
Eleftheria Zeggini
Andrew Morris 
Editors

Assessing Rare 
Variation in 
Complex Traits
Design and Analysis of Genetic Studies



Assessing Rare Variation in Complex Traits



Eleftheria Zeggini • Andrew Morris
Editors

Assessing Rare Variation  
in Complex Traits
Design and Analysis of Genetic Studies



ISBN 978-1-4939-2823-1    ISBN 978-1-4939-2824-8 (eBook)
DOI 10.1007/978-1-4939-2824-8

Library of Congress Control Number: 2015944081

Springer New York Heidelberg Dordrecht London
© Springer Science+Business Media New York 2015, corrected publication 2018
Chapter 5 is licensed under the terms of the Creative Commons Attribution 4.0 International License 
http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, express or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made.

Printed on acid-free paper

Springer Science+Business Media LLC New York is part of Springer Science+Business Media  
(www.springer.com)

Editors
Eleftheria Zeggini, Ph.D.
Wellcome Trust Sanger Institute
Hinxton, UK

Andrew Morris, Ph.D.
Department of Biostatistics
University of Liverpool
Liverpool, UK

http://creativecommons.org/licenses/by/4.0/
www.springer.com


v

Preface

In the last 10 years, genome-wide association studies (GWAS) have revolutionised 
our understanding of the genetic basis of a diverse range of inherited complex 
human traits of medical importance (for example, body mass index, blood pressure 
and lipid profiles) and prevalent disorders including type 1 and type 2 diabetes and 
coronary artery disease. However, despite the success of GWAS in identifying 
regions of the genome associated with these complex traits, the observed associa-
tion  signals typically account for only a small percentage of the heritability. One 
important limitation of GWAS regions is that they are most often characterised by 
common variant association signals, each with only modest effect on the trait. 
Consequently, there has thus been increased expectation that much of the “missing 
heritability” will be accounted for by rare genetic variation (typically defined to 
occur in less than 1 % of the population).

The gold standard approach to assaying rare genetic variation is through sequenc-
ing studies, which has been prohibitively expensive, until recently, on the scale of 
the whole genome. Furthermore, the traditional GWAS methods available for 
assessing the evidence for association with complex traits are suboptimal for the 
analysis of variants with frequency less than 1 % in the population. However, with 
improvements in the cost efficiency of next-generation sequencing technologies, 
and the development of novel powerful analytical techniques, empirical evidence is 
emerging for a role for rare genetic variants in many complex traits, including 
NOD2 in Crohn’s disease, IFIH1 in type 1 diabetes, MYH6 in sick sinus syndrome 
and G6PC2 in regulation of plasma levels of fasting glucose. Ongoing population- 
based whole-genome sequencing initiatives, such as the 1000 Genomes and UK10K 
Projects, are providing invaluable insight into the distribution and characteristics of 
rare genetic variation across diverse population groups and, through improved 
imputation techniques, are enabling cost-effective assessment of the association of 
tens of millions of variants with complex traits.

In editing this book, we have been fortunate to be able to call on colleagues lead-
ing research in all aspects of the design and analysis of rare genetic variants in 
complex human trait association studies, and we are indebted to them for their 
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invaluable contribution. As in many areas of genomic research, the next few years 
promise an exciting period of rapid advancement of technology, and development of 
efficient and powerful analytical tools to accommodate and interpret the vast quan-
tity of genetic data that will be generated. The findings of these studies will be 
instrumental in refining our understanding of the biological and physiological basis 
of heritable human traits, and will enable the development of novel therapeutic 
interventions in clinical care that have the potential to reduce the burden of disease 
on limited public health resources.

Hinxton, UK Eleftheria Zeggini 
Liverpool, UK Andrew Morris 

Preface
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      Calling Rare Variants from Genotype Data 

             Jacqueline     I.     Goldstein     and     Benjamin     M.     Neale    

           Introduction 

 As discussed in Chap.   2    , DNA microarrays have been successfully used for human 
genetics research to assay single nucleotide polymorphisms (SNPs) throughout the 
genome. DNA microarrays work by measuring the relative amount of binding of 
input DNA to a set of complementary oligonucleotide probes for each allele using 
a photometric assay. Once the raw data are collected, they need to be converted into 
a genotype call automatically and with high accuracy. Over the past decade, many 
groups have published calling algorithms that are able to achieve greater than 
99.5 % accuracy. However, these algorithms work best for common SNPs and are 
not as accurate for low-frequency and rare variants (minor allele frequency <5 %). 
With the widespread usage of microarrays targeting rare variants such as Exome 
Chip and MetaboChip, new calling algorithms that accurately call rare variants 
have been published over the last year. In this chapter, we will describe how DNA 
microarrays work (see section “Microarray Technology”), give a brief overview of 
genotype calling algorithms (see section “Genotype Calling Algorithms”), and 
summarize the different algorithms designed for rare variants and how well they 
perform (see section “Application to Rare Variants”).  

        J.  I.   Goldstein      •    B.  M.   Neale    (*)
  Analytic and Translational Genetics Unit, Department of Medicine , 
 Massachusetts General Hospital ,   Boston ,  MA   02114 ,  USA    
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    Microarray Technology 

    Historical Background 

 The fi rst DNA microarrays were created in the late 1980s with the advent of 
photolithography techniques (Fodor et al.  1991 ). By repeatedly applying light, 
masks, and modifi ed nucleotides at specifi c locations on an array, custom nucleotide 
sequences were directly synthesized on a glass slide in a highly parallel and custom-
izable manner. In the mid-1990s, the array technology was adapted for genotyping 
by synthesizing probes, which are 25 base pair nucleotide sequences complemen-
tary to an allele of a SNP of interest, and adding a labeling scheme to quantify the 
amount of DNA binding to probes (Chee et al.  1996 ). Affymetrix, a biotechnology 
company founded on this technology, went public in 1996 and started producing 
DNA microarrays for biomedical research. Since then, other companies have pro-
duced DNA microarrays including Illumina, Agilent, and Applied Biosystems. 
However, in this section, we focus on how Affymetrix and Illumina genotyping 
arrays work as they are the most commonly used for human genetics research.  

    Affymetrix 

 The earlier version of the Affymetrix array, the GeneChip, consists of tiled 25mer 
oligonucleotide probes directly synthesized onto a glass slide (Liu et al.  2003 ). Each 
SNP is assayed by 6–8 probe sets consisting of an octet of probe sequences: a quar-
tet of a perfect match (PM) and mismatch (MM) probe for both the A and B alleles 
on the forward strand and a corresponding quartet for the reverse strand. The posi-
tion of the SNP in each probe set differs by varying offsets to ensure adequate signal 
is obtained for each SNP. For example, the SNP in one probe set is the 9th nucleo-
tide in the probe sequence and in another probe set is the 13th nucleotide. The role 
of the mismatch probes, which have identical sequences to the perfect match probe, 
except for the SNP of interest, is to measure unspecifi c hybridization or background 
noise. Biotin-labeled DNA is hybridized to the array and fl uorophores then bind to 
the biotin. Next, a laser is shined onto the array and the amount of light intensity 
emitted by the fl uorophores is measured for each square on the array consisting of 
millions of copies of the same probe. Finally, a genotype call is made based on 
which probes fl uoresce in each quartet. 

 Recently, Affymetrix has developed a new array technology called Axiom, which 
has replaced the GeneChip family (Hoffmann et al.  2011 ). Like the GeneChip arrays, 
the Axiom arrays consist of tiled 30mer oligonucleotide probes bound to a glass slide 
that are complementary to a target DNA sequence. However, instead of the probe 
containing the SNP of interest, the probe terminates the nucleotide before the SNP. 
The assay begins when unlabeled DNA fragments hybridize to the probe. Next, short 
9 base pair oligonucleotides are added to the array. There are four oligonucleotide 
sequences per SNP that are identical except for the fi rst nucleotide corresponding to 
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the location of the SNP. Oligonucleotides beginning with an A or T are labeled with 
a red fl uorophore and oligonucleotides beginning with a G or C are labeled with a 
green fl uorophore. The oligonucleotides that are not complementary to the bound 
DNA fragment are washed away and the bound oligonucleotides are ligated to the 
glass-bound probes. Finally, the assay is fi nished when a laser is shined onto the 
array and the amount of light emitted is measured for each square. 

 Unlike GeneChips, the Axiom arrays do not have mismatch probes or offset 
probes for every SNP because they were found to not provide any additional infor-
mation over the perfect match probes (Korn et al.  2008 ). In addition, for SNPs that 
are not strand ambiguous, both alleles can be measured by one probe, as opposed to 
GeneChips where each allele has to have its own feature on the array. Therefore, 
Axiom arrays are more effi cient and allow more SNPs to be assayed on one chip.  

    Illumina 

 Illumina BeadChip microarrays consist of probes covalently bound to microscopic 
silica beads ( Gunderson and Martin 2009 ). The beads are randomly assembled into 
microwells that have been etched into a glass slide. On average, each chip will have 
20 beads with a given probe sequence. Probes consist of a 30 base pair decoding 
sequence, which is used to determine the identity of the bead in a particular microw-
ell, followed by 50 base pairs that are complementary to the DNA sequence of inter-
est. The probe either terminates at the SNP of interest (Infi nium I technology) or one 
base pair before the SNP being assayed (Infi nium II technology). After the DNA 
binds to the probe, a single base pair extension reaction occurs with nucleotides 
covalently bound to either biotin (adenine and thymine) or dinitrophenol (guanine 
and cytosine). Red fl uorescently labeled antibodies bind to the dinitrophenol, and 
green fl uorescently labeled antibodies bind to the biotin. When a fi ber optic laser is 
shined onto a bead, the light intensity in both the red and green channels is mea-
sured, which corresponds to the nucleotide added to the probe sequence. The raw 
intensity data for each bead on the chip is compiled into a binary intensity data fi le 
(IDAT). Illumina’s GenomeStudio software then reads the IDAT fi les and returns 
the raw red and green intensity values for each probe calculated from the intensities 
of all beads. GenomeStudio also automatically normalizes intensities by using a six 
degree of freedom affi ne transformation for each bead pool in order to facilitate 
comparison of intensity values across arrays (Teo et al.  2007 ).  

    Technical Confounders 

 The hybridization of a complementary probe to a target DNA sequence of interest is 
the key step in obtaining accurate genotype calls for a given SNP. If the probe 
sequence is not unique, and is complementary to multiple locations in the genome, 
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the resulting intensity data will be a mixture of all potential combinations of SNPs. 
If the probe is not perfectly complementary to its intended target, then the probability 
that the probe will hybridize to the target DNA is substantially lower, and the result-
ing intensity output will be extremely low or undetectable. If the GC content of a 
probe is too high, then the probe will not hybridize effi ciently to the DNA resulting 
in low intensities that can be the same intensity as unspecifi c hybridization. In addi-
tion, poor DNA quality (e.g., highly degraded DNA) may also lead to both spurious 
genotypes for that individual sample. All of these technical confounders affect the 
quality of the assay and thus the ability to make accurate genotype calls.   

    Genotype Calling Algorithms 

 Once the raw intensity data have been obtained, a calling algorithm is used to deter-
mine a sample’s genotype for each SNP on the array. For Affymetrix GeneChips, 
the amount of light intensity measured from the A and B allele probes indicates 
which alleles are present in a sample. Likewise, for Affymetrix Axiom arrays and 
Illumina BeadChips, the amount of light intensity measured in the red and green 
intensity channels for each probe indicates which copies of the allele are present in 
a sample. For example, if a sample has two copies of the A allele and no copies of 
the B allele (AA), then the amount of light intensity measured for the A allele will 
be much larger than that measured for the B allele. Similarly, if a sample has two 
copies of the B allele and no copies of the A allele (BB), then the amount of light 
intensity measured for the B allele will be much larger than that measured for the A 
allele. For samples with one copy each of the A and B alleles (AB), the amount of 
light intensity measured for both the A and B alleles is approximately equal. When 
the A and B intensity measurements are plotted in two-dimensional space, three 
distinct clusters are formed corresponding to each of the three possible genotypes 
(AA, AB, BB) (Fig.  1 ). Points are then assigned genotypes based on which cluster 
they are closest to. If genotype calls were only needed for one SNP, it would be easy 
to make calls based on a visual inspection of the cluster plot. However, most arrays 
contain at least 100,000 SNPs, making it impossible to call each SNP by hand. 
Therefore, for genotyping arrays to be useful for large-scale association studies, it 
is imperative to have a calling algorithm that automatically determines the location 
of each cluster and makes accurate genotype calls.

   A variety of machine learning approaches and statistical models have been used 
to automatically detect cluster locations and assign genotypes to points. The earli-
est Affymetrix algorithm, MPAM (Liu et al.  2003 ), classifi ed points by minimiz-
ing the distance between points of the same class and maximizing the distance 
between points of different classes. MPAM was later replaced by Affymetrix’s 
DM algorithm (Di et al.  2005 ), an extension of ABACUS (Cutler et al.  2001 ), 
which classifi es points based on likelihood scores. The likelihood score is derived 
from the expected intensities for each genotype class and the observed intensity 
values for a sample. Illumina’s genotype caller, GenCall (Illumina, Inc.  2005 ), 
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uses a proprietary clustering algorithm. RLMM (Rabbee and Speed  2006 ) uses a 
point’s Mahalanobis distance from each cluster’s predetermined bivariate distribu-
tion to assign genotypes. GEL (Nicolae et al.  2006 ), BRLMM (Affymetrix Inc. 
 2006 ), and CRLMM (Carvalho et al.  2007 ) use a Bayesian statistical framework to 
fi nd the likelihood a point belongs to a genotype class based on bivariate cluster 
distributions. Illuminus (Teo et al.  2007 ) and Birdseed (Korn et al.  2008 ) use a 
Gaussian mixture model to determine the most likely position of the cluster distri-
butions based on the observed data. CHIAMO (The Wellcome Trust Case Control 
Consortium  2007 ) uses a Bayesian four-class mixture model. The accuracy of geno-
type calling algorithms is limited by the quantity and quality of the data input into 
them. If there are not enough data points to form well-defi ned clusters, then the 
aforementioned statistical methods will not work. Therefore, two approaches are 
used to aggregate enough data points to allow for suffi cient cluster formation: 
within-array and population-based. 

 Within-array algorithms leverage intensity information for all probes on the array 
simultaneously. The advantages of this approach are that it doesn’t require additional 
samples to be genotyped for calls to be made, is easy to parallelize, and is not suscep-
tible to batch effects and differences in DNA quality when aggregating data across 
many arrays. The disadvantages are that probes behave differently due to GC content 
and the uniqueness of the probe in the genome as described in the section “Technical 
Confounders.” In addition, the absolute light intensities measured vary across the 

  Fig. 1    Example of an intensity cluster plot. This plot demonstrates the two-dimensional intensity 
profi le for a common SNP. The  x -axis represents the amount of red intensity detected correspond-
ing to the presence of the A allele while the  y -axis represents the amount of green intensity detected 
corresponding to the presence of the B allele. The three genotype clusters corresponding to the two 
homozygous genotypes (AA, BB) and the heterozygote cluster (AB) are separated based on how 
much intensity is detected from each fl uorophore       
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array based on where probes are with respect to the camera. As a consequence, 
when data are aggregated for all probes on the array, the resulting clusters are more 
widely distributed making it more diffi cult to distinguish them. In contrast to within-
array algorithms, population-based algorithms aggregate data across many arrays 
(on the order of 100–10,000) and cluster data for each SNP separately. The advan-
tage of this approach is that it is not as sensitive to how well a specifi c probe hybrid-
izes to its target as long as the signal to noise ratio is high. However, it is more 
sensitive to differences in DNA quality and experimental conditions across arrays 
that can cause the clusters to not be as easily differentiated. Finally, other algorithms 
such as MAMS (Xiao et al.  2007 ), M(3) (Li et al.  2012 ), and optiCall (Shah et al. 
 2012 ) utilize information from both within-array and population- based clustering in 
order to incorporate the advantages of both approaches. 

 For many projects, information besides the intensity data is available that can be 
used to improve the accuracy of the calls. For example, BRLMM and Birdseed use 
training datasets with samples of known genotypes in order to predetermine the 
bivariate cluster distributions. HapMap samples are the most commonly used train-
ing dataset because their genotypes are known with high confi dence from the 
HapMap Project (International HapMap Consortium  2005 ). SNPCaller (Lin et al. 
 2008 ) uses the pedigree structure of genotyped samples in order to avoid Mendelian 
errors for projects with trios. Chiamante (O’Connell and Marchini  2012 ) uses 
sequencing data, if available, to inform where the genotype clusters lie and make 
calls for points even when the array data are ambiguous. BeagleCall (Browning and 
Yu  2009 ) utilizes the linkage disequilibrium structure of the genome to impute calls 
for data points that do not match a specifi c genotype cluster. Birdseed and BRLMM 
use a sample’s reported gender to make more accurate genotype calls for the sex 
chromosomes. zCall (Goldstein et al.  2012 ) and BRLMM utilize calls from another 
genotype calling algorithm (GenCall and DM, respectively) in order to have a start-
ing point for the position and bivariate distribution of each cluster. 

 When assessing how well a genotype calling algorithm works, the three most 
widely used metrics are the concordance with known genotypes, the call rate, and 
the percentage of SNPs that are consistent with Hardy–Weinberg equilibrium 
(HWE). Most studies have calculated concordance by comparing an algorithm’s 
calls to HapMap data, or another dataset, where the genotypes are known. However, 
family data (with or without known genotypes) can also be used to determine a call-
ing algorithm’s accuracy by calculating the number of Mendelian errors. Also, it is 
important to assess the accuracy of a caller for each genotype class individually. If 
a calling algorithm has signifi cantly different accuracies for each genotype class, 
the association tests will be biased and false positives and false negatives will be 
introduced (Nicolae et al.  2006 ). Like accuracy, the call rate of an algorithm is also 
important. For example, if a calling algorithm is extremely accurate when it makes 
a call, but only assigns calls to 75 % of the data, this leads to a dramatic loss in 
power for the call set. Many calling algorithms have confi dence scores available that 
allow the user to make trade-offs between the accuracy of calls made and the call 
rate. Finally, deviations from HWE are used because if the resulting calls from an 
algorithm are out of HWE, then this is indicative of a lot of inaccurate calls being 
made or a problem with the assay (Chap.   5    ). 
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 In summary, genotype calling algorithms use the relative amount of intensity 
measured for the A and B alleles to make a genotype call for each sample based on 
a statistical model for where the genotype clusters lie in two-dimensional space. 
Some genotype calling algorithms also incorporate information besides the inten-
sity data to make more accurate calls. Finally, evaluating the accuracy and call rate 
of an algorithm against previously established benchmarks is essential before the 
algorithm’s genotype calls can be used for association studies.  

    Application to Rare Variants 

 As described in Chap.   2    , genotyping arrays specifi cally targeting lower-frequency 
variation (minor allele frequency <5 %) have been produced by both Affymetrix and 
Illumina and utilized in a variety of human genetics association studies. However, 
the genotype calling algorithms that were used for older arrays with only common 
SNPs do not work well for rare variants because they assume three genotype clus-
ters exist when clustering data, which is not the case for rare variants. For example, 
for a variant with a minor allele frequency of 1 % in the population, one would need 
to genotype 100,000 samples in order to have an expectation of ten points in each 
genotype class if the variant is in Hardy–Weinberg equilibrium. In addition, it is 
more diffi cult to benchmark how well an algorithm works for rare variants. Most 
samples, including HapMap samples, have not been assayed to the same extent for 
rare variants as they have for common variants unless they have sequencing data 
available. Using family data does not necessarily circumvent this problem; if the 
rare genotype is not detected and everyone in the family is called a common allele 
homozygote, no Mendelian error will be made. Analogously, calculating the overall 
concordance of an algorithm to known genotypes is uninformative because it does 
not capture how well genotypes with rare alleles are called. For example, a calling 
algorithm that called all points common allele homozygotes would be correct 
~99.8 % of the time for a SNP with a MAF = 0.1 %. Therefore, fi nding an appropri-
ate comparison dataset and assessing a calling algorithm’s accuracy is more chal-
lenging for rare variants than it is for common SNPs. For the remainder of this 
section, we will describe a number of calling algorithms that were written for rare 
variants and consider how well they work in comparison to existing methods. 

    GenCall 

    GenCall is the default algorithm in Illumina’s GenomeStudio software (Illumina, Inc. 
 2005 ). It uses a proprietary algorithm to do initial clustering. However, when less 
than three clusters are observed after the initial clustering, neural networks are used 
to predict the locations of the unobserved cluster(s). Although Illumina did not test 
how well GenCall works for rare variants using actual data, they used simulations 
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with real data to quantify how well they expect it to work. They found that they could 
achieve greater than 99 % call rate for all genotype classes while maintaining an 
accuracy of 99.9 % for all genotype classes at a MAF = 0.5 % (  http://www.illumina.
com/documents/products/technotes/technote_genotyping_rare_variants.pdf    ).  

    Birdseed 

 Birdseed is an algorithm developed for the Affymetrix SNP 6.0 array (Korn et al. 
 2008 ). It uses a two-dimensional Gaussian mixture model that requires an input 
training dataset with known genotypes (usually HapMap samples) in order to initial-
ize the location of the clusters. Next, a series of expectation–maximization (E–M) 
steps are done until parameters in the Gaussian mixture model converge. For rare 
variants, Birdseed imputes the position of missing clusters if they were not observed. 
The authors of Birdseed compared their algorithm to BRLMM for MAF = 5 % using 
HapMap samples. They found both Birdseed and BRLMM called common allele 
homozygote genotypes accurately (~99.87 % and 99.90 %, respectively). However, 
they both were signifi cantly worse at calling heterozygote genotypes (~99 % and 
98.7 %) and minor allele homozygote genotypes (≈95.5 % and 95 %). The authors 
did not report how well Birdseed works for MAFs less than 5 %.  

    GenoSNP 

 GenoSNP is a solely within-array genotype calling algorithm that is able to accu-
rately genotype rare variants without the need for a large reference population 
(Giannoulatou et al.  2008 ). The algorithm works by clustering data for all SNPs 
within one bead pool on a single array in order to minimize intensity differences due 
to probes in different bead pools being manufactured at different times and located 
in different locations on the array. A four-component mixture model of Student’s 
 t -distribution is used to model the intensity data, and either an E–M algorithm or a 
modifi ed version of variational Bayes E–M algorithm is used to fi nd the optimal 
model given the input data. Genotype calls are made based on which genotype has 
the highest likelihood calculated from the optimal model. The authors compared 
their method to GenCall and Illuminus using 120 HapMap samples genotyped on 
the Illumina HumanHap300Duo array. The accuracy of the methods was deter-
mined by comparing the calls made by each algorithm to those publically available 
in the HapMap database. GenoSNP had the highest accuracy for heterozygote calls 
among the three methods (99.738 %), but had the lowest accuracy for homozygote 
calls (99.264 % for GenoSNP while 99.823 % for GenCall). Although GenoSNP 
did not explicitly assess the performance of their method for rare variants, they 
would have achieved comparable accuracy rates for each genotype class as they do 
for common SNPs due to their within-array clustering approach.  

J.I. Goldstein and B.M. Neale
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    ALCHEMY 

 ALCHEMY is a genotype calling algorithm intended for projects with small numbers 
of samples or highly inbred populations where most samples are homozygotes 
(Wright et al.  2010 ). Briefl y, the algorithm utilizes a Bayesian statistical framework 
where the parameters are the probabilities that A allele and B allele are present 
based on the data and the expected allele frequencies. To get the probability of the 
A and B alleles being present in a sample, a bivariate mixture of Student’s  t  -
distributions is used to model the mean signal and noise components of the inten-
sity distribution for each allele across all samples for a given SNP. An E–M 
algorithm is then used to fi nd the best parameters for the mixture model, which are 
then used to calculate likelihoods for each genotype class. Inbreeding coeffi cients 
and expected minor allele frequencies can also be incorporated into the model as 
priors in order to make more accurate calls. The authors found that BRLMM-P 
performed slightly better than ALCHEMY when comparing the accuracy of calls 
to 270 HapMap samples genotyped on the Affymetrix Human 500 K GeneChip. To 
test whether their algorithm worked better than BRLMM-P for small sample sizes, 
the authors genotyped two distinct rice lines and the resulting progeny of the cross 
on a custom array. Accuracy was determined by only looking at SNPs where the 
consensus ALCHEMY calls from the full dataset followed a Mendelian mode of 
inheritance and calculating how many genotype calls were correct when calling 
between 1 and 72 samples concurrently. ALCHEMY performed better than 
BRLMM-P for smaller sample sizes (99.2 % accuracy for 18 samples compared to 
88.7 % for BRLMM-P). However, the authors note that ALCHEMY does not per-
form as well for heterozygote calls compared to homozygote calls with small sam-
ple sizes. The authors did not report how using ALCHEMY calls as their truth 
dataset biases their results.  

    M 3  

 M 3  uses a two-stage calling procedure in order to take advantage of calling geno-
types within an array and across SNPs (Li et al.  2012 ). The fi rst stage clusters each 
SNP in a population-based manner using a Gaussian mixture model. The second 
stage recalls SNPs with a low minor allele frequency or poor average posterior like-
lihood scores calculated from the original genotype calls using cluster properties 
derived from another reference SNP that has similar intensity properties to the SNP 
being recalled. To determine how well M 3  performs for rare variants compared to 
other methods, the authors obtained calls for 141 Illumina Omni 1 M arrays from 38 
unique HapMap samples using GenCall, GenoSNP, and M 3 . When requiring that no 
errors were made in classifying homozygotes compared to known HapMap geno-
types for all three callers (in order to minimize errors due to reference strand errors), 
they found that M 3  had the highest accuracy for all three MAF bins analyzed 
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(99.20 %, 99.11 %, and 98.77 % for MAF < 0.1 %, MAF < 0.05 %, and MAF < 0.01 %, 
respectively). M 3  also had the highest call rate among the three algorithms. No dif-
ferentiation was made between the accuracy of different genotype classes.  

    optiCall 

 optiCall utilizes information from both across samples and across SNPs simultane-
ously in order to call SNPs of all minor allele frequencies accurately (Shah et al. 
 2012 ). The algorithm works by fi rst creating a four-class mixture model of Student’s 
 t -distributions where the input intensity data to the model are randomly sampled 
from across SNPs and samples. Next, each SNP is clustered and called separately in 
a population-based approach using a separate four-class mixture model informed by 
priors from the across SNP/across sample mixture model. The authors compared 
the accuracy of optiCall to GenCall, Illuminus, and GenoSNP for rare variants by 
hand-calling 600 SNPs from an Illumina ImmunoChip that were called as mono-
morphic (MAF = 0 %) by one algorithm, but had a minor allele frequency between 
4 × 10 -4  and 0.01 in two other algorithms. They found that Illuminus had misclassi-
fi ed the most SNPs as being monomorphic (354), while optiCall only misclassifi ed 
1 SNP compared to 3 for GenoSNP and 13 for GenCall. However, the authors did 
not note the overall accuracy of each algorithm that correctly called a SNP as vari-
ant (MAF > 0 %) among the 600 rare SNPs that were manually called and did not 
differentiate between the calling accuracies of common allele homozygotes and 
rarer genotypes. The authors state that their method is sensitive to intensity outliers 
and therefore recommend removing them from the data before running optiCall.  

    Chiamante 

 Chiamante is a genotype calling algorithm for microarrays that has the ability to 
incorporate information from sequencing data to make more accurate genotype 
calls using a Bayesian framework (O’Connell and Marchini  2012 ). They used 
Illumina Omni 2.5S microarray data and 4× sequencing data from the 1000 Genomes 
Project to test how well their method works. Affymetrix Axiom data with genotype 
calls from the Axiom GT1 algorithm (modifi ed version of BRLMM for Axiom 
arrays) is used as the truth dataset. For rare variants (MAF < 5 %), the authors found 
that Chiamante with the addition of sequencing data outperformed GenoSNP, 
Illuminus, and GenCall. The overall concordance of Chiamante + sequencing with 
Axiom genotype calls for major allele homozygotes was 99.78 %, for heterozygotes 
was 98.11 %, and for minor allele homozygotes was 95.63 %. However, the authors 
note that because they used the Axiom GT1 genotypes as a truth dataset and the 
Axiom GT1 calling algorithm doesn’t work as well for rare variants, the accuracies 
reported are overestimates.  

J.I. Goldstein and B.M. Neale
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    zCall 

 zCall is implemented as a post-processing step for GenCall in order to recover rare 
variation that GenCall called as No Calls using outlier detection (Goldstein et al. 
 2012 ). To assess the performance of their algorithm for rare variants, the authors 
used Exome Chip data and compared the calls they obtained from both GenCall and 
zCall to whole-exome sequencing calls for singleton SNPs in the sequencing data. 
They used the SNP-wise concordance (SWC), which is the percentage of passing 
SNPs divided by the total number of SNPs, to determine how well a caller works for 
rare variants. A SNP is considered passing if all genotypes are concordant with the 
sequencing calls. However, they did allow for common allele homozygotes to be 
called as a No-Call because this error mode wouldn’t affect association test statis-
tics very much. The SWC of GenCall for singleton SNPs was 92.49 % and 99.12 % 
for zCall. They also compared zCall to optiCall and found using an independent 
dataset that the SWC for singleton SNPs in exome sequencing data for GenCall was 
93.12 %, optiCall was 98.21 %, and zCall was 99.27 %. zCall works well at recover-
ing missed variation from GenCall. However, it is also very sensitive to data quality. 
If the data have a low signal to noise ratio or batch effects exist in the data, then 
zCall will not work as well.  

    iCall 

 iCall is a multi-sample, single SNP calling algorithm designed to work for both 
common and rare variants (Zhou et al.  2014 ). iCall utilizes the framework of the 
Illuminus algorithm where parameters representing the likely cluster positions are 
estimated from an E–M algorithm and a three-component Student’s  t -mixture model 
is used to make genotype calls (Teo et al.  2007 ). iCall expands on Illuminus by 
using a set of novel penalty functions to guide the E–M algorithm to account for 
situations in which a SNP has a low minor allele frequency, the dataset has a small 
number of samples, or the intensity profi le of the assay is signifi cantly different than 
what is expected. To assess the performance of iCall, the authors compared their 
algorithm to GenCall, optiCall, Illuminus, and GenoSNP using 81 samples that had 
been genotyped on the Illumina Exome Chip and whole-genome sequenced. The 
performance of each algorithm was estimated from 13,542 common SNPs, 1,356 
low-frequency variants, and 1,530 rare variants that were polymorphic in the 
sequencing data and had been genotyped on the array. The authors found that iCall 
had the highest overall concordance rate and the highest minor allele concordance 
rate for rare SNPs, correctly identifying 97.435 % of heterozygous and minor allele 
homozygous calls from sequencing with an input sample size of 1,000. However, 
iCall was more conservative when making genotype calls for rare variants and con-
sistently had a higher missed minor allele call rate than optiCall (3.422 % compared 
to 3.076 % for an input sample size of 1,000). The authors do not state how often 
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iCall calls a true major allele homozygote call as a heterozygote or minor allele 
homozygote. Finally, the authors applied zCall to genotype calls made from opti-
Call, GenCall, and iCall and found that the application of zCall always improved the 
concordance for all three callers. The combination of GenCall + zCall performed 
slightly better for common SNPs (97.683 % versus 97.681 %), while iCall + zCall 
performed better for low-frequency and rare SNPs (97.656 % versus 97.608 %).   

    Conclusion 

 In this chapter, we have described the technology used in genotyping arrays, provided 
an overview of genotype calling algorithms, and surveyed the literature for how 
well existing genotype calling algorithms work for rare variants. We would like to 
note that the focus from genotyping common variants to rare variants has happened 
quite recently. Therefore, more research will be done in the near future as genotyp-
ing arrays with rare variants are more widely adopted.     
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           Introduction 

 Detecting genetic variation from high-throughput sequencing data (variant calling) 
is a diffi cult and computationally intensive task and continues to be the subject of 
much research. Current sequencing technologies produce short (~100 base pair) 
reads; these are then typically matched to a reference sequence, before being used 
to identify potential variation between the reference and the sample being sequenced. 
There a number of methods which can be used to identify variants, and different 
methods are more effective for different types of variant. In the following sections, 
we will introduce several of the most popular methods. First though, we need to 
discuss sequencing data more generally and introduce a few of the various fi le for-
mats that exist for storing this data.

       Next-Generation Sequencing Data 

 The last decade has seen a vast increase in the amount of DNA sequence data being 
generated around the world. Various technologies exist, but the current dominant 
platform is the Illumina HiSeq machine, and we will be focusing almost exclusively 
on this for the purposes of this chapter, though most of what is said will also be 
relevant to other platforms. The Illumina machines produce millions (in some cases 
billions) of short reads, normally in pairs, of about 100 base pairs each. The volume 
of data produced by a typical run of these machines is large (tens of gigabytes), and 
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so we need an effi cient way of storing this data. The favoured data formats (and the 
ones you will most likely have to deal with) for storing these reads are called BAM 
and FASTQ. 

    DNA Sequence Reads 

 Sequencing data is produced in the form of  reads . A read is a string of nucleotide 
sequences. Each read also has a sequence of  quality scores , one for each sequenced 
nucleotide. The nucleotide sequence tells us the machine’s interpretation of the bio-
logical sequence, and the quality score tells us how accurately the machine thinks 
its output represents the biological sequence. Low-quality scores mean low confi -
dence in the nucleotide sequence. 

    Single and Paired Reads 

 Reads can be produced either in pairs or one at a time. You need to know which, in 
order to deal correctly with the data. Sequencing reads in pairs give more informa-
tion, as the pair of reads is known to be close together in the biological sequence 
(typically within 100–1,000 bp), and this can be used to help signifi cantly in later 
analysis. The read pairs can normally be selected during sequencing, so that the 
distance between reads is similar across pairs; this distance (the distance on the 
biological sequence between the start of one read and the end of the other) is known 
as the  insert size .   

    The FASTQ File Format 

 FASTQ is the standard fi le format for representing raw sequencing data. It stores 
both the nucleotide sequence and the corresponding sequence of quality scores for 
each read. There is a description of the format on Wikipedia (  http://en.wikipedia.
org/wiki/FASTQ\_format    ). Roughly, a FASTQ fi le contains a string of bases for 
each read, along with a quality score for each base, which describes how confi dently 
that base was identifi ed by the sequencer. FASTQ fi les are human readable (although 
the quality scores are reported using ASCII codes (  http://en.wikipedia.org/wiki/
ASCII    ) rather than simple numbers and are diffi cult for most people to interpret). 
If your data arrives in FASTQ format, then it has not been aligned to a reference 
sequence, and you will need to do this before you can start identifying variants 
(unless you are using an assembly-based approach, but see later for more on this). 

 FASTQ fi les may also come in a compressed form, in which case the fi le names 
will normally end in  .gz  (if compressed with gzip) or  .bz2  (if compressed with 
bzip2). Compressed FASTQ fi les are not human readable unless you un-compress 
them fi rst (see   www.gzip.org     or   www.bzip.org     for more information on these stan-
dard compression tools).  

A. Rimmer
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    The BAM File Format 

 BAM is a dedicated fi le format designed to store next-generation sequencing reads 
that have been aligned to a reference sequence. It is a good format for effi ciently 
storing and accessing this sort of data, particularly if the reads are sorted by refer-
ence coordinate. It does, however, require special programs to read, write and other-
wise manipulate it. If you are happy with Linux command-line tools, then you might 
want to look at Samtools (  http://samtools.sourceforge.net/    ), which has a set of basic 
BAM-processing utilities, and also a variant caller (more on that later). If you want 
a visual display of the data in a BAM fi le, then try the Integrative Genomics Viewer 
(IGV, available from   http://www.broadinstitute.org/igv/    ). There are many other 
tools for manipulating BAM fi les, which we will not discuss further here. 

 The BAM format also has a human-readable equivalent, called SAM, which con-
tains exactly the same data but can be read using standard text-reading programs 
 less  or  more  if you are using Linux/Mac OS X, but do not try to open these fi les in 
Excel as they can be huge. 

    Header and Alignment Sections 

 A BAM fi le is divided into two parts. There is a  header  section, which contains 
meta-information about the content of the BAM fi le, and an  alignment  section, 
which contains the actual read data.   

    Other Sequencing Technologies 

 There are several commonly used next-generation sequencing platforms. Thankfully, 
the output from all of these can be stored in BAM or FASTQ format, as these for-
mats are designed to be platform agnostic. Because of this, most of the tools we will 
discuss can be used on data from any sequencing platform. Results may vary how-
ever, since some tools will be optimised for specifi c platforms, and will deal more 
effectively with the particular kinds of problems which occur on that platform.   

    Experimental Design 

 Before discussing data processing in more detail, it is worth going over a few aspects 
of data generation which really need to be decided early. If you want to detect cer-
tain kinds of variation in your data, then you need to generate the right kind of data; 
otherwise it may be diffi cult or impossible to perform the desired analysis. Here are 
a few things you may wish to consider. 
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  Platform : Which sequencing platform to use? Is quality or quantity of data the main 
priority? Do you want longer reads or more accurate reads? 

  Paired or Single : Do you want to sequence reads in pairs (the answer is probably 
yes)? If so, how large should the insert size be? 

  Genome ,  Exome or Targeted Sequencing : Do you want to sequence the complete 
genome of your samples (known as  whole-genome sequencing  or  WGS ), or is it 
enough to sequence just the exons of known genes? ( whole-exome sequencing  or 
 WES ). Perhaps you only want to sequence a specifi c set of genes/contigs. These deci-
sions will have a signifi cant impact on the scope and accuracy of variant detection 
which is possible with your data. Obviously you cannot detect variants in parts of the 
genome you did not sequence, but there are other effects. Detecting large variants is 
much easier with whole-genome sequencing, as this gives quite even, contiguous 
coverage across the genome, except in some very repetitive regions. If you are inter-
ested in large insertions, deletions, copy-number variants or large re- arrangements of 
any kind, then you may need to consider whole-genome sequencing: these events 
can be detected with exome or targeted sequencing, but it is much harder. 

  Pooled or Multiplexed : Are you sequencing multiple samples together? If so, you can 
either use bar-coded multiplexing or pooled sequencing. With multiplexing, you can 
sequence many samples together but then separate them afterwards, using a sample-
specifi c tag. Pooled sequencing results in the loss of sample information: you just get 
many reads and have no idea which read came from which sample. This makes it 
impossible to infer per-sample genotypes. Pooled sequencing is not generally recom-
mended, unless absolutely necessary because of fi nancial constraints, for example.  

    Processing Sequence Data 

 This section explains how to get from raw sequencing data to something which is 
ready to be used for variant calling. We introduce some new data formats and sum-
marise some of the techniques used. 

    Removing Adapter Sequences 

 If you are sent raw FASTQ fi les, then it may be necessary to do some basic process-
ing on the data before anything else. In particular you should check for contamina-
tion by adapter sequences. When the insert size of a fragment is smaller than the 
length of a read, the sequencer will continue sequencing into the  adapter . The 
adapter is a short sequence tag that is attached to the fragment during sequencing. 
If the adapter is sequenced, then sequence of nucleotides in the contaminated read 
will be part biological sequence and part adapter sequence. This is not desirable 
and can lead to problems with downstream processing (particularly mapping and 
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variant calling). Consequently, we recommend that you use a program to strip out 
any such contamination at the earliest possible stage. There are several programs 
for this; a popular program is  cutadapt  (  http://code.google.com/p/cutadapt/    ).  

    Mapping and Aligning Sequence Data to a Reference Sequence 

 Once you have your sequence data and have established exactly what it is, the fi rst 
task (if this has not already been done for you) is to map and align the sequence data 
to a reference sequence. A fairly reliable way to tell if your data has already been 
mapped is to check the data format. If your data is in FASTQ format, then it is not 
aligned to a reference sequence. If your data is in BAM/SAM format, then it is. 

 For mapping, you will need your data, a mapping program and the latest version 
of the standard human (or relevant species) reference sequence. Reference sequences 
are available from NCBI (  http://www.ncbi.nlm.nih.gov/RefSeq/    ) in FASTA format. 

    The FASTA Format 

 The FASTA format (  http://en.wikipedia.org/wiki/FASTA\_format    ) is the standard 
way of storing and accessing reference DNA sequences. It is simple and human 
readable, although FASTA fi les may come compressed with gzip or bzip2.  

    Mapping Software 

 There are many programs designed to map and align human DNA to the reference 
sequence. Most will take FASTQ sequence fi les as input, along with a reference 
sequence in FASTA format, and output a BAM or SAM fi le (remember these are the 
same format, just one is text and one binary and you can convert between them using 
programs such as Samtools). The most widely used programs for this are BWA 
(  http://bio-bwa.sourceforge.net/    ) and Stampy (  http://www.well.ox.ac.uk/project-
stampy    ). It is extremely important to use a good mapping program; otherwise you 
may lose vital information, making certain variant-calling tasks impossible. BWA 
and Stampy are fairly reliable tools: BWA is faster, and Stampy is better for dealing 
with sequences that are signifi cantly diverged from the reference. 

 The BAM format contains a value for each read, called the  mapping quality , 
which tells you how accurate the mapping is for that read. Specifi cally, the mapping 
quality encodes the probability that the read is mapped to the wrong position as a 
 PHRED  score (  http://en.wikipedia.org/wiki/Phred_quality_score    ). A low mapping 
quality means that the read may be mapped to the wrong place, i.e. that there are 
other locations in the genome which contain similar sequence. The mapping quality 
is computed by the read mapper and output into the BAM/SAM fi le. 

 Make sure to check the documentation of the mapping program that you use, so 
you understand what the output contains.   
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    Sorting and Filtering Data and Quality Checks 

 Once you have a BAM fi le (or many BAM fi les, as it is best to keep each sample 
in its own BAM fi le, but this depends on your experiment), with your data aligned 
to the reference sequence, you need to make sure that it is ready to be used for 
variant calling. Exactly what is required will depend on the variant caller you are 
using, but a standard requirement is that the reads in the BAM fi le be in coordi-
nate sorted order and that each BAM fi le has an associated index fi le. It may also 
be necessary to merge data from several sources into a single BAM fi le or to fi lter 
the data in the BAM fi le to remove low-quality reads and/or certain sequencing 
artefacts. 

 If the read mapper you used to create the BAM fi le(s) does not output the reads 
in coordinate sorted order (most do not), then you can use a program like Samtools 
or Picard (  http://picard.sourceforge.net    ) to sort the reads. This is straightforward, 
and most of these programs work out of the box with no problems. The only issue 
you may need to consider is disk space: BAM fi les are large, and sorting a BAM fi le 
requires copying the data, so you need at least twice as much space for the sorting 
to work. Make sure to check this fi rst, as sorting can take quite a long time, and you 
do not want it to fail right at the end due to lack of space. 

 After sorting, you will need to create an index fi le for each BAM fi le. The index 
fi le can only be created from a sorted BAM fi le, so you must do the sorting fi rst. The 
index fi le is a utility that allows programs to quickly locate reads by coordinate. 
Many programs rely on the existence of an index fi le and will not work without one. 
The convention is to name index fi les in the same way as the BAM fi les, but with a 
 .bai  extension, e.g.  test.bam  has index fi le  test.bam.bai . You can create an index fi le 
using  Samtools . 

 If you have data from several different sources that you want to merge into a 
single BAM fi le, then use  Picard . You can also use Samtools for this, but it does not 
correctly deal with merging the  header  components of multiple BAM fi les, so 
 Picard  is recommended instead. 

    Checking BAM Data for Quality 

 It is a good idea to check your BAM fi les at this stage, to make sure there are no 
serious problems with the data. In particular you should make sure that you have 
sequenced the right samples, that you have coverage of the desired genomic loca-
tions and that there is minimal contamination. You could use a dedicated program 
such as FastQC (  http://www.bioinformatics.babraham.ac.uk/projects/fastqc/    ) for this. 
Here are a few things to check:

    Coverage : Do your samples have coverage in the expected genomic locations? If so, 
is it enough (as a rough guide, at least 10× coverage per base is recommended for 
basic variant calling, but this depends on your experimental design)?  
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   Duplication Rate : There will be a certain fraction of read pairs that are identical to 
other pairs in the same sample. This is often due to sequencing the same fragment 
multiple times. It is a good idea to remove duplicate reads. Check the proportion of 
reads in your data that are duplicates.  

   Contamination : Check for the presence of unexpected sequence. If there is a large 
amount of sequence that cannot be mapped to the reference, then something may be 
wrong.  

   Insert sizes and Read lengths : Check the distribution of insert sizes in your data. 
Does this match the expected distribution?  

   Base and Mapping Qualities : Check for reads with very low mapping qualities or 
very low base qualities.       

    Variant Calling 

 In this section we discuss variant calling and describe the different types of variant 
that can be detected with current methods and describe some of those methods. 

    Variant Types 

 Variant-calling algorithms are often optimised for specifi c types of variant, so we 
will review these now, in roughly ascending order of size. 

  SNPs : Single nucleotide polymorphisms (SNPs) are probably the best studied class 
of variant. Most variant-calling tools presented in the literature are optimised for 
fi nding these. SNPs are single base changes with respect to the reference sequence 
and occur in roughly one base per thousand in normal human genomic DNA. After 
alignment to the reference, base differences can be easily spotted. 

  MNPs : Multi-nucleotide polymorphisms are sequences of two or more bases which 
are adjacent and different from the reference sequence. These occur less frequently 
than SNPs. MNPs are not diffi cult to identify, but some variant callers report them 
as multiple individual SNPs, which can complicate downstream processing. 

  Short Insertions : Short (defi ned here as less than 100 base pairs although there is no 
consensus) insertions are less common than SNPs, but still occur roughly every 
10,000 base pairs or so (check numbers). They are much more common in certain 
parts of the genome, depending greatly on the sequence context. Specifi cally, inser-
tions are very common in long repetitive sequences, e.g. homopolymers and dinu-
cleotide repeats. Insertions can be diffi cult to identify, since they contain sequence 
which may not be present in the reference. For accurate insertion calling, it is very 
important to use a good read mapper (e.g. Stampy, BWA). 
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  Short Deletions : These occur at a similar frequency to short insertions. Deletions 
are easier to deal with than insertions, but still require accurate read mapping and 
alignment. 

  Complex Replacements : A loosely defi ned category, which encompasses all small 
variants which do not fi t neatly into the previous categories, for example, variants 
which include both an insertion and one or more base changes. These are often 
reported as multiple SNP/indel variants 

  Inversions : Inversions are sequences of DNA that are reversed with respect to the 
reference. These come in various sizes. Large inversions are diffi cult to identify cor-
rectly. Small inversions are often called multiple variants, e.g. one insertion (of 
reversed sequence) plus one deletion (of normal sequence). 

  Large Insertions : Large insertions (more than 100 base pairs) are very diffi cult to 
call correctly, as the inserted sequence will often span a whole read, and that read 
does not map anywhere in the reference sequence. These are best identifi ed with an 
assembly-based approach (see later). 

  Large Deletions : Large deletions are somewhat easier to spot, as the surrounding 
sequence can be mapped to the reference. Again, an assembly-based approach is 
probably the best way to fi nd these. 

  Tandem Repeats : A special class of small insertion/deletion that occurs in locally 
repetitive sequence. These can be diffi cult to identify correctly if the total length of 
the repeat is much longer than a read length. 

  Copy Number Variants : Similar to tandem repeats, but with a larger repeated unit. 
These can span large genomic intervals (many kb) and are diffi cult to call accurately. 

  Structural Variants : A general term for large events which do not fi t neatly into the 
other categories. These include whole chromosomal duplications, translocations, 
gene-fusion events, etc. These are all diffi cult to call from sequencing data.  

    The Variant Call Format (VCF) 

    Thanks to work carried out as part of the 1000 Genomes Project, there is now a 
standard data format for reporting variant calls, which is used by most variant- 
calling programs and many downstream processing tools. This is the Variant Call 
Format (VCF) (  http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20
Format/vcf-variant-call-format      version-41    ). VCF allows the representation of all 
kinds of small variants and, in principle, large variants as well, though the fi les can 
become large. The format has a number of fi xed fi elds, i.e. data which must be pres-
ent, but also allows for arbitrary annotations to be added to each call. Genotype 
information can be present (but is not required), and multiple samples can be 
included in a single VCF fi le. Both phased and unphased genotypes are supported. 
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    Reporting Indel Alleles in VCF 

 There is substantial room for ambiguity when reporting insertion or deletion 
alleles in repetitive sequence. It is often possible to report the same allele in a 
number of different positions without changing the overall sequence (e.g. an  A  
insertion in the sequence  AAAAAAA  could be reported anywhere in the sequence). 
The convention is to report all alleles as far to the left as possible; this is not a 
requirement of the VCF standard, but most variant callers now do it, and it is a 
good idea; otherwise it becomes very diffi cult to compare indels; check your vari-
ant caller’s documentation.  

    Complex Variants 

 As mentioned before, the reporting of MNPs and complex substitutions is not stan-
dardised, and one variant caller might report the substitution ACAC → AAAA as 2 
SNPs, whilst another reports it as a single replacement, and yet another reports a 
deletion of ACAC followed by an insertion of AAAA.  

    Genome VCF 

 A recent innovation is for some variant callers to report, in VCF, not just the variant 
calls, but also hard reference calls, i.e. regions for which the caller was confi dent 
that only the reference sequence exists. This is useful for discriminating cases where 
there is little or no coverage from cases where there is coverage, and it clearly sup-
ports the reference. There is not currently a standard way of reporting this.   

    SNP Calling 

 SNPs are probably the most studied form of genetic variation, and SNP calling is 
the most mature form of variant detection. In principle, once the reads are correctly 
aligned to a reference sequence, then SNPs can be identifi ed by simply reading off 
the base changes between the reads and reference. In practice it is not quite this 
simple, as various problems result in fake SNP candidates appearing, and a naïve 
approach to SNP calling will result in a large number of false SNPs being called. 
Here are a few things that can cause problems:

    Sequencing Errors : Put simply, the sequencer gets it wrong, and an incorrect base is 
present in the read. This is sometimes refl ected in a low-quality score for the base in 
question, but not always.  
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   PCR Errors : Copying errors occur during PCR amplifi cation, resulting in reads with 
incorrect bases. This can be exacerbated by sequencing the same PCR fragment 
multiple times, which is one reason for getting rid of duplicate read pairs.  

   Contamination : Your data contains a small amount of DNA from another sample or 
something else which was sequenced at the same time (e.g. bacteria/virus).  

   Bad Mapping/Alignment : If the read mapper puts reads in the wrong place, this can 
result in apparent base mismatches. This may happen systematically at certain sites. 
This is why you must use a good mapper.  

   Unidentifi ed Insertion/Deletion nearby : If there is a real variant which has not been 
identifi ed (e.g. a large insertion/deletion), then reads fl anking that variant may not 
be aligned correctly, resulting in apparent SNPs. Even good mappers will not be 
able to identify all insertions/deletions correctly, so this is likely to be a problem.    

    Software for SNP Calling 

 There are many SNP-calling programs out there and quite a few good ones. The 
standard and most used program is the Genome Analysis Toolkit (  http://www.
broadinstitute.org/gatk    ), developed at the Broad Institute. Other popular tools 
include Samtools (  http://samtools.sourceforge.net/    ) and Platypus (  http://www.well.
ox.ac.uk/platypus    ).  

    How to Check SNP Calls for Quality 

 There are a number of simple measures that can be used to quickly check a set of 
SNP calls, to see if it is sensible. Checking individual SNPs can be done either by 
visual inspection of the relevant part of the BAM fi le (using IGV (  http://www.
broadinstitute.org/igv/home    ) or a similar tool) or by follow-up sequencing with an 
independent technology, but it is a good idea to check some overall metrics fi rst. 
Here are a few commonly used quality checks:

    Number of SNPs : SNPs occur at the rate of roughly 1 per 1,000 bases in human 
DNA, so a quick count should tell you if anything is very wrong. A good idea is to 
check the number of SNPs called per chromosome.  

   Transition/Transversion Ratio : The rate of transition SNPs (C → T, T → C, A → G, 
G → A) occurring naturally is known to be signifi cantly higher than the rate of 
transversion SNPs (everything else). A good benchmark is that the rate should be 
above 2. Figure  1  shows this rate computed for human chromosomes 1–22.  

   Allele Frequency : Real SNPs should occur at an allele frequency of either 0.5 or 
1.0 in a single sample. Check the distribution of allele frequencies. There should be 
two large peaks and then a certain amount of noise. If there are not pronounced 
peaks at 0.5 and 1.0, then something is wrong.      
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    Indel Calling 

 Insertion and deletion (Indel) calling has received somewhat less attention than SNP 
calling, but methods for this are gradually becoming mature. Currently there is still 
a substantial difference between the outputs of various indel calling programs run-
ning on the same data, whereas SNP callers are now giving fairly similar results. 
The reason is that indel calling is inherently more diffi cult, requiring in the worst 
case a reassessment of the alignments and mapping positions of reads. Also, the 
sequencing error modes which cause insertion/deletion errors during sequencing 
are less well understood and so less well modelled in the tools. Naive indel calling 
by simply counting sites where the read mapper has fl agged insertions or deletions 
will result in massive over-calling of indels and is not recommended. Here are a few 
sources of indel errors:

    Sequencing Errors : The sequencing mechanism goes wrong, and sequence is either 
skipped or sequenced multiple times, resulting in an incorrect nucleotide sequence 
in the affected read. This is particularly common when sequencing repetitive 
sequence, e.g. homopolymers or short tandem repeats.  

   Mapping Errors : The read mapper either puts the read in the wrong place or puts it 
in the right place and aligns it badly. Either of these results in any real indel being 
missed and an incorrect indel being seen.  

  Fig. 1    Transition/transversion rate for SNPs across the human genome, from 1000 Genomes 
Project Phase 1 data       
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   Adapter Contamination : Sequencing the adapter sequences (see earlier) can result 
in spurious insertions being seen at the end of reads. This is why you should trim the 
adapter sequences.  

   Unidentifi ed Large Variants : Not calling a large insertion/deletion/inversion cor-
rectly could result in a series of incorrect small indel calls.    

    Software for Indel Calling 

 This is less clear-cut than for SNPs. There is not yet a huge weight of evidence to 
support any one program being the best, but good tools include GATK, Platypus, 
Dindel and Samtools. Assembler-based approaches such as Cortex are also good 
choices for calling in particular large indels and more complex variation, although 
such approaches can be less sensitive than mapping-based approaches particularly 
for small variants.    

    How to Check Indels for Quality 

 This is also less clear than for SNPs, but there are a few useful metrics:

    Indel Length : Long indels are less common than short ones, so the length distribu-
tion should be heavily peaked around 0. If this is not the case, then something is 
probably wrong.  

   Insertion/Deletion Ratio : What little good-quality data there is suggests that, for 
human genomic DNA, the real insertion/deletion ratio is close to 1.0. Typically the 
observed ratio is higher than this due to over-calling of fake insertions.  

   Triplet Enrichment : In exonic/coding sequence, there should be an apparent enrich-
ment of triplet indels (i.e. those lengths which are multiple of 3), as these do not 
cause frameshifts in the coding sequence.      

    Calling Other Small Variants 

 There are no standard protocols for the calling of other small variants. They are 
reported differently by different variant callers, and there is little data so far on the 
performance of standard tools in identifying them. Tools like recent versions of GATK 
and Platypus, which use haplotype calling, should do a reasonable job of calling these.  

    Calling Large Variants 

 As mentioned previously, detecting large variants is diffi cult. There is not much reli-
able data on how well the various available tools perform, but this is defi nitely not a 
solved problem yet. Detecting large variants requires a completely different approach 
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to detecting small variants, and it is more diffi cult to represent large variants in VCF, 
so not all programs output VCF. Tools you might want to try include Cortex (  http://
cortexassembler.sourceforge.net/index_cortex_var.html    ) and Pindel (  http://bioinfor-
matics.oxfordjournals.org/content/25/21/2865.long    ).   

    Different Approaches to Variant Calling 

 This section will go briefl y through the most common approaches to variant calling, 
used by standard programs such as GATK, Platypus, samtools and Genome STRiP, 
as well as a number of lesser-used tools, and attempt to summarise the strengths and 
weaknesses of these approaches. 

    Mapping Based 

 The most common method is to map and align sequence data to a reference sequence 
(see above) and then identify variants by comparing the aligned reads directly to the 
reference sequence. The accuracy of these approaches depends greatly on the map-
ping software putting the reads in the right place. These tools can be split into two 
categories: those that do naïve allele counting based on the mapper alignments and 
those that perform realignments. 

    Naive Allele Counting 

 The simplest methods just look at the aligned reads and count how often a base 
change or insertion/deletion is observed at a particular location. These methods are 
normally quite sensitive to SNPs and short indels (conditional on good original 
mapping/alignment), but must rely on good fi ltering strategies to reduce the false 
call rate. Examples of tools that work in this way are Samtools and SYZYGY 
(  http://www.broadinstitute.org/software/syzygy/    ).  

    Realignment Based 

 A more accurate but also more computationally intensive approach is to perform a 
realignment of reads in certain regions in order to improve the alignments (read 
mappers typically only see one read at a time, so it is possible to improve alignments 
by considering all reads within a small genomic window). These newly aligned 
reads are then used to decide which variants are present. Realigning the reads in this 
way helps to avoid the problem of having, for example, spurious SNP calls generated 
by actual insertion/deletion events which were not correctly identifi ed by the read 
mapper. Programs which follow this approach include GATK, Dindel and Platypus.   
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    Assembly Based 

 An entirely different approach to variant detection is to avoid read mapping completely 
and assemble contigs from scratch, using the raw, unmapped reads. This can be 
done in a way which is entirely reference-free or using information from the refer-
ence sequence to scaffold the assembly. 

 A good example of a program which uses assembly (reference based or reference- 
free) to identify variants is Cortex (  http://cortexassembler.sourceforge.net/    ). 
Assembly-based methods can access much larger variants than can be found using 
standard mapping-based approaches, but may be somewhat less sensitive for small 
variants.  

    Local Assembly Based 

 A more recent approach is to use a combination of read mapping followed by local 
assembly of small genomic intervals (100–1,000 bp). This approach hopefully gives 
more power to detect larger variants whilst retaining accuracy and sensitivity for 
SNPs and short indels. This method is currently implemented by GATK and Platypus.  

    Split Read Based 

 Another approach designed to detect larger variants is split-read mapping. This 
starts from aligned read data and takes read pairs where one read did not map to 
anywhere on the reference sequence. These unmapped reads are assumed to be 
reads spanning the break points of large variants (deletions or other structural vari-
ants). These are then remapped around the position of their ‘mate’ using a different 
algorithm which allows large gaps in the middle of the read. Once this is done, the 
remapped reads are used to identify structural variant break points. This approach 
is implemented in PRISM  (  http://bioinformatics.oxfordjournals.org/content/early/
2012/07/31/bioinformatics.bts484.abstract    ).  

    Insert Size and Coverage 

 The last method we discuss involves using information about the insert-size distri-
bution or read pairs and coverage to detect large deletions. These methods look for 
clusters of read pairs with unusually large insert sizes and use these to infer the 
presence of large (i.e. much larger than the typical insert size) deletions. This 
approach is implemented in various tools such as Genome STRiP (  http://www.
broadinstitute.org/software/genomestrip/genome-strip    ).   
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    Things to Look Out For 

 This fi nal section outlines a few common problems and pitfalls encountered in variant 
calling. None of the methods mentioned above are perfect. Even SNP calls from 
good-quality data can still have a signifi cant error rate, and the problem is much 
worse for indels. So here are a few things to watch out for. 

