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Chapter 3
Mathematics Fluency—More than the Weekly 
Timed Test

Ben Clarke, Nancy Nelson and Lina Shanley

Pencils up, start…tick…tick…tick, stop, pencils down. If there is a shared cor-
nerstone experience in education, the weekly timed test may be the winner. But 
why? Why across decades have teachers spoken those words and students furiously 
worked through sheets containing a range of problems from addition facts to divi-
sion facts? This chapter attempts to provide answers to that fundamental question. 
We start with an exploration as to why fluency in mathematics is critical, examine 
interventions designed to increase fluency, and in the end provide an overview of 
the measures used to assess fluency and provide our thoughts to guide future work 
as the field gains a greater understanding of mathematics fluency.

As a nation, we compete in an international marketplace driven by technological 
innovation. Employment projections by the US Bureau of Labor Statistics indi-
cate that the majority of the fastest growing occupations in the coming decade will 
require substantial preparation in mathematics or science (Lockard & Wolf, 2012). 
As policy-makers seek to address a dearth of workers prepared for science, technol-
ogy, engineering, and mathematics (STEM) jobs in the USA, K-12 mathematics and 
science education is increasingly at the center of discussions about how to ensure 
international competitiveness. For instance, the current presidential administra-
tion has launched an “Educate to Innovate” campaign (The White House, 2012), 
designed to improve the coordination and facilitation of efforts to improve STEM 
education and prepare the students of today for the jobs of tomorrow.

In the STEM fields, mathematics and science education provide the foundation 
for advanced knowledge and professional skills that will prepare our nation’s youth 
to compete for the surge of high-level jobs in engineering and technology (National 
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Math Advisory Panel [NMAP], 2008). Arguably, students’ understanding of math-
ematics, starting at an early age, is at the core of their ability to gain access to STEM 
jobs. Accordingly, proficiency in mathematics is receiving increasing attention, 
beginning in the early years of a student’s education, because the early elementary 
years represent a critical first step in building a long-term foundation for success 
in mathematics. Emerging evidence suggests the long-term consequences of strug-
gling early in mathematics exact the same or greater deleterious toll as early read-
ing difficulties (Duncan et al., 2007; Morgan, Farkas, & Wu, 2009). For instance, 
students struggling to learn mathematics are ill-prepared for well-paying jobs in a 
modern, technological economy (National Academy of Sciences, 2007). Disparities 
in mathematical competency are evident between students from different racial and 
socioeconomic subgroups, impacting the life opportunities of a substantial portion 
of the population (Siegler et al., 2010). Moreover, mathematics difficulties are as 
persistent and difficult to remediate as reading difficulties (NMAP, 2008). In other 
words, just as early intervention in reading is critical, prevention of mathematics 
difficulties and effective early intervention should also be a primary focus of educa-
tional research and practice in mathematics.

Unfortunately, mathematics achievement in the USA is lagging. Results of the 
2011 National Assessment for Educational Progress (NAEP) indicate that only 40 % 
of fourth graders scored at or above proficient in mathematics, and nearly half of 
all fourth graders with a disability scored below basic. The percentage of students 
that demonstrate proficiency in mathematics also worsens over time (e.g., 35 % 
of the eighth graders scored at or above proficient in mathematics in 2011). On 
international measures of achievement in fourth and eighth grades, the USA ranks 
ninth and twelfth, respectively, of approximately 50 countries participating in in-
ternational benchmarking (Trends in International Mathematics and Science Study: 
TIMSS, 2011b). Although these rankings indicate students in the USA could be per-
forming far worse, we are also failing to prepare students for the level of mathemat-
ics they may need, in order to acquire the 62 % of American jobs that will require 
advanced math skills in the coming decade (Hanushek, Peterson, & Woessmann, 
2010). Just 6 % of the US students scored at the equivalent of the advanced level 
in mathematics on the Program for International Student Assessment (Organization 
for Economic Cooperation Development & Programme for International Student 
Assessment, 2007), while 30 other countries had a larger percentage of students 
scoring at this level out of 56 total countries that participated in the assessment 
(Hanushek et al., 2010). In sum, when it comes to ensuring the ability of our youth 
to successfully compete for jobs in an international marketplace that requires pro-
ficiency in mathematics for technological prowess, we are being outcompeted by a 
number of countries that do not share the same level of resources we possess in the 
USA (Hanushek et al., 2010; TIMSS, 2011b).

As competitors in an international marketplace, increasingly driven by technolog-
ical innovation, it is imperative that US students acquire mathematical proficiency. 
Results from national and international assessments indicate that we, as a nation, 
have been inadequate in achieving this aim. The rest of this chapter emphasizes on 
the role of fluency in mathematical proficiency, discusses the types of interventions 
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that are employed to promote mathematical fluency, and describes the assessment 
instruments used to measure mathematical fluency across grade levels.

Why Focus on Mathematics and Mathematical Fluency?

Despite a clear need to focus on mathematics education, the research based on the 
development of mathematical proficiency pales in comparison to extensive research 
that has been conducted in the area of reading (Clarke, Gersten, & Newman-Gon-
char, 2010). But we can use what we know about the development of reading skills 
to inform our thinking about mathematics. For instance, there is broad consensus 
that foundational (e.g., phonological awareness) and higher order skills (e.g., vo-
cabulary and reading comprehension) are critical areas of reading skill development 
that must be taught in concert. Congruently, mathematics experts agree that concep-
tual understanding (i.e., understanding mathematical ideas, the way they function, 
and the contexts where they apply) must be emphasized alongside efforts to teach 
procedural fluency, in an intertwined manner (NMAP, 2008; National Research 
Council [NRC], 2001).

