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Spatial Statistics

5C h a p t e r 

In contrast to land-cover or habitat classes, some kinds of landscape data are 
recorded as continuous numbers rather than discrete categories. Such data 

include vegetation density or height; net aboveground primary production; nutri-
ent mineralization rates; percent of biomass killed by a disturbance; and distances 
from lakes, roads, or other features of interest. Most landscape metrics covered in 
Chap. 4 are not appropriate for quantifying the spatial pattern of continuous vari-
ables, and a different set of methods is required. Spatial statistics, including geosta-
tistics, are used to quantify the spatial structure of continuous data, and they are 
widely applied in landscape ecology. Spatial statistics and geostatistics use point 
data for some property that is spatially distributed across the landscape; they do 
not require categorization of the landscape nor do they assume a patchy structure 
or the presence of boundaries. Observations, conventionally labeled as z, are made 
at specific x, y locations and referred to as regionalized variables (Palmer and 
McGlinn 2016). Spatial statistics then quantify spatial dependence in the regional-
ized variable, or the tendency of z measured at one x, y location to be correlated 
with, or depend on, values of z measured at another x, y location. If there is spatial 
dependence in z, then information about z at one place allows you to infer informa-
tion about z at another place. Spatial statistics quantify the magnitude of variance 
in the data, the proportion of that variance that is spatially dependent (i.e., spa-
tially autocorrelated), and the scales, or distances, over which variables are spa-
tially dependent. These methods are powerful, but the terminology and methods 
can be daunting for those new to the subject.

Landscape metrics and spatial statistics are distinct but complementary methods 
of analysis. Gustafson (1998) illustrated this point nicely by considering two 
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 different ways of describing the spatial distribution of aspen (Populus tremuloides), 
a widely distributed tree species in North America. If one converts measurements 
of aspen tree density to categorical data by delineating patches where aspen is pres-
ent above some minimum density threshold, the resulting map of aspen distribu-
tion can be analyzed using patch-based metrics. Alternatively, if one uses the actual 
measures (continuous numbers) of aspen density at locations throughout the land-
scape, then the spatial structure of aspen density would be analyzed using spatial 
statistics. Both approaches characterize the spatial pattern of aspen on the land-
scape, but they do so in different ways. Quantifying patterns of disturbance in a 
landscape offers another example (Fig. 5.1). Areas in a landscape affected by fire 
can be categorized as discrete patches of burned vs. unburned areas (Fig. 5.1b) and 
analyzed using landscape metrics, or represented by continuous measures of fire 
severity (Fig. 5.1a) and analyzed using spatial statistics (see Turner and Simard 
2016). Both approaches assess the spatial structure of fire effects on the landscape, 

but they allow different forms of analysis and inference.

Figure 5.1.

Example of two ways to depict fire patterns in a 5 km × 5 km area of the Greater 

Yellowstone Ecosystem, Wyoming, USA. The left map shows continuous estimates of fire 

severity based on the Differenced Normalized Burn Ratio, with warmer colors indicating 

higher fire severity. The right map classifies these data into burned vs. unburned cells. 

Although both depict fire patterns, these maps would be analyzed with different methods.

Maps generated by Martin Simard.
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The origin of spatial statistics is often traced to the South African mining 
 engineer, D. W. Krige, who developed methods for locating ores within geologic 
formations and for whom the spatial interpolation method of kriging is named. In 
the 1950s, Krige pioneered statistical methods to predict the location of economi-
cally valuable ores (e.g., gold, uranium) using a limited number of boreholes. This 
work spurred development of methods for spatial evaluation of mineral resources 
based on geographically referenced point measurements and led to the field of geo-
statistics. These methods still provide a basis for spatial interpolation, which uses 
measurements at particular points to predict values in locations that lack empirical 
measurements and is discussed in detail below.

We begin this chapter by explaining several key uses of spatial statistics in 
landscape ecology, present important caveats for their use, and then provide a 
brief overview of major approaches. The literature regarding spatial statistics is 
large, diverse, and technical (Law et al. 2009), making a complete review well 
beyond the scope of this text (see Legendre and Legendre 1998; Fortin and Dale 
2005 for broad coverage of spatial statistics). Our goal is to demystify the ele-
mentary jargon of spatial statistics and to provide illustrative examples emphasiz-
ing how these methods can be used in landscape ecology. We do this by focusing 
on two techniques that have been widely applied and that illustrate the general 
principles (and pitfalls) of the use and application of spatial statistics in landscape 
ecology. These two methods are (1) point pattern analysis, which analyzes 
observed “events” (e.g., nest locations, fire starts, etc.) and (2) spatial autocor-
relation and variography, which use many spatially distributed measurements of 
continuous variables. We conclude the section on variography with a short dis-
cussion of efficient sampling designs that reduce the cost of acquiring sufficient 
data for using spatial statistics in landscape studies. But first, let’s think about 
why these methods are useful and note key caveats to consider and pitfalls that 
may be encountered. The methods themselves are rapidly evolving as spatial data 
and analysis software become more available; therefore, as we did for landscape 
metrics, we first emphasize general considerations that should apply to most 
problems of landscape analysis.

 W h y  D o  L a n D s c a p e  e c o L o g i s t s  U s e  s p a t i a L 
s t a t i s t i c s ?

The use of spatial statistics in ecology has become widespread and much more 
sophisticated since the first edition of this book, and access to computation soft-
ware has increased. Why have these methods become so important, and why are 
they used in landscape ecology?
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 S p a t i a l  I n d e p e n d e n c e

As encapsulated in Tobler’s first law of geography: “Everything is related to 
 everything else, but near things are more related than distant things” (Tobler 1970). 
However, independence among data values is one of the most common assump-
tions of standard parametric statistics. As Tobler’s law suggests, when data are 
collected within a spatial framework, values near one another are often correlated; 
this violates the assumption of independence and complicates data analysis (Ripley 
2005). What is the primary statistical danger? When measurements are spatially 
autocorrelated (i.e., near things are related to each other, so the data are not inde-
pendent), there is an increased risk of Type I error—finding a statistically significant 
difference when none actually exists (i.e., erroneous rejection of the null hypothe-
sis). A simple example illustrates this problem. Imagine a transect along which 
measurements of plant height are made, and you wish to determine whether the 
mean plant height is 20 cm. Assume that the variance is known and equal to 5, and 
you calculated a mean height of 21.5 cm from ten measurements made at 3-m 
intervals along the transect. A computed Z statistic will reject the null hypothesis 
with p = 0.034, leading you to conclude that the measured mean plant height differs 
from 20 cm. Now assume that the adjacent sampling points were not independent, 
but rather they were correlated with r = 0.40 (i.e., spatially dependent). A correc-
tion to the Z test yields p = 0.14, leading to the opposite conclusion that plant 
heights are not significantly different from 20 cm. Thus, spatial dependence in the 
data can cause the conclusions of a statistical analysis to change qualitatively. An 
important application of spatial statistics in landscape ecology is to determine the 
magnitude and scale of spatial dependence and to adjust either the sampling design 
or the statistical models to account for this lack of independence.

The plant-height example is a simple one, but spatial autocorrelation in land-
scape data is the rule rather than the exception. From a practical standpoint, 
reviewers of proposals or manuscripts routinely expect authors to have tested for 
spatial dependence and to have adjusted the analysis for spatial effects by using 
appropriate statistical methods and associated tests. When pilot data are available, 
spatial statistics can be used to describe the change in dependence with distance 
between samples and, from this analysis, set a separation distance beyond which 
measurements are spatially independent. This distance defines the minimal spacing 
required for future sampling locations that will allow the assumption of indepen-
dence among measured values to be valid. For example, Pearson et al. (1995) used 
spatial statistics (semivariograms) to determine the scale over which measurements 
of winter grazing intensity by elk (Cervus elaphus) were spatially dependent, then 
subsampled data at distances beyond that scale to assure independent samples for 
analysis of how grazing intensity varied with environmental characteristics. When 
the degree of spatial autocorrelation in a dataset is not known a priori, spatial 
dependence can be evaluated in the raw data or from the residuals of a statistical 
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analysis. When spatial autocorrelation is detected in the residuals, the statistical 
model must be adjusted to account for this dependency (see Legendre 1993; Fortin 
and Payette 2002; Ishihama et al. 2010).