    Repeats in Reference 

 The current (37) build of the human genome contains a large amount of repetitive 
sequence. There are (sometimes quite large) regions which are duplicated in sev-
eral places. As a result, it is often impossible to map read pairs unambiguously. 
Most mappers will fl ag reads that fall in these regions with either a very low or zero 
mapping quality. Large numbers of reads mapping to the wrong location may cause 
fake SNP or short indel calls. A good way to avoid this problem is to fi lter your 
BAM fi les and remove reads with low mapping qualities. 

 The reference sequence also contains a number of collapsed repeats. These are 
regions which are only represented once in the reference sequence, but are really 
duplicated many times in real DNA. These can cause problems, as some of the cop-
ies may not be exact, and all the reads from all copies will map to the same location 
in the genome. This can cause large clusters of fake SNPs and indels to be called. 
A good way to spot this is by looking at the coverage distribution: regions like this 
will often have many times higher coverage than average (note that this only works 
for whole-genome data or for exome/targeted when looking across many samples, 
as it relies on having even coverage across the genome).  

    Centromere 

 The centromeres and telomeres are very diffi cult regions to call variants in, as they 
tend to be very repetitive. It may be sensible to either skip calling in these regions 
or simply fi lter out calls made there.  

    HLA and MHC 

 The HLA regions can be very divergent from the reference sequence. Most standard 
variant callers expect a lower rate of variation than is present in these regions and so 
do not give accurate calls here. In addition, mapping to the HLA is diffi cult, and 
many read mappers will not place reads in the right place here.  
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    Sex Chromosomes and Autosomes 

 Calling variants on the human sex (X and Y) chromosomes needs some special 
consideration. Obviously there may be either 1 or 2 copies (or more) of the X chro-
mosome, which will affect coverage and the rate of homozygous calls, so any fi lters 
applied to your calls should be modifi ed accordingly.  

    Large-Scale Abnormalities 

 It is always worth checking for large-scale abnormalities before looking too closely 
at things like SNPs. Checking coverage and rates of homozygosity across the target 
region is always a good idea, as this may show up things like whole-chromosome 
loss/duplication or deletions of large parts of a chromosome. Rare events such as 
uniparental isodisomy (two copies of the same chromosome inherited from one par-
ent), which can result in an entire chromosome being homozygous for all variants, 
are easy to miss if you are not looking at the right scale.  

    Calling Variants on Different (Non-European) Populations 

 Some variants are fi xed in certain populations. The reference sequence can obvi-
ously not represent all populations, so in some cases the reference allele may be the 
minor allele in the population you are studying.  

    Allele-Biased Variants 

 Variants may be well supported by the data but still be present at lower-than- 
expected allele frequencies. For example, a called SNP may be present in 100 out of 
1,000 reads in a single diploid sample. There is always the chance that this is a real, 
somatic variant, but the most likely explanation is that it is an artefact of some kind. 
It is worth looking at the estimated frequencies and the read counts. Most variant 
callers will fi lter on this automatically, but it is always worth checking.  

    Strand Bias 

 Similarly, you should check what fraction of supporting reads are from the forward/
reverse strands. The balance should normally be around 50/50, with some spread 
depending on various things including local sequence context. The forward/reverse 
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read counts will be reported by most callers, but you can always go back to the 
original BAM fi le and check with IGV or a similar tool. Variants which are heavily 
strand biased are likely to be artefacts. Again, these are normally fi ltered, but you 
should check.  

    Somatic Variants 

 If you are interested in somatic variants, which may be present at allele frequencies 
of substantially lower than 50 %, then make sure to check whether or not the variant 
caller you are using has fi lters on the allele frequency.   

    Summary 

 Variant calling from high-throughput sequence data is a challenging task, requiring 
a good understanding of the error modes of modern sequencing platforms and 
robust statistical modelling, as well as fast and memory-effi cient software to deal 
with the huge volumes of data. There are now a variety of good programs to deal 
with this problem and a variety of approaches to dealing with it. We have seen how 
to move from raw sequence data to fi ltered variant calls. This is a fast-changing 
fi eld, new methods are being actively developed and these methods will need refi n-
ing as the data changes.    
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Rare Variant Quality Control

Anubha Mahajan and Neil Robertson 

 Introduction

The success of any association study depends crucially on the implementation of a 
rigorous quality control (QC) procedure. Typically, these QC measures involve 
identification and removal of individuals and variants with high error rates that con-
found the analysis and results in spurious association signals. Here we provide a 
protocol detailing the data quality assessment and control steps that are carried out 
during the QC of a data set, with special reference to rare variants that have propen-
sity for spurious genotypes.

Once genotype data are generated, there are several steps required to process the 
data into high-quality genotypes for each individual. Sample mix-ups are an ever 
present menace and need to be guarded against. Mix-ups may occur in the lab or 
may be the result of erroneous digital manipulation, such as the incorrect sorting of 
pick-sheets. At basic level the consistency of samples can be checked by comparing 
estimated sex with sex reported by the phenotypes, where sex is usually present. 
However, if earlier genotypes are available for a set of samples, then these can help 
to identify sample mix-ups with far greater efficacy than using sex estimations 
alone. Some labs may run a panel of SNPs as a set of “DNA fingerprints” to aid 
traceability. Typically these will be a few dozen common polymorphisms geno-
typed using the Sequenom platform. Otherwise results of earlier single genotyping 
or chip genotyping can be used where there is an overlap. Many chips also include 
a subset of common SNPs; the Illumina Human Exome chip included a set of 274 
SNPs for this purpose. Even if there are not enough overlapping SNPs to verify a 
sample’s identity beyond reasonable doubt, it may still assist in isolating negative 
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matches. Genotype comparison can best be accomplished by running an identity-
by- descent estimation, though interpretation of pairwise results can be involved. 
Essentially, nominally identical samples will either match, match another sample, or 
match no one even though the counterpart sample is nominally present. All but the 
former set need to be excluded. Any issues should be followed up with the originat-
ing lab in order to pinpoint earlier errors and correct downstream sample sheets.

Next, QC steps are most often dealt with at two levels: the sample- and the 
variant- specific level. Ideally, sample level QC should be implemented prior to per-
forming QC on the variant level. This ensures that bad quality DNA samples do not 
influence variant QC matrices and consequently that the maximum number of vari-
ants is carried forward for downstream association analyses.

 Sample Quality Control

It is useful to examine per sample quality metrics, including the following steps:

 1. Identification of individuals with ambiguous genomic sex or discordant gender 
information

 2. Identification of individuals with high missing genotype rate and/or outlying 
heterozygosity

 3. Identification of duplicated or related individuals
 4. Identification of individuals of divergent ancestry
 5. Identification of individuals with high genotype error rates
 6. Identification of individuals with outlying singleton content
 7. Identification of individuals exhibiting batch effects

 Ambiguous or Discordant Gender Information

One of the first procedures that should be implemented in any genome-wide associa-
tion study (GWAS) QC protocol is checking for potential sample swaps and/or con-
tamination, both of which can arise from handling errors. One of the easiest ways to 
discover such errors is by using genotype data from the X-chromosome. Since males 
have only one copy of the X-chromosome, they cannot be heterozygous for any 
marker outside the pseudo-autosomal region of the Y-chromosome. Therefore, mean 
homozygosity across all X-chromosome variants can be used to infer gender. Typically, 
homozygosity rates are expected to be 1 for males and less than 0.2 for females. Any 
discrepancy detected between the genetically determined and the reported gender is 
often indicative of a sample swap and should be reviewed to identify the source of 
error. Such samples should be removed from further analysis unless it can be correctly 
identified, or it can be confirmed that sex was recorded incorrectly.

Gender assignment based on homozygosity rate between 0.2 and 0.8 is ambiguous 
and is often indicative of sample contamination. Samples with ambiguity in geneti-
cally determined gender should therefore be eliminated from downstream analysis.
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 Sample Genotyping Failure Rate and Heterozygosity

The genotype failure rate and mean heterozygosity per individual are both indicators 
of DNA sample quality. Genotyping of samples of suboptimal DNA quality and/or 
low concentration could lead to a high proportion of missing genotypes and aberrant 
calling. Samples with high genotype failure rate should thus be eliminated from 
further analysis. A widely recommended threshold is genotype failure rate of 3–5 %. 
However, this threshold is subjective and may vary from study to study depending 
on the genotyping platform used (rare variant content) and the quality of the DNA 
samples genotyped. The distribution of missing genotype rates across all genotyped 
samples should be inspected to determine the most appropriate threshold, attaining 
a balance between eliminating minimum samples to achieve maximum genotyping 
efficiency. It is also good practice to investigate genotype failure rates of individuals 
on a per-plate basis. If the genotype failure rate of samples for any plate within a 
study is >10 % (once platform failures have been excluded), the whole plate should 
be repeated or excluded from subsequent analyses.

The heterozygosity of a sample is the fraction of non-missing genotype calls 
(autosomal variants only) that are heterozygous. Mean heterozygosity differs between 
ethnicities and depends heavily on variants genotyped (e.g. due to variability in 
allele frequencies). As for genotype failure rates, the distribution of mean heterozy-
gosity across all individuals should be reviewed to determine reasonable thresholds 
at which to exclude the most extreme samples (Fig. 1). It is recommended that mean 
heterozygosity estimates are generated separately across common and rare variants. 
Individuals with an excessive or reduced proportion of heterozygote genotypes, 
which may be indicative of DNA sample contamination or inbreeding, respectively, 
should be excluded from further analysis.

 Sample Relatedness

The next step in running sample QC in GWAS is to look for related individuals in 
the study. This not only helps in estimating the number of related samples (recorded 
as well as cryptic relatedness) in the dataset, but is also another way of identifying 
both potential sample mix-ups and pedigree integrity based on discrepancies 
between genetic information and self-reported relationships (if accessible). To iden-
tify duplicate and related individuals, pairwise kinship estimates, identity by state 
(IBS), are calculated for individuals in the study, based on average proportion of 
alleles shared in common at genotyped autosomal variants. Regions of extended 
linkage disequilibrium (LD), such as the HLA, and highly correlated variants (typi-
cally r2 > 0.2) are removed when calculating these estimates. Related individuals 
share more alleles IBS than expected by chance, with the extent of increased sharing 
proportional to the degree of relatedness. IBS estimates can further be used to calculate 
the degree of recent shared ancestry for a pair of individuals (identity by descent, IBD). 
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Theoretically, samples that share two alleles IBD at every locus (IBD = 1) are either 
duplicates or monozygotic twins, whilst IBD = 0.5, 0.25, and 0.125 is expected for 
first-degree, second-degree, and third-degree relatives, respectively (Fig. 2). Often, 
genotyping error, LD, and population structure introduce some variation around 
these theoretical values, and IBD > 0.9 are considered to be indicative of a duplicate 
sample (or monozygotic twin).

Duplicates and/or related samples introduce bias in population-based association 
studies, unless they are accounted for in the analysis. For these same reasons, it is 
customary to remove one individual from each pair with an IBD > 0.1875, which is 
halfway between the expected IBD for third- and second-degree relatives. For 
family- based data sets, any discrepancies detected between pedigree records and 
estimated IBD would be indicative of non-paternity, adoption, sample mix-up, or 
duplicate processing of the same individual and thus should be investigated further 
to attempt to identify the problem. Kinship estimates are also very informative in 
detecting identical or related individuals recruited from multiple centres, in studies 
where datasets from different collection sites are combined.

Each study should also deliberately include duplicate pairs on plates to deter-
mine genotyping error rate. Despite great improvements in genotyping  technologies, 
rare variant genotyping is still difficult, and these checks are very important in 
establishing the quality of rare variant calls.

Fig. 1 Genotype failure rates vs. heterozygosity across all individuals the study. Shading indicates 
sample density, and dashed lines denote QC thresholds
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 Population Stratification

Population stratification arising due to systematic differences in genetic ancestry of 
individuals included in a study can be a major source of bias in population-based 
association studies and can lead to false-positive signals. Evolutionarily, since rare 
variants occurred in recent human history, they are expected to be population specific 
and show greater population diversity than common variants (Li and Leal 2008). It is 
therefore very important to ensure that samples included in inferring rare variant 
associations are drawn from a relatively homogenous population. Often, even after 
giving careful consideration to matching of cases and controls on population origin, 
some level of stratification may still be detected in samples. Efforts should be made 
to remove or reduce the effect of population stratification by removing individuals of 
divergent ancestry from downstream analyses. Several statistical methodologies have 
been developed to detect and adjust for population structure in association analysis. 
A more detailed description of population structure analysis and the adjustments 
required for robust rare variant association analysis are provided in Chap. 19.
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Fig. 2 Relatedness inference from pairwise IBD coefficients, Z0 and Z1. Each point represents a 
pair of samples, and the diagonal line is Z0 + Z1 = 1. The dotted lines in the plot highlight the esti-
mated relatedness: PO parent–offspring (Z1 = 1), FS/DZ full sibling/dizygotic twin (Z0 = 0.25, 
Z1 = 0.5), HS half-sibling-like (Z1 = 0.5, Z0 = 1−Z1), MZ monozygotic twins/duplicates (Z0 = Z1 = 0), 
and U unrelated
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The frequency differences of variants between individuals from different ancestries 
may introduce bias in association studies and may also introduce apparent devia-
tions from Hardy–Weinberg equilibrium (HWE; see below). Therefore, individuals 
from diverse ancestry should be ideally removed, or at least treated separately, 
whilst performing variant QC.

 Genotype Error Rates

Variant genotyping concordance should be checked on duplicate samples to confirm 
the robustness of genotyping across sites and/or different platforms, wherever appli-
cable. Duplicate samples with high genotyping error rates are indicative of bad 
DNA sample quality, and consequently both should be excluded from further analy-
sis. Samples should also be tested for concordance with previous genotype data 
(wherever available), and samples with high degree of discordance should be 
excluded.

 Singleton Content

Singletons are variants found in only one of the genotyped samples. Singleton status 
is known to be affected by various factors genome-wide, such as recombination, 
selection, and mutation. In genotyped samples, the number of singletons observed 
per sample would depend on the genotyping array content, especially the rare vari-
ant content, and the number of samples genotyped. Random errors in genotyping of 
rare variants are likely to end up as singletons. Consequently, an elevated number  
of singletons per sample could be indicative of genotyping errors. The distribution of 
singletons across all individuals should be reviewed to determine outlying samples 
that should be excluded from downstream analysis.

 Batch Effects

As a general practice, samples are partitioned into small batches for processing dur-
ing genotyping. Ideally, these batches should contain random sets of samples with 
respect to sex, ethnicity, and other potential confounders. However, despite all the 
care, systematic differences in the composition of samples in a batch, and the per- 
plate genotyping error and efficiency, can result in batch effects and could, in effect, 
lead to detection of false-positive associations. Examining the average minor allele 
frequency and genotyping failure rate across all variants for each plate and batch is 
often a good measure to determine batch effects. Plates or batches with significantly 
different estimates should be further investigated for genotyping or composition 
problems and, if unresolved, should be removed from further analysis.
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 Variant Quality Control

The success of an association study depends crucially on using a high-quality set of 
variants. Suboptimal variants not only introduce false positives, but also reduce the 
ability to identify true associations with traits. The criteria for filtering out low- 
quality variants are study specific, and the utmost care should be taken when defin-
ing these thresholds since every removed variant is a potentially missed causal 
variant. Generally, two variant QC thresholds can be used: a more stringent thresh-
old at which variants are removed from the analysis and a second liberal threshold 
for which variants are flagged and re-examined later for potential QC-related bias. 
The calling of rare genotypes is subject to higher error rates, and therefore they are 
typically removed using increased levels of stringency with decreasing frequency 
thresholds.

Variant QC consists of the following steps:

 1. Identification of variants with high missing genotype rate
 2. Identification of variants demonstrating significant deviation from HWE
 3. Identification of variants with significantly different missing genotype rates 

between cases and controls (if you have cases and controls in your data set)
 4. Identification of variants that have significantly different allele frequency distri-

butions between sample batches/sub-cohorts
 5. Identification of variants with bad cluster plots
 6. Identification of variants for which allele frequency differs significantly from 

that reported in the 1000 Genomes Project (2012)

 Genotyping Rate

The proportion of samples with a genotype call for each variant is a good indicator 
of its quality. Variants that fail genotyping on a large proportion of samples are poor 
assays and consequently might result in spurious associations. A recommended 
threshold for excluding variants with high genotype failure rates is 5 % for common 
variants and a more stringent threshold of 1 % for rare variants. However, as men-
tioned in sample QC, these thresholds may vary from study to study, and the distri-
bution of genotype failure rates should be reviewed before implementing any 
thresholds (Fig. 3).

 Deviation from HWE

Testing for HWE is commonly used for quality control of genotyping because 
departure from equilibrium is considered to be an indicative of potential genotyping 
errors or population stratification. However, deviations from HWE may also indicate 
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selection and therefore may in fact reflect a true association to a disease (Lee 2003; 
Nielsen et al. 1998). Removing these variants from further investigation would be 
counterproductive; therefore it is common practice to not omit them from the analy-
sis but to flag for close scrutiny post association analysis. It is also, therefore, benefi-
cial to use only control samples when testing for deviation for HWE. If the study 
sample has been drawn from diverse ethnicities, it is necessary to test for HWE 
within each ancestry group separately. Typically, deviations from HWE towards an 
excess of heterozygotes reflect technical errors on assay, such as nonspecific ampli-
fication of the target region. Examination of genotype cluster plots for variants can 
be useful in screening for technical origins of HWE deviations. Like other QC 
parameter thresholds, the significance thresholds for declaring variants to be out of 
HWE vary greatly between studies (p-value thresholds between 0.001 and 5.7 × 10−7 
using exact test). It is recommended that when lower thresholds are used, genotype 
cluster plots should be examined manually for quality for variant showing any evi-
dence of deviation.

Fig. 3 Histogram of missing genotype rate across all QC-passed individuals. The dashed lines 
represent threshold at which SNPs were removed from further analysis
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 Differential Missing Genotype Rates

Significant differences in missing genotype rate between cases and controls can be 
another confounding factor in association analysis. Calling cases and controls 
together greatly reduces this confounding, but significant differences in genotyp-
ing failures may still exist and lead to spurious associations. Variants should be 
tested for differential missing genotype rate and excluded from subsequent analysis. 
A recommended threshold is p-value less than 1 × 10−4 and should be defined on 
study- wise basis.

 Allele Frequency Distribution

In studies where samples are collected from multiple sites, it is recommended that 
tests for significant differences in call rate, allele frequency, and genotype frequency 
between sites are conducted to ensure homogeneity of samples. This check is also 
very important when cases and /or controls are drawn from diverse sources.

 Cluster Plots

Large number of variants being tested in a GWAS precludes looking at intensity plots 
of all of the variants. However, statistical measures of separation between the three 
genotype clusters, such as those provided by Illumina’s clustering algorithm (cluster 
separation score and GenTrain score; varying from 0 to 1), provide an easy way to 
detect poorly clustering variants Typically, a threshold of 0.4 and 0.6 for cluster sepa-
ration and GenTrain score, respectively, is recommended for detecting poor clusters. 
However, even after following very stringent individual and variant QC, genotyping 
errors may persist. Inspecting cluster plots manually of at least any significant vari-
ants is the best way of ensuring the robustness of genotype calls and association. 
Good quality variants should have three clearly defined tight clusters, with the homo-
zygotes falling along the vertical or horizontal axis and the heterozygotes at a 45° 
angle (Fig. 4). Poorly performing variants often present overlapping clusters from 
one allele and from the heterozygote or more than three clusters or a split cluster.

 Concordance with 1000 Genomes Project Data

After all QC steps, it is recommended that allele frequency checks be performed 
between the genotyped data and the relevant 1000 Genomes Project population. 
Variants for which allele frequency differs significantly from this reference should 
be omitted from further analysis.
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Fig. 4 Examples of genotype cluster plots. Cluster plots for two SNPs from genotype array. Each 
spot corresponds to one individual’s genotype. Individuals with major and minor homozygous 
genotypes are pink/purple and blue, respectively. Heterozygous individuals are shown in green; 
individuals with missing genotypes are grey. (a) An SNP with a good cluster plot; (b) represents a 
badly separated cluster plot where samples have been erroneously classified as purple and green
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 X-Chromosome Quality Control

Quality control for X-chromosome variants should be performed by following the 
same pipeline as for autosomal variants. However, genotype failure rate, HWE, 
allele frequency, and concordance checks should typically be based on female sam-
ples only.

 Post Hoc Confirmation of Quality Control

As a final step to confirm the quality of the QC process, it is advisable to examine 
the square of the GWAS test statistics for any correlation with residual genotype call 
rate, HWE, and minor allele frequency of the surviving variants.

The sample size of the heterozygote and rare homozygote clusters makes rare 
variants difficult to call, which thus frequently present as false positives in case–
control association tests. It is valuable to re-genotype any significantly associated 
rare variants using a different technique to insure robustness of any finding. 
Furthermore, even when well called, associations at these rare variants are less 
robust because they are driven by the genotypes of only a few individuals.

Unfortunately, even with the most stringent QC, poor quality rare variants slip 
through the net and generate false-positive association signals, either in single vari-
ant or gene-based tests; however, these can easily be recognised through careful 
inspection of cluster plots when using genotyped data. Furthermore, there are con-
tinued developments in efficient and accurate algorithms for calling rare variants, 
and these show promise for reduced error rates (refer to Chap. 3 for more details).
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      Rare Structural Variants 

             Menachem     Fromer      and     Shaun     Purcell    

        In this chapter, we will briefl y touch on the historical discoveries of large abnormalities 
in the structure of the human genome. It is now clear that more subtle structural 
variants are in fact ubiquitous and key to understanding the spectrum of risk for 
many human diseases. While many of these changes are individually rare, the aggre-
gate burden in the population is signifi cant. With this in mind, we give an overview 
of the technologies developed to assay these variants in a high-throughput manner 
at ever-increasing granularity, including array-based platforms and next- generation 
sequencing. We then focus on whole-exome sequencing, since many disease studies 
to date have adopted this approach. Throughout, we review some of computer soft-
ware and algorithms available for extracting structural variant information from 
experimental data. We conclude with a comparison of the strengths and weaknesses 
of the various current technologies and provide a small sampling of emerging meth-
ods for investigating the range of structural variation in more detail. 
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    Structural Variation 

 Historically, geneticists have detected large changes in the structure of chromosomes 
using a microscope or cytogenetic staining techniques to perform a karyotype analysis. 
In doing so, they detected marked and unusual changes in DNA quantity and struc-
ture, many of which were related to disease, including aneuploidies, euchromatic 
variants, and rearrangements. Our growing knowledge of structural changes to the 
genome is reviewed in a number of recent papers (Sharp et al.  2006 ; Feuk et al. 
 2006 ). A well-known example of such a change is the association of an additional 
copy of chromosome 21 with Down’s syndrome (Carter  2007 ). However, over the 
past two decades, researchers fi rst deciphered more detailed global features and 
then the exact sequence of the human genome. During that time, the pervasiveness 
of even fi ner-scale genomic structural rearrangements has become apparent, with as 
much as 5 % of the genome varying in structure across individuals in the population 
(Sharp et al.  2006 ; Perry et al.  2008 ; Zhang et al.  2009 ). These structural changes, 
most of which are submicroscopic, include novel sequence insertions, duplications, 
deletions, inversions, repeated sequence motifs, and translocations. Together, dele-
tions and duplications form a subclass of structural variation that is known as copy 
number variants (CNVs). 

 There are numerous working hypotheses regarding the many ways in which 
structural variation (SV) in the genome evolves and diversifi es within the popula-
tion. For example, the existence of segmental duplication regions (low copy repeats) 
clustered throughout the human genome has implicated nonallelic homologous 
recombination (NAHR) as playing a mechanistic role in the generation of new 
structural variants in the population (Sharp et al.  2006 ). Specifi cally, NAHR can 
result in deletion, duplication, or inversion of nearby genomic sequence. Moreover, 
it has been suggested that preexisting sequence inversions can reduce the frequency 
of recombination during meiosis, resulting in greater rates of chromosomal rear-
rangements (Feuk et al.  2006 ). 

 Large structural variants (thousands of DNA bases or more) have long been 
known to be associated with certain Mendelian forms of disease, spanning a wide 
range of phenotypes, including hemophilia (inversion), α-thalassemia (deletion), 
and glucocorticoid-remediable aldosteronism (duplication) (Lupski  1998 ). 
Moreover, as technologies have expanded to enable discovery of novel structural 
variants (see below), many structural variants have been associated with phenotypic 
variation including increased risk for various diseases (Sharp et al.  2006 ; Feuk et al. 
 2006 ). These variants may mediate disease risk through changes to gene expression 
levels (directly via dosage effects for deletions and duplications or indirectly 
through the effect of the variant on transcriptional mechanisms), disruption of the 
coding sequence of a gene, the fusion of two genes into a new “gain-of-function” 
gene, or even predisposing to further deleterious structural changes during DNA 
replication (Feuk et al.  2006 ; Zhang et al.  2009 ). For a recent review of how struc-
tural variation can impact phenotype at the molecular and cellular levels, see 
(Weischenfeldt et al.  2013 ). 
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 By necessity, structural variants that are common in the population cannot play a 
large role in the etiology of a rare disease. On the other hand, as numerous studies 
have shown that common variation tagged by single-nucleotide polymorphisms 
(SNPs) can defi nitively play a role in the risk for common diseases (Burton et al. 
 2007 ), the role of common structural variants has been debated. To address this, a 
recent large-scale study of common CNV was conducted (Craddock et al.  2010 ). It 
was found that CNVs that can be genotyped on existing array-based experimental 
platforms (see next section) are “unlikely to contribute greatly to the genetic basis 
of common human diseases” or have already been tested for association via com-
mon SNPs that tag them. Thus, the focus of much disease research has been in the 
realm of rare structural variants, which collectively could account for disease in a 
few percent of individuals, including for both more common diseases (International 
Schizophrenia Consortium  2008 ; Shlien and Malkin  2010 ) and rare conditions such 
as structural birth defects (Southard et al.  2012 ). We follow that theme in this chap-
ter and focus mainly on rare structural variation.  

    Arrays 

 As many large-scale single-nucleotide genotyping efforts were undertaken for the 
purpose of performing genome-wide association with disease, high-throughput 
studies of structural variants have often “piggybacked” these, to utilize the same 
technologies for a different, but additional, purpose (Zhang et al.  2009 ). 
Specifi cally, SNP genotyping arrays were constructed to assess the diploid geno-
types of individuals at loci of common single-base variation. However, by consid-
ering the intensity of the signals at these sites across genomic regions (Conrad 
et al.  2006 ), a number of algorithms were able to convert relative shifts in these 
intensities for an individual into CNV information, thus providing both SNP and 
CNV data from a single experimental platform (Korn et al.  2008 ; Wang et al. 
 2007 ). Similarly, it has recently been demonstrated that “exome arrays” intended 
for genotyping rare protein- altering sequence variation can still also be utilized to 
detect large CNVs (400 kilobases or longer) that overlap protein-coding genes 
(Szatkiewicz et al.  2013 ). 

 Two commonly applied methods for calling CNV from genotype array data are 
Birdsuite and PennCNV (Wang et al.  2007 ), both of which use a hidden Markov 
model (HMM) to smooth out noisy patterns across genomic regions. Many other 
methods exist, including circular binary segmentation (CBS), wavelets, expecta-
tion maximization, and clustering, and these have been extensively compared and 
tested on benchmark data sets over the past few years (Karimpour-Fard et al.  2010 ). 
A critical fi nding of such studies was that different bioinformatic tools applied to 
the same raw data can yield CNV calls with less than even 50 % concordance (Pinto 
et al.  2011 ), emphasizing the need for appropriate fi ltration of CNV calls (particu-
larly in complex genomic regions) for both research and clinical applications. 
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 A second widely used array-based method of CNV identifi cation that predates 
the use of SNP arrays is array comparative genomic hybridization (aCGH), also 
known as chromosomal microarray analysis (CMA). In this approach, test and 
reference DNA are each labeled using a different fl uorophore and then hybridized 
to the same array of “tiled” (overlapping) genomic probes, and fl uorescence com-
parisons provide relative copy number levels across a genomic region (Carter 
 2007 ; Heidenblad et al.  2008 ). The advantage of this technique is that it suffers 
considerably less from experimental noise than genotyping arrays since the simul-
taneous hybridization of test and reference DNA samples should automatically 
account for batch effects and variability between arrays. In addition, the genomic 
resolution of detected CNV is typically a few kilobases for aCGH (Heidenblad 
et al.  2008 ) vs. tens to hundreds of kilobases for genotyping arrays, which also 
often allows aCGH suffi cient resolution for the mapping of structural breakpoints. 
However, a key disadvantage is that, in research settings, this method still requires 
an extra array to be run in the lab that is tailored only for fi nding copy number 
variation. Nonetheless, aCGH has fast become the de facto standard and initial 
clinical diagnostic tool for tumor cytogenetics and for prenatal and postnatal 
screening of babies with anomalous defects, augmenting or even replacing tradi-
tional cytogenetic techniques (Shinawi and Cheung  2008 ). 

 A major disadvantage of almost all array-based approaches for detection of chro-
mosomal structural variation is that they are typically blind to genomic rearrange-
ments that have no effect on copy number, such as balanced translocations and 
inversions. With the advent of next-generation sequencing, researchers have started 
to systematically explore these and other variations. We now give an overview of 
these technologies in the context of structural variation detection.  

    Next-Generation Sequencing 

 For the fi rst time, the advent of next-generation sequencing (NGS) permits the 
simultaneous assessment of many forms of genetic variation present in individuals, 
including single-nucleotide variants, small insertions and deletions (indels), as well 
as larger structural variants. While the identifi cation of single nucleotide and small 
indels is not always straightforward and requires careful consideration (DePristo 
et al.  2011 ; Li et al.  2009 ), there are even more hurdles to using the same sequenc-
ing data for the detection of structural variation, resulting from, e.g., sequencing 
effi ciency, formation of chimeric DNA fragments, and more. 

 Many methods have been devised to extract structural variation from NGS data, 
and each has strengths and weaknesses in trying to deal with very large amounts of 
data with a considerable degree of noise. Some of the well-known tools include 
PEMer (Korbel et al.  2009 ), VariationHunter (Hormozdiari et al.  2009 ), Pindel (Ye 
et al.  2009 ), SVDetect (Zeitouni et al.  2010 ), CNVer (Medvedev et al.  2010 ), 
Genome STRiP (Handsaker et al.  2011 ), AGE (Abyzov and Gerstein  2011 ), 
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CNVnator (Abyzov et al.  2011 ), BIC-seq (Xi et al.  2011 ), GASVPr (Sindi et al. 
 2012 ), and cnvHiTSeq (Bellos et al.  2012 ); for a recent review comparing and con-
trasting these and other methods, see (Xi et al.  2012 ). Typically, these tools use one 
or more of the following sequencing features to infer the existence of structural 
variation and the genotypes for particular individuals: a) larger (or smaller) than 
expected distances between mapped read pairs (for paired-end sequencing), b) 
reads split in half by the breakpoint of a structural variant, c) aberrant read depth 
refl ective of copy number changes, d) correlation in a population sample of the 
presence or absence of nearby SNPs (linkage disequilibrium, LD), and e) sharing 
of structural variants, and hence sequence features indicative of these variants, 
among individuals bearing more common (though still rare) variation; see, e.g., 
Handsaker et al. ( 2011 ). The main strength of these NGS-based approaches is their 
potential for mapping structural variation at nucleotide-level resolution, in addition 
to being sensitive to detecting smaller structural changes (on the order of hundreds 
or thousands of base pairs) than those that can be reliably called from the microar-
ray-based approaches described above (on the order of 10,000–100,000 base pairs). 
Moreover, many of these tools can detect deletions and duplications (CNV), as well 
as other structural variation, including novel sequence insertions, inversions, and 
translocations. 

 Using a subset of these tools, the 1000 Genomes Project Structural Variation 
group has thus far constructed a fi ne-scale map of CNV including deletions, inser-
tions, and tandem duplications (Mills et al.  2011 ), with over half of these mapped at 
base-pair resolution. As expected, complete or partial deletions of genes were 
observed at lower than expected frequencies in the population, indicative that sig-
nifi cant negative selection is acting against such variation and suggesting the poten-
tial for future disease research. The researchers were also able to localize genomic 
“hot spots” for the formation of new structural variation, consistent with the hypoth-
esis that genomic architecture can contribute to structural instability and thus have 
implications for disease risk. In this large-scale analysis, it was found that Genome 
STRiP, which integrated all of the multiple categories of evidence listed above in 
order to detect structural variation, performed the best in terms of both accuracy and 
sensitivity. Furthermore, by separating the “discovery” stage from the “genotyping” 
stage, Genome STRiP was well positioned to integrate the structural variation found 
by all other algorithms tested and genotype those events in all individuals to pro-
duce the fi nal list of refi ned structural genotypes. 

 While the tools described here were almost all exclusively developed for the 
identifi cation of structural variation from whole-genome sequencing data, there are 
additional biases and data issues that need to be accounted for when dealing with 
sequencing that targets only a subset of the entire genome. A prototypical example 
of this is whole-exome sequencing, which has recently become popular for the 
study of disease. We now turn to this class of data and discuss how it critically dif-
fers from whole-genome data, as well as the approaches tailored to call structural 
variation from such exome data.  
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    Whole-Exome Sequencing in Disease Studies 

 In whole-genome shotgun sequencing, genomic DNA is sheared to create random 
fragments, and these fragments are then sequenced and mapped back to the refer-
ence genome and used to call SNV and indels, as well as structural variation (as 
outlined above). While many biases exist (including GC content biases), the over-
whelming majority of the genome is, in principle, accessible for interrogation of 
structure using these methods. On the other hand, in targeted sequencing, particular 
genomic fractions are enriched (by array-based hybridization, or “capture”), and 
only these subsets of DNA fragments are sequenced. Prominent among this class of 
targeted experiments is whole-exome sequencing, which aims to sequence the 
approximately 1 % of the genome that codes for protein sequence. The advantage of 
whole-exome sequencing is the decreased cost for even very high coverage, as well 
as the greater interpretability of the effect that the discovered genetic variation will 
have on protein-coding regions. Along with these factors, the expectation from 
Mendelian disease that rare coding variation plays a major role in human disease 
has propelled exome sequencing to the forefront as a state-of-the-art approach in 
genetic studies of human disease (Teer and Mullikin  2010 ). 

 Various methods have been formulated to specifi cally address the needs of detec-
tion of structural variation (mostly CNV) from exome sequencing. Specifi cally, 
these approaches must account for the fact that the sequencing reads from targeted 
sequencing are both nonuniformly clustered in the genome and cover only a small 
fraction of the genome. This implies that the chances that the breakpoints of any 
particular structural variant lay within a read are small. In addition, the distance 
between mate pairs generated by paired-end sequencing cannot easily be used to 
infer the presence of a structural variant as the pairs will be biased, for example, 
toward those derived from fragments with both ends in the exome (Fromer et al. 
 2012 ). Thus, most (but not all) methods for detecting CNV from exome data rely 
almost exclusively on sequencing read depth information. In addition, any such 
method must cope with the additional genomic biases introduced by the exomic 
capture step, which often exacerbates sample- and target-specifi c patterns of read 
depth depletion and enrichment resulting from PCR amplifi cation, sequencing effi -
ciency, and experimental conditions, all of which act together to obfuscate the quan-
titative relationship between underlying copy number and the observed sequencing 
depth (Fromer et al.  2012 ). 

 The advantage of detecting CNV specifi cally from exome data is that all variants 
can be assigned to one or more genes, allowing researchers to develop mechanistic 
and causal hypotheses of how disease-associated CNV can actually bring about that 
disease. Moreover, as for structural variation derived from whole-genome data, 
whole-exome data can yield CNV data at fi ner scale than the resolution provided by 
array-based approaches (tens of thousands of base pairs), with exome-based CNVs 
approaching the level of single exons or even possibly base-pair resolution. 

 The methods developed for detecting CNV from whole-exome sequencing data 
include CONDEX (Ramachandran et al.  2011 ), SeqGene (Deng  2011 ), ExomeCNV 
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(Sathirapongsasuti et al.  2011 ), the approach in Lonigro et al. ( 2011 ), exomeCopy 
(Love et al.  2011 ), VarScan 2 (Koboldt et al.  2012 ), CONTRA (Li et al.  2012 ), 
CoNIFER (Krumm et al.  2012 ), ExoCNVTest (Coin et al.  2012 ), XHMM (Fromer 
et al.  2012 ), ExomeDepth (Plagnol et al.  2012 ), the technique in Wu et al. ( 2012 ), 
exome2cnv (Valdés-Mas et al.  2012 ), CoNVEX (Amarasinghe et al.  2013 ), and 
FishingCNV (Shi and Majewski  2013 ). The algorithms presented in Nord et al. 
( 2011 ), as well as the Splitread algorithm (Karakoc et al.  2012 ), also detect CNV 
breakpoints at base-pair resolution when they are present in the targeted coding 
regions. 

 An important distinction between the above methods is that some utilize “com-
parative” data normalization based on the relative values of read depth between one 
sample and another sample(s), particularly those geared for cancer applications, 
where samples can naturally be grouped as pairs of somatic tumor DNA and 
matched normal DNA from the same tissue (Sathirapongsasuti et al.  2011 ; Lonigro 
et al.  2011 ; Koboldt et al.  2012 ; Valdés-Mas et al.  2012 ; Amarasinghe et al.  2013 ). 
On the other hand, some of the methods perform more upfront and general data- 
driven normalization for all samples simultaneously, using either principal compo-
nent analysis (Fromer et al.  2012 ; Krumm et al.  2012 ; Coin et al.  2012 ; Shi and 
Majewski  2013 ) or with explicit modeling of potential biases (Li et al.  2012 ; Plagnol 
et al.  2012 ; Wu et al.  2012 ). For calling the CNV, a typical approach is to use hidden 
Markov models (HMM) or segmentation algorithms, both of which have been 
adapted from the array-based CNV calling procedures described above. 

 Thus far, some of the above and similar approaches have been applied in studies 
of disease, including in tracking the genomic evolution of metastatic cancers in 
response to therapy (Murtaza et al.  2013 ), for association with autism (Krumm et al. 
 2012 ; Lim et al.  2013 ), and in the search for Mendelian mutations in a family with 
nonsyndromic hearing loss (Park et al.  2013 ). As larger cohorts of cases and con-
trols, and family structures, are exome sequenced, the ability to detect CNV and 
other structural variants from the resulting exome sequencing data holds much 
promise for gaining insight into disease. Specifi cally, as with structural variation 
inferred from whole-genome sequencing, the unprecedented fi ne-scale resolution of 
CNV inferred from exome sequencing can allow researchers to see previously 
unobservable phenomena, fi nding both better breakpoints and ever-smaller 
CNV. One such example is the potential to highlight subclasses of CNV with poten-
tially higher functional impact, e.g., those that delete or duplicate only parts of a 
whole gene, as demonstrated using the XHMM method (Fromer et al.  2012 ). The 
XHMM algorithm (Fromer et al.  2012 ) has also been used to fi nd de novo CNV 
(those arising in children but not found in their parents) by fi ltering out the many 
spurious instances of poorly called CNV in either the child or the parents. The latter 
two results are based on the extensive range of quality scores associated with each 
CNV call that is output by XHMM, allowing the user to query the dataset for 
instances of high certainty regarding the existence of a CNV, the lack of a CNV in 
another individual, and the points where a CNV starts or stops.  
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    Conclusions and Future Directions 

 In this chapter, we have discussed how structural variation has moved from being 
thought of as extremely rare and responsible for only very particular genetic dis-
eases to in fact being detectable at much wider and more refi ned scales (in terms of 
variety and size). Collectively, structural variation makes up a nontrivial portion of 
the genetic differences between individuals in the population and their risk for both 
rare and complex genetic diseases and other phenotypes. As newer technologies 
have allowed scientists to access more varied forms of structural changes in human 
genomes, each new discovery has demonstrated the complexity of the genome. This 
complexity, both a result of evolution and sometimes a driver of evolution, also has 
the potential to cause or increase risk for disease when it gets modifi ed suffi ciently 
to adversely affect cellular functioning. 

 In this chapter, we have discussed the technologies that currently exist for assess-
ing structural variation, as well as the computational algorithms applied to each data 
type. The experimental technologies are summarized and compared in Table  1 , 
which is intended to be a rough guide as how one may choose to proceed for a par-
ticular research project.

   Some newer developments that will provide even richer data for analysis and 
detecting potential association with disease and other complex traits include the 
ability to detect more complex structural rearrangements by devising clever and 
specifi c techniques based on next-generation sequencing technologies (Talkowski 
et al.  2011 ; Sobreira et al.  2011 ). Preliminary reports have already demonstrated the 
true power of these technologies and the seeming ever-expanding complexities 
potentially present in the human genome, e.g., in the clinical diagnosis of a prenatal 
sample (Talkowski et al.  2012 ). Also, the ability to detect structural variation in 

   Table 1    Comparison of technologies for detecting rare structural variation   

 Category  Technology 
 Genomic 
scope 

 Structural variation 
classes detected 

 Minimum size 
of variation 
reliably 
detected (kb) 

 Minimum 
number of 
samples 

 Microarray  SNP array  Genome  CNV  ~50  1 
 Exome chip  Exome  CNV     ~400  1 
 aCGH  Genome  CNV  ~1  1 

 Next- 
generation 
sequencing 

 Whole- 
genome 
sequencing 

 Genome  CNV, inversions, 
translocations, small 
and large indels 

 Base-pair 
resolution 

 1 

 Whole- exome 
sequencing 

 Exome  CNV, small and 
large indels 

 Exon-level 
resolution 

 20–50 

 PCR  Targeted  CNV  Base-pair 
resolution a  

 1 

   a A hypothesized CNV can be confi rmed at base-pair resolution using PCR. But if the breakpoints 
are incorrect, then other technologies will typically be required  
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single cells can usher in a new era of understanding with respect to the somatic 
genetic variability of human cells (Konings et al.  2012 ). Another challenge in the 
accurate detection of structural variation is that it becomes quite diffi cult to estimate 
the exact copy number of multi-copy CNV in a particular individual (Aten et al. 
 2008 ). Existing technologies have been adapted and new ones developed for this 
purpose, including quantitative PCR (qPCR), droplet digital PCR (Whale et al. 
 2012 ), and NanoString’s nCounter technology (Geiss et al.  2008 ), originally devised 
for gene expression measurement. 

 As with most classes of large-scale genetic association study, those based on rare 
structural variants require thoughtful deliberation regarding possible sources and 
causes of artifact, particularly those resulting in false-positive variant calls. This is 
all the more true as next-generation sequencing data has the potential to provide a 
comprehensive look at a wide spectrum of structural variation present in each indi-
vidual, with the caveat that the large and growing quantities of data will also contain 
noise, batch effects, and other experimental and bioinformatic artifacts that may 
disguise themselves as “interesting” signal. Nonetheless, with the development and 
benchmarking of many tools tailored to specifi cally address these issues, geneticists 
can now be empowered to judiciously apply these tools to both large and small 
whole-genome or whole-exome sequencing studies of disease and other complex 
traits in order to gain new insights into disease etiology and mechanisms.   
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 Overview

Genome-wide association studies have successfully identified a growing number of 
common variants that robustly associate with a wide range of complex diseases and 
phenotypes. In the majority of cases though, the variants are predicted to have small to 
modest effect sizes, and, due to the technologies used, many of the signals discovered 
so far may not be the causal loci. As rare variation studies begin to explore the lower 
ranges of the allele frequency spectrum, using whole genome or whole exome 
sequencing to capture a larger proportion of variants, we expect to find variants with a 
more direct causal role in the phenotype(s) of interest. Interpreting possible functional 
mechanisms linking variants with phenotypes will become increasingly important.

Experimental investigation is the most direct way to establish if a candidate vari-
ant is causally involved in some phenotype, but it is a costly and time-consuming 
process, and so it is important to try to use as much existing relevant information as 
possible to prioritise variants for follow-up and to help formulate specific hypotheses 
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about functional mechanisms to inform subsequent experiments. The genome is 
complex and different classes of variants may have a wide range of, possibly tissue- 
specific, effects depending on their genomic context. In this chapter, we review some 
important classes of genome annotation and highlight some relevant computational 
tools and databases to help interpret and prioritise candidate variants depending on 
their genomic context. These resources may also play a role in the discovery of rare 
variant signals, as association techniques based on collapsing multiple rare variants 
together (reviewed in Chaps. 13 and 14) may use annotation of genes and regulatory 
elements to select biologically meaningful groups of variants, and other techniques 
can use prediction scores to upweight likely functional variants to increase statistical 
power. In this chapter, we focus on smaller-scale variants such as single nucleotide 
variants (SNVs) and short sequence insertions and deletions (indels), though some of 
the approaches we discuss may also be applied to larger structural variants.

 Mapping Variants to Annotated Features

An obvious first step in trying to interpret possible functions of sequence variants is to 
identify overlapping genomic features that may be affected. Features of particular 
interest include protein-coding and non-coding genes, transcription factor binding 
sites and other potential regulatory regions. There are a wide range of resources and 
databases that can be used to identify likely functional genomic features, from very 
specific resources on a single class of feature such as the miRanda databases of 
microRNA (miRNA) target sites (Betel et al. 2007) to broad collections of annotations 
such as the Ensembl (Flicek et al. 2012) and UCSC (Meyer et al. 2013) databases.

For small numbers of variants, looking up the relevant loci in a genome browser, 
such as Ensembl or UCSC, is a convenient way to find overlapping or nearby fea-
tures and to visualise variants in their genomic context. Both browsers contain a 
wealth of information on genes, regulatory regions and informative local genomic 
properties such as conservation, GC content and co-located or nearby variants (all 
of which we discuss in more detail later). For larger numbers of variants, automated 
approaches are clearly required. For simply identifying features overlapping vari-
ants, software packages such as BEDTools (Quinlan and Hall 2010) and BEDOPS 
(Neph et al. 2012a) provide powerful and efficient tools for computing overlaps and 
proximity (among other useful metrics) between large numbers of genomic loci and 
can read common variant file formats such as VCF and GVF and annotation files in 
widely used formats such as BED, GFF, GTF and SAM (more details on these for-
mats are given in the Appendix). More variation specific tools such as the Ensembl 
Variant Effect Predictor (McLaren et al. 2010) and ANNOVAR (Wang et al. 2010) 
also identify a wide range of features overlapping variants, but can also make more 
specific predictions depending on the affected feature.

For many available annotations, especially those in non-coding regions, our under-
standing of the importance of specific genomic sequences is still in its infancy, and all 
we can report is that the variant overlaps the relevant annotation. For several classes 
of feature, such as genes and transcription factor binding sites, we have a more 
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detailed understanding of the importance of particular nucleotide sequences and so 
can make reasonably specific predictions about the effect of an allele on the element, 
as we discuss below. Even when we cannot take this further step, these overlaps pro-
vide some indication of the genomic context of the variant locus, and several studies, 
including the ENCODE consortium (Consortium, The ENCODE Project 2012), have 
found significant enrichments of trait-associated variants in less well-characterised 
regions, such as DNase1 hypersensitive sites, suggesting that these variants, or those 
nearby, affect some as-yet uncharacterised functional elements.

 Variants Falling in Protein-Coding Genes

Protein-coding genes are perhaps the best understood genomic features, and given 
that a variant falls somewhere in an annotated gene structure, there are a number of 
predictions that can be made about its possible effect on gene function, such as 
whether it is predicted to change the amino acid sequence of the encoded protein, 
introduce premature stop codons or affect mRNA splicing. There are several com-
putational tools that are designed to make these predictions that work mainly by first 
identifying annotated genes overlapping the variants and then applying various bio-
logically informed rules based on both the variant location and allele sequences.

The Ensembl VEP uses a set of standardised consequence terms defined in the 
sequence ontology (SO) (Eilbeck et al. 2005) to describe the predicted effect of a 
genetic variant. The use of a standardised term set is important as it allows comparison 
between the results of different annotation systems, and the ontology structure supports 
biologically informed grouping and querying of annotation results. The VEP also pro-
vides a wide range of ancillary annotation such as cDNA and protein relative coordi-
nates, predicted amino acid substitutions (AASs) and SIFT and PolyPhen predictions 
for missense variants (discussed below). Several other similar tools such as ANNOVAR 
and VAT (Habegger et al. 2012) work in a similar way but have different performance 
characteristics and vary in the amount of ancillary information available.

Variants that are predicted to have the most severe effects on coding genes 
include those that introduce premature stop codons, disrupt essential mRNA splic-
ing signals and indels that change the translational reading frame. These are col-
lectively termed “loss of function” (LoF) variants and are typically expected to be 
highly deleterious as they have been implicated in a number of severe diseases 
(MacArthur et al. 2012). Stop codons introduced early in the transcript mean that 
the mRNA is likely to undergo a cell surveillance process known as “nonsense- 
mediated decay” (NMD) (Isken and Maquat 2007) where the aberrant mRNA is 
degraded to avoid the production of deleterious protein isoforms and so may effec-
tively knock-down the affected transcript. However, stop codons towards the end of 
the transcript may escape this process and only truncate a few amino acid residues 
and therefore have minimal effect on protein function, so not all premature stop 
variants should be considered functionally equivalent.

Frameshifting variants may lead to an entirely different translated sequence and 
substantial elongation or truncation of the protein product. As with premature stop 
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codons, the position of the variant in the coding sequence will clearly affect the 
severity of the variant. Hu and Ng (2012) present a new tool that aims to identify 
frameshift variants that are likely to be truly deleterious and find that variants that 
affect fewer and less conserved residues are more likely to be tolerated. Hu and Ng 
(2012) also find that proximal frameshift variants are frequently compensatory in 
that a nearby downstream variant restores the reading frame disrupted by an 
upstream variant, highlighting the importance of considering the haplotype back-
ground of a variant.

Variants that disrupt the essential two nucleotide donor and acceptor splice sites 
at either end of introns are also typically expected to severely disrupt the protein 
product. While these essential positions are indeed highly conserved, there is also 
substantial sequence conservation in the flanking nucleotides and in the branch site 
towards the 3′ end of the intron, so variants in these regions may also affect accurate 
splicing (indeed, this is one way in which “synonymous” variants in coding sequence 
might still have functional effects). Desmet et al. (2009) introduce a tool called the 
Human Splicing Finder which uses position weight matrices to predict the effect of 
different alleles on splicing motifs in all these relevant regions.

It is important to note that despite the expected severity of loss of function vari-
ants, there are still a substantial number of common LoF variants in human popula-
tions, and each individual is predicted to carry up to 20 such variants in a homozygous 
state (MacArthur et al. 2012). This observation implies that we should be cautious 
about the interpretation of LoF variants without further phenotypic evidence. 
MacArthur et al. (2012) use their extensive survey of LoF variants found in the 1000 
Genomes Project data to develop a classifier that can identify genes that are likely 
to be tolerant of LoF variants based on conservation and protein network informa-
tion, and so this approach may be used to filter LoF variants to identify those more 
likely to have some phenotypic effect.

Other forms of coding variant that have been the subject of substantial research 
are missense variants predicted to result in a single AAS; these are an interesting 
class of variant as it appears that some AASs do not have any noticeable effect on 
protein function and the underlying variants are common in human populations, 
while others have been implicated in a wide range of diseases—around half of the 
mutations implicated in human disease from the Human Gene Mutation Database 
(HGMD) are classified as missense (Stenson et al. 2009). Several computational 
techniques have been developed to try to discriminate damaging AASs from appar-
ently benign variants. These approaches can be divided into two main classes: those 
that make predictions based on some biologically informed assumptions about prop-
erties of important residues and those that are trained by machine learning methods 
to discriminate between benign and damaging substitutions. A widely used example 
of the first class is an algorithm called SIFT (Ng and Henikoff 2001) which makes 
predictions based entirely on a protein multiple sequence alignment (MSA) by look-
ing for evidence that a substitution at a specific residue might be tolerated because, 
for example, the mutant residue (or one with similar physico-chemical properties) is 
found at that position in a related protein from another species, or conversely if a 
substitution is likely to be damaging because the affected residue is highly con-
served. A popular example of the second class of approaches is PolyPhen-2 
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(Adzhubei et al. 2010) which uses a set of missense variants annotated in the UniProt 
database (UniProt Consortium 2011) as involved in human disease and trains a naïve 
Bayes classifier to discriminate between these damaging variants and a control set of 
common, polymorphic variants. PolyPhen uses a set of 12 predictive features for 
each variant, including a similar conservation metric from an MSA as used by SIFT, 
three-dimensional structural data, whether the residue is in a transmembrane region 
or a protein domain inter alia. There are also a number of other tools that take simi-
lar approaches but use different sets of annotations. Thusberg et al. (2011) provide a 
recent review and performance comparison of several AAS prediction tools, and Liu 
et al. (2011) present a database called dbNSFP which contains precomputed predic-
tions from four tools for all possible AASs in the human genome.

Given the wide variety of these AAS effect prediction tools, a few methods have 
recently been proposed that combine predictions from a number of different tools to 
try to improve performance over any single technique. One of the first such methods 
is known as Condel (González-Pérez and López-Bigas 2011) and integrates scores 
from five different predictors using a weighted average which the authors show 
gives a substantial improvement in sensitivity and specificity on some test sets. 
CAROL (Lopes et al. 2012) integrates predictions from SIFT and PolyPhen using a 
weighted Z-method, and the authors find that this method can outperform Condel on 
their test set. There are plug-in modules available for the Ensembl VEP to compute 
both Condel and CAROL scores for missense variants.

Proteins are typically composed of one or more functional domains, and when 
considering the effect of any coding variant, it is also useful to check if it might 
disrupt any important protein domains. There are a number of databases of well- 
characterised protein domains, such as Pfam (Punta et al. 2011) and InterPro 
(Hunter et al. 2012), and Ensembl (among other resources) provides a mapping of 
these domains to gene annotations.

Variation in other gene regions, such as introns and the 5′ and 3′ untranslated 
regions (UTRs), is typically currently annotated by tools such as the Ensembl VEP 
and ANNOVAR simply as an overlap. However, these regions are known to contain 
important signals for gene regulation and may also affect mRNA structural stability. 
Regulatory features in the UTRs include miRNA target sites found in the 3′ UTRs 
of many genes. These short sequences are bound by specific miRNAs which typi-
cally serve to suppress translation of the mRNA and act as a form of post transcrip-
tional gene regulation. The miRanda algorithm for miRNA target prediction (John 
et al. 2004) can be used to identify variants that disrupt likely target sites and may 
also be applied to identify variants that introduce novel target sites. As well as 
important sequence signals for mRNA splicing, intronic regions may also contain 
many of the regulatory elements discussed later, such as transcription factor binding 
sites and enhancers.

An important consideration when interpreting all forms of genetic variants is that 
many human genes are subject to alternative splicing and may give rise to a number 
of possible transcripts, frequently depending on tissue or developmental stage.  
A single variant may therefore be predicted to have a number of different effects 
depending on which transcripts it falls in—an apparently highly deleterious 
 premature stop codon may have little consequence if it is found in an exon that is 
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rarely included in any transcript. Rich and detailed annotation of alternatively 
spliced transcripts is therefore very important for accurate variant interpretation, 
and the GENCODE gene set (Harrow et al. 2012) represents perhaps the most 
detailed set of manually annotated transcript models available for human.

Even if a variant is predicted to affect an important transcript, it appears that 
even severely deleterious genetic variants may be tolerated as long as they are in a 
heterozygous state and so only disrupt one copy of the gene, although it appears that 
for some genes (termed haploinsufficient), a single functional copy is not adequate 
to maintain function (Huang et al. 2010). Huang et al. develop a predictive model of 
genes that are likely to be haploinsufficient based on a number of gene-level annota-
tions and which can be used to further prioritise variants and highlight the impor-
tance of considering variant annotations at the organismal level.

 Variants in Non-coding Genes

There is increasing interest in transcribed regions of the genome that do not give rise 
to protein-coding mRNAs, and a number of different classes of non-coding RNA 
genes have now been identified and are extensively annotated in the GENCODE 
resource. There has been less work on interpreting the possible effects of variants in 
non-coding genes, but some of the approaches described above, such as annotation 
of variants affecting splicing, may also be applied to these.

The function of many RNA genes depends on the secondary structures formed 
after the RNA has been transcribed from genomic sequence. Intra-strand base pair-
ing is an important factor in determining this structure, and sequence variants that 
disrupt base complementarity may thus affect the function of RNA genes. The 
RNAsnp server (Sabarinathan et al. 2013) uses RNA structure prediction algorithms 
from the Vienna package (Hofacker 2003) to predict the possible effect of variants 
on RNA secondary structure.

Some specific classes of RNA genes have other well-characterised functional 
sequence regions. As discussed above, miRNAs serve an important role in gene 
regulation, and they do so by binding specific sequences in the UTRs according to 
base pair interactions. Sequence variants in the binding regions of mature miRNA 
transcripts may therefore have potentially complex downstream effects on regula-
tory networks.

 Intergenic and Regulatory Variants

Genetic regions remain the most well-characterised regions of the genome, but 
recent large-scale efforts such as the ENCODE and the NIH Roadmap Epigenomics 
projects have made available substantial amounts of information about biochemical 
activity in the ~98 % of the genome that does not encode protein. These data are 
varied in format and range from specific annotations identifying regions of the 
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genome bound by transcription factors (TFs) to broad epigenetic marks such as his-
tone modifications and long-range chromatin interactions. Given that the majority of 
trait-associated variants, 88 % according to a recent survey (Hindorff et al. 2009), do 
not map to protein-coding loci, the availability of these data provides a promising 
opportunity to interpret the large numbers of non-genetic variants. It is not, however, 
currently clear to what extent genetic variation in many of the regions identified in 
these projects might have phenotypic effects.

Perhaps the most readily interpretable regulatory annotations are TF binding sites. 
Many TFs bind specific sequence motifs in the genome, and so variants that result in 
changes in these motifs, particularly at high-information content positions within the 
motif, might have a direct effect on the binding affinity of the relevant proteins. 
However, Maurano et al. (2012) find that variants at high-information content, con-
served residues of the CTCF TF motifs aligned under regions with experimental evi-
dence of CTCF binding, had no effect on binding intensity, implying there is substantial 
contextual buffering of variants in TF motifs, and it appears our understanding of the 
importance of specific sequence variants in these regions is still limited.

As with transcript splicing signals, TF motifs are typically represented as position 
weight matrices, and so the effect of a variant allele on an aligned motif can be cal-
culated straightforwardly as the difference in alignment score between the two 
alleles. However, TF motifs are typically short—on the order of 10–20 nucleotides in 
length—and are found in numerous locations throughout the genome, and so most 
instances of motifs are unlikely to be functionally important (Pique-Regi et al. 2011). 
It is therefore important to consider further contextual evidence, such as protein–
DNA interaction data for the TF of interest in order to increase prediction accuracy. 
ChIP-seq data for over 100 TFs in dozens of cell lines and tissues is available from 
ENCODE and Roadmap Epigenomics projects. The JASPAR database provides the 
largest open access database of TF motifs, and software such as MOODS (Korhonen 
et al. 2009) and the MEME suite (Bailey et al. 2009) can be used to align these motifs 
to sequence of interest and to check the effect of sequence variants. The Ensembl 
VEP identifies variants that overlap TF motifs lying in matched ChIP-seq peaks and 
identifies if the variant allele increases or decreases the match to the motif consensus 
sequence and if the variant lies in a high- information position within the motif.

