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Introduction 
to Models

3C h a p t e r 

Models are essential tools in landscape ecology, as they are in many sci-
entific disciplines. Spatial models, in particular, play a prominent role 

in evaluating the consequences of landscape heterogeneity for ecological dynamics. 
Because we refer to models throughout this book—and because we are aware that 
many students have had little training in modeling or systems ecology—the first 
part of this chapter presents an elementary set of concepts, terms, and caveats for 
students to understand what models are, why they are used, and how models are 
constructed and evaluated. We also define what we mean by a spatial model and 
indicate the circumstances where spatial models will be most useful. The second 
part of this chapter introduces neutral landscape models (NLMs) and illustrates the 
utility of simple models for understanding landscape heterogeneity and testing 
hypotheses linking pattern with process. There are many excellent texts that address 
modeling issues in greater depth. Students interested in the modeling process are 
referred to the recommended readings at the end of the chapter.
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 W h a t  a r e  M o d e l s  a n d  W h y  d o  W e  U s e  t h e M ?

 W h a t  I s  a  M o d e l ?

A model is an abstract representation of a system or process. Models can be formu-
lated in many different ways. Physical models are material replicas of the object or 
system under study, but at a reduced size; for example, models of ships and air-
planes are developed to better understand the forces that act upon them, and archi-
tectural models allow the space and structure of a building to be visualized. Physical 
models are used in many branches of engineering, but ecologists also build physical 
models of streams, ponds, and even whole ecosystems (Perez et al. 1991; Macilwain 
1996; Petersen et al. 2003) providing an important bridge between experiments in 
natural systems and theoretical models (Stewart et al. 2013). In contrast, abstract 
models use symbols rather than physical devices to represent the system being stud-
ied. For example, verbal models are constructed out of words, graphical models are 
pictorial representations, and mathematical models use symbolic notation to define 
relationships describing the system of interest. We focus here primarily on mathe-
matical models, which have played an important role in ecology since the begin-
ning of the twentieth century (Fig. 3.1).

 W h y  L a n d s c a p e  E c o l o g i s t s  N e e d  M o d e l s

George E. P. Box (1979) stated in this oft-repeated quote, “All models are wrong, 
but some are useful.” Models are useful because they allow us to precisely define 
the problem, articulate the relevant concepts, and then provide a means of 
 analyzing data and communicating results. Most importantly, models allow us to 
predict the logical outcomes of how we think a system works and then explore the 
suite of conditions that vary in time and space. Because knowledge is always 
incomplete, and all data needed to build a model are never available, all models 
require  assumptions to “fill in the blanks.” Therefore, most models are used to 
explore the consequences of our assumptions and hypotheses rather than to rep-
resent system structure and dynamics definitively. Models should always be 
regarded as one of the scientific tools for achieving a specific end rather than as 
goals unto themselves.

When ecologists are faced with answering questions in a large and complex 
landscape, it is difficult—sometimes impossible—to sample every possible combi-
nation of conditions or to conduct experiments at the ideal spatial and temporal 
scales. The cost of landscape experiments in time and money is often prohibitive. 
Some management options have been evaluated using experimental methods (see 
Bowers et al. 1996; Mabry and Barrett 2002; Haddad et al. 2003; Joshi et al. 2006) 
while manipulations of microlandscapes have provided valuable insights into the 
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Figure 3.1.

Timeline of the development of models in ecology, with important technological  

and programmatic developments that influenced ecological modeling highlighted. 

Developments shown are not comprehensive but selected for illustration.
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response of insects, small mammals, and some plants to alternative patterns (e.g., 
Johnson et al. 1992; Glenn and Collins 1993; Imes et al. 1993; Wiens 1995; Wiens 
et al. 1995; With et al. 1999; Brinkerhoff et al. 2005; Johnson and Haddad 2011). 
However, extrapolation of these results to large regions remains a perplexing prob-
lem (see Chap. 1). Landscape ecologists more commonly use field studies to pro-
vide correlative relationships—for example by comparing locations that vary in 
their degree of land-cover or connectivity of a specific habitat type. Natural distur-
bances have also been used as “uncontrolled experiments” with their effects 
expressed in quantitative terms (see Chap. 6). However, all these approaches are 
limited in the range of conditions, replication, or control. Under these circum-
stances, the unique features of each landscape or disturbance event may dominate 
results. Models can be used to relax empirical constraints, providing a means of 
systematic comparison across a broad range of conditions, but they do so at the 
cost of increased levels of unknowns and uncertainties.

It has been more than 20 years since Baker (1989a) and Sklar and Costanza 
(1990) first reviewed landscape models. Focused reviews on specific topics have 
been published since then (e.g., Turner et al. 1994b; Lambin 1997; Fries et al. 1998; 
Perry et al. 2004a; Perry and Enright 2006; Keane et al. 2007; Scheller and 
Mladenoff 2007), but the ambitious task of assembling a comprehensive overview 
of the broad range of topics and applications found in landscape ecology has not 
been attempted. An informal survey of papers listed in ISI’s Web-of-Science (2011) 
over the last 10 years (2001–2011) referencing both “landscapes” and “model” for 
a subset of journals (American Naturalist, Biological Conservation, 
Conservation Biology, Ecology, Ecological Applications, Ecological 
Modelling, Landscape Ecology, and Oikos) showed that over 1167 papers 
have been published within this topic area in the last 10 years. These papers repre-
sent a wide diversity of topics and approaches and illustrate the difficulty of placing 
landscape models into simple, discrete categories necessary for a coherent review. 
The volume and diversity of approaches are healthy signs of the continued growth 
of this field of research, but both also make a judicious choice of modeling approach 
even more  challenging. A clear and simple paradigm for addressing this issue has 
yet to emerge. Consequently, useful modeling strategies and examples for studying 
pattern and process in changing landscapes will be presented throughout the 
remainder of this book.

Models may be used to formalize understanding, define unknowns, guide field 
studies, develop theory, or make predictions. All these objectives will require a care-
ful strategic and tactical approach. Strategic issues are those concerned with setting 
objectives and selecting an approach that minimizes errors; tactical issues are those 
concerned with the details of model construction, testing, and application.
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 s t r a t e g y  f o r  d e v e l o p i n g  M o d e l s

All models are simplifications of real systems (Risch et al. 2005; Hunt et al. 2007). 
Therefore, the first strategic issue is to define the purpose and scope for the model, 
the inherent limits of available information and measurements, and to consider the 
consequences of model error on results.

 D e f i n e  t h e  P r o b l e m  a n d  D e v e l o p  a  C o n c e p t u a l  M o d e l

A specific statement of model objectives provides the framework for model devel-
opment and the context within which simulation results must be interpreted. 
Definition of the problem should be as specific as possible, allowing one to deter-
mine the form of the model, the degree of complexity needed, and the spatial and 
temporal scales at which it will operate (Grant et al. 1997). Once the problem is 
stated, a conceptual or qualitative model can be developed. The conceptual model 
identifies system boundaries (the temporal and spatial scales and associated inputs 
and outputs), the model components (state variables), and the relationships among 
the state variables. A conceptual model of sufficient detail allows the important 
variables and parameters (coefficients that control model processes), the system 
drivers (driving variables, see Table 3.3 in Appendix) and the required inputs and 
outputs to be defined. The appropriate level of spatial and temporal resolution for 
the model (i.e., model scale) is a key consideration in a conceptual model (Fig. 3.2). 
Once formally stated, the model developer should consider the following three 
issues that affect the adequacy of the approach defined by the conceptual model.

 Trade-offs Among Generality, Precision and Realism
Levins (1966) stated that no model can be completely realistic, always precise, and 
generally applicable (but see Orzack and Sober 1993). Levins’s provocative paper 
stated: “It is … desirable to work with manageable models which maximize 
 generality, realism, and precision [in order to reach the goals] of understanding, 
predicting, and modifying nature” (Fig. 3.3). Consequently, a strategic approach to 
model development is one that is cognizant of these trade-offs. Levins used familiar 
models of population biology to illustrate this problem. We review Levins’ list here, 
providing parallel examples from the recent literature of landscape modeling.