There are also parallels between the types of skills that form the basis of under-
standing in reading in mathematics. We know, for example, that students learning 
to read must demonstrate phonemic awareness to have a solid understanding of the 
sounds that comprise language and become strong readers (National Reading Panel 
[NRP], 2000). In mathematics, to demonstrate proficiency, students must possess 
early numeracy skills (e.g., numeral identification, understanding one-to-one cor-
respondence, and magnitude comparison) to understand relations between numbers 
and quantities (NRC, 2001). Although developmental trajectories in mathematics 
are often considered more linear (i.e., more advanced skills build directly upon 
basic skills over time) than the trajectories described for reading development (e.g., 
students apply similar reading skills in each grade to different types of texts that 
increase in difficulty as students make progress), the parallels between reading and 
mathematics in the types of skills and the need to simultaneously emphasize foun-
dational and higher order thinking can inform efforts to improve mathematical pro-
ficiency.

Perhaps because research about the development of mathematical proficiency is 
relatively nascent, there is also substantially less evidence about effective practices 
for teaching mathematics when compared to our knowledge about effective prac-
tices for teaching reading (NMAP, 2008). However, we can learn from the research 
that has been conducted on reading instruction and intervention in several ways. 
First, as a result of No Child Left Behind (NCLB), there is increased emphasis on 
comprehensive systems of support to assist all students in meeting rigorous stan-
dards of achievement by 2014. Research in reading has informed the types of as-
sessments (e.g., screening and progress monitoring) and scaffolded supports (e.g., 
Tier 2, Tier 3 interventions) that comprise these multitiered systems. Similarly, the 
Institute of Education Sciences (IES) Practice Guide, Assisting Students Struggling 
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with Mathematics: Response to Intervention for Elementary and Middle Schools 
(Gersten et al., 2009), was written to provide guidance to schools and districts look-
ing to establish Response to Intervention (RTI) systems of support in mathematics, 
using the best evidence available for interventions and assessments. The IES Prac-
tice Guide provides support that an RTI approach may be an effective mechanism 
for supporting the mathematical proficiency of all students.

As momentum shifts toward building service delivery systems of support and 
identifying the interventions that work to improve students’ mathematical profi-
ciency, increased attention has been given to the content that should comprise these 
interventions. Research on instruction and intervention in mathematics indicates 
there are key concepts (akin to the five “big ideas” in reading: Coyne, Zipolo, & 
Ruby, 2006) that should be targeted to support students’ proficiency. These key 
concepts include a focus on whole number concepts in the elementary grades, and 
an emphasis on rational numbers beginning in fourth grade to support algebra readi-
ness, and other critical foundations of algebra, including key topics in geometry and 
measurement (Gersten et al., 2009; NMAP, 2008). A number of states have sought 
to adopt the Common Core State Standards for Mathematics (CCSS-M, 2010). The 
CCSS-M are widely vetted standards that rest on the NCTM (2000) process stan-
dards (i.e., problem-solving, reasoning and proof, communication, connections, and 
representation) and the principles outlined by the National Research Council (2001) 
in their volume, Adding It Up (i.e., understanding, computing, applying, reasoning, 
and engaging). The CCSS-M is built on the consensus of experts that conceptual 
understanding and procedural fluency are critical constructs within mathematics 
topics, across grades. Recognizing the importance of fluency, one of the eight rec-
ommendations in the IES Practice Guide is to “devote about 10 min in each session 
to building fluent retrieval of basic arithmetic facts” in interventions at all grade lev-
els (Gersten et al., 2009). That is, across grades, experts indicate a need for students 
to develop automaticity with whole and rational number operations.

Not surprisingly, the bulk of this chapter focuses on the importance of fluency in 
mathematics; however, we are not advocating that “fluency” is promoted at the cost 
of conceptual understanding, nor that fluency carries a narrow definition. In fact, we 
agree with the NCTM (2000) that “developing fluency requires a balance and con-
nection between conceptual understanding and computational proficiency” (p. 35). 
In addition, we describe how mathematical fluency supports mathematical profi-
ciency for students with learning disabilities (LD) and their typically developing 
peers, in terms of working memory demands and cognitive load theory.

What is Mathematical Fluency?

There is overwhelming support from cognitive scientists, researchers, and educators 
alike that fluency in mathematics supports mathematical proficiency, and should be 
a focus in Grades K–12 (e.g., NCTM, 2000; NMAP, 2008; NRC, 2001). Tradition-
ally, fluency has been defined in terms of computational proficiency, or being able to 
quickly and accurately recall basic math facts and procedures. However, this narrow 
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definition does not take into account the relation between conceptual understand-
ing, procedural knowledge, and basic fact recall, and the notion that demonstrat-
ing mathematical fluency requires an awareness of these interconnections. Baroody 
(2011) defines fluency as the quick, accurate recall of facts and procedures, and the 
ability to use them efficiently. That is, as students develop procedural fluency, it is 
essential that mastery be tied to conceptual understanding to promote adaptive ex-
pertise. In other words, students need to know when they can use an algorithm and 
when they cannot, in order to demonstrate mathematical fluency. We contend, as do 
others (e.g., Fennell, 2011) that fluency is a broad construct, which refers to profi-
ciency across mathematical domains (e.g., early numeracy, whole number concepts, 
rational number concepts, and algebra).

How Does Mathematical Fluency Support Mathematical 
Proficiency?

Mathematical fluency provides access to mathematical proficiency through several 
hypothesized mechanisms. As evidenced by the results of national assessments, stu-
dents with LD tend to struggle in mathematics to a greater degree than their nondis-
abled peers (e.g., 2011 NAEP results). Research demonstrates that students with LD 
in mathematics typically struggle to attain fluency with basic number combinations 
and simultaneously demonstrate working memory deficits that may be contributing 
to these “developmental differences” in computational proficiency (Geary, 1996; 
Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007). Students who struggle to 
automatically retrieve basic number combinations often work more slowly and tend 
to be more error prone when attempting more complex mathematical problems 
(Geary, 2004; Jordan & Montani, 1997). Furthermore, fluent basic number combi-
nation retrieval has been linked to successful word problem completion, presum-
ably due to reduced working memory demands (Geary & Widaman, 1992; Geary, 
2004). For the 5–8 % of the students with LD in mathematics, it appears working 
memory deficits may be inhibiting mathematical fluency, and contributing to gen-
eralized difficulties in developing mathematical proficiency.