Active regulatory regions are often recognisable by an accessible chromatin 
environment, and so assays which identify regions of open chromatin, such as 
DNase1 hypersensitivity and FAIRE (formaldehyde-assisted identification of regu-
latory elements), can help identify regulatory elements. DNase1 footprinting (Neph 
et al. 2012b) can identify specific genomic regions that are likely bound by proteins 
even when the specific factor cannot be identified and so provide a more specific 
prediction of a functionally important region. Data from both assays are again avail-
able in a wide range of tissues and cell lines. The potential role of variants in estab-
lishing accessible chromatin is still not well understood, but Degner et al. (2012) 
find thousands of variants with significant association with differential chromatin 
accessibility and argue that variants in these regions may make an important contri-
bution to phenotypic variation.

Other available data include epigenetic marks such as DNA methylation and 
various histone modifications that mark actively transcribed or repressed genomic 
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regions and which are associated with regulatory elements such as enhancers and 
promoters. Two recent software packages, ChromHMM (Ernst and Kellis 2012) 
and Segway (Hoffman et al. 2012), integrate open chromatin and histone modification 
data to segment the entire genome into distinct functional regions. They find that 
these methods identify biologically important regions such as transcription start 
sites and enhancers. Annotations from these tools may be used to identify the likely 
functional context of non-coding variants, though we have relatively little under-
standing of the effect of sequence variation on the elements discovered, and because 
these tools do not take the sequence into account, it is not possible to compare dif-
ferent predictions for different alleles.

Data from the various techniques discussed here are typically made available in 
BED (or similar) format (see the Appendix for a description of this file format), and 
so variants can be annotated as overlapping or lying near these elements as described 
earlier. There are also Web resources available to identify occupied annotations 
given variant identifiers or coordinates. RegulomeDB (Boyle et al. 2012) finds over-
laps with a wide range of data from the ENCODE project and TF motif alignments 
and then assigns a rule-based score based on the consistency and specificity of avail-
able annotations. HaploReg (Ward and Kellis 2012b) similarly finds overlaps with 
non-coding annotations but also provides information about linked variants and 
their associated annotations.

 Conservation and Constraint

Genomic regions conserved by natural selection over evolutionary time are likely to 
be functionally important. By comparing the human sequence to that of other pri-
mate and mammalian genomes, we can identify regions and even specific nucleo-
tides that appear to be under constraint. Conservation metrics derived from these 
sequence alignments provide a powerful means to identify potentially functional 
sequence features even in the absence of further evidence and can be used to iden-
tify and prioritise potentially important variant loci, even within annotation catego-
ries. Indeed, several of the quantitative approaches we discussed above make 
extensive use of conservation information, either at the DNA or protein sequence 
levels, to derive their scores.

There are several methods that can provide nucleotide resolution conservation 
scores (important for annotating SNVs), including GERP (Davydov et al. 2010) and 
phyloP (Siepel et al. 2006), which are based on different algorithmic approaches, 
but which both use multiple sequence alignments to identify genomic regions with 
less variation than would be expected under some background model. Nucleotide 
level conservation scores can also be used to identify runs of especially constrained 
sequence, which may correspond to functional elements, and these regions can also 
be used as an informative regional annotation.

Conservation has proven to be an important signal in coding regions, but many 
regulatory elements appear to have a much faster evolutionary rate, and there is fre-
quently little detectable evolutionary conservation, for example, Schmidt et al. (2010) 
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find that most binding events for the two transcription factors they study are species 
specific even among vertebrates. The recent availability of allele frequency data 
across the genome from projects such as the 1000 Genomes Project (Consortium, 
The 1000 Genomes Project 2012) offers an alternative approach to estimating con-
straint on sequence features at potentially shorter timescales than possible using 
interspecies comparison. Ward and Kellis (2012a) use several metrics of sequence 
diversity such as variant density, heterozygosity and derived allele frequency 
 computed from the 1000 Genomes Project data to demonstrate that a wide range of 
non-coding elements demonstrate detectable levels of constraint in human popula-
tions. These measures can potentially be used to prioritise variants according to the 
constraint of overlapping annotations.

 Integrative Approaches

Recently, two complementary techniques have been released that integrate a wide 
variety of the classes of data discussed above with the aim of prioritising candidate 
functional variants. GWAVA (Ritchie et al. 2014) is a method aimed to identify 
likely functional regulatory variants and consists of a classifier trained to discrimi-
nate between annotated regulatory variants involved in human disease from the 
HGMD from several different sets of control variants from the 1000 Genomes 
Project. Features used to differentiate between these classes of variants include 
genetic context, regulatory annotations, conservation and measures of variation in 
human populations. The authors demonstrate that the method can identify likely 
functional variants in a number of contexts relevant to human genetics studies. 
CADD (Kircher et al. 2014) is also an integrative approach that includes several of 
the same annotations used in GWAVA, but is also applicable to variants in coding 
regions as it incorporates transcript-level annotations from the Ensembl VEP and 
predictions from SIFT and PolyPhen (described earlier). Instead of training on 
known disease-implicated variants, CADD is trained to discriminate between vari-
ants that have become fixed in the human lineage, which presumably represent tol-
erable variation, from simulated variants unobserved in human populations. This 
approach is appealing as it can assign a single score to variants falling in any class 
of genomic element and supports a systematic approach to ranking and prioritising 
variants across the genome.

 Overlap with Known Variants and Associated Loci

While the majority of variants discovered so far in the human genome have not been 
characterised, an obvious aid to the interpretation of some candidate variant is to 
check for co-located or nearby variants with some established phenotypic association. 
These data may take a range of forms, from statistical association with a complex 
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phenotype such as a GWAS signal to empirical evidence that the variant results in 
increased expression of some particular gene. Locus-level phenotypic annotation, 
such as the effect of a gene knockout in a model organism, can also provide useful 
insight into the possible functional role of a genetic or regulatory variant.

There are a number of useful databases that can be consulted to find known phe-
notype associations; these can typically be queried either by the variant locus or 
phenotype of interest. The HGMD (Stenson et al. 2009) aims to collect variants that 
are “responsible for human inherited disease” and contains thousands of variants 
curated from the literature that have been implicated in a wide range of human dis-
eases, though with a bias towards monogenic disorders. The Online Mendelian 
Inheritance in Man (OMIM) resource also includes detailed characterisation of 
human genes and associated phenotypes and includes some related genetic variants. 
The NHGRI GWAS catalogue (Hindorff et al. 2009) collects information from 
GWAS studies and identifies both specific variants and nearby loci associated with 
the relevant phenotypes.

Even in the absence of any phenotypic data, it is useful to establish if a candidate 
variant is novel or has been discovered before to find allele frequency information 
in different populations. A rare variant in one population may be common else-
where in the world, and as discussed above, allele frequency can be informative 
about functional constraint. Data from large variant discovery studies such as the 
HapMap, 1000 Genomes and NHLBI Exome Sequencing Projects can be used to 
find allele frequencies for several populations around the world. These data are also 
collated centrally in the Ensembl and dbSNP databases, among other resources.

 Summary

Next-generation association studies using sequencing technologies are already 
exploring the phenotypic consequences of novel variants at lower allele frequencies 
than previously feasible, and we expect to find variants with direct effects on phe-
notypic variation. The various resources we have reviewed here can of course be 
used after an association analysis has been performed to identify candidate func-
tional variants among those linked to the association signals and to inform hypoth-
eses for experimental validation. However, by identifying variants a priori more 
likely to play a functional role in the trait of interest, annotations may also be used 
to increase power to discover loci in the first place. This might be especially fruitful 
for rare variant studies where the sample sizes needed to reliably detect associations 
using single locus tests are still prohibitive. In a recent study, Schork et al. (2013) 
find that trait-associated variants are substantially enriched in various functional 
categories and that annotations can help identify associations that are more likely to 
replicate in independent samples. We anticipate that careful incorporation of anno-
tation resources into future association studies will yield substantial insights into the 
contribution of rare variants to human phenotypes.

G.R.S. Ritchie and P. Flicek
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 Appendix

Relevant variant and annotation file formats:

• GFF (General Feature Format): A line-oriented, tab-delimited text file format for 
describing the location of genomic features. GFF was originally designed to rep-
resent gene models but is now used for a wide range of genomic features. The 
format requires the following eight columns on each line: sequence name, fea-
ture source, feature name, start coordinate, end coordinate, score, strand and 
frame. The ninth column can contain any number of attributes represented as 
tag-value pairs separated by semicolons.

 – http://www.sequenceontology.org/gff3.shtml

• BED (Browser Extensible Data): BED is also a general format for describing 
genomic features and again is a line-oriented text file which uses whitespace to 
delimit data columns. Only three columns are required for a valid BED file: the 
chromosome (or scaffold) name, the start coordinate and the end coordinate. 
There are nine further optional fields to include further information such as the 
name of the feature, associated scores and various display configurations that 
define how the data is represented in a genome browser. Large BED files can be 
converted to an efficient binary format known as bigBed.

 – https://genome.ucsc.edu/FAQ/FAQformat.html

• GTF (General Transfer Format): Originally a version of GFF specialised for rep-
resenting gene models, GTF is now identical to GFF version 2.

• VCF (Variant Call Format): A text file format designed to represent sequence 
variants (SNVs, indels and structural variants) called against a reference 
sequence, with a line representing each individual variant. Required tab- delimited 
columns define the position and alleles of the variant, and further columns can 
include genotypes, quality scores and QC filters. VCF also supports the inclusion 
of arbitrary metadata, such as functional annotations for variants, in the INFO 
column (often identified with a “CSQ” tag).

 –  http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/
vcf-variant-call-format-version-41

• GVF (Genome Variation Format): A version of GFF (version 3) specialised for 
representing genomic variants. The same columns as required for GFF are also 
required, but there are also a number of required attributes in the ninth column 
to include variant identifiers and allele sequences, etc. Optional attributes are 
also available which can represent functional annotations such as genetic 
consequences.

 – http://www.sequenceontology.org/resources/gvf.html

• SAM (Sequence Alignment/Map Format): A tab-delimited text format for repre-
senting sequence reads aligned against some reference sequence (typically a 
reference genome assembly). Each line represents the alignment of a single read 
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and has 11 mandatory fields that include details of the alignment sequence, posi-
tion, quality and a compact representation of the alignment itself in CIGAR 
format. There is also an efficient binary version of SAM known as BAM. The 
SAMtools package can be used to convert between SAM and BAM formats.

 – http://samtools.sourceforge.net/

• WIG (Wiggle Track Format): WIG format is used to represent quantitative data 
across a reference sequence such as conservation scores, GC percentage, etc.  
It is again a line-oriented format with the value corresponding to each reference 
position represented on a separate line. Data can be represented with either fixed 
or variable steps between each data point. Large WIG files can be converted to an 
efficient indexed binary format called bigWig.

 – https://genome.ucsc.edu/FAQ/FAQformat.html
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      The 1000 Genomes Project 

             Adam     Auton      and     Tovah     Salcedo    

           Introduction 

 Following the publication of the draft human genome sequence in 2001 (IHGSC 
 2001 ; Venter et al.  2001 ), human geneticists embarked on efforts to categorize 
genomic differences between individuals in a systematic fashion. Multiple studies 
were initiated with the aim of investigating human genetic variation (Pennisi  2007 ), 
most prominently the Human Genome Diversity Project (Jakobsson et al.  2008 ; 
Li et al.  2008 ; Cavalli-Sforza  2005 ) and the International HapMap Project ( 2005 , 
 2007 ). Many of these studies used DNA microarrays to genotype common poly-
morphisms across individuals from a number of populations from around the world. 
However, since the conclusion of these projects, direct sequencing of many human 
genomes has become practical and cost effective through technological improve-
ments in massively parallel short-read sequencing methods (Metzker  2010 ; Lander 
 2011 ). Whole-genome sequencing allows for the discovery of previously unknown 
polymorphisms, including de novo, rare, or length variations, as well as genotyping 
of known polymorphisms. 

 The need to develop a more complete picture of genomic variation has become 
particularly relevant in recent years, as results from genome-wide association studies 
(GWAS) have suggested rare genetic variants as a primary candidate for explaining 
the heritability of many genetic disorders (Visscher et al.  2012 ). Such rare variants, 
with frequencies below 1 % in the population, are much more numerous than com-
mon variants but are generally not included on the DNA microarrays used for many 
GWAS. Characterizing the distribution of rare variation is therefore important for 
understanding the genetic structure of the human population and subsequently 
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investigating the basis of genetic disease. The 1000 Genomes Project (hereafter 
abbreviated by 1000G) is an ongoing international collaborative effort to develop a 
deep catalog of human genetic variation, specifi cally with the goal of cataloging as 
much rare variation from the global human population as possible. Using a sample of 
populations from around the world, the 1000G explored a variety of sequencing and 
variant calling methods to maximize cost effi ciency for discovery of rare variants. 

 The 1000G enhances our ability to perform GWAS in two ways. First, having a 
catalog of rare variants will allow future GWAS to consider rare, but potentially 
important, variants without necessitating genome sequencing of novel samples 
(Nielsen  2010 ). Second, the project will improve our understanding of how rare 
variants are stratifi ed between populations. As rare variants are generally believed 
to be the result of recent mutations, it is expected that rare variation will be highly 
specifi c to local populations. Understanding such fi ne-scale stratifi cation is critical, 
as unrecognized stratifi cation can cause false disease associations to be identifi ed 
(Mathieson and McVean  2012 ).  

    Project Aims 

 The primary goal of the 1000G was to build a comprehensive catalog of human 
variation, with a particular focus on rare variants. Specifi cally, the fi rst stated project 
goal was to confi dently identify at least 95 % of all variants—single nucleotide 
changes, small insertion or deletion events (indels), and large structural variants—
which segregate at a minor allele frequency (MAF) of at least 1 % in the sampled 
populations across the genome (Meeting Report  2007 ). The second major goal of 
the 1000G was to identify at least 95 % of variants with a MAF of 0.1 % within 
coding regions of the genome (Meeting Report  2007 ). The project samples were 
derived from 27 geographical populations (Table  1 ), with populations selected 
within fi ve continental clusters. Importantly, all data (from raw sequencing data to 
processed variant calls) generated by the project were made publicly available 
almost immediately upon completion, allowing all researchers to access the project 
fi ndings prior to publication.

       Project Implementation 

 Human samples were collected from multiple global populations with the aim of 
refl ecting large population groups. A clustered sampling strategy was used to maxi-
mize the power to detect rare variants that were shared between local populations 
(Fig.  1 , Table  1 ). Approximately 100 individuals were sampled from each of the 27 
populations representing fi ve continental regions: West Africa, the Americas, South 
Asia, East Asia, and Europe. Cell lines for all sampled individuals were deposited 
with (and are currently available through) the Coriell Institute for Medical Research 
(Camden, New Jersey).
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      Table 1    Populations sampled by the 1000G   

 Population 
 Population 
abbreviation 

 Ancestry 
group 

 Target 
sample 
size 

 Sequencing 
technologies 

 Yoruba in Ibadan, Nigeria  YRI  West Africa  100  Illumina, SOLiD, 454 
 Luhya in Webuye, Kenya  LWK  West Africa  100  Illumina, SOLiD, 454 
 Gambian in Western Division, 
The Gambia 

 GWD  West Africa  100  Illumina, SOLiD 

 Mende in Sierra Leone  MSL  West Africa  100  Illumina, SOLiD 
 Esan in Nigeria  ESN  West Africa  100  Illumina, SOLiD 

  West Africa    500  
 Utah residents (CEPH) with 
Northern and Western European 
ancestry 

 CEU  Europe  100  Illumina, SOLiD, 454 

    Toscani in Italia  TSI  Europe  100  Illumina, SOLiD 
 British from England and 
Scotland 

 GBR  Europe  100  Illumina, SOLiD 

 Finnish from Finland  FIN  Europe  100  Illumina, SOLiD 
 Iberian populations in Spain  IBS  Europe  100  Illumina, SOLiD 

  Europe    500  
 Han Chinese in Beijing, China  CHB  East Asia  100  Illumina, SOLiD, 454 
 Japanese in Tokyo, Japan  JPT  East Asia  100  Illumina, SOLiD, 454 
 Han Chinese South  CHS  East Asia  100  Illumina, SOLiD 
 Chinese Dai in Xishuangbanna  CDX  East Asia  100  Illumina, SOLiD 
 Kinh in Ho Chi Minh City, 
Vietnam 

 KHV  East Asia  100  Illumina, SOLiD 

  East Asia    500  
 African ancestry in the 
Southwest USA 

 ASW  Americas   62  Illumina, SOLiD 

 African Caribbean in Barbados  ACB  Americas  100  Illumina, SOLiD 
 Mexican ancestry in Los 
Angeles, CA 

 MXL  Americas   70  Illumina, SOLiD 

 Puerto Rican in Puerto Rico  PUR  Americas   90  Illumina, SOLiD 
 Colombian in Medellín, 
Colombia 

 CLM  Americas   89  Illumina, SOLiD 

 Peruvian in Lima, Peru  PEL  Americas   89  Illumina, SOLiD 
  Americas    500  

 Gujarati Indian in Houston, TX  GIH  South Asia  100  Illumina 
 Punjabi in Lahore, Pakistan  PJL  South Asia  100  Illumina 
 Bengali in Bangladesh  BEB  South Asia  100  Illumina 
 Sri Lankan Tamil in the UK  STU  South Asia  100  Illumina 
    Indian Telugu in the UK  ITU  South Asia  100  Illumina 

  South Asia    500  
  Total    Global    2,500  

  The populations sampled for the 1000G and the ancestry groups with which they were clustered 
 Population names and abbreviations were developed by NHGRI  
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   The project aimed to describe at least three types of human genetic variants: 
single nucleotide polymorphisms (SNPs), small indels (<50 bp), and large-scale 
(≥50 bp) segmental variants (SVs). As the data generated by the project were freely 
accessible to everyone, research groups inside and outside of the consortium were 
free to use the data to test their algorithms and compare the results with others, 
facilitated by the data coordination cluster (Clarke et al.  2012 ). Data are currently 
available via the consortium website (  http://www.1000genomes.org/    ), which serves 
as a portal for all data and analysis fi les and project updates. 

 Sequence data were generated at nine independent sequencing centers. The vast 
majority of the data consisted of low-coverage genome sequence augmented with 
targeted exome sequencing. For the low-coverage sequencing, individuals were 
sequenced to an average depth of coverage of 5×. Approximately three quarters of 
these data were generated using the Illumina platform, with the remainder being 
composed of SOLiD data and a small amount of 454 sequence (Table  1 ). In addition, 
the same DNA samples were sequenced using targeted exome methods, achieving a 
mean coverage of 85× over ~15,000 genes. As with the low-coverage sequencing, 
most of this data was comprised of a mix of Illumina and SOLiD. In concert with 
these sequencing methods, 2.4 million SNPs were also genotyped using the Illumina 
HumanOmni2.5-Quad SNP array. 

 Once the raw sequence data were collected, the 1000G used several approaches 
to identify variants (Fig.  2 ; 1000GC  2012 ), integrating the independent call sets 
produced by multiple research groups. Initial assessment of these variant call sets 
indicated that each had unique properties in terms of sensitivity and specifi city 

  Fig. 1    Simulated data illustrating power to detect variants as a function of allele frequency using 
a clustered sampling scheme. The  dark blue line  represents power in the sampled populations; 
 green  represents power in unsampled (but closely related) populations, and  light blue  represents 
power across the whole continent. Also shown are estimates from real data ( plus  signs) showing 
the observed power of the 1000G to detect SNPs discovered by the UK10K ( black ) and SardiNIA 
( red ) projects       
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and that a combined call set would provide a higher-quality dataset than any of the 
individual call sets alone. In order to select high-quality variants from the union of 
the call sets, multiple statistics were collected for each variant, including informa-
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  Fig. 2    Workfl ow schematic of 1000G, from data generation to individual genotypes. Starting with 
the primary short-read data, variant sites were identifi ed using a number of differing bioinformatic 
algorithms. The properties of the resulting calls from the competing algorithms were passed to 
machine learning algorithms to identify a set of high-quality sites via comparison to known high- 
quality sites. Once an integrated set of variable sites had been identifi ed, genotypes were called by 
using imputation to exploit the LD structure of the genome          
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tion about the uniqueness of the sequence surrounding the variant, the quality of 
reads supporting the variant, and the distribution of variant calls in the population. 
Using this information, machine learning approaches were trained using Omni or 
HapMap genotypes to identify high-quality variants and separate them from low-
quality variants.

   A key feature of the low-coverage 1000G design is that the power to correctly 
identify a polymorphic site strongly depends on the allele count within the popula-
tion sample. For variant alleles occurring at least ten times in the entire 1000G 
sample, the low-coverage whole-genome sequencing had similar power to detect 
variants as the high-coverage exome sequencing (Fig.  3a ). As the size of the dataset 
increases, the number of variant alleles required for detection remains largely con-
stant and hence represents increasingly lower frequency and thus increasingly rare 
variants. In the fi nal 2,500-individual 1000G cohort, which represents 5,000 haploid 
genomes, an allele present in ten copies will represent a variant segregating at 0.2 % 
in the sample. As such, the 1000G is able to use the low-coverage design to effi -
ciently discover variation in the population down to frequencies of less than 0.5 %, 
despite there being only limited power to identify variation in any given genome 
sequenced to low coverage.

   The outcome of the variant calling procedure was a list of loci where variation had 
been detected in the 1000G panel, which then had to be integrated across individuals 
in order to score genotypes (Fig.  2 ). As low-coverage sequencing provides only an 
incomplete representation of a given genome, directly using such data for genotype 
calling would be expected to include a large number of genotypes that are either 
missing or misidentifi ed. To see this, consider a heterozygote variant. If we had 8× 
coverage, we would have a very high probability of having observed both alleles 
if we had sequenced that site to a coverage of 10× or greater (Fig.  3b ). However, 
outside of exons, the 1000G only sequenced to an average of 5×. As such, the geno-
type at a given site is often ambiguous. For example, ~8.7 % of genotypes in the 
1000G dataset were covered by less than two reads, making it impossible to deter-
mine the genotype without prior information. 

 In order to address this problem, the 1000G adopted statistical imputation meth-
ods that take advantage of the correlation in genotypes between nearby sites, known 
as linkage disequilibrium (LD). By using such methods, high genotype accuracies 
could be achieved even for the low-coverage data. For example, for variants with a 
frequency of at least 1 %, the genotypes calling from low-sequencing data incorpo-
rating LD was nearly as accurate as calls generated from high-coverage exome 
sequencing (Fig.  3c ; 1000GC  2012 ). Imputation methods therefore provided a suit-
able means by which accurate genotypes could be obtained. However, there remained 
a trend of higher genotype accuracy for samples with higher sequencing depths, 
although the discordance between the Illumina Omni array and sequence- based calls 
was mostly below 0.5 % after 8× coverage is reached (1000GC  2010 ).  
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  Fig. 3    Power of 1000G to 
detect and genotype variation. 
( a ) Power to detect a variant 
in low-coverage WGS versus 
exome as a function of 
non-reference allele count in 
the sample. Reproduced from 
1000GC ( 2012 ). ( b ) 
Probability of detecting both 
alleles in a heterozygous 
individual. Numbers refl ect 
exemplar individual 
(HG00096) for a randomly 
selected region (chromosome 
20).  Blue bars  = proportion of 
sites covered by a given 
number of reads.  Red 
circles  = probability of 
observing both alleles if a 
given site is heterozygous for 
a variant. ( c ) Genotype 
accuracy of low-coverage 
WGS and exome calls, as 
compared to OMNI 
genotypes. For the low- 
coverage genotypes, accuracy 
is shown both before and 
after incorporating 
information from linkage 
disequilibrium. Reproduced 
from 1000GC ( 2012 )       
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    Results 

 At the time of writing, the 1000G has successfully generated genome sequence 
from 1,092 individuals representing 14 populations across the globe and is expand-
ing to a set of ~2,500 individuals by the conclusion of the project. A total of 38 
million SNPs have been reported from across the genome, of which 58 % on the 
autosomes and 77 % on the X chromosome were novel or unknown prior to the start 
of the project. In addition, 1.38 million autosomal indels and 14,000 SVs were 
discovered, 62 % and 54 % of which were novel, respectively. The impact of the 
1000G can be seen by considering its contribution to the database of known human 
genetic variation, dbSNP. Of the ~50 million variants that have been discovered to 
date, roughly 50 % were identifi ed for the fi rst time by the 1000G (Fig.  4 ). In addi-
tion, ~15 % of the variants that have been discovered by other projects have been 
verifi ed by the 1000G.

  Fig. 4    Numbers of SNPs discovered over time, partitioned into variants present in dbSNP that 
have not been seen in 1000G ( blue ), SNPs present in dbSNP prior to the start of the 1000G that 
have been subsequently confi rmed by the 1000G ( green ), and SNPs uniquely discovered by 1000G 
( dark red ). The  red line  shows the fraction of variants in an exemplar individual (NA12878) that 
would have been classed “novel” relative to dbSNP as a function of dbSNP build       
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   The 1000G estimated that 94 % of the genome was “accessible”—that is, for 
94 % of the human reference assembly, the 1000G could use short-read sequencing 
methods to detect variation. The remaining 6 % of the human reference genome is 
largely comprised of highly repetitive regions that make mapping of short reads 
challenging, and hence the false-positive rate for calling variants is expected to be 
high. In addition, the 1000G also defi ned a smaller fraction of the genome that 
increased the stringency used to defi ne the accessible genome. In this case, 72.2 % 
of the reference genome was retained, which may be used for analyses that require 
high specifi city.  

    Major Biological Findings 

    Genetic Variation and Its Functional Consequences in Humans 

 The 1000G provides insight into the patterns of genetic variation that are expected 
with a typical human genome. A typical individual is expected to harbor between 
3.7 and 4.7 million variants (depending on ancestry). While 3.6–3.9 million variants 
within a given genome are expected to be common (>5 % frequency), the remainder 
are expected to be less common within the population, and up to 150,000 variants 
may be present at less than 0.5 % frequency. The vast majority of these polymor-
phisms are expected to have no functional consequences, as they fall outside of 
coding or other functional regions of the genome. However, the dataset also pro-
vides an estimate of polymorphisms with a greater probability of having functional 
consequences. The number of exonic SNPs that differ between an average individ-
ual and the reference human genome included ~2,600 to 4,000 non-synonymous 
variants (those that change the identity of the amino acid encoded by a nucleotide 
triplet) and ~1,400 to 1,900 synonymous changes (those that cause changes to the 
triplet but not amino acid identity; 1000GC  2012 ). In addition, the typical individual 
was estimated to harbor ~72 to 91 indels in exons that caused frameshifts and ~78 
to 97 in-frame indels (1000GC  2012 ). 

 In coding regions, it is clear that natural selection has operated to affect patterns 
of diversity in the genome. For example, the observation that 85 % of non- 
synonymous coding SNPs are found at MAF ≤ 0.5 %, while only 65 % of synony-
mous coding SNPs are that rare, may be explained by purifying selection preventing 
many non-synonymous mutations from reaching appreciable frequency in the popu-
lation. Likewise, while identifying patterns associated with natural selection around 
noncoding regions is more diffi cult, there are some patterns observed by 1000G that 
are indicative of functional constraint. For example, DNA motifs found by the 
ENCODE project (ENCODE Project Consortium  2012 ) to be bound by the CTCF 
transcription factor show reduced levels of diversity compared to identical motifs 
elsewhere in the genome that are not bound by CTCF. 

 Despite the infl uence of natural selection, there are still a number of variants 
expected to have strong deleterious consequences segregating within the human 
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population. Among those are so-called loss-of-function (LOF) variants, which are 
expected to abolish gene function by creating premature stop codons, disrupting 
splice sites, disrupting the transcriptional reading frame, or deleting functionally 
important coding regions (MacArthur et al.  2012 ). On average, individuals were 
estimated to harbor ~150 LOF variants. A separate category of variants also expected 
to have major impacts on gene function are those rated as “damaging” according to 
the Human Gene Mutation Database (Stenson et al.  2009 ). The 1000G estimated 
that the average person carries 20–40 such variants. Approximately 10–20 of these 
LOF and 2–5 of the damaging variants were rare (MAF < 0.5 %). In addition, a typi-
cal individual appears to harbor 700–900 losses of transcription factor binding 
motifs, most of which correspond to common variants, and ~200 motif gains.  

    Distribution of Variants Across Populations 

 It has long been understood that modern humans had their geographical origin in 
Africa, and thus African populations harbor more genetic diversity than other 
human populations (Cann et al.  1987 ). Concordant with this, the greatest numbers 
of SNPs identifi ed by 1000G were found in African populations, and African popu-
lations harbor the bulk of variants that are found only in a single ancestry group 
(Fig.  5a ). Conversely, common polymorphisms with MAF ≥ 10 % tend to be repre-
sented in all populations.

   As rare variants tend to be the result of recent mutations, there generally has 
not been suffi cient time for these variants to have spread throughout the global 
human population from their localities of origin (Nelson et al.  2012 ; Maher et al. 
 2013 ). It is expected that rare variants will often be stratifi ed by population or 
found very locally. 

 Rare variant stratifi cation was investigated by the 1000G by considering those 
variants found exactly twice in the 1000G dataset. For the same reason that we expect 
very rare variants to be found in the same population, we predict that both copies of 
rare variants captured only twice overall will be found within the same population 
more often than in different populations, and this was observed by the 1000G 
(Fig.  5b ). Interestingly, due to having described these captured-twice variants, the 
1000G had the ability to describe relatively fi ne-scale cases in which variants were 
shared across populations from different global regions when the two populations 
involved have known historical connections. For example, increased sharing was 
identifi ed between American populations (CLM, MXL, and PUR) and Spanish 
(IBS) individuals, as distinct from other European populations (Fig.  5 ), consistent 
with the known historical gene fl ow between these groups. 

 While sharing of rare variants likely refl ects demographic factors, large fre-
quency differences between populations likely refl ect the action of local adaptation. 
Interestingly, the 1000G identifi ed relatively few common variants that differentiate 
between populations within ancestry groups (1000GC  2010 ,  2012 ). Of the three 
major geographic clusters analyzed for locally high-frequency variants, 722 
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 differentiated SNPs were observed within Africa, 530 within Asia, and 915 within 
Europe. However, care must be taken when interpreting such signals, as there was 
evidence that sequencing technology contributed to stratifi cation among population 
samples, particularly within continental groups. Such artifacts highlight the care 
that needs to be taken when using sequencing data for population genetic analysis, 
although the problem may be lessened as read lengths and accuracy improve across 
sequencing platforms.   

    Identifying Insertion and Deletion Variants 

 Because of alignment ambiguities, insertion and deletion variants (indels) are harder 
to characterize than SNPs and thus remain relatively less well categorized. Correctly 
genotyping small indels has long been recognized as a diffi cult task when using 
short-read data (e.g., Lunter et al.  2008 ; Shao et al.  2013 ). Unfortunately, the 
processes that lead to local misalignment of short reads are qualitatively similar to 
the processes that lead to identifying true indel variation. As such, local misalign-
ment of reads can result in patterns that are mistaken for legitimate indel variation. 

  Fig. 5    Distribution of variation across geographical regions and populations. ( a ) Distribution of 
private variants.  Solid colors : private variants shown by ancestry groups.  AFR  African,  AMR  
Americas,  EAS  East Asian,  EUR  European.  Lines : private variants shown across samples;  white 
line —found in a single population,  solid black line —found in all ancestry groups,  dotted black 
line —found in all populations. ( b ) Population distribution of alleles observed exactly twice in 
1000G data (known as “f2” variants).  Left : fraction of f2 variants identifi ed in a given population 
( x -axis) relative to every other population ( y -axis). Abbreviations as in Table  1 .  Right : number of 
f2 variants found in a randomly sampled individual genome from each population. Reproduced 
from 1000GC ( 2012 )       
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 Nonetheless, indel variation represents a signifi cant fraction of human genetic 
variation, and the 1000G therefore aimed to incorporate indel variation into its 
call set. Multiple research groups contributed primary indel call sets, which were 
subjected to validation experiments using three orthogonal technologies in order to 
provide an independent assessment of variant call accuracy. Estimates provided by 
these validation experiments highlighted the diffi culties in obtaining accurate indel 
calls. Specifi cally, the validation experiments suggested that a full 36 % of the initial 
indel calls were likely to be false positives. For this reason, the 1000G adopted 
extensive fi lters for the indel call set in order to select a much reduced subset 
expected to have a lower FDR. Subsequently, the implied FDR of indels in the 
integrated call set was ~5.4 %, although this estimate was based on extrapolation 
from the earlier validation experiments. 

 In addition to short indels, the project also aimed to characterize larger structural 
variants (SVs), which were defi ned as variants >50 bp in length. Given the size of 
these variants, novel analysis methodologies were required to enable their detection, 
which made use of short-read assembly features such as variation in read depth, 
distances between read pairs, split reads, etc. (Handsaker et al.  2011 ; 1000GC 
 2012 ). However, even when adopting multiple approaches, accurately calling and 
genotyping SVs from low-coverage data remains highly challenging. For this reason, 
the project focused efforts on calling a specifi c subset of SVs that could be called 
with reasonable confi dence, namely, biallelic deletions (1000GC  2012 ). As was 
done for SNPs and short indels, multiple initial call sets were generated using a 
variety of approaches, which were subsequently combined into a single call set after 
a fi rst round of validation. The resulting dataset contained 14,422 large biallelic 
deletions and had a relatively low FDR (2.1 %). However, it should be  remembered 
that this call set represents only a fraction of the total amount of structural variation 
segregating in humans, and future work will need to focus on improving methods 
for detection of these more complex types of variation.  

    Looking Forward: Implications for Other Projects 

 Together, the published 1000G data accomplished the primary project goal of 
describing most rare variants (MAF ≥ 1–5 %) among humans, having identifi ed an 
estimated 98 % of SNPs with MAF ≥ 1 %. The 1000G is perhaps the largest effort 
to date aiming to characterize rare human variation on a genome-wide basis and 
provides technical and biological insights into how to organize future studies of 
human genetics and genomics; indeed, the project itself has led to developments 
in methods and standards for analyzing short-read data. Given that hundreds of 
terabytes of data were generated by 1000G, both storing of data and assuring access 
to it by all consortium members were nontrivial. Managing such large datasets 
necessitated some technical innovations (Clarke et al.  2012 ). Two major new data 
fi le formats were developed by members of the 1000G consortium, both of which 
have become de facto standards within the genomics community: SAM/BAM, 
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which summarizes aligned sequence information (Li et al.  2009 ), and VCF, which 
summarizes variation among individuals (Danecek et al.  2011 ). Additionally, the 
1000G maintains social media accounts and hosts a website FAQ to facilitate use of 
project data by investigators outside the consortium. 

 A major application of the 1000G is its potential use as a reference cohort for 
imputation (Nielsen  2010 ). The large scale of the 1000G dataset improves the 
ability to impute genotypes, particularly for rare variants, allowing researchers to 
improve the power and precision of GWAS. Using the 1000G, genotype data 
imputed for SNPs not present in GWAS arrays suggested an accuracy rate of 
90–95 % for both African and non-African populations (1000GC  2012 ). While 
accuracy rates were somewhat lower for rarer variants (60–90 % for MAF 1–5 %), 
adding rare variants to imputed haplotypes can increase the number of identifi ed 
variants in LD with GWAS hits, and accounting for haplotype structure across pop-
ulations may help with identifying candidate variants for follow-up studies. Beyond 
imputation from microarrays, the 1000G also has implications for future GWAS 
designs, with simulation studies suggesting that, combined with imputation off the 
1000G, very low-coverage (0.1×) whole-genome sequencing may be suffi cient to 
conduct GWAS (Pasaniuc et al.  2012 ). 

 Despite the great advances made by 1000G, there is more to learn about rare 
human variation and how it is distributed across populations, particularly small and/
or isolated populations. When the 1000G compared project SNPs to those described 
by UK10K (described elsewhere in this book) and the SardiNIA Study (Pilia et al. 
 2006 ), there was a good match for common SNPs (MAF ≥ 5 %): 99.7 % and 99.3 %, 
respectively. However, for rarer variants (MAF ≤ 1 %), while the 1000G catalog 
matched 98 % of rare variants in UK10K, only 76 % of the same rare variants were 
identifi ed in SardiNIA (Fig.  1 ). Notably, the Sardinian population has been isolated 
for many generations and is the subject of intense study because of its unusual his-
tory (Pilia et al.  2006 ). This suggests that additional populations that are not very 
closely related to those sampled by 1000G may show departures from the described 
patterns, which could be important for future studies, particularly as very rare vari-
ants will be highly specifi c to local populations. It has already been documented 
that, even for common genetic variants, disease symptoms (e.g., lung function; 
Kumar et al.  2010 ) and medical treatment plans (e.g., drug regimen in hepatitis C 
viral infections; Ge et al.  2009 ) based on associations in one population may not be 
applicable in other populations, and this effect may be exacerbated when rare variants 
are involved (Bustamante et al.  2011 ; Need and Goldstein  2009 ). 

 Going forward, the 1000G provides some empirical estimates of patterns of vari-
ation that we should expect to observe in newly sequenced genomes. Following the 
1000G, the vast majority of variants that are >5 % MAF are now known (Fig.  4 ). 
However, a newly sequenced genome is still likely to contain thousands of variants 
that have not been previously observed. Likewise, the stratifi cation of rare variation 
means that sequencing efforts specifi c to local populations will still discover large 
amounts of rare variation, particularly for those not closely related to the 1000G 
samples. This begs the question of how surprised we should be if we do not observe 
a variant in the 1000G, and what information (if any) this conveys about clinical 
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relevance. Finally, as sequencing technologies improve, the fraction of the genome 
accessible to short reads will increase, allowing for previously unaccessible variants 
to be characterized.     
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           What Is UK10K? 

 From 2010 to 2013, UK10K was Britain’s largest genomic sequencing consortium, 
awarded £10.5 million by the Wellcome Trust to investigate how low-frequency and 
rare genetic variants contribute to human disease (  www.uk10k.org    ). This collabora-
tive project brought together researchers working on obesity, autism, schizophrenia, 
and a number of rare conditions (familial hypercholesterolemia, thyroid disorders, 
learning disabilities, ciliopathies, congenital heart disease, coloboma, neuromuscu-
lar disorders, and severe insulin resistance) to generate whole genome and exome 
sequence data for almost 10,000 highly phenotyped individuals. The data generated 
by UK10K not only enabled the discovery of novel disease-causing genes by the 
consortium, but was also made available to the research community during the life 
of the project as a managed access data resource; providing access to data an order 
of magnitude deeper than was previously possible, and empowering future research 
into human genetics.  

    Motivation Behind the Project 

 Although many hundreds of genes involved in disease processes have already been 
discovered, the picture is far from complete. For most traits, only a small fraction of 
the genetic contribution has been explained, suggesting that many more disease 
loci remain unknown. Whilst highly valuable, linkage analyses and genome-wide 
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association studies (GWAS) are restricted to the identifi cation of those genes whose 
variants either have strong and distinctive effects, or those that have weaker effects 
but are more common (minor allele frequency [MAF] ≥ 5 %). Candidate gene 
re- sequencing studies have demonstrated that some mutations can, however, have 
an effect on disease phenotypes whilst existing at a rare or low allele frequency 
(MAF < 5 %). Taking advantage of new technology-sequencing platforms and 
falling sequencing costs, the UK10K project set out to detect variants with allele 
frequencies as low as 0.1 %. 

 It was anticipated that the project’s outcomes would have a far-reaching impact 
across the scientifi c, research, and medical community. The unprecedented scale 
and quality of the data generated has already been recognized as an excellent 
resource for further research into human genetics, whilst the data processing 
pipeline and the statistical analyses developed during the project provided exam-
ples of current best recommended practice. It is hoped that the discovery of novel, 
rare disease-causing variants identifi ed by UK10K will lead to further insight 
into disease processes, and improvements in disease diagnoses and the develop-
ment of new therapies.  

    UK10K Project Design 

 The project consisted of fi ve key stages: 

    Genome-Wide Sequencing of 4,000 Cohort Samples 

 To maximize the amount of variation detected, whole genome sequencing at 6× 
depth was performed on the DNA of 4,000 highly phenotyped individuals of UK 
origin. It was anticipated that this coverage would provide enough power to detect 
all accessible SNVs, indels, and structural variants down to a 0.1 % allele frequency, 
and improve the accuracy of genotype calls on sequenced individuals. This ‘Cohort’ 
group as it was referred to within the project was composed equally of subjects 
recruited from two well-established studies: the Avon Longitudinal Study of Parents 
and Children (ALSPAC,   www.bristol.ac.uk/alspac    ) and the TwinsUK study (  www.
twinsuk.ac.uk    ). 

    The Cohorts 

 TwinsUK is Britain’s largest adult twin registry. Composed of more than 12,000 
identical and non-identical twins, TwinsUK is an invaluable resource for studying 
the genetic and environmental aetiology of age-related complex traits and diseases. 
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The 2,000 samples selected for sequencing (one per twin pair) were taken from 
unrelated females from all over the UK, approximately three-fi fths of which were 
dizygotic and two-fi fths monozygotic. Where possible twins who were already part 
of the MuTHER (multiple tissue human expression resource), and/or HATS study 
(healthy ageing twin study) were preferentially selected for inclusion in Cohorts. 

 A core set of 63 UK10K phenotypes were selected to ensure as much overlap as 
possible between TwinsUK and ALSPAC phenotypic data (derived from physical 
examinations and questionnaires for both groups), and was made available along-
side sequence data in the European genome-phenome archive (EGA). The Cohorts 
phenotypes included measurements for liver, kidney and lung function, cardiovas-
cular function and hypertension, and anthropometric data such as waist and hip size, 
leg length, and head circumference. 

 ALSPAC is a longitudinal, population-based birth cohort study that recruited 
over 13,000 pregnant women in the Avon area, collecting data from the eighth 
gestational week onwards. DNA was collected from approximately 9,000 children 
who continued to supply phenotypic data up until the age of 18 years after which 
many participants re-consented their participation in the study, providing data 
into adulthood. In contrast to the TwinsUK samples, the 2,000 samples supplied 
by ALSPAC were from teenage individuals, based in and around a single region 
of the UK (Avon). 

 By collaborating with established longitudinal studies such as TwinsUK and 
ALSPAC, UK10K was able to investigate the contribution of genetic variants to 
phenotypic variation over time. Modelling correlated and longitudinal pheno-
typic measurements in association tests reduced phenotypic variance and 
increased the power of analyses. Further gains in power were achieved by imput-
ing low-frequency variants into non-sequenced individuals with existing 
genome-wide association scan (GWAS) data. By preferentially including sam-
ples that overlapped with existing studies for which DNA methylation, gene 
expression, and metabolic profi ling data were available, it was possible to 
explore genetic associations in functionally relevant variation, and to develop 
new analytical methods for incorporating functional annotation into association 
testing. It was anticipated that by including individuals from a continuum of 
trait, age, and geographical distribution, the resulting data would be widely 
applicable and used internationally.  

     Whole Genome Sequencing 

 A ‘production pipeline’ was developed specifi cally for the project, managing the fl ow 
of samples from the point of arrival through to DNA quality control (which included 
Picogreen quantifi cation and Sequenom Genotyping), multiplexed sequencing and 
data generation, and lane QC (confi rming sample identity by genotype matching, 
checking base quality, even-GC representation, and library insert size), prior to read 
pair mapping (BAM format) and variant calling (VCF format). 
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 For whole genome sequencing, 1–3 μg DNA was sheared to 100–1,000 bp then 
subjected to Illumina paired-end DNA library preparation. Following size selection 
(300–500 bp insert size, suffi cient to span Alu repeats), DNA libraries were 
 multiplexed in a single pull-down experiment (with indexing barcodes attached 
prior to pull-down, enabling the sample of origin to be determined for each read) 
and sequenced using the Illumina HiSeq platform as paired-end 100 base reads 
(according to the manufacturer’s protocol). 

 Realignment was made around known indels from the 1000 Genomes Project 
Pilot (1000 Genomes Project Consortium  2010 ) to improve raw BAM alignment for 
SNP calling, and then base quality scores were recalibrated using GATK (DePristo 
et al.  2011 ). BAQ tags were added using SAMtools, the BAMs were merged and 
then any duplicates removed. SNP and indel variants were called on the data using 
both SAMtools (Li  2011 ) mpileup and GATK Unifi edGenotyper, then merged and 
annotated with allele frequencies from 1000 Genomes, dbSNP entry date, and rsIDs. 
Functional annotation was added using the Ensembl Variant Effect Predictor against 
Ensembl 64, and fi nally BAM and VCF fi les were deposited in the EGA. Cumulative 
single-sample and multiple-sample releases were made throughout the duration of 
the project, enabling the scientifi c community to benefi t from access to the data long 
before the end of UK10K.   

    Direct Association of Traits in the Sequenced Individuals 
to the Variants Found in Section ‘Genome-Wide Sequencing 
of 4,000 Cohort Samples’ 

 The next stage of the project involved directly associating newly discovered vari-
ants with quantitative traits, and identifying those variations linked with disease. 

 Primary association analyses focused specifi cally on testing the associations of 
intermediate and rare sequence variants with selected quantitative traits (including 
cardiometabolic traits, blood pressure, and body mass index), using single variant 
association tests and also collapsing together multiple low-frequency/rare variants 
in order to detect association to a gene or region. With almost 4,000 whole genome 
samples sequenced in total, imputed into a further 10,000 samples (approximately) 
using 1000 Genomes panels and IMPUTE2, power was suffi cient to detect single 
variant associations contributing 0.1 % variance. 

 Secondary analyses were directed at determining the impact of novel loci on lon-
gitudinal analyses and age effects (using linear and logistic regression methods), 
maternal and parent of origin effects (for ALSPAC; exploiting maternal genome- 
wide SNP data and phenotypic records, and matching of the surrounding haplotype), 
and the analysis of correlated traits and pleiotropy (analysing correlated intermediate 
traits to assess potential pleiotropic effects at novel QTLs).  
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    Sequencing and Association Analysis of 6,000 Exomes 
from Samples with Extreme Phenotypes 

 The UK10K project was constrained in terms of having a fi xed duration and budget, 
and as a result limited itself to investigating three key areas of disease for which there 
were already some recognized rare causal variants: obesity, neurodevelopmental 
disorders (autism and schizophrenia), and a selection of rare conditions (including 
familial hypercholesterolemia, thyroid disorders, learning disabilities, ciliopathies, 
congenital heart disease, coloboma, neuromuscular disorders, and severe insulin 
resistance). To identify novel and rare variants associated with these diseases, 
close to 6,000 DNA samples from subjects with extreme disease phenotypes were 
whole exome sequenced to an average depth of 72×. High depth sequencing was 
necessary to enable the precise calling of rare variants, and the increased costs 
associated with higher depth sequencing were met by compromising on exome, 
rather than whole genome sequencing. Sequencing exomes (protein-coding exons 
and fl anking conserved sequence) greatly reduced the overall sequencing costs for 
this stage of the project, though it was acknowledged that exome sequencing would 
not capture variants outside of these regions. 

 The objectives of this stage were to identify novel variants and genes involved in 
these conditions, fi rst by association and then by determining as far as possible causal 
variants and mode of action. Selecting for extreme traits of interest substantially 
increased the power of analyses (using the Cohorts data as a common control set), 
and exome sequencing enabled more than 90 % of the target region to be sequenced 
to a suffi cient enough depth to accurately call heterozygous sites (and singletons), 
from 4Gb total sequence per sample. The resulting publications, describing the 
contribution of novel variants to the genetic variation underlying these disease phe-
notypes, can be found on the UK10K website (All UK10K publications are available 
at:   www.uk10k.org/publications_and_posters.html    ). 

    Whole Exome Sequencing 

 For whole exome sequencing 1–3 μg DNA was sheared to 100–400 bp, then sub-
jected to Illumina paired-end DNA library preparation and enriched for target 
sequences according to the manufacturer’s recommendations (Agilent Technologies; 
SureSelectXT Automated Target Enrichment for Illumina paired-end Multiplexed 
Sequencing). Enriched libraries were multiplexed (see section ‘ Whole Genome 
Sequencing ’) and sequenced using the Illumina HiSeq platform as paired-end 75 
base reads (according to the manufacturer’s protocol). Algorithms were developed 
to call base substitutions, indels, and CNVs from the exome data, using a read-depth 
approach.  
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    Statistical Methods 

 The statistical methods applied in this stage of the project were similar to those 
employed in earlier stages, and broadly included:

•    Imputation (both internally and into other GWAS cohorts).  
•   Family-based method development (for TwinsUK, Neurodevelopmental and 

Rare data).  
•   Meta-analysis of rare variants. Multivariate methods (such as Fisher’s combined 

probability test, Stouffer’s  z -score method, SKATmeta (  http://cran.r-project.org/
web/packages/skatMeta/vignettes/skatMeta.pdf    ) and metaSKAT (Lee et al. 
 2013 )) were used as an alternative to single-point analyses, which would have be 
underpowered given the size of sample sets used.  

•   Identifi cation and evaluation of appropriate controls to alleviate bias in case–
control analyses. Controls were selected from the Cohorts data, as well as from 
other exomes of non-related phenotypes both from within UK10K and from other 
sources such as dbGAP, the NHLBI exome-sequencing project, and the 1000 
Genomes Project.  

•   Development of robust pipelines for quantitative trait and case–control analyses.  
•   Correcting for population stratifi cation.  
•   Defi ning a genome-wide signifi cance threshold for testing.    

 Great care was taken when matching cases to controls to consider the effects of 
population structure.   

    The Exome Collections 

 The full lists of studies sequenced as part of UK10K are described on the project 
website (  http://www.uk10k.org/studies/    ) as well as in the EGA; however, a sum-
mary is presented below (and in more detail in section ‘UK10K Sample Sets’): 

    Neurodevelopmental Disorders Group 

 It is estimated that neurodevelopmental traits such as autism spectrum disorders 
(ASDs) and schizophrenia affect up to 2 % of the world’s population. Autism and 
schizophrenia are complex conditions involving multiple susceptibility genes and 
environmental factors, and often overlap in terms of characteristic clinical features. 
It has been proposed that these traits are part of a continuum of genetic and molecu-
lar events in the nervous system, and that rare variants in multiple genes may 
account for much of the unexplained susceptibility observed for these particular 
neurodevelopmental traits. Thus, further characterization of underlying genes and 
pathways as part of UK10K could signifi cantly improve diagnostic classifi cation for 
these conditions. 
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 As both autism and early onset schizophrenia are uncommon and evidence 
suggests that rare, relatively penetrant alleles might be involved—it was decided at 
the outset that including families and individuals from isolated populations would be 
benefi cial to enrich for genetic effects. The project selected 3,000 well- characterized 
cases of autism or schizoaffective disorders from founder populations and from col-
lections of families demonstrating a clustering of cases to enrich for genetic effects 
and allow validation by segregation. Subjects were predominantly of UK origin (four 
Finnish studies were also used), and all represented genetically enriched cases—
coming from families with multiple affected members (ASD and schizophrenia), 
representing early onset cases (schizophrenia), or being part of special interest 
populations (such as the Kuusamo schizophrenia study). Some cases presenting 
with intellectual disability as well as schizophrenia were also included, as variants 
associated with this more severe phenotype might have been more penetrant. 
Analyses to identify variants for these conditions fell into three categories:

•    Family sample analyses—for families with a high loading of autism or schizo-
phrenia, where one or a few highly penetrant variants were likely to contribute to 
the observed phenotype.  

•   Singleton analyses—where inheritance patterns could be dominant, recessive, or 
oligogenic.  

•   De novo analysis—where trios of two unaffected parents and one affected child 
were sequenced to identify de novo variants present in the child, but neither parents.  

•   Population analyses—performing single point tests and tests for aggregation of 
variants in genes and pathways, separately for autism and schizophrenia data.    

 Variants identifi ed in these ‘extreme’ phenotype populations were assessed for 
relationships with ‘normal’ cognitive and behavioural traits as observed in controls.  

    Rare Diseases Group 

 Although linkage and homozygosity mapping have identifi ed many of the causal 
variants underlying many mendelian diseases, the basis for many rare genetic 
diseases (where signifi cant locus heterogeneity can attenuate the power of linkage 
studies) is much less clear. To further our understanding of such conditions, exomes 
were sequenced from 125 cases of each of the following conditions spanning a 
broad range of extreme phenotypes, some of which have the potential to respond 
well to therapeutic intervention:

•    Severe insulin resistance  
•   Thyroid disorder  
•   Learning disabilities  
•   Ciliopathies  
•   Familial hypercholesterolaemia  
•   Neuromuscular disease  
•   Coloboma  
•   Congenital heart disease    
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 Limiting the study to eight rare diseases maximized power in the presence of 
probable locus heterogeneity. In total 1,000 ‘rare disease’ samples were submitted by 
collaborating PIs from existing collections, and sequenced. This number of samples 
was suffi ciently powered to detect genes with causal mutations in 10 % of patients 
with any false ‘discoveries’ removed during segregation analyses and follow- up 
re-sequencing of candidate genes. Power was further increased as the number of 
causal variants per exome reduced, due to improved specifi city of variant detection 
algorithms and better variant sampling in control datasets. Wherever possible sam-
ples from families with multiple affected members were used to enrich for genetic 
aetiology and enable segregation analyses. As for the neurodevelopmental disorders, 
there were three tiers of analyses used to discover candidate genes in this group:

•    Within-family analyses—identifying candidate variants shared by affected 
individuals within the same family, examining trios to identifying candidate de 
novo variants, and examining single affecteds   .  

•   Across-family analyses—identifying candidate genes shared by affected indi-
viduals in different families.  

•   Association analyses—looking at single gene and gene-set enrichment of func-
tional variants.    

 Whole genome amplifi cation and re-sequencing of candidate genes in additional 
patients (provided by each of the collaborating disease groups), and functional anal-
yses in model systems were also used to determine causality for candidate genes.  

    Obesity Group 

 Obesity (defi ned in Caucasians as having a body mass index (BMI) > 30 kg/m 2 ) is 
a widely recognized and growing public health problem associated with type 2 
diabetes, cardiovascular disease, and some cancers. Once considered a problem 
exclusive to high-income countries, obesity is becoming more prevalent in middle- and 
low- income countries. 

 Over the last decade, much progress has been made in the detection of monogenic 
causes of obesity; however, the variants found to be associated with high BMI in 
cohort studies are estimated to account for less than 1 % of the variance of BMI in 
European adults, and little is known about the causal genes underlying early onset 
obesity. By including both clinically extreme (obese children) and population 
extreme obesity (BMI > 40 kg/m 2 ) as a phenotype in UK10K, it was hoped to gain a 
better understanding of rare variants associated with this condition. A total of 1,500 
samples from obese individuals were submitted from three separate studies: the 
Severe Childhood Onset Obesity Project (or ‘SCOOP’ study), the Generation 
Scotland: Scottish Family Health Study (  http://www.genetics.med.ed.ac.uk/
generation- scotland        ), and obese individuals from the TwinsUK cohort. Generation 
Scotland is a multi-institution population-based resource, aiming to identify the 
genetic basis of common complex diseases. The SCOOP cohort is a subset of 
Caucasian patients with severe early onset obesity in whom all monogenic causes 

D. Muddyman

http://www.genetics.med.ed.ac.uk/generation-scotland
http://www.genetics.med.ed.ac.uk/generation-scotland


95

of obesity have been excluded, derived from the larger ‘Genetics of Obesity (GOOS) 
Study’ (  http://www.goos.org.uk/    ) that consists of children with an age-adjusted 
BMI greater than 3 standard deviations above the mean, and obesity onset at less 
than 10 years old. Prior to inclusion in the study, SCOOP subjects were sequenced 
for  MC4R , which contains the highest proportion of variants that cause obesity, and 
their leptin levels were measured. 

 The majority of samples were supplied by SCOOP (1,000 samples in total), 
with just over 400 samples from Generation Scotland, and 69 provided by the 
TwinsUK registry. 

 To uncover variants underlying both monogenic and polygenic forms of obe-
sity, tiered fi ltering analyses were directed towards identifying 33 known human 
obesity genes and 88 functional candidates using single affected and cross-family 
analyses (monogenic disease-causing candidates) and case–control analyses 
employing regression and collapsing methods (complex obesity-associated variants). 
Exome- wide single variant and gene-region-based association tests were used to 
identify associations with obesity, and trio and family-based analyses were used 
(within the Generation Scotland dataset) to search for causal de novo mutations or 
segregating variants.   

    Imputation into Additional GWAS Samples 

 Association analyses were extended by imputing low-frequency variants into non- 
sequenced individuals with existing GWAS data. Genotype imputation makes pre-
dictions at un-genotyped markers in GWAS samples based upon the correlation 
between markers in reference panels with known sequence/dense genotypes, and 
less dense genotypes in GWAS data. Imputing into additional TwinsUK and 
ALSPAC samples, and other case–control and cohort studies with GWAS data in 
this way increased the power of UK10K analyses, and the potential for discover-
ing novel variant candidates. Using a reference panel of 4,000 whole genome 
Cohort samples sequenced at 6×, it was possible to impute down to below 0.1 % 
allele frequency.  

    Providing a Sequence Variation Resource 
for Use in Further Studies 

 The fi nal aim of UK10K was to provide a genotype/phenotype resource that would 
support future research into human genetics, making controls available for sequence- 
based studies and enabling imputation into other GWAS and exome-sequencing 
studies. To this end, whole genome and exome sequence data from the project 
(including basic phenotype and quantitative trait information, as well as allele 
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frequency summary data for the Cohorts datasets) was deposited in the EGA. 
Although any researcher may apply to use UK10K datasets, applicant approval and the 
subsequent granting of access to UK10K data is strictly managed by an independent 
Data Access Committee. 

    Managed Data Access 

 A major challenge for the project was creating a structure that would enable a 
highly diverse collection of studies to function collectively under the common 
goals of UK10K, without violating any of the individual studies’ terms of use. To 
ensure absolute clarity regarding project participation, an ethical governance 
framework (  http://www.uk10k.org/ethics.html    ) was devised that clearly defi ned 
UK10K policy on ethical and regulatory approvals, informed consent, data access, 
and withdrawal. 

 Implementing a mechanism for managed data access was crucial to assuring 
sample providers that the terms of data use would be respected for all UK10K stud-
ies (Muddyman et al.  2013 ). In order to access UK10K data in the EGA all prospec-
tive data users must fi rst complete a data access application (downloaded from the 
UK10K website,   http://www.uk10k.org/data_access.html    ), outlining a research 
proposal for specifi c, named datasets. The application must then be submitted to an 
independent Data Access Committee for review and approval, prior to data access 
being granted. Broadly speaking, the access agreement requires that users will 
respect the confi dentiality and security of the data, agree that the data will only be 
used for research purposes and will not be redistributed, and that no attempts will be 
made to identify participants. It also clearly states the specifi c constraints imposed 
by Research Ethics Committees (RECs) for each of the individual studies (for 
example, some exome datasets may not be used for control purposes), and how 
specifi c datasets should be acknowledged. Whilst UK10K is committed to making 
its data as available and widely used as possible, it is equally committed to ensuring 
that applicants, once approved, respect the terms of data usage. Failure to abide by 
these terms would result in current and future access to the data being immediately 
withdrawn, and journal editors being alerted to the breach in use of UK10K data.  