Sacrifice generality to realism and precision. Most models that trade generality for 
realism and precision produce place-based results. By specifying particular cases 
(or scenarios), a reduced parameter space may be defined and relevant measure-
ments made. Models that emphasize realism and precision are often closely 
 calibrated so that they closely mimic observed dynamics of the focal landscape. 
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Results may be tested (i.e., confirmed or rejected), but general conclusions across a 
broad spectrum of landscapes will be limited. Examples of this approach include 
landscape models that focus on specific locations where precisely measured param-
eters may be obtained (e.g., Jantz et al. 2004; Ferrari et al. 2009). Iterative applica-
tion across a suite of conditions (e.g., Scheller et al. 2007; Sturtevant et al. 2009) 
may be used to introduce stochastic effects and increase generality.

Figure 3.2.

Flowchart illustrating the major steps in building a model.
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Sacrifice realism to generality and precision. Landscape models often adopt this 
trade-off and strive for a correct average result rather than a specific prediction of 
what will happen at a particular time or place on a given landscape. Such models 
ignore highly detailed interactions and usually employ equations with a reduced 
parameter set. If the details excluded from the model have a minor effect on the 
results, or the sum of all ignored details cancel out, then a simple model may be 
more general and more precise. Examples of this approach include models that 
propagate disturbance over large areas and long time periods (e.g., Gardner et al. 
1999; Keane et al. 2007). Models predicting equilibrium conditions may also sac-
rifice reality for generality (e.g., Chave and Norden 2007), using this theoretical 
endpoint as a measure of the effect of changing processes. The simple NLMs pre-
sented later in this chapter also exemplify this trade-off.

Sacrifice precision to realism and generality. This trade-off is often adopted when 
the desired result is qualitative rather than quantitative. Many theoretical models 
fall into this category, and they make very general predictions that are not directly 
applicable to a particular place or set of measurements. Examples include GAP 
models (Scott et al. 1993; Kiester et al. 1996), island biogeography, and neutral 
theory (Hubbell 2001) and extinction debt (Tilman et al. 1994).

It is the general consensus that Levins’ trade-offs are general and may not be 
easily avoided. The form of the model and quality and quantity of available data 
define the domain over which model results may be reliably used for understand-
ing, prediction, and/or management. The comparison of alternative models that 
differ in their assumptions and simplifications (see Gardner et al. 1999; Keane et al. 
2007; Yang et al. 2008 for examples from the fire literature) are the best means for 
checking the limits and broadening the scope of conclusions drawn from a single 
model (Levins 1966).

Figure 3.3.

Schematic representation of Levins 

(1966) conceptualization of the 

trade-offs between a model’s 

generality, precision and realism 

usually encountered in the 

development and use of ecological 

models.
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 Trade-offs Between Model Complexity and Model Error
It has often been assumed that complex models are more accurate and simple mod-
els are more general because simple models may lack essential details, causing sys-
tematic bias in predictions—but adding detail to a model does not guarantee an 
increase in reliability unless the added processes are essential, well understood, and 
reliably estimated. The potential trade-off between complexity and error was first 
discussed by O’Neill (1973) who speculated that for any given problem and level 
of knowledge there may be an optimal level of model complexity (Fig. 3.4). Strayer 
et al. (2003a) also present a thoughtful discussion of the level of detail to include in 
models of heterogeneous systems.

Landscape models are often developed with the implicit assumption that the 
results will only be useful if they are completely realistic (i.e., highly detailed). 
Because landscapes are diverse and complex, a fully realistic model will be complex 
with significant data requirements for estimating all model parameters. A counter- 
strategy for reducing complexity while also improving model reliability is nearly 
always necessary (Beven 2002). The development of hierarchy theory (Allen and 
Starr 1982; O’Neill 1989) has shown that the aggregation of similar components 
into a single unit (i.e., numerous species into fewer functional types; Lavorel and 
Garnier 2002) reduces the number of parameters that must be estimated and may, 
therefore, substantially improve results. One may also take advantage of “the law 
of averages” by setting the realistic temporal and spatial scales for model resolu-
tion: If final results can be expressed in hectares and years, then the average values 
of fine-grained values (e.g., hours to days, meters to hectares) can be used to pro-
duce more precise results (Peters et al. 2004a).

In all cases, it is important to evaluate model error. The first step should be to 
compare model output with available data graphically, testing whether results 
fall within the confidence limits of empirical results. These comparisons should 
specifically focus on the model objectives: If the purpose of the model was to 

Figure 3.4.

A conceptual representation of the conjecture by 

O’Neill (1973) that simple models may have significant 

errors due to absence of important processes (red line) 

while complex models have error associated with 

unmeasured (or unmeasurable) parameters and 

processes (blue line). The conjecture is that there is an 

optimum level of model complexity that minimizes 

total error (green line).
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assess the direction of change (i.e., an increase in urbanization) then only the 
direction of change needs to be assessed; if the purpose was to locate areas where 
change has occurred (a more difficult task), then spatial statistics may be required 
to verify model response. The strategic issue is that model-data comparisons are 
most meaningful when objectives have been clearly and precisely defined. More 
formal methods of sensitivity and error analysis (Gardner et al. 1981; Jager and 
King 2004) are useful for identifying model components and parameters that 
most  contribute to model errors.

 When Should Models Be Spatially Explicit?
Most generally, a model should be spatially explicit when the inputs, the outputs, 
or the processes required by the modeling objectives and conceptual formulation 
vary spatially (Strayer et al. 2003a). If spatial pattern is a driving variable—that is, 
the model needs to predict the consequences of alternative configurations of input 
conditions or forcing variables—then a spatially explicit model is warranted. 
Examples include models of the effect of habitat arrangement (not simply amount) 
on population dynamics; the effect of arrangements of riparian buffer habitats on 
nutrient loading to surface waters; of the effects of alternative distributions of 
resources on the movement or foraging patterns of animals; and the positive (or 
negative) effects of pathways or corridors for animal dispersal (Lookingbill et al. 
2010; Sullivan et al. 2011). A spatially explicit model is also warranted if predict-
ing changes in spatial pattern is required—that is, the model output must be spa-
tial. Examples include models that predict the distribution and abundance of 
animals in a landscape at a future point in time; future spatial patterns of habitat 
in response to animal movements and foraging patterns; and land-cover patterns 
that respond to alternative land-use activities or management strategies. Lastly, a 
spatial model is needed when the processes themselves interact within a local neigh-
borhood to generate patterns, such as when competition between neighboring 
organisms generates distribution patterns, or when the process itself has a spatially 
explicit response, such as the actual flow path of water or nutrients, or the actual 
migration or dispersal pathway of an organism (Fig. 3.5). Thus, the model goals 
determine whether a spatial model is needed.

A fully spatially explicit model will have explicit spatial locations for all vari-
ables and inputs. Nonspatial or spatially implicit models may produce maps as 
output, making these approaches appear to be spatially explicit when, in fact, they 
are not. For instance, maps produced by a table look-up process (e.g., nutrient 
dynamics; Burke et al. 1991; 1999) do not consider location-specific effects and, 
hence, are spatially implicit predictions. The complexity required to develop and 
test a spatially explicit model is significantly greater than a spatially implicit model, 
making spatially explicit approaches only desirable when local effects are known to 
dominate results measured at landscape scales (Peters et al. 2004a).

Int roduct ion 

to  Models



72

Figure 3.5.

Comparison of temporal vs. temporal + spatial population dynamics. (a) Shows the change 

through time in a population of the green-winged orchid, Orchis morio, at one locality. In 

this case, changes are temporal only. (b) Shows the change in the spatial distribution in 

Great Britain of elder aphid (Aphis sambuci) between 1970 and 1977, where the density of 

the shading represents local population density. This illustrates changes through both space 

and time; predicting such dynamics would require a spatial model. 