Even when it may not have been welcomed, detection of spatial dependence can 
be a source of new insights about a focal variable. Spatial dependence in the residu-
als of a statistical model should alert the investigator to the potential importance of 
a spatial process that was not previously considered. For example, Anderson et al. 
(2013) examined the spatial distribution of a nonnative invasive plant across a 
large mountainous landscape. After accounting for the local and landscape- level 
variables that predicted presence of the invasive plant, spatial dependence was still 
present in the residuals up to a scale of 3 km. The residual spatial structure sug-
gested a hierarchical process of invasion. The spatial pattern was consistent with 
infrequent, long-distance dispersal events resulting in new nascent subpopulations 
that subsequently spread via shorter-distance dispersal (Anderson et al. 2013). 
Thus, residual spatial autocorrelation, after accounting for other covariates, can be 
informative and not simply problematic.

 N a t u r e  o f  S p a t i a l  S t r u c t u r e

Spatial statistics are also used in landscape ecology when an explicit goal is to 
understand the nature of the spatial structure of a particular variable, or set of 
variables, and to test hypotheses about that spatial structure. Quantifying variabil-
ity in ecological measures over space (and time) is complementary to estimating 
average values or central tendency (e.g., Benedetti-Cecchi 2003; Fraterrigo and 
Rusak 2008). Variability can be highly sensitive and capture effects that are 
obscured by averaging. Although variance estimates are used less frequently than 
categorical landscape metrics for hypothesis testing in landscape ecology, use of 
measures of spatial variation are increasing (Legendre et al. 2002, 2004). For 
example, spatial statistics have been widely used to evaluate hypotheses about how 
disturbances or land-use history alter the magnitude or scale of variability in an 
ecological response (e.g., Gross et al. 1995; Lane and BassiriRad 2005; Mayor 
et al. 2007; De Jager and Pastor 2009, among others). For instance, Fraterrigo 
et al. (2005) found that historic agriculture in the Southern Appalachian Mountains 
was associated with altered spatial variability in soil resources, even though  average 
soil variables were comparable with undisturbed areas. Soil resources varied over 
very fine spatial scales in undisturbed forests, but that spatial variability was 
homogenized in forests with historical land use such that soil resources were cor-
related over broader spatial scales (Fraterrigo et al. 2005). The magnitude and scale 
of spatial dependence in one variable also may be used as predictors for another 
variable, as illustrated by Gundale et al. (2006), who hypothesized that the spatial 
structure of variability in soil nitrogen would predict plant responses.
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 S p a t i a l  I n t e r p o l a t i o n

Another use of spatial statistics in landscape ecology is spatial interpolation. Some 
variables simply cannot be measured everywhere, yet we may wish to estimate val-
ues at locations that were not sampled and/or produce a continuous surface, or 
map, of expected values. If the spatial structure of response variables is known, 
information about their autocorrelation can be used to predict their expected val-
ues at unmeasured locations—as Krige did to predict the likely locations of ore 
deposits. Landscape ecologists have developed spatial interpolations for a wide 
range of phenomena and scales. Bolstad et al. (1998) used kriging (among other 
methods) to predict vegetation patterns in a 2185-ha forested landscape in the 
Southern Appalachians. Smithwick et al. (2012) used kriging at much finer scales, 
predicting postfire rates of net nitrogen mineralization, abundance, and composi-
tion of soil microbes and aboveground vegetation within four 0.25-ha plots in 

Greater Yellowstone (USA) from point measurements (Fig. 5.2).

Figure 5.2.

Kriged maps of (a–d) in situ net nitrogen mineralization rate, (e–h) fungi:bacteria ratio, (i–l) total vegetative 

cover, and (m–p) microbial lipid abundance in four postfire study plots in Greater Yellowstone. Data were 

sampled at points, and semivariogram analysis was used for spatial interpolation. 

From Smithwick et al. (2012).
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Thus, in landscape ecology, spatial statistics provides important quantitative 
analysis tools to appropriately analyze continuous spatial data and to test new 
hypothesis regarding the magnitude, scale, and patterns evident in these data. 
Consequently, knowledge and use of spatial statistics are essential for studying 
pattern-process relationships in landscape ecology.

 c a v e a t s  f o r  U s i n g  s p a t i a L  s t a t i s t i c s ,  
o r  “ r e a D  t h i s  f i r s t ”

As we did for landscape metrics in Chap. 4, we begin by providing guidance about 
what to consider before embarking on an analysis using spatial statistics. As always, 
it is critical that the question or rationale for analysis be clearly specified at the 
outset. The importance of beginning with a good scientific question can never be 
overstated!

 # 1 .  T h e  S p a t i a l  D e p e n d e n c e  i n  L a n d s c a p e  D a t a  M u s t 

B e  C h a r a c t e r i z e d  a n d  C o n s i d e r e d

The need to recognize and test for spatial autocorrelation in data may be the most 
important take-home message from this chapter. The advances in spatial statistics 
and the understanding of how spatial dependence can affect conclusions drawn from 
data require a “heads-up” approach to this issue. Data recorded at intervals along 
transects and/or grids, especially along topographic or other environmental gradi-
ents, will often display spatial dependence over considerable distances (e.g., Everson 
and Boucher 1998; Nelson et al. 2005). In fact, it is difficult to imagine any landscape 
data that will not display spatial dependencies at some scale. As we showed with the 
simple example of plant heights, failure to characterize these dependencies can lead 
to serious biases in analysis and incorrect conclusions. It is incumbent upon the sci-
entist to realize that spatial dependence is a potential issue, to appropriately test the 
data or models for spatial dependence, and to adjust the analysis accordingly. Such 
data exploration should be a routine component of statistical analyses, just like 
examination of other estimates of model strength and goodness of fit. If there is no 
spatial dependence, there should be a sentence in the manuscript stating that conclu-
sion (e.g., Simard et al. 2012 do this). The old adage, “ignorance of the law is no 
excuse,” will apply; be assured that reviewers and editors will follow up.

 # 2 .  S p a t i a l  A u t o c o r r e l a t i o n  I s  N o t  A l w a y s  a  P r o b l e m

Although spatial autocorrelation is often considered a nuisance that interferes with 
testing interesting relationships between predictors and response, it is important to 
recognize that spatial dependence can provide ecologically relevant information. 
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Changes or differences in the spatial scale of autocorrelation can indicate changes 
or differences in the processes that have generated the observed patterns. Early 
spatially explicit studies of soils demonstrated that nutrient pools and transforma-
tions varied tremendously over small distances (e.g., Robertson et al. 1988), and 
that spatial variability could change through time (Gross et al. 1995; Cain et al. 
1999). A study of postfire succession and soils illustrates hypothesis testing using 
spatial dependence as a response. Turner et al. (2011) asked how the variability and 
structure of aboveground vegetative cover and soil nitrogen availability changed 
during the first 4 years following stand-replacing fire. They laid out a set of expec-
tations that could be tested with spatial data. For example, they expected little 
initial spatial structure in soil nitrogen variables because fire effects were likely to 
be spatially random, but that spatial structure would develop with vegetation 
recovery during early postfire succession (Turner et al. 2011). Results revealed a 
surprising absence of spatial structure in soil nitrogen transformations at the scales 
sampled. For biotic cover, the scale of autocorrelation was expected to increase 
over time, but it remained similar during the first 4 years postfire.

Nested scales of variability can suggest that the environmental factors structur-
ing variability operate at different scales (e.g., Franklin and Mills 2003). Processes 
that homogenize local variation at a particular scale can induce spatial autocorrela-
tion that then emerges at coarser scales (as shown by Fraterrigo et al. 2005). 
Furthermore, the spatial scale over which two variables are correlated may indicate 
an underlying process that is worth exploring. For example, analyses by Keitt and 
Urban (2005) using wavelets showed how topographic variation in physical drivers 
(e.g., sunlight, water availability) interacted to produce complex, scale-dependent 
patterns in vegetation growth (Keitt and Urban 2005). In short, the analysis of 
spatial data by autocorrelation methods can provide important insights into the 
spatial structure of both response and driver variables.