    Publications 

 UK10K Publications fell into three categories: a fl agship consortium paper describ-
ing primary analyses using the Cohorts data (under review), papers from the consor-
tium’s exome and statistical analysis groups on specifi c phenotypes and analytical 
methods, and manuscripts produced by researchers outside of the consortium. 
A one-year publication moratorium was imposed on all non-consortium Data 
Users, to protect fi rst publication rights of the data generators. The moratorium 
expired on 2 July 2013 for the Cohorts datasets and 2 January 2014 for the exome 
datasets. Keen to ensure that output from the project was made publicly available as 
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soon as possible, all consortium manuscripts were sponsored to ensure immediate 
open access, and uploaded to the project website (  http://www.uk10k.org/publications_
and_posters.html    ).    

    UK10K Sample Sets 

 For more information on these sample sets and constraints of use, please refer to 
the UK10K Data Access Agreement. The following datasets  may not  be used for 
control purposes:

   UK10K_NEURO_ASD_SKUSE  
  UK10K_NEURO_ASD_TAMPERE  
  UK10K_RARE_FIND  
  UK10K_NEURO_ASD_BIONED  
  UK10K_NEURO_ASD_MGAS  
  UK10K_RARE_CHD  
  UK10K_NEURO_ASD_TEDS  
  UK10K_NEURO_FSZNK  
  UK10K_RARE_CILIOPATHIES  
  UK10K_NEURO_FSZ  
  UK10K_NEURO_ASD_FI  
  UK10K_NEURO_UKSCZ  
  UK10K_NEURO_IMGSAC  
  UK10K_OBESITY_SCOOP  
  UK10K_RARE_COLOBOMA    

    The Cohorts Group 

 There are no constraints attached to the use of these datasets, which may be used for 
control purposes. 

    UK10K_COHORT_ALSPAC 

 (EGA study ID: EGAS00001000090) 
 The Avon Longitudinal Study of Parents and Children (ALSPAC) is a two- 

generation prospective study. Pregnant women living in one of three health districts 
in the former county of Avon with an expected delivery date between April 1991 
and December 1992 were eligible to be enrolled in the study, and this formed the 
initial point of contact for the development of a large, family-based resource. 
Information was collected on children and mothers through retrieval of biological 
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materials (e.g. antenatal blood samples, placentas), biological sampling (e.g. collection 
of cord blood, umbilical cord, milk teeth, hair, toenails, blood, and urine), self- 
administered questionnaires, data extraction from medical notes, linkage to routine 
information systems and at repeat research clinics.  

   UK10K_COHORT_TWINSUK 

 (EGA study ID: EGAS00001000108) 
 The TwinsUK resource is the UK’s largest adult twin registry of 12,000 identical 

and non-identical twins, used to study the genetic and environmental aetiology of 
age-related complex traits and diseases. The register is predominantly female, with a 
mean age of mid-50. Only female twins were used to provide samples for UK10K.   

    The Neurodevelopmental Disorders Group 

 There are no constraints attached to the use of the Muir, Edinburgh, Collier, 
Aberdeen, Gallagher, and Gurling datasets which may be used for control purposes 
in analyses. 

   UK10K_NEURO_MUIR 

 (EGA study ID: EGAS00001000122) 
 This sample set consists of subjects with schizophrenia, autism, or other psychoses 

all with mental retardation (learning disability). These subjects represent the inter-
section of severe forms of neurodevelopmental disorders, appear to have a higher 
rate of familiality    of schizophrenia than typical, and are likely to have more serious 
and penetrant forms of mutations.  

   UK10K_NEURO_EDINBURGH 

 (EGA study ID: EGAS00001000117) 
 This sample set comprises subjects with schizophrenia, recruited from psychiatric 

in- and out-patient facilities in Scotland. All diagnoses are based on standard 
research procedures and family histories are available. Patients have IQ > 70 and the 
cohort includes the following groups: 100 cases with detailed clinical, cognitive, 
and structural and functional neuroimaging phenotypes; 138 familial cases who 
are the probands of families where DNA has been collected from other affected 
members; 162 unrelated individuals. In most cases, patients and their families may 
be re-contacted to take part in further studies.  
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   UK10K_NEURO_ASD_SKUSE 

 (EGA study ID: EGAS00001000114) 
 This sample set of UK origin consists of clinically identifi ed subjects with 

Autism Spectrum Disorders, mostly without intellectual disability (i.e. verbal IQs 
>70). The subjects represent children and adults with autism, asperger syndrome 
or atypical autism, identifi ed according to standardized research criteria (ADI- 
algorithm, ADOS). A minority have identifi ed comorbid neurodevelopmental disor-
ders (e.g. ADHD). Family histories are available, with measures of broader 
phenotype in fi rst-degree relatives.  

   UK10K_NEURO_ASD_TAMPERE 

 (EGA study ID: EGAS00001000115) 
 This sample set consists of Finnish subjects with autism spectrum disorders 

(ASD) with IQs >70 recruited from a clinical centre for the diagnosis and treatment 
of children with ASD.  

   UK10K_NEURO_ASD_BIONED 

 (EGA study ID: EGAS00001000111) 
 The BioNED (Biomarkers for childhood onset neuropsychiatric disorders) study 

has been carrying out detailed phenotypic assessments evaluating children with an 
autism spectrum disorder. These assessments included ADI-R, ADOS, neuropsy-
chology, EEG, etc.  

   UK10K_NEURO_ASD_MGAS 

 (EGA study ID: EGAS00001000113) 
 The MGAS (Molecular Genetics of Autism Study) samples are derived from 

clinical samples seen by specialists at the Maudsley hospital, and have had detailed 
phenotypic assessments with ADI-R and ADOS.  

   UK10K_NEURO_FSZ and A.2.8 UK10K_NEURO_FSZNK 

 (EGA study ID: EGAS00001000118 [FSZ] and EGAS00001000119 [FSZNK]) 
 These Finnish schizophrenia samples (FSZ: Kuusamo and FSZNK: non- 

Kuusamo) were collected from a population cohort using national registers. 
The entire resource collected by the Finnish National Institute for Health and 
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Welfare (THL) consists of 2,756 individuals from 458 families—of whom 931 were 
diagnosed with schizophrenia spectrum disorder, each family having at least two 
affected siblings. 

 Samples were supplied from families originating from an internal isolate 
(Kuusamo) with a three-fold lifetime risk for the trait. The genealogy of the internal 
isolate is well documented and the individuals form a ‘megapedigree’ reaching back 
to the seventeenth century. 

 Samples were also supplied from families outside of Kuusamo, all of which had 
at least two affected siblings. All diagnoses are based on DSM-IV and for a large 
fraction of cases there is cognitive data.  

   UK10K_NEURO_ASD_FI 

 (EGA study ID: EGAS00001000110) 
 These samples are a subset of a nationwide collection of Finnish autism spectrum 

disorder (ASD) samples. The samples were collected from Central Hospitals across 
Finland in collaboration with the University of Helsinki and consisted of individu-
als with a diagnosis of autistic disorder or Asperger syndrome from families with at 
least two affected individuals. All diagnoses were based on ICD-10 and DSM-IV 
diagnostic criteria for ASDs.  

   UK10K_NEURO_IOP_COLLIER 

 (EGA study ID: EGAS00001000121) 
 This set was made up of samples taken from three different studies (all of 

UK origin). 
  The Genetics and Psychosis  ( GAP ) samples, taken from subjects with schizo-

phrenia ascertained as a new-onset case. 
  The Maudsley twin series  consisting of probands ascertained from the Maudsley 

Twin Register, and defi ned as patients of multiple births who had suffered psychotic 
symptoms. 

  The Maudsley family study  ( MFS ) consisting of over 250 families with a history 
of schizophrenia or bipolar disorder.  

   UK10K_NEURO_UKSCZ 

 (EGA study ID: EGAS00001000123) 
 These samples were collected from throughout the UK and Ireland, and fell into 

two main categories: cases with a positive family history of schizophrenia, either 
collected as sib-pairs or from multiplex kindred's—and samples that were system-
atically collected within South Wales, and in addition to a full diagnostic work up 
also underwent detailed cognitive testing. All samples obtained a DSM IV diagnosis 
of schizophrenia or schizoaffective disorder.  
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   UK10K_NEURO_IMGSAC 

 (EGA study ID: EGAS00001000120) 
 Samples of UK origin were supplied from the IMGSAC cohort; an international 

collection of families containing children ascertained for autism spectrum disor-
ders. Affected individuals were phenotyped using ADI-R and ADOS. Individuals 
with a past or current medical disorder of probable etiological signifi cance or TSC 
were excluded. Where possible, the IMGSAC study performed karyotyping on one 
affected individual per family to exclude Fragile X syndrome.  

   UK10K_NEURO_ASD_GALLAGHER 

 (EGA study ID: EGAS00001000112) 
 Individuals in this Irish sample set were diagnosed with ADI/ADOS, measures 

of cognition/adaptive function, and approximately 50 % also presented with comor-
bid intellectual disability. This group represented a more severe, narrowly defi ned 
cohort of ASD subjects for the UK10K project.  

   UK10K_NEURO_GURLING 

 (EGA study ID: EGAS00001000225) 
 This sample set consisted of DNA from multiply affected schizophrenia families, 

diagnosed using the SADS-L and DSMIIIR criteria. All families were collected to 
ensure uni-lineal transmission of schizophrenia (i.e. families only had one affected 
parent with schizophrenia, or a relative of only one transmitting/obligate carrier 
parent with schizophrenia). Families with bi-lineal transmission of schizophrenia 
(i.e. with both parents being affected) were not sampled for this study. All families 
had multiple cases of schizophrenia and related disorders, and were selected to 
ensure an absence of cases of bipolar disorder both within the family and in any 
relatives on either side of the family.  

   UK10K_NEURO_ABERDEEN 

 (EGA study ID: EGAS00001000109) 
 This sample set comprises cases of schizophrenia with additional cognitive mea-

surements, collected in Aberdeen, Scotland.   

    The Rare Diseases Group 

 There are no constraints attached to the use of the SIR, Neuromuscular, Thyroid, 
and Familial Hypercholesterolemia datasets, which may be used for control pur-
poses in analyses. 
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   UK10K_RARE_SIR 

 (EGA study ID: EGAS00001000130) 
 The Severe Insulin Resistance (SIR) sample set was supplied by the Cambridge 

Severe Insulin Resistance Study Cohort.  

   UK10K_RARE_NEUROMUSCULAR 

 (EGA study ID: EGAS00001000101) 
 These samples were taken from the Molecular Genetics of Neuromuscular 

Disorders Study, and fell into the following groups:

    1.    Congenital muscular dystrophies and congenital myopathies.   
   2.    Neurogenic conditions.   
   3.    Mitochondrial disorders.   
   4.    Periodic paralysis.      

   UK10K_RARE_COLOBOMA 

 (EGA study ID: EGAS00001000127) 
 Ocular coloboma is the most common signifi cant developmental eye defect with 

an incidence of approximately 1 in every 5,000 live births, resulting from the failure 
of optic fi ssure closure during embryogenesis. The samples used in UK10K mostly 
comprised isolated coloboma cases without systemic involvement (aka ‘non- 
syndromal coloboma’). There is strong evidence from family studies that coloboma 
has a major genetic component with autosomal dominance being the most common 
pattern of inheritance. However, many cases are isolated or show complex patterns 
of familial clustering. The genes responsible for isolated coloboma are largely 
unknown, but in a small number of families mutations in SHH, CHX10, and PAX6 
have been identifi ed indicating marked genetic heterogeneity. Thus, in addition to 
the clinical benefi ts of achieving a molecular diagnosis there are also major scien-
tifi c advantages to identifying coloboma genes, as these are likely to provide insights 
into the complex process of optic fi ssure closure, that is critical to normal eye devel-
opment. In the longer term, understanding the molecular basis of the disease may 
provide clues to therapeutic strategies.  

   UK10K_RARE_CHD 

 (EGA study ID: EGAS00001000125) 
 The Congenital Heart Disease (CHD) samples used for UK10K were supplied 

from the Genetic Origins of Congenital Heart Disease Study (GOCHD Study).  
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   UK10K_RARE_CILIOPATHIES 

 (EGA study ID: EGAS00001000126) 
 The ciliopathies are an emerging group of disorders that arise from dysfunction 

of cilia (both motile or immotile forms). It is predicted that over 100 known condi-
tions are likely to fall under this category, but only a handful have thus far been 
studied in any depth. Most individual ciliopathies are rare with just a small number 
of cases having been reported, thereby presenting researchers with often insur-
mountable diffi culties for causative gene identifi cation. Samples were supplied 
from the Cilia in Disease and Development study (CINDAD).  

   UK10K_RARE_FIND 

 (EGA study ID: EGAS00001000128) 
 Familial INtellectual Disability (FIND) is a cohort of families with intellectual 

impairment. Affected family members are at the extreme end of the spectrum with 
the majority having moderate to severe mental retardation where the recurrence 
risks suggests most are likely to have monogenic causes. A subset of the cohort 
underwent detailed analysis of the X chromosome by Sanger sequence analysis of 
exomes and more recently by detailed high resolution aCGH of the X chromosome. 
Samples from the fi rst study where no causal variant could be identifi ed were 
selected for inclusion in UK10K. The sample set comprised mostly non-syndromic 
cases, selected for bias towards families with male sib-pairs to enrich for non-X 
linked disease genes.  

   UK10K_RARE_THYROID 

 (EGA study ID: EGAS00001000131) 
 Samples were supplied from two different cohorts of subjects: ‘Individuals with 

Congenital Hypothyroidism (CH)’ due either to dysgenesis or dyshormonogenesis; 
and patients with ‘Resistance to Thyroid hormone (RTH)’, a disorder characterized 
by elevated thyroid hormones and variable tissue refractoriness to hormone action. 
The CH group was enriched for genetic aetiologies by recruiting cases that were 
familial, on a consanguineous background or syndromic. The RTH cohort consisted 
of cases in which candidate gene analyses were negative.  

   UK10K_RARE_HYPERCHOL 

 (EGA study ID: EGAS00001000129) 
 Familial Hypercholesterolemia is a condition where the affected person has a con-

sistently high level of LDL, which can lead to early clogging of the coronary arteries. 
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All patients selected for this study did not to carry the common APOB and PCSK9 
mutations, and had no detectable LDLR mutations (tested for screening for 18 com-
mon mutations and SSCP, HRM, and MLPA screening for gross deletions/insertions.   

    The Obesity Group 

 There are no constraints attached to the use of the Generation Scotland and obese 
TwinsUK datasets, which may be used for control purposes in analyses. 

   UK10K_OBESITY_SCOOP 

 (EGA study ID: EGAS00001000124) 
 The Severe Childhood Onset Obesity Project (SCOOP) cohort is composed of 

Caucasian patients of UK origin with severe early onset obesity (all patients have a 
BMI Standard Deviation Score > 3 and obesity onset before the age of 10 years), in 
whom all known monogenic causes of obesity have been excluded.  

   UK10K_OBESITY_GS 

 (EGA study ID: EGAS00001000242) 
 The Generation Scotland: Scottish Family Health Study (GS:SFHS) is a family- 

based genetic study with more than 24,000 volunteers across Scotland, consisting of 
DNA, clinical, and socio-demographic data. This sample set consists of individuals 
from families with extreme obese subjects, including trios of extreme obese subjects 
with non-obese patients and multiple obese subjects within the same family.  

   UK10K_OBESITY_TWINSUK 

 (EGA study ID: EGAS00001000306) 
 This sample set consisted of extremely obese individuals from the TwinsUK 

study, with a BMI > 40.     
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      Population Isolates 

             Ilenia     Zara    

           Introduction 

 Population isolates have been of large interest for decades in human genetics. They 
were studied to successfully map highly penetrant mutations responsible for rare 
recessive diseases, and recently to assess complex traits and common diseases, with 
particular emphasis on detecting founder causative variants. The existence of large 
data sets, well-ascertained pedigrees, and detailed clinical records are only a subset 
of the features that make conducting a genetic study on population isolates conve-
nient. In addition, the homogeneous environment and homogeneous genetic back-
ground help in minimizing noise in association tests, and the reduced genetic 
complexity allows highly accurate genotype imputation when using a population- 
specifi c reference panel. Furthermore, variants rare in the general population can 
have drifted to higher frequencies in the isolate, boosting power to detect associa-
tion at these variants. However, not all isolates are alike. Here, we briefl y describe 
the differences among isolates in terms of size, time since foundation, and early 
demographic history, and we discuss how these differences affect strategies in 
genetic studies on those populations. We also present several examples of success-
ful and ongoing studies of complex traits on population isolates, focusing on the 
strategy used and on consequent results. 

 Population isolates are, by defi nition, populations resulting from a founder effect. 
As they start with a limited set of founders, only a subset of the genetic variability 
present in the original population is available at the settlement, and their genotypic 
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makeup can change over time under the effect of several evolutionary mechanisms, 
like population bottlenecks, a marked reduction in population size followed by the 
expansion of a small random sample of the original population, and genetic drift, 
the phenomenon whereby chance or random events modify the allele frequencies in 
a population. Population bottlenecks can originate from wars, infectious disease 
epidemics, or natural disruptions. The consequent reduction of the population size 
leads to higher levels of inbreeding, increasing the amount of linkage disequilib-
rium (LD), and consequently modifying the haplotype patterns. Over subsequent 
generations, recombination tends to break LD while inbreeding and genetic drift 
create it. The longer the population recovery takes after a bottleneck, the greater the 
effect of genetic drift is expected to be. During this process, common variants are 
rarely lost from an isolate, whereas rare variants may be lost or drift to higher fre-
quencies than in the original population. Other evolutionary mechanisms, including 
mutation and natural selection, contribute to shape the population genetic structure, 
but they act in a much slower timescale than genetic drift and their effects are more 
signifi cant in old isolates (Peltonen et al.  2000 ).  

    Use of Population Isolates in Genetic Studies 

 Taking into account the unique characteristics of the study population is extremely 
important, as those can infl uence advantages and disadvantages in genetic studies, 
especially for complex traits. 

 Population isolates vary in terms of:

•    Size: i.e., macro-isolates, for instance Finnish or Sardinians with roughly 5.4 and 
1.6 million inhabitants, respectively (KUNTIEN ASUKASLUVUT AAKKOSJÄ
RJESTYKSESSÄ  2012 ;   http://www.sardegnastatistiche.it/documenti/12_117_
20120516113258.pdf    ), and micro-isolates, for example, small religious commu-
nities like Old Order Amish (Arcos-Burgos  2002 ) and the Pomaks, who generally 
live in districts of 1,000–2,000 individuals, or subpopulations living in a village 
or clusters of villages, like the subisolates living in Ogliastra, a secluded area of 
Sardinia (Pistis et al.  2009 ) (Fig.  1 ), and the Mylopotamos villages in Crete.

•      Time since foundation: i.e., young isolates like Kuusamo—a subisolated popula-
tion founded roughly 350 years ago in northeastern Finland (Fig.  2 ) (Varilo et al. 
 2003 )—relatively recent isolates like the Finnish general population—approxi-
mately 2,000 years old (Jakkula et al.  2008 )—and old isolates like Sardinians, 
more than 10,000 years old (Contu et al.  2008 ; Francalacci et al.  2013 ).

•      Early demographic history: i.e., isolates originated by a main founder event, like 
for example Icelanders (Helgason et al.  2001 ), show a substantially homoge-
neous gene pool (Helgason et al.  2003 ,  2005 ), whereas a signifi cant substructure 
needs to be accounted for in genetic studies on isolates that experienced different 
waves of internal migration with multiple bottlenecks and multiple founder 
events, like Finnish (Jakkula et al.  2008 ) (Fig.  2 ).    
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 Other factors, such as the number of founders and the population growth rate, 
contribute to determine the amount of variability present at the settlement and the 
role of evolutionary mechanisms in modifying it. For example, the Kuusamo popu-
lation was settled by 34 families in the 1680s and reached the present-day popula-
tion size of more than 16,000 individuals in less than 350 years, without experiencing 
signifi cant immigration (Varilo et al.  2003 ). On the other hand, a large pre-Neolithic 
settlement has been suggested in Sardinia. The island was inhabited by ~300,000 
individuals during the Bronze Age, and the population size did not signifi cantly 
increase until around 300 years ago (Contu et al.  2008 ). So while the Kuusamo 
population is characterized by a high level of genetic drift, and a drastically reduced 
haplotype diversity (Varilo et al.  2003 ), the Sardinian population shows higher 
inter-individual variability while maintaining a substantial genetic homogeneity 
(Contu et al.  2008 ; Francalacci et al.  2013 ) and, as further described below, it shows 
evident effects of selection and carries very old mutations (Keller et al.  2012 ). 

  Fig. 1    The island of Sardinia 
and the secluded region of 
Ogliastra under the  circle        
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 All types of populations mentioned above have advantages and disadvantages that 
are summarized in Table  1 . While outbred populations allow genetic studies to be 
performed on very large cohorts, the geographically restricted area in which popula-
tion isolates usually live, sharing lifestyle, sanitary conditions, and exposure to 
pathogens, helps in minimizing the environmental contribution to complex trait vari-
ation, increasing power to detect genetic effects. The logistic advantage is  particularly 
evident in micro-isolates, as for example the SardiNIA cohort (Pilia et al.  2006 ), in 
which volunteers living in four close towns have been measured for more than 300 

>16,000 present-day
inhabitants

~4,000 YA from
East

~2,000 YA from
South and West

Internal migration
(1,680s, 34 families)

Kuusamo

  Fig. 2    Different migration 
waves in Finland, in 
particular to Kuusamo       

   Table 1    Advantages and disadvantages of population isolates in genetic studies for complex traits   

  Advantages  
 More uniform environment  More uniform genetic background 
 Good genealogical and clinical records  Easier to standardize phenotype 

defi nitions 
 Reduced genetic complexity  Increased levels of LD 
 Enrichment in some phenotypes/diseases  Increased frequency for some 

disease variants 
 Can carry ancient variants 
  Disadvantages  
 Lower number of affected people  Less opportunity for replication 
 Lower number of variants overall  Genes less polymorphic 
 Association at population-specifi c variants cannot be 
replicated in other population 
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quantitative traits every three years since 2001. Furthermore, diagnostic criteria and 
phenotypic defi nition are more easily standardized across a relatively restricted 
area, as for example in Finland, where a few medical schools with shared academic 
traditions train all the clinicians in the country (Peltonen et al.  2000 ).

   In small and young isolates, the higher level of inbreeding results in an increased 
level of LD and in a small set of extended haplotypes (Varilo et al.  2003 ; Jakkula 
et al.  2008 ; Kristiansson et al.  2008 ). The reduced haplotype diversity allows genome 
scans to be performed on a signifi cantly lower number of individuals (Shifman and 
Darvas  2001 ), and the increased level of inbreeding has inspired new methods for 
Identity-by-descent (IBD) detection and haplotype phasing, such as the long-range 
phasing (LRP) method (Kong et al.  2008 ). Furthermore, most strategies for associa-
tion detection still use an indirect approach, i.e., the power to detect association is 
proportional to the extent of LD between the tested variant and the causative variant 
(Fig.  3 ) (Kruglyak  2008 ), so increased levels of LD can boost power.

   In macro-isolates, the mean levels of LD were suggested to be only slightly 
higher than in more outbred populations (Eaves et al.  2001 ). However, this kind of 
isolate usually offers the possibility to collect large data sets characterized by sig-
nifi cant inter-individual variability, while maintaining genetic homogeneity (Jakkula 
et al.  2008 ; Contu et al.  2008 ). This can help in better matching of cases and controls 
in disease studies, thus reducing the risk of detecting false positive associations. 
Indeed, most protein-coding variants are expected to have a geographically restricted 
segregation pattern, and minimizing differences in ancestry is extremely important 
to detect true positive associations (Do et al.  2012 ). 

 Extended and well-ascertained pedigrees are frequently available in studies on 
isolates, giving greater opportunity to observe the same rare variant in more chro-
mosomes segregating through families than in a study on unrelated individuals or 
small families, typical of outbred cohorts. In addition, some variants that are rare or 
absent in the general population may have drifted to higher frequency, or may exist 
only in the isolate. Although associations with population-specifi c rare variants are 
hard to generalize to other populations, they can be useful to explain part of the 

  Fig. 3    Schematic representation of a genomic region to be tested for association with a phenotype. 
Genotyped SNPs (in  red ) are tested directly. Other associations are captured through linkage dis-
equilibrium (by proxy) with the reference SNPs. The three SNPs indicated by  blue triangles  are 
neither genotyped nor in linkage disequilibrium with the reference SNPs; phenotypic association 
at one of these SNPs would be missed       

LD blockLD block

Reference SNP (genotyped)

SNP captured by proxy

Not captured SNP
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missing heritability of complex traits (Manolio et al.  2009 ), as well as to better 
understand the underlying biological mechanisms or the etiology of a disease. For 
example, in a study of fi ve LDL-cholesterol (LDL-C) associated loci in the SardiNIA 
cohort (Sanna et al.  2011 ), additional variants independently associated with LDL-C 
within those loci were discovered through imputation from 256 sequenced 
Sardinians with extreme LDL-C values. This set of variants includes a novel and 
rare missense variant within the  LDLR  gene that seems to be Sardinian specifi c. The 
overall fi ndings of this study increased estimates of the heritability of LDL-C in 
Sardinians accounted for by these genes from 3.1 to 6.5 % (Sanna et al.  2011 ). 

 Reduced genetic complexity, resulting in a smaller amount of variants overall, 
may seem a disadvantage, if for example disease causing variants are very rare or 
absent in the study population. For instance, the C282Y mutation in the  HFE  gene, 
identifi ed as the main genetic basis of hereditary hemochromatosis, is very rare in 
Sardinians, but it is common in northern Europeans (Candore et al.  2002 ). However, 
disease-causing genes are also expected to be less heterogeneous in isolates, and 
this can signifi cantly increase the genotypic relative risk (GRR), and hence the abil-
ity to identify associated variants (Shifman and Darvas  2001 ). An example is the 
signifi cant reduction in the number of mutations found in specifi c related disease 
genes, like  BRCA1  and  BRCA2  in Ashkenazi Jews (Roa et al.  2006 ). The reduced 
heterogeneity at complex disease-associated loci, and the relative increasing of the 
GRR, can also result in an enrichment of relatively common multifactorial diseases. 
Examples are the high frequency of autoimmune diseases in Finland and Sardinia, 
in particular of type 1 diabetes (T1D) and multiple sclerosis (MS) (The Diamond 
Project Group  2006 ; Pugliatti et al.  2006 ), and the high prevalence of MS in the 
Orkneys (  http://www.orcades.ed.ac.uk/multiplesclerosis.html    ). 

 Finally, as mentioned above, old isolates can carry ancient mutations, and thus 
can be useful to reconstruct parts of human genetic history, linking old variants to 
archeological fi ndings (Contu et al.  2008 ; Francalacci et al.  2013 ). For example, 
Sardinians have been found to be the most closely related modern European popula-
tion to Ötzi, the Iceman discovered in 1991 on an Alpine glacier near the Italian- 
Austrian border. Ötzi is one of the oldest natural human mummies ever found, dated 
to ~5,300 years ago, and his complete genome has been recently sequenced (Keller 
et al.  2012 ). Analysis of the structure of common ancestry between the Iceman and 
present-day inhabitants of Sardinia suggested that Sardinian-related components 
were more widespread in Neolithic Europe, and that Ötzi was not a recent migrant 
(Sikora et al.  2012 ).  

    Successful and Ongoing Studies on Population Isolates 

 Genome-wide association studies (GWAS) have been successful in identifying 
common variants associated to complex traits, but a substantial portion of heritabil-
ity remains unexplained (Manolio et al.  2009 ). In recent years, attention has shifted 
to low frequency and rare variants, which are hypothesized to have larger effects 
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(Asimit and Zeggini  2010 ), and high-throughput sequencing technologies are currently 
used to overcome the limitation of tag SNP-based genotyping. This approach is 
particularly useful in studies on population isolates, where the reduced genetic com-
plexity supports high-quality imputation in large homogeneous sample sets. 

 Different strategies can be employed for refi ning genetic maps at loci of interest 
or over the whole genome:

•    Genotyping with fi ne mapping or custom arrays like Illumina Immunochip, 
Metabochip, or Exome Chip (Cortes  2011 ; Voight et al.  2012 ;   http://genome.sph.
umich.edu/wiki/Exome_Chip_Design    ).  

•   Using the 1,000 Genomes Project (1KGP) resource (The 1,000 Genome Project 
Consortium  2012 ) as a reference for imputation on a scaffold of genotyped 
samples.  

•   Generate a reference panel for imputation from:

 –    Low-pass whole-genome sequencing of many samples from the study 
population.  

 –   Deep sequencing or whole exome sequencing of key samples from the study 
population.       

 Power to detect rare variants associated with complex diseases or complex traits 
depends on several factors, such as depth and the number of sequenced samples 
(Li et al.  2011 ; Le and Durbin  2011 ). Costs and benefi ts must be carefully evaluated 
before choosing the most effective strategy to achieve the study goals. 

 Here, we briefl y outline several successful and ongoing next-generation associa-
tion studies, using one of these strategies or combining several of them (Fig   .  4 ) 
(adapted from Zeggini et al.,  2011 ).

      The First Next-Generation GWAS: deCODE and Collaborators 

 The deCODE company (  http://www.decode.com/    ) provides one of the most impres-
sive examples of the systematic use of an extensive genealogical database, includ-
ing anonymous patient records from the national health-care system, large pedigrees, 
and high-throughput genotyping, and sequencing data. 

 In 2011, Hilma Holm, Kari Stefansson and colleagues applied a next-generation 
association study design (Fig.  4 ) (Zeggini  2011 ), combining whole-genome sequence 
and GWAS data from Icelandic individuals, and detected a susceptibility locus for 
sick sinus syndrome (SSS) at  MYH6 , a previously unidentifi ed susceptibility locus 
for the disease (Holm et al.  2011 ). A GWAS of 7.2 million SNPs, either directly 
genotyped or imputed from one or more of four sources, with 792 SSS cases and 
37,592 controls, identifi ed an association between SSS and a synonymous variant on 
chromosome 14q11. To refi ne this association, 7 SSS cases, four of which carrying 
the risk allele at the detected variant, and 80 controls were whole-genome sequenced 
at 10× depth, on average, and ~11 million detected variants were imputed into the 
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full GWAS data set using the LRP approach (Kong et al.  2008 ) for phasing chip-
typed samples and the IMPUTE (Marchini et al.  2007 ) model for imputation. 
Strong association was found between SSS and the c.2161C>T missense variant in 
exon 18 of the  MYH6  gene, encoding the alpha heavy chain subunit of cardiac myo-
sin. No signifi cant association remained within the 14q11 region after accounting for 
association with c.2161C>T, nor was found outside the 14q11 region. The c.2161C>T 
variant was validated through direct genotyping in 874 Icelanders and genotyping 
data were combined with the 87 whole-genome sequenced samples to create a new 
reference panel for imputation. After this imputation run, the association between 
SSS and c.2161C>T was stronger− p  = 1.5 × 10 −29 , OR = 12.53 (95 % CI 8.08–19.44), 

Collect population isolates samples
and extended phenotype data

Perform genome-wide genotyping
on the full sample set

Whole-genome sequence a subset
of samples

Impute detected variants back into
the full dataset

Test for association with traits of
interest

Validate significant signals by
direct genotyping

Replicate association in an
independent sample set

  Fig. 4    Overview of the steps 
involved in a next-generation 
complex trait association 
study       
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estimated risk allele frequency (RAF) in Iceland = 0.38 %—and it was replicated in 
469 Icelandic cases and 1,185 controls— p  = 3.8 × 10 −5 , OR = 12.95 (95 % CI 3.83–
43.80), RAF = 0.21 % (Holm et al.  2011 ).

   The lifetime risk of being diagnosed of SSS is ~50 % for c.2161C>T carriers, and 
~6 % for noncarriers, and the c.2161C>T sibling recurrence risk ratio is 1.52, consid-
erably higher than most common risk variants for complex diseases. Holm and col-
leagues also showed that in patients who have not been diagnosed with SSS, this 
variant has a substantial effect on heart rate, and that other common variants in the 
 MYH6  gene modulate cardiac conduction, affecting both heart rate and the PR inter-
val, the portion between the beginning of the P wave (atrial depolarization) and the 
QRS complex (ventricular depolarization) of an electrocardiogram (Holm et al.  2011 ). 

 This variant was neither present in HapMap (  http://hapmap.ncbi.nlm.nih.gov/    ) 
nor 1,000 Genomes Project data sets and was not identifi ed in additional 1,776 
European non-Icelander controls and 135 US cases. Consequently, it is likely to be 
Icelandic specifi c, its age is estimated to be ~870 years (or 29 generations), and it 
is a good example of the type of variants that can be discovered through next- 
generation GWAS approaches on well-characterized isolated populations (Holm 
et al.  2011 ). 

  Fig. 5    Population structure within Europe (adapted from Novembre et al.  2008 )       
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 Although the contribution of this particular variant may not generalize to popula-
tions outside Iceland, these results suggest that it is worth looking for other muta-
tions in the same gene. This also provides valuable information for further analyses 
of the protein structure, aimed to better understand the biology of the disease (Holm 
et al.  2011 ).  

    HEllenic Isolate Cohorts 

 The HEllenic Isolate Cohorts (HELIC) project (  http://www.helic.org/    ) is an ongoing 
cohort study aiming to investigate the effects of low frequency and rare variants on 
complex traits of medical relevance in two isolated populations, employing a next-
generation GWAS approach. 

 Individuals enrolled in the HELIC study are from:

•    The MANOLIS substudy (Minoan Isolates, the work name is in honor of Manolis 
Giannakakis, 1978–2010) that focuses on a set of mountainous villages 
(Mylopotamos villages) on the island of Crete, Greece.  

•   The Pomak villages, a set of religiously isolated mountainous villages in the 
North of Greece.    

 The MANOLIS population has size 4,000 and is characterized by high longevity, 
whereas the Pomak villages have population size of 11,000, and are characterized 
by a high incidence of metabolic-related cardiovascular diseases. The cohort collec-
tion, including biological samples and extensive phenotype data, started in 2009, 
and ~3,000 individuals were recruited and characterized for a wide array of anthro-
pometric, cardiometabolic, biochemical, hematological, and diet-related traits. 

 Both cohorts were defi ned as genetic isolates based on genome-wide IBS statis-
tics, which assess the degree of relatedness compared to the general Greek popula-
tion, and by calculating the proportion of individuals with at least one “surrogate 
parent” as a means for accurate long-range haplotype phasing and imputation 
(Dedoussis et al.  2012 ; Kong et al.  2008 ). Indeed, 80–82 % of subjects have been 
found to have at least one surrogate parent in the isolates, compared to ~1 % in the 
outbred Greek population. Furthermore, GWAS results for glycemic traits and 
meta-analyses for fasting glucose confi rmed 14 out of 18 previously associated loci 
for glycemic traits, and one of two previously associated loci for fasting glucose, 
providing validation of the HELIC-Pomak and MANOLIS cohorts for use in com-
plex trait association mapping (Zeggini et al.  2012 ). 

 Recently, 250 individuals from the MANOLIS study have been whole-genome 
sequenced at 6× depth to enable imputation and subsequent association testing. 
Analysis of those whole-genome sequences is currently ongoing at the Wellcome 
Trust Sanger Institute, and imputation of variants detected in those samples into the 
full analysis cohorts will enable assessment of low frequency and rare variant asso-
ciations with quantitative traits of cardiometabolic relevance (Zeggini et al.  2012 ).  
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    The Orkney Complex Disease Study 

 The Orkney Complex Disease Study (ORCADES) is a genetic epidemiology study 
on inhabitants of the Orkney Islands, an archipelago in northern Scotland with 
Viking and pre-Anglo-Saxon British heritage (Wilson et al.  2001 ;   http://www.
orcades.ed.ac.uk/    ). Orkney was inhabited by the Picts, a little understood pre-Anglo- 
Saxon population, ~5,000 years ago. Norsemen invaded the region about  AD  800, 
making Orkney a colony until 1468, when the islands were transferred to Scotland, 
and an increasing number of Scottish settlers arrived from Britain. Results of Y 
chromosome haplogroup analyses validated the hypothesis of an origin by admix-
ture between Celtic and Norwegian populations. It also showed that surnames in 
Orkney conserve the subdivision between indigenous names, typical of the islands, 
and those brought to the islands with Scottish settlers (Wilson et al.  2001 ). 

 ORCADES is led by Jim Wilson, Harry Campbell, and Sarah Wild at the 
University of Edinburgh, and Alan Wright at the Medical Research Council, Human 
Genetics Unit. The study aims to discover the genetic variants infl uencing the risk of 
common, complex diseases, such as diabetes, osteoporosis, stroke, heart disease, 
myopia, glaucoma, and chronic kidney and lung disease in the isolated population 
of Orkney through analysis of next-generation genotyping and sequencing data 
(  http://www.orcades.ed.ac.uk/    ). Approximately 2,200 individuals with at least two 
Orcadian grandparents were recruited from 2005 to 2011. Subjects were phenotyped 
for cardiovascular traits and some of them were further characterized for parameters 
related to bone and eyes clinical status. Genotypes generated for the epidemiology 
study are also used for population genetics projects, designed to better explore the 
level of homozygosity, the population structure, and the genetic history of Orkney. 

 Another ongoing study on Orkney is the Multiple Sclerosis in the Northern Isles 
of Scotland (NIMS) project. It aims to investigate the genetic and nongenetic factors 
contributing to the increased risk of developing the disease in Orkney and Shetland. 
Indeed, Orkney and Shetland are believed to have the highest prevalence of MS in 
the world, with ~402 cases per 100,000 in Orkney and ~295 per 100,000 in Shetland 
(  http://www.orcades.ed.ac.uk/multiplesclerosis.html    ). 

 ORCADES contributed to the discovery of over 800 new gene associations for 
complex traits in collaboration with several international consortia  (  http://www.
orcades.ed.ac.uk/    ).  

    The SardiNIA Project and the Case–Control Study of Type 1 
Diabetes and Multiple Sclerosis in Sardinia 

 Sardinia is an island in the center of the Mediterranean Sea, whose isolated popula-
tion is characterized by high inter-individual variability among the coastal regions, 
and strong isolation and lack of migration in the central-eastern region (Contu et al. 
 2008 ; Angius et al.  2001 ; Francalacci et al.  2013 ). Its considerable population size 
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allows large sample collections from both the general population and the internal 
isolates. 

 Two main projects are ongoing in Sardinia:

•    SardiNIA (Pilia et al.  2006 ), a longitudinal study on aging and metabolic 
related traits, focused on ~6,100 individuals in ~800 families living in four 
small towns in the central-eastern region of Sardinia named Ogliastra (Fig.  1 ). 
It started on 2001, and volunteers have been characterized for more than 300 
quantitative traits; measurements are repeated every three years. A subset of the 
SardiNIA sample set was recently characterized for more than 272 immune 
traits, allowing the fi nding of new immune cell trait-associated SNPs through 
next-generation GWAS (Orrù et al,  2013 ).  

•   A case–control study of MS and T1D (Sanna et al.  2010 ) focused on ~10,000 
individuals from the general population, of which ~2,000 MS unrelated patients 
and ~1,000 trios, ~2,000 T1D unrelated patients, and ~3,000 unrelated controls 
with at least three Sardinian grandparents.    

 Both these studies are led by Francesco Cucca and Serena Sanna at the Istituto di 
Ricerca Genetica e Biomedica (IRGB-CNR), and David Schlessinger at the 
Laboratory of Genetics, National Institute on Aging (NIA), Baltimore, Maryland, 
USA, in collaboration with Gonçalo Abecasis at the Center for Statistical Genetics, 
University of Michigan, USA, the Center of Advanced Research and Development 
in Sardinia (CRS4), local Universities, and clinical centers. 

 Sardinians are genetically distinct from other European populations (Fig.  5 ) 
(Novembre et al.  2008 ). To better explore the contribution of rare and population- 
specifi c variants, an ambitious sequencing project has been undertaken (partially 
included in the SardiNIA Medical Sequencing Discovery Project, dbGaP Study 
Accession: phs000313.v1.p1) (Sanna et al.  2012 ). Roughly 2,000 samples from the 
SardiNIA cohort, and 1,500 samples from the case–control study, were sequenced 
at 4× depth, on average, and a reference panel for imputation is being generated 
from their sequence data. While waiting for the full sample set to be sequenced, 
several panels from subset of samples enabled preliminary imputation runs. Results 
on 17.6 million SNPs, 5.3 million of which not in dbSNP137, discovered in 2,120 
sequences and imputed on both the SardiNIA and case–control studies were recently 
presented (Sanna et al.  2012 ; Sidore and et al.  2100 ; Zara et al.  2012 ). 

 Samples from the SardiNIA study were genotyped with the Illumina Metabochip 
and the Affymetrix 6.0 array (Nishida et al.  2008 ), and imputation was performed, 
using those arrays as baseline scaffold, on both the Sardinian and the 1,000 Genome 
Project (1KGP)-based reference panels. Beyond the better imputation quality and 
accuracy, an additional example of the advantages offered by population-specifi c 
reference panels is the association detected between the Q40X mutation in the HBB 
gene and a variety of blood phenotypes in the SardiNIA cohort. The Q40X mutation 
is responsible for the β0-thalassemia in homozygotes and protects against malaria 
in heterozygotes. The variant is common in Sardinia, due to balancing selection 
against malaria (MAF ~5 %), but very rare elsewhere. For example, on the 1KGP 
panel, the variant was seen only on two chromosomes, and was imputed with such 
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low accuracy that no association was detected (for total hemoglobin,  p  = 0.34 with 
estimated MAF = 0.02 %, whereas  p  = 1.7 × 10 −265  after imputation on the Sardinian 
reference panel a (Sanna et al.  2012 )). 

 The high prevalence of MS and T1D in Sardinia is well known (The Diamond 
Project Group  2006 ; Pugliatti et al.  2006 ). While the prevalence of both diseases 
shows a North–South gradient in Europe, with a higher prevalence in the North and 
a lower prevalence in the South, Sardinia represents an exception to this trend. 
Moreover, the major risk allele for MS in Europeans, HLA-DRB1*1501 (The 
International Multiple Sclerosis Genetics Consortium and The Wellcome Trust 
Case Control Consortium  2011 ) has low frequency, and is only weakly associated 
in Sardinians (Sanna et al.  2012 ; Marrosu et al.  2001 ), suggesting that other factors 
contribute to increase the risk of developing MS there (Marrosu et al.  2004 ). 
Samples were genotyped with the Illumina Immunochip and the Affymetrix 6.0 
array. Unrelated individuals were selected to perform two case–control studies on 
variants imputed from the Sardinian and the 1KGP reference panels. For MS, the 
major risk haplotype in Sardinians was found to be HLA-DRB1*03:01-
DQB1*02:01 ( p  = 6.35 × 10 −45 , OR = 1.74, frequency 0.21 in controls and 0.33 in 
cases), while the HLA-DRB1*1501 allele was found to have frequency 1 % in 
controls and 2 % in cases and a p-value of 9.59 × 10 −8  (Zara et al.  2012 ). For T1D, 
the imputation on the Sardinian reference set boosted association at known suscep-
tibility loci, for example, the INS locus, where the −23HphI variant, a functional 
SNP previously described (Barrat et al.  2004 ), was associated with  p  = 5 × 10 −15  
   after imputation on the Sardinian reference panel, and  p  = 1 × 10 −7  after imputation 
on the 1KGP reference panel. Novel-associated variants, at both known and novel 
loci, were found for MS, and further analyses are ongoing to better understand 
these fi ndings (Zara et al.  2012 ).   

    Conclusions 

 We have discussed how features of population isolates can infl uence advantages and 
disadvantages of using this kind of population in genetic studies. We also described 
several examples of genetic studies of complex traits on population isolates, focus-
ing on the strategy used, and on consequent results. 

 Multifactorial traits are the result of the complex interplay between genetic and 
environmental risk factors, and very little is known about the environmental expo-
sures infl uencing the variation of complex traits or the risk of developing a disease. 
Genetic studies on population isolates can help in minimizing those environmental 
effects and boost the power to detect association at rare variants. 

 High-throughput sequencing technologies are particularly useful in studies on 
population isolates, whose specifi c genetic variation is often not described, even in 
extensive international resources like the 1KGP and the HapMap project. For exam-
ple, a key goal of the 1KGP was to identify more than 95 % of SNPs at 1 % fre-
quency in a broad set of populations. The current resource includes 98 % of the 
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SNPs with frequencies of 1.0 % in 2,500 UK sampled genomes (the Wellcome 
Trust-funded UK10K project), but it includes only 76.9 % of the SNPs with fre-
quencies of 1.0 % in 2,000 genomes sequenced in the SardiNIA study (The 1,000 
Genome Project Consortium  2012 ). 

 The most effective strategy for a next-generation association study on an isolated 
population depends on the population features, and on the study goal, and costs and 
benefi ts must be carefully evaluated. The 1KGP and HapMap resources offer a valu-
able reference for imputation for only computational cost, but integration of in-site 
next-generation sequencing and GWAS data enable better exploration of the 
population- specifi c genetic variation. 

 This sequencing-based approach will refi ne GWAS results, increasing the spec-
trum of variants assessed, and helping to better understand biological aspects under-
lying the variation of complex traits and the etiology of diseases. It also confi rms the 
value of population isolates in genetic studies for mapping complex traits.     
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      Natural Selection at Rare Variants 

             Yali     Xue      and     Chris     Tyler-Smith    

           Introduction 

 ‘Selection’ refers to the non-random increase or decrease in allele frequency in a 
population over a number of generations. While it can potentially act on any variant 
whatever its frequency, rare variants raise particular issues because their low fre-
quency usually refl ects a recent origin, and thus few generations for past selection to 
have acted and infl uenced their spread. Thus, the consequences of any selection may 
be diffi cult to detect, and several of the approaches used for detecting selection act-
ing on common variants may not be useful for rare variants. Hence, there is a need 
for a chapter focussing specifi cally on selection at rare variants. 

 In several of the following sections, it will be useful to begin by considering new 
mutations, which are the most extreme forms of rare variant. Every individual car-
ries ~60 new mutations in the parts of the genome that are accessible to current 
sequencing technologies (e.g. Kong et al.  2012 ). While most of the 3–4 million 
variants in any individual genome are shared with others and may be common in the 
population, the rare variants, including the new mutations, are less shared. Thus, as 
more and more individuals from a population are sequenced, the number of com-
mon variants discovered saturates, but the number of rare variants continues to 
increase. Consequently, most of the variants discovered by sequencing a large popu-
lation sample are rare (The 1000 Genomes Project Consortium  2012 ) and the prop-
erties of this group are of considerable importance for many aspects of human 
genetics, as illustrated by the other chapters in this book. In this chapter, we con-
sider how natural selection acts on rare variants, how such selection can be detected 
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from the datasets that are available now or potentially in the future, its consequences 
for the patterns of rare variation in populations, and how it is possible to make use 
of these patterns to inform the functional interpretation of rare variants.  

    The Characteristics and Fate of New Mutations 
in a Population 

 New mutations occur at approximately random positions in the genome, and their 
characteristics in humans can be evaluated either by simulation or from the accumu-
lating observations of such mutations. Their functional properties are most readily 
evaluated in protein-coding regions, where functional annotation is most highly 
developed. Coding mutations can be classifi ed according to whether or not they 
change an amino acid, and if so, how deleterious the change may be to the protein 
(Adzhubei et al.  2010 ; Kumar et al.  2009 ). Such analyses suggest that over half of 
new mutations may be moderately or strongly deleterious (Boyko et al.  2008 ), as 
shown in the fi rst column of Fig.  1 . In contrast, negligible proportions of common 
variants with frequency >10 % fall into these deleterious categories (Fig.  1 , columns 
5–8). Corresponding functional characteristics of new mutations in non-coding 
regions have not been evaluated as thoroughly, but are also expected to be more 
deleterious than common non-coding variants.

  Fig. 1    Boyko et al.’s estimates of the deleterious properties of nonsynonymous variants in an 
African American sample stratifi ed according to allele frequency.  Left : new mutations;  middle : 
SNPs at different derived allele frequencies, as indicated on the horizontal axis;  right : human- 
chimpanzee fi xed differences. Colours indicate strongly deleterious ( red  ), moderately deleterious 
( orange ), weakly deleterious ( yellow ), nearly neutral ( green ), neutral ( blue ), or positively selected 
( white ) variants. Note the high proportions of strongly and moderately deleterious variants among 
new mutations and rare SNPs, and their near-absence from common SNPs and fi xed differences. 
From (Boyko et al.  2008 )       
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   New mutations will often, just by chance, not be transmitted to offspring: their 
carrier may not have children, or if for example they have just one or two children, 
50 % or 25 %, respectively, of their new mutations will on average not be passed on. 
Over many generations, the usual fate of new mutations and rare variants more 
generally is thus for them to be lost from the population. Some, however, will 
increase in frequency. This is the neutral process of genetic drift. In this chapter, we 
are interested in the rare variants that are observed in a population, and most of these 
have been transmitted, at least for a few generations.  

    Types of Selection 

 The forms of selection relevant here are positive (Darwinian) selection, in which an 
advantageous variant increases in frequency in the population and may eventually 
be fi xed, and purifying (negative) selection, in which a disadvantageous variant 
decreases in frequency and may be eliminated. Although positive selection has 
undoubtedly infl uenced allele frequencies in human populations, there is debate 
about its prevalence, particularly in the form of classic selective sweeps (Hernandez 
et al.  2011 ; Colonna et al.  2014 ); furthermore, current methods for detecting posi-
tive selection have very little power when the selected variant is rare (Jobling et al. 
 2014 ). In contrast, purifying selection is widely accepted as ubiquitous. For these 
reasons, we concentrate here on purifying selection. The strength of purifying selec-
tion ranges along a continuum from, at one extreme, lethality, to, at the other 
extreme, negligible strength indistinguishable from neutrality. Consequently, mod-
erately deleterious variants can survive in the population and are enriched among 
rare variants for two reasons. First, as described in the previous section, over half of 
new mutations (at least in protein-coding regions) may be deleterious, and second 
because a deleterious variant will increase in frequency more slowly than a neutral 
one, and thus remain rare for longer. Indeed, many currently rare variants could 
never become common because of the long-term effect of purifying selection. Some 
methods to detect purifying selection would also have low power for rare variants, 
but a number of approaches are available for detecting purifying selection at rare 
variants, and are considered in the next section.  

    Detecting Purifying Selection at Rare Variants 

    Detection by Variant Defi cit 

 Variants that have a  dominant  lethal effect before birth may arise as new muta-
tions, but would not be observed in the population, or, since penetrance of the 
phenotypic characteristics associated with a variant is often variable (Cooper et al. 
 2013 ), might occasionally be compatible with live birth but would be extremely rare. 
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They might also be enriched among spontaneous miscarriages and thus detected by 
a genomic comparison of miscarriages with healthy births. Alternatively, if a suffi -
ciently large sample of new mutations in healthy individuals were examined, domi-
nant lethal mutations would appear as positions with zero or reduced numbers of 
mutations. With approximately 60 new mutations per individual (Kong et al.  2012 ), 
the current population of about 7 × 10 9  people carries over 120 new mutations per 
nucleotide. Although beyond the scope of current sequencing technology and analy-
sis, a defi cit of new mutations at particular positions may become detectable by this 
approach in the future. 

 More commonly, a lethal effect may be  recessive . Such variants can persist in the 
population in unaffected heterozygous carriers and can be detectable from a lack or 
decrease in the number of offspring homozygous for the variant. This could mani-
fest as increased spontaneous miscarriages, or early mortality, as observed in a num-
ber of Mendelian conditions (Fig.  2 ). This fi gure illustrates the inheritance of Lethal 
Contractural Syndrome Type 3, a recessive condition characterized by severe mul-
tiple joint contractures affecting the limbs, together with severe muscle wasting and 
atrophy, caused in this family by inheriting two copies of a rare nonsynonymous 
variant Asp253Asn in  PIP5K1C  (Narkis et al.  2007 ). Affected individuals die of 
respiratory insuffi ciency minutes to hours after birth. An estimate of the number of 
autosomal recessive lethals in the well-characterized Hutterite population suggests 
about 0.6 per individual (Gao et al.  2014 ).

   There is a second class of lethal variant to consider: those that are lethal in an 
evolutionary sense, in that they are not transmitted to offspring, but have less 
overt effects on the carrier. The most obvious members of this class are variants 
leading to infertility, which has complex genetic and non-genetic causes and 
overall affects around 10 % of couples. Schemes for population sampling, for 
example, that used by The 1000 Genomes Project, may require informed consent 
from non-vulnerable adults, but when these schemes sample random unrelated 
individuals (as contrasted with mother-father-child trios or larger families), some 
infertile individuals are expected to be included. Thus, such sequence datasets 
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  Fig. 2    Pedigree showing segregation of Lethal Contractural Syndrome Type 3 (LCCS3), caused by 
a mutation in  PIP5K1C. Open symbols : unaffected individuals;  closed symbols : affected individu-
als. Affected individuals ( circles : females;  squares : males) died within hours of birth, or ( diamonds ) 
were terminated after diagnosis of the condition during pregnancy. From (Narkis et al.  2007 )       
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potentially include both heterozygous evolutionarily lethal dominant rare variants 
and homozygous evolutionarily lethal recessive rare variants. 

 At a population level, purifying selection acting on a recessive variant would 
lead to a departure from Hardy–Weinberg equilibrium at that variant, driven by a 
defi cit in the number of homozygotes observed compared with the number pre-
dicted from the heterozygote frequency. In practice, such a departure would be dif-
fi cult to detect, for two reasons. First, Hardy–Weinberg equilibrium is often used as 
a genotyping quality-control metric, and variants showing departures fi ltered out of 
datasets because most are due to technical errors in genotype calling. Second, the 
number of individuals required to detect a departure for a rare variant would be 
large, for example, 40,000 for a 1 % frequency variant and over four million for a 
0.1 % variant. Nevertheless, this approach may become applicable in the future 
when large numbers of high-quality genome sequences are available.  

    Detection by Functional Annotation 

 Databases of known disease-causing variants, for example, the Human Gene 
Mutation Database (Stenson et al.  2014 ) which included 156,932 entries in mid- 
2014 (  http://www.hgmd.org/    ) or ClinVar (Landrum et al.  2014 ) with 111,294 vari-
ants in mid-2014 (  http://www.ncbi.nlm.nih.gov/clinvar/    ), provide one example of 
how  functional annotation  can identify rare variants that are likely to be under 
strong purifying selection. A survey in 2012 suggested that each apparently healthy 
individual in the general population carried around two severe disease alleles, 
defi ned those that were listed (after fi ltering) in the Human Gene Mutation Database 
at that time (Xue et al.  2012 ). Although such databases are steadily increasing in 
size, the majority of potential severe disease-causing variants have not yet come to 
the attention of medical geneticists, and thus these databases do not yet provide a 
comprehensive catalogue of severely deleterious variants. 

 Functional predictions, especially in protein-coding regions as described above, 
provide another approach to functional annotation (see also Chap.   5    ). The most 
obviously deleterious variants are those that lead to loss of function (LoF) of the 
protein. These include SNPs that introduce a stop codon or alter an essential splice 
site, indels that change the reading frame, and large deletions that remove much or 
all of a coding region. LoF variants are not all deleterious: some are common in the 
population and probably neutral (MacArthur et al.  2012 ) and a few are even advan-
tageous and positively selected (e.g. Xue et al.  2006 ). Nevertheless, they provide a 
functional class enriched for variants that are likely to be acted on by purifying 
selection, and we will refer to applications of this principle below. Applying similar 
reasoning suggests that nonsynonymous and synonymous annotations identify two 
classes of variant that, on average, are subject to milder forms of purifying selection 
and are sometimes contrasted with intergenic variants. Among non-protein-coding 
variants, approaches to identifying those most likely to experience purifying selec-
tion are starting to be developed (e.g. Khurana et al.  2013 ).  
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    Detection from Haplotype Structure 

 Haplotype structure can provide an additional source of information about likely 
purifying selection. If we consider rare variants with equal frequency in the popula-
tion, for example, those observed twice in a particular sample as studied in Phase 1 
of the 1000 Genomes Project (The 1000 Genomes Project Consortium  2012 ), the 
haplotype structures on which they lie will differ, on average, according to the action 
of purifying selection on them. Neutral rare variants will typically share the same 
recent origin and lie on a long shared haplotype (Fig.  3a ). In contrast, evolutionarily 
lethal rare variants must represent independent new mutations and are therefore 
likely to lie on different haplotypes (Fig.  3c ). The consequences of purifying selec-
tion on mildly deleterious variants are considered further in the next section; here, 
we note that they tend to be more recent in origin than neutral variants of the same 
frequency, so will lie on a longer shared haplotype which has accumulated fewer 
additional mutations (Fig.  3b ).

   In summary, strong purifying selection can be detected at individual highly dele-
terious rare variants. Weak purifying selection on mildly deleterious variants cannot 
be detected at the individual variant level, but can be detected on classes of variant.   

    Consequences of Purifying Selection at Rare Variants 

    Consequences for the Age of Rare Variants 

 The consequences of purifying selection on rare variants have been investigated 
using both population-genetic theory and experimental datasets. In 1974, 
Maruyama modelled the spread of a mutation using a diffusion approximation of a 
branching process, and predicted that a deleterious variant would tend to be younger 

  Fig. 3    Characteristics of haplotypes shared by two copies of a ( a ) neutral, ( b ) mildly deleterious 
or ( c ) severely deleterious rare variant. The rare variant is represented by the  red cross , the shared 
haplotype by the  solid blue bar  and the non-shared haplotype by the  dotted open bar. Red ovals  
represent additional mutations that have arisen on the shared haplotype after the origin of the rare 
variant. Compared with the neutral variant, the mildly deleterious variant has a more recent origin 
and consequently the shared haplotype is longer and carries fewer subsequent mutations. The 
severely deleterious variant has arisen independently by recurrent mutation and so lies on two dif-
ferent haplotypes       
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than a neutral variant of the same frequency (Maruyama  1974 ). In one sense, this 
conclusion is counter-intuitive, since purifying selection reduces the spread of a 
deleterious variant and might be expected to increase the time it takes to reach a 
certain frequency. The more appropriate intuition is that although a deleterious 
allele is less likely to reach this certain frequency than a neutral one, if it does so, 
it is likely that it took fewer steps. 

 This prediction has been tested in pilot data from the Genome of the Netherlands 
(GoNL) Project, which sequenced the genomes of 47 mother-father-child trios at 
12× coverage and generated high-quality haplotype data via family-based phasing 
(Kiezun et al.  2013 ). The authors devised a Neighbourhood-based Clock (NC) sta-
tistic to capture information about the age of rare alleles. This statistic incorporates 
information about the physical distance to the nearest completely linked lower- 
frequency variant or nearest detectable recombination event, and a higher value 
corresponds to a younger age. NC values were indeed higher, and thus ages younger, 
for nonsynonymous rare variants and probably damaging nonsynonymous rare vari-
ants than for synonymous variants of the same frequency (Fig.  4a ). In a more direct 
approach to estimating variant age, Mathieson and McVean analysed data from the 
1000 Genomes Project Phase 1, which sequenced 1,092 individuals from 14 popu-
lations at 4–5× coverage (The 1000 Genomes Project Consortium  2012 ), focussing 
on variants called exactly twice ( f  2  variants) (Mathieson and McVean  2014 ). The 
1000 Genomes haplotypes were not phased as accurately as the GoNL samples, and 
the authors made a maximum likelihood estimate of the age based on an upper 
bound to the  f  2  shared haplotype length and the number of singleton mutations that 
have arisen on these haplotypes. Median ages for  f  2  variants shared within a popula-
tion were 170–320 generations within Africa, 50–160 generations within Europe or 
Asia, contrasted with 320–670 generations for variants shared between Europe and 
Asia, and 1,000–2,300 generations for variants shared between Africa and Europe 
or Asia. Most relevant here is that median age differed between functional annota-
tion classes for  f  2  variants shared within a population: 58, 83, 112, and 125 genera-
tions for LoF, coding, functional noncoding, and unannotated variants, respectively, 
with all of these differences being highly signifi cant (Fig.  4b ) (Mathieson and 
McVean  2014 ). No such differences were seen for  f  2  variants shared between conti-
nents. The authors suggest that purifying selection acts on these mildly deleterious 
variants (and most strongly on the LoF class) to gradually eliminate them from the 
population, but that those that have survived for long enough to be shared between 
continents represent the subset of each annotation class that is effectively neutral.