Adapted from Gillman and Hails (1997.)
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To summarize the strategic issues: One should apply the law of parsimony when 
developing a model by precisely defining the models purpose, developing the sim-
plest conceptual model possible, adding complexity only when it is necessary and 
supported by data, use a hierarchical approach to define model variables and pro-
cesses; and planning on revisiting these strategic steps when model errors indicate 
the need for improvement.

 t a c t i c s  f o r  M a k i n g  t h e  M o d e l  W o r k

The tactical steps for developing a working model are derived from the systems ecol-
ogy approach to ecological modeling (Fig. 3.2) developed primarily by engineers for 
characterizing the dynamics of complex physical systems. The success of the systems 
approach had a strong influence in the early development of landscape ecology in 
both Europe (Opdam and Schotman 1987; Naveh and Lieberman 1990; Zonneveld 
1995) and North America (Johnson et al. 1981; Gardner et al. 1987; Opdam 1987; 
Sklar and Costanza 1990) and continues to be the dominant paradigm for model 
development today (Wu and David 2002; Costanza and Voinov 2004; Lookingbill 
et al. 2008). The basic principles of the systems approach go back to the philosophy 
of holism formulated by Smuts (1926) and developed more rigorously by Von 
Bertalanffy (1968, 1969). Numerous works written more than 30 years ago describ-
ing the principles of general systems theory and their application to ecological sys-
tems are still relevant today (e.g., Watt 1968; Van Dyne 1969; Patten 1971). Here, 
we draw from the sequence of modeling steps outlined in Kitching's (1983) text on 
systems ecology. We also provide a reference table for terms commonly used in mod-
eling (see Appendix, Table 3.3). Readers may wish to refer to Swartzman and 
Kaluzny (1987) and Haefner (2005) for excellent introductions to the tasks associ-
ated with model development.

Once the conceptual model has been developed, a wide variety of mathemati-
cal formulations may be used to transform the “concept” into an operational 
model. A wealth of model types has been used in landscape ecology (as discussed 
throughout the book), but it is beyond our scope to review and describe these 
techniques here.

The programming language or simulation software for implementing a model is 
usually selected based on local resources, experience and expertise. Often, a decision 
must be made between whether to program a new model or to use an existing 
model. For example, a number of existing models, such as the forest landscape simu-
lator LANDIS (Mladenoff and He 1999; Sturtevant et al. 2009) and the ecosystem 
model Century (Parton et al. 1992; Gilmanov et al. 1997), have been used widely. 
The use of an existing model eliminates the need for massive amounts of program-
ming and analysis, but the existing structure (and the developer’s strategic decisions 
that led to this structure) may constrain the questions that a new user desires to 
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ask. Furthermore, it is difficult for new users to become deeply familiar with the 
workings of complex models. Regardless of the software decision, all model imple-
mentations require systematic checking for the adequacy of relationships repre-
sented and the accuracy of methods employed. This phase, often referred to as 
model verification, may require more time and energy than any other step repre-
sented in Fig. 3.2. An important adjunct to this stage is the production of adequate 
model documentation and the ultimate public availability of the final source code.

The specification of values for the model parameters, model inputs, and initial 
values of the state variables within the model (see Appendix, Table 3.3) are typi-
cally estimated from data or obtained from published values. The process of param-
eter estimation differs from model calibration—the iterative adjustment of 
parameters to improve model fit to measured output variables. Calibration may be 
required when direct estimates of parameters are not available but net changes in 
system dynamics have been measured, providing the objective criteria for parame-
ter adjustments. The errors associated with calibrated values are unknown unless a 
second data set is available to test the adequacy of calibrated (but unmeasured) 
parameters.

Once operational, a model must be evaluated for its utility. Does model behavior 
agree with empirical observations? Are the underlying assumptions reasonable? Do 
those assumptions result in realistic behavior? Objective comparison of model 
results with data, sometimes referred to as model validation (Rykiel 1996) provides 
the necessary confidence in predictions to make models useful and define the condi-
tions over which the model will be most reliable. Although the term “validation” 
continues to be widely used (e.g., Scheller and Mladenoff 2004; Nuttle and Haefner 
2007), because this term connotes “truthfulness,” its unqualified use can be confus-
ing and is generally discouraged (see Mankin et al. 1975 for a thoughtful discussion 
of validation issues).

When the steps illustrated in Fig. 3.2 have been completed, the ecologist has a 
tool that may be used to conduct experiments and predict outcomes. The verifica-
tion of predictions across a range of conditions confirms or rejects the model 
hypotheses and assumptions, providing new insights into system behavior. As con-
fidence builds, model applications may move from hypothesis testing to more 
 serious applications such as conservation planning and planning. Care must be 
taken at each stage of model development to assure the accuracy and adequacy of 
the model. In spite of the availability of software that eases the process of model 
development, there is always the danger that insufficient attention to each step of 
development will produce unreliable results. Because no amount of care will guar-
antee that a model is a perfect representation of the ecological system it was 
intended to mimic, the comparison of results with alternative models (Levins 1966) 
continues to be sage advice for the careful scientist (Box 3.1).
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B o x  3 . 1
Caveats in the Use of Models

Wise application of modeling tools recognizes the pit-

falls and problems of model development and inter-

pretation. We review here, in concise form, what we 

consider to be the most important caveats for model-

ing in landscape ecology:

1. Know thy model. the performance of each model 

is the logical consequence of the hypotheses and 

assumptions upon which that model is based. 

alternative assumptions regarding systems 

behavior might be equally viable, but produce 

dramatically different results. Comparison among 

alternative model formulations is extremely desir-

able, and should be attempted where possible 

(see Kittel et al. 1996; pan et al. 1998; Miranda 

et al. 2009 for examples).

2. Errors propagate. Small errors in sensitive param-

eters can lead to large errors in outputs (rose 

et al. 1991). techniques for the analysis of effects 

of parameter errors are available (Metzgar et al. 

1998) and should always be employed before pre-

dictions are made. assessment of errors of spa-

tially explicit models remains a challenge (Khan 

et al. 2006; Minor et al. 2008), largely because of 

the added complexity of evaluating qualitative 

and quantitative spatial predictions.

3. All models are simplifications of reality. this is not 

a casual philosophical statement! It simply means 

that no single model will ever be a completely 

adequate description of reality. therefore, the 

goal of model studies should be to define the 

applications for which a given model provides 

reliable and useful results. New applications of 

old models are not released from this 

requirement.

4. There are never enough data. the incomplete 

nature of data often requires parameter values to 

be estimated from a diversity of sources. 

Inconsistency in the methods of data collection 

and parameter estimation may result in model 

biases that are difficult to identify. Gaps in empiri-

cal information that do not allow adequate esti-

mation of key parameters are often the greatest 

source of uncertainty in model predictions.

5. High tech methods do not guarantee a “good” 

model. technologically advanced methodologies, 

including the availability of higher level program-

ming languages that facilitate model coding, do 

not assure the accuracy or reliability of results. 

When developing or interpreting models, it is 

critical for the user to understand fully the struc-

ture of the model, the assumptions that went into 

its development and the constraints (such as spa-

tial or temporal scales) on its appropriate use.

6. Keep an open mind. there is no single paradigm 

for spatial modeling of landscapes. Model devel-

opment and testing requires a broad perspective 

of landscape ecology and systems analysis 

techniques.

 n e U t r a l  l a n d s c a p e  M o d e l s

As development of landscape ecology accelerated and spatial heterogeneity received 
increased attention, new models that could represent explicit spatial patterns and 
allow different aspects of pattern to be varied were needed. Also needed was a 
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yardstick against which the potential influence of different spatial patterns could be 
evaluated. NLMs were developed in the late 1980s to fill this gap (Gardner et al. 
1987).

 N e u t r a l  M o d e l s  i n  E c o l o g y

The sequential development and testing of hypotheses is essential for progress in 
science (Platt 1964; Quinn and Dunham 1983). The simplest hypothesis that one 
should first construct is the null hypothesis of no effect (Fisher 1935)—i.e., land-
scape processes are not responsible for the observed pattern. A properly formed null 
hypothesis provides the required reference point against which alternatives may be 
contrasted. Because landscape analysis involves relating ecological patterns to com-
plex histories of natural forces and events (e.g., climate, terrain, soils, water avail-
ability, biota, natural disturbances, etc.) as well as the consequences of human 
alterations (e.g., urbanization, agriculture, forestry management, etc.; see Chap. 2), 
the specification of appropriate null hypotheses is a challenge. Consequently, obser-
vational and correlational approaches tend to dominate over the experimentation 
and hypothesis testing more typical of sciences studying simpler systems (see Strong 
1980 for further discussion). The difficulty with corroborative studies is that the 
uniqueness of each landscape (Phillips 2007) limits the use of experimental designs 
and the possibility of replicate measures. When treatment effects (i.e., processes 
dependent change in landscapes) are tested without true replication, the validity of 
these comparisons is often suspect (Hurlbert 1984; Hargrove and Pickering 1992).