Working memory may also play a broader role in mathematical proficiency for 
a range of learners, where students who score lower on a range of working memory 
tasks demonstrate increased difficulty in mathematics (Raghubar, Barnes, & Hecht, 
2010). Several studies have demonstrated that working memory skills predict math-
ematical fluency and problem-solving, even when controlling for cognitive vari-
ables, including attention, intelligence, and phonological processing (Fuchs et al., 
2005; Swanson & Beebe-Frankenberger, 2004). In addition, research indicates a 
range of factors (e.g., age, language, and math representations) may interact with 
working memory to predict mathematical skill, including mathematical fluency 
(Raghubar et al., 2010).

There is also support that fluency in mathematics frees cognitive resources 
for higher order reasoning activities. In their seminal article on reading fluency, 
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LaBerge and Samuels (1974) argued that human beings can only actively attend to 
only one thing at a time, thus learners can only do more than one thing at a time if 
one of the tasks can be performed automatically. Although initially applied to issues 
of reading performance, these conclusions are relevant to a discussion of the role of 
fluency in mathematics performance, as well. Advocates for mathematics interven-
tions that train students to become more fluent at targeted mathematics tasks posit 
that being fluent with mathematics tasks reduces the learner’s cognitive load and 
frees cognitive resources for more complex tasks (Geary, 2004; Geary & Widaman, 
1992; Jordan & Montani, 1997).

Broadly, because foundational knowledge and skills unlock the door for under-
standing of higher order concepts, students who struggle to develop mathematical 
fluency will struggle to demonstrate mathematical proficiency across their school-
ing years, with the normative gap growing over time. Take, for instance, the student 
that is slow and methodical in performing math procedures and recalling number 
combinations. In elementary school, this student may simply require more time to 
complete instructional activities. However, when this student encounters a course 
in Algebra in middle or high school, she may have difficulty understanding daily 
lessons, because she cannot keep up with the pace of instruction (e.g., even though 
she understands the procedures, working memory deficits may be preventing access 
to new concepts). Alternatively, the student may struggle to learn new concepts 
because she is exhausting cognitive resources solving algorithms (e.g., the cog-
nitive demand of both solving algorithms and learning new algebra concepts is 
overwhelming in combination). Regardless of the source of the deficit, it is clear 
that students who are unable to demonstrate fluency in mathematics will fall farther 
behind their peers who do not struggle with mathematical fluency. Mathematical 
fluency is, thus, a key ingredient for mathematical proficiency, achievement, and, 
ultimately, access to life opportunities.

Fluency-Based Interventions in Mathematics

Although mathematical fluency is a key skill for successful mathematics achieve-
ment, general mathematics interventions often do not focus primarily on fluency. 
Instead, general mathematics interventions tend to target concrete mathematical 
knowledge and skills such as number sense, algorithms, vocabulary, and proofs. 
However, as noted in the previous section, mathematics fluency interventions that 
train students to become more fluent at targeted mathematics tasks are important 
because possessing mathematical fluency frees students’ cognitive resources for 
more complex tasks. If students struggle to automatically retrieve basic number 
combinations, they will work more slowly and make more errors when solving 
complex mathematics problems, whereas students who are fluent in basic number 
combination retrieval are able to complete word problems more accurately.

In school-based settings, versions or elements of fluency interventions are often 
implemented class wide in the elementary grades as students are expected to master 
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all basic number combinations to 100. In Grades 6–12, fluency interventions are 
typically utilized in small group settings as part of specialized academic programs. 
When implementing targeted mathematics fluency interventions, interventionists 
aim to improve students’ cognitive processes and resources that underlie fluent 
mathematical performance. However, it can be difficult to determine whether or 
not improved mathematical performance as measured by fluency assessments dis-
cussed in the following section is truly an indicator of cognitive development and 
not simply an artifact of rote memorization. Ultimately, all fluency interventions 
operate on the premise that improving mathematical fluency is fundamental to over-
all improvement in mathematics performance. Mathematics fluency interventions 
can be categorized into three general types: (1) those that utilize repeated trials with 
multiple forms to train students to become more fluent at a specific task; (2) inter-
ventions that target underlining academic and cognitive skills to teach students gen-
eralizable strategies that result in improved mathematics fluency; and (3) general 
mathematics interventions that include fluency skill-building components to impact 
both basic number combination proficiency and conceptual fluency.

In the following section, we describe each type of intervention, provide examples 
of interventions within each category that have been used in research and practice, 
and summarize research that has been conducted to evaluate the effectiveness of 
each type of intervention. We follow with a discussion of the challenges related 
to evaluating the generalizability of mathematics fluency interventions and con-
clude with summative recommendations to consider when selecting a mathematics 
fluency intervention.

Repeated Trials Fluency Training

For many years, researchers and educators have advocated for the use of repeated 
daily timed mathematics activities to build fact fluency with elementary students by 
implementing a variety of training components to build rate and accuracy (Miller 
& Heward, 1992). As repeated practice is a key feature of fluency interventions, 
most protocol-based fluency training programs rely on discrete learning trials with 
numerous practice opportunities of the same mathematical material to build speed 
and accuracy in responding. Some sample programs are detailed in Table 3.1.

