proposed a different class of kernels to use in the SKAT test, and 
the resulting Q statistic derived from this class of kernels is equivalent to a linear 
combination of the burden test and SKAT statistics:

 
Q Q Qr r r r= -( ) + £ £1 0 1SKAT burden with .,

 

When ρ = 0, Qρ reduces to the SKAT statistic; when ρ = 1, Qρ reduces to the burden 

test statistic Q w S
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, which is the square of the score test statistic for 

H0: β = 0 in model (3). For a fixed value of ρ, the distribution of Qρ follows a weighted 
sum of χ1

2 distribution, with weights estimated from the eigenvalues of a function of 
the weighted genotype covariance matrix. However, Lee et al. (2012) suggested a 
data-driven approach to setting the value of ρ to optimize power by finding the mini-
mum p-value over all values of ρ. They provide a procedure to evaluate the signifi-
cance of this new test statistic that takes into consideration the fact that the p-value 
was minimized over ρ, a nuisance parameter which is present only under the alter-
native hypothesis. Again, the procedure does not require permutation and is highly 
computationally efficient. The name of this new procedure is SKAT-O, where “O” 
stands for optimized. Via simulations, Lee et al. (2012) showed that this procedure 
has close to equivalent power to the burden test when a large proportion of the SNVs 
have the same direction of effect, and power close to the original SKAT statistic in 
the context of SNVs with different direction of effect.

Wang et al. (2012) also proposed a joint test (Score-Joint), combining a burden 
test, equivalent to the square-root of Qburden above, with a test of the variance com-
ponent parameters τ defined in the SKAT section. Compared with SKAT-O, it is a 
joint test on two parameters, and it requires permutation to evaluate significance.

The SKAT-O statistic offers some power advantage over the original SKAT pro-
cedure when the proportion of influential SNVs is large and most SNVs have the 
same direction of effect, at small cost of some added complexity in computation.

 Score-Seq

Lin and Tang (2011) proposed a slightly different procedure to test for association 
between a group of SNVs and a trait of interest. As for all the previous approaches, 
the basis of the method is model (2). In the same spirit as many of the collapsing 
approaches, Lin and Tang’s approach assumes that βj = βwj, where wj is the weight 
assigned to SNV j, and the model reduces to model (3) previously described. To test 
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the null hypothesis H0: β = 0, assuming a known vector of weights w, Lin and Tang 

derived the score statistic, which is of the form U Y G w
i
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 when there is no covariates involved (but a 

more complex form with covariates). Note that ŝ 0
2 1= -( )Y Y  for binary trait and 

the estimated variance of Y for quantitative trait. The statistic T U V= /  may be 
used to determine if the rare SNVs have an effect on the trait Y. The power of the 
test will depend on the choice of w, with optimum power achieved when wj = βj, the 
true (but unknown) value of the effect size parameter. Lin and Tang’s approach dif-
fers from the typical weighted collapsing method in setting the values of the weight 
vector. When considering weighting schemes, Lin and Tang proposed two ways to 
achieve maximum power: (1) Maximizing the test statistic over multiple weight 
vectors and (2) setting weights from the Estimated REgression Coefficients (EREC). 
We describe both sets of weights below.

 Maximizing the Test Statistic Over Multiple Weight Vectors

Given L weight vectors, w1, … wL, each of length J, that include the weights for each 
of the J SNVs in the analysis, one can compute L score statistics (Tl) to test the 
association between the trait and the weighted genotypes formed by Gwl. Ling and 
Tang suggested using the maximum test statistic over all weight vectors 
T Tmax l=( )max  to test for association between the SNVs and the trait. They derive 

the asymptotic distribution of Tmax by assuming that the Tl statistics follow a multi-
variate normal distribution with mean 0, and with an estimated covariance matrix 
that can be computed from the data and weight vectors. Significance of the test can 
be evaluated asymptotically using the equation:

 
Pr Pr , ,T t T t T tLmax max max max .>( ) = < ¼ <( )1 1-

 

For example, one could evaluate the T statistic for equal weight (wj = 1 for all j), the 
Madsen–Browning weight and the Wu weight, and use the maximum statistic over 
these three weight vectors, taking into account that the statistic was maximized over 
three weight functions when evaluating significance. This may offer increased 
power over collapsing approaches using a single set of weights. One could also 
define the weights with a variable threshold based on allele frequencies to determine 
inclusion of SNVs, and maximize over multiple allele frequency thresholds. This is 
akin to the variable threshold (VT) test proposed by Price et al. (2010), with the 
added advantage that significance may be evaluated without the need for computa-
tionally intensive permutations.