       Consequences for the Geographical Distribution 
of Rare Variants 

 The consequence of purifying selection on mildly deleterious variants for their geo-
graphical distribution, as suggested above, is that they are more likely to be found 
in the same population than neutral variants of the same frequency. Purifying selec-
tion reduces their survival time and thus spread. For evolutionarily lethal variants, 
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the expectation is different. They do not spread, so each represents an independent 
mutation. In the same way that they are likely to occur on different haplotypes 
(Fig.  3 ), they are also likely to occur in different populations (Fig.  5 ).

        Using Selection at Rare Variants to Inform Functional 
Interpretation of Rare Variants 

 In the previous sections, we have summarized insights into expectations and obser-
vations relevant to the action of selection on rare variants. In this fi nal section, we 
ask whether these insights can be used to inform interpretation of rare variants 
whose function is unknown, but of interest. For example, in a sequencing study 
searching for variants with large effect leading to a rare severe genetic disease, many 
candidate causal variants are usually found, and it can be diffi cult to identify the true 
causal variant (MacArthur et al.  2014 ). Functional testing in a cell line or model 
organism currently provides a gold standard for establishing causality, but is impos-
sible to apply on a large scale and not applicable to all phenotypes, so prioritization 
of the candidates is necessary. In this scenario, the causal variant can be assumed to 

  Fig. 4    Ages of damaging variants are younger than neutral variants of the same frequency. 
( a ) Cumulative distribution of the NC statistic (higher value ≡ younger age) for alleles with a minor 
allele count of three in the Genome of the Netherlands pilot study. Taking synonymous variants 
( pink ) as approximately neutral, nonsynonymous ( missense ) variants as a whole ( orange ) are 
shifted towards higher values and probably damaging nonsynonymous variants ( purple ) even more 
so. Thus, these damaging classes of variant are younger. From (Kiezun et al.  2013 ). ( b ) Ages 
(estimated in generations) of different classes of rare variant in the 1000 Genomes Project Phase 1 
data. Horizontal bars show the median value for each class. Compared with unannotated variants, 
variants of the same frequency annotated as functional but non-coding, coding, or LoF are each 
signifi cantly younger. From (Mathieson and McVean  2014 )       
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be rare and have deleterious consequences, and a shortlist of rare variants with 
 deleterious functional annotations can be drawn up. In prioritizing the entries on this 
list, prior information about the condition and its genetic basis is used if available. 
But if after taking into account all available information the shortlist still contains 
many candidates, the expectation that the causal variant will be subject to strong 
purifying selection, while many of the other candidates will not, may be considered. 
If several individuals with similar phenotypes have been sequenced:

•    Assuming recessive inheritance, the causal variant should lie on a longer, less 
variable and more geographically focussed haplotype than other variants.  

•   Assuming dominant inheritance and evolutionary lethality, the causal variant 
should lie on independent haplotypes from independent geographical locations.    

 While the additional information provided is indirect and only applicable when 
the same causal variant is discovered in more than one individual, identifying the 
true causal variant in rare diseases can be so challenging that any additional insights 
that can be extracted from the data available are valuable. The consideration of the 
consequences of purifying selection offers additional insights.     

  Acknowledgement   Our work is supported by The Wellcome Trust, grant 098051.  

  Fig. 5    Geographical distribution of two copies of a ( a ) neutral, ( b ) mildly deleterious, or ( c ) 
severely deleterious rare variant. In each panel, the two copies of the rare variant are shown as  two 
dots  with the same colour, and different populations by  ovals . Four rare variants in the central 
population are considered. Compared with the distribution of neutral variants ( a ), the second copy 
of a mildly deleterious variant ( b ) is more likely to be found in the same population as the fi rst, 
while the second copy of a severely deleterious variant ( c ) arises by an independent mutation and 
is therefore more likely to be found in a different population       
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Collapsing Approaches for the Association 
Analysis of Rare Variants

Jennifer L. Asimit and Andrew Morris

In testing for associations with rare variants, alternative methods to those used for 
common SNPs are required due to their lack of power at lower frequency. Collapsing 
approaches overcome this power loss by testing for an association with an aggregate 
of rare variants. These tests pool information across the rare variants such that a 
single test is performed on the summary statistic, and are powerful tools, provided 
that certain conditions are satisfied. In this chapter, the general framework of col-
lapsing methods is explored, including optimal conditions for attaining high power. 
Comparisons are made between specific collapsing methods, as well as data- 
adaptive versions that have been developed to recover much of the power loss from 
nonideal settings.

 Introduction

An abundance of powerful single variant association tests have been developed and 
employed in genome-wide association studies to successfully identify disease- 
associated SNPs. Although many SNPs have been identified as having an effect on 
disease susceptibility, they only account for a small proportion of heritability. This 
has been part of the motivation in searching for disease associations with variants of 
lower minor allele frequency (MAF). Variants with MAF < 0.01 are often referred to 
as rare variants, while low-frequency variants are those with 0.01 < MAF < 0.05. 
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Due to the few observations of the rare minor allele at a specific variant, there are 
few causal rare variants that are present in many individuals. Consequently, these 
tests experience a dramatic reduction in power to test for an association with a sin-
gle low-frequency/rare variant. This has been demonstrated in simulation studies by 
Li and Leal (2008). Single variant tests experience a further reduction in power in 
the presence of allelic heterogeneity, since different individuals then contribute to 
an association signal at different variants in the locus. A locus-based approach, 
where SNPs in the locus are collectively tested for an association, is an alternative 
to single-variant tests, and is often employed when allelic heterogeneity is an issue.

Multi-marker tests combine information across the variants in a locus, and simul-
taneously test the multiple variants for an association, using multivariate methods. 
This approach has higher power than single-variant tests when there are multiple SNPs 
of moderate effect within the locus, but has the caveat of requiring multiple degrees 
of freedom, which lowers the power of the test. In addition, in simulation studies, it 
has been demonstrated that the power is further reduced as the MAF decreases and 
as the number of rare causal variants increases (Li and Leal 2008). On the contrary, 
there are numerous rare variants collectively, and a powerful alternative is to test for 
an association with their aggregate. That is, the information on rare variants within 
the locus is pooled into a single summary statistic for a “super locus,” which is used 
in a univariate test for an association of rare minor alleles with a trait. This combin-
ing of information across multiple rare variant sites results in fewer degrees of free-
dom, and under certain conditions, increased power.

The low MAFs of rare/low-frequency variants make them challenging to access, 
and until recently, the majority of genotype arrays had been designed with a focus 
on common variants. Lower MAF variants may now be accessed via high-density 
genotyping arrays (e.g., Illumina Omni 2.5 M), but they remain underpowered to 
detect rare variant effects. Sequencing is the gold standard for accessing rare vari-
ants, being the most accurate method for obtaining genotypes. However, at the 
moment, sequencing has a high cost, making it not easily available for large samples. 
An approach to overcome these issues is to make use of a high-density reference 
panel, such as the 1000 Genomes Project data (The 1000 Genomes Project 
Consortium 2010), which is composed of sequence data from 1,092 individuals of 
various ancestries and enables access to variants with MAF as low as 0.01 across the 
genome, as well as MAFs of 0.001–0.005 in gene regions. Many more rare/low- 
frequency variants are expected to be identified within the data of the ongoing 
UK10K Project (http://www.uk10k.org/), for which 10,000 individuals (primarily 
from the UK) have been sequenced; the exomes of 6,000 cases for various disorders 
are high-depth sequenced with the aim of identifying associated rare/low-frequency 
variants, while 4,000 individuals from population-based cohorts with deep pheno-
type data are genome-wide sequenced at low-depth (average 6×), which may be 
useful as a reference panel for other studies. Such high-density reference panels 
may be used to select variants for genotyping, as many of the variants within them 
would not have been included on genotyping arrays due to their MAF. Alternatively, 
a cost-effective use of such reference panels is to employ them in imputation. 
Genotypes that are not directly typed may be estimated by taking advantage of the 
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genetic correlations within the reference panel and extrapolating to the study sample. 
Several review papers on rare variants and collapsing methods are available, namely 
Asimit and Zeggini (2010), Bansal et al. (2010), and Dering et al. (2011), and in the 
next section, we discuss such methods in a general framework, including choices of 
MAF and/or functional annotation filtering. Extensions of collapsing methods to 
imputed data are discussed in the subsequent session. In the final section, the con-
siderations required prior to implementing any of the burden tests are discussed, as 
well as the use of family-based designs for detecting rare variant associations.

 Methods

In the implementation of collapsing methods, an MAF threshold is required, such 
that all variants with MAF below the threshold are aggregated for association testing. 
For many of these approaches, a fixed-allele frequency threshold is imposed, where the 
threshold is selected based on the specifications of the study. The outcome of the test 
is highly dependent on the choice of threshold, and some caution is required in the 
selection of a threshold, as a balance needs to be achieved between retaining casual 
rare/low-frequency variants and reducing the number of non-causal variants within 
the aggregate. A relatively high MAF threshold allows the inclusion of more candi-
date causal variants, but this lenient threshold has the cost of permitting a larger 
number of non-causal variants in the aggregation. In turn, non-causal variants con-
tribute neutral effects and may have a detrimental effect on the power to detect an 
association with the “super locus.” In simulation studies (Li and Leal 2008), it has 
been demonstrated that the power of collapsing methods decreases as the MAF of 
the non-causal variant increases (from 0.02 to 0.05), and further power reductions 
accrue with the inclusion of an additional non-causal variant of the same MAF. 
Rather than restricting inclusion according to a particular MAF threshold, variants 
may be weighted according to an inverse relationship with allele frequency (Madsen 
and Browning 2009).

In addition to selection of an MAF threshold, further filters may be applied to 
minimize the incorporation of nonfunctional variants in the analysis. Variants may 
be classified according to their degree of predicted functionality such that those 
predicted to be neutral are excluded, or a weighting scheme may be implemented 
such that variants with low functionality prediction scores are down-weighted when 
collapsing the variants. Bioinformatics tools such as Polymorphism Phenotyping-2 
(PolyPhen-2) (Adzhubei et al. 2010), which is a development of PolyPhen 
(Ramensky et al. 2002), and Sorting Intolerant From Tolerant (SIFT) (Ng and 
Henikoff 2003) may be employed to predict the potential functionality of non-
synonymous-coding variants. Information for these two tools has been combined 
into a functional annotation score, Combined Annotation scoRing toOL (CAROL) 
(Lopes et al. 2012), which has higher predictive power and accuracy than either of 
the individual tools alone. However, despite coding variants being more likely to be 
functional, only a small proportion of genome variation is attributed to coding 
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variants, and there is increasing evidence that non-coding variants are associated 
with complex traits. In particular, non-coding variants have been verified to be asso-
ciated with disorders such as Hirschsprung disease (Emison et al. 2005), asthma 
(Haller et al. 2009), cleft palette, and ankyloglossia (Pauws et al. 2009).  
In order to overcome the coding variant limitation of the previously mentioned 
bioinformatics tools, Genome-Wide Annotation VAriant (GWAVA) was developed 
(Ritchie et al. 2014). GWAVA is a tool that predicts functionality for both coding 
and non-coding variants and is based on a classifier trained to differentiate between 
variants known to be disease implicated and those that are known to not have a role 
in disease etiology.

Various forms of collapsing approaches have been proposed, and there are several 
properties that are shared among these methods. Firstly, all such burden tests may be 
expressed within a general framework as follows

 

G y w xi
j

j ij( ) = + åa b ,

 

(1)

where xij is the coded genotype of individual i at SNP j, wj is the weight given to 
SNP j, and the summation runs through all variants j within the region. In having a 
single shared effect estimate β for all of the rare variants, rather than individual 
effect estimates βj for each variant, there are fewer degrees of freedom and hence, a 
power gain compared to single-variant analysis. The coding of the genotypes 
depends on the specific method, while the weights depend on both the method and 
filtering of the variants according to MAF threshold and functional annotation. The 
weighted sum of coded genotypes may be regarded as a genetic score for individual 
i (Madsen and Browning 2009). Genotype coding typically takes on values 0/1 for 
the absence/presence of the minor allele at the variant or is the count of minor 
alleles carried by the variant, xij∊ {0,1,2}, which implicitly assumes a common 
direction of effect among the variants. It is thus apparent that a combination of del-
eterious and protective variants will result in a dilution effect upon aggregation, as 
both risk-increasing and risk-decreasing variants share a common effect estimate. 
Various simulation studies involving collapsing methods have demonstrated this 
limitation of burden tests (Han and Pan 2010; Asimit et al. 2012; Ladouceur et al. 
2012). In this section, particular burden tests will be discussed, including how they 
fit into the general modelling framework described above.

The regression framework burden tests of Morris and Zeggini (2010) consider 
two forms of collapsing across the variants below a predetermined MAF threshold. 
Although, their RVT1 and RVT2 methods are presented in a linear regression form 
for quantitative traits, they are extended with ease to case–control studies by consid-
ering a logistic regression. In the RVT1 model, the locus information for each indi-
vidual is collapsed down into the proportion of rare/low-frequency variants at which 
there is at least one minor allele. This coincides with model (1), where the coded 
genotype xij takes on the value 1 when individual i carries at least one minor allele 
at variant j and variant j is below the MAF threshold, and 0, otherwise. The weight 
wj of each xij is 1/ni, where ni is the number of successfully genotyped rare variants 
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for individual i. Thus, for model RVT1, β is the expected increase of the phenotype 
for an individual with a minor allele at each rare variant in comparison to one with 
none. Analysis of deviance is used to compare the maximized likelihoods of the null 
(β = 0) and unconstrained β models in the construction of likelihood ratio tests of 
disease association with an accumulation of rare variants.

The RVT2 model differs from RVT1 by assigning unit weight to the first coded 
genotype that takes the value 1 at a rare variant, and weight 0 otherwise; effectively 
the phenotype is modelled as a function of the indicator that at least one rare minor 
allele is carried by an individual. Morris and Zeggini (2010) demonstrate, via simu-
lation studies, that the test based on the presence/absence of any rare minor allele 
(RVT2) is less robust to the presence of minor alleles at non-causal rare variants 
than the test based on proportions (RVT1). The proportions-based method has the 
potential caveat of being adversely affected by the presence of linkage disequilib-
rium (LD) among the aggregated variants. However, low-frequency variants are 
rarely found to be in strong LD with each other (Pritchard 2001). As both models are 
in a regression framework, a vector of covariate measurements zi for individuals is 
easily incorporated to account for nongenetic risk factors or population structure.

The Cohort Allelic Sums Test (CAST) (Morgenthaler and Thilly 2007), 
Combined Multivariate and Collapsing (CMC) method (Li and Leal 2008), and 
Weighted Sum Statistic (WSS) (Madsen and Browning 2009) are collapsing meth-
ods developed specifically for case–control data. CAST (Morgenthaler and Thilly 
2007) tests for a difference in the number of individuals with at least one mutation, 
between cases and controls, and does not filter on variant frequency; the coding and 
weights are the same as for RVT2 of Morris and Zeggini (2010) with the exception 
that common variants are included. Testing is performed via a 2 × 2 contingency 
table of case–control status and the presence/absence of at least one mutation. This 
can be regarded as a logistic regression of case–control status against the presence/
absence of at least one mutation. Due to the absence of MAF filtering, if there are 
many common mutations within a region, the majority of individuals may carry a 
mutation. In turn, this will adversely affect the power to detect a difference in the 
number of individuals with at least one mutation. The CMC method (Li and Leal 
2008) overcomes this issue by introducing an MAF threshold and group variants 
below the threshold together, while treating each variant of higher frequency as a 
group containing the single variant. They also consider a collapsing method COLL 
in which only variants below the MAF threshold are aggregated together in a single 
group, and common variants are excluded from analysis.

Implementation of the CMC method involves collapsing each group of multiple 
variants to an indicator variable for the presence/absence of any rare allele; groups 
consisting of a single variant do not require collapsing. The null hypothesis that 
none of these groups are disease associated is then tested by using a multivariate test, 
such as Hotelling’s T2 or logistic regression. The logistic regression form fits the 
framework of model (1) by letting G(∙) be the logit function for the probability that 
Yi = 1 (individual i is a case) and following the setup of RVT2, allowing multiple 
summations for each group of variant(s). Li and Leal (2008) demonstrate via simu-
lation studies that the CMC method combines the strengths of collapsing methods 
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(high power for rare variant analyses) and multivariate methods (robust against 
inclusion of non-causal variants).

In the WSS approach, each variant is weighted such that those of lower frequency 
are up-weighted, following the assumption that rare variants exhibit stronger effects 
than common ones (Madsen and Browning 2009). Genotype code xij is based on 
the number of minor alleles at the variant. In addition, the assigned weight for each 
xij is inversely proportional to the estimated standard deviation of the total number 
of mutations across both cases and controls, under the assumption of the null 
hypothesis that the mutation frequencies are not associated with disease status. 
That is, letting ni be the number of cases and controls, each variant is given weight 
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ni
0 is the number of controls, and xij

0 the number of minor alleles at variant j for 
control subject i. The proportion qj is an adjusted estimate of the MAF in controls, 
which includes correction factors to avoid numerical problems from zero estimates, 
which may occur if the minor allele only appears in cases. The allele frequency is 
based on controls rather than the entire sample to circumvent deflation of a true 
signal due to an excess of minor alleles in cases. This weighting scheme assigns 
larger weights to very rare variants and Price et al. (2010) have shown that this 
scheme implicitly assumes that the log odds ratio is approximately inversely pro-
portional to the square root of the allele frequency. The individual-specific genetic 
scores from the entire sample are then ranked together and the test statistic is formed 
from the sum of the ranks from case subjects. Re-sampling procedures are then used 
to obtain a p-value for the association test.

When all SNPs are causal and have the same direction of effect, the WSS 
approach has been demonstrated to have higher power than the CMC method. 
However, with the addition of non-causal low-frequency SNPs (MAF 0.02 or 0.05) 
the CMC test achieves a higher power (Han and Pan 2010). When both protective 
and deleterious variants are present, the WSS approach has a reduction in power, 
irrespective of nonfunctional variant inclusion, while the CMC test is able to achieve 
a higher power (Han and Pan 2010). The impact of different effect directions on the 
power of the CMC approach is likely not as extreme as for the WSS approach 
because variants in the CMC test are collapsed into an indicator variable for the 
presence/absence of a rare minor allele. In contrast, each variant contributes to the 
WSS test statistic.

A further pooling statistic is the Cumulative Minor-Allele Test (CMAT) 
(Zawistowski et al. 2010), which requires selection of an MAF threshold and is 
computationally efficient. It makes use of the same genotype coding as the WSS 
method, which is based on the number of minor alleles at the variant. The weight 
function for each variant is flexible and may be chosen according to any underly-
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ing assumptions for the study. Specific weight functions considered in the simula-
tion study of Zawistowski et al. (2010) are the weight function of Madsen and 
Browning (2009), as well as a simple weighting scheme that is an indicator function 
based on the filtering criteria for the variants. An example of filtering criteria 
includes a fixed MAF threshold and annotation: wj = 1{MAFj ≤ 0.05 and SNPj 
annotated as missense, nonsense, or splice-site mutation or an untranslated region}, 
where MAFj is the MAF of variant j, SNPj, and 1{E} is the indicator function, tak-
ing on value 1 when the event E occurs, and 0, otherwise. The genetic scores of (1) 
may then be viewed as the weighted minor allele counts for cases and controls, and 
the weighted major allele counts may be obtained by replacing the xij by 2−xij,. 
These weighted allele counts for cases and for controls may then be used to test for 
independence with disease status in the form of a contingency table, with the 
exception that permutation is required to assess significance of the χ2-like statistic. 
That is, the CMAT statistic takes the form of a χ2, but does not follow a χ2 distribu-
tion, since there is dependency among the allele counts due to LD. Similar to 
CAST (Morgenthaler and Thilly 2007), this procedure may be regarded as a logis-
tic regression and fit in the general burden test framework (1). In particular, CMAT 
may be expressed as a logistic regression of case–control status against weighted 
minor allele counts, logit p w xij

j
j ij( ) = +åa s , although permutations are required 

for evaluating significance.
Under various settings of probabilities for the incorrect inclusion of non-

causal variants and the correct inclusion of causal variants, comparisons of 
CMAT, WSS (Madsen and Browning 2009), and the collapsing method COLL of 
Li and Leal (2008) reveal that CMAT and WSS have nearly identical power per-
formance and are the most powerful at all misspecification levels considered. 
COLL was able to attain a similarly high power when the proportion of neutral 
variants included in analysis was below 2 %, but the power loss increases with 
this proportion (Zawistowski et al. 2010).

As burden tests experience a loss in power in the absence of a homogenous direc-
tion of effect, knowledge of the risk alleles is a requirement that would alleviate this 
limitation. This is addressed by the data-adaptive sum test (Han and Pan 2010), 
which involves two stages of association testing and employs unit weighting across 
all variants. First, single-variant tests are conducted at each site, regardless of 
MAF. The marginal direction of effect may then be estimated at each variant, 
based on a {0,1,2} additive genotype-coding xij. Sites with negative effect estimates 
and association p-values below a prespecified threshold are then reversely coded 
such that the effect estimate becomes positive, i.e., xij is re-coded as 2−xij at such 
variants. A common effect for the group of SNPs may then be tested for associa-
tion in a logistic regression setting with unit weights in the framework of model (1). 
Alternatively, to allow different effects (magnitude and direction) for rare and 
common variants, two groups may be formed according to low/high MAF, and a 
separate effect estimate may be obtained for each group. As all common variants are 
aggregated into a single group, this differs from the CMC approach, which includes 
multiple single common variant groupings. The single group of common variants 
has fewer degrees of freedom than the CMC approach, which may result in an 
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increase in power. However, this advantage will only be noticeable if the assump-
tion of the same direction of effect is appropriate for the set of common variants. 
Implementing unit weights, model (1) is then fit in a logistic regression framework 
with two regression coefficients, coinciding with each variant grouping:

 

logit Pr ,* *Y x xi r
j R

ij c
j C

ij={ }( ) = + +
Î Î
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where R is the set of low-frequency/rare variants, C is the set of common variants, 
and xij

* is the data-adaptive genotype code for variant j of individual i. Due to the 
data-adaptive coding of the variants, permutation is required to assess significance 
for both data-adaptive approaches. In general, the approach in which variants are 
partitioned into groups according to MAF achieves higher power than the single 
aggregation. In the scenario where non-causal rare variants (MAF sum 0.01 or 0.05) 
are present, the power of the data-adaptive sum tests surpasses the CMC test, 
whether or not direction effects differ among the causal variants. However, in the 
ideal case of a common effect direction, and the addition of non-causal low- 
frequency variants (MAF 0.02 or 0.05), the CMC test occasionally has a power 
improvement over the data-adaptive sum tests (Han and Pan 2010).

Rather than limiting a collapsing analysis to MAF filtering based on a fixed 
threshold, as with most burden tests, a variable threshold (VT) collapsing approach 
has been introduced (Price et al. 2010). This flexible approach is motivated by the 
thought that there exists some optimal MAF threshold for which variants with MAF 
below the threshold are considerably more likely to play a functional role than 
those with MAF above it. Across several plausible MAF thresholds a test statistic is 
calculated, which employs 0/1 weights according to MAF above/below the specific 
threshold and variants are coded according to the allele count in cases. In particular, 
model (1) is fit with phenotype regressed against mutation counts satisfying the 
MAF threshold. In a variant of the VT approach, VTP, each rare variant (MAF < 0.01) 
is weighted according to its posterior probability of being functional, as inferred 
from its PolyPhen-2 (Adzhubei et al. 2010) probabilistic score. These scores are 
only considered when MAF < 0.01 since PolyPhen-2 predictions of functional 
effect are most effective at rare variants (Price et al. 2010). In doing so, signals from 
low- frequency and common variants are not excluded, and the test is not at risk of 
losing power from mis-prediction at low-frequency variants. In simulation studies 
of both binary and quantitative traits having causal variants with the same effect 
direction, at significance level 0.05, the VTP approach attains the highest power, 
followed by VT. Lower powers are obtained by fixed threshold approaches (MAF 
threshold 0.01 or 0.05) and a weighted approach that uses weights similar to WSS, 

w p pj j j= -( )1 1/ , where pj is the MAF of variant j. These two methods have 

very similar performance in terms of power.
A summary of the assumptions for each burden test is provided in Table 1. The 

data-adaptive approach (Han and Pan 2010) is the only collapsing approach that is 
able to overcome the caveat of power loss when both risk-increasing and 
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 risk- decreasing variants are present in the analysis region. Considering the numer-
ous simulation studies involving different comparisons of collapsing methods under 
various scenarios, the VT approach appears to be one of the most powerful in the 
ideal setting of common effect direction and irrespective of the presence of neutral 
variants (Ladouceur et al. 2012).

 Extended Methods

Several burden tests have been extended to account for genotype uncertainty due to 
imputation, as well as variant quality. In general, genotype probability calls from 

imputation may be used to obtain an expected genotype call, 
x

ijx x x
=
å =( )

0

2
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referred to as the dosage. These probabilistic genotype calls have been incorporated 
in CMAT (Zawistowski et al. 2010) and GRANVIL (http://www.well.ox.ac.uk/
GRANVIL), which implements and extends the RVT1 burden test of Morris and 
Zeggini (2010). The latter test has also been extended in the Accumulation of Rare 
variants Integrated and Extended Locus-specific test (ARIEL), to incorporate vari-
ant quality scores, such that variants of lower quality are appropriately down- 
weighted (Asimit et al. 2012).

Simulations were used by Mägi et al. (2012) to compare the power of GRANVIL 
under different strategies for assaying rare genetic variation: (1) re-sequencing of all 
samples; (2) imputation of GWAS data to a high-density reference panel; (3) directly 

Table 1 Summary of burden tests and their assumptions

Burden test Assumptions

CAST (Morgenthaler and Thilly 2007) Case–control
Same direction of effect
Unit weights
Few common mutations

CMC (Li and Leal 2008) Case–control
Same direction of effect
Unit weights

WSS (Madsen and Browning 2009) Case–control
Same direction of effect
Rare variants stronger effect than common

RVT1; RVT2 (Morris and Zeggini 2010) Same direction of effect
CMAT (Zawistowski et al. 2010) Case–control

Same direction of effect
Unit weights

VT (Price et al. 2010) Same direction of effect
Exists optimal MAF threshold T such that variants 
with MAF < T are more likely to be functional

Data-adaptive (Han and Pan 2010) Unit weights
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genotyping all variants present on the reference panel; (4) genome-wide association 
study (GWAS) data. Although the gold standard re-sequencing approach attains 
the highest power, it is only slightly better than the imputation approach with an 
appropriate reference panel. This suggests that the application of extended collaps-
ing methods to imputed data has the potential to detect rare variant associations, 
without the high costs of sequencing.

Power is evaluated under various settings that dictate the spectrum of causal vari-
ants and for three different sizes of reference panel (ascertained from the same pop-
ulation as the cohort sample): 120, 500, and 4,000. A panel of 120 individuals is 
equivalent to the CEU sample of the 1000 Genomes Project, while size 500 coin-
cides with the European samples (CEU, FIN, IBS, TSI, GBR) of the 1000 Genomes 
Project, and 4,000 individuals corresponds to what will be available from the 
UK10K Project. Causal variants are randomly selected based on two parameters: 
the maximum MAF of any causal variant and the maximum total MAF of the causal 
variants in aggregate.

As anticipated, the burden test applied to GWAS data alone consistently per-
forms poorly to detect rare variant associations and has the lowest power among the 
four approaches to assaying rare genetic variation, as very few rare variants within 
the region are typed directly. As the reference panel size increases, the power based 
on genotyping all variants on the reference panel approaches that of sequencing and 
the power based on imputation approaches that of genotyping. Moreover, imputa-
tion leads to substantial power gains over GWAS data alone.

In the scenario in which there are only very rare causal variants (MAF < 0.005) 
and the total MAF of the causal variants is only 0.02, there is a general reduction in 
power for all approaches, in comparison to higher frequency causal rare variants 
(MAF < 0.01 and maximum total MAF 0.05). There is a general loss of power in the 
rarer causal variants scenario, since this restriction implies a higher proportion of 
non-causal rare variants, which results in lower power for the burden test, irrespec-
tive of the approach to access rare variants for association testing. Power differences 
between the imputation and genotyping approaches are larger in the rarer causal 
variants scenario since the distribution of causal allele frequencies is more skewed 
to the rarest variants, which are anticipated to be most difficult to impute, irrespec-
tive of the reference panel size.

Results of the simulation study suggest that when there are many very rare causal 
variants (e.g., maximum causal variant MAF 0.005), the relative power of imputa-
tion and directly genotyping all variants present on the reference panel are both 
sensitive to the number of individuals composing the reference panel. Genotyping 
all variants in the reference panel results in a slight power reduction relative to 
sequencing, with smallest differences when a 4,000-individual reference panel is 
employed. As demonstrated by Mägi et al. (2012), such a large reference panel is 
expected to capture most of the rare variation in the study sample, and hence the 
power approaches that of sequencing. For a reference panel of size 500, this direct 
genotyping approach has noticeable reductions from sequencing in the scenario for 
which causal variants are at the very low end of the frequency spectrum (e.g., 
 maximum individual MAF 0.005 and total MAF 0.02 for causal variants), but neg-
ligible differences when the maximum MAF is increased to 1 %. That is, the power 
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gained in using a reference panel of 500 in comparison to size 4,000 is larger in the 
rarer causal variants scenario.

 Identified Associations

The burden test implemented in GRANVIL was used to re-assess the evidence for 
association with rare variants for 14,000 cases of seven complex diseases and 3,000 
shared controls from The Wellcome Trust Case Control Consortium (2007), imputed 
using the “all ancestries” reference panel from the 1000 Genomes Project Phase 1 
reference panel (June 2011 interim release) (Mägi et al. 2012). An accumulation of 
rare variants (MAF < 0.01) in PRDM10 was identified as having genome-wide sig-
nificant evidence of an association with a decreased risk of coronary artery disease. 
In addition, genome-wide rare variant associations with type 1 diabetes were identi-
fied in ten genes (nine risk-increasing, one protective) within the MHC.

Rare variant associations have also been identified in the application of a burden 
test in a whole-genome sequence-based analysis of high-density lipoprotein choles-
terol (Morrison et al. 2013). The burden test in this analysis is a variant of the RVT1 
test of Morris and Zeggini (2010), such that the counts of the number of rare minor 
alleles (MAF < 0.01) for each individual are input in the linear regression model, 
rather than the proportion. Various regional units of analysis are tested, including 
annotated regulatory units and sliding windows of 4 kb. The most significant burden 
test result is from an application to sliding windows, for which the Bonferroni sig-
nificance threshold is 3.73 × 10−8 based on the number of sliding windows, resulting 
in the identification of a statistically significant region on chromosome 4, near 
PARM1 (p-value 2.69 × 10−8).

Genes that were identified in a GWAS as associated with hypertriglyceridemia 
(HTG) were re-sequenced to gain insight on any role of rare variants in this complex 
trait (Johansen et al. 2010). A simple Fisher’s exact-type burden test revealed that, 
across the four HTG-associated genes (APOA5, GCKR, LPL, APOB), there is evi-
dence of an excess of rare variants in individuals with HTG (p-value 6.2 × 10−8). 
Moreover, the proportion of variation contributing to HTG was increased by incre-
mentally considering rare variants in these genes, illustrating that both common and 
rare variants share a role in susceptibility to HTG. A similar approach was applied 
to a candidate gene (and ten of its protein interaction partners) for schizophrenia and 
related neuropsychiatric disorders in the investigation of susceptibility in an isolated 
northern Swedish population (Moens et al. 2011). Patients were found to harbor an 
increased burden of non-synonymous rare variants (p-value 0.018) and the signifi-
cance was even more so when the cases were restricted to the early onset patients 
(p-value 0.0004).

In a GWAS candidate gene rare variant burden analysis for various diseases, 
involving the collapsing to the presence/absence indicators of variants with 
MAF < 0.005 and predicted to be functionally damaging, a noteworthy association 
was identified for multiple sclerosis (Nelson et al. 2012). Upon adjusting for the 
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number of genes tested, IL6 attained p-value 7.1 × 10−3 for an association of func-
tionally damaging rare variants with multiple sclerosis.

 Discussion

Prior to implementing rare variant burden tests, several decisions are required.  
As the unit of analysis is at the region level, consideration of region definition is 
required for all methods. Region definition for burden test analyses is often based 
on functional units, such as genes. Alternatively, sliding windows of a fixed length 
or fixed number of rare/low-frequency variants may be tested for an association. 
The majority of collapsing approaches rely on the choice of an MAF threshold for 
categorizing variants to be aggregated together, and several incorporate informa-
tion from functional annotation, which relies on choosing an appropriate bioinfor-
matics tool.

Selection of a test for rare variant associations is heavily dependent on the under-
lying genetic architecture, and burden tests have been shown to be powerful, pro-
vided that certain assumptions are met. In particular, an implicit assumption of 
burden tests is that all (weighted) rare variants have the same magnitude and direc-
tion of effect on the phenotype, and there is a degree of power loss when this 
assumption is not satisfied. Collapsing approaches are able to achieve high power 
when the majority of the variants are either protective or deleterious, but are prone 
to extreme loss of power when both directions of effect are present in the region of 
interest. That is, collapsing will enrich the signal when all of the rare variants have 
the same affect on disease risk, since a single shared effect is estimated for all of the 
rare variants in the region. Conversely, by estimating a single shared effect, the sig-
nal will be weakened if variants that increase disease risk are collapsed with those 
that decrease disease risk. The presence of non-causal rare/low-frequency variants 
also has a detrimental impact on the power to detect an association, as neutral vari-
ants have a null effect, which dilutes the signals of causal variants.

Collapsing approach rare variant methods have been designed for unrelated indi-
viduals. However, power to detect rare variant associations with quantitative traits 
may be improved by considering family-based designs, which are more likely to be 
enriched for rare variants; in families for which a minor allele is carried by one par-
ent, half of the children are expected to possess it as well (Shi and Rao 2011). 
Powerful adaptive-weighted rare variant association tests that are robust to different 
directions and magnitudes of effect within the locus, as well as population stratifica-
tion, have been proposed by Fang et al. (2012) in a non-collapsing framework. 
Powerful non-burden tests have also been developed as a means of overcoming the 
burden test limitations of power loss due to different effect directions and/or inclu-
sion of nonfunctional variants.
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It is not clear if rare variants in the same gene will have the same direction of 
effect on disease, as the genetic architecture of complex traits is not well under-
stood. It follows that under some disease models, burden tests will still provide a 
powerful approach to detect rare variant associations. As a means of maximizing 
power to detect these associations, burden tests may be applied in parallel with tests 
that allow different directions of effect.
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Rare Variant Association Analysis:  
Beyond Collapsing Approaches

Han Chen and Josée Dupuis

 Introduction

Because most studies do not have sufficient power to detect association with rare 
single nucleotide variants (SNVs), a number of approaches to jointly analyze SNVs 
have been proposed. The earlier approaches consisted of simply counting the num-
ber of rare alleles within a gene or pathway carried by each participant, and evaluat-
ing whether the count of rare alleles was associated with a trait or disease of interest. 
More sophisticated approaches followed, introducing weights to allow for some 
SNVs to have larger effects on the trait, and using of different definition of “rare” 
based on minor allele frequencies, described in detail in Chap. 13. However, these 
approaches had highest power when all rare SNVs had the same direction of effect 
on the trait studied, meaning that all SNVs were either detrimental or beneficial, 
and were seriously underpowered in situations where both detrimental and benefi-
cial SNVs had an influence on the trait of interest, or a large proportion of SNVs 
were neutral.

To remedy the shortcoming of the earlier collapsing approaches, a number of 
methods allowing for different direction of effects were proposed and have been 
evaluated in simulation settings. In the next section, we outline these approaches, 
with emphasis on their commonality, advantages, and disadvantages in the analysis 
of rare SNVs.
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 Methods

All approaches described in this section start from the following basic model:

 

g E Y z f G
c

c ic ii( )éë ùû = + + ( )åg g0

 
(1)

where Yi is the trait of interest, either a quantitative trait or a binary disease indicator, 
zic is the value of the cth covariate in individual i, γc is the effect of the cth covariate 
on the trait Y, Gi is the genotype at all SNVs within a functional unit (gene or path-
way) for individual i, and f(Gi) is a function on the genotypes. The function g(·) is a 
generalized linear model link function. For example, one may use the logit link 
function for binary traits and the identity link for quantitative traits.

More specifically, if f(·) is a linear function, then

 

g E Y z Gi
c

c ic
j
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(2)

where Gij is the number of rare alleles carried by individual i at SNV j and βj is the 
effect of SNV j on the trait.

In joint tests of association, the typical hypothesis of interest can be written as 
H0: βj = 0 for all j, although the specific form of the null hypothesis and the choice of 
test statistic vary according to the approach. For example, a general collapsing test 
statistic may be obtained by setting βj = βwj, where wj is a weight assigned to the jth 
SNV. The wj are assumed to be known, although in practice they are often estimated 
from the observed data. When assuming βj = βwj, (2) can be written as

 

g E Y z w Gi
c

c ic
j

j ij( )éë ùû = + +å åg g b0

 

(3)

and the null hypothesis becomes H0: β = 0. A Wald test, score test, or likelihood ratio 
test can be used to test the null hypothesis in a regression context. Using the notation 
and model defined in (1), we describe a number of methods for joint analysis of rare 
SNVs that go beyond the collapsing methods described in Chap. 13.

 The Data-Adaptive Sum (aSum) Test

The data-adaptive sum (aSum) test proposed by Han and Pan (2010) is one of the 
earliest approaches developed for the scenario when both deleterious and protective 
SNVs are present. The original model used by Han and Pan reduces to (3) without 
covariates although it is simple to extend the approach to include covariates. The 
novelty of Han and Pan’s approach rests in the definition of the vector of weight wj, 
which depends on the observed data in the following way. Han and Pan defined b̂Mj  
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as the estimate of the effect of SNV j in the model with a single SNV included (M 
stands for marginal model), and PMj as the p-value for the test H0: βMj = 0. Then, for 
a pre-specified cutoff α0, Han and Pan suggested setting wj = −1 if b̂Mj < 0  and 

PMj £a0 , and wj = 1 otherwise. The choice of threshold α0 will influence the power 

of the test. In the case of α0 = 0, all wj = 1 and the approach reduces to an unweighted 
collapsing test, where the rare SNV count is tested for association with a trait. In the 
case of α0 = 1, wj is set to the sign of b̂Mj , the marginal effect of each SNV.

Han and Pan recommended using a score test to evaluate the association between 

j
j ijw Gå  and the trait of interest. However, because the wj’s are selected based on  

the significance and sign of the single SNV estimated effects, using the asymptotic 
distribution to assess the significance of the score test would lead to inflated type-I 
error rate. To surmount this problem, Han and Pan proposed a permutation approach, 
where phenotypes (and covariates if applicable) are permuted among unrelated indi-
viduals and the procedure is repeated, selecting the most appropriate wj for each 
permuted dataset and computing the score statistic for association. Because signifi-
cance thresholds in gene-based genome-wide studies are typically in the order of 
10−6, a large number of permutations would need to be performed in order to get 
accurate permutation p-values, which could render this procedure impractical. To 
alleviate this issue, Han and Pan evaluated a second approach to estimate the signifi-
cance of their adaptive test by assuming that the distribution of the score statistic 
follows a shifted chi-square distribution of the form a bc1

2 + , where a and b are 
parameters estimated from the permutation distribution. Estimation of a and b can 
be performed with a few hundred permutations, and this greatly increases the effi-
ciency of the procedure. In their evaluation, Han and Pan used only 100 permuta-
tions to estimate a and b, and compared the p-value obtained under the shifted χ1

2 
assumption to a more typical permutation test with thousands of permutations.

Han and Pan performed extensive simulation studies, showing that their approach 
outperforms collapsing tests in many scenarios. Although the evaluation of aSum 
using the reduced number of permutations and the shifted χ1

2 assumption appears to 
yield the correct type-I error, they cautioned that this approach should be more thor-
oughly studied and that the permutation distribution without this shifted χ1

2 assump-
tion is preferable, when feasible, to assess the significance of the test statistic. Given 
that Han and Pan explored the accuracy of the shifted χ1

2 distribution at the α = 0.05 
level only, and not in the tail when the accuracy is most important, this warning by 
the authors seems warranted.

The greatest advantage of the Han and Pan’s approach is the gain in power  
over collapsing approaches when both deleterious and protective SNVs influence 
the trait of interest. However, there are a number of shortcomings to the approach. 
First, the permutation procedure greatly increases the computational burden. 
Second, the method is only applicable to unrelated individuals because the permuta-
tion procedure assumes that observations are interchangeable, and hence indepen-
dent. This assumption will be violated in family samples and may be too restrictive 
in  unrelated samples with cryptic relatedness, as would be present in population 
isolates. Finally, Han and Pan’s approach will be most powerful when all SNVs 
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have the same magnitude of effects because of the simple +1/−1 weighting scheme. 
Because it is expected that some SNVs may have a large effect on the trait of inter-
est, and that some SNVs may have no effect at all, a number of approaches were 
proposed to address this weakness.

 Step-Up Method

Hoffmann et al. (2010) proposed a general step-up approach to allow SNVs to 
have different effect on the trait, taking into consideration that some SNVs may 
have no effect at all. Model (3) is also the basis for the step-up approach, although 
their original model does not allow for inclusion of covariates. However, the 
approach could easily accommodate covariate adjustments. Again, the difference 
in the step- up approach from other proposed rare SNV methods comes down to 1) 
the choice of test statistic, and 2) the choice of weights wj.

To evaluate the association between SNVs and trait, Hoffman et al. (2010) sug-
gested using the score test with empirically derived variance:
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2 . This statistic can be computed effi-

ciently for both binary and quantitative traits. Inclusion of covariates can be accom-

modated by replacing Y  by m̂i , where ˆ ˆ ˆm g gi

c

c icz= +å0  for continuous traits and 
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0  for binary traits, with ĝ 0  and ĝ c  estimated under the 

null hypothesis of no rare variant influence on the trait. When the weights are 
known, this score statistic follows asymptotically a χ1

2 distribution. However, the 
optimum weighting scheme is usually unknown, and the authors proposed various 
ways of setting the weights wj to maximize power.

Hoffman et al. (2010) proposed to use weights of the form w a s vj j j j= , where 
aj is a continuous weight, sj depends on the direction of effect, as in the Han and 
Pan’s approach above, and vj is an indicator variable specifying whether SNV j 
belongs in the model (i.e., has a nonzero effect on the trait studied). This model 
addresses two of the shortcomings of the Han and Pan’s approach. First, it takes 
into account that some SNVs may be “noise” SNV and have no effect on the trait. 
Secondly, the aj ’ s allow for SNVs to have different effect sizes. Although this is a 
very general model, one has to define aj, sj, and vj in order to perform a test of 
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association. In the next paragraph, we describe some options that Hoffmann et al. 
(2010) proposed for setting the components aj, sj, and vj.

The term aj allows for SNVs to have different magnitude of effect on the trait. 
If one assumes that rarer SNVs have a larger effect on the trait, a natural choice 
for aj  is the Madsen–Browning weight function (2009) that depends on the allele 

frequency and are proportional to 
1

1ˆ ˆp pj j-( )
, where p̂ j  is the estimated minor 

allele frequency of SNV j. A more general form for aj is the beta function with 
parameters α and β. Setting α = β = ½ is equivalent to the Madsen–Browning weight 
(2009). Wu et al. (2011) proposed using α = 1 and β = 25. If one assumes that all 
SNVs have the same effect on the trait, then one should give equal weights to all 
SNVs by setting aj =1 . A comparison of these three weighting schemes is pre-
sented in Fig. 1.

The other components of the weighting function, sj, allow for SNVs to have dif-
ferent direction of effect sj = - +( )1 1or . Values of sj are usually set based on the 
observed data. As described above, Han and Pan (2010) proposed an approach for 
setting sj based on the sign (and significance) of the regression coefficient. Hoffmann 
et al. (2010) proposed a modified approach that is computationally more efficient 
when there are no covariates. For binary traits, sj = -1  when the SNV is more 
prevalent in controls, and +1 otherwise. For continuous traits, sj is the sign of the 
correlation coefficient between the additively coded SNV and trait.

The final components of the weighting function, vj, determine which SNVs are 
allowed to enter the model and hence are assumed to influence the trait. Values of vj 
may be determined using prior information, such as functional annotation (e.g., vj 
for non-synonymous SNVs), or may be data-driven (e.g., v pj j= <1 0 01if ˆ . ). 
Hoffmann et al. (2010) proposed an iterative procedure for setting vj  called the 

Fig. 1 The weighting 
schemes as a function of 
minor allele frequency 
(MAF)
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“step-up” approach that is akin to forward selection in regression. First, all models 
with only one SNV are evaluated and the model with the largest score statistic is 
selected. Then, all models including that first selected SNV and one other SNV 
are evaluated. The score statistic for the best model with two SNVs is compared to 
the score statistic including only the best SNV; if the model with two SNVs has a 
higher score statistic than the model with one SNV, the procedure continues includ-
ing SNVs in the model in this iterative fashion until the score statistic no longer 
increases.

Statistical significance of the final score statistic is evaluated empirically, per-
muting the trait values among all individuals and performing the step-up procedure 
for each permutation. The final p-value is the proportion of permutation datasets 
with a score statistic higher than the observed score statistic. The procedure has been 
implemented in an R package thgenetics (http://cran.r-project.org/web/packages/
thgenetics/index.html). Although the R package does not allow for covariate adjust-
ment, there is nothing in the theoretical development of the approach that would 
prevent inclusion of covariates. The R package is fairly efficient when analyzing a 
moderate number of SNVs (~20), but becomes highly computationally intensive 
with larger number of SNVs (~100) although the implementation allows the users 
to analyze subsets of SNVs that are then combined into a single test statistic (the 
“pathway” option).

The step-up approach is very general and encompasses many of the previously 
described collapsing tests and approaches. For example, if sj is set according to the 
sign and significance of the regression coefficient from the marginal model, with 
vj =1 , we are back to the Han and Pan’s approach. If the aj is set to the Madsen–
Browning weights, also with vj =1 , then we get the Madsen–Browning test. 

However, the permutation procedure required by both the Hoffman et al. and the 
Han and Pan’s approaches poses a challenge for their genome-wide implementation. 
Moreover, the permutation approach is valid when observations are independent 
and therefore not appropriate for family samples without omitting related samples 
or adapting the permutation procedure to account for correlated observations, an 
issue that remains a challenge.

 Sequence Kernel Association Test

Despite both the Han and Pan (2010) and Hoffman et al. (2010) approaches not having 
an implicit assumption that all SNV effects are in the same direction, the computa-
tional limitation imposed by the required permutation procedure is a drawback. Wu 
et al. (2011) proposed the sequence kernel association test (SKAT), a method that 
accommodates SNVs with different direction of effects and does not require permu-
tation. SKAT is based on model (2), and the null hypothesis of interest is H0: βj = 0 
for all j. However, because βj cannot be reliably estimated for rare SNVs, Wu et al. 
(2011) assume that each βj follows an arbitrary distribution with a mean of zero and a 
variance of wj

2τ, where wj is a known weight for SNV j and τ is a variance component. 
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A test of H0: βj = 0 for all j is equivalent to testing H0: τ = 0. Wu et al. (2011) propose 
to perform a test of this latter hypothesis using a variance- component score test for 
a mixed model, assuming γc are fixed effects and βj are random effects. The test 
statistic Q Y GWWG Y= -( ) -( )¢¢

ˆ ˆm m , where m̂  is the predicted mean of Y under 
the null hypothesis, K = GWWG’ is the weighted linear kernel matrix, W is a matrix 
whose diagonal elements are wj and non-diagonal element are 0, and G is the N × J 
matrix of additively coded genotype. Note that ˆ ˆ ˆm g g= +å0

c
c cz  for continuous 

traits and ˆ ˆ ˆm g g= +
æ

è
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- ålogit 1
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c
c cz  for binary traits. In the special case where Y is 

binary and there are no covariates, the SKAT statistic is equivalent to the C-alpha 
test proposed by Neale et al. (2011). In the C-alpha statistics, each rare SNV has the 
same probability of occurring in cases and controls under the null hypothesis of no 
association. Excess occurrence in cases or in controls is taken as evidence for asso-
ciation. A measure of excess occurrence is aggregated over all SNVs to create the 
C-alpha statistic. The SKAT statistic can be seen as a generalization of the C-alpha 
test, allowing for continuous traits and covariates or equivalently, the C-alpha test is 
a special case of a SKAT statistic. Under the null hypothesis, Q follows a weighted 

sum of χ1
2 statistics, Q

j

J

j j~ ,
=
å

1
1
2l c  with λj estimated from the eigenvalues of a func-

tion of the weighted genotype covariance matrix. Therefore, evaluation of the sig-
nificance of Q can be achieved analytically without resorting to permutation. The Q 
statistic can be re-written as the sum of the score test for each individual SNV: 
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m̂ . When using equal weights (W is the iden-

tity matrix, all wj = 1), the SKAT statistic is equivalent to the sum of squares of the 
marginal score statistics (SumSqU, or SSU) proposed by Pan (2009). This form of 
the Q statistic is extremely useful when analyzing multiple cohorts. For example, 
one could use inverse variance weighted meta-analysis to obtain a pooled estimate 
of the score statistic for each variant, and use the meta- analyzed scores in the com-
putation of the Q statistics. Similarly, the asymptotic distribution of the meta-ana-
lyzed Q could be obtained by pooling the genotype covariance matrix to evaluate 
significance.

More generally, instead of the linear function in model (2), SKAT can also take 
a more flexible function f(Gi) in model (1), thus allowing for interactions among 
variants. Assuming the vector f(G) of size N follows a distribution with mean 0 and 
covariance matrix τK, the test statistic Q Y K Y= -( ) -( )ˆ ’ ˆm m  may be used to evalu-
ate the null hypothesis H0 0:t = .

SKAT offers many advantages over other approaches. First, the computational 
efficiency that results from using asymptotic rather than empirical distribution of 
the test statistic under the null hypothesis makes it feasible to apply to genome-wide 
studies. Moreover, the robustness of the test statistic to the direction and magnitude 
of effects offers increased power in scenarios where both deleterious and protective 
SNVs are at play. However, when most SNVs have the same direction of effect, 
SKAT has been shown to be less powerful than a simpler burden tests. For this reason, 
a combination of burden test and SKAT statistic may offer better power.
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 SKAT-O

When most SNVs included in the analysis are functionally related to the trait of 
interest and have the same direction of effect, then a burden test may outperform 
SKAT. Lee et al. (2012) proposed an extension to the SKAT statistic to deal with 
this scenario. They proposed a different class of kernels to use in the SKAT test, and 
the resulting Q statistic derived from this class of kernels is equivalent to a linear 
combination of the burden test and SKAT statistics:

 
Q Q Qr r r r= -( ) + £ £1 0 1SKAT burden with .,

 

When ρ = 0, Qρ reduces to the SKAT statistic; when ρ = 1, Qρ reduces to the burden 

test statistic Q w S
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, which is the square of the score test statistic for 

H0: β = 0 in model (3). For a fixed value of ρ, the distribution of Qρ follows a weighted 
sum of χ1

2 distribution, with weights estimated from the eigenvalues of a function of 
the weighted genotype covariance matrix. However, Lee et al. (2012) suggested a 
data-driven approach to setting the value of ρ to optimize power by finding the mini-
mum p-value over all values of ρ. They provide a procedure to evaluate the signifi-
cance of this new test statistic that takes into consideration the fact that the p-value 
was minimized over ρ, a nuisance parameter which is present only under the alter-
native hypothesis. Again, the procedure does not require permutation and is highly 
computationally efficient. The name of this new procedure is SKAT-O, where “O” 
stands for optimized. Via simulations, Lee et al. (2012) showed that this procedure 
has close to equivalent power to the burden test when a large proportion of the SNVs 
have the same direction of effect, and power close to the original SKAT statistic in 
the context of SNVs with different direction of effect.

Wang et al. (2012) also proposed a joint test (Score-Joint), combining a burden 
test, equivalent to the square-root of Qburden above, with a test of the variance com-
ponent parameters τ defined in the SKAT section. Compared with SKAT-O, it is a 
joint test on two parameters, and it requires permutation to evaluate significance.

The SKAT-O statistic offers some power advantage over the original SKAT pro-
cedure when the proportion of influential SNVs is large and most SNVs have the 
same direction of effect, at small cost of some added complexity in computation.

 Score-Seq

Lin and Tang (2011) proposed a slightly different procedure to test for association 
between a group of SNVs and a trait of interest. As for all the previous approaches, 
the basis of the method is model (2). In the same spirit as many of the collapsing 
approaches, Lin and Tang’s approach assumes that βj = βwj, where wj is the weight 
assigned to SNV j, and the model reduces to model (3) previously described. To test 
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the null hypothesis H0: β = 0, assuming a known vector of weights w, Lin and Tang 

derived the score statistic, which is of the form U Y G w
i
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 when there is no covariates involved (but a 

more complex form with covariates). Note that ŝ 0
2 1= -( )Y Y  for binary trait and 

the estimated variance of Y for quantitative trait. The statistic T U V= /  may be 
used to determine if the rare SNVs have an effect on the trait Y. The power of the 
test will depend on the choice of w, with optimum power achieved when wj = βj, the 
true (but unknown) value of the effect size parameter. Lin and Tang’s approach dif-
fers from the typical weighted collapsing method in setting the values of the weight 
vector. When considering weighting schemes, Lin and Tang proposed two ways to 
achieve maximum power: (1) Maximizing the test statistic over multiple weight 
vectors and (2) setting weights from the Estimated REgression Coefficients (EREC). 
We describe both sets of weights below.

 Maximizing the Test Statistic Over Multiple Weight Vectors

Given L weight vectors, w1, … wL, each of length J, that include the weights for each 
of the J SNVs in the analysis, one can compute L score statistics (Tl) to test the 
association between the trait and the weighted genotypes formed by Gwl. Ling and 
Tang suggested using the maximum test statistic over all weight vectors 
T Tmax l=( )max  to test for association between the SNVs and the trait. They derive 

the asymptotic distribution of Tmax by assuming that the Tl statistics follow a multi-
variate normal distribution with mean 0, and with an estimated covariance matrix 
that can be computed from the data and weight vectors. Significance of the test can 
be evaluated asymptotically using the equation:

 
Pr Pr , ,T t T t T tLmax max max max .>( ) = < ¼ <( )1 1-

 

For example, one could evaluate the T statistic for equal weight (wj = 1 for all j), the 
Madsen–Browning weight and the Wu weight, and use the maximum statistic over 
these three weight vectors, taking into account that the statistic was maximized over 
three weight functions when evaluating significance. This may offer increased 
power over collapsing approaches using a single set of weights. One could also 
define the weights with a variable threshold based on allele frequencies to determine 
inclusion of SNVs, and maximize over multiple allele frequency thresholds. This is 
akin to the variable threshold (VT) test proposed by Price et al. (2010), with the 
added advantage that significance may be evaluated without the need for computa-
tionally intensive permutations.

One of the greatest advantages of this approach is the ability to evaluate empirically 
the significance of the test statistics when multiple weight functions are evaluated. 
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In practice, because the trait etiology is often unknown and one does not know, a 
priori, which rare SNVs influence the trait, investigators often evaluate multiple 
weight functions, which may involve restricting which SNVs are included in the 
test, based on function or other annotation, or by relaxing the definition of “rare” to 
allow common SNVs to be included. However, correction for multiple testing is 
often performed using a simple Bonferroni correction, leading to overly conserva-
tive tests because the correction does not take the correlation of the test statistics 
into consideration. The ability to properly correct for multiple testing induced by 
the evaluation of multiple weights function is a great addition to the literature.

Nevertheless, the approach would still have low power in the presence of both 
deleterious and protective rare SNVs, prompting Lin and Tang to explore a different 
approach to determine the optimal weight vector.

 Estimated REgression Coefficients

As noted earlier, the most powerful test would be obtained by setting wj = βj, the true 
but unknown value of the parameter. While βj may be estimated from the data, it will 
likely be poorly estimated because of the low frequency of the tested alleles. Lin and 
Tang suggested setting wj j= +b̂ d , where δ is a given constant. This is similar to 

Han and Pan’s earlier approach, where wj was dependent on the significance and 
sign of the beta estimate, although Han and Pan (2010) ignored the magnitude of the 
effect estimates. Because the data is used in setting the optimum weights, signifi-
cance is evaluated using a permutation approach, where the phenotype value Y (and 
covariates if applicable) are permuted among individuals, and both weights and test 
statistics are recomputed with permuted data. It is important to permute both trait 
and covariates together; the null hypothesis is evaluated by breaking the relationship 
between genotype and trait, but keeping the relationship between the trait and 
covariates intact. Lin and Tang implemented this approach into the software Score- 
Seq, with an adaptive permutation test that selects fewer permutation iterations for 
large p-values but increases the number of permutation iterations to get more preci-
sion for low p-values.

The authors recommend setting δ = 1 for binary traits and δ = 2 for standardized 
quantitative traits when the sample size is less than 2,000. The authors have not 
explored the effect of varying δ on power.

The authors compared the multiple weight evaluation approach and Estimated 
REgression Coefficients (EREC) method with other available methods, namely the 
collapsing approach by Madsen and Browning (2009), the variable threshold 
approach proposed by Price et al. (2010), and SKAT. They showed the advantage 
of evaluating multiple weight functions over most collapsing tests when all SNVs 
had the same direction of effect. They also showed that EREC has a clear advan-
tage over SKAT when all SNVs have the same direction of effect with no neutral 
SNVs included, a fact that was acknowledged by Wu et al. (2011) and remediated 
with the introduction of the SKAT-O statistic. In the presence of both deleterious 
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and protective SNVs, Lin and Tang (2011) also demonstrated an advantage of 
EREC over the SKAT statistic, claiming that the gain in power is due to the overly 
conservative asymptotic evaluation of the significance of SKAT statistic, while 
their permutation evaluation is not conservative. However, they acknowledge that 
the SKAT method is more computationally efficient than the EREC test.

 Kernel-Based Adaptive Cluster

Liu and Leal (2010) proposed the kernel-based adaptive cluster (KBAC) approach, 
which classifies genotypes into groups based on multi-locus genotype patterns. 
Their method can be formulated using model (1) defined earlier.