Much of the research base for these interventions originates in special education 
literature and utilizes single-case designs to isolate specific learning gains. Fluency-
based interventions tend to target repeated measures of basic number combinations 
with elementary-aged students as the focal population. As these interventions are 
tested with a small number of learners, computing effect sizes and making gen-
eralized claims about the research findings can be challenging. Single-subject 
researchers compute effect sizes using techniques that compare the distinct char-
acteristics of student performance in each phase of the study (e.g., pre- and post-
intervention). By comparing data points across phases, researchers generate either 
percentage of nonoverlapping data (PND), interpreted as a percentage with values 
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larger than 70 % considered meaningful, or a metric called percentage of all non-
overlapping data (PAND) and convert this value to a Phi coefficient ( φ) that serves 
a measure of effect size (Parker & Hagan-Burke, 2007; Parker, Hagan-Burke, & 
Vannest, 2007). Phi is intended to represent the effect of an intervention and can 
be interpreted with a rule of thumb where values ≤ 0.20 are considered small, 0.21 
through 0.79 represent a medium effect, and ≥ 0.80 are considered large. It should 
be noted however, that because φ is directly tied to the number of data points col-
lected in each phase of a single subject study, the potential values of φ are unbound-
ed and it is not uncommon to generate extremely large values when studies have a 
large number of nonoverlapping data points.

In recent years, meta-analyses have been conducted to compare the treat-
ment effects of various fluency interventions in mathematics and other academic 
areas (e.g., Codding, Burns, & Lukito, 2011; Joseph et  al., 2012). By grouping 
interventions according to the fundamental strategy employed or by the general 
treatment component utilized (e.g., drill, practice with modeling, and self-man-
agement), researchers have been able to compare categories of interventions. Per-
haps not surprisingly, meta-analytic findings suggest that interventions employing 
flashcard-based drill activities (e.g., incremental rehearsal) and practice sessions 
with a modeling component (e.g., math to mastery and great leaps) have proven 
most effective, with mean φ values of 92.00 (extremely high) and 0.71 (moderately 

Table 3.1   Sample repeated trial fluency-training interventions
Intervention Description
Cover, copy, and compare 
(Skinner, Turco, Beatty, & 
Rasavage, 1989)

Five step process: (1) look at a model of the math fact with 
the answer included, (2) cover the math fact with the answer, 
(3) write the fact with the answer, (4) uncover the original 
math fact with the answer, and (5) compare

Incremental rehearsal (Burns, 
2005)

A flashcard-based drill procedure that combines unknown 
facts with known facts

Taped-problems (McCallum, 
Skinner, & Hutchins, 2004)

Using a list of problems on a sheet of paper, the learner 
is instructed to answer each problem before the answer is 
provided by an audiotape player using various time delay 
procedures to adjust the intervals between the problem and 
answer (adapted from Freeman & McLaughlin’s (1984) 
taped-words intervention)

Detect, practice, and repair 
(Poncy, Skinner, & O’Mara, 
2006)

Multicomponent intervention: (1) metronome-paced, group 
assessment administered to identify unknown facts, (2) cover, 
copy, and compare procedures used with unknown facts, (3) 
1-min speed drill, and (4) learners graph their accuracy

Math to mastery (Doggett, 
Henington, & Johnson-Gros, 
2006)

Multicomponent intervention: (1) preview problems, (2) 
repeated practice, (3) immediate corrective feedback, (4) 
summative and formative feedback, and (5) self-monitoring 
of progress

Great leaps math (Mercer, 
Mercer, & Campbell, 2002)

Multistage strategy: (1) greeting and set behavior 
expectations, (2) review previous facts and progress graph, 
(3) conduct instructional session with short-timed practice, 
error correction, and teaching, (4) administer a 1-min fluency 
probe, (5) graph accuracy
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strong), respectively. Self-management strategies that require learners to monitor 
their own understanding (e.g., cover, copy, and compare) demonstrated moderate 
effect sizes (mean φ = 0.55 and mean PND = 60.2–70.7) proving productive as well 
(Codding et  al., 2011; Joseph et  al., 2012). However, fluency interventions that 
prescribed learner practice without a modeling component had little to no impact on 
student performance (mean φ = −0.003).

When evaluating additional characteristics of fluency interventions, meta-ana-
lytic results suggested that fluency approaches including multiple components with 
combinations of rehearsal, correction, and practice strategies demonstrated better 
learner outcomes. Specifically, interventions with more than three components had 
a moderately strong effect size (mean φ = 0.68) and those with less than three com-
ponents had a negligible mean φ value (Codding et al., 2011). Additionally, cou-
pling mathematics fluency interventions based on self-management strategies with 
other instructional components was found to be effective across numerous studies, 
mean PND = 87.9–97.5 (Joseph et al., 2012).

In addition to conventionally delivered fluency interventions, technology-de-
livered fluency interventions have become increasingly popular and prolific. Tra-
ditionally, computer-aided interventions utilized drill-based procedures providing 
repeated practice of basic number combinations, but technological advances have 
allowed intervention developers to incorporate a variety of effective practice and 
self-management strategies into technology-delivered fluency programs. Programs 
that present sets of basic number combinations from a specified numerical range 
(e.g., flash card program and Math Blaster) are freely available for download and 
have been used in research programs to compare their utility to peer tutoring and 
other drill-based procedures (Cates, 2005; Mautone, DuPaul, & Jitendra, 2005). 
These studies have generated mixed results, with some students responding well 
to technology-based interventions and others performing better in traditional inter-
vention conditions. Studies of both downloadable basic number combinations pro-
grams and researcher-developed mathematics drill programs such as Math Facts in 
a Flash (Renaissance Learning, 2003) have dedicated particular attention to at-risk 
students for mathematics difficulties. Results of this research suggest that comput-
er-based interventions may result in not only improved mathematical fluency, but 
also increased on-task behavior (Mautone et al., 2005; Burns, Kanive, & DeGrande, 
2012).