One of the greatest advantages of this approach is the ability to evaluate empirically 
the significance of the test statistics when multiple weight functions are evaluated. 
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In practice, because the trait etiology is often unknown and one does not know, a 
priori, which rare SNVs influence the trait, investigators often evaluate multiple 
weight functions, which may involve restricting which SNVs are included in the 
test, based on function or other annotation, or by relaxing the definition of “rare” to 
allow common SNVs to be included. However, correction for multiple testing is 
often performed using a simple Bonferroni correction, leading to overly conserva-
tive tests because the correction does not take the correlation of the test statistics 
into consideration. The ability to properly correct for multiple testing induced by 
the evaluation of multiple weights function is a great addition to the literature.

Nevertheless, the approach would still have low power in the presence of both 
deleterious and protective rare SNVs, prompting Lin and Tang to explore a different 
approach to determine the optimal weight vector.

 Estimated REgression Coefficients

As noted earlier, the most powerful test would be obtained by setting wj = βj, the true 
but unknown value of the parameter. While βj may be estimated from the data, it will 
likely be poorly estimated because of the low frequency of the tested alleles. Lin and 
Tang suggested setting wj j= +b̂ d , where δ is a given constant. This is similar to 

Han and Pan’s earlier approach, where wj was dependent on the significance and 
sign of the beta estimate, although Han and Pan (2010) ignored the magnitude of the 
effect estimates. Because the data is used in setting the optimum weights, signifi-
cance is evaluated using a permutation approach, where the phenotype value Y (and 
covariates if applicable) are permuted among individuals, and both weights and test 
statistics are recomputed with permuted data. It is important to permute both trait 
and covariates together; the null hypothesis is evaluated by breaking the relationship 
between genotype and trait, but keeping the relationship between the trait and 
covariates intact. Lin and Tang implemented this approach into the software Score- 
Seq, with an adaptive permutation test that selects fewer permutation iterations for 
large p-values but increases the number of permutation iterations to get more preci-
sion for low p-values.

The authors recommend setting δ = 1 for binary traits and δ = 2 for standardized 
quantitative traits when the sample size is less than 2,000. The authors have not 
explored the effect of varying δ on power.

The authors compared the multiple weight evaluation approach and Estimated 
REgression Coefficients (EREC) method with other available methods, namely the 
collapsing approach by Madsen and Browning (2009), the variable threshold 
approach proposed by Price et al. (2010), and SKAT. They showed the advantage 
of evaluating multiple weight functions over most collapsing tests when all SNVs 
had the same direction of effect. They also showed that EREC has a clear advan-
tage over SKAT when all SNVs have the same direction of effect with no neutral 
SNVs included, a fact that was acknowledged by Wu et al. (2011) and remediated 
with the introduction of the SKAT-O statistic. In the presence of both deleterious 
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and protective SNVs, Lin and Tang (2011) also demonstrated an advantage of 
EREC over the SKAT statistic, claiming that the gain in power is due to the overly 
conservative asymptotic evaluation of the significance of SKAT statistic, while 
their permutation evaluation is not conservative. However, they acknowledge that 
the SKAT method is more computationally efficient than the EREC test.

 Kernel-Based Adaptive Cluster

Liu and Leal (2010) proposed the kernel-based adaptive cluster (KBAC) approach, 
which classifies genotypes into groups based on multi-locus genotype patterns. 
Their method can be formulated using model (1) defined earlier.

For a set of J variants, there are at most 3J genotype groups. However, when test-
ing rare variants, the number of observed genotype groups may drop dramatically 
because of the low minor allele frequency and linkage disequilibrium. Given J 
SNVs, the M + 1 distinct genotype patterns are denoted by P P PM0 1, , , and P0  rep-
resents a pattern with no rare alleles. Using the model defined in (1), Liu and Leal 
(2010) let f(Gi) = ηKm for individual i with genotype pattern Pm, where the kernel Km 
is estimated from the data. The null hypothesis H0: η = 0 is evaluated using a score 
test to determine if there is some association between genotype patterns and pheno-
type. Because the kernel is data-driven, a permutation procedure is implemented for 
p-value evaluation.