 # 3 .  C o i n c i d e n c e  o f  S c a l e s  o f  S p a t i a l  D e p e n d e n c e  A m o n g 

M u l t i p l e  V a r i a b l e s  D o e s  N o t  P r o v e  C a u s a l i t y

The coincidence of scales of variability of different ecological features, such as 
plants and soil nutrients (Grieg-Smith 1979) or seabirds and their prey (Schneider 
and Platt 1986) may indicate linkages worth exploring. However, it is important to 
remember that coincidence of the spatial structure does not prove causality, but 
rather suggests reason to test for causal mechanisms. As is always true when cor-
relations exist among variables, statistical dependencies imply but do not prove 
pattern-process dependencies. In applying spatial statistics, it is tempting to sur-
mise that variables having similar spatial structure may be responding to similar 
processes or that the variables may interact with one another. Here, the art of 
analysis will be instrumental for relating a coincidence of scales to potential mecha-
nistic relationships.
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 # 4 .  S c a l e  A l w a y s  M a t t e r s

The grain and extent of the data used in spatial statistics will influence the results, 
much as they influence landscape metrics. For continuous data, grain is usually the 
minimum or characteristic distance between sample points, whereas extent refers 
to the total area sampled, typically the linear dimension defining the sampled area. 
The characteristic distance between the points must be equal to or less than the 
scale at which the analyst wants to detect spatial structure. The overall linear extent 
of the dataset should be at least twice the maximum distance the analyst wishes to 
examine. Thus, to explore spatial dependence over scales of 1–100 m, sampling 
points should be separated by ≤1 m, and the overall data dimension should be at 
least 200 m. In general, fine-grained spatial structure cannot be determined from 
coarse-grained data, and broad-scale patterns cannot be adequately detected with 
data of limited spatial extent.

As for patch-based metrics, boundary effects are an important consideration 
when determining scale-dependent effects. All landscapes are of finite size and, 
because of this, edge effects dominate estimates derived from data that lie near 
boundaries. When these boundaries are artificial and the landscape is relatively 
small, truncation effects occur and may dominate estimates. Because these trunca-
tion effects are especially serious for point pattern analysis (discussed below), spe-
cial correction factors may be required. Many of the scale issues associated with 
data collection can be reduced or eliminated if an optimal sampling plan can be 
devised ahead of time. Fortin and Dale (2005:14) provide guidance for developing 
landscape sampling designs, and we discuss some approaches later in the chapter. 
The purpose should be to obtain a match between the goal of the study, the spatial 
and temporal grain and extent of the data, and the validity of the statistical meth-
ods to be used for analysis.

Practically speaking, it is critical to check the analysis scales used when com-
puting spatial statistics, especially when using readily available software. For 
ease of computation and display, software programs may automatically “bin” 
the data into 10–20 classes representing different separation distances among 
the data points. If the extent of the data is large, the characteristic bin sizes will 
also be large and may fully contain smaller separation distances that may be 
ecologically relevant. The unsuspecting analyst might obtain results using overly 
large bins that obscure, rather than detect, the finer-scaled variation. Therefore, 
the analyst must know the finest resolution needed for the analysis and the maxi-
mum separation distance that should be considered, then confirm these settings 
before results are determined. The bottom line is that you must carefully select 
the scales needed for data collection and analysis, then fit the models 
accordingly.
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 # 5 .  S t a t i o n a r i t y  I s  a n  I m p o r t a n t  A s s u m p t i o n  i n  M a n y  S p a t i a l 

S t a t i s t i c a l  A n a l y s e s

The assumption of stationarity states that the mean and variance of a particular 
variable will not change with the location of measurements. This assumption—
technically referred to as first- and second-order stationarity—often catches those 
new to spatial statistic unawares. Stationarity is likely to be violated when there is 
an unrecognized gradient in the data (e.g., increasing precipitation or soil nutrient 
availability), when the underlying sampling methods are of limited extent and fail 
to measure changes in variables with scale, or when patterns are anisotropic (a 
marked directionality in the data). When non-stationarity exists and is unaccounted 
for in a statistical analysis, essential statistical parameters (such as mean and vari-
ance) will not be universal but location dependent. In landscape data, topographic 
relief can impose gradients and directionality on spatial data, both of which can 
violate stationarity assumptions. The usual response to this issue is either to detrend 
the data (commonly done for time series analysis via linear regression) or to account 
specifically for these gradients in the statistical model. Spatial analysis programs 
often assist with this adjustment when correcting for simple, linear trends. However, 
the removal of nonlinear trends remains difficult and is a continued area of investi-
gation (Fortin and Dale 2005). Some spatial analysis programs provide the option 
for either isotropic (all-directional) or anisotropic (directional) analyses; the latter 
allows the user to evaluate spatial dependence and compare model parameters 
across a range of compass directions.

 # 6 .  I n t e r p r e t i n g  S p a t i a l  S t a t i s t i c s  I s  B o t h  a  S c i e n c e 

a n d  a n  A r t

As with other kinds of statistical methods, many analysis decisions are up to the 
user and can be perplexing. For example, some methods (including semivario-
grams, which are discussed in detail below) involve fitting a theoretical curve to the 
empirical data and then estimating parameters from this curve to describe the spa-
tial structure in the data. There are a number of different standard curves that may 
be fit to the data (e.g., spherical, exponential, sinusoidal, linear models), but each 
may provide strikingly different parameter estimates for characterizing the spatial 
structure. Selecting the most appropriate model can be done in several ways, but 
the user ultimately must choose and justify her/his choice. If a study entails esti-
mates of spatial dependence for multiple variables or among multiple landscapes, 
different variables or plots may achieve their best fit with different models. The 
analyst must then decide whether to use the best model each time, knowing that the 
models will vary; or to use the same model for consistency, knowing that the fit will 
vary. Either way, the quantitative estimates derived from the analysis can be consid-
erably different.
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Another issue of interpretation is that empirical data can be very noisy and, thus, 
not conform nicely to the theoretical curves. How to interpret apparent cycles in 
the data, or points that fall outside broad confidence intervals, can be challenging. 
The results of spatial statistical analyses with real landscape data are often much 
more ambiguous than results of an ANOVA that are based on F-ratios with set 
probability limits. If you encounter such situations, you are not alone. Do not be 
deterred, but do seek statistical advice from someone experienced with the applica-
tion and interpretation of these analyses. Because these methods have and will 
continue to advance, these tasks will soon become more convenient, efficient, and 
reliable. However, there is no single prescription or cookbook approach—rather 
each new problem may require novel methods with their associated sets of assump-
tions and restrictions. Therefore, the user must take care when applying statistical 
techniques and drawing conclusions from results and remember that the question 
or objective of the analysis must be unambiguously specified ahead of time.

 p o i n t  p a t t e r n  a n a L y s i s

The data for point pattern analysis methods are composed of records of event- 
based spatial phenomena, such as the location of individuals of an invasive species 
(Schreiber and Lloyd-Smith 2009); the presence of kangaroo rat nest mounds 
(Schooley and Wiens 2001); or occurrence of lightning caused fire ignitions (Podur 
et al. 2003). Point data are irregularly distributed in space and characterized by x, 
y coordinates (the points) with variable supplemental information (the marks) to 
identify the type of event and relevant biological or physical attributes associated 
with that point (e.g., species, age, size, soil type, etc.). Once acquired, these spatial 
point pattern data allow hypotheses linking spatial pattern (the points) to ecologi-
cal process (the marks) to be examined. Special techniques have been developed to 
describe these data and to test their association with relevant biological and physi-
cal attributes of the landscape (Perry et al. 2006).