When comparing fluency interventions and evaluating their effectiveness for 
specific populations, it may be that distinct learner characteristics are predictive of 
the likelihood of responding well to a particular intervention. Research in this area 
has found that initial level of mathematics fluency can be a significant predictor of 
intervention effectiveness (Codding et al., 2007), and meta-analytic findings have 
suggested that baseline levels of fluency (instructional or frustration) may be as-
sociated with differential intervention effectiveness when comparing interventions 
that either (a) aim to support basic number combination acquisition (acquisition), or 
(b) intend to bolster learner fluency with known facts (rehearsal) (Burns, Codding, 
Boice, & Lukito, 2010). More specifically, the results of this study suggested that 
initial fluency performance was significantly linked to intervention outcomes such 
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that acquisition interventions were more effective for learners with a frustration 
baseline fluency level (mean φ = 0.84) compared to learners with an instruction-
al baseline fluency level (mean φ = 0.49). These findings provide support for the 
argument that effective mathematics fluency interventions should be implemented 
with careful consideration of initial learner performance, and also suggest that one 
should consider the phases of mathematical fluency (e.g., acquisition or rehearsal) 
when selecting a fluency intervention.

Targeting Generalizable Skills and Behaviors

Although initial level of fluency is a logical predictor of a learner’s response to a 
repeated trial fluency-training intervention, research has shown that a variety of 
additional cognitive and behavioral factors are also predictive of both mathematics 
fluency and general mathematics achievement (Geary, Hoard, Nugent, & Bailey, 
2013). Based on these correlational findings, mathematics fluency intervention de-
velopers have created and studied programs that target learners’ underlying cog-
nitive traits and behavioral tendencies. Rather than directly training learners with 
repeated trials and regular exposure to basic number combinations, these interven-
tions use mathematics fluency probes primarily as outcome measures and attempt 
to strengthen the learners’ foundational skills by teaching generalizable strategies.

Advocates for generalizable skill (e.g., self-management, goal setting, self-
evaluation) interventions argue that teaching students to utilize their cognitive 
resources more efficiently and effectively will not only translate into improved fluen-
cy, but improved general mathematics achievement as well. Research on behavioral 
self-management interventions has suggested that these strategies can improve both 
mathematics fluency and academic engagement, and generalize to more complex 
mathematical tasks (McDougall & Brady, 1998; Farrell & McDougall, 2008). Per-
formance feedback and goal setting have also been studied as mathematics fluency 
interventions. Results from these studies have indicated that there is an association 
between goal setting and feedback-based interventions and improved performance 
on mathematics fluency measures (Codding, 2003; Figarola et al., 2008). The chal-
lenge in evaluating these interventions is that it can be difficult to isolate the link 
between improved fluency and the underlying cognitive and behavioral factors. As 
these interventions rely on the repeated administration of fluency probes to monitor 
student progress, one could argue that mathematics fluency improvements could 
simply be due to the additional fluency practice and residual testing effects resulting 
from regular fluency probe administration.

Mathematics Interventions with Fluency Skill-Building 
Components

Rather than targeting underlying skills through cognitive training intended to sup-
port performance on both basic and complex mathematical tasks, others advocate 



773  Mathematics Fluency—More than the Weekly Timed Test

for allocating intervention resources to boost general mathematical knowledge 
based on its relation with both accuracy in basic number combinations and general 
mathematics skill development. For example, because number sense performance 
in kindergarten can predict later calculation fluency above and beyond cognitive 
factors (Locuniak & Jordan, 2008), researchers claim that early academic inter-
ventions support the acquisition of foundational skills that are pre- or corequisites 
of mathematics fluency. In addition to boosting the development of foundational 
academic skills, many general mathematics interventions include fluency-training 
components to build speed and accuracy with targeted mathematical material. In 
fact, researchers recommend that mathematics interventions include fluency exer-
cises (Fuchs et  al., 2008a; Gersten, Jordan, & Flojo, 2005), and there is a high 
prevalence of fluency components in successful mathematics intervention curricula 
(Bryant et al., 2008; Fuchs, Fuchs, & Hollenbeck, 2007; Ketterlin-Geller, Chard, & 
Fien, 2008; Jitendra et al., 2013). Results from intervention research conducted by 
Fuchs et al. (2008) suggested that efforts to improve general mathematics skills and 
performance on complex mathematical tasks should be supported by mathematical 
fluency skill building. Although, improving fluency is not the primary objective 
of most general mathematics interventions, computational fluency is considered 
an essential aspect of mathematical performance and often explicitly addressed in 
intervention curricula aimed at at-risk students.

Challenges in Establishing Generalizable Interventions

Although some have argued that fluency is an interwoven component of applied 
problem-solving (Lin & Kubina, 2005) and improved fluency is associated with 
improved performance on more complex tasks (VanDerHeyden & Burns, 2009), 
others have found that fluency does not generalize across mathematics problems or 
skills (Poncy, Duhon, Lee, & Key, 2010). Poncy and colleagues suggest that fluency 
instruction targeting basic declarative skills (i.e., basic number combinations) 
needs to be supplemented with instruction that supports the fluent completion of 
procedural, multistep tasks for fluency to generalize to overall mathematics perfor-
mance. In sum, general research evidence suggests that for the mathematics fluency 
interventions to be optimally effective, they should utilize a variety of strategies to 
train learners to be more fluent with basic number combinations and be integrated 
into the general mathematics instructional program to support skill transfer and 
generalization.

The variety of mathematics fluency intervention approaches speaks to the 
lingering debate about the generalizability of fluency and the role of automaticity 
with foundational material in facilitating advanced mathematical achievement. The 
debate about the role of fluency in mathematics parallels similar debates about the 
nature of the relation between fluency and comprehension in reading. Few years 
ago, Slocum, Street, and Gilbert (1995) found that interventions that proved effec-
tive at increasing reading rate had unreliable impacts on reading comprehension. 
They also noted challenges related to (a) identifying sensitive outcome measures of 
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general reading performance and (b) the experimental design of the study when at-
tempting to examine the mechanisms that link fluency and general reading achieve-
ment. Similar challenges abound in mathematics fluency research. Additional re-
search is needed to investigate the mechanisms that link mathematical fluency and 
overall mathematics performance and determine how one can isolate intervention 
techniques that target rate of responding (considered true fluency) from repeated 
exposure or additional practice, two common features of fluency interventions that 
can increase overall mathematics performance on their own regardless of whether 
or not the interventions improve general fluency proficiency (Doughty, Chase, & 
O’Shields, 2004). The effect of mathematics fluency training interventions is evalu-
ated by comparing pre- and posttests of student performance on basic number com-
bination probes, but it can be difficult to isolate the source of those gains. Improved 
performance on fluency probes is often assumed to be evidence of improved rate of 
responding, but could also be the result of increased knowledge or the simple ac-
quisition of basic number combinations alone. Effective assessments of mathemati-
cal fluency are critical to identifying factors of effective interventions and simply 
measuring student progress. In the next section, we will examine how mathematical 
fluency is measured and the role that fluency plays in mathematics assessment.