Neutral models, which simulate dynamics in the absence of specific processes, 
have been widely used in ecology for testing the corresponding null hypothesis of 
statistics (the terms “null” and “neutral” are distinguished here, but are often used 
interchangeably). For instance, Cole (1951, 1954) used random numbers to con-
struct cycles similar to those observed in natural populations; Simberloff (1974) 
used island biogeographic theory to examine community patterns; Istock and 
Scheiner (1987) used random landscapes to test patterns of species diversity; and 
Nitecki and Hoffman (1987) produced an edited volume on the subject. Other 
examples include niche shifts in Anolis communities (Haefner 1988a, b); commu-
nity formation in fishes (Jackson et al. 1992); plant migration rates (Higgins and 
Richardson 1999); hemlock regeneration and deer browsing (Mladenoff and 
Stearns 1993); bird assemblages in fragmented landscapes (Sisk et al. 1997); tests 
of Holling’s hypothesis of discontinuities in landscape pattern causing clumps and 
gaps in the distribution of body sizes within animal communities (Siemann and 
Brown 1999); and the continued investigations of the formation of structure in 
natural communities (Wilson 1995). Perhaps the most notable use of neutral 
 models has been Hubble’s provocative theory of biodiversity (Hubbell 2001, 2006) 
which continues to be widely discussed in ecology (e.g., Lowe and McPeek 2014; 
Warren 2012).
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 N e u t r a l  M o d e l s  i n  L a n d s c a p e  E c o l o g y

A simple standard for landscape pattern—and thus the basis for testing differences 
between landscapes—is a random map (Fig. 3.6) which lacks all factors that might 
organize or structure pattern (Gardner et al. 1987; Gardner and Urban 2007). Tests 
of observed landscapes against replicate random maps reveal the magnitude and 
significance of differences due to the structure of actual landscapes. Therefore, ran-
dom maps are neutral landscape models (NLM) against which effects of processes 
that structure actual landscapes may be tested. Studies of NLMs have shown that 
surprisingly rich patterns can be generated by random processes alone—and their 
use has shown that actual landscapes may not always be measurably different from 
these random patterns (Gardner et al. 1993; Li et al. 2004).

With and King (1997) reviewed the use of NLMs and separated their uses into 
two categories: (1) to determine the extent to which structural properties of land-
scapes (e.g., patch size and shape, amount of edge, connectivity, autocorrelation) 
deviate from some theoretical spatial distribution, and (2) to predict how ecologi-
cal processes, such as animal movement, seed dispersal, gene flow, or fire spread, 
are affected by landscape pattern. A third important use has also emerged: to evalu-
ate new methods of numerical analysis, including the development and testing of 
landscape metrics (Li et al. 2005; Gardner and Urban 2007; Wang and Malanson 
2007). We next provide a brief overview of the methods behind the generation of 
random maps and uses in landscape studies.

 Random Maps: The Simplest Neutral Model
The simplest method of generating a map is to randomly locate sites within a 
2-dimensional grid. This may be efficiently accomplished by using a uniform ran-
dom number generator (URN) found within most computer languages and math-
ematical software tools. The URN function typically produces numbers that vary 
randomly over the interval of 0.0–1.0. The generation of a random map with a 
single land-cover type is accomplished in two steps: (1) An array of m columns and 
n rows with m ∙ n elements (sites) is constructed; (2) For each map site a single URN 
is generated: If the URN is less than a prespecified probability value, p, the site is 
set to 1; if not, the site is set to 0. For instance, if p = 0.4 the grid site will be set to 
1 if URN ≤ 0.4, or to 0 if the URN is >0.4. For maps of sufficient size (m and n each 
>250) the proportion of sites set to 1 will be very close to the value of p while the 
number of sites set to 0 will be approximately 1 − p (e.g., 1.0 − 0.4 = 0.6). The total 
number of matrix elements (i.e., grid sites or cells) occupied by the habitat (land- 
cover) type of interest will be approximately equal to p ∙ m ∙ n while the number of 
sites of “nonhabitat” will equal (1 − p) ∙ m ∙ n.

As the grid is filled with 0’s and 1’s, clusters, or patches, of the land-cover type 
will form (Fig. 3.6). Clusters are identified with rules defining contiguous sites. The 
simplest rule defines clusters as groups of sites of the same land-cover type with at 
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least one horizontal or vertical (but not diagonal) edge in common. This rule for 
cluster (patch) identification is usually referred to as the “four-neighbor” or 
“nearest- neighbor” rule, and it is a conservative estimate of habitat adjacency (also 
see discussion in Chap. 4 and Fig. 4.9). When a series of maps is generated with 
increasing values of p, the number of patches increases over the interval 0.0 < p < 0.3; 
as p continues to increase small patches coalesce into larger ones and the total 
number of patches declines (Gardner et al. 1987; Gardner 2011; Fig. 3.7a). The 
amount of edge on the map is also affected by p, with the maximum amount of 
edge occurring when p = 0.5 (Gardner et al. 1987; Fig. 3.7b).

The total extent of the map (i.e., the value of m and n representing the number 
of rows and columns, respectively) also affects measures of pattern. Smaller maps 
(i.e., lower values of m and n) will cause patches to be truncated by the map bound-
ary. This effect is most noticeable when p is >0.6 (Gardner et al. 1987). Table 3.1 
illustrates the truncation effect for a variety of map types and sizes (m = n = 64, 128, 
256). For random maps with p < 0.5 the size of clusters in smaller maps is approxi-
mately 80 % of the size of clusters in the larger maps—indicating that truncation 
effects due to map size result in systematic underestimation of patch size. The trun-
cation effect becomes more noticeable as the value of p increases. At p = 0.5 clusters 
are approximately 70 % that of the next largest map size; and at p = 0.7 and 0.9 
(Table 3.2) cluster sizes of the smaller maps are approximately 25 % the size of the 
next largest map!

Figure 3.6.

A random map (m, the number of rows and columns equals 64) generated with the 

probability, p, that grid cells contain the land-cover type of interest. The black cells 

represent (a) 0.3 and (b) 0.7 of the landscape. The user may determine, by hand, that the 

largest cluster of the black cover type percolates in (b).

L a n d s c a p e 

e c o L o g y  i n 

T h e o r y  a n d 

p r a c T i c e

http://dx.doi.org/10.1007/978-1-4939-2794-4_4
http://dx.doi.org/10.1007/978-1-4939-2794-4_4


79

Figure 3.7.

(a) The number of clusters and (b) size the largest cluster for random maps that vary in the probability, p, 

that a grid cell contains the habitat type of interest. Plotted from data reported in Tables 1 and 2 of Gardner 

et al. (1987) for maps with 200 rows and columns.

Table 3.1.
Percolation thresholds for 2-dimensional maps with different neighborhood 
rules.

Lattice geometry Neighboring sites pc

Square  4 0.59275
 8 0.40725
12 0.292
24 0.168
40 0.098
60 0.066

Triangular  6 0.5
12 0.295
18 0.225

Honeycomb  3 0.6962
12 0.3

Table adapted from Plotnick and Gardner (1993)
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Why does the truncation effect depend on the value of p? Are there general rules 
of pattern formation in simple random maps that provide insight into the analysis 
of landscape patterns? It is these types of question that have been a primary focus 
of percolation theory (Stauffer and Aharony 1992) from which the first NLM were 
derived (Gardner et al. 1987). A central concept to emerge from percolation theory 
was the strong dependency of pattern on the choice of value for p and the existence 
of a critical threshold where small changes in p would result in sudden changes in 
pattern. The existence of a critical threshold (symbolically defined as pc) equals 
0.59275 when maps are sufficiently large and clusters are defined by the nearest- 
neighbor rule (Table 3.1). The reason for this threshold is that above pc occupied 
sites are so abundant that nearly all sites contact neighbors along one of their four 
edges causing a single cluster to extend, or “percolate,” from one edge of the map 
to the other. In our previous example (Table 3.2), maps with values of p > 0.59275 
will always result in truncation of the largest cluster on the map. If p > pc the perco-
lating cluster will continue to increase in size as map dimensions increase. This 

Table 3.2.
Average number of sites composing a cluster (i.e., patch size in grid cell units) 
as a function of map size (number of rows and columns) and p, the fraction of 
sites occupied.