For a set of J variants, there are at most 3J genotype groups. However, when test-
ing rare variants, the number of observed genotype groups may drop dramatically 
because of the low minor allele frequency and linkage disequilibrium. Given J 
SNVs, the M + 1 distinct genotype patterns are denoted by P P PM0 1, , , and P0  rep-
resents a pattern with no rare alleles. Using the model defined in (1), Liu and Leal 
(2010) let f(Gi) = ηKm for individual i with genotype pattern Pm, where the kernel Km 
is estimated from the data. The null hypothesis H0: η = 0 is evaluated using a score 
test to determine if there is some association between genotype patterns and pheno-
type. Because the kernel is data-driven, a permutation procedure is implemented for 
p-value evaluation.

Liu and Leal proposed (2010) three types of kernels for case–control designs: 
hyper-geometric kernel, marginal binomial kernel, and asymptotic normal kernel. 
Their evaluation of the approach focused on the hyper-geometric kernel, defined as
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where N1 and N0 are the number of cases and controls, respectively, with N N N= +1 0 , 
and Nm is the number of individuals with genotype pattern Pm among which there 
are Nm

1 cases and Nm
0 controls. The kernel is different from the kernel in SKAT, 

because it is data-driven and depends on the genotype–trait relationship. Appropriate 
kernels for quantitative trait analyses were not proposed.

When there are no covariates, the score statistic from the logistic regression 
model (1) reduces to the KBAC statistic (up to a constant scalar):
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Basu and Pan (2011) suggested that KBAC might not perform well when there 
are both deleterious and protective variants, and when the proportion of causal vari-
ants is small. However, compared with other approaches, KBAC is attractive in rare 
variants association analysis because it allows for interactions among variants, by 
testing genotype patterns of multiple variants as a group, rather than simply sum-
ming up genotypes or test statistics from individual variants.

 Discussion

All approaches described in this chapter use the same underlying model linking a 
trait to rare SNV genotypes, described in (1). Many other approaches for rare variant 
analyses have been proposed in the literature. Two examples of non-regression- based 
approach include the replication-based test (RBT) proposed by Ionita-Laza et al. 
(2011) and the functional principal component analysis (FPCA) introduced by Luo 
et al. (2011)

The RBT was developed for case–control designs and looks for more frequent 
occurrences of mutations in either cases or controls. Enrichment in cases is mea-
sured by a weighted sum of indicators of higher allele frequency in cases compared 
to controls, where the weights are data-driven and are higher for variants with larger 
difference in allele frequency between cases and controls. Because rare variants 
may be protective, a similar statistic for enrichment in controls is computed, and the 
RBT statistic is defined as the maximum of the two enrichment statistics. Statistical 
significance is evaluated by permutation. Compared with burden tests, RBT is less 
sensitive to the presence of both deleterious and protective variants, but power is 
reduced when the proportion of causal variants is low.

Luo et al. (2011) proposed the FPCA approach, which takes both rare variants 
and their genomic locations into consideration. From a functional data analysis 
point of view, they treat the positions as a continuous variable and define the geno-
type of each individual as a function of positions. By using data reduction and 
smoothing techniques, FPCA overcomes the high-dimensionality and multicol-
linearity issues in multivariate tests and collapsing methods, and is less sensitive to 
sequence errors and missing data. However, the multivariate nature of the Hotelling’s 
T2 test performed after reducing the dimension of genotype data using principal 
components may hamper power over lower dimensional methods described in this 
chapter. When the correlation between rare variants is low, FPCA introduces extra 
computational burden, but may not have much power gain compared to multivariate 
tests on the original genotype data. Also, FPCA does not adjust for covariates and is 
not directly applicable to quantitative traits, although such extensions would be 
straightforward.

In an ideal world, one would have infinite data and would be able to assess the 
effect on the phenotype of each rare variant individually. However, because of limits 
in sample sizes imposed by budget constraints and also simply by the availability of 
cases for certain rare diseases, getting reliable estimate of the effect of rare SNV on 
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the quantitative trait or disease of interest is often not feasible. Therefore, additional 
assumptions are needed in order to identify rare SNVs associated with a phenotype. 
The rare variant approaches included in this chapter differ in their assumptions. 
Obviously, the closer the assumptions are to the “truth,” the more effective the 
approaches will be at identifying SNVs and genes that are important in disease etiol-
ogy. The most powerful approach will often depend on the true trait model, which 
unfortunately remains unknown for most traits under investigations. To a lesser 
extent, the choice of test statistic will also affect the ability to identify the causal vari-
ants. Table 1 summarizes the non-collapsing rare variants association analysis 
approaches mentioned in this chapter. Below we discuss differences between the 
approaches presented in this chapter, and how these differences may affect the ability 
to identify SNVs and genes influencing a quantitative trait or disease of interest.

 Test Statistic and Evaluation of Statistical Significance

The approaches described in this chapter differ by the test statistic used to evaluate 
the null hypothesis of no association. However, they all have one thing in common: 
they strive to use computationally efficient statistics that can be computed genome- 
wide. All approaches use a score test because it is less computationally intensive 
than a likelihood ratio test. Moreover, all approaches strive for efficient evaluation 
of their score test.

In aSum, although permutation is required for evaluation of the score statistic, 
Han and Pan (2010) investigated ways to decrease the computational burden of their 
permutation procedure. Because very small p-values are required when analyzing 
multiple genomic regions, a large number of permutations are typically required to 
estimate such small p-values. Han and Pan (2010) investigated approximation to the 

Table 1 Summary of non-collapsing rare variant association analysis approaches

Test Binary Quantitative Covariates p-Value References

SSU Yes Yes Yes Analytical Pan (2009)

aSum Yes Yes Yes Permutation Han and Pan (2010)

KBAC Yes No Yes Permutation Liu and Leal (2010)

Step-up Yes Yes Yes Permutation Hoffmann et al. (2010)

RBT Yes No No Permutation Ionita-Laza et al. (2011)

C-alpha Yes No No Either Neale et al. (2011)

FPCA Yes No No Analytical Luo et al. (2011)

SKAT Yes Yes Yes Analytical Wu et al. (2011)

Score-Seq Yes Yes Yes Analytical Lin and Tang (2011)

EREC Yes Yes Yes Permutation Lin and Tang (2011)

Score-Joint Yes Yes Yes Permutation Wang et al. (2012)

SKAT-O Yes Yes Yes Analytical Lee et al. (2012)
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permutation distribution by a scaled non-central chi-square, and used a small number 
of permutations to estimate the scaling and shift parameters.

Hoffmann et al. (2010) also used a score statistic and permutation. To improve 
upon Han and Pan’s method in terms of computation efficiency, they determine the 
direction of effect based on the correlation coefficient, doing away with formal testing 
of each variant. In addition, they implemented an adaptive permutation approach, 
where a few initial permutations are used to assess the p-value, and additional permu-
tations are performed only when the p-value is below a certain threshold. While it is 
certainly feasible to apply Hoffman et al.’s approach to a large number of genomic 
regions across the genome, the computational burden of the permutation approach 
prevents large-scale simulation evaluation of the approach.

The SKAT and SKAT-O statistics are also score tests, but with the advantage that 
statistical significance can be evaluated theoretically, without requiring time con-
suming permutation. However, Lin and Tang noted that SKAT can be conservative, 
and suggested that permutation evaluation could improve power, especially for 
small samples.

While both SKAT and EREC offer a general framework to test for association 
between a group of SNVs and a trait using a score test, the difference in their under-
lying assumptions lead to a different score statistics: SKAT assumes that βj follows 
a distribution with mean 0 and variance wj

2τ, while Lin and Tang (2011) assumes 
that βj is of the form βwj. Both methods are univariate tests, but τ is a variance 
parameter with one-sided alternative in SKAT, and β is a location parameter with 
two-sided alternative in Lin and Tang (2011), leading to different statistics with dif-
ferent distributions. While the significance of both score statistics may be evaluated 
empirically, Lin and Tang further propose to set the weights empirically, and because 
the data is used in setting weights, asymptotic evaluation is no longer possible.

KBAC classifies individuals into different groups based on genotype patterns, 
and performs a test on the difference between the proportions of each genotype 
group in cases and in controls. The test is similar to a weighted χ2 test of indepen-
dence. Liu and Leal (2010) used permutation to evaluate statistical significance. 
Noting that the original KBAC statistic suffers when there are both deleterious and 
protective variants within a particular genotype pattern, Basu and Pan (2011) pro-
posed a modified statistic to overcome this issue. KBAC is distinctive in rare variant 
analysis by allowing for interactions, but it may suffer from loss of power when the 
proportion of non-causal variants is high, as the number of genotype patterns 
increases dramatically.

 Missing Data and Imputing Rare SNVs

While most of the methods discussed in this chapter have been evaluated using tar-
geted or exome sequencing, application of the methods could be extended to 
imputed genotypes. Rare SNVs are often poorly imputed in unrelated samples 
because of the low linkage disequilibrium with nearby SNVs. However, familial 
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transmission information, if available, may improve imputation. In model (2), the 
genotypes could be defined as the expected number of rare alleles, or dosage, instead 
of a three category variable indicating the number of rare alleles a person carries. 
Theoretically, all approaches described in this chapter based on model (2) can 
accommodate the use of dosage genotype, although not all software implementation 
can do so.

In the regression framework of model (2), missing genotypes are not allowed. 
One needs to either exclude observations with one or more missing genotypes, or 
impute such missing data. As the number of SNVs included in the analysis increases, 
excluding observations with missing genotypes will greatly reduce the sample size 
and power, even when the genotyping call rate is high. Therefore, most software 
includes some approaches for imputing the missing values. For rare SNVs, one 
option would be to set all missing genotypes to the homozygous major allele, which 
is the most likely genotype. This imputation scheme is easy to implement. However, 
for more common SNVs, it will create bias in allele frequency estimates, which in 
turn could result in false positive results if the missing rate differs in cases and con-
trols. For this reason, SNVs with high missing rates are often omitted from analysis. 
A second approach to fill in missing genotypes is to impute the mean genotype 
value, or dosage, which is equal to twice the rare allele frequency. While this will 
not bias the estimate of allele frequency, this may cause other types of bias. For 
example, if the missingness is not random and participants with missing data are 
more likely to be from the case or control set, or if they have lower or higher trait 
values, then imputing the average dosage may create false association because most 
observations will have a genotype of 0 rare allele, while missing observations will 
have a dosage value of twice the rare allele frequency. This could be more pro-
nounced if the imputation is performed in cases and control separately. The third 
option is to impute the missing data using information on nearby SNV and familial 
transmission, if available. This approach capitalizes on linkage disequilibrium at 
nearby SNVs to more precisely impute missing genotypes. Unfortunately, this type 
of imputation works best for common SNV, but imputation quality for rare SNV can 
be poor, especially if no familial information is available. Again, SNVs with dif-
ferential missingness in cases and controls, or missingness pattern related to a quan-
titative trait studied, could lead to false positive errors. To avoid such bias one can 
omit SNVs with high missing rate, but also test for differential missingness in cases 
or controls, or for association between proportion missing genotypes and a quantita-
tive trait. Wu et al. (2011) showed that for small amount of missingness, imputing 
to the most likely genotypes did not decrease power considerably.

 Choice of Weights to Maximize Power

Weighting schemes are used in most rare variant methods to try to improve power 
to detect association between SNVs and trait. To reach maximum power, a weight-
ing scheme should give close to zero weights to SNVs without effect on the trait, 
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and weights proportional to the effect size for associated SNVs. Because it is 
believed that rarer SNVs will have a larger effect on the trait, several proposed 
weighting schemes depend on the rare allele frequency, such as the Madsen–
Browning and Wu weights. Madsen–Browning weights decrease much more rap-
idly than the Wu weight as the minor allele frequency increases; see Fig. 1. As a 
consequence, the effect of including more common SNVs when using the Madsen–
Browning weight should be small, while more common SNVs would contribute 
more substantially to the test statistic under the Wu or equal weighting scheme. 
Hoffman et al. (2010) also described ways to include functional annotation in deter-
mining the weights, assuming that SNVs that are more likely to be damaging or 
functionally important would have a larger effect on the trait. Such annotation can 
also be incorporated in the SKAT and score-seq weighting schemes, although the 
Han and Pan +1/−1 cannot be easily generalized to take functional annotation into 
consideration. FPCA can also take weighted genotypes instead of original additive 
genotypes and calculate principal components. As prior information becomes more 
precise, methods that can incorporate information on function annotation will be 
most useful.

 Which SNVs to Include in Association Testing

Ideally, only SNVs influencing the trait of interest would be evaluated for association 
with the trait. Unfortunately, one does not know, a priori, which SNVs are causal or 
in LD with causal SNVs, and which SNVs have no effect on the trait. Inclusion of 
“noise” SNVs will lower the power of the test, as will failure to include some causal 
SNVs. Therefore, one has to strike a balance between including too many SNVs, 
with some noise SNVs, and too few SNVs, missing important variants. There are 
two separate issues to deciding which subset of SNVs to include in a test: (1) defini-
tion of the genomic region and (2) selection of SNVs within a region.

While one may wish to evaluate large regions for association, inclusion of too 
many SNVs, many likely to have no effect on the trait, will impede the ability to 
detect true associations. Therefore, it is common to divide large genomic regions 
into smaller analysis units. A natural unit of analysis is a gene level, or if a finer 
division is sought, exons or transcripts may be used to define a genomic region of 
interest. However, most Genome-Wide Association Study (GWAS) findings map 
outside of gene regions, and investigators may wish to evaluate rare SNV in the 
region around GWAS findings (Hindorff et al. 2009). Genomic region boundary 
could be based on conserved regions across species, recombination estimates around 
the GWAS finding, or more agnostically based on sliding windows across the region 
of interest. The sliding window approach could easily be accommodated in the 
framework from Lin and Tang (2011), where the test statistic used is the maximum 
test statistic over a number of weight functions. One can think of a sliding winding 
as putting a weight of zero to all SNVs outside the window being considered, and 
use the method describe in Lin and Tang to get the significance of the maximum test 
statistic over multiple windows within a region. As a clearer picture emerges of how 
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rare SNVs influence traits, we will be able to use prior information to determine the 
best size and boundaries to define genomic regions for investigation. In the mean-
time, one has to explore various ways of defining genomic regions in order to maxi-
mize the chance to detect true associations.

Once genomic regions have been selected, one needs to determine which SNVs 
within the region to include in an association test. Burden tests often restrict analy-
ses to SNVs with a low rare allele frequency, using threshold of 1, 2, or 5 %, and 
similar thresholds may be applied to the methods in this chapter. The optimal allele 
frequency threshold will depend on the frequency of the true causal SNVs, and 
using a too stringent threshold will omit important SNVs and reduce power, while a 
threshold that is too liberal will include too many noise SNVs and also decrease 
power. Variable threshold approaches, such as the one developed by Price et al. 
(2010) or by Lin and Tang (2011), can overcome the issue of having to evaluate a 
single allele frequency threshold. Functional annotation may also be used to try to 
identify SNVs that are more likely to influence the trait. However, recent publica-
tions indicate that there are a lot of functional elements outside of genes, so restrict-
ing analyses to protein-altering SNVs may miss important functional variants. 
Other measures of potential functionality, such as how conserved the region around 
the SNVs is in other species may be fruitful. An alternative is to include all SNVs 
within a region, but to use a weighting scheme to up-weight SNVs that are more 
likely to influence to trait based on annotation, and to down-weight SNVs that are 
most likely neutral. Hoffmann et al.’s approach gives specific examples regarding 
inclusion of prior annotation information in the evaluation of the null hypothesis of 
no association. Incorporating this information can be easily done by using different 
weighting schemes in the SKAT, Score-Seq, or FPCA framework. Obviously, as our 
functional annotation improves, our ability to detect genes and SNVs influencing 
the trait will also improve.

 Meta-analysis

Another consideration when selecting the most suitable approach for analysis of 
rare SNVs is the availability of meta-analysis approaches. In the GWAS context, 
most discoveries were achieved after the formation of large consortia, where meta-
analysis of many cohorts uncovered loci with smaller effect on the traits of interest. 
The need for larger sample sizes may be even more pronounced in the analysis of 
rare SNVs, where a single cohort may have very few individuals carrying rare 
alleles for a particular SNV, so that joining forces with other studies will be crucial 
for discoveries of rare SNV association. Because all approaches provide evaluation 
of the significance of an association test in the form of a p-value, one can use a 
p-value-based approach, such as the Fisher or Stouffer approach, for combining 
results from multiple cohorts. However, methods that directly combine the beta 
estimates from model (2) may offer improved efficiency (Lee et al. 2013; Liu et al. 
2014). Development of efficient meta-analysis approaches will be important in our 
quest to identify rare variants influencing traits of interest.
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 Other Types of Traits

While most traits studied fall in two categories, binary disease status or continuous 
measurements such as blood pressure, lipid levels, or fasting glucose, other pheno-
types of interest may be time-to-event or ordinal/categorical measures. For exam-
ple, one may be interested in studying time to recurrence of cancer, or age of 
development of type 2 diabetes. Some psychiatric disorders may have multiple 
levels of severity and may be best coded as ordinal variables (American Psychiatric 
Association 2000). Some of the approaches above naturally extend to other types 
of phenotypes. For example, Lin and Tang provide details on the application of 
their approach for time-to-event data, although their software implementation does 
not include this option. Chen et al. (2014) extended the SKAT statistic for survival 
traits. Other approaches, such as Han and Pan’s or Hoffmann et al.’s method, could 
easily accommodate survival and ordinal traits using the typical regression frame-
work (Cox proportional hazard model for survival and generalized linear model for 
ordinal data) because the significance is evaluated using permutation. The limiting 
factor is incorporation of these options into user-friendly and computationally effi-
cient software that are easily accessible to investigators with these types of data.

Exome sequencing, exome chip, and whole genome sequencing have opened the 
floodgate on rare variants that were not investigated in the earlier GWAS era, when 
most studies focused on SNVs with frequency >1 %. Our success in identifying key 
genes that influence diseases and traits of interest will rest on the appropriate use of 
statistical tools, and gathering as much knowledge as possible on the potential func-
tion of the variants under study. Hopefully, the combination of these tools will lead 
to exciting new discoveries and will further our understanding of the architecture of 
complex traits.
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Significance Thresholds for Rare  
Variant Signals

Celia M.T. Greenwood, ChangJiang Xu, and Antonio Ciampi

 Introduction

To control the family-wise significance thresholds in genome-wide association 
studies (GWAS), thresholds ranging from 2.5 × 10−7 to 5 × 10−8 have been proposed 
(Browning and Thompson 2012; Dudbridge and Gusnanto 2008; Gao et al. 2010), 
and the latter threshold is in common use. These thresholds have been derived for 
univariate analysis of single nucleotide polymorphisms (SNPs), i.e., common 
genetic variation, and by studying patterns of linkage disequilibrium along the 
genome. The thresholds are well known to vary by population, since the patterns of 
linkage disequilibrium vary, as do the number of common variant sites.

With the recent arrival of large-scale sequencing studies, millions of extremely 
rare or unique genetic variants are being identified, and the number of variants seen 
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in each study increases with the sample size. Due to the rarity of the minor alleles, 
simple univariate tests have little power. In response, many region-based tests of 
genetic association have been developed that use simultaneously all the genetic 
variability in a defined window of the genome to test for association (see Chaps. 13 
and 14 for overviews of many of the recently developed tests). Although each test 
has been shown to have valid type 1 error when used to analyze a single genomic 
region, the joint distribution of such test statistics has received little attention. In this 
situation, any single SNP or variant may participate in several different test statistics, 
by changing window lengths, or allowing adjacent windows to overlap. The thresh-
olds established for GWAS of single polymorphisms will not be appropriate for this 
new context.

Here we discuss several issues that need to be considered in order to set 
genome-wide significance thresholds for whole-genome sequencing studies and 
region-based tests, and we focus particularly on the effective number of indepen-
dent tests.

 Effective Number of Independent Tests

The family-wise error rate (FWER) is defined as the probability of making one or 
more type 1 errors in a set of m tests. If the desired FWER is αFW and all tests are 
independent, then the FWER can be controlled by testing at a smaller significance 
threshold, αC, such that

 
a aFW = - -( )1 1 C

m
.
 

(1)

For large m and for small αFW, a aC m» FW / , which gives the usual Bonferroni 
correction. However, when performing a large number of tests of association with 
genetic information, the tests are highly dependent, especially for nearby SNPs.

In order to control the FWER, therefore, when analyzing many SNPs, Cheverud 
(2001) proposed the idea of calculating an effective number of independent tests, me, 
and then using this number in a Bonferroni-style correction. Using the matrix of cor-
relations between SNP genotypes, he argued that the eigenvalues of this matrix could 
be used to estimate the effective number of independent tests. Let R denote the matrix 
of genotype correlations between a set of m SNPs. If the genotypes are coded as (0, 
1, 2) for the number of minor alleles, then the Pearson correlation coefficient is equal 
to one of the standard linkage disequilibrium (LD) measures. Conceptually, if all 
tests were independent, then all the eigenvalues of R would be 1.0. In contrast, if the 
tests were perfectly dependent, then there would be 1 eigenvalue with value m and 
the remaining m -1  eigenvalues would be 0. Cheverud (2001), therefore, proposed 
to estimate the effective number of independent tests, me, by a linear function of the 
variance of the eigenvalues, Var(λ) (see Table 1).
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Many other estimators have since been proposed for estimating the effective 
 number of independent tests when analyzing a large number of single SNPs (i.e., in 
GWAS) (Table 1). Several of these methods are also based on the eigenvalues from the 
matrix of SNP correlations (Gao et al. 2008; Patterson et al. 2006; Li and Ji 2005). 

Table 1 Estimators of the effective number of independent tests for single-marker tests of 
association

Reference Effective number of tests Comments
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Among these, Patterson et al. (2006) proposed a moment estimator derived from the 
asymptotic distribution of the largest eigenvalue for a correlation matrix of normally 
distributed random variables; their focus was on population structure rather than sig-
nificance testing. Some authors have used the correlations directly without calculating 
the eigenvalues (Moskvina and Schmidt 2008; Chen and Liu 2011), and in fact the 
variance of the eigenvalues can be expressed as a function of the trace of the correla-
tion matrix (Cheverud 2001; Moskvina and Schmidt 2008). Recently, Li et al. (2012) 
proposed a method based on the correlation matrix of the p-values, rather than the 
genotypes, an estimator slightly altered from Li and Ji (2005), where eigenvalues 
greater than one are distinguished from those less than one when calculating me. After 
estimating the effective number of independent tests, formula (1) can be used to esti-
mate the FWER (Šidák 1967) or inverted to estimate the necessary significance 
threshold for a desired value of FWER.

For rare genetic variation, however, the question of significance thresholds needs 
to be considered differently. Firstly, the correlations tend to be very low between 
rare genetic variants and any nearby SNP. For a singleton variant (e.g., seen in only 
person i), it is easy to derive that the correlation between the singleton and another 
SNP, denoted x, is

 

r
N

N

x x

s
i

x

=
-

-
1

 

where N is the number of people, xi is the number of minor alleles carried by the 
person i at the SNP x, and x  and sx are the mean and standard deviation of the minor 
allele at the SNP x. For large N, this correlation will always be very small.

Although correlations between extremely rare genetic variants and more com-
mon variants are always low, testing for association with rare variants usually 
involves simultaneously assessing association with a set of variants in a defined 
region. Therefore, the more relevant correlation for rare variant tests is between two 
test statistics or p-values. In addition to the dependence on linkage disequilibrium 
patterns and minor allele frequencies (MAFs), these correlations will depend on the 
window size, the degree of overlap between adjacent windows, and the chosen test 
statistic including the weighting factors used for different variants. It is not neces-
sarily straightforward to calculate these correlations, and the complexity varies with 
the chosen test statistic.

For a single choice of window sizes, genome-wide significance thresholds for 
window-based tests have recently been estimated (Zuk et al. 2014) using an exten-
sion of the approach of Lander and Botstein (Lander and Botstein 1989) that looked 
at the largest statistic as being the maximum deviation from an Ornstein-Uhlenbeck 
diffusion process (Uhlenback and Ornstein 1930). These authors assumed that sta-
tistics from nonoverlapping windows would be uncorrelated, and hence the correla-
tion is determined solely by the degree of overlap. However, for several commonly 
used rare variant statistics, we have seen substantial correlations between nonover-
lapping windows. Furthermore, this method cannot adjust for correlations between 
repeated analyses with different window definitions. Therefore, a more general 
approach would be useful.
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 Estimation of the Effective Number of Independent Tests 
for Whole-Genome Sequencing Region-Based Tests

We have recently proposed (Xu et al. 2014a) a computationally conservative empirical 
method for estimating the effective number of independent tests, given a chosen 
analytic strategy and for a specific data set. Essentially, we do not expect much cor-
relation between region-based test statistics that are far apart or on different chro-
mosomes. Therefore, we have proposed a strategy of evaluating the effective number 
of independent tests in smaller genomic regions and then extrapolating from these 
small regions to the whole genome.

Although most of the methods in Table 1 for estimating the effective number of 
tests were developed for use with single SNP analyses, we have compared the cor-
relations, and the resulting estimates of me, for region-based SKAT (Wu et al. 2011) 
statistics. The SKAT test statistic is defined by
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where y is the phenotype, m̂  is the predicted mean of y under null hypothesis, and 
K GW GW= ( )( )¢  is the SKAT kernel matrix, which depends on the genotype 
matrix G, assumed to be centered, and a choice of variant weights W. Let Ti and Tj 
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sis, the correlations between two SKAT statistics can be analytically calculated as

 

cor cor cor
tr

tr tr
T T Q Q e K e e K e

K K

K K
i j i j i j

i j

i j

, , ,( )® ( ) = ( ) = ( )
( )

¢ ¢

2 22( )
 

Note that since the SKAT test statistic is a score test calculated under the null 
hypothesis, the correlation matrix does not depend on the phenotypes. Using these 
correlations, we have calculated me using all the methods listed in Table 1, using the 
pilot data on chromosome 3 from the UK10K project. We then estimated the signifi-
cance threshold needed to control FWER at 0.05 by 0.05/me.

The UK10K project is undertaking whole-genome sequencing and analysis of 
approximately 10,000 individuals from the UK with the goal of understanding the 
contribution of rare genetic variation to common traits and diseases (www.uk10k.
org). For region-based analysis of rare variants in this consortium, an initial analysis 
plan defined regions to contain 50 rare variants, where “rare” is either MAF < 0.01 
or MAF < 0.05. Adjacent regions were allowed to overlap by 25 rare variants. To 
study correlation patterns, we used a portion of this sequencing data (chromosome 
3) from an interim release, including 2,432 individuals and 2,577,674 genetic 
 variants. For an MAF threshold of 0.01, there were 74,156 regions defined, derived 
from 1,853,923 rare variants at this threshold.

Significance Thresholds for Rare Variant Signals

http://www.uk10k.org/
http://www.uk10k.org/


174

For comparison, we also performed a simulation study to obtain empirical 
estimates of me. For each of the 2,432 sequenced individuals, we generated 1,000 
sets of normally distributed phenotypes. For each set, all windows on chromosome 
3 were analyzed with SKAT using the asymptotic p-value estimate based on the 
Davies method and hence leading to 1,000 sets of results under the null hypothesis, 
each spanning chromosome 3. An empirical estimate of the significance threshold, 
αC, for a desired FWER of 0.05 (i.e., aFW = 0 05. ) can then be obtained by (1) find-
ing the minimum p-value for each of the 1,000 simulation sets and then (2) selecting 
the fifth percentile of these minimum p-values or the 50th smallest value. Then it 
follows that ˆ ˆ/me C=a aFW .

To evaluate how estimates of me vary as a function of the number of windows 
analyzed, we divided chromosome 3 into subsections of varying size and calculated 
the effective number of independent tests in each subsection, using all the methods 
described in Table 1 as well as the simulations. Specifically, we divided chromo-
some 3 into as many as 1,024 equally sized subsections of 72–73 windows each and 
then into a range of larger subsections. Using the methods based on correlations and 
eigenvalues, the largest subsections that we examined contained 2,000 windows, but 
for the simulation-based approach, we were able to work with all of the 74,156 tests 
on chromosome 3 simultaneously.

In Fig. 1, the estimated significance thresholds controlling the FWER are plotted 
against Bonferroni thresholds as a function of the number of tests. Both axes show 
- log . / *

10 0 05 m ; for the x-axis, m m* = , the number of windows being tested in a 
subsection of chromosome 3, and for the y-axis, m*=m̂e, the estimated number of 
independent tests using different estimation methods. The points in Fig. 1 are the 
mean estimates of me across all subsections of the same size. Figure 1 shows, there-
fore, how the empirically derived estimates of the significance thresholds scale with 
the size of the genomic subsection are being analyzed, and it can be seen that for all 
methods, the relationship is linearly increasing with all slope estimates very close to 
1.0. However, the various methods for estimating me from the correlations or eigen-
values give quite different results. Cheverud’s (2001) estimate tends to be almost 
the same as the Bonferroni correction; in contrast, the estimate from the formula by 
Patterson et al. (2006) estimates a significance threshold that is substantially too 
large and extremely variable. The methods that seem to agree best with the simula-
tions in Fig. 1 are either Li and Ji (2005) or Li et al. (2012).

We therefore can conclude that it is feasible to extrapolate from a small genomic 
region to the whole genome to obtain estimates of the necessary genome-wide sig-
nificance thresholds. However, estimating me from the correlations requires evalua-
tion of a very large number of correlations, and furthermore, calculation of 
eigenvalues of these matrices may prove too computationally challenging for 
some computer systems or very large numbers of windows. Therefore, the largest 
subregions we examined here using the correlation-based methods contained 
2,000 windows. In contrast, although the simulations used substantial computer 
time, we were easily able to obtain estimates of significance thresholds for the full 
length of chromosome 3. Table 2 shows not only the numbers corresponding to the 
points in Fig. 1 but also the standard deviation measured across the subregions. 
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Fig. 1 Empirical significance thresholds estimated from chromosomal sections of different sizes, 
using several methods that are based on correlations and one simulation-based set of results

Table 2 Estimates of −log10 of the required significance threshold for subregions containing 
various numbers of tests

Number of test statistics in the subregions

Method for estimating 
significance levels 125 250 500 1,000

Bonferroni 3.40 3.70 4.00 4.30

Simulation 3.16 (0.102) 3.57 (0.090) 3.77 (0.080) 4.06 (0.069)

Cheverud (2001) 3.39 (0.018) 3.69 (0.011) 4.00 (0.006) 4.30 (0.002)

Li and Ji (2005) 3.25 (0.055) 3.55 (0.045) 3.84 (0.036) 4.14 (0.027)

Patterson et al. (2006) 2.87 (0.253) 3.11 (0.245) 3.37 (0.226) 3.66 (0.221)

Gao et al. (2008) 3.30 (0.013) 3.60 (0.012) 3.90 (0.010) 4.20 (0.007)

Moskvina and Schmidt (2008) 3.35 (0.025) 3.66 (0.019) 3.96 (0.015) 4.27 (0.010)

Chen and Liu (2011) 3.31 (0.067) 3.61 (0.055) 3.91 (0.045) 4.21 (0.028)

Li et al. (2012) 3.15 (0.047) 3.44 (0.039) 3.74 (0.032) 4.04 (0.023)

The means in the table correspond to the points in Fig. 1. Standard deviations are in parentheses
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Standard deviations for Patterson’s estimates are very large, but all other methods 
are quite precise. Estimates from the simulations are associated with slightly larger 
standard deviations than the majority of the theoretical methods, and therefore 
several simulations should be performed to obtain an accurate estimate of the 
required significance levels.

Table 3 gives genome-wide predictions for the effective number of independent 
tests and the necessary genome-wide significance thresholds for aFW = 0 05. , using 
an MAF threshold of 0.01 for both simulations and the various estimators based on 
the correlations or eigenvalues of the correlations. We note that since the uncertainty 
of a prediction increases rapidly outside the range spanned by the explanatory vari-
able, our predictions based on simulations might be expected to be more precise 
than those based on the correlations and eigenvalues, simply because we are able to 
obtain estimates using the entire length of chromosome 3. However, we have not 
provided confidence intervals for these predictions, since the data on chromosome 
3 are used multiple times to obtain the points forming the data for the regression 
line, and hence ordinary confidence intervals would be misleading.

This extrapolation approach is designed to be a computationally conservative 
way to estimate genome-wide significance thresholds for region-based tests, since 
whole-genome simulations or eigenvalue calculations are not required. Nevertheless, 
it may be necessary to repeat similar calculations for each different window 
 definition, for substantially different sample sizes, and possibly for different test 
statistics and/or choices of weights. Changing window definitions will, of course, 
alter the number of windows tested. Sample size may make a difference; when more 
people are sequenced, more genetic variation is identified. Hence, if the window 
sizes are based on a fixed number of variants, then larger sample sizes imply more 
windows. However, we have shown in additional calculations that the predicted 

Table 3 Predictions for the effective number of independent tests genome wide, m̂e , and the 
corresponding genome-wide significance threshold, âC , required to control FWER at a = 0 05.

Method

Number of tests 
in the largest 
subregions Intercept Slope m̂e âC

Simulation 74,156 −0.190 0.9886 615,665 8.1213e-08

Simulation 2,000 −0.2215 0.9966 656,259 7.6189e-08

Cheverud (2001) 2,000 −0.0411 1.0090 1,225,467 4.0801e-08

Li and Ji (2005) 2,000 −0.0989 0.9863 730,252 6.8470e-08

Patterson et al. (2006) 2,000 −0.2571 0.9130 146,447 3.4142e-07

Gao et al. (2008) 2,000 −0.0781 0.9944 878,552 5.6912e-08

Moskvina and 
Schmidt (2008)

2,000 −0.0935 1.0134 1,171,691 4.2673e-08

Chen and Liu (2011) 2,000 −0.0922 1.0011 953,990 5.2411e-08

Li et al. (2012) 2,000 −0.2166 0.9897 590,030 8.4741e-08

Calculations are based on an MAF threshold for rare variants of 0.01 and analysis of 74,156 window 
tests on chromosome 3. The intercepts and slopes of each regression line are also shown in Fig. 1
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significance thresholds are very similar for subsets of size 1,000, 1,500, or 2,000, 
randomly chosen from the 2,432 individuals (Xu et al. 2014a). Although an alteration 
in test statistic does not change the number of tests performed, it may change the 
correlation structure. In particular, an analysis giving equal weight to all rare variants 
can be expected to display very different correlations from an analysis with weights 
depending on genomic annotations. The impact of these factors on genome-wide 
significance thresholds has received little attention to date.

 Single-Variant Analyses Combined with Window-Based 
Analyses

Even if a window-based analysis is planned for variants identified through whole- 
genome sequencing, most researchers are likely to continue to perform a set of uni-
variate single-SNP analyses of the more common genetic variants. Therefore, it is of 
interest to know what significance thresholds should be used for a combined analytic 
strategy including both kinds of tests. In our recent manuscript (Xu et al. 2014a), we 
used a similar extrapolation approach for univariate tests of common SNPs, window-
based tests of rare variants, and both kinds of tests together. The use of a correlation-
based or eigenvalue-based approach for the combination strategy would be possible, 
but since there are large numbers of SNPs, the size of the matrices involved becomes 
rapidly extremely large. Hence, these analyses used exclusively the simulation-based 
approach to obtain estimates of the number of independent tests. In fact, since there are 
many more SNPs than windows (given our definition of 50 rare variants per window), 
we found that the necessary genome- wide significance threshold was largely driven 
by the univariate analyses, and we have recommended using a genome-wide thresh-
old near 1e-08 for the SKAT test and a MAF threshold of 0.01 to define rare variants 
(Xu et al. 2014a).

 Exome Sequencing

For rare variant analyses of whole exome sequencing data, most studies have analyzed 
each gene as a separate unit or window. As a result, many publications use a signifi-
cance threshold that is adjusted simply for the number of genes, giving a necessary 
significance threshold near 2.5e-06. Some authors have adjusted for repeated analy-
ses using different phenotypes. To give a few examples, in an exome- wide analysis 
of pain (Williams et al. 2012), the authors defined a genome-wide significance 
threshold of p < 3e-06, based on 17,129 tests performed. A study of several insulin 
phenotypes used a genome-wide threshold of 2.5e-07, adjusting for 19 phenotypes 
and 10,515 genes that could be tested. For exome sequencing analysis, guidelines 
have been suggested in a recent review; Do et al. (2012) suggested using a threshold 
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of approximately 5e-07 to adjust not only for the number of genes but also for several 
different analyses with different parameter settings. However, they also strongly rec-
ommended performing permutation analyses to obtain p- values that are accurately 
adjusted for the number of different analytic strategies and/or phenotypes tested.

 Family Studies or Cancer Genome Analyses

Whole-genome sequencing can be used to identify new germline mutations occurring 
within families, by comparing the genome sequence of parents to sequence in one 
or more affected children (e.g., Awadalla et al. 2010; Girard et al. 2012). The issue 
of setting significance thresholds in this context is rarely formally addressed, since 
the inherently paired design drastically reduces the number of genetic variants of 
potential interest. If several different genomic regions are identified as interesting, 
they are usually prioritized for further investigation based on external knowledge and 
annotation. Given that such investigations often occur in a single family in a very 
exploratory setting, p-values are often ignored.

A conceptually similar study design involves comparing normal and tumor DNA 
from the same individual or comparing primary and metastatic tumors from the same 
individual. Again, in such a setting, the paired design reduces the number of genetic 
variants that might be of interest. In this situation, however, there may be a set of 
patients with mutations occurring in the same gene or genes. In either case, the paired 
study design can lead to a dramatic reduction in the number of genetic variants that 
are considered to be potentially interesting mutations. Nevertheless, an adequate 
estimate of the effective number of independent tests would be simply the number of 
regions that pass all quality control criteria and are further investigated.

 Identity-by-Descent Considerations

Younger populations are expected to show more linkage disequilibrium (Labuda 
et al. 1996; Reich et al. 2001), and as a consequence, several methods for identifying 
causal genes have proposed studying patterns of identity-by-descent (IBD) inferred 
from genome-wide SNP data (Browning and Thompson 2012; Price et al. 2010; 
Sham et al. 2009; Allen and Satten 2009). By definition, two individuals share a 
chromosomal region IBD if this section of their chromosomes is derived from a 
common ancestor. Since rare variants are more likely to be of recent evolutionary 
origin, two individuals who carry the same rare variant are more likely to share 
the surrounding chromosomal region IBD, and furthermore the length of the 
shared region will be longer for recent variants than for more ancient variants. 
However, given the uncertainty in estimation of IBD status from genome-wide SNP 
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data, the power to detect IBD segments shorter than 2 cm tends to be poor (Browning 
and Thompson 2012; Browning and Browning 2011).

Does information on IBD sharing provide insight into the number of independent 
tests genome wide? It does allow, perhaps, inference of a lower bound on the number 
of independent tests that can be reliably inferred through an IBD model (3,000 cM 
genome/2 cM segment size). However, if sequencing data are available, then IBD 
estimation may no longer be useful: two individuals who carry the same variant can 
be assumed to have received it from the same ancestor (the probability of two identical 
mutations at the same location is very small) (Browning and Thompson 2012).

 False Discovery Rates

As discussed above, most studies will be tempted to repeat analyses using several 
different test statistics, possibly incorporating information on gene structure or reg-
ulatory predictions by using different weights for annotated genomic variants. This 
will inevitably lead to a set of different results for the same genomic region, hence 
exacerbating the challenge of identifying an appropriate significance threshold.

It may, therefore, be worth considering alternatives to controlling the FWER. For 
example, control of the false discovery rate (FDR) may give increased power for 
detecting true associations while still providing some limits on the number of false 
associations. FDR methods have become very popular in gene expression experi-
ments (Dudoit et al. 2003) where there may be a large number of true associations as 
well as substantial correlations between different genes (Benjamini and Hochberg 
1995; Hochberg and Benjamini 1990; Tusher et al. 2001). Let R be the number of 
hypothesis tests where the null is rejected at a chosen significance level α. The FDR 
is defined as the proportion of these R tests where the null hypothesis is true. Since 
the proportion of false-positive results is controlled, the actual number of falsely 
rejected null hypotheses can increase as the number of tests increases. There are two 
noteworthy advantages of this approach. Firstly, the FDR is bounded when there is 
positive dependence between tests (Benjamini and Yekutieli 2001), and empirical 
investigations have shown that the FDR can be fairly accurately estimated in the 
presence of correlations ((Efron 2007), but note also (Schwartzman and Lin 2011)). 
Hence, repeated testing using different statistics or overlapping window definitions 
can be undertaken, yet FDR estimates can still be fairly accurate. Secondly, stratified 
FDR methods, where the test statistics are divided into different subsets with differ-
ent prior probabilities of a true null hypothesis (Greenwood et al. 2007; Sun et al. 
2006; Roeder et al. 2006), may be useful strategy for consideration. It may be pos-
sible to incorporate external information on cross-species conservation, predictions 
of amino acid changes, or other annotation through a stratified FDR approach.

However, using simulations, we recently showed very poor control of type 1 
error when using FDR methods (Xu et al. 2014b). Using the data described above 
from the UK10K consortium, we performed a simulation study where causal rare 
variants were randomly selected in or near several up to 40 genes on chromosome 3. 
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Using these causal variants, a continuous phenotype was simulated using a linear 
model where each additional causal variant could increase the phenotype. Although 
some of the regions containing causal variants were detected with very high power, 
in general the sensitivity of detection was low. This is probably due to the fact that 
most of the causal variants were rare and therefore that the association signals were 
often weak. However, possibly of more concern, our estimated FDRs tended to be 
extremely optimistic relative to the simulated truth. For example, when using the 
Benjamini-Hochberg method for estimating FDR (Benjamini and Hochberg 1995) 
and when analyzing all variants in all windows, 98 % of the windows selected using 
an FDR threshold of 0.05 did not contain any causal variants. If we examined nearby 
windows in strong linkage disequilibrium (a correlation of 0.90 or higher between a 
causal variant and a variant in the selected window) to see if they contained causal 
variants, still 94 % of the selected windows were false positives (Xu et al. 2014b). 
This approach may warrant further consideration, however, if long-range patterns of 
linkage disequilibrium and their effects on region-based tests of association could 
be better understood.

 Generalizing the Definition of a Window

To a large extent, the choice of the size of windows for region-based analysis can be 
quite arbitrary, and only a few papers have compared power associated with different 
window sizes (Yi and Zhi 2011; Zhou et al. 2010; Lin and Tang 2011; Li and Leal 
2008; Xu et al. 2012). Recently however, there have been some proposals for opti-
mizing the window size within a larger region of interest. In Brisbin et al. (2012), 
sliding windows of varying sizes, from 15 variants to over 120 variants, were used to 
analyze a candidate genomic region, and these results suggested which part of the 
overall region contained the most signal for association. In contrast, a clustering 
approach was used by Fier et al. (2012) to select an optimal set of rare variants—not 
necessarily contiguous—inside a broader region. These approaches, require permu-
tation techniques in order to obtain valid estimates of statistical significance. Hence 
applying such techniques genome wide could be computationally daunting. Working 
with a smaller set of annotated variants all linked to a single gene may be more 
feasible, yet it will still be difficult to decide how to weight or include variants at 
promoters, enhancers, or other regulatory elements (Zuk et al. 2014).

 Population Stratification and Admixture

Rare variant patterns and frequencies show substantial differences between popula-
tions. Many variants will be seen in only one population, and others will exist at 
variable population frequencies. Inflated type 1 error rates can therefore be obtained 
when performing tests of association without an appropriate correction for population 
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ancestry that is specific for rare genetic variation; it has been demonstrated that the 
usual approaches for adjustment with common SNPs are not adequate for rare 
genetic variants (Zhang et al. 2013; Mao et al. 2013).

 Conclusions

Setting appropriate genome-wide significance thresholds for analysis of rare genetic 
variants is difficult, since the number of possible tests may be bounded only by the 
imagination (and computational capacity) of the researchers. Variants can be 
grouped based on physical proximity or by using some external annotation, and new 
methods are starting to appear that empirically estimate the best subset of variants 
for a joint test of association. For a given window definition, genome-wide signifi-
cance thresholds can be estimated and extrapolation from smaller genomic regions to 
larger ones seems to work well. It may be worth considering alternative conceptual 
frameworks for multiple testing, possibly based on the ancestral relationships 
between chromosomes, or a Bayesian perspective that builds in genomic annota-
tions (Stingo et al. 2011; Neath and Cavanaugh 2006). The former tolerates more 
false-positive associations and hence tends to increase power to find true signals; for 
the Bayesian context, good specifications of the prior distributions could provide a 
profitable way to incorporate genomic annotations or relevant variant groupings 
(Stephens and Balding 2009). However, either of these alternatives leads to an 
altered way of defining error rates and experimental success.
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Power of Rare Variant Aggregate Tests

Manuel A. Rivas and Loukas Moutsianas

 Introduction

Statistical hypothesis tests are commonly used in all quantitative sciences to make 
decisions using data from a study. In such tests, a result is called statistically signifi-
cant if it has been predicted as unlikely to have occurred by chance alone, according 
to a pre-determined significance level. The significance level may reflect a nominal 
significance level (e.g. α = 0. 05) and the number of independent tests, n, applied in 
the study, e.g. in genome-wide association studies (GWAS) of common variants 
n ∼ 1, 000, 000. The Bonferroni correction is the classical method of adjusting for 
testing multiple hypotheses. The informal treatment of Bonferroni correction is that 
for each test that is applied to the data from a study a new level of significance is 
required to be achieved, a a¢ = / n . For GWAS, the new level of significance com-

monly employed is a
¢ -= = ´

0 05

1 000 000
5 10 8.

, , . For a more rigorous treatment please 
refer to Abdi (2007) and/or Casella and Berger (2002).

A hypothesis test of H0: θ ∈ Θ0 (the null hypothesis) versus H c
1 0:q ÎQ  (the 

alternative hypothesis) is subject to two potential errors: Type I Error or Type II 
Error. If θ ∈ Θ0 but the hypothesis test incorrectly decides to reject H0, then the test 
has made a Type I Error (false positive). If q ÎQ0

c  but the test decides to accept 
H0 (the null), a Type II Error has been made (false negative). The power of a statisti-
cal test is the probability that the test will reject the null hypothesis when the null 
hypothesis is false, thereby not committing a Type II Error. The probability of a 
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Type II Error occurring is referred to as the false negative rate, usually denoted as β. 
Power is equal to 1 −β and sometimes referred to as the sensitivity of a test.

Power analysis is a very important tool for human genetic studies. It has been 
widely used to evaluate contemporary study designs (Risch 1990) and propose 
future ones (Risch et al. 1996). Statistical power crucially depends on the study’s 
sample size and the magnitude of effects, as well as other factors such as the pen-
etrance of the trait and the linkage disequilibrium (LD) between the causal variants 
and the markers included in the study (Spencer et al. 2009). Careful consideration 
of the scientific question, taking these factors into account, can yield estimates of 
the parameters that need to be employed in order to increase the study’s power 
(Altshuler et al. 2008). Fortunately, power analysis has been employed in settings 
where global investment was necessary to make scientific discoveries (de Bakker 
et al. 2005). Although evaluating all possible alternative scenarios can be challeng-
ing, power analysis can highlight properties of scientific studies which were unre-
alistic, as well as assess the plausibility of an unexpected result (Sebastiani 
et al. 2010). Furthermore, power analysis highlights the need for establishing large 
consortia to bring together cohorts from around the world (Manolio 2009), or initi-
ate large human population-based biobanks to make genetic discoveries (Ollier 
et al. 2005; Chen et al. 2011).

Advances in DNA sequencing technologies are quickly transforming human 
genetic studies. Recent DNA sequencing studies of over 2,400 individual exomes 
and 14,000 samples for 202 targeted genes highlight an abundance of functional 
variants, most of which were rare (86 % with a minor allele frequency less than 
0.5 %), previously unknown (82 %), and population-specific (82 %) (Nelson 
et al. 2012; Tennessen et al. 2012).

This explosion of rare variant catalogs has led to the development of statistical 
tests designed for the analysis of rare variants. In sequencing studies of complex 
traits, power to test rare and low frequency variants individually is weak. For 
example, reports of novel rare variant discoveries required over 30,000 partici-
pants for type 1 diabetes (Nejentsev et al. 2009) and over 45,000 participants for 
inflammatory bowel disease (Rivas et al. 2011). This highlights the challenge of 
validating the association of rare variants in the context of complex traits. In 
order to improve power, an approach that is increasing in utility is to combine 
statistical evidence from several genetic variants in a region. Tests following this 
approach, commonly referred to as aggregate tests, are changing how genetic 
association studies are undertaken, and are discussed in detail in this chapter and 
in Chap. 14.

In this chapter we present: (1) study design and variant properties to consider 
prior to the application of an aggregate test, (2) a comparison of aggregate tests and 
an evaluation of power and adequate sample size calculations for (3) a rare variant 
study of dichotomous traits, and (4) a rare variant study of continuous traits. 
We explore the influence of study size, statistical tests used, variance explained, and 
the inclusion of null variants in the power to detect associations. Furthermore, we 
make available simulated datasets along with a program to generate comparisons 
and evaluate power.
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 Model Building and Test Selection

Over the past few years, development of statistical methods for identifying rare variant 
association has been an active area of research.

Prior to applying these methods, one needs to identify the unit to be tested. In the 
setting of an exome study, the unit may simply be taken to be the gene. In whole 
genome sequencing studies, and the interrogation of the non-coding genome, 
the unit to be tested can be more difficult to define. Various variant groupings may 
be applied, which will have a direct impact on the power to detect associations. 
Once the unit to be tested has been defined, the null hypothesis about the variants 
within that unit should be formed. Annotation information is important in clearly 
stating the null hypothesis. For example, in the setting of an exome sequencing 
study, our unit of interest is the gene, and our null hypothesis may reflect the sub-
types of variants within a gene which are of higher potential impact on the trait, e.g. 
protein altering variants:

 

H0 : Rare protein altering variants (missense, nonsense, codiing indels, splice)

in are not associated with early-oAPOB nnset myocardial infarction.  

 Annotation

Functional annotation is relevant for the application of aggregate statistical tests 
(Please see Chap. 7 and Fig. 1 for a more in-depth treatment of annotation). For 
example, an analyst may consider a more targeted approach to test for association 
by including variants annotated as truncating (Herman et al. 2012; Ruark 
et al. 2012; Hopper et al. 1999; Dodé et al. 2003) or commonly referred to as Loss 
of Function (LoF) (MacArthur et al. 2012). These variant types are usually single-
tons, private variants (Tennessen et al. 2012), and are likely to have a similar impact 
on protein function (for some exceptions see Ruark et al. 2012 and Isidor et al. 2011). 
In the LoF setting one should apply a test that scans for an overall shift in the number 
of rare variant copies in cases compared to controls.

On the other hand, consider applying an aggregate test to all variants discovered 
in a gene sequencing experiment. In a more inclusive approach, an analyst may 
want to include variants predicted to be regulatory, synonymous (silent) substitu-
tions, missense, nonsense, as well as coding indels. Alternatively, one may want to 
remove variants from the association analysis that are unlikely to contribute to sig-
nal, e.g. silent substitutions; as we will see later, including variants with no impact 
on trait value may quickly impact power to detect association. Let’s take into con-
sideration the test one may want to employ. In 2,400 samples, a gene, on average, 
has approximately 20–30 coding variants. It is very likely that some of these variants 
will have no impact on trait value, whilst some may have protective or deleterious 
effects on the trait (in the setting of a dichotomous trait).

Power of Rare Variant Aggregate Tests
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 Classes of Aggregate Tests

The choice of the test or tests to apply depends on the alternative hypothesis, 
as different classes of tests address different hypotheses. To highlight some of the 
differences which may exist between them consider two tests which have been used 
in the literature: (1) FRQWGT (Madsen and Browning 2009) and (2) C-alpha 
(Neale et al. 2011). For a more complete list of aggregate tests available see Table 1 
and for additional studies comparing aggregate tests see Basu and Pan (2011) and 
Asimit and Zeggini (2010).

FRQWGT is a test that scans for an excess of rare variants in cases compared 
to controls; weights for FRQWGT are assigned to variants according to their cor-
responding allele frequency. C-alpha, on the other hand, scans for a signal of 
overdispersion of the distribution of rare variants in a unit. The alternative 
hypothesis for C-alpha is that at least one of the variants is not binomially dis-
tributed according to the null parameter (null parameter for a case–control study 
of equal number of cases and controls is 0.5), whereas the alternative hypothesis 
for FRQWGT is that there is a total excess of rare variants in cases versus con-
trols. Figure 2 a highlights the signal that aggregate tests considered as “collaps-
ing” are well suited for, i.e. detecting a shift in the mean of the distribution. 
Figure 2b highlights the strength of aggregate tests in capturing dispersion sig-
nal, i.e. change in variance.

5’ UTR

3’ UTR

Stop Lost

Synonymous
Missense
Codon Deletion
Codon Insertion

Splice Donor
Splice AcceptorRegulatory 

Region
TF Binding 
Site

5’ 3’

Coding Sequence Variant

Frameshift
Nonsense

Start Lost

Fig. 1 Variant annotation. Diagram of variant annotation in rare variant studies. Truncating vari-
ants: Frameshift (light gray annotation box), Nonsense, Splice Donor, Splice Acceptor, Stop Lost, 
Frameshift, Start Lost and Protein altering variants: Truncating variants + Missense, Codon 
Deletion, Codon Insertion, Stop Lost, Start Lost. Dark boxes in figure are protein coding exons of 
a gene, white boxes of figure are the untranslated exons of a gene and light gray hexagon represents 
the regulatory region of a gene. Adapted from ENSEMBL
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 Power of Rare Variant Aggregate Tests for Case–Control 
Association Studies

In this section, we focus on the power of aggregate tests to detect signals of asso-
ciation in dichotomous (binary) traits, such as in a case–control design. The power 
to detect signals in quantitative (continuous) traits is addressed in the section “Power 
of Rare Variant Aggregate Tests for Continuous Traits”. We have used different 
simulation approaches to obtain an estimate of the power of aggregate tests to 
detect associations. Our choices of models and parameters were directly or implic-
itly informed by our current understanding and beliefs regarding the genetic archi-
tecture of complex disease, with sample sizes in the range of those observed in 
contemporary whole-genome sequencing studies. It is important to highlight that 
any estimate of power is affected by the choice of a wide range of parameters 
regarding both 

• the way data is simulated, and
• the way data is tested.

For the former, these include the frequency of the risk alleles, the magnitude of 
effects, the number of variants in a unit, and the percentage of them that are causal. 
For the latter, these include annotation and frequency filters on the variants to test, 
which will have to be carefully thought and selected in real studies too.

Table 1 A selection of available aggregate tests for rare variant analysis in PLINK/SEQ

Aggregate test Description Directionality References

FRQWGT Frequency- weighted test, in spirit of 
Madsen- Browning. Collapsing

Mean-based Madsen and 
Browning (2009)

KBAC Rare variant test in the presence of 
misclassification and gene interaction. 
Collapsing

Mean-based Liu and 
Leal (2010)

SUMSTAT Sum of single-site statistics. Dispersion Variance-based PLINK/SEQ

UNIQ Count of case- unique rare alleles. 
Collapsing

Mean-based PLINK/SEQ

VT Variable threshold test. Collapsing Mean-based Price et al. (2010)

BURDEN Excess of rare alleles in cases 
compared to controls. Collapsing

Mean-based PLINK/SEQ

C-alpha C-alpha test. Dispersion Variance-based Neale et al. (2011)

SKAT Kernel based regression method and 
score-based variance component test. 
Dispersion

Variance-based Wu et al. (2011)

SKAT-O Mixture of collapsing and dispersion 
test

Variance-based Lee et al. (2012)

Power of Rare Variant Aggregate Tests
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In the section “A Simulation Study Based on 1000 Genomes Project”, we esti-
mate the power for a balanced dataset consisting of 2,000 samples, of which 1,000 
samples have the trait and the rest are controls from the general population. In the 
section “A Simulation Study for Sample Size Calculations: Dichotomous Traits”, 
we discuss how estimates of power change by sample size and suggest numbers 
which may be required to attain this power under various hypotheses.

 A Simulation Study Based on 1000 Genomes Project

While simulation efforts to investigate the power of rare variant aggregate tests 
commonly introduce fixed combinations of the number of causal variants and effect 
sizes (e.g. Basu and Pan 2011; Ladouceur et al. 2012), we decided to allow these to 
vary and fix the percentage of the total variance explained by each locus instead.
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Fig. 2 Signal of aggregate tests. We use coin tosses as in Neale et al. (2011) to highlight the source 
of signal for aggregate tests. (a) Black bars represent the distribution of total heads from fair coin 
tosses (null variants), white bars represent the distribution of total heads from loaded coins (risk 
variants). We observe a shift in the mean of the distribution coming from the loaded coins com-
pared to fair coins. (b) Black bars represent the distribution of total heads from fair coin tosses 
(null variants), white bars represent the distribution of total heads from a 10:80:10 mixture of 
loaded coins (p = 0. 1, favoring tails), fair coins (p = 0. 8), and loaded coins (p = 0. 1, favoring heads). 
In this scenario we clearly observe that there is no shift in the mean; however, there is a shift in the 
variance of the distribution indicating overdispersion. In Neale et al. (2011) and Wu et al. (2011) 
the authors highlight how a burden test may fail to detect signal in the setting of a mixture of null 
variants and risk variants
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For the calculation of the variance explained by each locus, we employed the 
method followed by So et al. (2011). This approach assumes a multifactorial liability 
threshold model (Falconer 2007). According to this model, the overall liability to 
disease is a continuous function of a number of contributing genetic variants with 
various effects, as well as of other risk factors. It is assumed to follow a standard 
normal distribution. A fraction of individuals from the general population, whose 
liability exceeds a certain threshold, will develop the disease. Each variant which 
has been assigned an effect will explain part of the variance in liability, with the 
total variance in variability explained by a unit being equal to 1 %. Throughout this 
chapter, and unless otherwise stated, the term “variance explained” should be taken 
to mean variance in liability.

To estimate the percentage of variance explained by a single variant, the model 
takes three parameters as input: disease prevalence, frequency of the risk variant in 
the general population, and genotype relative risk. Assuming independence between 
the different risk variants at each unit, the total percentage of the variance explained 
is taken to be the sum of the variance explained by each of the variants with intro-
duced effects. Simulated datasets were generated using Hapgen2 (Su et al. 2011), 
which employs the Li and Stephens model (Li and Stephens 2003). This is a haplo-
type reshuffling approach, where simulated (unobserved) haplotypes are assumed to 
be an imperfect mosaic of actual (observed) ones, generated using a Hidden Markov 
Model. Hapgen2 introduces deleterious effects by over-sampling haplotype 
segments which contain the variants to which the effects are introduced, based on 
the relative risk assigned to them.

For the present study, the reference panel consisted of 379 European individuals 
from the 1000 Genomes project (1000G) (Consortium 2010), and was annotated 
using CHAoS (http://www.well.ox.ac.uk/~kgaulton/chaos.html). Data was simu-
lated for 1,000 cases and 1,000 controls at eight genes implicated in type 2 diabetes 
(T2D): ING1, RAPH1, GPATCH2, CACNA2D2, KLK11, DCAF16, LTBR and 
PLCL1. Datasets were simulated under three alternative models, all of which 
explain 1 % of the variance in liability:

• M1: Only deleterious effects in a unit
• M2: An equal mixture of deleterious and protective effects in a unit
• M3: Only protective effects in a unit

The effects are assigned at random to a subset of the annotated variants at each 
locus. These include synonymous, missense, nonsense, splice, 3′ UTR and 5′ UTR 
variants. Deleterious effects were assigned to variants with a frequency of up to 1 %, 
whereas protective ones to variants in [0.5 %, 5 %]. The relative risk introduced to 
each variant is drawn at random from [1, 5], as stronger effects were deemed 
unlikely to occur frequently. For protective variants, the relative risk was drawn at 
random from the [0.2, 1] interval. Disease prevalence was assumed to be 8 %, 
consistent with recent estimates for T2D (personal communication).