Fluency and Mathematics Assessment

The relation between fluency and mathematics assessment is complex. At first 
glance, the complexity of this relation is not readily apparent. In simple terms, 
a large number of commonly used mathematics assessments are timed, and a 
timed measure seems to imply that the measure functions as a fluency measure. 
However, a more in-depth examination of commonly used mathematics measures 
reveals a more dynamic relation between the construct of fluency and mathematics 
assessment.

To fully explore the role of fluency in mathematics assessment, we first examine 
the original development of widely used measures that are considered to be fluency-
based mathematics assessments and their intended use in educational decision-
making. We follow by providing an overview of measures currently in use and 
conclude with a discussion examining critical unanswered questions to which 
we feel the field should be attuned as we attempt to advance in both research and 
practice.

How Are We Measuring Fluency?

The construct of fluency in mathematics assessment is typically examined within 
the realm of a set of measures broadly classified as curriculum-based measures or 
CBM. Math CBM (M-CBM) measures have a long history and the general CBM 
category includes an expanding set of instruments used for a variety of purposes 
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by schools such as screening, program evaluation, and monitoring student growth 
(Deno, 2003; Deno & Mirkin, 1977). Originally M-CBM measures focused on a 
student’s understanding of computation objectives and application of conceptual 
understanding to problem-solving for the elementary school grades. But now the 
umbrella of M-CBM measures includes an array of measures designed to cover 
student development in mathematics from beginning number sense in the early 
elementary grades (Gersten et al., 2012) to a student’s understanding of pre-algebra 
in middle school (Foegen, 2008). Across this spectrum, content-assessed ranges 
from students comparing the magnitude of two one-digit numbers to combining 
like integers. Yet across this vast range of mathematics content one central fea-
ture remains prevalent—a timing element. But why is a timing element a common 
universal feature of almost all M-CBM measures?

The design of M-CBM measures was governed by a multitude of considerations 
including the content assessed and technical characteristics (Deno, 2003). But seri-
ous consideration was also given toward the practical application of their use in 
schools. Because the original intent of CBM measures was to monitor the growth 
of at-risk students to gauge their response to instructional interventions and modi-
fications (i.e., progress monitoring), the measures needed to have certain design 
characteristics that enabled them to be administered frequently and repeatedly over 
time (Deno, 1985). It was this consideration that played a major role in the inclu-
sion of a timing element. Seminal articles detailing the use and design features of 
the measures were linked to their need to be used in a repeated fashion and the 
importance of efficient measures to meet that goal.

Typically, an M-CBM battery consists of two measures; a computation measure 
that covers major topics in the standards relating to computation, and a concepts 
and applications subtest that assesses all other topics including word problems, 
measurement, money and time, and geometry. While the computation and con-
cepts and applications approach to M-CBM measures has long been utilized, a new 
theoretical framework has been advocated and initially researched that explores the 
possibility that math disabilities can occur in one of the two areas or both simultane-
ously (Fuchs, Fuchs, & Zumeta, 2008). M-CBM measures demonstrate acceptable 
test–retest, inter-rater and alternate-form reliability, and concurrent and predictive 
validity between .50 and .60 (Foegen, Jiban, & Deno, 2007). The timing of the mea-
sures varies by grade level with shorter durations (1 or 2 min) in the earlier grades, 
and up to 5 min for the later grades.

Although originally M-CBM measures were designed to align with actual curri-
cula (i.e., the C in CBM stood for a specific curriculum) over time new iterations of 
M-CBM measures were designed to align to specific state standards (Gersten et al., 
2012) and other similar but non-timed measures were aligned to foundational docu-
ments such as the National Council of Teachers of Mathematics Focal Points (2006; 
Clarke et al., 2011). This trend has specific implications for future measurement de-
velopment as more contemporary standards, such as the Common Core, are adopted 
and implemented. Other advancements in the use of M-CBM have focused on ex-
tending the use of M-CBM-like measures to the early elementary and middle school 
grades. In the next section, we detail developments in those age and grade ranges.
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Fluency-Based Measures Assessing Number Sense 

At the early elementary grades (kindergarten and first grade) fluency-based mea-
sures are designed to tap into a student’s beginning and developing number sense. 
Although the concept of number sense is widely accepted it has been elusive to 
operationalize. It has been postulated as a corollary to phonological awareness and 
described by Gersten and Chard (1999) as “a child’s fluidity and flexibility with 
numbers, the sense of what numbers mean, and an ability to perform mental math-
ematics and look at the world and make comparisons” (p. 19). Other researchers 
have noted the complexity of attempting to define number sense but at the same 
time attempted to begin articulating exactly what is number sense (Berch, 2005).

Possessing number sense ostensibly permits one to achieve everything from understanding 
the meaning of numbers to developing strategies for solving complex math problems; from 
making simple magnitude comparisons to inventing procedures for conducting numerical 
operations; and from recognizing gross numerical errors to using quantitative methods for 
communicating, processing, and interpreting information. (p. 334).