Map size Map typea

p
0.1 0.3 0.5 0.7 0.9

64 × 64 Random 5.2 21.4 167.0 2780 3680
H = 0.2 124 574 1360.0 2620 3660
H = 0.8 216 908 1760.0 2760 3670

128 × 128 Random 6.3 27.4 255.0 11,200 14,700
H = 0.2 482 2140 5600 10,500 14,600
H = 0.8 1110 3720 7160 11,100 14,700

256 × 256 Random 7.6 33.4 350 44,900 58,900
H = 0.2 1760 9190 21,800 42,200 5860
H = 0.8 4450 15,000 28,400 44,300 58,800

Averages based on 100 independently generated maps (Maps were generated and analyzed using RULE 

(Gardner 1999). Although the documentation of RULE is recent, this is the same program originally 

used to generate neutral models (Gardner et al. 1987)).

aMap types are: Random = simple random map; H = 0.2, a multifractal map with the value of H of 0.2; 

H = 0.8, a multifractal map with the value of H = 0.8. See text for discussion of multifractal maps.
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truncation effect leads percolation theorists to develop the concept of the infinite 
cluster—a cluster that will continue to grow as map dimensions are increased. 
Thus, there is no finite map dimensions that will fully contain the cluster when 
p > pc. Although no landscape will have infinite bounds, the practical  implication of 
the “infinite cluster” is that a map 1/2 the size of another will have an average clus-
ter size that is only 1/4 as large.

The general dependence of cluster size on p, and the existence of a critical 
 threshold where small changes in p produce sudden changes in cluster sizes, has 
 important implications for both material systems (the original focus of percolation 
theory) and pattern and process relationships within landscapes. The effect of a 
critical threshold may be easier to visualize by imagining the process of habitat loss 
and fragmentation. If a landscape exists with p = 1.0—that is a landscape entirely 
 composed of a single land-cover type, say forest—then a gradual reduction in p on 
a random map is equivalent to poking holes in the forest. As the value of p slowly 
declines (i.e., the forested lands are randomly converted to other land-cover types) 
from 1.0 to 0.90, isolated gaps in the continuous forested landscape occur with 
little effect on the overall landscape pattern. As random clearing continues (i.e., 
values of p further decline from 0.9 to 0.6), forest gaps become more frequent and 
larger, the amount of edge increases, but never-the-less a single large forest cluster 
still dominates the landscape. It is still possible for organisms restricted to forests 
to move across the landscape—that is, the single large cluster still percolates. 
However, the single large cluster becomes more and more dendritic as the critical 
threshold is approached. It is now possible to find numerous sites that would 
 disconnect the percolating cluster if they were converted from forest. The sudden 
disconnectance of the forest habitat resulting from the disturbance of a single site 
is most likely to occur when p = pc.

The numerical value of a critical threshold depends on the neighborhood rule 
used to identify clusters (Plotnick and Gardner 1993). When an “eight-neighbor” 
rule is used to identify clusters, the value of pc drops to 0.40725 (Table 3.1). Because 
diagonal neighbors are now also counted as cluster members, potential neighbors 
are further away from each other. With the inclusion of more distant neighbors 
within the cluster, large dendritic structures form and “percolate” across the grid at 
lower values of p. The ecological justification for the analysis of landscape pattern 
with different neighborhood rules should be process dependent. For instance, if the 
spread of a disturbance is slow and via immediate contact (e.g., some fungal dis-
eases), then the nearest-neighbor rule might be applied and a critical threshold of 
the spread of the fungus would occur at p = 0.59275. However, short distance dis-
persal of large seeds might cover a neighborhood of considerable area, resulting in 
a revised definition of connectance among neighboring sites. It may also be neces-
sary to change the neighborhood rule if the resolution of the map were to change. 
For instance, a four-neighbor rule applied to maps with 90-m grid cells might be 
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changed to a 21-neighbor rule if map resolution were increased to 30 m (other 
alternatives exist and may be explored in the lab exercises associated with this 
chapter). The value of the critical threshold has also been shown to vary with map 
geometry (Table 3.1) primarily because different map geometries have different 
number of neighbors (e.g., a triangular grid has three neighbors associated with 
each site while a honeycomb grid would have eight neighbors). Even though the 
value of the threshold may change, the general response of the system is similar no 
matter what rule is applied.

One of the initial misunderstandings in the use of random maps as NLMs was 
the idea that NLMs were intended to represent actual landscape patterns. That was 
never the case! NLMs do not represent actual landscapes, but provide the standard 
against which actual landscapes may be compared. The NLMs control for the 
amount of a land-cover type, allowing consequences of particular spatial patterns 
to be evaluated against the random pattern given comparable habitat abundance. 
The level and kinds of deviation in spatial pattern compared to random expecta-
tions may also help elucidate factors that generate patterns. Thus, it is valid to 
compare NLMs with actual landscapes—that is, compare patterns generated at 
random with patterns structured by landscape processes. For example, aerial pho-
tographs for nine counties in Georgia taken at three different times and represent-
ing different physiographic regions (Turner and Ruscher 1988) were used to 
develop 27 landscape maps. The number of clusters and total edge of forested areas 
were compared to NLMs (Gardner et al. 1992; Fig. 3.8). A number of points 
 illustrated by this comparison have been subsequently confirmed by analysis of 
data from other areas (Gardner et al. 1993). The key points are:

Figure 3.8.

Comparison of (a) the number of clusters and (b) total number of edges for random and actual landscapes. 

Adapted from Gardner et al. (1992b).
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1. It is trivially true that patterns of random and real landscapes are identical  
when p is equal to either 0.0 or 1.0. It is important to remember that the 
nearer the value of p is to these limits the more similar random and real land-
scapes become.

2. The total number of clusters of actual landscapes and NLMs is greatest when  
p is within the range of 0.1–0.3. Over the range of p = 0.1–0.5 the total num-
ber of clusters in actual landscapes is noticeably less than that of NLMs.

3. In actual landscapes and NLMs the total amount of edge is at a maximum 
near p = 0.5, but like the cluster numbers, the amount of edge in actual land-
scapes is much less than in random ones.

4. The degree of connectivity (as measured by the presence of a single cluster 
spanning the map) was equivalent to the NLMs in 25 of 27 actual land-
scapes. The two landscapes which differed from NLMs either percolated at 
p = 0.43 or failed to percolate at p = 0.68. The cause of this deviation was due 
to the interaction of topography (ridge and valleys) and the process of human 
land-use conversion.

The qualitative trends in pattern in actual landscapes and NLMs are similar 
although the magnitude (e.g., number of clusters, amount of edge) is less and the 
variability greater in actual landscapes. These differences are produced by a com-
plex suite of factors that organize patterns on actual landscapes (Chap. 2).

An important and very practical application of NLMs has been their use to 
test the performance of different landscape metrics (Li et al. 2005; Gardner and 
Urban 2007; Wang and Malanson 2007) across a range of conditions (i.e., num-
ber of habitat types, map sizes, values of p). The evaluation of spatial indices by 
NLMs before they are applied to actual landscapes, and the systematic compari-
son among similar landscape indices, provides important information on the reli-
ability of different metrics to identify unique patterns on actual landscapes 
(Gardner and O’Neill 1990; Gustafson and Parker 1992; Gardner and Urban 
2007; Nesslage et al. 2007). We revisit this topic in Chap. 4, but several lessons 
from these studies are worth highlighting here. The first is that the value of p (i.e., 
the amount of any land-cover type of interest) affects the value of nearly all land-
scape metrics. Indeed p often enters directly into the calculation of the metric 
itself (e.g., diversity, contagion) or indirectly as an indication of the amount of 
habitat found on the map. As p increases, the number of possible arrangements 
of land-cover decreases. Obviously, differences in landscape pattern as a result of 
differences in p are not surprising. But, the key point is that interpreting the pat-
terns or relating them to processes must first account for the value of p! The 
second caveat is that the critical threshold causes a transition from many small to 
fewer large clusters on the map. Therefore, large differences in landscape metrics 
should be expected above and below this critical threshold. It is questionable 
whether metrics insensitive to this transition will provide useful insight into 
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 landscape pattern and process. Finally, it is quite clear that the introduction of 
new indices without prior testing by a series of neutral models should be regarded 
as a serious omission.