Power of Rare Variant Aggregate Tests
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 Results

We have compared representative tests of both the mean- and the variance-based 
approaches across the three models. We have also included SKAT-O (Lee et al. 2012) 
to the comparison, which is a mixture of the two approaches. The purpose of this 
simulation study, rather than to serve as an exhaustive comparison between all avail-
able tests, is to showcase the differences in performance one may expect between 
the two main subsets of tests ( mean- and variance-sided) under different scenarios. 
Even when only deleterious effects are introduced (M1), we find C-alpha to perform 
better than its mean-based alternative FRQWGT. This somewhat surprising result is 
likely to reflect the loss of power that mean-based tests face in the presence of null 
variation. Power is greater than 15 % for a study of a dichotomous trait with 1,000 
cases and 1,000 controls at α = 0. 01 for variance explained = 1 %. As expected, we 
find that while C-alpha and SKAT-O maintain stable power across the three models, 
the power drops sharply for the collapsing approach. The variance in the results, as 
observed in Fig. 3, highlights the sensitivity of the test to unit-specific parameters 
such as the number of variants being tested.

We have demonstrated a comparison of representative rare variant aggregate 
tests from groups with a different design philosophy, for case–control analysis 
under a few alternatives regarding the direction of the effect of the risk variants. 
Other tests of the same group are broadly expected to have comparable power, but 
see Moutsianas et al. (2014) for a more nuanced treatment. For instance, SKAT (Wu 
et al. 2011) and C-alpha (Neale et al. 2011) are expected to have similar power 
across all alternatives, as SKAT is a generalization of C-alpha. To achieve optimal 
power an analyst should carefully consider the alternatives they wish to test.

 A Simulation Study for Sample Size Calculations:  
Dichotomous Traits

To determine the adequate sample sizes needed to achieve 80 % power to detect 
association for case–control analysis of rare variants, we conducted a simulation 
study focused on SKAT and SKAT-O.

 Dataset

We used the SKAT package that provides a dataset which contains a haplotype 
matrix of 10,000 haplotypes over a 200 kb region (see the section “Links”). 
The haplotypes were simulated using a calibrated coalescent model that mimicks 
LD structure of European ancestry. We carried out sample size calculations using 
the haplotypes with the following parameters:

 1. Subregion length = 3 k base pairs (default).
 2. Prevalence = 0.08, a value of disease prevalence for T2D (personal communication).

M.A. Rivas and L. Moutsianas



193

 3. For dichotomous traits, we set the maximum effect size to OR = 4. For SKAT-O 
we set r.corr (the ρ parameter of new class of kernels) to 2 to allow grid search.

 4. a = ´ -2 5 10 6.  for exome-sequencing datasets (n is assumed to be 20,000; 
approximate number of genes tested).

Figure 4 shows that as the proportion of null variants included in the test 
increases, the sample sizes required to achieve power to detect association for a unit 
also increases (Ladouceur et al. 2012). A 3 kb locus with 10 %, 20 %, 50 %, and 
100 % of the variants as causal, with maximum effect size of 4, requires 116 k, 20 k, 
6 k, and 2 k, respectively. In other words, if we were to aggregate all variants discov-
ered in a 2 k sample sequencing experiment in a 3 kb segment, and all variants in the 
3 kb segment were causal and associated with phenotype, then we would achieve 
80 % power to detect association. If we subset the variants in a 3 kb region, we are 
effectively decreasing the size of our subregion. If we change the subregion size to 
500 base pairs and use the same requirements described above, it will require over 
6,000 cases and 6,000 controls when all variants in the segment are causal.

Power across models for different tests
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Fig. 3 Power comparison for different aggregate tests. Comparison of power for a selected subset 
of the tests implemented in PLINK/SEQ across three different models: M1. Only deleterious 
effects in a unit, M2. An equal mixture of deleterious and protective effects in a unit, M3: Only 
protective effects in a unit. Surprisingly, C-alpha and SKAT outperform FRQWGT for model M1. 
We postulate that this may be due to a proportion of variants tested being neutral. Hence, in the 
presence of a mixture of null and deleterious variants, power loss for C-alpha and SKAT may be 
slower than for mean-based alternatives
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 Power of Rare Variant Aggregate Tests for Continuous Traits

In this section we turn our attention to rare variant aggregate tests for continuous 
traits. More specifically, we perform power analysis for SKAT (variance-based) and 
SKAT-O (a mixture of mean- and variance-based tests). We focus on the power of 
aggregate tests to detect signals of association for different levels of phenotypic 
variance explained for a locus in the section “A Simulation Study to Evaluate Power”. 
Next, we calculate the adequate sample sizes require to achieve significance for an 
exome study in the section “A Simulation Study for Sample Size Calculations”.

 A Simulation Study to Evaluate Power

Typically, the power function of a test will depend on the sample size n. If n can be 
chosen for a study design, power analysis might help determine if the sample size is 
appropriate for the study and place bounds on the effects that may be detected. 
In the setting of continuous traits, an analyst will want to evaluate the phenotypic 
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Fig. 4 Sample size required to achieve 80 % power to detect association for aggregate tests
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variance explained by a locus that may be detected in a study of n samples (Fig. 5). 
We present results from a simulation experiment with similar parameters as the 
case–control simulation study, i.e.:

 1. Subregion length = 3 k bp
 2. Causal percentage = 50 % and 100 %
 3. For continuous traits, we set the maximum effect size to be β = 1. 6. For SKAT-O 

we set r.corr = 2 to allow grid search and maximize between a dispersion and a 
collapsing test.

 4. a = ´ -2 5 10 6.  for exome-sequencing datasets.

We vary the phenotypic variance explained for the subregion from 0. 1 % to 1 %, 
and evaluate power for sample sizes n = 1 k, 10 k, 100 k. For a locus explaining 0. 5 % 
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Fig. 5 Power of rare variant aggregate tests for continuous traits at different levels of phenotypic 
variance explained. Power for different levels of phenotypic variance explained is evaluated for 
sample size n = (a) 1 k, (b) 10 k, and (c) 100 k (from left to right). Dashed lines and solid lines are 
power estimates for SKAT-O and SKAT, respectively. Circle and triangle point symbols represent 
power evaluated at percent causal variants = 50 % and 100 %
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of the phenotypic variance (a substantial but realistic amount, compared to reported 
findings, e.g. PCSK9 and LDL levels Cohen et al. 2006) we achieve 9 %, 58 %, and 
100 % power, respectively, to identify association using SKAT with only causal 
variants being tested.

 A Simulation Study for Sample Size Calculations

To illustrate the sample sizes needed to achieve 80 % power to detect association for 
the analysis of rare variants, we focus on a simulation study of rare variants using 
SKAT and SKAT-O.

Using the same haplotype dataset and the same parameters as in the section 
“A Simulation Study for Sample Size Calculations: Dichotomous Traits”, we find 
that over 40,000 samples are required to detect signal when 20 % of the variants are 
causal and 4,000 samples are required to detect signal when 50 % of the variants in 
a 3 kb region are causal (Fig. 6).
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Fig. 6 Power to detect association as a function of sample size. Adequate sample size required to 
achieve 80 % power is shown for varying levels of causal percent variants in a 3 kb locus tested for 
association to a continuous trait using SKAT (solid line) and SKAT-O (dashed-line)
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 Conclusion

Rare variant aggregate tests have an important role to play in the analysis of data 
from re-sequencing studies, since the power of single variant tests to detect associa-
tions for rare variants is weak. The design of such tests is an active area of research, 
but many are readily available. No single aggregate test achieves optimal power. 
Power analysis of rare variant aggregate tests highlights the difference between 
mean- and variance-based tests. We estimate from our simulation study that at least 
20 k and 4 k samples will be required to achieve power to detect associations at 
exome-wide level of significance for rare variant studies of dichotomous and con-
tinuous traits respectively, based on parameters we chose to reflect our experience 
with exome sequencing studies of complex traits. Our observations are in line with 
recent reports in literature (Moutsianas et al. 2015; Zuk et al. 2014). Alternative 
study design strategies (not discussed in this chapter) may improve power to detect 
association, e.g. selecting samples from the tails of the distribution (Guey et al. 2011) 
or analyzing multiple phenotypes (Korte et al. 2012). Well-formed hypotheses and 
clearly defined testing units should be carefully considered before applying an 
aggregate test to re-sequencing data.

 Links

Here are some useful links to software and simulated data which can be used for the 
analysis of power or rare variant aggregate tests:

PLINK/SEQ:
http://atgu.mgh.harvard.edu/plinkseq/
T2D HapGen Simulated dataset:
http://www.well.ox.ac.uk/~rivas/p1redo.tar.gz
SKAT Package:
http://cran.r-project.org/web/packages/SKAT/vignettes/SKAT.pdf
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Replicating Sequencing-Based Association 
Studies of Rare Variants
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 Background

Currently there is worldwide interest in studying the role of rare genetic variants in 
the etiology of complex traits. Compared to common variants which are for the 
most part functionally neutral, it should be easier to interpret identified rare variant 
association signals. Many sequencing studies have already provided evidence for 
the involvement of rare variants in the etiology of complex traits, including colorec-
tal adenomas, plasma lipid levels, blood pressure, and diabetes-related quantitative 
traits (Cohen et al. 2004, 2006; Ji et al. 2008; Romeo et al. 2007, 2009; Huyghe 
et al. 2013).

Indirect association mapping using tagSNPs is underpowered to detect associations 
with rare variants due to the weak correlations between higher-frequency tagSNPs 
and rare variants (Li and Leal 2008). Instead direct association mapping should be 
applied, where variants are discovered and directly tested for associations. With the 
rapid development of cost-effective next-generation sequencing (NGS) technolo-
gies, sequence-based genetic association studies of complex traits have been made 
possible. Although only sequencing-captured genetic regions can be cost and time 
effective, the high cost of sequencing is still a concern. Additionally, NGS can have 
higher error rates than those obtained from genotyping arrays (Harismendy et al. 
2009). Therefore, in order to replicate associations to candidate genetic regions, it is 
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of interest to explore alternative technologies to NGS, such as using customized 
genotyping or exome arrays.

Recently, in an effort to cost effectively obtain data on rare variants, an exome 
array was developed based upon a collation of variant sites identified from NGS of 
~12,000 exomes and genomes. Missense variants which were observed at least 
three times in two different cohorts and nonsense and splice sites which were 
observed at least two times in two different cohorts were selected for inclusion on 
the exome array. The exome array also contains additional content, e.g., ancestry 
informative markers (AIMs) and SNPs which are associated with complex traits. 
Compared to sequencing targeted regions, the exome array can be much more cost- 
effective. In addition, genotyping is a more mature technology and can potentially 
have better accuracy compared to NGS. However, by design, very rare variants, e.g., 
singletons, were not included on the exome array and therefore cannot be 
integrated.

In addition to technology advancements in generating sequence data, there has 
been a plethora of new statistical association methods developed specifically to ana-
lyzing rare variant data. Based upon the observation that analyzing rare variants 
individually or performing multivariate tests can be either underpowered or numeri-
cally unstable, gene-level association tests have been proposed. Instead of analyzing 
each variant by itself, the unit of analysis is a gene or another functional unit. For 
example, it is possible to test for an association between the trait of interest and a 
“burden” of rare variants (i.e., the total number of rare variants in a gene region). 
This gene-level association analysis strategy avoids the repeated analysis of multi-
ple very low-frequency variants and can therefore be more powerful than traditional 
methods which are used to analyze common variants.

Similar to the analysis of common variants, it is necessary to confirm the associa-
tion signal in the original study (stage 1 sample) using an independent dataset (stage 
2 sample), in order to guard against spurious associations. In this chapter, strategies 
for replicating gene-level associations are discussed and the plausibility of using 
genotyping or sequencing in replication studies from a combined genetic epidemi-
ology and population genetics perspective is explored. A comparison of replication 
strategies is performed through simulation studies and also by association analysis 
of energy metabolism traits and sequence data from the Dallas Heart Study (DHS) 
on the ANGPTL3 [MIM 604774], ANGPTL4 [MIM 605910], and ANGPTL5 [MIM 
607666] genes. In addition, we also point the reader to a few resources that can be 
beneficial for designing replication studies.

 Replication Strategies for Gene-Level Association Test

For mapping rare variants, gene-based tests are usually performed, which aggregate 
multiple rare variants in a given gene region and test for their associations with the 
trait of interest. Representative methods include the combined multivariate and col-
lapsing (CMC) test (Li and Leal 2008), gene- or region-based analysis of variants of 
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intermediate and low frequency (GRANVIL) test (Morris and Zeggini 2010), 
weighted sum statistic (WSS) (Madsen and Browning 2009), kernel-based adaptive 
cluster (KBAC) (Liu and Leal 2010a), and sequencing kernel association test 
(SKAT) (Wu et al. 2011).

 Three Possible Replication Strategies

To replicate significant findings in stage 1 studies, three different strategies can be used. 
As a first strategy, only the variants at the nucleotide sites uncovered from the original 
sample are followed up. Using this strategy, novel nucleotide sites that are present only 
in the stage 2 sample, but not in the stage 1 sample will not be incorporated in the rep-
lication study. This constitutes a replication in a “strict” sense, i.e., both the gene region 
and the variants uncovered in the stage 1 sample are followed up in the replication 
sample. When only variants uncovered in the stage 1 sample are of interest, geno-
typing is sufficient. We will refer to this replication strategy as variant based. 
Second, given the cost-effectiveness and the fact that many rare coding variants are 
represented on the exome array, it is possible to follow up the candidate region by 
genotyping the replication samples using exome arrays. We call this exome-array-
based replication. Compared to the first strategy, exome-array- based replication can 
be much more cost-effective, but it can be less powerful if causal variants identified 
in the stage 1 study are not included on the exome array. Finally, the third and the 
most comprehensive strategy is to follow up the entire gene region identified in the 
stage 1 sample. This can be performed by sequencing the gene region. For this 
design, analysis of the stage 2 sample is not restricted to the nucleotide sites uncov-
ered in stage 1. Variants from novel sites in the replication sample are also assessed 
for their associations with the phenotype of interest. We will refer to this design as 
sequence-based replication. With this strategy, sequencing the target gene in the 
stage 2 sample is necessary. While it is clear that exome-array- based replication is 
the most cost-effective strategy, followed by variant- and sequence-based replica-
tion, their power for replicating genuine associations needs to be evaluated.

 Factors That Influence the Power for Replication

The power to replicate for variant-based replication is mainly dependent on the 
percentage of causal variants sites that were uncovered for the gene region in the 
stage 1 sample, while for exome-array-based replication, power is driven by how 
many causal variant sites are available for genotype on the exome array. If the stage 1 
sample is small, there can be an advantage to sequence- or exome-array-based 
replication, since many low-frequency variants may not have been observed. 
However, the difference between variant- and sequence-based replication strategies 
will diminish if a majority of causal variants can be uncovered in stage 1.

Replicating Sequencing-Based Association Studies of Rare Variants
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The proportion of causal variants identified in the stage 1 sample can be affected by 
(1) the sample size in the stage 1 study, (2) the genetic architecture of the trait of interest, 
(3) as well as the sequencing error rate. In general, the proportion of causal variants 
identified will increase as a larger sample is sequenced. For diseases which are driven 
by low-frequency variants [e.g. variants with minor allele frequency (MAF) < 5 %], 
sequencing 200 cases will identify >99 % of the low- frequency causal variants. However, 
if a trait is mainly driven by very rare mutations (e.g., variants with MAF < 0.1 %), a 
much larger number of samples will need to be sequenced. Finally, the actual detection 
of causal variants may also be affected by sequencing errors and false-negative calls 
may lead to the under-detection of causal variants and therefore a loss of power.

Additional factors which play a role in the ability to replicate regardless of the type 
of replication used include effect sizes of the variants within a region. The winner’s 
curse may cause an overestimation of the effect size in the stage 1 study due to 
sampling and this should be taken into consideration when designing a replication 
study. Additionally the sample size for the stage 2 replication study will also play an 
important role in the ability to replicate.

 Power for Replicating Sequence-Based Association Studies: 
A Mathematical Formulation

We are interested in the power to replicate, i.e., the probability of successfully repli-
cating an association identified in stage 1 using an independent sample. To define 
necessary notations, the test statistics used for the stage 1 and sequence-based stage 2 
studies are denoted by TS1 and Tseq, respectively. Specifically, the following probability 
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levels used for the stage 1 and the stage 2 replication study.
Similarly, the power for variant-based replication is given by 
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test statistics Tvar, TS1 are not conditionally independent. Under the alternative 
hypothesis, the distribution of Tvar depends on K which is the set of rare variant sites 
uncovered in stage 1.

For notational convenience, the ratio of total frequencies of uncovered rare 
variants to the total frequencies of all locus rare variants (including those that are 
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represents the proportion of locus population attributable risk (PAR) that can be 
explained by the uncovered causal variants in stage 1. This is asymptotically 
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equivalent to the epidemiological definition of PAR which is the reduction of 
disease incidence rate that would be observed if the population were unexposed, 
i.e., if there were no carriers of locus causative variants.

 Simulation Comparison for Three Replication Strategies

In order to conduct simulations that maximally reflect the true variant frequency 
spectrums, we use allele frequencies estimated from the Exome Sequencing Project 
(ESP) (Tennessen et al. 2012). Specifically, minor allele frequency information 
from 15,585 genes obtained on European Americans from the Exome Variant Server 
(EVS) (http://evs.gs.washington.edu/EVS/) were utilized. Genotypes for each indi-
vidual were simulated according to the estimated variant frequency in EVS, assum-
ing no linkage disequilibrium between variant sites and that the genotypes at each 
site are in Hardy–Weinberg equilibrium within the general population. In addition, 
exome-array genotypes were simulated according to variant sites that were incorpo-
rated in the exome array (http://genome.sph.umich.edu/wiki/Exome_Chip_Design). 
The detailed frequency spectrum of coding sequence variants can be found in the 
article of Tennessen et al. (2012).

Phenotypic effects of rare non-synonymous (NS) variants are assumed indepen-
dent of their allele frequencies (Pritchard 2001). Fifty percent of the rare NS vari-
ants (with MAF ≤ 0.01) were randomly picked to be causal and affect the binary 
phenotype of interest. Based upon surveys of multifactorial diseases (Bodmer and 
Bonilla 2008), the following phenotypic model was considered. The genetic effects 
of causal variants are inversely correlated with their MAFs. It is assumed that causal 
variants with the smallest (or largest) MAFs (i.e., pmin or pmax) have the largest (or 
smallest) log odds ratio (log-OR) of βmax (or βmin), respectively. For a causal variant 
with MAF pi, the log-OR follows the interpolation relation:

 
b b b bi ip p p p i C= + -( ) -( )´ -( ) Îmax max min max min min/ ,

 

The ORs for causal variants thus satisfy an exponential relationship with their 
MAFs. A choice of b bmax min= ( ) = ( )log , log10 2  was used. A baseline penetrance 

of 0.01 is assumed, which gives b0 0 01 1 0 01= -( )( )log . / . . In order to mimic 

the design of exome chips, we only analyzed variant sites that are designed to be 
genotyped on the exome array.

Under the simulation framework, we first compare the rare variant discovery 
rates. All comparisons were made under the assumption that sequencing data is of 
perfect quality (Table 1). When sequencing is not perfect, the fractions of uncovered 
variants will be lowered by the false-negative rate. At the same time, a portion of 
observed variants can be false positives.

Under the variable genetic effect model, when an exome-wide significance level 
aS1

62 5 10= ´ -.  (an α = 0.05 corrected for testing 20,000 genes) (Kryukov et al. 

2009), and when a sample of 1,000 cases and 1,000 controls was analyzed, 60.8 % 
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of rare variant nucleotide sites are present in the dataset and a majority of (77.7 %) 
causal nucleotide sites can be uncovered. These uncovered variants explain nearly 
100 % of the locus PAR (Table 1). Therefore, in principle, when a large stage 1 
sample is analyzed, the advantage of sequencing for novel SNP discoveries dimin-
ishes as long as the stage 2 samples are drawn from the same population.

Since affected individuals are enriched in a case–control sample, nucleotide 
sites containing causal variants have a much higher probability of being uncovered 
than noncausal variant sites. Next, we compared the power for sequence-, variant-, 
and exome-array-based replication strategies under different combinations of 
false-positive/false-negative variant discovery rates, genotyping assay success rates, 
and error rates.

In the ideal scenario where both sequencing and customized genotyping qualities 
are perfect, the power for sequence- and variant-based replication strategies are 
jointly affected by the sample size, the proportions of rare variants uncovered, and 
the fractions of uncovered rare variant sites that contain causal variants. For most of 
the examined scenarios, the power of sequence-based replication is consistently bet-
ter than variant- based replication when CMC is used. For example, under the vari-
able effects model (Table 2), for a sample size of 2,000 cases and 2,000 controls, the 
power for sequence-based replication is 72.7 % while the power of variant-based 
replication is 69.5 %. The exome-array-based replication has slightly better power 
than variant-based replication (71.0 %). This is because most of the variants identi-
fied in a small stage 1 sample are relatively common and are included in the array. 
A larger fraction of causal variants can be analyzed in the second stage when the 
exome array is used for replication. It should be noted that these results are also 
somewhat biased, causing replication using the exome array to be more powerful 
than it may actually be, since many of the samples which are included in ESP were 
used in the design of the exome array.

When the sample size is increased to 3,500 cases and 3,500 controls, the power 
hardly differs between sequence- and variant-based replication. This is because a 
large proportion of variant sites are uncovered in the stage 1 sample, and the 

Table 1 The discovery of rare variants in genetic studies

Number of cases/controls 
in stage 1 and 2 samples

Proportion of rare 
variant sites 
uncovereda Proportiona

All Causal

Locus PAR 
explained by 
uncovered causal 
rare variants

Causal variant sites 
among all uncovered 
rare variant sites

Variable effects phenotypic model
1,000/1000b 0.608 0.777 0.601 0.594
5,000/5000b 0.772 0.827 0.776 0.589

aResults are based upon 2,000 replicates where for each replicate variant sites and frequencies were 
obtained from the Exome Variant Server for European Americans by randomly selecting 10,000 genes
baS1

62 5 10= ´ -.  Stage 1 α level (α = 0.05 with a Bonferroni correction for testing 20,000 genes)
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uncovered variants account for nearly 100 % of the locus PAR. In this case, the 
exome-array- based replication is slightly less powerful, possibly because low-
frequency causal variants are not included in the array and therefore cannot be 
analyzed in the replication study.

Comparisons were also made using the WSS for analysis of both the stage 1 and 
2 datasets. Results are similar to those when CMC is used to analyze the data (data 
not shown).

 Comparison of Replication Strategies Using Sequence Data 
from the Dallas Heart Study

In order to illustrate the relative efficiency of sequence-based versus variant- and 
exome-array-based replication strategies, a dataset from the DHS was used. The 
dataset is a multiethnic population-based sample (1,830 African Americans, 601 
Hispanics, 1,045 European Americans, and 75 individuals from other ethnic groups) 
of Dallas County residents whose lipid and glucose metabolism have been charac-
terized and recorded (Browning et al. 2004; Victor et al. 2004). In order to investi-
gate how sequence variations in ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 
influence energy metabolism in humans, coding regions of the four genes were 
sequenced using DNA samples obtained from 3,551 participants in DHS (Romeo 
et al. 2007). A total of 348 nucleotide sites of sequence variations were uncovered 
in the four genes. Most of them are rare and 86 % of them have MAFs < 1 % (Romeo 
et al. 2007). Nine phenotypes were measured and tested for their associations with 
rare genetic variants, i.e., body mass index (BMI), diastolic blood pressure (DiasBP), 

Table 2 Power comparisons of sequencing-, variant-, and exome-array-based replication under 
the variable effect model

Number of cases/
controls in stage  
1 and 2 samples

Ratesa Power for replicationb

False 
positive

False 
negative

Assay 
success

Error 
ratio

Sequence 
based

Exome- 
array basedc

Variant 
based

2,000/2,000d 0 0 1 1 0.727 0.710 0.695
1 % 4 % 0.9 0.5 0.713 0.680

1 0.675
3,500/3,500d 0 0 1 1 0.899 0.779 0.898

1 % 4 % 0.9 0.5 0.865 0.780 0.850
1 0.823

aThe power was empirically estimated using 2,000 replicates where for each replicate 10,000 genes 
were randomly selected from the Exome Variant Server
bSignificance levels used for stage 1 and stage 2 studies aS1

62 5 10= ´ -.  and aS2
62 5 10= ´ -.

cOnly variants on the exome array were analyzed in the stage 2 study
dThe impact of different combinations of false-positive/false-negative rate, assay success rate, and 
genotyping and sequencing error rate ratio on the replication power is examined
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systolic blood pressure (SysBP), total cholesterol level (TCL), low-density lipoprotein 
(LDL), high-density lipoprotein (HDL), triglyceride (TG), very low-density 
lipoprotein (VLDL), and glucose. For the stage 1 study, individuals with quantitative 
trait values in the lower 10 % and upper 90 % of the phenotypic distributions were 
used to form a “case–control” dataset (N = 710). For the replication study, indi-
viduals with intermediate quantitative trait values (N = 1,776), i.e., in the range of 
the lower 10–35 % and upper 65 %–90 % of trait values, were analyzed. Sequence-, 
variant-, and exome-array-based replication strategies were compared using the 
replication dataset.

For the first analysis, the stage 1 and 2 data from the ANGPTL3, ANGPTL4, 
ANGPTL5, and ANGPTL6 genes are analyzed. Although a small sample size was 
used for the stage 1 study, multiple (novel) associations were detected using the CMC 
test (Table 3), i.e., (a) TCL with ANGPTL3 pCMC =( )0 0283. , (b) LDL with ANGPTL 
4 pCMC =( )0 0208. , (c) TG with ANGPTL4 pCMC =( )0 0269. , (d) VLDL with 
ANGPTL4 pCMC =( )0 0373. , (e) BMI with ANGPTL5 pCMC =( )0 0287. , (f) HDL 
with ANGPTL5 pCMC =( )0 0252. , and (g) BMI with ANGPTL6 pCMC =( )0 0013. . 
Among these, the association between BMI and ANGPTL6 is significant even after 
performing a Bonferroni correction for testing multiple genotypes and phenotypes; 
however, the association could not be replicated. For most of the analyses, approxi-
mately 25–40 % of the nucleotide sites observed in the entire DHS sample are also 
observed in stage 1. Since the stage 2 replication sample consists of individuals with 
less extreme quantitative trait values, to ensure that the power of the stage 2 replica-
tion sample is adequate, a much larger sample size is chosen for stage 2 (N = 1,776) 
compared to stage 1 (N = 710). Two of the seven identified associations in the stage 1 
sample were successfully replicated by sequence-, variant-, and exome-array-based 
replication strategies, i.e., associations between TG and ANGPTL4 as well as between 
VLDL and ANGPTL4. Given that the associations are mainly driven by the relatively 
common E40K variant, exome-array-based replication strategy has a slightly smaller 
p-value than the other two approaches.

For the second analysis, the empirical power for replicating the validated associa-
tion between TG and rare variants in ANGPTL4 gene was compared for variant-, 
sequence-, and exome-array-based replication strategies. For this analysis, pheno-
type and variant data for individuals with TG levels in the range of the lower 10–35 % 
and upper 65–90 % trait values (N = 1,776) were sampled with replacement to form 
replicates each with a sample size of 710 individuals, which is the same sample size 
used for the stage 1 study. Each replicate was tested for an association using the 
CMC and the power was determined by the proportion of 2,000 replicates with a 
p-value <0.05. For sequence-based replication, all variants in the stage 2 sample were 
analyzed, and for the variant-based replication, only those variants observed in the 
stage 1 study were analyzed. While for the exome-array-based replication, only those 
variant sites which are available on the exome array were analyzed. The empirically 
estimated power for sequence-, variant-, and exome-array-based replication strate-
gies are 65.3 %, 62.7 %, and 63.4 %, respectively. The power for sequence-based 
replication is only slightly better than the other replication strategies. This result is 
compatible with observations from simulated data.
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 Resources for Designing Replication Studies

Many sequencing studies have publically released their frequency information, 
which can be useful for research investigators to design replication studies. For 
instance, the nucleotide site and frequency information have been released for the 
ESP from the National Heart, Lung, and Blood Institute on the EVS (http://evs.
gs.washington.edu/EVS/) (Fu et al. 2013). This information may be useful for esti-
mating power for a variant-based replication study. Additionally a complete list of 
variant sites represented on the exome array is available at http://genome.sph.umich.
edu/wiki/Exome_Chip_Design. User-friendly software has been made available, 
such as SimRare (Li et al. 2012), and can be very useful for designing variant-based 
replication studies.

 Conclusions and Discussions

In this chapter, we extended the work of Liu and Leal (2010b) to reflect recent 
development in sequence-based genetic studies. We evaluated strategies for 
sequence-, variant-, and exome-array-based replication for complex trait rare vari-
ant association studies and compared them using a rigorous population genetic 
framework. It is demonstrated that in the ideal scenario where sequencing and geno-
typing are both of perfect quality, sequence-based replication is consistently more 
powerful. However, since the uncovered variants can account for a large proportion 
of locus PAR even for a stage 1 study with only a few hundred samples, the advan-
tage in power can be very small if stage 1 and stage 2 samples are drawn from the 
same population. The power of sequence- and variant-based replication studies is 
negatively impacted by sequencing and genotyping errors. For currently attainable 
levels of sequencing errors, the impact is minimal, and the advantage of using 
sequence-based replication studies remains. Using exome arrays for replicating 
gene-level association is also a cost-effective option; however, this option can be 
poorly powered if the variants from the stage 1 study are not well represented.

It has been found previously that rare variants tend to be population specific 
(Bodmer and Bonilla 2008). Many studies have suggested that disease-associated 
variants in different populations can have very different frequencies. For example, 
the E40K variant in the ANGPTL4 gene was shown to be associated with TG levels; 
the MAF is approximately 3 % in European Americans but is very rare in African 
Americans and Hispanics (Romeo et al. 2007). These differences can be observed 
in even more closely related populations; for example, rare variants in CFTR, 
BRCA1, and BRCA2 genes have higher frequencies in the Ashkenazi Jewish popula-
tion compared to Sephardic Jews and non-Jewish European populations (Kerem 
et al. 1997; King et al. 1993). Population-specific diversity of variant frequencies 
and sites is more pronounced for rare variants than for common variants since rare 
variants tend to be younger and occur more recently in human history (Bodmer and 
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Bonilla 2008). When stage 2 samples are drawn from a different population than 
the stage 1 samples, the variant-based replication studies may be at a severe disad-
vantage and grossly underpowered. Given that the demographic and selection mod-
els incorporating complex migration and admixtures are still limited (Boyko et al. 
2008), simulation studies for variant discovery using multiethnic samples still 
remain to be explored. Evaluating the benefits and drawbacks of replication studies 
using samples from different populations will be very important.

Sequencing-based genetic studies have an irreplaceable advantage over genotyp-
ing, which is to discover novel genetic variants. Human population experienced 
complex patterns of demographic expansion and purifying selection (Romeo et al. 
2007; Nielsen et al. 2007). Large numbers of very rare variant nucleotide sites exist. 
Based upon the observations from our extensive simulations and real data, for 
moderate- sized stage 1 studies, only a limited proportion of rare variant nucleotide 
sites can be uncovered. Identifying and cataloging rare variants themselves can be 
of great importance in genetic studies. The novel rare causal variants which are 
uncovered will help enhance the understanding of genetic architectures for complex 
traits. They can also be useful for risk prediction and personalized medicine. As a 
result, even if a gene is replicated using variant- or exome-array-based replication, 
sequencing of the gene region should also be eventually performed to uncover addi-
tional variants. For large-scale genetic studies with thousands of cases and controls, 
most of the disease-causative variants can be identified in stage 1. Therefore, for 
replicating large-scale studies, customized genotyping can be a viable solution. In 
addition, customized genotyping can be advantageous to targeted sequencing in that 
multiple unlinked markers can be genotyped and used to control for population 
substructure/admixture. The advantage is particularly beneficial when GWAS data 
is not available for the replication sample. On the other hand, using exome-array- 
based replication can also be a viable approach for replicating both large-scale and 
small-scale studies. Prior to designing replication studies, it is possible to examine 
whether promising variant sites uncovered in stage 1 are represented on the exome 
array. When most of the variant sites uncovered are present, exome-array-based 
replication can be a cost-effective strategy. In particular, for small-scale studies, 
where most of the identified variants in stage 1 sample are relatively common, using 
the exome array can be both more powerful and more cost-effective than custom 
genotyping-based replication. It should be noted that, because the exome array was 
designed using mainly individuals of European descent, there may be poor repre-
sentation of variants found only in non-European populations.

With the rapid large-scale application of NGS, understandings of genetic eti-
ologies of rare variants will advance to an unprecedented level. Replications of 
significant findings will be an indispensable part of every genetic study. Sequence-
based replication for both small- and large-scale genetic studies is advantageous and 
will eventually be affordable and widely applied. In the meantime, variant- or 
exome-array- based replication can be a temporary, more cost-effective solution for 
the replication of genetic sequence-based studies and will greatly accelerate the 
process of identifying disease-causative variants.

Replicating Sequencing-Based Association Studies of Rare Variants
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Meta-Analysis of Rare Variants

Ioanna Tachmazidou and Eleftheria Zeggini

 Motivation for Meta-Analysis

Meta-analysis is the use of statistical methods to synthesize results of individual 
studies examining the same trait. A genome-wide meta-analysis primarily serves 
the purpose of combining data to increase power to obtain statistical evidence of 
association between disease and variants that would have otherwise escaped detec-
tion, for example because of their small effect sizes. For example, the power to 
attain a p-value of genome-wide significance (5 × 10−8) for a common variant with 
0.20 MAF and a small effect size (odds ratio 1.15) in a GWAS of 2,000 cases and 
3,000 controls is 0.45 %, assuming disease prevalence of 1 %, a multiplicative 
disease model and that the causal variant is typed itself. In contrast, a GWAS 
meta- analysis of five similar homogeneous studies across 10,000 cases and 15,000 
controls has 80 % power to identify risk variants at the genome-wide significance level. 
Chapman et al. (2011) investigated the way sample size affects the power of GWAS 
meta-analyses, in the presence and absence of modest levels of heterogeneity and 
across a range of different allelic architectures.

Genome-wide meta-analysis is facilitated by imputation (Marchini et al. 2007), 
which enables the combination of data across different genotyping platforms. 
Reference datasets, such as those emerging from the HapMap (www.hapmap.org), 
1,000 Genomes (www.1000genomes.org) and the UK10K (www.uk10k.org) 
projects, can be used to impute genotypes for all variants at untyped positions in 
the target dataset of interest, using the GWAS genotypes as a scaffold. Because of 
limited overlap of markers genotyped between platforms, variants are likely to be 
imputed in some studies and directly typed in others. Meta-analysis and imputation 
are analytical tools, which have been widely employed in the field of complex 
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disease genetics. However, genotyping and imputation of low frequency and rare 
variants tend to be less accurate compared to common variation, and the current 
common practice in GWAS meta-analysis is to investigate association only at com-
mon variants to avoid false-positive association signals that are driven by statistical 
or genotyping artefacts.

Whole-exome or whole-genome sequencing marks the beginning of a new era 
for genetics with exciting possibilities, but also with new statistical challenges. 
Aggregate tests that combine information from low frequency/rare variants within a 
region are typically used to test association of a gene or other chromosomal unit 
with the trait of interest (Asimit and Zeggini 2010; Ladouceur et al. 2011; Chen 
et al. 2011), as single-point analysis of variants tends to have low power for variants 
at the low end of the MAF spectrum. The evaluation of different meta-analysis 
approaches to rare variant single-point and burden test association statistics is an 
active field of study catalyzed by method development.

 Key Principles of Meta-Analysis and Practical Considerations

Often, when undertaking a GWAS meta-analysis, extensive information is required, 
such as summary statistics at each variant (e.g. quality control metrics, effect sizes 
and their standard errors, p-values, imputation accuracy scores, MAF), information 
on the analysis method and the covariates used, the size of the study (e.g. number of 
cases and controls, or the effective sample size), filtering of samples and variants, 
approaches taken to adjust for any population stratification (e.g. genomic control 
Devlin et al. 2001 or principal component adjustment Price et al. 2006), relatedness 
of samples within and between studies, and the strand and build of the human 
genome on which allele coding has been based (Zeggini and Ioannidis 2009). It is 
important to ensure that individual studies have been subjected to rigorous quality 
checks to avoid spurious associations. de Bakker et al. (2008), Zeggini and
Ioannidis (2009), and Thompson et al. (2011) provide detailed descriptions of the 
different stages of conducting GWAS meta-analysis.

Meta-analysis of rare variants from sequencing studies require additional harmo-
nization of the analysis protocol across collaborators, specifying not only analysis 
method, but also parameters such as the unit of interest in region-based tests, the type 
of variants examined within the region (e.g. all variants that fall within a MAF and/
or functional annotation class), and any weighting schemes used (e.g. based on MAF, 
functional annotation, sequencing/genotyping/imputation accuracy scores, etc.). 
Quality control of sequencing studies is very important, as rare variant calls could be 
the result of sequencing errors. Synthesizing results from sequencing data that are 
produced using different technologies, at different depth and/or called using different 
pipelines and parameters also requires careful considerations.

Traditional meta-analysis techniques for GWAS can be effect size-, p-value-, or 
Bayes’ factor-based. P-value based meta-analyses are typically only used if effect 
size estimates from individual studies and their respective standard errors are not 
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available (either because of accessibility issues, or because the test used does not 
return an effect size, e.g. SKAT Wu et al. 2011), or when they are known but they 
measure quantities that are not directly comparable (e.g. in different units). P-value 
based meta-analysis cannot provide meta-analytic effect sizes or traditional esti-
mates of heterogeneity. For these reasons, effect size-based meta-analysis is prefer-
able where feasible, and can be implemented using a fixed or random effects model. 
Fixed effects meta-analysis assumes that the true effect size of each variant is the 
same across all individual studies, and therefore no heterogeneity exists among the 
studies. In contrast, a random effects meta-analysis assumes that different effect 
sizes of the same variant drive association among the different studies, and therefore 
between-study heterogeneity exists. The fixed effects approach achieves the highest 
power to detect association, while the random effects approach produces estimates 
with larger uncertainty and lower statistical significance in the presence of true het-
erogeneity. Software packages, such as META (Liu et al. 2010) and GWAMA 
(Magi and Morris 2010), implement both the fixed and random effects model for 
single variants in a computationally efficient manner; they also align effects to the 
same strand, calculate heterogeneity statistics, and offer genomic control correction 
for population stratification, all important parameters in obtaining robust results. 
The traditional random effects model may be conservative, as it implicitly assumes 
heterogeneity under the null hypothesis of no disease association. Recently, Han 
and Eskin (2011) proposed a random effects model that assumes homogeneity under 
the null model, while a random effects component is used to inflate the variance of the 
estimated allelic effect of each variant under the alternative model, and can thus 
increase power in the presence of heterogeneity. Bayesian meta-analysis approaches 
incorporate uncertainty in prior beliefs about between-study heterogeneity, effect 
sizes, and genetic model (Verzilli et al. 2008; Newcombe et al. 2009; De Iorio 
et al. 2011). However, it is not clear how Bayesian meta-analysis approaches scale 
to GWAS. Recently, a computationally tractable Bayesian meta-analysis approach 
that uses a Markov chain Monte Carlo algorithm to calculate posterior probabilities 
that the effect exists in each study has been proposed (Han and Eskin 2012). 
Evangelou and Ioannidis (2013) give an overview of statistical methods for GWAS 
meta-analysis.

 Meta-Analysis of Sequencing Studies

Ma et al. (2013) examined the efficiency of joint and meta-analysis for low frequency 
variants. They focused on case–control studies and the logistic regression- based 
Wald, score, likelihood ratio, and Firth bias-corrected (Firth 1993) tests. These tests 
control the type I error rate well and are asymptotically equivalent for common 
single-variant testing (Cox and Hinkley 1974). However, the asymptotic assump-
tions for logistic regression may not be valid for low frequency variants, making 
them conservative or anti-conservative for the study of such variants. Ma et al. (2013) 
studied the behavior of these tests in joint and meta-analysis of binary traits for low 
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frequency variants. They find that in studies with balanced number of cases and 
controls and for joint analysis, the Firth test has type I error rates close to the nominal 
threshold. In contrast, the score and Wald tests are very conservative, and the likeli-
hood ratio test can be slightly anti-conservative. The Firth test has also the best 
power in this setting. For meta-analysis of balanced studies, the score test controls 
the type I error rate best (Firth and particularly Wald test results are more conserva-
tive, while likelihood ratio test can again be anti-conservative), although it is less 
powerful than Firth-test based joint analysis. For sufficiently unbalanced studies 
(e.g. 1:3 or 1:19 cases and controls), tests in joint analysis behave the same as for 
balanced studies, whereas in meta-analysis all tests can be highly anti- conservative. 
However, these results were obtained for homogeneous studies with no covariate 
adjustments, and it is not clear how the power of joint analysis will compare to 
meta-analysis when combining heterogeneous studies. Moreover, Ma et al. (2013) 
show that test calibration remains consistent when using a constant minor allele 
count threshold, below which tests begin to deviate substantially from the nominal 
significance threshold.

Asimit et al. (2012) examined the utility of traditional meta-analytical approaches 
in combining data across independent studies to increase power for region-based 
tests. Collapsing methods that combine low frequency/rare variants into one super 
locus (such as, for example, Morris and Zeggini 2010) provide both a global coef-
ficient estimate and a p-value of significance, and therefore a sample size and an 
inverse variance based meta-analysis is possible, but not necessarily powerful. 
However, not all rare variants tests (such as, for example, Mukhopadhyay et al. 2010; 
Wu et al. 2011) provide global coefficient estimates that can be combined in a 
traditional inverse variance based meta-analysis. Moreover, a sample size based 
meta-analysis requires a global direction of effect, and can therefore be used only 
with rare variant tests that do not allow for different directions of effect within the 
locus of interest. A straightforward p-value based approach of meta-analyzing 
results from region-based analyses is applying Fisher’s combined probability test 
(Fisher 19321) or Stouffer’s z-score method (Stouffer et al. 1949).

Fisher’s combined probability test (Fisher 19321) is a method that combines 
results from several independent tests of the same hypothesis. Fisher’s method 
combines p-values from each study by summing their natural logarithm and multi-
plying the resulting quantity by − 2. When the combined p-values are independent 
and if all the null hypotheses are true, Fisher’s test statistic has asymptotically a 
chi- squared distribution with 2 × M degrees of freedom, where M is the number of 
combined studies. In particular, under the global null hypothesis: 
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Weights can be easily introduced, in which case the test becomes a weighted sum 
of independent chi-squared statistics under the global null hypothesis. Fisher’s null 
hypothesis is that all of the individual null hypotheses are true, whereas their alterna-
tive hypothesis is that at least one of the individual alternative hypotheses is true. 
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Therefore, Fisher’s test does not allow for the possibility of heterogeneity, where the 
null hypothesis holds in a subset of the combined studies but not in all of them.

A similar approach to Fisher’s test is Stouffer’s z-score method (Stouffer 
et al. 1949), which is based on z-scores rather than p-values. Stouffer’s method 
combines z-scores from each study by summing the inverse normal transformation 
of the individual p-values, which is asymptotically normally distributed under the 
global null hypothesis: 
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Weights ωm are also easily introduced, in which case the test still has a normal 
null distribution: 
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However, region-level p-value based meta-analytical approaches, such as Fisher’s 
and Stouffer’s tests, are not necessarily powerful in combining data across indepen-
dent studies for rare-variant association testing. Ideally, meta-analytical approaches 
for next generation sequencing studies result to no or little power loss as compared 
to a joint analysis approach, in the same way as meta-analysis of singe-tests for 
common variants.

Recently Liu et al. (2013a) compared the power of region-based analysis when 
the data across studies are meta-analyzed as compared to when the data are pooled 
together and then analyzed as if they came from the same study (mega-analysis). 
They conducted their meta-analysis by combining region-based p-values provided 
by the Sequence Kernel Association Test (SKAT, Wu et al. 2011) across studies 
using Stouffer’s test, where the weights of the study-specific z-scores were chosen 
to be the study’s sample size. The mega-analysis requires careful harmonization of 
the datasets to ensure that the distribution of rare variants is the same between studies. 
This was achieved by filtering variants based on call rate, read depth, and balance 
of alternative to reference reads. Homogeneity was ensured by achieving similar 
numbers of minor allele calls (MAC) per sample per gene for variants of MAF less 
than 1 %. Stringent filtering, however, can eliminate real signals along with false 
ones. The authors suggest sequencing a few samples in all centers that produced the 
data to monitor and evaluate the results of filtering, but this may not be always fea-
sible. Population stratification can be a source of heterogeneity within and between 
studies. Population stratification at low frequency/rare variants might not be cor-
rected by adjusting for principle components (PC) using common or low frequency 
variants, and evidence has been contradictory (Mathieson and McVean 2012; Zhang
et al. 2012). Via simulation, Liu et al. (2013a) concluded that mega-analysis is more 
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powerful than Stouffer’s meta-analysis technique. This is due to the fact that 
Stouffer’s meta-analysis approach combines gene-level statistics, whereas mega-
analysis combines all the available information in the datasets at the genotype level. 
On the other hand, appropriate meta-analytic approaches allow for heterogeneity 
between datasets, whereas mega-analysis explicitly assumes no heterogeneity 
between samples. Heterogeneity can be the result of different sequencing tools and 
protocols utilized for the studies being combined, and Liu et al. (2013a) suggest 
ways of removing these sources of heterogeneity. However, heterogeneity can be 
inherent between datasets, for example when combining datasets from different eth-
nic groups. Another disadvantage of mega-analysis is that it requires access to the 
full genotype data instead of association summary statistics, which makes this 
approach infeasible in cases where individual-level data cannot be shared. Mega-
analyses can also be impractical not only because they require transferring large 
amounts of data, in contrast to meta-analysis where only summary statistics are 
shared, but also when different studies have collected and adjusted for different 
covariates.

 Heterogeneity and the Effects on Power

It is expected that different causal variants of low frequency will be found to reside 
within the same functional units, and that different alleles will be carried by different 
individuals across studies (allelic heterogeneity) (Cirulli and Goldstein 2010; 
Eichler et al. 2010). Allelic and locus heterogeneity is expected to be a particularly 
important consideration in meta-analysis of trans-ethnic studies.

Asimit et al. (2012) evaluated different meta-analysis approaches in the presence 
of allelic heterogeneity. They simulated case–control data from different popula-
tions where the causal variants were population-specific, and for each population 
separately, they performed an association analysis using the collapsing method of 
Morris and Zeggini (2010) and the allele-matching association test KBAT that 
allows for different directions of effect (Mukhopadhyay et al. 2010). Subsequently, 
they performed a meta-analysis using the traditional inverse variance based 
 technique with the odds ratio estimate from the collapsing method, and Fisher’s 
meta- analytic technique with the p-values of the collapsing method and KBAT. They 
found that a p-value based meta-analysis of summary results from allele-matching 
locus-wide tests has some power advantages, although power remains low. Moreover, 
they found that for low-frequency variants with large effects (odds ratios 2–3), sin-
gle-point tests have high power, but also high false-positive rates. They concluded 
that current strategies for the combination of genetic association data in the presence 
of allelic heterogeneity are insufficiently powered. New methodological approaches 
are required and are currently being developed for meta-analysis of sequencing 
studies to allow for locus and allelic heterogeneity (Lumley et al. 2013; Lee 
et al. 2013; Tang and Lin 2013; Liu et al. 2013b).
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Lumley et al. (2013) recently developed a meta-analytical approach based on 
SKAT (Wu et al. 2011), and showed that their meta-analysis technique, called 
skatMeta, is as efficient as an analysis that pools individual-level data together. 
Within the chromosomal region of interest, for each cohort k and for each variant j, 
j m= ¼1, , , a score b̂kj

 and its associated variance ŝkj
2  are calculated as: 
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where Gkij and Yki are the genotype and phenotype of individual i and variant j in 
study k, Nk is the sample size of study k, ŝ k

2  is the variance of the phenotype in study 
k, and pj is the average MAF of variant j across all studies. If a variant is absent in 
some studies, then it is assumed to be observed in these studies with its regression 
coefficient reduced to zero.

Then a pooled score b̂ j
 and a pooled score variance ŝ j

2  is calculated for each vari-
ant j by a standard inverse variance based meta-analysis across cohorts, and therefore a 
pooled score test statistic wj  is obtained. The skatMeta statistic is the sum of squares 
of the pooled score test statistics across all low frequency/rare variants in the unit of 
interest, weighted by a function of their pooled MAF across all cohorts: 
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where ωj is the weight for variant j. Asymptotically, the skatMeta statistic is distrib-
uted as a sum of chi-squared statistics that depends on the number of variants 
observed and the average linkage disequilibrium between variants. Therefore, skat-
Meta uses score statistics and the MAF of variants from each study, and the study- 
specific genotype covariance matrix, which makes it applicable even when 
individual-level data cannot be shared. As a regression based test, skatMeta can 
handle both binary and continuous traits. Although it can be adjusted for covariates, 
such as principal components, the meta-analysis is less exact. In a simulation study, 
Lumley et al. (2013) showed that skatMeta utilizes all the information in the data.

A simpler approach of meta-analysing SKAT results is by summing SKAT test 
statistics Qk from each cohort k weighted by a cohort weight νk (proportional for 
example to sample size). This weighted sum is asymptotically distributed as a linear 
combination of chi-squared tests: 
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Lumley et al. (2013) showed that this simplistic approach is significantly less 
powerful than skatMeta. In fact, its power is comparable to the power of Fisher’s 
and Stouffer’s method.

The approach of Lumley et al. (2013) is an extension of the fixed-effect meta- 
analysis model for single variants. Lee et al. (2013) independently developed a meta-
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analysis approach of rare variants applicable to burden tests (Li and Leal 2008; Morris 
and Zeggini 2010), SKAT, and the unified SKAT-O test (Lee et al. 2012), called 
MetaSKAT, which can assume both homogeneous and heterogeneous genetic effects 
across studies, corresponding to a fixed and random effects meta-analysis model 
respectively. In the same spirit as Lumley et al. (2013), the fixed-effects meta-analysis 
version of SKAT by Lee et al. (2013) first accumulates the weighted score of each 
variant j across K studies and then sums the squared accumulated score statistics 
across the m variants in the region of interest. In particular, if Skj is the score statis-
tic and ωkj is the weight of variant j in study k, then the SKAT-O test statistic for a 
fixed-effects meta-analysis is given by a weighted average of the SKAT and burden 
meta-analysis test statistics: 

 Q Q Qhom-meta hom-meta-SKAT meta-Burden( ) ( ) ,r r r= - +1  
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ρ is interpreted as the pair-wise correlation among the coefficients of genetic effects 
βkj. When ρ = 0, Qhom-meta(0) corresponds to a joint analysis of the k studies using 
SKAT, whereas for ρ = 1, Qhom-meta(1) corresponds to a joint analysis of the studies 
using a burden test.

To allow between-study heterogeneity, the effect size of variant j in the combined 
studies are assumed independent and to have a common distribution. The random- 
effects meta-analysis SKAT-O statistic is given by Lee et al. (2013) as: 

 Q Q Qhet-meta het-meta-SKAT meta-Burden( ) ( ) ,r r r= - +1  

where 
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This method can accommodate different levels of heterogeneity of genetic effects 
across studies. For example, if a subset of the studies combined belong to the same 
ancestry group, Qhet-meta-SKAT  can be rewritten to allow homogeneity between those 
and at the same time heterogeneity between the studies from different ancestry 
groups. If the weighting scheme is based on MAF, the average MAF across studies 
can be used for a fixed-effects meta-analysis, whereas for studies grouped by ances-
try, weighs can be based on ancestry specific MAFs. Moreover, if a variant is absent 
in some studies, then it is assumed to be observed in these studies with its score set 
to zero. It can be shown that the asymptotic null distribution of Qhom-meta(ρ) and 
Qhet-meta-SKAT  can be approximated as a mixture of chi-square distributions. As both 
SKAT and burden tests are implemented in a regression framework, MetaSKAT can 
analyze binary and continuous traits.

I. Tachmazidou and E. Zeggini



223

Lee et al. (2013) compared the power and type I error of MetaSKAT to Fisher’s 
test using individual study SKAT-O p-values and inverse variance weighting based 
meta-analysis burden tests in a simulation study of varying levels of heterogeneity. 
Overall, MetaSKAT controlled the type I error rate well at lower significance lev-
els, with slightly inflated and deflated errors for continuous and binary traits 
respectively for increasing significance levels. As expected, power for meta-analy-
sis burden tests was substantially reduced in the presence of both deleterious and 
protective variants. Its performance is also not robust to the proportion of causal 
variants included in the analysis, in contrast to MetaSKAT. When genetic effects 
are homogeneous across studies, the power of meta-analysis using Hom-Meta-
SKAT and Hom-Meta-SKAT-O is similar to those for joint analysis using SKAT 
and SKAT-O, while Het-Meta-SKAT-O had modest power loss. In the presence of 
heterogeneity between studies, Het-Meta-SKAT-O and Het-Meta-SKAT were the 
most powerful approaches. Fisher’s test had overall similar or lower power than 
Het-Meta-SKAT-O.

Tang and Lin (2013) also developed a program, called Meta-Analysis of Score 
Statistics (MASS), that performs meta-analysis of rare variants by combining score 
statistics across studies. MASS implements three different tests that correspond to 
a variety of rare variants test, such as the burden test (Li and Leal 2008; Morris and 
Zeggini 2010), variable threshold test (VT) (Price et al. 2010; Lin and Tang 2011), 
C-alpha test (Neale et al. 2011), and SKAT (Wu et al. 2011). Let U k( ) , an m × 1 
vector if there are m variants under investigation in the region, denote the score 
statistic for study k and V k( ) , an m × m matrix, be the corresponding information 
matrix for study k. Then the score of each variant is collapsed across the studies, 
and therefore the overall score statistic U  and overall information matrix V  are 
calculated as: 
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Under the null hypothesis that none of the variants are associated with the 
outcome in any of the studies, pertaining to a fixed-effects meta-analysis model, 
U  asymptotically follows a multivariate normal distribution with mean 0  and covari-
ance matrix V . It can be shown that U  is the score statistic for testing the null 
hypothesis when using the joint individual-level datasets. Using U  and V , MASS 
implements the quadratic statistic Q U V UT= -1  (which encompasses the CMC 
test), the maximum statistic T U Vj m j jmax max= = ¼1

2
, ,   (which encompasses the VT 

test), and the weighted quadratic statistic Q U UT
w = W  (which encompasses 

C-alpha and SKAT). Under the null hypothesis, the quadratic statistic has a chi-
squared distribution with m degrees of freedom, the distribution of the maximum 
statistic is determined by the multivariate normal distribution of U  under the null 
model, while the null distribution of the weighted quadratic statistic is a linear com-
bination of chi- squared tests of 1 degree of freedom that are proportional to the 
correlation of variants within studies.
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Liu et al. (2013b) independently proposed an approach for meta-analysis of a 
number of popular gene-level association tests, such as burden tests, VT test and 
SKAT, weighted or un-weighted by MAF or predicted functional annotations. Liu 
et al. (2013b) approach is very similar to Tang and Lin (2013) method, and it is 
implemented in a software called RareMETAL. As with other meta-analysis meth-
ods of gene-level tests, RareMETAL requires single variants score statistics, MAFs,
and correlation information within studies. A novel feature of RareMETAL is that
apart from calculating asymptotic p-values, it also evaluates significance in an 
empirical and numerically stable way via Monte-Carlo simulations. Since, as dis-
cussed above, U ~MVN(0,V) , we can generate empirical distributions for gene- 
level statistics by sampling from this multivariate normal distribution. An adaptive 
approach can be used for computational efficiency, where a larger number of simu-
lations are performed when assessing small asymptotic p-values and fewer simula-
tions for assessing larger asymptotic p-values. Another unique feature of 
RareMETAL is its ability to conduct conditional meta-analysis of gene-level tests.
Extending an approach used by Yang et al. (2012) for conditional meta-analysis of 
common variants, Liu et al. (2013b) facilitate meta-analysis of gene-level tests con-
ditional on common variants in the gene. Liu et al. (2013b) illustrate in a simulation 
study that RareMETAL produces similar results when individual level data are
shared from homogenous studies, or when study heterogeneity (e.g. in trait means 
and variance, or covariate effects) has been adjusted for. Moreover, RareMETAL is
more powerful than Fisher’s method for combining p-value, and it controls the type 
I error rate well.

After a meta-analysis has been conducted, interesting signals are prioritized for 
follow-up and replication, in order to achieve genome-wide significance. The rep-
lication stage could be a large meta-analysis itself. Typically the replication data 
are meta-analyzed with the discovery data to capture the totality of the evidence. 
The replication of previously established loci can serve as validation for the 
approach followed.

 Concluding Remarks

Over the next few years the field of complex trait genetics is poised to witness 
large- scale collaborative efforts to meta-analyse sequencing studies. As whole 
genome sequencing costs continue to decline and approach those of dense GWAS 
arrays, the expectation is that future association studies will be truly genome-wide, 
assessing variation across the full allele frequency spectrum. Low depth whole 
genome sequencing experiments across hundreds of thousands of individuals and 
also across diverse ethnic groups will become a reality, potentially transforming the 
current understanding of complex trait architecture. Statistical genetics method 
development is currently an intensely active field, which will deliver efficient solu-
tions to analytical and computational challenges associated with this unprecedented 
scale and structure of data.
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Population Stratification of Rare Variants

Emmanuelle Génin, Sébastien Letort, and Marie-Claude Babron

 Introduction

It has long been recognized that there can exist, at least at some loci, differences in 
allele frequency between human populations. In 1919, Hirszfeld and Hirszfeld 
(1919) first reported differences in the ABO blood group frequency between soldiers 
from different ethnic origins. In their pioneer work, Cavalli Sforza et al. (1994) 
extended this observation to several different loci and showed a global pattern of 
allele frequency gradients over the world that follows human migrations. More 
recently, with the development of high-throughput technologies and the possibility 
to assess genetic variations at an unprecedented scale of hundreds of thousands of 
markers, it was shown that these differences exist at all the geographic levels: 
between continents, between countries within a continent and also between regions 
within a country.

Describing the genetic diversity between groups of individuals and understanding 
its origin are the basis of population genetics. Indeed, apart from migrations, differ-
ent phenomena can lead to allele frequency variation between groups of individuals. 
These differences are essential as they are the bricks on which the species relies to 
ensure its survival. They need to be recognized and accounted for when studying the 
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genetic determinants of complex traits to optimally design the study and to avoid 
false conclusions.