The complexity in defining number sense is often encapsulated by the wide range 
of specific number proficiencies put forth as indicating an underlying understand-
ing of number. That is, although there is a general consensus on what number sense 
is, the specific proficiencies that capture number sense are varied. The National 
Research Council’s (2009) Mathematics Learning in Early Childhood recognized 
the inherent difficultly in operationally defining number sense and noted that any 
attempt to measure number sense would likely focus on assessing key proficiencies 
(e.g., applying number properties or counting strategies to solving addition and sub-
traction problems and simple word problems). Thus, while measures developed to 
assess number sense would assess specific proficiencies, the larger goal was for the 
measure to tap into the underlying construct of number sense. Despite the complex-
ity and difficulty in measuring number sense through examining specific skills, a 
number of assessments have been developed. Typically, these assessments focus on 
key constructs of beginning number sense.

In the next section, we detail and summarize that work focusing on three compo-
nents of number sense judged to be critical by cognitive psychologists and educa-
tion researchers: magnitude comparison (Booth & Siegler, 2006), strategic count-
ing (Geary, 2004), and basic fact fluency (Jordan, Hanich, & Kaplan, 2003). The 
overview is not intended to suggest other aspects of mathematics development and 
number sense are not critical (e.g., solving word problems) or to suggest that other 
timed measures have not been developed to assess number sense or math readiness 
(e.g., numeral identification) but rather to focus on those measures tapping critical 
constructs and do so in a manner that is focused on a student’s fluency with the con-
struct. It should also be noted that although the measures and constructs reviewed 
focus on a specific skill, the original development of the measures mirrors that of 
early CBM development in that the goal is to provide a powerful indicator of a 
student’s broader understanding of the domain. Thus, while a measure may have 
a student complete a specific number sense or mathematics task (e.g., noting the 
missing number in a sequence of numbers) the measures are intended to provide an 
indicator or overall level of understanding.



813  Mathematics Fluency—More than the Weekly Timed Test

Magnitude Comparison 

Magnitude comparison is made up of a number of specific skills but fundamentally 
it is based on the ability to draw comparisons about relative magnitude. Magnitude 
comparison can include the ability to determine which number is the greatest in a 
set and to be able to weigh relative differences in magnitude quickly and accurately. 
For example, initially children may know that 5 is bigger than 2 and then begin to 
understand that 7 is also bigger then 2 and that the difference between 7 and 2 is 
greater than the difference between 5 and 2. As children advance to developing a 
more nuanced understanding of number and quantity, they are able to make increas-
ingly complex judgments about magnitude. In the earlier grades, the development of 
an understanding of magnitude is a critical underpinning of the ability to calculate.

It has been hypothesized that as children develop a greater understanding of 
magnitude, they map that understanding onto a mental number line and begin to use 
that mental number line to further understand magnitude and to solve initial calcula-
tion problems (Dehaene, 1997). For example, when a student is presented a problem 
to add 4 and 2, a student who can recognize 4 as the greater magnitude can then 
solve the problem by counting up 2 (this example also implies an understanding of 
the commutative property and the use of strategic counting) on a mental number 
line to derive a correct answer.

Typically, measures of magnitude comparison require a student to identify the 
greater number from a set of two numbers. A number of research teams have de-
signed and tested similar measures of magnitude comparison for kindergarten and 
first grade with all measures including a timing element but varying the range of 
numbers used in the materials in response to potential concerns about floor or ceil-
ing effects. For example, some measures uses number sets from 0 to 10 for kinder-
garteners (Lembke & Foegen, 2009; Seethaler & Fuchs, 2010), while others use 
0–20 (Clarke et al., 2011).

A recent overview of screening measures in the early grades (Gersten et  al., 
2012), noted strong reliability coefficients across studies of examining magnitude 
comparison measures. Evaluations included interscorer, alternate-form, and test–re-
test, all of which reported coefficients consistently greater than .80, and concurrent 
and predictive validity data correlating with summative measures of mathematics 
falling mostly in the .50–.70 range.

Strategic Counting 

Strategic counting is fundamental to developing mathematical understanding and 
proficiency and has been defined as the ability to understand how to count effi-
ciently and to employ efficient counting strategies to solve an array of problems 
(Siegler & Robinson, 1982). Students who fail to develop strategic counting and 
to utilize counting principles efficiently to solve problems are more likely to be 
classified as having a mathematics learning disability (Geary, 1994). As children 
develop strategic counting strategies they are more able to efficiently solve addi-
tion and subtraction problems by applying this knowledge in combination with a 
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growing understanding of number properties. For example, a child who understands 
counting up (e.g., 5 + 2 can be solved by counting up from 5) and the commutative 
property (i.e., a + b = b + a) can apply the min strategy (counting up from the larger 
addend) so if given a problem “what is 6 more than 3?” she will solve the problem 
by changing the problem to “what is 3 more than 6?” and simply count on from 6 
to derive the answer.

The most common strategic counting measures require students to determine 
the missing number from a sequence of numbers. Similar to magnitude comparison 
measures, strategic counting measures include a timing element and vary the range 
of numbers used based on the grade level to avoid floor or ceiling effects. Some 
researchers have begun to experiment with measures that require skip counting 
(e.g., filling in the blank in a number series, 5, 10, __, 20) (Lembke & Foegen, 
2009) An overview of strategic counting measures found moderate concurrent and 
predictive validities (range = .37–.72) and strong reliabilities (range from .59 to .98) 
(Gersten et al., 2012).

Retrieval of Basic Arithmetic Facts 

An established finding in the research based on mathematics disabilities has been 
that students who are diagnosed as mathematics LD exhibit consistent and persis-
tent deficits with the automatic retrieval of addition and subtraction number com-
binations (Goldman, Pellegrino, & Mertz, 1988; Hasselbring et al., 1987). Geary 
(2004) found that children with difficulties in mathematics typically fail to make 
the transformation from using simple strategies to solve problems (e.g., by counting 
on their fingers or with objects) to solving problems mentally without using these 
objects (also Jordan, Kaplan, Ramineni, & Locuniak, 2009).