 Correlated Patterns from Fractal Maps
Landscapes composed of multiple habitat or land-cover types may require a 
more complex neutral model to characterize these patterns. Often the arrange-
ment of multiple land-cover types is directly linked to the topography of the 
region; wetlands and riparian forests are usually associated with rivers and flood-
plains and found at lower elevations, whereas drier conditions and habitats occur 
along ridge tops. Conditions between these extremes are intermediate in eleva-
tion and usually intermediate in soil moisture and temperature levels. Because 
habitat characteristics (land-cover types) vary with these elevational gradients, 
many landscapes with multiple cover types are characterized by a strong auto-
correlation between habitat types. Methods that can generate patterns of con-
tinuous change would provide a useful neutral model for landscapes with multiple 
land-cover types.

One method for representing continuous, autocorrelated variation of patterns is 
the generation of maps via fractional Brownian motion. A fractal Brownian motion 
in one dimension is produced by creating a series of steps, Xt, whose distance from 
the previous step (Xt + 1 − Xt) is randomly determined from a Gaussian distribution. 
A 3-dimensional map may be produced by allowing steps to occur in both the  
X and Y directions with the random displacements recorded as elevation (the Z 
direction). The midpoint displacement method (MPDM) for creating fractal sur-
faces has been extensively used to model 3-dimensional patterns (Barnsley et al. 
1988). The “fractal” of fractional Brownian motion is controlled by two parame-
ters: The variance of displacement of points, σ2 (usually set to 1.0), and H, which 
controls the correlation between successive steps (Saupe 1988; Plotnick and 
Prestegaard 1993). Because the successive displacement of points results in an 
expected difference between any two points equal to (E[X1 − (X1 − d)] ∝ dH (Plotnick 
and Prestegaard 1993), the difference between two points will be proportional to 
the square of the distance, d, and the correlation, C(d), between the points 
[C(d) = 22H − 1 − 1] (Mandelbrot 1983; Feder 1988). The fractal dimension, D, of 
maps generated by the MPDM is equal to D = 3.0 − H (Saupe 1988). When H = 0.5, 
successive displacements in the Brownian walk are not correlated; when H < 0.5, 
successive displacements are negatively correlated and maps appear to have a very 
rough surface; and when H > 0.5 steps are positively correlated and the maps have 
a smooth surface (Fig. 3.9). Habitat maps may be generated from the continuous 
numbers produced by the MPDM by scaling the real numbers and assigning ordi-
nal values to each grid square proportional to the fraction of the map, pi, occupied 
by each habitat type (Gardner 1999, 2011). This process of generating a neutral 
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model with fractal maps is summarized in three steps: (1) generation of a topo-
graphic map with roughness controlled by H; (2) slicing the topography into con-
tours with the area of each contour equal to the proportion of the map occupied by 
that habitat type; and (3) assigning ordinal habitat (land-cover) values to sites 
within each contour.

The realistic nature of the fractal maps is the direct result of the autocorrelated 
process of map generation (Fig. 3.9) which results in realistic associations between 
habitat types (i.e., riparian forests will not be found along ridge tops). Although the 
patterns are constrained by this autocorrelation resulting in frequency distributions 
of cluster sizes that differ from those of simple random maps, the map patterns 
produced by fractal methods are still random. The creation of multiple maps with 
the same set of parameters (map size, H, number of habitat types and the value of 
p for each habitat) produces dramatically different patterns. However, successive 
habitat types will always be associated with each other. The positive autocorrela-
tion of maps with high values of H creates larger average cluster sizes than maps 
with smaller values of H when p < pc (Table 3.2). Above the critical threshold aver-
age cluster sizes are similar among all map types.

The generation of spatial patterns with fractal maps has had a number of 
applications. Fractal landscapes have been used to represent the degree of spatial 
dependence of actual landscapes (Milne 1991a, b; Palmer 1992); the effect of 
landscape fragmentation on population and community dynamics (With et al. 
1997; With 2002; With and King 2004); the invasive spread of exotics (Lavorel 
and Chesson 1995; With 2002, 2004); and landscape disturbances (McKenzie 
et al. 2006; Wimberly 2006). In most of these examples the effect of “structure” 
on habitat arrangement was quantified by comparison of fractal maps with sim-
ple (nonstructured) random maps. For instance, the objective of With et al. 
(1997) was to examine how landscape structure affected the patterns of popula-
tion dispersion of mobile organisms. Variation in landscape structure was cre-
ated by generating maps that differed in the number and proportion of habitat 
types and the methods used to generate the spatial patterns. Simple random 
maps created pattern without an underlying structure, while fractal maps with 
different values of H created differently structured maps. The results showed 
that landscape structure had a large effect on the distribution of simulated pat-
terns of species distributions. Although population size remained fairly constant 
over all simulations, patterns of distribution shifted owing to the aggregation of 
individuals within specific habitat types. The control of landscape structure cre-
ated by the comparison of neutral models allowed the effect of pattern and scale 
to be evaluated.

Pearson and Gardner (1997) used randomly generated fractal landscapes for 
an entirely different purpose—to determine the consequences of spatial varia-
tion in the patterns of 137Cs contamination in a Tennessee reservoir. The spatial 
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pattern of contamination was important because sites within the reservoir with 
high contaminant levels (“hot spots”) could affect cleanup strategies. It was 
believed that contaminant hot spots should be spatially correlated, but the 
degree of correlation was not known. Fractal maps with varying levels of H were 
produced to assess the effectiveness of various sediment sampling schemes on 
the detection of these hot spots. The results showed that spatial patterns could 
be detected accurately in maps with a large degree of spatial autocorrelation 
using relatively few samples. However, as autocorrelation declined, the number 
of samples required to achieve the same degree of accuracy increased dramati-
cally. A comparison of fractal maps with 137Cs distributions estimated by a sedi-
mentation model showed that contaminant levels were positively correlated 
within deposition zones (i.e., areas with similar hydrodynamics), but uncorrelated 
across different deposition zones.

Other applications of fractal landscapes as neutral models have included the 
effect of pattern on dispersal (Walters 2007), exploration of edge effects (With 
1997; With et al. 1997) and source-sink relationships (Milne 1992; With 1997). 
Because multiple realizations of these neutral models can be generated, systematic 
application allows the effect of one component of landscape structure—the auto-
correlation among habitat types—to be determined.

Figure 3.9.

Two examples of fractal maps with: (a) H = 0.2 and (b) H = 0.8. Each map has 128 rows 

and columns and the value of p (green cells) for each landscape type equals 0.33.
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 i n s i g h t s  a n d  a p p l i c a t i o n s  o f  n l M s

The most influential conceptual contribution of NLMs to landscape ecology 
revolves around the existence of critical thresholds—and the implications of these 
thresholds for relating landscape pattern to ecological processes (Homan et al. 
2004; Groffman et al. 2006b). Although landscapes are not random, there are criti-
cal thresholds in connectivity where sudden changes in landscape pattern may 
occur with small shifts in disturbance regimes or changes in land-use. The factors 
that organize actual landscapes are not random making the prediction of the exact 
value of pc for any given landscape uncertain (see Discussion Question 6.3). 
 Never-the- less, critical thresholds for real landscapes do exist! Thus, above pc we 
can expect landscape pattern to be dominated by a single very large cluster, while 
landscapes with values of p below pc will be characterized by numerous, smaller, 
fragmented patches. Shifts in pattern that result from small changes in land-use 
may cross this threshold and have important implications for metapopulation 
dynamics and conservation of species diversity (Dale and Zbigniewicz 1995; 
Pearson et al. 1996; Gardner and Engelhardt 2008; also see Chap. 8). Metapopulation 
dynamics are possible in landscapes below pc, while a single, large population dom-
inates can occur in landscapes where the amount of habitat is above pc. Conservation 
efforts should be cognizant of the implications of critical thresholds and connectiv-
ity in actual landscapes. Because small changes in available habitat near the critical 
thresholds result in disproportionately large changes in the degree of landscape 
fragmentation, efforts to preserve continuous tracts of habitat are highly vulnerable 
to disturbance effects when the amount of habitat is near the critical threshold.