Point pattern analysis has a long history of study in ecology. Clark and Evans 
(1954) first suggested that the mean distance to a nearest neighbor divided by the 
mean distance of randomly distributed points provided a normalized measure of 
the departure of spatial patterns from those expected by simple random processes. 
These calculations, when done by hand in the ‘50s, were computationally difficult, 
especially when data sets were large. A different approach was suggested by Greg- 
Smith (1952) who aggregated point data into quadrats and then used the differ-
ences in frequencies between adjacent quadrats as a measure of spatial pattern. 
Successive increases in quadrat size allowed scale-dependent changes in variance to 
be estimated (O’Neill et al. 1991; Levin 1992) (see Fig. 5.3). More efficient  sampling 
methods have since been developed to provide more robust estimates (e.g., lacunar-
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ity analysis; Plotnick et al. 1993, 1996), but the basic concept of change in variance 

with scale as a measure of pattern-scale dependency remains useful.
The Clark and Evans (1954) nearest-neighbor calculation produced a single 

value for each dataset. Ripley (1977, 1979) introduced the K function, which 
examines nearest-neighbor associations over all distances within the dataset, pro-
viding a scale-dependent measure for point patterns without the need to aggregate 
data into quadrats. The K function, as described by Crawley (2007), is calculated 
as:

 
K d
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d ij
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( )1
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á ñ
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where N is the number of points; A is the size of the study area that contains the 
points; dij are the subset of distances that are less than I(d) (values of I(d) will range 
successively from the minimum to maximum possible distance within A); and wij is 
an edge correction required to avoid truncation effects when a given point is near 
the boundary (wij = 1 when a circle of radius Id around point ij does not contact the 
boundary of A, and <1 when boundaries are encountered).

All these calculations can be easily done within the spatstat library (Baddeley 
and Turner 2005) of R (R Development Core Team 2010). Baddeley and Turner 
(2005) provide an example of analysis with Ripley’s K for a point pattern dataset 
of Swedish pine trees (Strand 1972; Ripley 1988). The nearest-neighbor analysis 
reproduced here (Fig. 5.4) shows two lines. The solid line is the expected value at 
each distance class, I(d), if all points were randomly distributed; the segmented line 
shows significant deviation of a range of I(d) from ~6 to ~12 (see Baddeley and 
Turner 2005 for the statistical methods used to test for significant departures from 
random), indicating that trees were more uniformly distributed than the “expected” 
(hypothetical) random pattern. The causes of spatial regularity over small distances 
may include processes such processes as nonrandom seed recruitment or mortality, 
competition or a nonrandom substrate. The results shown in Fig. 5.4 define the 

Figure 5.3.

Variance in percent grassland in a landscape near 

Goodland, Kansas changes over a range scales. These 

changes created a stair-step pattern hypothesized to 

result from human activities that vary from fields to 

farms, townships, and counties. 

Adapted from O’Neill et al. (1991).
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scales over which future studies may concentrate to identify the specific processes 
that have resulted in these nonrandom patterns. Of course hypothesis testing 
requires the uncertainty around these numbers to be estimated. The spastat library 
provides an example of how to estimate uncertainties using Monte Carlo 

methods.
Perry et al. (2006) and Diggle (2003) provide excellent discussions of other 

methods for analyzing spatial point patterns. No matter the choice of method, one 
should be aware that when the study area, A, is very large multiple (new) ecosys-
tems or cover types may be encountered. If points are restricted to a single ecosys-
tem or cover type, then patterns will always appear to be spatially heterogeneous 
with areas of aggregation within preferred habitats separated by areas of overdis-
persion; conversely, if spatial extents are very small, then edge effects will be large 
and results biased despite use of edge correction methods that adjust spatial weights, 
wij. As always, there is an intimate dependency between the nature of a dataset, the 
scale of analysis, and the adequacy of the statistical methods used for description 
and hypothesis testing.

 a U t o c o r r e L a t i o n  a n D  v a r i o g r a p h y

The heart of spatial statistics is the concept of correlation of spatially distributed 
variables. Autocorrelation and variography are two widely used methods for char-
acterizing spatial dependence, or spatial structure, in a variable as a function of its 
position in a landscape. These methods are considered global spatial statistics 
because they estimate the intensity of spatial dependence for the entire study area 
(Fortin and Dale 2005). Both methods also provide estimates of the spatial scale(s) 
over which data are dependent. Factors that cause spatial dependence may be 
intrinsic to the system being studied, such as dispersal and competition in biotic 

l

Figure 5.4.

Nearest neighbor analysis of the Swedish pine data 

using Ripley’s K and the spatstat library of Baddeley 

and Turner (2005). See text for details of analysis.

Spat ia l 

Stat is t ics



156

communities, and often manifested as fine-scale patchiness. This is certainly the 
case for measures of species abundances, which are always positively autocorre-
lated (Lichstein et al. 2002). Factors external to the system, such as topographic 
gradients of moisture, nutrients, and light, may also induce correlations (as noted 
above) but these are usually responsible for broad-scale trends (Legendre 1993; 
Lichstein et al. 2002). Conceptually, any observed spatial structure is a mix of 
induced spatial dependence (i.e., how the variable is responding to the spatial struc-
ture of an exogenous process) and inherent spatial autocorrelation (i.e., intrinsic to 
the variable or process of interest), but estimates of spatial autocorrelation coeffi-
cients cannot discriminate between these different components (Fortin and Dale 
2005).

 A u t o c o r r e l a t i o n

Spatial autocorrelation is estimated by taking the average squared difference 
between all points separated by a given distance, h, the “lagged” distance between 
points. If we assume second-order stationarity (constant mean and variance over 
the entire dataset), then the autocorrelation for each distance between points, r(h), 
may be calculated as a Pearson correlation coefficient:
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where zi is the value at location i; zi+h is the value of a point at a distance of h from 
i; σ2 is the overall variance; and N is total number of points. A graph of r(h) vs. h is 
a correlogram that provides a visualization of the change in the dependency between 
points as a function of the distance between them, h. In general, to assure numeri-
cal adequacy of estimates of r(h), h should never be calculated for distances greater 
than ½ the total distance that was sampled, and there should be at least 50 pairs of 
points for each lag distance (Rossi et al. 1992). Indications of ecological scale can 
be verified by statistically testing the peak values of the correlogram (both positive 
and negative) for significant differences from zero (Carlile et al. 1989). The condi-
tions for valid tests for the significance of these peaks are restrictive, requiring (1) 
that only points separated by h are compared for each lagged distance, (2) that 
gradients of change or trends in the data be removed before correlations are esti-
mated (see Legendre 1993 for other restrictions in the analysis of gradients and 
autocorrelated data) and (3) that the residuals be normally distributed (Legendre 
and Legendre 1998).

Because r(h) is normalized by its variance, values will always lie between −1.0 and 
1.0, which can be advantageous when comparing correlograms for different vari-
ables and/or landscapes. When r(h) is near 1.0, the lagged values are positively 
related; when r(h) is near −1.0, the lagged values are negatively related; and when r(h) 
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is close to 0.0, the values are spatially independent. Of course, statistical tests are 
used to show when values of r(h) do not differ from 0.0 and to determine the mini-
mal separation distance, hc, beyond which the data can be considered spatially 
independent.

Let’s consider an empirical example. In an area that was severely burned by the 
1988 Yellowstone Fires, the density of postfire lodgepole pine (Pinus contorta var. 
latifolia) seedlings was recorded sequentially in 1-m2 plots (N = 3395) at every 
meter along a 3.4-km transect that spanned a large patch of burned forest. The raw 
count data (seedlings m−2, depicted in Fig. 5.5a) clearly show variability along the 
transect. To quantify spatial structure of the postfire tree seedlings, autocorrelation 
of lodgepole pine seedling density was calculated for all pair plots separated by lag 
distances, h, ranging from 1 to 250 m to generate a correlogram (Fig. 5.5b). The 
analysis revealed very strong spatial autocorrelation over short distances and a 

Figure 5.5.

(a) Continous counts of postfire lodgepole pine seedlings in 1-m2 plots at 1-m intervals along a 3.4-km 

transect in Yellowstone National Park in 1991, 3 years after the 1988 fires (Turner et al. 1997b).  