Research trends seem to indicate that, although students with mathematics LD 
often make progress in their use of algorithms when provided with classroom in-
struction, significant deficits remain in their ability to retrieve basic number combi-
nations (Geary, 2004; 2001; Jordan et al., 2003). A number of theories have been put 
forth to explain these difficulties. Geary (2004) hypothesized that the difficulty was 
related to issues with semantic memory (i.e., the ability to store and retrieve abstract 
information efficiently). Jordan et  al. (2003) hypothesized that fact-retrieval dif-
ficulty was rooted in weak number sense, and that when students lack number 
sense and an understanding of the relations between and among numbers and op-
erations they fail to develop automaticity with addition and subtraction number 
combinations. Whatever the root cause of difficulty with addition and subtrac-
tion number combinations, they remain a powerful predictor of later mathematics 
achievement (Jordan et al., 2009). Initial research on number combination or fact 
fluency measures shows promise in the early elementary grades (first and second 
grade; Bryant, Bryant, Gersten, Scammacca, & Chavez, 2008; Gersten, Clarke, Di-
mino, & Rolfhus, 2010).
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Fluency-Based Measures in the Middle School Grades 

As students advance to the middle school grades, new CBM-like measures have 
been designed to assess critical concepts of algebra (Foegen, 2008), problem-
solving (Montague, Penfield, Enders, & Huang, 2010), and estimation (Foegen & 
Deno, 2001). Similar to M-CBM computation and concepts, and applications mea-
sures for the same grade range, these new CBM-like measures provide more time 
(e.g., 5 min) for students to work. The complexity of mathematics skills assessed 
by upper-grade measures brings into question how well we can assess mathematics 
using a timed measure. Consider one of the algebra measures developed by Foe-
gen (2008) designed to assess, among other features, the following basic skills in 
algebra: applying the distributive property, working with integers, combining like 
terms, and simplifying equations. Whether or not a timed measure (and of what 
duration) is the best approach to assessing this content is a legitimate question along 
with considering how untimed or measures with a longer duration fit into different 
types of assessments (e.g., screening and progress monitoring).

In part, the issue of timing represents the larger issue of whether or not a timed 
measure is also a fluency measure. Given that the original purpose of developing 
CBM measures was to provide an initial gauge of student understanding in a topic 
and a long-term analysis of growth in that topic, one could argue that not all of the 
measures reviewed in this chapter are fluency measures. However, given that all 
the measures do assess how quickly and accurately a student applies specific skills 
(whether for 1 min or for 5), they do assess fluency. The answer likely lies between 
those two positions in that the measures provide useful information in both pro-
viding an indicator of overall student understanding and a student’s fluency with 
greater overlap between the two in the earlier grades.

Conclusion

The concept of fluency and its importance is well established and accepted in the 
field of mathematics. Seminal documents on mathematics instruction readily ac-
knowledge the role of fluency in the development of student proficiency in math-
ematics (NMAP, 2008; Gersten et  al., 2009). Perhaps in a proactive attempt to 
avoid the “reading wars” that have plagued the field of reading instruction, the 
mathematics field has been more overt and proactive in advocating for viewing 
fluency in conjunction with the development of conceptual understanding (NMAP, 
2008). That is, fluency and conceptual understanding are both of importance and 
that growth in one fuels increased growth in the other rather than one aspect of 
mathematics being developed at the cost of another (Wu, 2005).

Given the general acceptance of fluency’s importance, continued evaluation of 
existing and development of new interventions specifically designed to impact flu-
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ency seems likely. We consider the development and research efforts reviewed in 
this chapter as a solid foundation for further work. We believe going forward two 
important considerations should guide the field. First, if researchers provide only 
a fluency intervention and evaluate the impact of that intervention with a measure 
that is closely aligned to the intervention, caution should be exercised when inter-
preting results. In particular if that measure is considered by the field to provide an 
overall index of understanding in the broader domain of mathematics. For example, 
an intervention may focus exclusively on building fluency in identifying the greater 
of a set of numbers and use a measure of magnitude comparison to examine impact. 
But because the intervention is specifically targeted on magnitude comparison, 
increased scores on a measure of the same content may not reflect a generalized 
improvement in the underlying domain of number sense. Second, given the high 
probability that low levels in fluency are accompanied by deficits in other areas of 
mathematics, fluency interventions should rarely be delivered in isolation. That is, 
students who struggle with fluency in mathematics need a comprehensive interven-
tion that includes, but is not limited to, addressing fluency-related problems. This 
position is not to say that isolated intervention and research conducted to date lacks 
importance, it is rather to acknowledge that students with severe deficits in math-
ematics need an intervention of an intensity equal to their deficits and that likely 
involves a sustained effort to build conceptual understanding of critical mathemat-
ics concepts.

Lastly, developers of current and future measures of mathematics that include a 
timing element should be proactive in laying forth what constructs they are measur-
ing and how they view the development and use of their measures. A cautionary 
tale from reading illustrates the point. When Reading First advanced the framework 
of five big ideas of beginning reading instruction, including accuracy and fluency 
with connected text (Baker, Fien, & Baker, 2010), states and districts viewed this 
framework as specifying a need to measure each big idea. The previous role of oral 
reading fluency as a measure of overall reading health was to some extent replaced 
with oral reading fluency serving only as a measure of accuracy and fluency with 
connected text despite the continued evidence that oral reading fluency continues 
to be validated as a strong measure of general reading achievement including com-
prehension (Fuchs et  al., 2001). Thus, if developers and researchers design and 
view their mathematics measures as assessing student understanding in a broader 
domain but a timing element is also included, they should be proactive in discuss-
ing and demonstrating the link between their measure and greater understanding in 
mathematics.

We believe that efforts in all of these areas will help further our understanding 
of the role of fluency in developing mathematics proficiency. As we advance our 
understanding, we believe that the field will be better positioned to ensure that all 
children achieve success in mathematics.
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