Liu and Leal proposed (2010) three types of kernels for case–control designs: 
hyper-geometric kernel, marginal binomial kernel, and asymptotic normal kernel. 
Their evaluation of the approach focused on the hyper-geometric kernel, defined as
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where N1 and N0 are the number of cases and controls, respectively, with N N N= +1 0 , 
and Nm is the number of individuals with genotype pattern Pm among which there 
are Nm

1 cases and Nm
0 controls. The kernel is different from the kernel in SKAT, 

because it is data-driven and depends on the genotype–trait relationship. Appropriate 
kernels for quantitative trait analyses were not proposed.

When there are no covariates, the score statistic from the logistic regression 
model (1) reduces to the KBAC statistic (up to a constant scalar):
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Basu and Pan (2011) suggested that KBAC might not perform well when there 
are both deleterious and protective variants, and when the proportion of causal vari-
ants is small. However, compared with other approaches, KBAC is attractive in rare 
variants association analysis because it allows for interactions among variants, by 
testing genotype patterns of multiple variants as a group, rather than simply sum-
ming up genotypes or test statistics from individual variants.

 Discussion

All approaches described in this chapter use the same underlying model linking a 
trait to rare SNV genotypes, described in (1). Many other approaches for rare variant 
analyses have been proposed in the literature. Two examples of non-regression- based 
approach include the replication-based test (RBT) proposed by Ionita-Laza et al. 
(2011) and the functional principal component analysis (FPCA) introduced by Luo 
et al. (2011)

The RBT was developed for case–control designs and looks for more frequent 
occurrences of mutations in either cases or controls. Enrichment in cases is mea-
sured by a weighted sum of indicators of higher allele frequency in cases compared 
to controls, where the weights are data-driven and are higher for variants with larger 
difference in allele frequency between cases and controls. Because rare variants 
may be protective, a similar statistic for enrichment in controls is computed, and the 
RBT statistic is defined as the maximum of the two enrichment statistics. Statistical 
significance is evaluated by permutation. Compared with burden tests, RBT is less 
sensitive to the presence of both deleterious and protective variants, but power is 
reduced when the proportion of causal variants is low.

Luo et al. (2011) proposed the FPCA approach, which takes both rare variants 
and their genomic locations into consideration. From a functional data analysis 
point of view, they treat the positions as a continuous variable and define the geno-
type of each individual as a function of positions. By using data reduction and 
smoothing techniques, FPCA overcomes the high-dimensionality and multicol-
linearity issues in multivariate tests and collapsing methods, and is less sensitive to 
sequence errors and missing data. However, the multivariate nature of the Hotelling’s 
T2 test performed after reducing the dimension of genotype data using principal 
components may hamper power over lower dimensional methods described in this 
chapter. When the correlation between rare variants is low, FPCA introduces extra 
computational burden, but may not have much power gain compared to multivariate 
tests on the original genotype data. Also, FPCA does not adjust for covariates and is 
not directly applicable to quantitative traits, although such extensions would be 
straightforward.

In an ideal world, one would have infinite data and would be able to assess the 
effect on the phenotype of each rare variant individually. However, because of limits 
in sample sizes imposed by budget constraints and also simply by the availability of 
cases for certain rare diseases, getting reliable estimate of the effect of rare SNV on 
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the quantitative trait or disease of interest is often not feasible. Therefore, additional 
assumptions are needed in order to identify rare SNVs associated with a phenotype. 
The rare variant approaches included in this chapter differ in their assumptions. 
Obviously, the closer the assumptions are to the “truth,” the more effective the 
approaches will be at identifying SNVs and genes that are important in disease etiol-
ogy. The most powerful approach will often depend on the true trait model, which 
unfortunately remains unknown for most traits under investigations. To a lesser 
extent, the choice of test statistic will also affect the ability to identify the causal vari-
ants. Table 1 summarizes the non-collapsing rare variants association analysis 
approaches mentioned in this chapter. Below we discuss differences between the 
approaches presented in this chapter, and how these differences may affect the ability 
to identify SNVs and genes influencing a quantitative trait or disease of interest.

 Test Statistic and Evaluation of Statistical Significance

The approaches described in this chapter differ by the test statistic used to evaluate 
the null hypothesis of no association. However, they all have one thing in common: 
they strive to use computationally efficient statistics that can be computed genome- 
wide. All approaches use a score test because it is less computationally intensive 
than a likelihood ratio test. Moreover, all approaches strive for efficient evaluation 
of their score test.