(b) Autocorrelations and (c) partial autocorrelations of the lodgepole pine seedling counts
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steady decline as lag distances increased. Correlation diminished with distance, 
declining to r = 0.40 at a lag distance of about 40 m, and to r = 0.20 at about 90 m. 
Because the sample size was so large, even very small correlations were statistically 
significant at p = 0.05, indicated by the blue dashed line in Fig. 5.5b. Thus, this 
example also demonstrates another important point: when sample size is very 
large, statistical significance doesn’t always reflect ecological importance. Under 
such circumstances, one may set the limit of spatial correlation to a meaningful 
value; for instance, if r(h) = 0.2 at a given distance h, then only ~4 % of the variance 
is accounted for by spatially correlated processes at that distance. Applying this to 
our example, we could infer minimal spatial autocorrelation between samples sep-

arated by at least 90 m.
Measures other than the Pearson correlation coefficient, such as Moran’s I and 

Geary’s c, can also be used to test for spatial dependence (Fortin and Dale 2005). 
Interpretation of Moran’s I is very similar to interpretation of a correlation coeffi-
cient (Fig. 5.6). The magnitude of Moran’s I, as well as the sign, are both impor-
tant. The magnitude of the absolute value of Moran’s I (on the y axis) in the 
correlogram of the random landscape (Fig. 5.6a) is about 0.12, indicating little 
spatial autocorrelation at any lag distance; in contrast, the maximum absolute 
value of Moran’s I in a landscape with a gradient (Fig. 5.6b) approaches 1.0, indi-
cating very high spatial autocorrelation over some lag distances. In a landscape 
with repeated patterns (Fig. 5.6c), the strength of the autocorrelation is intermedi-
ate. The sign of Moran’s I is again informative. As with a traditional correlation 
analysis, a positive value indicates positive correlation, and a negative value indi-
cates a negative correlation. When there is a repeated pattern, correlations will be 
positive at short distances, then become negative (peaks to valleys), then become 
positive again (peaks to peaks; Fig. 5.6c). Autocorrelation methods are useful for 
defining spatial dependencies and for discriminating between positive and negative 
autocorrelations, but they are unable to distinguish between certain kinds of spatial 

patterns, such as sharp step change vs. a gradient (Palmer and McGlinn 2016).
Pearson correlation coefficients may be used not only for their simplicity, but 

also because measures of the direct effect at each distance h can be estimated by the 
partial autocorrelation coefficient (Fig. 5.5c). The partial correlation coefficient is 
the autocorrelation between points separated by h that has first been adjusted for 
correlations at all other distances and therefore represents the unique effect of 
points zi on zi+h. Figure 5.5c shows that the range of distances with significant direct 
effects (as measured by the partial correlation) is small (~10 m) in the lodgepole 
pine transect data, although accumulated indirect effects (as measured by the sim-
ple correlation, Fig. 5.5b) extend to ~130 m. Thus, abundance levels correlated 
over relatively short distances (the partial correlation) nevertheless result in patches 
of high abundance at scales of ~130 m (Fig. 5.5b).

When data for a spatial autocorrelation analysis come from a linear transect, 
directionality is not a concern. However, if the data come from a two-dimensional 
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Figure 5.6.

All-directional spatial correlograms of artificial 

landscapes: (a) random landscape, (b) landscape 

with a gradient, and (c) landscape with a 

repeating pattern, the “nine fat bumps” shown 

below. Note that Moran’s I behaves like a 

correlation coefficient. 

Adapted from Legendre and Fortin (1989).
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area, directionality should be considered. For most analyses, the default is to derive 
the coefficients from an omni-directional (isotropic) analysis, meaning that all pairs 
of points at a given lag distance are used, regardless of the directionality between 
them. However, it is possible that the intensity of spatial dependence differs by 
direction, and analyses may be computed for pairs of points that lie in the same 
direction (anisotropy). For example, autocorrelation could be measured in both an 
east-west and a north-south direction and the two sets of coefficients compared.

 V a r i o g r a p h y

Variography is also based on spatial dependence among pairs of observations at 
different lag distances, but it uses a direct measure of variance in the computation 
and allows for spatial interpolation of point data across a landscape. Kriging tech-
niques have been developed for this purpose with the semivariance, γ(h), providing 
the needed estimate of spatially dependent variance. The semivariance is equal to 
half of the squared difference of all pairs of points separated by distance h (Rossi 
et al. 1992; Palmer 1992) and is calculated for each lag distance, h as:
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where zi is the value at location i; zi+h is the value of a point at a lagged distance of 
h from i; and N(h) is number of pairs examined at lag distance h. Plotting γ(h) over 
all values of h results in a variogram, the central tool of geostatistics (Rossi et al. 
1992). In an idealized variogram (Fig. 5.7), semivariance is minimal when h is 
small, then increases steadily until a distance is achieved where further increases in 
h no longer cause the variance to increase. As with autocorrelation analysis, variog-
raphy depends on several underlying assumptions, including absence of a trend in 
the z values across space, that variance is constant across the dataset, that the 
 precise location of each observation does not matter (only the distance between 

Figure 5.7.

Idealized semivariogram showing the nugget (C0), sill 

(C0 + C), and range (A0); see text for explanation.
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points is important), and (for an isotropic variogram) that the magnitude of h 

 matters, but not the direction.
Interpretation of spatial dependence using variograms is based on several key 

parameters. The asymptotic value of γ(h) as h becomes very large is called the sill. The 
distance over which variance increases until the sill is reached is called the range (A0, 
Fig. 5.7). The range is one of the most important parameters extracted from a var-
iogram because it defines the distance (or scale) of spatial dependence in the data; at 
distances greater than the range, the data are considered to be spatially independent. 
Finally, there is often some amount of variance that is not related to spatial structure 
in the data, at least over the scales that were examined. This variance is estimated by 
the y intercept of the variogram and is called the nugget, typically denoted as C0 
(Fig. 5.7). The nugget includes variance at scales smaller than the minimum separa-
tion distance between points and variance attributed to changes through time as 
data were sampled, measurement error, and random sampling error. The structural 
variance, C, is the difference between the sill and the nugget. The overall magnitude 
of spatial dependence in the data can be estimated by computing the proportion of 
structural variance, calculated as structural variance divided by the sill, or [C/
(C0 + C)]. When there is no nugget or C0 is small relative to C, the proportion of 
structural variance is high, and there is considerable spatial dependence in the data. 
When C0 is nearly equal to the sill, there is no spatial dependence in the data. When 
the semivariance continues to increase with lag distance, h, and does not level off, it 
means that there is spatial dependence over all measurement scales. In this case, 
estimates of the range, A0, will exceed the maximum value of h; in other words, the 
range will be greater than the largest lag distance that was analyzed. Estimates of 
semivariance are unreliable when there are too few pairs of points for any given lag 
distance, which is often the case as h becomes large. Thus, the sampling restrictions 
for variogram estimation are the same as those given above for autocorrelation. 
Variograms should be calculated only for lag distances up to half the actual distance 
over which the data are measured, and it is best to include at least 50 pairs of points 
when calculating semivariance for each lag distance.

To estimate the nugget, sill, range, and proportion of structural variance from a 
variogram, a theoretical model must be fit to the plot of γ(h) vs. h (Fig. 5.8). Spherical, 
exponential, and linear models are commonly used theoretical models, and analysis 
programs will report C, C0, and A0 values. Different models may produce different 
numerical estimates for these parameters, and the best choice for a theoretical 
model may be difficult to determine a priori. Most practitioners will inspect the 
shape of the empirical variogram, then fit several models to determine which one 
provides the best fit by comparing the proportion of structural variance among 
models and examining r2 or AIC values. This can be straightforward when a single 
variogram is being evaluated. However, when a study involves multiple variograms, 
different theoretical models may fit best for different response variables or plots 
(Fig. 5.8). The analyst must then decide whether to use one theoretical model  
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Figure 5.8.

Illustration of six models for fitted semivariograms using data from the Luquillo Experimental Forest of 

Puerto Rico: (a) soil organic carbon, fit with a spherical model; (b) soil moisture, fit with a wave/hole model; 

(c) bulk density, fit with a spherical model; (d) elevation, fit with a wave/hole model; (e) slope angle, fit with a 

random model; and (f) aspect, fit with a linear model. The equations for the illustrated semivariance models 

are: Random γ = mean sample variance; Linear γ(h) = C0 + C[(h/A0)]; Spherical 

γ(h) = C0 + C(1.5(h/A0) − 0.5(h/A0)3], h ≤ A0; γ(h) = C0 + C, h ≥ A0. Wave/hole γ(h) = C0 + C{1 − [sin(A0*h)*h/A0]}. 