A second key insight from NLMs is that the amount of habitat on a landscape 
(so the value of p) will strongly influence the values of a wide array of landscape 
metrics (see Chap. 5). Stated simply, habitat amount constrains habitat pattern, or 
composition affects configuration. Other related lessons learned from NLMs 
include:

�� Map dimensions: Map boundaries affect pattern by the truncation of map 
patches. The truncation effect becomes more serious as map dimensions 
decline and p increases. Patterns for maps that are smaller than 100 rows and 
columns may be seriously impacted by these truncation effects.

�� Patch Structure: Simple random maps have the greatest number of patches, 
with the number of patches determined by p. When patterns with contagion 
are generated (i.e., positive or negative associations between sites on the 
map), then the number of patches decreases. For instance, curdled maps gen-
erally have fewer patches than random maps because the hierarchical struc-
ture of map generation affects the contagion between map sites.
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�� Thresholds of Connectivity: Simple random maps are likely to have a single 
cluster which spans the map (percolates) when p ~ 0.6. Random maps with 
very high or very low contagion will percolate at p > 0.6. Random maps with 
moderate levels of contagion will percolate at p < 0.6. When a landscape is 
above the threshold of connectivity, patches tend to be large and contiguous 
and there is less difference among patterns. When a landscape is below the 
threshold of connectivity, patches tend to be small and fragmented and there 
may be greater differences between different maps. For instance, curdled 
maps can percolate when the overall value of p ~ 0.6, but each level must also 
percolate. On all maps (random or real), the probability of percolation is 
directly related to the size of the largest patch.

�� Connectivity and Scales: Connectivity of sites across a map is defined by the 
relationships between map pattern and the process of interest, which “con-
nects” adjacent sites. Therefore, connectivity is directly related to habitat 
abundance (p), the spatial arrangement of suitable habitat, and the resource 
utilization “rule” of the process being considered. On random maps, thresh-
olds in connectivity occur near 0.6, 0.35, and 0.25 for successively larger 
neighborhoods of 4, 8, and 12 neighbors, respectively. Connectivity may be 
expected to vary most at intermediate levels of habitat abundance (e.g., 
0.3–0.6).

Practical applications of NLMs often involve their coupling with dynamic eco-
logical models that seek insight into the relationships between pattern and process 
within heterogeneous landscapes. The NLMs provide replicated manifestations of 
patterns from which measures of central tendency and variance can be obtained. 
The ability to generate replicate maps creates a control over the variation in spatial 
heterogeneity that simply is not possible with traditional sampling. The applica-
tion of NLMs to landscape issues seems limited only by imagination, and is cer-
tainly an economical precursor to more expensive empirical studies. However, the 
use of NLMs for landscape studies also generated misunderstandings, and several 
caveats for the use of neutral models (with and King 1997; Gardner and Urban 
2007) are important:

�� Agreement of a NLM with a set of observations is not proof that the NLM is 
true (Caswell 1976). Agreement may suggest hypotheses that can be experi-
mentally tested to establish their validity.

�� The lack of agreement between an NLM and a set of observations does not 
prove that the excluded processes are responsible for the observed pattern 
(Caswell 1976).

�� NLMs are theoretical constructs that may not be directly applicable to actual 
landscapes. For instance, it would be a misuse of NLMs to design a conserva-
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tion reserve with the proportion of habitat equal to 0.59275. “On the other 
hand, approaching the design of the reserve with an appreciation of the 
importance of connectivity … would be an appropriate application (With and 
King 1997).”

�� It is a misunderstanding of the role of NLMs to reject them as “artificial” and 
hence misleading simply because they fail to be good predictors of a particu-
lar ecological process (see Schumaker 1996; Gardner and Urban 2007). No 
single NLM will be appropriate for all situations. Rather the NLM should be 
designed to provide the appropriate null hypotheses against which actual pat-
terns may be tested.

 s U M M a r y

A model is an abstraction or representation of a system or process. There are many 
different kinds of models, and mathematical models are commonly used in ecology. 
In landscape ecology, model development is an important tool that complements 
empirical techniques. Models permit the landscape ecologist to explore a broader 
range of conditions than can usually be set forth experimentally. Landscape models 
help to formalize our understanding and develop theory about how spatial patterns 
and processes interact, producing general insights into landscape dynamics.

Models are characterized in various ways: for example, models may be deter-
ministic or stochastic; analytical or simulation; dynamics or static; and represent 
time as continuous or discrete. A model is spatial when the variables, inputs, or 
processes have explicit spatial locations represented in the model. A spatial model 
is only needed when explicit space—what is present and how it is arranged—is an 
important determinant of the process being studied.

The process of building a model is multifaceted and includes the following steps 
illustrated in Fig. 3.2: (1) Define the problem. (2) Develop the conceptual model. 
(3) Select the model type. (4) Develop the model by writing out the mathematical 
equations and relationships. (5) Computer implementation, including verification 
and documentation of the code. (6) Estimate the parameters, and calibrate if 
 necessary. (7) Evaluate the model by comparison with empirical observation and 
perform a sensitivity or uncertainty analysis. (8) Use the model for experiments and 
prediction.

Models are and will remain extremely important tools in landscape ecology. 
Wise application of these models requires care, however, particularly to the follow-
ing points: (1) Performance of any model results from the hypotheses and assump-
tions on which it is built. Comparing alternative model formulations is extremely 
valuable. (2) Understanding the sensitivity of models to error in estimating  
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parameters is critical; however, assessing error propagation in spatial models 
remains challenging. (3) All models are simplifications of reality, and the domain of 
applicability for each model must be defined. (4) Gaps in empirical data for esti-
mating key parameters are often a great source of uncertainty in model predictions. 
The empirical database that contributes to a model must be understood. (5) 
Technologically advanced methodologies do not assure the accuracy or reliability 
of model results!

A NLM is any model used to generate pattern in the absence of specific processes 
being studied. Predictions from NLMs are not intended to represent actual land-
scape patterns, but rather define the expected pattern in the absence of a specific 
process. Comparison of the results of NLMs against actual landscapes provides a 
standard against which measured departures may be compared. If real landscapes 
do not depart from a NLM then there may be no need for a more complex model. 
The types of NLMs that may be generated are diverse (see Keitt (2000) for a unified 
approach to the generation of NLMs). Random maps provide the simplest NLM, 
but more complex neutral methods including hierarchical random maps and fractal 
maps have been used to provide insight into the effect of structured patterns of 
land-cover on ecological dynamics.

Studies utilizing NLMs have been important in the development of theory and 
the testing of methods for the analysis of landscape patterns. Results of these 
studies have been helpful for exploring the implications of landscape patterns for 
ecosystem processes, population dynamics, disturbances, management decisions, 
and conservation design. Neutral models are particularly useful for testing differ-
ences between landscapes when experimental manipulation and/or replication is 
not feasible and also serve as an economical means for designing expensive empir-
ical studies. NLMs also played an important role in the development of theoreti-
cal landscape ecology by identifying critical thresholds in landscape connectivity, 
and they have been crucial for understanding the behavior of metrics of landscape 
pattern NLMs will continue to have a role in landscape studies because of the 
challenges associated with manipulating spatial patterns in broad-scale empirical 
studies.

 D I S C U S S I O N  Q U E S T I O N S

 1. What are the distinguishing characteristics of landscape models? What is the  difference 

between a spatially explicit and spatially implicit landscape model? Must all land-

scape models be spatially explicit?

 2. What are the trade-offs (advantages and disadvantages) to using simple vs. complex 

models?
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 3. The survey of recent models presented in this chapter provides an overview of current 

modeling activities. Are models being applied in a balanced manner to the broad 

spectrum of landscape issues? What areas of landscape ecology are missing from the 

list of topics reviewed? Why?

 4. Technological advances now allow complex spatial simulations to be easily performed 

and often linked with GIS software to produce mapped output. What should be the 

key concerns of landscape ecologists for the development, analysis, and application of 

these methods?