In aSum, although permutation is required for evaluation of the score statistic, 
Han and Pan (2010) investigated ways to decrease the computational burden of their 
permutation procedure. Because very small p-values are required when analyzing 
multiple genomic regions, a large number of permutations are typically required to 
estimate such small p-values. Han and Pan (2010) investigated approximation to the 

Table 1 Summary of non-collapsing rare variant association analysis approaches

Test Binary Quantitative Covariates p-Value References

SSU Yes Yes Yes Analytical Pan (2009)

aSum Yes Yes Yes Permutation Han and Pan (2010)

KBAC Yes No Yes Permutation Liu and Leal (2010)

Step-up Yes Yes Yes Permutation Hoffmann et al. (2010)

RBT Yes No No Permutation Ionita-Laza et al. (2011)

C-alpha Yes No No Either Neale et al. (2011)

FPCA Yes No No Analytical Luo et al. (2011)

SKAT Yes Yes Yes Analytical Wu et al. (2011)

Score-Seq Yes Yes Yes Analytical Lin and Tang (2011)

EREC Yes Yes Yes Permutation Lin and Tang (2011)

Score-Joint Yes Yes Yes Permutation Wang et al. (2012)

SKAT-O Yes Yes Yes Analytical Lee et al. (2012)
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permutation distribution by a scaled non-central chi-square, and used a small number 
of permutations to estimate the scaling and shift parameters.

Hoffmann et al. (2010) also used a score statistic and permutation. To improve 
upon Han and Pan’s method in terms of computation efficiency, they determine the 
direction of effect based on the correlation coefficient, doing away with formal testing 
of each variant. In addition, they implemented an adaptive permutation approach, 
where a few initial permutations are used to assess the p-value, and additional permu-
tations are performed only when the p-value is below a certain threshold. While it is 
certainly feasible to apply Hoffman et al.’s approach to a large number of genomic 
regions across the genome, the computational burden of the permutation approach 
prevents large-scale simulation evaluation of the approach.

The SKAT and SKAT-O statistics are also score tests, but with the advantage that 
statistical significance can be evaluated theoretically, without requiring time con-
suming permutation. However, Lin and Tang noted that SKAT can be conservative, 
and suggested that permutation evaluation could improve power, especially for 
small samples.

While both SKAT and EREC offer a general framework to test for association 
between a group of SNVs and a trait using a score test, the difference in their under-
lying assumptions lead to a different score statistics: SKAT assumes that βj follows 
a distribution with mean 0 and variance wj

2τ, while Lin and Tang (2011) assumes 
that βj is of the form βwj. Both methods are univariate tests, but τ is a variance 
parameter with one-sided alternative in SKAT, and β is a location parameter with 
two-sided alternative in Lin and Tang (2011), leading to different statistics with dif-
ferent distributions. While the significance of both score statistics may be evaluated 
empirically, Lin and Tang further propose to set the weights empirically, and because 
the data is used in setting weights, asymptotic evaluation is no longer possible.

KBAC classifies individuals into different groups based on genotype patterns, 
and performs a test on the difference between the proportions of each genotype 
group in cases and in controls. The test is similar to a weighted χ2 test of indepen-
dence. Liu and Leal (2010) used permutation to evaluate statistical significance. 
Noting that the original KBAC statistic suffers when there are both deleterious and 
protective variants within a particular genotype pattern, Basu and Pan (2011) pro-
posed a modified statistic to overcome this issue. KBAC is distinctive in rare variant 
analysis by allowing for interactions, but it may suffer from loss of power when the 
proportion of non-causal variants is high, as the number of genotype patterns 
increases dramatically.

 Missing Data and Imputing Rare SNVs

While most of the methods discussed in this chapter have been evaluated using tar-
geted or exome sequencing, application of the methods could be extended to 
imputed genotypes. Rare SNVs are often poorly imputed in unrelated samples 
because of the low linkage disequilibrium with nearby SNVs. However, familial 
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transmission information, if available, may improve imputation. In model (2), the 
genotypes could be defined as the expected number of rare alleles, or dosage, instead 
of a three category variable indicating the number of rare alleles a person carries. 
Theoretically, all approaches described in this chapter based on model (2) can 
accommodate the use of dosage genotype, although not all software implementation 
can do so.