Adapted from Wang et al. (2002).
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(e.g., the spherical model) for all data, thereby minimizing the effect of changing 
the model on parameter estimates, or to use the best model fit for each dataset. In 
our experience, different models for different processes are appropriate, but statis-
ticians will differ in their opinions, and thinking about this topic may change—

points the analyst should keep in mind.
The idealized curve for a variogram with a distinct scale of spatial autocorrela-

tion is asymptotic, but empirical variograms may take a surprising number of 
shapes (Fig. 5.8); real-world data can be messy! If a spatial dataset is nonrandom 
and has been adequately sampled (i.e., the spatial extent of the data provides an 
adequate representation of the pattern of interest) then we expect the variogram to 
ascend from an initial value at h = 0 to an asymptotic value (Fig. 5.8a, d). Variograms 
that do not asymptote, but rather continue to increase as h increases (Fig. 5.8e), 
indicate an underlying trend or nonstationary stochastic process (Crawley 2007) 
which must be accounted for before finer scale dependencies can be explored. A 
relatively flat horizontal variogram indicates a pattern that lacks spatial dependen-
cies (i.e., a random pattern, Fig. 5.8c).

The form of the variogram does not lend itself to statistical testing, but confi-
dence intervals for semivariance estimates can be calculated (Shafer and Varljen 
1990; Zheng and Silliman 2000; Lin and Chen 2005; Xiao et al. 2005). Because the 
estimate of semivariance for each lag distance is obtained from multiple pairs of 
points, the variance around each estimate can be determined. It is increasingly com-
mon for a 95 % confidence interval to be plotted in empirical variograms. Although 
confidence intervals will often bounce around the sill, they are helpful in determin-
ing the range over which significant changes in variance may be expected (Xiao 
et al. 2005). Significance testing for each lag distance h is not commonly done in 
variography (in contrast to correlograms), but the occurrence of a semivariance 
estimates below the 95 % confidence interval usually corresponds to a significant 
autocorrelation at that lag distance.

Spatial interpolation, or kriging (Rossi et al. 1992), uses the semivariogram to 
predict an expected value at unmeasured locations. Kriging methods predict z by 
using a weighted average of the expected values based on the distance from other 
points, with the weights accounting for autocorrelation in the observed data. 
Results yield a best linear unbiased estimate of a variable at a given point. Kriging 
has found many ecological adaptations, including mapping vegetation community 
distributions (Arieira et al. 2011), determining patterns of exotic species invasion 
(Cilliers et al. 2008; Schreiber and Lloyd-Smith 2009) and locations of exotic 
weeds (Kalivas et al. 2012), and designing optimal spatial sampling methods 
(Xiao et al. 2005).

Although semivariance has many similarities to the autocorrelation function 
(Box 5.1, and see Fig. 1 in Palmer and McGlinn 2016 for helpful comparisons), 
there are several notable differences between these methods that affect their use 
and interpretation. Because correlograms emphasize the strength of the correlation 
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at each lag distance and variograms report the magnitude of the variation (Box 5.1), 
the empirical plots are of opposite shape (Fig. 5.9). The semivariance estimates, 
which are not normalized by either the mean or the variance, may take on any posi-
tive value as all forms of variance also do. However, the magnitude of the semivari-

B o X  5 . 1
General relationships Between the autocorrelation 

and semivariance of values laGGed By distance h 
(adapted from rossi et al. 1992)

If the population mean and variance are constant (i.e., there is no trend) and 

C h N h z z z zh h h h( ) = = ( ) -( ) -( )å - - + +thecovariance 1/ , where −h and +h represent the head and tail of data 

points separated by distance h, then:

g sh C h( ) = - ( )2

r sh C h( ) = ( ) / 2
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where γ(h), ρ(h) are the semivariance and autocorrelation, respectively, for points separated by distance h.

Figure 5.9.

Example semivariogram (a) and correlogram (b) computed for a landscape in northern Yellowstone National 

Park. Note that the shape of the correlogram is nearly identical, although inverted, to the shape of the 

semivariogram of the same data. These two approaches are complementary. 

Adapted from Meisel and Turner (1998).
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ance is informative when comparing variables measured in the same units—for 
example, one could ask whether the total amount variance in plant biomass is 
increasing across a chronosequence of plots, or is greater in certain landscapes than 
in others. When comparing variograms for variables that are reported in different 
units (e.g., plant biomass in g and soil nutrient properties in ppm), the magnitude 
of variance cannot be readily compared. In such cases, variograms may be stan-
dardized by dividing by the maximum semivariance (C + C0) so that the y axis scales 
from zero to one. This normalization allows the shape of the curve and the range 
estimates (A0) to be easily read and interpreted, regardless of the units in which 
semivariance was reported. In contrast to correlograms, semivariograms provide 
no information about whether spatial dependencies are positive or negative because 
variances are always positive. Lastly, one might expect that range estimates would 
be the same for correlograms and variograms. This is not always the case because 
the semivariance measures an asymptote where variance no longer increases with 
distance, whereas autocorrelation measures multiple distances where autocorrela-

tion is present rather than extracting a single dominant scale.

 C r o s s - C o r r e l o g r a m s  a n d  C o - v a r i o g r a m s

When multiple variables are recorded in either space or time then the correlations 
among these variables can be used to more accurately describe and predict the spa-
tial patterns of one or more predicted variables (Kalkhan and Stohlgren 2000; 
Kalkhan et al. 2007). The additional information provided by these cross- 
correlations allows a reduction in the total number of samples needed to detect 
significant effects (Fortin and Dale 2005). Covariance analysis has long been an 
essential element of regression methods (Cressie 1991) and may also be used to 
advantage with kriging (referred to as co-kriging when cross-correlations are used) 
to improve estimates of spatial interpolations. Although co-kriging is a more com-
plicated process and long-regarded as a difficult computation (Deutsch and Journel 
1998), advanced methods are now available making the use of spatial cross- 
correlations among multiple predictor variables an attractive option (see gstat 
package in R Development Core Team 2010; Rossiter 2012). For instance, precise 
knowledge of the spatial distribution of perennial weeds, which flourish in cotton 
agriculture, would allow better-targeted management options to be developed and 
employed. If the distribution of weeds could be estimated as a function of environ-
mental variables, measured at lower expense, then significant savings would be 
realized by the use of co-kriging methods (Rossiter 2012). Kalivas et al. (2012) 
used this approach to reduce prediction errors over ordinary kriging (Fig. 5.10) 
with co-kriging providing better estimates of the distribution of bindweed and pur-
ple nutsedge, two difficult weeds to control (Kalivas et al. 2012).

More advanced statistical methods hold great promise for landscape studies but, 
unfortunately, are beyond the scope of this chapter. The reader may wish to refer 
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to appropriate texts (e.g., Cressie 1991; Fortin and Dale 2005; Ripley 2005) and 
articles (e.g., Wagner and Fortin 2005; Perry et al. 2006), which provide guidance 
and caveats for use of additional multivariate methods to describe and predict spa-
tial patterns.

 O p t i m i z e d  S a m p l i n g  D e s i g n s  f o r  S p a t i a l  S t a t i s t i c s

When landscape ecologists think about evaluating spatial dependence using a field 
study, the default plan is often to sample continuously along transect (as was done 
for the lodgepole pine seedlings in Fig. 5.5) or within a full uniform grid of points. 
However, these are inefficient, not only because they take a lot of work, but also 

Figure 5.10.