 5. The statement was made in the text that “…it is not surprising that a (simple random) 

map one-half the size of another will have an average cluster size that is only one-

quarter as large.” Provide an algebraic proof that this will always be the case for 

simple random maps when p > pc. Is this a scaling rule? Explain why this is not the 

case for simple random maps when p < pc (see Table 3.2).

 6. Can theoretical or empirical rules relating pattern to map size be defined for fractal 

maps? If not, how would you go about establishing an empirical scaling rule for frac-

tal maps?

 7. Percolation theory predicts a critical threshold when p ≥ 0.59275. What are the 

assumptions behind the use and application of this value? Do these assumptions apply 

to actual landscapes?

 8. Table 3.2 shows that average cluster sizes of random and fractal maps are nearly the 

same when p = 0.7 or 0.9. Why is this true? Will other measures of landscape pattern 

also be similar for these values of p? Will the effects of landscape change be undetect-

able unless p falls below the critical threshold?

 a p p e n d i x :  c l a s s i f i c a t i o n  o f  M o d e l s

Models may be described or classified in various ways, and it is helpful to under-
stand some commonly used terms. We review the terms often used to describe 
ecological models; similar distinctions are also presented by Grant et al. (1997).

Deterministic vs. stochastic. A model is deterministic if the outcome is always the 
same once inputs, parameters, and variables have been specified. In other words, 
deterministic models have no uncertainty or variability, producing identical results 
for repeated simulations of a particular set of conditions. However, if the model 
contains an element of uncertainty (chance), such that repeated simulations pro-
duce somewhat different results, then the model is regarded as stochastic. In prac-
tice, the heart of a stochastic simulation is the selection of random numbers from a 
suitable generator. For example, suppose that periodic movements of an organism 
are being simulated within a specified time interval. It may be likely that the organ-

l
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Table 3.3.
Terminology for model components and common procedures.

Term Definition

Parameter A constant or coefficient that does not change in the model

Variable A quantity that assumes different values in the model

State variable Major elements of the model whose rates of change are 
given by differential equations

Initial conditions The values of the state variables at the beginning of a 
simulation

Forcing function, external 
variable, or driving variable

Function or variable of an external nature that influences 
the state of the system but is not influenced by the system

Output variables Variables that are computed within the model and 
produced as results

Sink A compartment in the model into which material or flow 
goes, but from which it does not return

Source A compartment from which the material flowing in the 
model flows, but to which it does not return

Dimensional analysis The process in which the units in a model are checked for 
consistency

Calibration The process of changing model parameters to obtain an 
improved fit of the model output to empirical data

Corroboration The process of determining whether a model agrees with 
the available data about the system being studied

Sensitivity analysis Methods for examining the sensitivity of model behavior to 
variation in parameters

Validation Term commonly used for the process of evaluating model 
behavior by comparing it with empirical data; we prefer 
corroboration because it does not imply “truth”

Verification The process of checking the model code for consistency and 
accuracy in its representation of model equations or 
relationships

ism will move, but it is not certain when this event will occur. One solution is to 
represent the movement event as a probability, say 0.75, and the probability of not 
moving as (1.0–0.75) = 0.25. Selection of a random number between 0.0 and 1.0 is 
done to “decide” randomly if movement occurs during a specific time interval. If 
the simulation is repeated, the time-dependent pattern of movement will be differ-
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ent, although the statistics of many movement events will be quite similar. Inclusion 
of stochastic events within a model produces variable responses across repeated 
simulations – a result that is quite similar to our experience of repeated 
experiments.

Analytical vs. simulation. These terms refer to two broad categories of models that 
either have a closed form mathematical solution (an analytical model) or lack a 
closed form solution and therefore must rely on computer methods (a simulation 
model) to obtain model solutions. For analytical models, mathematical analysis 
reveals general solutions that apply to a broad class of model behaviors.  
For instance, the equation that describes exponential growth in a population is an 
example of an analytical model (Table 1), as are many of the model formulations 
used in population ecology (May 1973; Hastings 1996).

In contrast, the complexity of most simulation models means that these general 
solutions may be difficult or impossible to obtain. In these cases, model developers 
rely on computer methods for system solution. Simulation is the use of a model to 
mimic, step by step, the behavior of the system we are studying (Grant et al. 1997). 
Thus, simulation models are often composed of a series of complex mathematical 
and logical operations that represent the structure (state) and behavior (change of 
state) of the system of interest. Many ecological models, especially those used in 
ecosystem and landscape ecology, are simulation models.

Dynamic vs. static. Dynamic models represent systems or phenomena that change 
through time, whereas static models describe relationships that are constant (or at 
equilibrium) and often lack a temporal dimension. For example, a model that uses 
soil characteristics to predict vegetation type depicts a relationship that remains the 
same through time. A model that predicts vegetation changes through time as a 
function of disturbance and succession would be a dynamic model. Simulation 
models are dynamic.

Continuous vs. discrete time. If the model is dynamic, then change with time may 
be represented in many different ways. If differential equations are used (and 
numerical methods available for the solution) then change with time can be 
 estimated at arbitrarily small time steps. Often models are written with discrete 
time steps or intervals. For instance, models of insects may follow transitions 
between life stages; vegetation succession may look at annual changes, etc. Models 
with discrete time steps evaluate current conditions and then “jump” forward to 
the next time while assuming that condition remains static between time steps. 
Time steps may be constant (i.e., a solution every week, month, or year) or event-
driven, resulting in irregular intervals between events. For example, disturbance 
models (e.g., hurricane or fire effects on vegetation) may be represented as a dis-
crete time- step, event-driven model.
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Mechanistic, process-based, empirical models. These three terms are frequently 
confusing. A “mechanism” is “…the arrangement of parts in an instrument.” 
When used as an adjective to describe models (i.e., a mechanistic model) the term 
implies a model with “parts” arranged to explain the “whole.” In the best sense of 
the term, a “mechanistic” model attempts to represent dynamics in a manner con-
sistent with real-world phenomena (e.g., mass and energy conservation laws, the 
laws of chemistry, etc.). Although there has been waning support for mechanistic 
approaches to ecological modeling (Breckling and Muller 1994), the use of “mech-
anistic” in the strictest sense distinguishes these models from “black box” models 
which grasp at any formulation which might satisfactorily represent system dynam-
ics. Confusion arises when the term “mechanistic” is loosely applied to distinguish 
less detailed models from more detailed ones. Often the implication is that 
 mechanistic models are more desirable than less mechanistic(less detailed) models. 
Unfortunately, the assertion that additional detail produces a more reliable model 
must be demonstrated on a case-by-case basis (Gardner et al. 1982).

A “process-based” model implies that model components were specifically 
developed to represent specific ecological processes—e.g., equations for birth, 
death, growth, photosynthesis, and respiration are used to estimate biomass 
yields rather than simpler, more direct estimates of yields from the driving vari-
ables of temperature, precipitation, and sunlight. Although this concept seems 
clear, there is no a priori criterion defining formulations which qualify (or con-
versely do not qualify) as process models. Thus, depending on the level of detail, 
it is possible to have a “mechanistic process-based” model or an “empirical pro-
cess-based” model.

An “empirical” model usually refers to a model with formulations based on 
simple, or correlative, relationships. This term also implies that model parameters 
may have been derived from data (the usual case for most ecological models). 
Regression models (as well as a variety of other statistical models) are typically 
empirical because the equation was fitted to the data.

The problem of distinguishing between types of model is illustrated by the simu-
lation of diffusive processes based on well-defined theoretical constructs (Okubo 
1980). These formulations of diffusion allow simple empirical measurements to 
define the coefficients estimating diffusive spread. Thus, there is a strong theoretical 
base along with empirically based parameters. Is such a model considered empirical 
or theoretical? Should complex formulations always be considered more theoreti-
cal or simply harder to parameterize?

The essential quarrel with each of these three terms is that most ecological mod-
els are a continuum of parts, processes, and empirical estimations. Separating mod-
els into these arbitrary and ill-defined classifications lacks rigor and repeatability. 
One person’s mechanistic model is the next person’s process-based model, etc. 
There does not appear to be a compelling reason to use these vague and often con-
fusing terms to distinguish between alternative model formulations.
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