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Abstract Energy Finance as a field is particularly bedeviled by regulatory
uncertainty. This is notably the case for the real option analysis of long-lived
energy infrastructure. How can one decide optimal build times on a 50 year project
horizon when regulations regarding pricing and costs change on a much shorter
time scale? In this paper we present a quantitative framework for modelling and
interpreting regulatory changes for energy real options as a Poisson jump process,
in a context where other relevant prices follow diffusion processes. We illustrate
this conceptual framework with a case study involving the US corn ethanol market
for which subsidy levels have experienced frequent changes. Subsidy levels have
an easily quantified impact on operations and profitability, making this a nice arena
to introduce ideas which might later be extended to less easily quantified regulatory
changes. Numerical techniques are presented to solve the resulting partial integro
differential variational inequalities. These solution techniques are deployed to solve
instructive numerical examples, and conclusions for public policy are drawn.

1 Introduction

All large energy and natural resource projects are subject to government policy or
regulation of some kind. These regulations are intended to achieve public policy
goals and their effects should be taken into account by firms planning to enter
into energy or resource investments. Energy and resource projects often have long
project horizons and operating life spans on the order of decades. Consider the
example of a firm deciding to enter into a 50 year energy production investment.
Policy in terms of taxation, environmental regulations and other laws may materially
affect project cash flows. These policies have been known to change. Some policy
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amendments are well broadcast and announced while others are not. Although
policy changes may appear “predictable” in the short term, forecasting onto a 50
year project horizon renders the policy changes apparently random, and hence
requiring models of policy uncertainty.

Policy Uncertainty is characterized by changes in taxation, legal and other regu-
latory policies that affect a business’ operations and profitability. The uncertainty
derives from the inability to predict policy in the long term; uncertainty about
forthcoming policy or announcements of policy changes; or sudden and abrupt
changes in policy. Some anecdotal examples of policy uncertainty in energy and
resource markets from recent North American news headlines follow:

Ontario Looks Set to Cut Green Energy Subsidies Solar rates expected to be cut
substantially. Industry has 6 weeks to provide input. [31]

Ontario Drops Plan for TransCanada Power Plant Ontario cancels planned Trans
Canada power plant with province to discuss compensation with TransCanada.
Costs may exceed $1 billion CAD and affect off peak pricing. [24, 30]

Ivanhoe ‘Surprised’ by New Mongolian Windfall Tax Mongolia sets surprise
windfall tax on (among possibly others) Ivanhoe’s Oyu Tolgoi mine of 68 % when
gold hits $500 per ounce. [7]

This does not by any means represent an exhaustive list. Attempts have been
made to quantify and measure policy uncertainty (e.g. [3]). In [3] and [17] the
authors also note that policy uncertainty can make firms hesitate or delay to enter
into long term projects as they wait for more policy certainty before making
decisions. This has caught the eye of Canadian and American macroeconomic
policy makers noting both that firms appear to accumulate cash and hesitate to make
business decisions amidst regulatory uncertainty [16, 35].

In this paper we present a quantitative framework for modelling and interpreting
regulatory changes for energy real options as a jump diffusion process, in a context
where other relevant prices follow pure diffusion processes. Policy uncertainty is
by its nature very difficult to hedge and leads to market incompleteness even if the
remaining underlying prices could otherwise be traded.

This real option method of modelling resource project management decisions
was introduced by [6] in a seminal paper that considered the problem of optimally
starting and stopping production to maximize the profits of a natural resource
project. The optimal entry and exit from investment projects was also considered
by [11] in another classical real option paper. A collection of illustrative real option
papers can be found in [12].