In the regression framework of model (2), missing genotypes are not allowed. 
One needs to either exclude observations with one or more missing genotypes, or 
impute such missing data. As the number of SNVs included in the analysis increases, 
excluding observations with missing genotypes will greatly reduce the sample size 
and power, even when the genotyping call rate is high. Therefore, most software 
includes some approaches for imputing the missing values. For rare SNVs, one 
option would be to set all missing genotypes to the homozygous major allele, which 
is the most likely genotype. This imputation scheme is easy to implement. However, 
for more common SNVs, it will create bias in allele frequency estimates, which in 
turn could result in false positive results if the missing rate differs in cases and con-
trols. For this reason, SNVs with high missing rates are often omitted from analysis. 
A second approach to fill in missing genotypes is to impute the mean genotype 
value, or dosage, which is equal to twice the rare allele frequency. While this will 
not bias the estimate of allele frequency, this may cause other types of bias. For 
example, if the missingness is not random and participants with missing data are 
more likely to be from the case or control set, or if they have lower or higher trait 
values, then imputing the average dosage may create false association because most 
observations will have a genotype of 0 rare allele, while missing observations will 
have a dosage value of twice the rare allele frequency. This could be more pro-
nounced if the imputation is performed in cases and control separately. The third 
option is to impute the missing data using information on nearby SNV and familial 
transmission, if available. This approach capitalizes on linkage disequilibrium at 
nearby SNVs to more precisely impute missing genotypes. Unfortunately, this type 
of imputation works best for common SNV, but imputation quality for rare SNV can 
be poor, especially if no familial information is available. Again, SNVs with dif-
ferential missingness in cases and controls, or missingness pattern related to a quan-
titative trait studied, could lead to false positive errors. To avoid such bias one can 
omit SNVs with high missing rate, but also test for differential missingness in cases 
or controls, or for association between proportion missing genotypes and a quantita-
tive trait. Wu et al. (2011) showed that for small amount of missingness, imputing 
to the most likely genotypes did not decrease power considerably.

 Choice of Weights to Maximize Power

Weighting schemes are used in most rare variant methods to try to improve power 
to detect association between SNVs and trait. To reach maximum power, a weight-
ing scheme should give close to zero weights to SNVs without effect on the trait, 
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and weights proportional to the effect size for associated SNVs. Because it is 
believed that rarer SNVs will have a larger effect on the trait, several proposed 
weighting schemes depend on the rare allele frequency, such as the Madsen–
Browning and Wu weights. Madsen–Browning weights decrease much more rap-
idly than the Wu weight as the minor allele frequency increases; see Fig. 1. As a 
consequence, the effect of including more common SNVs when using the Madsen–
Browning weight should be small, while more common SNVs would contribute 
more substantially to the test statistic under the Wu or equal weighting scheme. 
Hoffman et al. (2010) also described ways to include functional annotation in deter-
mining the weights, assuming that SNVs that are more likely to be damaging or 
functionally important would have a larger effect on the trait. Such annotation can 
also be incorporated in the SKAT and score-seq weighting schemes, although the 
Han and Pan +1/−1 cannot be easily generalized to take functional annotation into 
consideration. FPCA can also take weighted genotypes instead of original additive 
genotypes and calculate principal components. As prior information becomes more 
precise, methods that can incorporate information on function annotation will be 
most useful.

 Which SNVs to Include in Association Testing

Ideally, only SNVs influencing the trait of interest would be evaluated for association 
with the trait. Unfortunately, one does not know, a priori, which SNVs are causal or 
in LD with causal SNVs, and which SNVs have no effect on the trait. Inclusion of 
“noise” SNVs will lower the power of the test, as will failure to include some causal 
SNVs. Therefore, one has to strike a balance between including too many SNVs, 
with some noise SNVs, and too few SNVs, missing important variants. There are 
two separate issues to deciding which subset of SNVs to include in a test: (1) defini-
tion of the genomic region and (2) selection of SNVs within a region.

While one may wish to evaluate large regions for association, inclusion of too 
many SNVs, many likely to have no effect on the trait, will impede the ability to 
detect true associations. Therefore, it is common to divide large genomic regions 
into smaller analysis units. A natural unit of analysis is a gene level, or if a finer 
division is sought, exons or transcripts may be used to define a genomic region of 
interest. However, most Genome-Wide Association Study (GWAS) findings map 
outside of gene regions, and investigators may wish to evaluate rare SNV in the 
region around GWAS findings (Hindorff et al. 2009). Genomic region boundary 
could be based on conserved regions across species, recombination estimates around 
the GWAS finding, or more agnostically based on sliding windows across the region 
of interest. The sliding window approach could easily be accommodated in the 
framework from Lin and Tang (2011), where the test statistic used is the maximum 
test statistic over a number of weight functions. One can think of a sliding winding 
as putting a weight of zero to all SNVs outside the window being considered, and 
use the method describe in Lin and Tang to get the significance of the maximum test 
statistic over multiple windows within a region. As a clearer picture emerges of how 
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rare SNVs influence traits, we will be able to use prior information to determine the 
best size and boundaries to define genomic regions for investigation. In the mean-
time, one has to explore various ways of defining genomic regions in order to maxi-
mize the chance to detect true associations.