Indeed, in the context of genetic association studies, allele frequency differences 
between subgroups of individuals when coupled with differences in disease risks can 
lead to population stratification. Sampling cases and controls without accounting for 
population stratification exposes to a risk of falsely concluding that the alleles that 
have an increased frequency in the subgroups with a higher disease risk are involved 
in the disease either directly or because they are located in the vicinity of a disease 
risk locus. This problem is more likely to arise when the individuals are sampled 
from different ethnic groups as illustrated by the famous example of an association 
between a Gm haplotype and type 2 diabetes that was explained by Pima–Papago 
ancestry (Knowler et al. 1988). More recently with the advent of genome-wide asso-
ciation studies (GWAS), the problem becomes more crucial as very large samples of 
cases and controls are compared at hundreds of thousands of markers (Clayton et al. 
2005). It was a stimulus for the development of new methods to detect and correct 
for population stratification in case–control data (for a review, see (Price et al. 
2010)) that were shown to perform well under most scenarios. These novel methods 
however were developed to analyse common genetic variants and the few studies 
performed so far on rare variants agree in showing that they might not be as efficient 
to correct for rare variant stratification that differs in its pattern from common variant 
stratification.

In this book chapter, after recalling some of the basic principles of population 
genetics and the methods used to evidence population stratification and to correct 
for it in association studies of common variants, we review the different studies 
performed so far to assess the population stratification of rare variants and its impact 
on association tests.

 Some Basic Principles of Population Genetics

Population genetics is the study of allele frequency variation in time and space. 
It was born in the 1920s with the founder works of R.A. Fisher, J.B.S. Haldane and 
S. Wright to reconcile the Mendelian theory of heredity and the Darwinian theory 
of evolution. Four main evolutionary forces play an important role in shaping human 
genetic diversity: mutation, natural selection, genetic drift and gene flow through 
migrations. To keep it simple, a new genetic variant is created by mutation. If this 
variant is neutral, it will most likely disappear because of genetic drift and because 
not all genetic variants are transmitted to the next generation. The rarer the variant, 
the less likely it will be transmitted. Its frequency could also increase by chance at 
a rate that depends on several factors but is mostly determined by the population 
effective size and its growth rate. If the variant is deleterious, there are even  
more chances that it will disappear very quickly from the population because  
of negative selection and because of the reduced fitness of carriers of this variant. 
On the contrary, if the variant is favourable and confers a selective advantage to its 
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carriers, it will more likely increase in frequency in the population at a quicker rate 
than the one expected for a neutral variant through genetic drift. Migrations can 
interfere in this process that would otherwise ultimately lead to population differen-
tiation, by creating gene flows between populations and homogenization. Since 
migrations are more likely to occur between neighbouring populations, they can 
lead to some gradients of allele frequencies such as the one first described by Cavalli 
Sforza et al. (1994). Moreover, demography also plays an important role in shaping 
the spatial patterns of genetic diversity. Rapid population growth such as the one 
experienced by human populations over the past 400 generations (from a few 
 million people 10,000 years ago to seven billion today) increases the load of rare 
variants that are generated by recent mutations (Keinan and Clark 2012).

From these basic principles of how the different evolutionary forces interact, it 
is clear that most rare genetic variants are young variants that have just arisen in the 
population through mutations and have had no time to increase in frequency and be 
dispersed in space. Therefore, they are expected to be seen only in a few restricted 
geographic areas. Some of the rare variants could be older variants that are under 
negative selection and maintained at low frequency because they induce some 
 fitness reduction, either directly or indirectly, through linkage with deleterious 
variants. These older variants under negative selection could be found in wider 
geographic areas although their deleterious nature might also have prevented their 
dispersion.

 Methods to Assess Population Differentiation

To quantify the degree of genetic differentiation observed at a given locus in different 
populations, Sewall Wright (Wright 1951) developed the theory of fixation indices 
or F-statistics. A population is assumed to be subdivided in subpopulations and 
three different F-statistics are defined. FIS quantifies the amount of correlation 
between uniting gametes within an individual relative to the subpopulation the indi-
vidual belongs to and is thus equivalent to the inbreeding coefficient of the indi-
vidual. FIT is the correlation between the gametes within the individual but relative 
to the entire population. FST is the correlation between two randomly chosen gam-
etes in the same subpopulation relative to the entire population. It is the most com-
mon measure of population differentiation. Values of FST can typically vary between 
0 in the absence of genetic differentiation and 1 when different alleles are fixed in 
the different populations. Several methods, reviewed in (Holsinger and Weir 2009), 
have been developed to estimate FST on real data. They are based on different mod-
elling assumptions and can provide different results especially when the sample 
sizes are small. In addition, the comparison of FST measures between markers with 
different allele frequencies may be difficult as there is a strong dependency between 
FST and allele frequencies (Jakobsson et al. 2013).

Another way to evidence population stratification consists in performing a 
principal component analysis (PCA) of the individual genotype data to extract the 
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major axes of variation in the data (Price et al. 2006). PCA allows the visualization 
of the data in a space of reduced dimension and the identification of clusters of 
individuals who are genetically more similar and more likely to belong to the same 
population. Based on PCA results, it is possible to compute Euclidean distances 
between populations that are related to FST (McVean 2009). PCA results depend on 
the number of markers included and it may thus be difficult to compare results 
obtained with different sets of markers with different minor allele frequencies. It is 
indeed possible that the first principal component obtained on a sample of individu-
als for a set of markers is not well correlated with the first principal component 
obtained on the same sample of individuals with a different set of markers but 
correlates well with, say, the first ten principal components obtained on this latter 
set of markers.

More recently, with the availability of sequence data, multiple-population site 
frequency spectra (SFS) that record the joint distribution of single nucleotide poly-
morphisms (SNPs) in different populations have also been used to describe between- 
population structure. FST measures are summaries of multiple-population SFS. The 
observed multiple-population SFS can be compared to the hypergeometric distribu-
tion expected if individuals were randomly assigned to each population to see how 
it departs from this null distribution. More sophisticated models can also be used to 
test the fit to different demographic assumptions (Gutenkunst et al. 2009).

 Methods to Correct for Population Stratification  
in Genome- Wide Association Studies

Different methods have been developed to genetically match cases and controls at 
common variants or to correct for the stratification in GWAS (Price et al. 2010).

The first and simplest method proposed to correct for stratification consists in 
computing the genomic control, λGC, defined as the median of the chi-squared asso-
ciation statistics computed across the different SNPs divided by its theoretical 
median under the null. The test statistics at each marker are then corrected by divid-
ing them by λGC (Devlin and Roeder 1999). This correction assumes that the extent 
of stratification is the same over the entire genome. Thus, it works well especially in 
situations where the divergence between populations is mainly due to genetic drift. 
It does not perform as well in these areas of the genome where subpopulation dif-
ferences are due to selective pressures because these regions exhibit different strati-
fication patterns from the rest of the genome.

To avoid this assumption of a universal inflation, one relies on PCA-based 
methods that consist in first performing a PCA analysis of the joint samples of 
cases and controls and then adjusting for the top PCs in the association tests to 
basically match cases and controls based on the ancestry information captured by 
these top PCs (Price et al. 2006). A limitation of these methods however is that 
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they do not model family structure or cryptic relatedness that could exist within 
samples which would then result in type I error inflations.

On the other hand, mixed models that model the phenotypes as a mixture of fixed 
effects and random effects are able to deal with these complexities (Yu et al. 2006). 
Their applicability in GWAS is now possible thanks to the development of more 
efficient algorithms and their implementation in software (Zhang et al. 2010; Kang 
et al. 2010; Zhou and Stephens 2012).

Finally, another approach to correct for population stratification consists in first 
clustering individuals based on their genetic ancestries and then performing asso-
ciation tests within clusters (Devlin et al. 2001). Different models have been devel-
oped to cluster individuals based on genetic data; a few examples include Pritchard 
et al. (2000), Bouaziz et al. (2012) and Lawson and Falush (2012). Their application 
has however been limited because of computational constraints that make their use 
difficult when dealing with hundreds of thousands of markers. Recently, develop-
ments have leveraged these constraints and these approaches are now possible on 
GWAS data.

The different methods proposed to correct for population stratification have 
been extensively tested in simulation studies (see, e.g., (Bouaziz et al. 2011)) and 
have proven their efficiency in preventing false-positive results when testing for 
association with common variants.

 Rare Variant Stratification on Real Data

In the last 10 years, several large-scale projects have been conducted to study the 
genetic diversity of different human populations. These projects have led to a major 
turn in population genetics that has moved from a theory-driven field to a data- 
driven field. It is now possible to confront the predictions obtained from population 
genetics theories with the observations on real data and thus to study how the theory 
fits with the reality (Pool et al. 2010). For this purpose, sequence data are of particu-
lar interest as, contrarily to genotyping data, they do not suffer from an assessment 
bias in favour of the most frequent variants.

The 1,000 Genomes Project by releasing sequence data on relatively large samples 
of individuals from different populations worldwide has made it possible to study 
rare variant stratification between and within continents (Abecasis et al. 2010). 
Focussing on the variants that are present twice across the entire sample (referred to 
as f2 variants) and that are thus probably, for most of them, recent variants revealed 
that they are found within the same population in 53 % of cases. When present in 
two different populations, they were most often seen in populations that have his-
torical links such as the Spanish population and the populations from the Americas 
(Abecasis et al. 2012). To further explore this phenomenon, we downloaded the 
1,000 Genomes release phase 1 low-coverage data on the 1,092 individuals from  
14 different populations. After exclusion of 3 individuals who were the children of 
case-parent trios, we studied the distribution of variants present in various numbers 
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(from 2 to 10) in the remaining 1,089 individuals. We compared the number of vari-
ants that are private to a single population to the number expected from the multi-
variate hypergeometric distribution if variants were randomly distributed (Fig. 1). 
As expected and consistent with previous results, we found an important excess of 
private variants among the rarest variants and that a large proportion of them are not 
shared between the different populations from the 1,000 Genomes and even between 
the populations that are the closest geographically. These results might however be 
biased since a non-negligible fraction of the variants could be missed in the low-
coverage data because of sequencing errors that can cause false negatives. The rate 
of false negatives depends on the real number of alleles that exist in the sample and 
is expected to decrease with the increasing number of alleles. These differences in 
false-negative rates however are not sufficient to completely explain the observed 
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patterns. Indeed, the fact that the lack of sharing is more pronounced for the rarest 
variants is still visible when sequencing errors are modelled as in the study by 
Gravel et al. (2011) that proposed a correction model for the multiple-population 
SFS. Even after this correction, the amount of sharing between continental popula-
tions for the rarest variants was significantly reduced compared to the amount 
expected under the hypothesis of a random assignment of individuals. Sharing was 
closer to the expectations for the most common variants.

Despite the efforts in the last few years towards sequencing larger numbers of 
individuals, the amount of sequence data needed to study population stratification at 
a finer scale than the continental scale is still too poor. However, information on 
fine-scale stratification may be gained from the different GWAS that have been 
performed so far and for which very large samples of individuals have been geno-
typed on SNP chips. Even if these studies suffer from an ascertainment bias in 
favour of the most common variants, they can still provide some clues on rare vari-
ant stratification in more geographically restricted regions. Taking advantage of the 
high content in rare variants of the Affymetrix 500 K SNP chip used in the WTCCC1 
study, we were able to show that rare variants with a minor allele frequency (MAF) 
≤1 % are not stratified in the same way in the UK control population as the common 
ones with MAF >5 % and that the low-frequency variants with an MAF in between 
these two values also display different stratification patterns (Babron et al. 2012). 
The regional maps obtained by plotting the first two principal components (PCs) of 
the PCA conducted on these different sets of variants are indeed very different 
(Fig. 2). The top PC extracted from the rare variant set shows very poor correlations 
with any PCs or combination of PCs from the two other variant sets and the rare 
variant stratification appears much stronger than the other two.

 Impact of Rare Variant Stratification on Association Tests

The fact that rare variants are not stratified in the same way as common variants and 
display stronger stratification patterns calls for caution in the interpretation of 
association tests. Indeed, false-positive results are likely to arise due to a lack of 
appropriate genetic matching between cases and controls. Several studies converge 
to show that the performances of the methods developed to correct for common 
variant stratification are reduced when testing for association with rare variants.

Using the 1,000 Genomes Project sequence data on European and African sam-
ples, Zhang et al. (2013) found that PCs derived from low-frequency variants 
(1 % < MAF < 5 %) were better able to separate the two continental groups than 
those derived from the common variants. However, when used in association tests 
to correct for stratification, PCs derived from the low-frequency variants could lead 
to some power losses due to an overadjustment. Moreover, the top PCs derived from 
rare variants were found less efficient at capturing the continental stratification and 
rare variant association tests adjusted on these PCs had inflated type I error rates. 
Using simulated mini-exome data from the Genetic Analysis Workshop 17, He et al. 
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(2011) also found that PCA was able to reduce false-positive rates much more effec-
tively in common SNPs than in rare SNPs. If a total of 144 common SNPs and 44 
rare SNPs were falsely declared significant before PCA adjustment, these numbers 
dropped respectively to 0 and 21 after adjustment. We reached the same conclusion 
concerning the difficulty to correct for rare variant stratification with PCA in our 
analysis of the WTCCC1 Affymetrix 500 K data stratified on the MAF (Babron 
et al. 2012). We found both on type 2 diabetes and on simulated data that, even if 
PCs computed on rare variants were used to adjust rare variant association tests, 
type I errors were inflated. This was also noticeable, albeit to a lesser extent, for the 
low-frequency variants. Mixed models such as the ones implemented in EMMAX 
(Kang et al. 2010) that were found to perform better than PCA for common variants, 
especially in situations where there exist cryptic relatedness, were expected to also 
perform better when studying rare variants as carriers of the same rare variants are 
likely to be remotely related. However, our results showed the opposite trend. The 
inflation factors obtained when using EMMAX on the rare variants were similar to 
those obtained without any stratification correction and thus slightly worse than the 
PCA-based corrections.

Using simulations of genotype and quantitative traits on spatial grids, Mathieson 
and McVean (2012) were also able to show that rare and common variants are 
expected to exhibit differential spatial distributions especially in situations where the 

Fig. 2 Patterns of stratification for common, low-frequency and rare variants in the WTCCC1 
control population from the UK. This figure displays the mean PC1 and PC2 scores in each of the 
12 UK regions represented in the dataset. Common variants have a minor allele frequency (MAF) 
>5 %, the low-frequency variants have an MAF in the range between 1 and 5 %, and the rare 
variants have an MAF ≤1 % (Reproduced from Figure 3 in Babron et al. (2012))
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nongenetic disease risk has a sharp spatial distribution. In these situations, associa-
tion tests performed with rare variants showed a stronger inflation under the null 
hypothesis than association tests performed with common variants. However, when 
the nongenetic risk had a wide and smooth spatial distribution, this was no longer the 
case and rare variants showed less inflation than common ones. The behaviour of the 
correcting methods for population stratification was also shown to depend on these 
distributions of nongenetic risks. They worked well in the latter situations where the 
nongenetic disease risk had a wide distribution and did not work for the small and 
sharp distribution of risk. Because many of the methods proposed to test for associa-
tion with rare variants combine the information across multiple variants within a 
gene, the authors also investigated the effects of stratification on gene- based tests and 
found that in the sharp nongenetic risk situation, the problem still remained but was 
reduced as the number of aggregated variants within a gene increased. Moreover, 
population stratification adjustments derived for single SNPs may not be appropriate 
for gene-based tests as genes may have a different composition of rare and common 
variants and thus are likely to exhibit different stratification patterns. Through both 
theoretical and empirical investigations, Liu et al. (2013) showed that the inflation 
factor due to population stratification of gene-based tests was expected to depend on 
the number of variants within the genes and on their MAF distribution. Applying a 
genomic control correction for stratification has proven to be very inefficient in this 
context as this correction assumes a universal inflation over the different genes. 
PCA-based corrections were found to be superior in simple scenarios of two distinct 
populations but their performances decreased for more subtle scenarios with several 
subpopulations.

These different studies suggest that rare variant stratification remains a prob-
lem that still needs to be treated in association tests. New methodological devel-
opments are necessary to avoid false-positive conclusions. This is definitively an 
issue that investigators planning to use sequencing methods to assess rare variant 
association with complex traits need to be aware of and to account for in their 
study design.
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      Use of Appropriate Controls 
in Rare-Variant Studies 

             Audrey     E.     Hendricks    

           Introduction 

 When designing a case–control study, researchers must decide whether to gather and 
sequence or genotype controls in parallel with cases or whether to only sequence or 
genotype cases and to plan on using external, perhaps publically available control data. 
When using rare-variant genotyping chips, gathering and using internal controls may 
be the obvious choice as the cost per subject is relatively low although there is still 
the cost of recruiting or fi nding a suitable control set. There may be more reason to use 
external controls for sequencing due to its relatively high cost. Ultimately, the choice 
often comes down to a balance between available funds, resources, and the number and 
uniqueness of the cases available for sequencing or genotyping. In addition, other 
reasons may prompt researchers to use external controls. Researchers may choose 
to boost their study’s sample size and potentially the power by adding in external, 
publically available controls to an existing internal control set. 

 Here, we address how to conduct an appropriate case–control study using inter-
nal as well as external controls.  

    Case–Control Studies 

 Careful consideration of appropriately using controls is especially important as 
systematic differences between cases and controls can cause bias, here defi ned as 
inaccurate genotype frequencies or differential genotype missingness, and manifest 
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into false associations or even hide true associations. In this section, we fi rst 
highlight the differences between internal and external controls and then comment 
on the possible sources and solutions of bias in general and those specifi c to exter-
nal controls. 

    Internal Versus External Controls 

 Given limited resources and the cost of recruiting subjects and producing data for 
any study, there has always been a balance to the number of cases and controls to 
gather to achieve optimal power. This balance often depends on several parameters 
including the number of samples already recruited, the cost of recruiting further 
cases or controls, the prevalence of cases, the availability of appropriate external 
controls, and overall study resources. 

 As the prevalence of a case set decreases, so does the diffi culty in recruiting fur-
ther cases. In addition, for case sets with low prevalence, there are often fewer similar 
case sets from which to replicate fi ndings. For instance, the UK10K Severe Childhood 
Onset Obesity Project (SCOOP) sample (described further in Chap.   9    ) used in the 
obesity arm of the UK10K project consists of Caucasian children with an age-
adjusted BMI of greater than three standard deviations above the mean and an age at 
onset of less than 10 years. A similar BMI measure in adults would be classifi ed as 
morbidly obese. The young age at recruitment means that the children have a rela-
tively short duration of environmental exposure (compared to obese adults) and sug-
gests that the sample may be enriched for genetic causes of obesity. In fact, severe 
childhood obese samples from which SCOOP is a subset have pathogenic mutations 
in  MC4R , the gene that causes the most common form of monogenic obesity, at a rate 
of 2–5 times higher than the general population suggesting severe childhood obesity 
samples such as SCOOP are indeed enriched for rare genetic causes of obesity 
(Farooqi and O’Rahilly  2006 ). As SCOOP subjects are more unique than a set of 
obese or even morbidly obese adult subjects, the overall prevalence of SCOOP 
cases is much lower than common obesity. The uniqueness of the SCOOP sample is 
an example where there may be few similar samples with which to replicate fi ndings. 
Thus, focusing resources on sequencing as many cases as possible while using or 
supplementing with externally available controls may be prudent. 

 Many possible confounders exist when conducting case–control analysis includ-
ing differences due to ethnicity, technology, or platform. Using internal controls 
provides an opportunity to mediate or prevent some of the bias before completing 
the case–control analysis. Controls can be matched, upon entry to the study, to cases 
on reported or genetic (if available) ethnicity to help prevent population stratifi ca-
tion. Further, cases and controls can be equally distributed on the same genotyping 
plates or mixed and sequenced in the same lanes and on the same days using the 
same technology to help prevent any bias due to differences in technology, targets, 
or other batch effects. 
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 Below, we discuss further possible sources of bias as well as steps to prevent and 
address this bias. While some sources of bias will most likely only be seen when 
using external controls, there are other biases, such as population stratifi cation, 
common to internal and external controls. Steps should be taken to prevent or correct 
possible sources of bias no matter which control set is used.  

    General Quality Control 

 As in all genetic association studies, sample- and variant-level quality control is 
important to arrive at an unbiased and robust result. Quality control (QC) is particu-
larly important when using external controls where there is likely more non-trait-
related difference between cases and controls that can lead to biased results. 

 In this section we outline steps that researchers can take to help prevent and 
control for bias in case–control studies. These steps can be taken as a broad guide-
line of QC and checks. Producing plots of various QC measures throughout can 
help identify and fi x problems relatively early in the process. While we outline basic 
considerations, the particular exclusion values will and should be driven by the 
unique nature of each study. 

    Sample Quality Control 

 Common sample quality control includes detecting contaminated samples, fi nding 
cryptic relatedness, looking for ethnic outliers, completing concordance analysis 
with other available genetic datasets, and calculating descriptive statistics on the 
sample level such as the total number of variants, the number variants by minor 
allele frequency group, etc. Whether rare-variant data is coming from sequencing or 
rare-variant genotyping chips, there are usually enough common variants to com-
plete the sample QC using methods established during the genome-wide association 
study (GWAS) era. Whole-exome and whole-genome sequencing produce plenty of 
common variants from which established protocols used to identify and potentially 
exclude samples can be used. Rare-variant genotyping chips, such as the exome 
chip, include a set of common variants specifi cally chosen to identify ethnic outliers 
that can also be used for other checks such as relatedness. 

 The ratio of the number of heterozygote calls over the number of homozygote 
calls in total (het/hom ratio), or the number of alternate homozygous calls (het/alt 
hom ratio) is a commonly used measure for detecting sample contamination. Given 
contamination caused by mixed samples, we expect the number of heterozygote 
calls to increase as differences in genotypes would most often mix to be called as a 
heterozygote genotype. Thus, a relatively high het/hom ratio compared to the rest of 
the samples can indicate sample contamination. Often a threshold of 3SD away 
from the sample mean is used to identify outliers and possibly contaminated subjects. 

Use of Appropriate Controls in Rare-Variant Studies



242

However, other reasons might exist for a sample to have a relatively high het/hom 
ratio. For instance, an ethnically different or admixed subject may have a higher 
proportion of heterozygote genotypes compared to the rest of the sample. Thus, 
researchers should also look at whether subjects with a high het/hom ratio are also 
ethnic outliers. 

 Recently, researchers have developed likelihood methods for identifying sample 
contamination using next-generation sequencing data. ContEst was developed in 
2011 by Cibulskis et al. ( 2011 ), and verifyBamID (Jun et al.  2012 ) was developed 
by Jun et al. in 2012. VerifyBamID can also use available array-based genotyping 
alone or with sequencing data to identify DNA sample contamination. VerifyBamID 
provides a sequence only or a sequence + array estimate of contamination (called 
freemix and chipmix, respectively) and has several recommendations including 
using a chipmix or freemix value >0.02 to suggest further follow-up of a subject 
for possible contamination (see   http://genome.sph.umich.edu/wiki/VerifyBamID     
for further details). 

 Many samples now being sequenced or genotyped for rare variants have already 
been genotyped for other studies. When possible, the concordance of the genotype 
calls from previous sources should be compared with the new genotype calls for 
each individual. In addition to helping to identify contaminated samples, a concor-
dance check can identify sample or ID swaps. 

 After contaminated samples are identifi ed and removed from the analysis, sam-
ples should be checked for ethnic outliers and cryptic relatedness. Using a set of 
high-quality common variants available from sequencing or variant chips, estab-
lished methods such as principal component (PC) analysis and IBD estimation can 
be used to detect ethnic outliers and cryptic relatedness, respectively. For instance, 
EIGENSTRAT (Price et al.  2006 ) can be used to create PCs from an unrelated refer-
ence set such as HapMap Phase III (International HapMap Consortium et al.  2010 ), 
1000 Genomes (Genomes Project Consortium et al.  2012 ), or another set of unre-
lated samples with known ethnicities. The case–control data can then be mapped 
onto the PCs to detect subjects outside of the expected ethnic group. For the purpose 
of detecting ethnic outliers, it is important to only use the reference set to calculate 
the PCs and then to project those PCs back onto the case–control samples. 
Including the case–control samples in the original estimation can produce PCs 
driven not by ethnicity but instead by technology differences or relatedness within 
the cases or controls. 

 Detecting ethnic outliers is especially important when completing case–control 
analysis on rare variants where rare variants may be seen more often or perhaps 
only in a particular ethnic group. Later, we will discuss controlling for more fi ne-
scale ethnic variation within the case–control sample, and details for rare structural 
variants are described in detail in Chap.   6    . 

 Programs, such as PLINK (Purcell et al.  2007 ), can be used to estimate IBD in 
order to fi nd cryptic relatedness within cases or controls. An estimated IBD greater 
than or equal to 0.125 to identify third degree or closer relatives is often used as a 
threshold to exclude related individuals from further analyses. Given a large num-
ber of related individuals, researchers may prefer to use a statistical model, such as 
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mixed models, to control for relatedness instead of excluding samples. Recently, 
these methods have been developed or extended to incorporate related samples in 
gene- or region-based tests (Chen et al.  2013 ). 

 As when identifying ethnic outliers, using a set of high-quality variants is essen-
tial for estimating IBD as well. Variant fi lters should be applied both within the 
reference set and the case–control sets independently. Then, IBD can be estimated 
directly from the high-quality variants from the case–control set, and the overlap-
ping variants from the reference and case–control set can be used to identify ethnic 
outliers. We recommend several fi lters including limiting to common variants 
(MAF > 5 %), HWE  p -value >0.0001, imputation quality >0.95 or 0.99, strict 
VQSLOD threshold, limiting to the bait regions for exome sequencing, and limiting 
to regions easily accessible to short-read sequencing, to name a few. The specifi c 
fi lters and thresholds will depend on the type of data (e.g., genotype chip, whole- 
genome or whole-exome sequencing, etc.). 

 In addition to detecting contamination, ethnic outliers, and relatedness, other 
sample QC measures such as median sequence depth, transition vs. transversion 
ratio (ti/tv ratio), number of variants in total and by MAF group, and sample call 
rate can be calculated to check for batch effects or sequencing/genotyping errors. 
Once sample level measures are attained, problem samples or changes to the 
sequencing protocol or chemistry can often be identifi ed by plotting the measures. 
Using a simple plot of the variable of interest on the  y -axis and the sample by date 
sequenced or genotype plate on the  y -axis, such as in Fig.  1 , is a simple way to 
identify batch effects or potential inconsistencies in the data. We have provided a 
couple references for more thoughts on general quality control (Turner et al.  2011 ; 
Do et al.  2012 ). In addition, we provide a brief fl ow chart of basic QC and analysis 
steps (Fig.  2 ).

        Variant Quality Control 

 Limiting the set of variants used for analysis to high-quality variants in both cases 
and controls is particularly important. Variants should fi rst pass the minimum geno-
typing or sequencing calling thresholds as discussed in Chaps.   3     and   4    , respectively. 
Researchers may then want to apply more stringent variant fi lters or apply further 
per subject variant fi lters (e.g., genotype quality). 

 Some fi lters, such as a genotype call rate, imputation quality thresholds, or MAF 
thresholds, can be used for both sequencing and genotyping data. Other variant 
quality fi lters are specifi c to only sequencing or genotyping data. For sequence data, 
regions that are less accessible to short-read sequencing (e.g., low or high depth of 
coverage compared to the average, too many reads with zero mapping quality, low 
average mapping quality) should be removed. These regions can be identifi ed within 
each dataset separately, or an externally defi ned set, such as the regions defi ned by 
1000 Genomes (  ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes/ftp/phase1/analysis_
results/supporting/accessible_genome_masks    ), can be used. For single-variant 
tests, the particular thresholds used to fi lter variants can be explored post-analysis 
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using QQ plots as discussed in Sect. “Post-analysis Quality Control.” For gene-/
region-based tests, variant fi lters must be applied before analysis. 

 Variant quality, in general, can often be greatly improved using imputation. 
Imputation for low-depth whole-genome sequencing is widely established and used 
(DePristo et al.  2011 ). Although using imputation for high-depth whole-exome 
sequencing is less common, it is benefi cial especially outside of the target regions 
where the depth is no longer high (Pasaniuc et al.  2012 ). We discuss imputation 
further in the next section.  

    Imputation 

 Imputation within the existing set of sequences without any reference panel, called 
genotype refi nement, is commonly used to improve genotype calling within 
sequence data (DePristo et al.  2011 ). This is most useful for low-depth sequencing 
as raw calls often have a relatively high degree of uncertainty. Although not needed 
for most of the high-depth whole-exome sequencing regions covered by the 
sequencing baits, genotype refi nement can help to refi ne regions just outside of the 
baits where the read depth is lower increasing the quality of the genotype calls in 
these regions. Further, it has been shown to be possible to impute whole-exome 

  Fig. 1    Example plots of QC measure ( y -axis) by sample ID ( x -axis).  Red circle  indicates a 
sequencing chemistry change identifi ed by the QC plots       
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sequencing genome-wide by using a reference panel such as 1000 Genomes or 
UK10K cohorts and the low-coverage off-target reads produced by whole-exome-
sequenced samples (Pasaniuc et al.  2012 ). This enables analysis of low-frequency 
and common variants genome-wide from whole-exome sequencing. To ensure the 
best quality, we recommend removing contaminated samples and using per subject 
variant fi lters on genotype quality prior to genotype refi nement. 

 Single-variant case–control analyses can be limited to variants with good 
imputation quality within the cases and controls ensuring that the genotypes are 
fairly accurate in each group. This helps to limit false-positive results due to differ-
ences in sequencing coverage between cases and controls and is especially impor-
tant when using external controls. 

Check for and remove contaminated samples

Check concordance with other data (if possible)

Check for and remove ethnic outliers

Create sample level QC plots (e.g. median 
depth by sample, number of variants by 

sample, transition/transversion ratio, ect.) to 
identify batch effects, chemistry changes, 

etc.

Check for and remove related samples

Impute or use genotype-
refinement for sequence data

Create QQ plots of analysis results
by various variant quality and
apply necessary QC thresholds

Complete single variant case-
control analysis

Apply variant quality, functional, 
and frequency filters

Single Variant Case-Control 
Analysis

Gene/Region Based Case-Control 
Analysis

Complete gene/region based 
case-control analysis

Create QQ plots of analysis results 

  Fig. 2    Flow chart of basic QC and analysis steps       
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 While genotype refi nement and imputation work well with low-frequency and 
common variants, the accuracy of the refi nement decreases substantially as the MAF 
decreases (DePristo et al.  2011 ; Abecasis et al.  2012 ; Li et al.  2011 ). Further, geno-
type refi nement is not possible, by defi nition, for singleton variants. Thus, it may be 
better to use other variant quality thresholds and measures other than imputation 
quality for gene-based tests that are often performed using primarily rare variants. 
Imputation of rare variants is discussed further in Chap.   10    .  

    Population Stratifi cation 

 As discussed in Chap.   19    , population stratifi cation exists across variants of all 
MAF. To control for population stratifi cation in association tests for low-frequency 
or common variants, we can use existing and proven methods including a selection 
of principal components within the regression model (Price et al.  2006 ). This will 
help to correct for population stratifi cation on a moderate to large ancestry scale, for 
instance, the north to south or east to west gradients within Europe. However, rare 
variants can show different, perhaps more focused, population stratifi cation patterns 
that may not be well captured using traditional methods such as principal compo-
nents (Mathieson and McVean  2012 ). 

 As such, controls (both internal and external) should be closely matched by 
ethnicity to cases. This is especially important for case–control analyses that 
include rare variants where methods to correct for population stratifi cation are still 
being developed.  

   Post-analysis Quality Control 

 After running case–control association analysis, researchers should again check the 
data looking for any patterns or indication that the results are biased or incorrect. 
Quantile–quantile plots, or QQ plots, are probably the most commonly used method 
for checking the results of hundreds or thousands of association tests. A QQ plot 
compares the expected distribution of test statistics to the observed distribution. 
Since the majority of genome- or exome-wide association tests will have no true 
association, most of the observed test statistics should match the expected distribu-
tion under the null hypothesis of no association. 

 Often, the  χ  2  distribution is used to calculate the expected distribution. Knowing 
this, it is important to know and understand the assumptions and properties of the 
distribution on which the association test is based. Many case–control tests do use a 
chi-squared distribution. The chi-squared test assumes that the sample size with 
relation to the variant frequency is large enough to have an accurate approximation. 
Too small of a sample size or variant frequency will produce inaccurate test statistics 
(Larntz  1978 ). Fisher’s exact test is another commonly used case–control test for 
rare variants. As the name implies, Fisher’s exact test uses an exact calculation 
instead of approximation to calculate the  p -value eliminating the assumption of a 
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large sample size to variant frequency. However, Fisher’s exact test is known to be 
overly conservative, producing a distribution of  p -values that are larger than 
expected under the null hypothesis of no association (Berkson  1978 ). This conser-
vative property is due to using a discrete test statistic with a fi xed signifi cance level 
and is most pronounced under small sample sizes or variants with rare frequencies. 
Permutation is another commonly used method for calculating the appropriate 
test statistic distribution when model assumptions may not be met or the exact null 
distribution is unknown (Hirschhorn and Daly  2005 ).   

    Preventing Bias When Using Internal Controls 

 When using internal controls, simple planning can help prevent future bias or 
confounding. While being chosen, controls should be ethnically matched to cases 
whether through self-reported status or, when possible, using ethnicity defi ned from 
previous genetic data. Cases and controls should be equally balanced throughout 
sequencing dates and lanes or throughout genotyping plates to help alleviate bias 
caused by batch effects or chemistry changes.  

    Controlling for Bias When Using External Controls 

 While many of the QC steps discussed above are applicable and important whether 
using internal or external controls, special care must be given when using external 
controls. It is important to remember that the ultimate goal is to arrive at a set of 
variants and subjects over which the cases and controls are well matched and 
possible sources of bias are controlled for or alleviated. 

   Sequencing Studies 

 When using external controls, it is likely that the samples were not only sequenced 
at a different time and place but also using a different technology or platform. 
For sequencing, this means that regions of the genome were targeted and sequenced 
to different depths in controls and cases. For instance, the cases may have been 
whole- exome sequenced at a high depth, whereas the controls (perhaps from the 
1000 Genomes or the cohort arm of the UK10K project) may have been whole-
genome sequenced at a low depth. This was the study design for the UK10K project 
where 6,000 extreme phenotype samples were whole-exome sequenced at a depth 
of ~50× and 4,000 cohort samples were whole-genome sequenced at a depth of ~6×. 
Alternatively, the cases and controls could both be whole-exome sequenced using 
different exome target sets. For instance, the whole-exome sequencing of the 
UK10K samples used Agilent SureSelect Human All Exon 50 Mb array, whereas 
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the NHLBI Exome Sequencing Project used one of three target solutions: Agilent 
SureSelect Human All Exon Kit v2 [31 Mb], NimbleGen-designed custom RefSeq/
CCDS design [28 Mb], and NimbleGen SeqCap EZ v1 [32 Mb] (Tennessen et al. 
 2012 ; Futema et al.  2012 ). Differences in depth or regions targeted will cause bias 
in the numbers of variants detected and, more importantly for single-variant- and 
region-based association tests, will cause bias in whether an alternate allele is 
detected at all in the regions where the coverage is drastically different between cases 
and controls. An example of this is shown in Fig.  3  where we show the probability 
of detecting both alleles at least once given a certain depth and a heterozygous 
genotype with the assumption that both alleles are equally captured by the sequenc-
ing technology. We can see that while the probability quickly increases to one, the 
probability is much lower for low-depth sequencing.

   Just this crude difference in the probability of detecting a heterozygous genotype 
can cause an overall infl ation in the distribution of test statistics as shown in Fig.  4 .

   As discussed previously in Sect. “Imputation,” genotype refi nement can greatly 
improve the accuracy of genotype calls for regions with low depth. This can, in turn, 
reduce the infl ation in the test statistic distribution as seen in Fig.  4 . It may also be 
possible to control for differences in average depth by including average sample 
depth as a covariate in the regression (Garner  2011 ). 

 Since the accuracy of genotype refi nement decreases, in general, as the MAF 
decreases, more stringent variant quality fi lters (e.g., depth, mapping quality, VQSR, 
genotype quality, etc.) may be used instead to ensure that rare variants are of high 
quality for gene-/region-based methods. In addition, there are methods that can incor-
porate variant quality directly into gene-based methods (Asimit et al.  2012 ). More 
research is needed into the area of gene-based tests especially for situations where 

  Fig. 3    Probability of 
detecting both alleles given a 
depth and a heterozygous 
genotype assuming that both 
alleles are equally attainable 
through sequencing       
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sequencing platform or technology for the external controls differs greatly from that 
used for the cases. For instance, it is unknown whether current methods could be 
modifi ed to enable low-depth whole-genome sequences to be used as controls for high-
depth whole-exome sequences within the context of gene-/region- based analyses.  

   Rare-Variant Genotyping Chip Studies 

 As previously described, when possible, genotyping for cases and controls should 
be planned out ahead of time to prevent bias due to different technologies, chip 
versions, or batches that results in differential genotype frequencies or missingness. 
For genotype chips, this would fi rst manifest as differences in the signal intensity 
plots that are used to call the genotypes (Ziegler and König  2010 ). However, it is 
possible that due to various factors, the cases and controls might be genotyped using 
different versions of the genotyping chip or at different times or places all of which 
can introduce bias. To correct for differences in the signal intensity plots due to 
using different variant genotyping chip versions, the genotypes for each chip version 
can fi rst be called separately. This will help to prevent biased calls due only to 
differences in the chip version probes. Then, previously poorly called rare variants 
can be recalled with zCall (Goldstein et al.  2012 ). The same process can be applied 
if differences are seen or suspected due to genotyping in different centers or at 

  Fig. 4    QQ plots for single-variant associations. ( a ) Logistic regression using a likelihood ratio test 
on 10,000 simulated variants using a biased probability distribution based on severe differences in 
depth between cases (50×) and controls (4×). The colors represent different MAF thresholds. Blue: 
1 % < MAF < 50 %, green: 1 % < MAF < 5 %, and purple: 5 % < MAF < 50 % and ( b ) results 
from running a score test in SNP test on real data from the UK10K project using 667 SCOOP 
subjects as cases whole-exome sequenced at a high depth (~50×) and 2,432 cohort subjects as 
controls whole-genome sequenced at a low depth (~6×). Variants were fi ltered to chromosome 20, 
to have an MAF >1 %, a PASS status from the UK10K pipeline (VQSLOD truth sensitivity of 
99.5 %), and to exclude regions in the genome not easily accessible to the sequencing as defi ned 
by the 1000 Genomes project       
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different times. As described above, QC metrics and QQ plots should be used to 
identify infl ation or batch effects as soon as possible in the process.  

   Diseased Controls 

 As many studies have focused on sequencing or genotyping sets of diseased samples, 
an obvious and important question is whether these samples can be used in some 
capacity as controls for other case sets. The diseased control sets could be another arm 
of the same study as the case set, such as within the UK10K project, or could be a 
publically available dataset. Both the UK10K project and the NHLBI Exome Variant 
Server, which were chosen to be from continuous or disease extremes from population 
cohort studies, are publically available through application to EGA (  https://www.ebi.
ac.uk/ega/    ) or dbGaP (  http://www.ncbi.nlm.nih.gov/gap    ), respectively. 

 In addition to challenges discussed previously (e.g., population stratifi cation, dif-
ferent technologies, etc.), there may be some overlap of the disease etiology between 
the cases and diseased controls. This overlap in the disease etiology may diminish 
or even completely remove the ability to detect variants, genes, or regions associ-
ated with cases status that are also associated with the control disease. Further, 
depending on the hypothesis being tested, it may be unclear whether a signifi cant 
association indicates that the variant, gene, or region is associated with case status 
or actually associated with control status instead. 

 To try to prevent or reduce a decrease in power due to overlapping etiology, 
researchers can focus on using diseased controls with little known overlap. Further, 
researchers can exclude samples based on existing covariate information if avail-
able. For instance, controls could be excluded on the basis of BMI for use as con-
trols for the SCOOP sample set.  

   Multiple Control Sets 

 Researchers may want to combine control sets to potentially increase power. 
The control sets might consist of some combination of internal controls, diseased 
external controls, and population external controls. In addition to potentially 
increasing the power to detect a true association, using multiple control sets can 
help to clarify that a signifi cant association is due to the case status rather than 
diseased controls. Several control sets can be combined either before or after asso-
ciation analysis. The similarity of the control sets with regard to sequencing tech-
nology or platform will help guide when control sets should best be combined. 
Drastically different technologies, such as whole-exome sequencing at a high depth 
and whole-genome sequencing at a low depth, will likely be best combined post-
association analysis. Samples with high-depth whole-exome sequencing even using 
slightly different coverage may be able to be combined prior to variant calling and 
analysis using just the intersection of high-quality variants. Research is currently 
being done to determine the best time and method to combine control sets.    
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    Validation and Replication 

 Thorough QC and uninfl ated QQ plots do not ensure that promising associations are 
unbiased. In general, but especially when using external controls, it is necessary to 
validate and then to replicate any fi ndings. Validating signals means to confi rm, usu-
ally through genotyping the original cases and controls, that the genotype calls and 
thus subsequent association signal are accurate within the original sample and were 
not due to biases in sequencing, genotyping, or imputation. Once variants have been 
validated, association signals should be replicated, when possible, in independent 
case–control sets. Single-variant associations can often be genotyped, whereas 
gene-/region-based associations should usually be sequenced. Similar to when 
using internal controls, cases and controls should be matched and mixed throughout 
the process as much as possible to alleviate bias by ethnicity, technology, and 
batches prior to analysis. Successful validation and replication provide additional 
assurance that the association signal is not likely due to hidden bias. Rare-variant 
replication is discussed further in Chap.   17    .  

    Conclusion 

 We have outlined several important steps and considerations necessary when com-
pleting case–control analysis using sequence data or rare-variant genotyping chips. 
When strict and thorough QC and assessment are used throughout the process, valid 
association results can likely be attained. Like with GWAS, validation and replica-
tion of results are necessary for additional confi rmation.     
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      Trans-Ethnic Fine-Mapping of Rare 
Causal Variants 

             Xu     Wang      and     Yik-Ying     Teo   

           Introduction 

 GWAS have achieved great success in identifying genetic variants that are associated 
with complex diseases and human traits. To date, there are more than 4,000 genetic 
variants reported with genome-wide signifi cant evidence in more than 1,500 publi-
cations, according to the US National Human Genome Resource Institute (NHGRI, 
  http://www.genome.gov/gwastudies/    ). Despite these remarkable successes, the 
identifi ed variants only explain a small proportion of the trait heritability, such as 
height, where only 5 % of phenotypic variance has been explained by the identifi ed 
loci despite a heritability estimate of 80 % (Visscher  2008 ). 

 Designed on the basis of the common disease–common variant hypothesis, that 
complex disease or human trait susceptibility is modestly infl uenced by genetic 
variants that are present in the population with minor allele frequency (MAF) 
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exceeding 5 % (Cirulli and Goldstein  2010 ; Gibson  2011 ; Sebat et al.  2007 ), GWAS 
fundamentally relies on the presence of genetic correlation to survey the human 
genome in an effi cient manner. By focusing on well-defi ned “tags” that are repre-
sentative markers of the information content in the neighboring genomic regions, 
LD allows >80 % of the common variants in the human genome to be summarized 
by around one million SNPs. Discoveries of genotype–phenotype associations to 
date have thus been made with these tagging SNPs where the SNPs by themselves 
are not necessarily functional. The underlying causal variants that are biologically 
responsible for phenotype variation are seldom assayed directly and, in most situa-
tions, still unknown. While several reports have suggested that identifying the causal 
variants can increase the amount of heritability explained (Sanna et al.  2011 ; 
McCarthy and Hirschhorn  2008 ), it is increasingly clear that the common disease–
common variant hypothesis is unlikely to fully explain the genetic etiology to 
diseases and traits. 

 The focus has since shifted to functional variants that are present at lower fre-
quencies in the population, broadly defi ned as low frequency (MAF is between 1 
and 5 %) or rare (MAF <1 %), although these are discussed together in this chapter. 
These variants are expected to contribute to common diseases by exerting larger 
effects on the phenotype, such that these variants contribute to explain a modest 
degree of phenotypic variance, despite their low frequencies in the population (see 
Table  1 ). For example, Tang and colleagues reported a variant rs17863783 with a 
risk allele frequency of 2.5 % in 5,284 healthy controls and an odds ratio of 0.55 for 
bladder cancer risk (Bosse et al.  2012 ), and a report by Nejentsev and colleagues 
that identifi ed four rare variants with almost a twofold reduction in type 1 diabetes 
risk through re-sequencing the  IFIH1 gene that was initially implicated by GWAS 
(Nejentsev et al.  2009 ). The latter study demonstrates the importance of surveying 
across the whole allelic spectrum: from common variants with small or modest 
effects to low frequency or rare variants with moderate to large effects, in order to 
understand the genetic contributions to complex diseases and common traits.

   Table 1    Population genetic characteristics of common and rare variants   

 Characteristics  Common variants  Rare variants 

 MAF threshold  >5 %  <1 % 
 Time of mutation  Ancient  Recent 
 Expected effect size a  (Wang et al. 
 2012 ) 

 Moderate  Large 
 1.0 < RR < 2.0  RR > 2.0 
 Δ < 0.4  Δ < 0.4 

 LD structure  High LD ( r  2  > 0.8) with 
neighboring common variants 

 Weak LD ( r  2  < 0.3) with 
neighboring variants 

   a RR stands for relative risk, which is relevant to case–control studies, while Δ indicates the 
standardized difference of a quantitative trait between carriers of the two alleles  
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       Fine-Mapping of Causal Variants 

 Leveraging on the presence of LD has allowed GWAS to survey most of the genome 
by genotyping a smaller subset of well-chosen tag SNPs. However, the selection of 
these SNPs prioritizes their ability to summarize the information of their neighbor-
ing variants, rather than on the biological signifi cance of the SNPs. GWAS thus 
identify indirect associations, where the SNPs discovered to be associated with the 
phenotype are not biologically meaningful by themselves but are simply correlated 
to the underlying (and often unknown) functional variants. Given that the real aim 
of a genetic association study is to identify the genomic unit (either the gene or the 
specifi c SNP within a gene) that causes a biological change to produce an impact on 
the phenotype, there is a need to follow up on the discoveries made by GWAS to 
localize these functional units. This process is known as  fi ne-mapping  the causal 
variants, which can either mean to identify the exact functional polymorphisms or 
to narrow the genomic region where the functional polymorphisms may reside. 

 There are two general approaches to the process of fi ne-mapping: (a) through 
targeted re-sequencing of a candidate region which, with suffi cient sequencing cov-
erage, is expected to locate most of the polymorphic positions in the region, and 
these can subsequently be tested for association with the phenotype, and (b) through 
in silico genotyping or genotype imputation with well-chosen reference haplotype 
panels obtained from either targeted or whole-genome sequencing of a set of popu-
lation samples, which will infer the genotypes for the variants that are present on 
the haplotype panels for subsequent testing of association with the phenotype 
(Tang et al.  2012 ). The expectation in both approaches is that the functional poly-
morphism will present the strongest signal or be among the top signals. An example 
of the latter fi ne-mapping strategy was demonstrated by Jallows and colleagues, 
where the classic functional variant for sickle-cell anemia (rs334 at 5,248,232 bp 
on chromosome 11) was successfully localized by imputing 2,500 severe malaria 
cases and controls off a population-specifi c reference panel built from targeted 
re-sequencing of a 111 kb region surrounding the GWAS fi ndings in 62 additional 
samples (Jallow et al.  2009 ).  

    Trans-Ethnic Fine-Mapping of Common Causal Variants 

 The principle of fi ne-mapping relies on segregating the causal variant(s) from other 
SNPs that are not functionally relevant with respect to the phenotype. For common 
variants, long stretches of LD paradoxically confound the process of fi ne-mapping. 
The process of discovering genomic regions that are associated with a phenotype 
has benefi tted from the presence of LD. However, regions exhibiting strong LD 
mean that the causal variants are highly correlated with neighboring variants and 
thus present similarly strong evidence of phenotypic association that are virtually 
indistinguishable from the causal variants (see Fig.  1 ).
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   Due to different evolutionary and migration history, LD structure can vary sig-
nifi cantly across populations, particularly between those from different ancestries 
(Teo et al.  2009a ). Assuming that the causal variant is functional and shared across 
populations of different ancestries, there is the opportunity to leverage on varying 
patterns of genetic correlation between populations in order to localize the causal 

  Fig. 1    Trans-ethnic fi ne-mapping of common and rare causal variants. The panels on the  left 
column  illustrate the trans-ethnic fi ne-mapping of common causal variants. The same causal 
variant ( red vertical bar  and  circle ) is present in two populations of different genetic ancestries 
( top  and  middle panels ), but sits on two distinct haplotypes (represented by the purple and blue 
horizontal bars). Long stretches of high LD imply neighboring markers are near-perfect surro-
gates of the causal variants ( yellow vertical bars  and  circles ) and thus present a similar degree 
of evidence as the causal variant. Meta-analyzing the evidence from both populations ( third panel ) 
allows the causal variant to be distinguished as the SNP with the strongest evidence. The panels 
on the right column illustrate the corresponding situations in the trans-ethnic fi ne-mapping of 
rare causal variants. Due to the likely nature that rare causal variants are ancestry specifi c, meta-
analyzing the evidence from individual SNPs across the two populations is unlikely to boost the 
statistical evidence if the same causal variants are not present across both populations. However, 
due to the sparsity of the association signals, a common approach is to aggregate the evidence 
across multiple SNPs in a contiguous region such as a gene exon to measure genetic burden, and 
meta-analyzing the region-based evidence across multiple populations can boost statistical 
power if the region is causally implicated across these populations       
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variant. This can happen in two manners: (a) the functional allele at the causal SNP 
resides on several distinct haplotypes in different populations, and few SNPs will 
display consistent evidence of phenotypic association across multiple populations 
upon harmonizing the fi ne-mapping evidence from these populations, and (b) the 
functional allele at the causal SNP resides on one main haplotype that is present 
across different population, except the strength and extent of LD between the causal 
variant and the surrogate SNPs on this haplotype differ between populations, and 
harmonizing the fi ne-mapping evidence narrows the genomic region to the intersec-
tion of the different haplotype lengths (Tang et al.  2012 ) (Fig.  1 ).  

    Trans-Ethnic Fine-Mapping of Rare Causal Variants 

 There have been numerous reports of success in the use of trans-ethnic strategies to 
localize the causal variants from GWAS discoveries (Tang et al.  2012 ; Wu et al. 
 2013 ; Hughes and Sawalha  2011 ; Franceschini et al.  2012 ). Whether this process 
can be similarly extended to localize low frequency or rare causal variants remains 
to be seen. Here, we present an overview of the situations that facilitate the process 
of trans-ethnic fi ne-mapping of common causal variants and discuss the parallel 
situations for rare variants (Table  2 ).

   Table 2    Comparisons between trans-ethnic fi ne-mapping of common and rare causal variants   

 Conditions for trans-ethnic 
fi ne-mapping  Common causal variants  Rare causal variants 

 1. Presence of a causal 
variant across populations 
from different genetic 
ancestries 

 Likely to be an older 
mutation, thus present and 
functional across populations 
from different genetic 
ancestries 

 Likely to be more recent, thus 
tend to be ancestry or population 
specifi c, where the same SNP 
may be causal in one population 
but monomorphic or not 
functional in other populations 

 2. Method of discovering 
and quantifying genetic 
association 

 Each SNP is typically the unit 
of analysis, and association 
testing measures the evidence 
of each SNP to be linked to 
the phenotype of interest 

 While SNP-based analyses are 
performed as with common 
variants, the typical unit of 
measurement aggregates the 
allele counts across multiple 
SNPs in a region to measure 
genetic burden, thus presenting a 
region-based evidence 

 3. Linkage disequilibrium 
(LD) between a causal 
variant and neighboring 
SNPs 

 Likely to be in LD with 
neighboring SNPs, and these 
SNPs present evidence of 
similar magnitude as the 
causal variant 

 Likely to be in weak or 
impractical level of LD with 
neighboring SNPs due to low 
frequency of the functional allele 
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      Presence of a Causal Variant Across Populations of Different 
Ancestries 

 The fundamental concept of trans-ethnic analyses assumes that the same genetic 
unit, whether it is an SNP, a gene exon, or the entire gene itself, is biologically 
responsible for altering the expression of the phenotype across the different popula-
tions that are being jointly analyzed. For common causal variants, this assumption is 
likely to be valid given that these mutations tend to be older and would have occurred 
prior to the divergence of these different populations (Raychaudhuri  2011 ). 

 In contrast, rare SNPs are more likely to be recent mutations and thus ancestry or 
even population specifi c (Raychaudhuri  2011 ). This presents a signifi cant challenge 
in attempts to pool the evidence of phenotypic association at a rare SNP, since the 
SNP may be polymorphic and functional in one population, but may be monomor-
phic in the remaining populations, and the joint analysis attenuates rather than 
strengthens the statistical evidence (Teo et al.  2009b ). 

 The 1000 Genomes Project (Durbin et al.  2010 ) (1KGP,   http://www.1000genomes.
org    ) provided vital insights to the distribution of polymorphic SNPs across global 
populations. Through whole-genome sequencing of more than 2,500 individuals 
from at least 20 population groups around the world, the 1KGP presents an unbi-
ased survey of genetic variation across diverse populations. One of the crucial fi nd-
ings that is relevant to determine the success of trans-ethnic association analyses is 
on the specifi city of polymorphisms according to MAF. The 1KGP reported that 
common variants with MAF exceeding 10 % are shared across almost all the popu-
lations in Phase I of the project, whereas only 17 % of the rare variants are present 
in populations within the same ancestry group; and 53 % of the rare variants with 
MAF <0.5 % are population-specifi c (Abecasis et al.  2012 ). This fi nding suggests 
that, while trans-ethnic analyses of rare variants may be realistic for populations 
from the same ancestry, it is unlikely to be feasible to extend this to multiple popula-
tions from diverse ancestries.  

    Method of Discovering and Quantifying Genetic Associations 

 A GWAS typically analyzes each SNP independently for evidence of phenotypic 
association. The strength and direction of the association is similarly quantifi ed at 
the SNP level, measuring the impact of each additional copy of the minor allele 
in altering phenotype. This relies on standard statistical procedures such as analysis 
of variance (ANOVAs) or regression analyses or univariate approaches such as 
chi- square tests or  t -tests of averages. These approaches have proven to be reasonably 
successful in locating bona fi de associations with common variants. 

 However, the statistical ability of these methods to successfully detect evidence 
of phenotypic association depends on observing suffi cient number of samples that 
are carrying particular copies of the two alleles. These approaches are thus poorly 
powered to measure the evidence at rare variants, where the number of samples 
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 carrying the risk allele may be very small. For example, Asimit and Zeggini illustrated, 
through a series of simulations, that as the causal allele frequency decreases from 
5 % to 1 % to 0.1 %, the sample size required to attain a power of 80 % to detect an 
allelic odds ratio of 2 at the accepted genome-wide signifi cance level of  P  = 5 × 10 −8  
increases from 2,500 to 12,000 to 117,000 (Asimit and Zeggini  2010 ). As a result, 
analyses of rare variants for phenotype association typically aggregate the cumula-
tive impact of multiple SNPs located in a contiguous genomic region, for example, 
by pooling the number of copies of rare alleles within a phenotype stratum. 

 As described in Chaps.   12     and   13    , the underlying assumption for such tests of 
genetic burden is that the set of rare variants within a region collectively infl uence 
the disease susceptibility, and the statistical evidence is measured according to 
whether the rare alleles tend to be more specifi c to subjects in a phenotype classifi -
cation. However, methods such as the cohort allelic sum test (CAST) (Morgenthaler 
and Thilly  2007 ), the weighted sum test (WST) (Madsen and Browning  2009 ), and 
the collapsing regression method (Morris and Zeggini  2010 ) tend to ignore the 
direction of the effects of the rare alleles, and these tend to lower the power of the 
aggregated allele counts to correlate with phenotype expression, since rare alleles 
from different causal variants may be deleterious or benefi cial. The sequence kernel 
association test (SKAT) (Wu et al.  2011 ) properly accommodates for the direction 
of the effects of rare alleles and has been shown to possess higher statistical power 
than most of the collapsing approaches. 

 For a genomic region that genuinely harbors causal variants across multiple popu-
lations, pooling the evidence from individual SNPs is unlikely to improve the strength 
of the statistical association, since the architecture of rare variants suggests that differ-
ent rare causal variants in the same region are likely to be present across the differ-
ent populations. However, given that the unit of analysis for rare variants typically 
interrogates the entire genomic region, trans-ethnic analyses can boost the ability to 
locate these associated regions by aggregating the statistical evidence of phenotypic 
association (Fig.  1 ). Identifying the rare causal variants in the emerging genomic 
region will require interrogating which SNPs contribute to the primary association 
signal within each population and by assessing the annotations—a process of 
fi ne-mapping that similarly is unlikely to benefi t from trans-ethnic strategies.  

    Linkage Disequilibrium Between a Causal Variant 
and Neighboring SNPs 

 Causal variants with minor allele frequencies that are in excess of 5 % are often in 
useful levels of LD with neighboring SNPs, and they tend to present similar evi-
dence of phenotypic association as the causal variants. GWAS has relied on such 
long stretches of high LD in identifying the markers that correlate with phenotype 
expression. Trans-ethnic fi ne-mapping of these common causal variants is thus 
necessary to distinguish the surrogate SNPs from the causal variants. 

 The situation is notably different for rare causal variants, as these tend to be in 
weak levels of LD with surrounding markers due to their low minor allele counts. 
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From this perspective, there is no need to depend on trans-ethnic fi ne-mapping to 
localize rare causal variants, and often the causal variants can be identifi ed by inter-
rogating the evidence within a population, as suggested by Zhu and colleagues who 
developed the “preferential LD” approach (Zhu et al.  2012 ). They suggested that 
weak levels of LD are present between a rare causal variant and a small set of mark-
ers that may be used to locate the genomic region, but such LD is still considerably 
stronger than those present between the causal variants and other surrounding 
SNPs. Based on this assumption, the “preferential LD” approach searches for rare 
variants with unexpectedly higher LD with the discovery variant, which are subse-
quently more likely candidates as the causal variants. When applied to a range of 
diseases, this approach successfully confi rmed two well-known rare causal vari-
ants for Crohn’s disease in the  NOD2  gene (Wang et al.  2010 ), two non-synonymous 
 ITPA  variants (rs1127354 and rs7270101) that cause ribavirin-induced hemolytic 
anemia (Fellay et al.  2010 ), and rare variants in  UGT1A6  gene for bladder cancer 
(Tang et al.  2012 ).   

    Conclusion 

 Trans-ethnic fi ne-mapping has seen remarkable success in disentangling the conundrum 
of long stretches of high LD to either locate common causal variants or at least narrow 
the genomic region where these functional variants at MAF >5 % can be found. 
However, the genetic architecture of rare variants is considerably different from that of 
common variants without the complication introduced by LD. For common causal 
variants, it appears existing methods are more than adequate to locate and validate 
an association signal, and the challenge lies in identifying the genuine causal vari-
ants from perfect surrogates. For rare variants, the greater challenge appears to lie 
in locating and validating an associated genomic region, rather than in fi ne-mapping 
the causal variants. Indeed, once a genomic region has been systematically 
confi rmed to be associated with a phenotype, fi ne-mapping the causal variants is 
unlikely to require more than the careful interrogation of which rare SNPs contributed 
to the association signal and their functional annotations within one study cohort.     
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