In particular, we consider a firm contemplating the option to invest in an ethanol
from corn production plant. We build on the analysis of our past work [23] which
intended to quantify the impact (both intended and unintended consequences) of
ethanol policy on production. This current work adds the complication of policy
uncertainty deriving from a volumetric production tax subsidy which has changed
several times over the past 35 years. We aim to understand the effects of ethanol
policy uncertainty on production from the producer’s perspective. An example of
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the application of real option analysis to understand the effects of windfall taxes on
mining operations can be found in [33]. A complementary and interesting analysis
on policy uncertainty and real options can be found in [17]. The authors of [17]
use empirical data to determine how regulatory uncertainty in American electricity
markets affects start up and shut down decisions for power plants; their evidence
supports the anecdotal claims mentioned above that uncertainty leads management
to defer decision making. Our real option model sets out to design a framework
to quantitatively model this added uncertainty and capture its effects on decision
making.

1.1 Corn Ethanol Production and Subsidy Policy

The ethanol market in the US is large, estimated at 13.3 billion gallons produced
in 2012 by over 209 plants [32]. Efforts to promote US energy independence
and initiatives to obtain fuel from environmentally friendly sources have led to
the subsidization of the production of ethanol biofuel from corn. Subsidies have
historically been provided to ethanol producers by means of a volumetric ethanol
excise tax credit for blenders and a small ethanol producer tax credit. The subsidy
amount has changed from $0.40/gallon at its introduction in 1978 (Energy Tax
Act) and been adjusted several times until its final level $0.45/gallon in the 2008
Farm Bill followed by termination (by non-renewal) at the end of 2012 [13, 15].
Table 1 shows the history of ethanol subsidy policy changes and amendments since
its inception.

A year following the lapse of many of the energy subsidies, about one quarter
of Nebraska’s ethanol plants were in idle status [27]. The loss of the subsidy was a
possible contributing factor to the shut downs as [21] note that, without subsidies,
ethanol plants may lose their economic viability.

Table 1 Historical ethanol subsidies. Source: [15]

Act Year Subsidy ($/gallon)

Energy tax act 1978 0.40

Surface transportation assistance act of 1982 1983 0.50

Tax reform act 1984 0.60

Omnibus budget reconciliation act 1990 0.54

1998 policy adjustment effective 2001 2001 0.53

1998 policy adjustment effective 2003 2003 0.52

Extension of policy with adjustment 2005 0.51

Farm bill 2008 0.45

Expiration of tax credit 2012 –



242 C. Maxwell and M. Davison

1.2 Outline

Our paper uses a crush spread analysis to value a facility which produces ethanol
from corn using a real options analysis following our framework in [23]. The outline
is as follows: Section 2 specifies the plant characteristics, management decisions,
and associated costs and profits. Section 3 derives the stochastic optimal control
problem for the optimal plant operating rule. Section 4 illustrates the numerical
results. Finally Sect. 5 draws conclusions about policy uncertainty and its effects on
ethanol production, closing off with some policy recommendations.

2 The Real Option Model

Management contemplating the decision to invest in an ethanol production plant
has the flexibility to enter or defer the project given price conditions and expected
future profitability [12]. After initiating and building the ethanol plant, management
again has the flexibility to switch production on (1) and off (0) given prevailing
economic conditions. The goal of this paper is to examine how ethanol price and
policy uncertainty affects a producer’s business entry and subsequent operating
decisions given price conditions, subsidy policy expectations, and the remaining
project life.

Following our analysis [23], throughout this paper all currency is in United States
dollars (USD); liquid volume is in gallons; solid volume is in bushels; weight is
in tons; and interest is percent per year appropriate to USD deposits continuously
compounded.

2.1 Plant Specification and Operating Costs

The following costs are scaled in terms of gallon of production capacity per year
and were estimated by [34]. The model is based on our detailed ethanol real option
analysis in [23]. This valuation considers the income stream associated with the
production of ethanol from corn along with the ethanol-gasoline blender subsidy.