Interpolated maps of field bindweed 

density with the use of ordinary kriging 

(a) and co-kriging (b) for three different 

years (Reproduced with permission from 

Kalivas et al. 2012).
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because they produce data in which the point pairs for short lag distances are 
 overrepresented, and the point pairs for long lag distances are underrepresented. 
Sampling designs that systematically vary the distances between sample points then 
repeat that sequence can produce a dataset with similar numbers of point pairs 
across all lag distances (Table 5.1). These clever designs will give comparable sta-
tistical power over a range of lag distances and are thus a valuable alternative to 
systematic sampling schemes. Because the repeated distances are considered to be a 
cycle, these sampling designs are often referred to as cyclic. As an example, con-
sider sampling a 1000-m transect at 1-m intervals with traditional protocols that 
would produce 1000 data points. If 4/13 cyclic sampling was used instead in place 
of complete sampling (Table 5.1), then approximately 300 sampling points could 
efficiently measure a wide range of lag distances. There is detailed treatment of 
these methods in Cressie (1991), but we also recommend Burrows et al. (2002) for 
an accessible explanation and discussion. Burrows et al. (2002) compared different 
approaches (random, uniform, and cyclic sampling) for quantifying the spatial pat-
tern of leaf area index (LAI) measures in terrestrial ecosystems that surrounded an 
eddy flux tower. They found a 60 % reduction in effort required for cyclic sampling 
designs vs. random and uniform sampling. As with all study designs, pilot data can 
be extremely valuable for figuring out the best cycle of distances to repeat.

In another example, Turner et al. (2011) used a cyclic design to determine how 
aboveground vegetation and soil nitrogen availability changed within forested 
plots following stand-replacing fires. Because these measurements are very labor 
intensive and the laboratory analyses costly, an alternative to sampling a full grid 
was desired. In each of four plots, they used a cyclic design (n = 81 points) with a 
minimum separation distance of 2 m between sampling points and a cyclic sequence 

Table 5.1.
Examples of cyclic sampling designs (adapted from Burrows et al. 2002), where x 
is the length of the cycle and sample locations are given in the same units (e.g., 
meters).

Cycle 
definition

Length 
of cycle 

(x)

Number of 
plots sampled 

per cycle

Sample 
locations (0 to 

x − 1)

Illustration of sampling cycle 
(+indicates sample location, o is not 

sampled)

2/3  3 2 0, 1 + + o

3/7  7 3 0, 1, 3 + + o + o o o

4/13 13 4 0, 1, 3, 9 + + o + o o o o +

5/21 21 5 0, 1, 4, 14, 16 + + o o + o o o o o o o o o + o + o o o o

A 3/7 cycle indicates that three plots in every seven are measured. When repeated, the spacing of the 
three plots will give pairs of plots separated by one, two, three, four, five, six, and seven lag distances
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of points that was repeated (Fig. 5.11). The grid covered an 18 m × 40 m area posi-
tioned in the center of each 0.25-ha plot and included nine parallel rows, each sepa-
rated by 2 m. The 2-m spatial resolution was based on the observed patchiness of 
aboveground vegetation given our focus on the relationship between vegetation 
and soil nutrients. Each row included three 3/7 cycles that were 14 m long in which 
3 of 7 grid points (the 0, 1, 3 design in Table 5.1, which translated to samples at 0, 
2 and 6 m in each cycle) were sampled; the middle three rows were offset by 6 m to 
account for potential anisotropy. Variography was then used to assess spatial 
dependence in vegetation and soil variables over 4 years. Using spatial statistics to 
improve sampling design is extremely valuable in any studies that include the goal 

of detecting the magnitude and scale of spatial variation in the data.

 e X a m p L e s  o f  s p a t i a L  s t a t i s t i c s  
i n  L a n D s c a p e  e c o L o g y

Because spatial statistics are less familiar than landscape metrics for many land-
scape ecologists, and therefore not used as frequently, we conclude this chapter 
with a few additional examples to illustrate the diversity of applications in land-
scape ecology. As is the case throughout this book, the selected examples are not 
intended to exhaustive but rather to illustrate how these methods can be used to 
gain insights into landscape-level questions. We also suggest software resources 
that readers may find useful (Box 5.2).

Spatial statistics have been used in several studies assessing organism responses 
to spatial variation in their habitat. The persistence of elephant populations in 

l

Figure 5.11.

Illustration of how a 3/7 cyclic sampling design (see 

Table 5.1) was implemented to sample soils and 

aboveground vegetation in Greater Yellowstone 

(adapted from Turner et al. 2011). The 3/7 scheme is 

applied in the horizontal direction and reverses 

direction for the middle three transects.
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Zimbabwe is being threatened by continued conversion of natural habitat into 
agricultural lands. Murwira and Skidmore (2005) wanted to determine whether 
and how the spatial distribution of the African elephant (Loxodonta africana) 
responded to the spatial heterogeneity of vegetation cover based on data obtained 
in the early 1980s and 1990s. The distribution of elephants was measured from 
direct counts, and vegetation cover was derived from remotely sensed data. 
Variography applied to these data produced measures of the dominant scale (i.e., 
the range) and intensity (the sill) of the normalized difference vegetation index 
(NDVI) in 3.84-km × 3.84-km windows distributed in a 61-km × 61-km landscape. 
The range and sill were then used as predictor variables of elephant occupancy 
within mixed-use landscapes and to determine mixtures that optimized probability 
of elephant occurrence (Fig. 5.12). Examination of trends in agricultural intensity 

B o X  5 . 2
the practical side: selected software  

for spatial statistics

there are many options for computing spatial statis-

tics, including utilities within widely used GIS soft-

ware programs such as arcGIS. We highlight a few 

here. there are many online resources that provide 

current developments in spatial ecology including 

Wikipedia http://en.wikipedia.org/wiki/Spatial_ecol-

ogy with lists and links to open-source GIS software 

(http://en.wikipedia.org/wiki/Category:Free_GIS_soft-

ware). For hands-on learning, we recommend two 

chapters in the second edition of Learning Landscape 

ecoLogy. exercises developed by palmer and McGlinn 

(2015) lead students through the calculation and inter-

pretation of correlograms and semivariograms using 

excel and r; this is a great starting point. exercises 

developed by turner and Simard (2016) are more 

advanced, use GS+ (see below), and are designed to 

compare and contrast insights gained from traditional 

landscape metrics and spatial statistics.

R Software. there are a wide variety of utilities 

available for reading, writing, display, and analysis of 

spatial data in r. the r software and associated 

libraries may be explored and downloaded at http://

www.r-project.org/foundation/. an overview of the 

many resources within r may be found at http://cran.r- -

project.org/web/views/Spatial.html. Libraries used in 

this chapter include spatial and spastat for point pat-

tern analysis and gstat for geostatistics.

GS+ is commercially available software published 

by Gamma Design Software, LLC; see http://www.

gammadesign.com/. GS+ is a comprehensive geosta-

tistics program that is menu driven and easy to use, 

and it readily produces kriged maps from empirical 

variograms. Users should take care to specify the 

minimum separation distance, however, as this pro-

gram defaults to bins that may be larger than desired. 

Demo versions of GS+ can be downloaded for free 

and used for a limited time.

PASSaGE, which is an acronym for pattern 

analysis, Spatial Statistics, and Geographic exegesis, 

is a free and integrated software package for spatial 

analysis and statistics (rosenberg and anderson 2011). 

It incorporates a wide range of analyses, including 

point pattern analyses, correlograms, semivariograms, 

and many more. the developers work in computational 

biology, bioinformatics, and landscape genetics. See 

http://www.passagesoftware.net/index.php
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were found to be moving vegetation patterns away from an optimum mixture 
towards uniform agricultural areas which would not allow continued persistence 

of elephants within these landscapes.
Another example comes from a study of winter habitat use by woodland caribou 

(Rangifer tarandus caribou) in Newfoundland, Canada that blended geostatistical 
analyses with habitat selection (Mayor et al. 2007). Through careful analyses of 
multiple levels of habitat use (seasonal range, travel routes, feeding areas, and 
microsites) in response to snow depth and the abundance of lichens, Mayor et al. 
(2007) found that caribou reduced the variance in these key habitat features by 
selecting favorable habitat. By comparing variability of habitat components mea-
sured at four levels of habitat use (from feeding microsites to population winter 

Figure 5.12.

The dominant scale and intensity of spatial 

heterogeneity in vegetation cover jointly 

influence the probability of elephant 

presence in (a) the 1980s and (b) the 1990s 

in an agricultural landscape in Zimbabwe.

Adapted from Murwira and Skidmore (2005).
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range) across a spectrum of spatial scales (from 1 to 28,000 m), Mayor et al. (2007) 
showed that caribou first selected for lichens at a broad scale (13 km) then selected 
areas with shallower snow at all scales.