Once genomic regions have been selected, one needs to determine which SNVs 
within the region to include in an association test. Burden tests often restrict analy-
ses to SNVs with a low rare allele frequency, using threshold of 1, 2, or 5 %, and 
similar thresholds may be applied to the methods in this chapter. The optimal allele 
frequency threshold will depend on the frequency of the true causal SNVs, and 
using a too stringent threshold will omit important SNVs and reduce power, while a 
threshold that is too liberal will include too many noise SNVs and also decrease 
power. Variable threshold approaches, such as the one developed by Price et al. 
(2010) or by Lin and Tang (2011), can overcome the issue of having to evaluate a 
single allele frequency threshold. Functional annotation may also be used to try to 
identify SNVs that are more likely to influence the trait. However, recent publica-
tions indicate that there are a lot of functional elements outside of genes, so restrict-
ing analyses to protein-altering SNVs may miss important functional variants. 
Other measures of potential functionality, such as how conserved the region around 
the SNVs is in other species may be fruitful. An alternative is to include all SNVs 
within a region, but to use a weighting scheme to up-weight SNVs that are more 
likely to influence to trait based on annotation, and to down-weight SNVs that are 
most likely neutral. Hoffmann et al.’s approach gives specific examples regarding 
inclusion of prior annotation information in the evaluation of the null hypothesis of 
no association. Incorporating this information can be easily done by using different 
weighting schemes in the SKAT, Score-Seq, or FPCA framework. Obviously, as our 
functional annotation improves, our ability to detect genes and SNVs influencing 
the trait will also improve.

 Meta-analysis

Another consideration when selecting the most suitable approach for analysis of 
rare SNVs is the availability of meta-analysis approaches. In the GWAS context, 
most discoveries were achieved after the formation of large consortia, where meta-
analysis of many cohorts uncovered loci with smaller effect on the traits of interest. 
The need for larger sample sizes may be even more pronounced in the analysis of 
rare SNVs, where a single cohort may have very few individuals carrying rare 
alleles for a particular SNV, so that joining forces with other studies will be crucial 
for discoveries of rare SNV association. Because all approaches provide evaluation 
of the significance of an association test in the form of a p-value, one can use a 
p-value-based approach, such as the Fisher or Stouffer approach, for combining 
results from multiple cohorts. However, methods that directly combine the beta 
estimates from model (2) may offer improved efficiency (Lee et al. 2013; Liu et al. 
2014). Development of efficient meta-analysis approaches will be important in our 
quest to identify rare variants influencing traits of interest.
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 Other Types of Traits

While most traits studied fall in two categories, binary disease status or continuous 
measurements such as blood pressure, lipid levels, or fasting glucose, other pheno-
types of interest may be time-to-event or ordinal/categorical measures. For exam-
ple, one may be interested in studying time to recurrence of cancer, or age of 
development of type 2 diabetes. Some psychiatric disorders may have multiple 
levels of severity and may be best coded as ordinal variables (American Psychiatric 
Association 2000). Some of the approaches above naturally extend to other types 
of phenotypes. For example, Lin and Tang provide details on the application of 
their approach for time-to-event data, although their software implementation does 
not include this option. Chen et al. (2014) extended the SKAT statistic for survival 
traits. Other approaches, such as Han and Pan’s or Hoffmann et al.’s method, could 
easily accommodate survival and ordinal traits using the typical regression frame-
work (Cox proportional hazard model for survival and generalized linear model for 
ordinal data) because the significance is evaluated using permutation. The limiting 
factor is incorporation of these options into user-friendly and computationally effi-
cient software that are easily accessible to investigators with these types of data.

Exome sequencing, exome chip, and whole genome sequencing have opened the 
floodgate on rare variants that were not investigated in the earlier GWAS era, when 
most studies focused on SNVs with frequency >1 %. Our success in identifying key 
genes that influence diseases and traits of interest will rest on the appropriate use of 
statistical tools, and gathering as much knowledge as possible on the potential func-
tion of the variants under study. Hopefully, the combination of these tools will lead 
to exciting new discoveries and will further our understanding of the architecture of 
complex traits.
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