The capitalized construction cost B is estimated at $1.40/gallon for a “typical”
sized facility with nameplate capacity of 40,000,000 gallons/year. The plant salvage
value Q is estimated at 10 % of capitalized cost. The switching cost D01 to resume
production from an idle state is estimated at 10 % of capitalized cost per gallon of
annual production capacity. Similarly, the switching cost D10 to pause production
from an active operating state is estimated at 5 % of capitalized cost per gallon of
annual production capacity.
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2.2 Running Profits

The plant produces ethanol Lt (priced in USD/gallon) from corn Ct (priced in
USD/bushel). The running profit from the corn ethanol crush spread is developed
in [23] on a per bushel per year basis assuming the popular dry grind process for
producing ethanol [4].

corn ! ethanol C by-products (1)

The profit function while operating, f1, is given by

f1.Lt; Ct; Zt/ D �.Lt C Zt � K1/ � Ct (2)

where Zt is the government volumetric subsidy (USD/gallon). The conversion factor
� D 2:8 is the yield in terms of gallons of ethanol produced per bushel of corn
[4] and is consistent with the CME Group’s references on trading ethanol crush
spreads [8].

The net running cost while on can be decomposed in terms of the fixed
running cost p of $0.68/gallon, less the average by-product distillers dried grains
G (USD/ton) produced per bushel of corn [21, 23, 34]

K1 D p � !

�
G: (3)

The process produces 17 lbs of by-product per bushel and hence the yield factor
! D 17=2000 [4].1

While production is idle, [34] estimated that fixed running costs K0 are roughly
1 % of capitalized construction costs per gallon of production capacity or 20 % of
fixed running cost while in production (note that, while idle, no ethanol is produced
and consequently no subsidy is applied). The profit function while off, f0, is

f0.Lt; Ct; Zt/ D ��K0 (4)

where the midpoint between the two estimates is used [23]

K0 D 0:01B C 0:20p

2
: (5)

Finally, the interest rate r is taken to be a target return of 8 % per annum
continuously compounded to capture the risk associated with the ethanol project
cash flows [23, 34]. Our analysis uses only the physical measure for the stochastic
assets. We note however that the price risk associated with corn and ethanol can

1There are 2000 lbs in a ton.
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be hedged using futures and the arbitrage free return can be determined by noting
that the jumps are not correlated with the market following an argument popularized
in [25].

2.3 Stochastic Price Models

Following our analysis in [23], ethanol Lt and corn Ct are modelled by a joint
geometric Brownian motion (GBM) diffusion

dLt D �Ltdt C �LtdW1t (6)

dCt D aCtdt C bCtdW2t (7)

CorrŒW1t; W2t� D � (8)

where .W1t; W2t/ is a two-dimensional Brownian motion defined on a filtered
probability space .˝;Ft; P/ which satisfies the usual conditions [28].

The econometric model parameters are estimated by ordinary least-squares
regression of the log time series ln Xt

Xt�1
using the 10 year monthly historical price

series from Dec/02-Jan/11 capitalizing on earlier work in [23]. Prices for no. 2
yellow corn Omaha, NE underlying the CME corn futures contract were obtained
from [36]. Average rack prices freight on board for ethanol were obtained from [26].
The correlation estimate � was obtained via the sample correlation of the residuals.
Parameter estimation results are in Table 2. Note that both drifts were found to
be statistically zero at the 95 % confidence interval. The estimate for the average
distillers dried grains price OG was estimated by regressing the time series against a
constant.

The stochastic subsidy Zt is modelled as a pure Poisson arrival time jump process
with arrival rate � and jumps of size J.

dZt D .J � Zt/dNt (9)

Table 2 Regression
estimation results Parameter estimate Value t-test

O� 0 P
�

O���

s:e:
> t

ˇ̌
ˇ � D 0

�
D 0:409

O� 0.156 –

Oa 0 P
�

Oa�a
s:e:

> t
ˇ̌
ˇ � D 0

�
D 0:202

Ob 0.123 –

O� 0.105 –

OG $115.6 G 2 Œ108:4; 122:8�a

a based on 95 % confidence interval Student-t with 119 degrees of
freedom



Real Options with Regulatory Policy Uncertainty 245

Table 3 Maximum likelihood estimation results

Parameter estimate Estimator Value 95 % confidence interval

O� �
1
n

Pn
iD1 ti � ti�1

�
�1

0.24 Œ0:10; 0:42�

Ǫ 1
n

Pn
iD1 ln xi �0:69 Œ�0:79; �0:58�

Ǒ2 1
n�1

Pn
iD1.ln xi � Ǫ/2 0:015a Œ0:0066; 0:062�

a Corrected unbiased estimator

where dNt, defined on the probability space, is a continuous-time counting process
fNt; t � 0g that counts the number of jumps over time dt and

dNt D
(

1 with probability �dt

0 otherwise.
(10)

The times between jumps ti � ti�1 are seen to be quite well modelled by indepen-
dently exponentially distributed Poisson arrivals. The jumps J are assumed to be
drawn from a lognormal distribution with parameters LogN.˛; ˇ2/. The parameters
are estimated via maximum likelihood using the data in Table 1. The estimation
results are summarized in Table 3.

The sample set for the subsidy policy is small (8 observations) and requires a
test of the goodness of fit. By our model choice, the time between arrivals �t of
subsidy changes is exponentially distributed with parameter � (Exp.�/) and the
series ln Zt� Ǫ

Ǒ has a Student’s t-distribution since ln Zt � N.˛; ˇ2/. The plots of the

estimated theoretical cumulative distribution functions (CDFs) versus the empirical
distributions are included in Fig. 1 along with the QQ plots. By visual inspection,
both data appear to be well suited to the proposed subsidy model.

Lilliefors tests (a nonparametric variant of the Kolmogorov-Smirnoff test) were
applied to test for normality in the log subsidy series and exponentiality in the
subsidy arrival times using MATLAB’s lilliefors.m function. Both samples
accepted the null hypothesis of normality and exponentiality at the 5 % significance
level. This statistical evidence further supports our proposed model.

2.4 Policy Uncertainty “at its Worst”

Since the policy uncertainty cannot be hedged and is presumably not correlated with
any market assets, there is cause for concern in terms of how to price this ethanol
real option. Not only is there risk in the randomness of the process, but there is an
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Fig. 1 The empirical CDF (solid black) vs the theoretical CDF (grey dashed) of the time between
arrivals �t � Exp.O�/ (upper left). The QQ plot of the time between arrivals (upper right). The
empirical CDF (solid black) vs the theoretical CDF (grey dashed) of the normalized subsidy series
ln Zt�Ǫ

Oˇ
� t7 (lower left). The QQ plot of the subsidy series (lower right)

added complexity of uncertainty risk in the choice of model so-called “Knightian”
uncertainty. To account for this model risk, uncertainty around the jump process
parameters is included.

There are several possible ways to deal with model uncertainty and market
incompleteness including: (1) cautiously deploying assumptions to simplify the
problem; (2) utility indifference pricing with model uncertainty [19, 22]; and
(3) best/worst case pricing (similar to the idea of good deal bounds and super-
replication) [2]. Our analysis follows alternative (3) due to its financial intuition,
transparency, and lack of subjectivity around economic aversion parameters or
choice utility functions associated with utility-based pricing (which produce a
subjective “personal price”). There is a connection between (2) and (3) however,
in that as the risk aversion parameter tends to infinity, the utility indifference price
tends to the worst-case price. Management buying into an ethanol project can be
considered “long” the real option. The worst case price is what a strongly risk averse
buyer may consider when purchasing an option.