In a landscape study of plant–animal interactions, De Jager and Pastor (2009) 
used spatial statistics to evaluate how available and consumed browse has changed 
with time in Isle Royale National Park, Michigan (USA) as the size of the moose 
(Alces alces) population declined. Four different variogram models were fit to mea-
sured levels of moose consumption, browse biomass, plant basal area, and soil 
fertility; each model representing a different type of landscape pattern from ran-
dom to regularly arranged patches. The best models were then fit to patterns of 
browse availability, nitrogen availability, and conifer basal area. The low levels of 
moose populations have resulted in declining levels of annual consumption which, 
in turn, have resulted in random distributions of browse consumption: there were 
simply too few moose to impose detectable spatial patterns as occurred in the past. 
It appears that lower grazing levels have resulted in new process-pattern relation-
ships with current vegetation patterns more related to variation in fertility, light 
availability through the canopy and canopy gaps, or seed dispersal patterns than to 
moose consumption (De Jager and Pastor 2009).

Spatial statistics are also useful in studying ecosystem properties such as nutri-
ent pools and flux rates (e.g., Fig. 5.8, Wang et al. 2002). For example, Vasquez 
et al. (2012) explored the relationship between total soil carbon and hydrologic 
and biotic processes in a subtropical landscape in Florida, USA. They studied three 
nested regions and found that total soil carbon varied at two key scales, one over 
a relatively short range (5.6 km) in association with local soil and landscape varia-
tion, and another at a longer range (119 km) in association with regional varia-
tion. Spatial statistics have also detected pattern at multiple scales in a seascape 
and been used to map seagrass cover. In an estuary in eastern Canada, Barrell and 
Grant (2013) used acoustic data to detect aquatic vegetation, then used these data 
to map seagrass beds. Semivariograms were computed, and kriging was used to 
map seagrass cover and identify “hot spots” where seagrass cover was high rela-
tive to the mean.

The above examples employed methods related to variography. Many other 
examples may be found using autocorrelation (Ishihama et al. 2010; Liang 2012), 
spectral analysis (Jollineau et al. 2008; Huang et al. 2009), Bayesian statistics 
(Romero-Calcerrada et al. 2008; Fitzpatrick et al. 2010), and spatial modeling 
(Kellogg et al. 2008).

As the science of landscape ecology matures, studies will continue to rely on the 
considerable power of analysis available from methods based on spatial statistics. 
Because the data and methods of spatial statistics differ from those using landscape 
metrics, each approach will provide unique and important insights into the 
 broad- scale patterns of ecological processes. The use and interpretation of categori-
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cal landscape metrics are understood to a much greater degree than for spatial 
statistics. The latter seem more difficult for many students to grasp, and the param-
eter estimates more abstract. Studies that systematically compare results from these 
two approaches will be most effective in advancing our understanding of landscape 
dynamics. There is tremendous opportunity for developing richer interpretations of 
spatial statistics and exploiting the potential for hypothesis testing in landscape 
ecology. As georeferenced data become more readily available (e.g., through sensor 
networks and other remotely sensed measurements), there is much to be gained 
from greater exploration of how to enhance the use of spatial statistics in hypoth-
esis testing.

 s U m m a r y

Spatial statistics are widely applied in landscape studies for quantifying the spatial 
structure of spatially distributed data represented by real numbers. The diversity of 
methods available and the proliferation of jargon used in spatial statistics makes 
their appropriate use a demanding endeavor. Spatial statistics do not require the a 
priori categorization of landscape data, nor do they assume a patchy structure with 
delineated boundaries. Spatial statistics quantify the magnitude of variance in the 
data, the proportion of that variance that is spatially dependent (i.e., spatially cor-
related), and the distances over which variables are spatially dependent. These 
methods differ from, but are complementary to, those based on landscape metrics 
(Chap. 4).

Landscape ecologists use spatial statistics for wide variety of purposes, but three 
are particularly important. First, spatial statistics are used to test for independence 
in spatially distributed data prior to use of parametric statistics for hypothesis test-
ing. When data are spatially dependent (i.e., the degree of correlation between 
observations changes as a function of distance), statistical tests for hypothesis test-
ing may lead to Type I error (false rejection of the null hypothesis) unless corrective 
measures are taken. When data are spatially correlated, an adequate separation 
distance between samples may allow the assumption of spatial independence to be 
met. Alternatively, methods that adjust and remove spatial dependence prior to 
statistical testing may be used. Second, spatial statistics are used to quantify the 
nature of the spatial structure in continuous variables. The magnitude and scale of 
spatial dependence can be informative and used explicitly to test hypotheses about 
spatial structure. Third, spatial statistics are used for spatial interpolation, using 
values at sampled locations to predict values at locations that were not sampled or 
to produce a continuous surface or map of expected values.
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There are several important points to keep in mind when analyzing spatial pat-
terns. Reviewers of grant proposals and manuscripts now expect that the spatial 
dependence in a dataset has been considered and characterized. Although long 
considered a nuisance, spatial autocorrelation is not always a problem, but rather 
an informative attribute of the data leading to new insights and hypotheses. When 
multiple variables are considered, and similar scales of dependency are found, we 
now know that this, alone, does not prove causality. However, the coincidence of 
scales does suggest linkages that are worth exploring. As with all spatial data, the 
grain and extent of the data strongly affect results of any analysis. Of course, the 
analyst also must attend to the assumptions required for spatial statistics, including 
that of stationarity.

One set of methods used in spatial statistics is point pattern analysis, which is 
used for data formed from event-based records (e.g., location of nest sites). 
Geographically referenced events have had a long history of study in ecology, and 
approaches include quadrat-based measures that explore change in variance with 
scale. Ripley’s K function provides a scale-dependent measure that does not require 
aggregating data into quadrats.

Another set of methods is based on correlation among spatially distributed vari-
ables. Autocorrelation and variography measure changes in the relatedness or vari-
ance of continuous measurements (such as a rate) as a function of the distance, h, 
between measured points. Correlograms and variograms provide similar but not 
identical insights; correlograms indicate the direction and magnitude of autocor-
relation, whereas variograms change in variance with distance. Variograms provide 
the means to interpolate data across space using parameters such as the nugget, sill, 
and range.

The downside of spatial statistics is that very large datasets may be required to 
assess the change in pattern across space. However, efficient sampling designs can 
reduce sampling redundancies (i.e., numerous samples taken at short distances and 
few samples at long distances) by systematically changing the density of sample 
points as h increases. An illustration of the efficiencies gained using a cyclic sam-
pling design is presented in this chapter and shows how samples may be arranged 
to greatly reduce sampling efforts.

As the science of landscape ecology continues to mature, studies will increas-
ingly rely on the considerable power of analysis available from methods based on 
spatial statistics. Hypothesis testing based on spatial models and spatial statistical 
tests from replicate study areas is becoming the norm. There is much opportunity 
and considerable excitement for developing richer interpretations using spatial sta-
tistics and exploiting the potential for greater rigor in hypothesis testing in land-
scape ecology.
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 D i S c u S S i O N  Q u E S T i O N S

 1. Gradients due to elevation change often produce spatial correlations in ecological 

data. How would one design a sampling scheme to separate these correlations from 

other factors due to biological process of interest (e.g., effects of dispersal patterns on 

species abundance).

 2. Disturbances that change habitat will alter patterns of spatial association for species 

residing in those habitats. What methods of analysis would you use to characterize 

the change in scale following disturbance and then monitor the recovery of spatial 

dynamics with time? What data would be required for your selected method(s)?

 3. What will a correlogram of species abundances look like in: (a) continuous, optimal habi-

tat; (b) a landscape with a steep elevation gradient; (c) in a patchy, disturbed landscape?

 4. Why does normalization of a statistic (e.g., correlogram) allow statistical tests to be 

efficiently (and rigorously) applied? Why are such tests more difficult for nonnormal-

ized statistics (e.g., semivariogram)?

 5. What is the difference between interpolation and extrapolation? How will the errors 

of these two different estimates differ? (hint: consider the error bounds for a linear 

regression).
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