Management contemplating investment in an ethanol project may ask the
question: Given the uncertainty around subsidy policy over the past 35 years, what
is the expected case and worst case project value? To answer this question, the ref-
erence policy uncertainty distribution is adjusted within the following heuristically
determined parameter bounds to form best and worst case bounds for the project
value.
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2.4.1 Bounds on ˛

Suppose management assumes VaR05 style bounds on ˛.2 In order to choose a lower
bound for ˛, management chooses a parameter ˛min such that the probability of
observing a subsidy level J lower than the lowest historical subsidy Zmin D 0:40

is 95 %, i.e. P.J < Zmin/ D 0:95. For a lognormal distribution with variance
ˇ2 D 0:015, ˛min D �1:118. An upper bound can be chosen as ˛max such that the
probability of observing a lower subsidy J than the historical maximum Zmax D 0:60

is also less than 5 %, i.e. P.J < Zmax/ D 0:05. In this case, the upper bound is
˛max D �0:309.3

2.4.2 Bounds on �

Similarly, the average arrival time of subsidy changes is bounded by infinity (i.e.
no changes at all) where �min D 0. Reasoning that the US Farm Bill is the primary
means by which ethanol subsidy policies are amended and that a new omnibus bill is
passed every 5 years or so, �max can be chosen such that the probability of observing
at least one jump in a 5 year cycle is at least 95 %. Thus management seeks �max

such that P.k D 0I �max; t D 5/ � 0:05 (i.e. the probability of observing zero
jumps is at most 5 %) where the probability of exactly k jumps occurring over t
is P.kI �; t/ D .�t/n

nŠ
e��t. This is given by e��max5 � 0:05 ) �max D ln.0:05/

5
or

�max D 0:60.

2.4.3 The Best and Worst Case Bounds

The best and worst case bounds can be summarized by the following:

˛ 2 Œ˛min; ˛max� D Œ�1:118; �0:309� (11)

� 2 Œ�min; �max� D Œ0; 0:60�: (12)

2We note that management could use another technique to choose bounds such as the 95 %
confidence intervals on the mean estimate for example in Table 3.
3We note that these bounds were chosen heuristically based on ethanol policy history and with
reference to political precedent of the subsidy level. They do not represent a rigorous mathematical
treatment of the small sample population time series.
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3 The Stochastic Control Problem

In this section, we develop the jump diffusion counterpart of our model in [23] which
leads to a system of interconnected obstacle problems, i.e. partial integro differential
(PID) variational inequalities.

The total expected earnings Vi over the life of the project is given by the sum of
its profits, plus the sum of any switching costs incurred over its operating life

Vi.l; c; z; t/ D sup
	;u

E

�Z T

t
e�r.s�t/fIs.Ls; Cs; Zs/ds

C
nX

kD1

e�r.	k�t/Duk�1;uk

ˇ̌
ˇ̌
ˇ .Lt; Ct; Zt; u0/ D .l; c; z; i/

#
(13)

The pair .	; u/ is the control that the manager has over the facility in his ability to
toggle production on and off. It consists of a set of switching times 	k and states
to be switched into uk with It D uk; t 2 Œ	k; 	kC1/. Thus 	k is an increasing set
of switching times with 	k 2 Œt; T� and 	k < 	kC1 given the initial operating state
u0 D i.

If management assumes a worst case pricing scenario for the policy parameters
.�; ˛/, then

Vi.l; c; z; t/ D sup
	;u

inf
�;˛

E

�Z T

t
e�r.s�t/fIs.Ls; Cs; Zs/ds

C
nX

kD1

e�r.	k�t/Duk�1;uk

ˇ̌
ˇ̌
ˇ .Lt; Ct; Zt; u0/ D .l; c; z; i/

#
(14)

where � 2 Œ�min; �max� and ˛ 2 Œ˛min; ˛max�. The limits on � and ˛ prevent
the optimization argument from growing unbounded and becoming singular [29].
The controls .u; 	; ˛; �/ come from an admissible set of non-anticipating controls
(i.e. Ft-measurable and Markovian).

3.1 An Intuition Building One-Dimensional Simplified Model

To make the full model exposition easier and to develop intuition consider, for the
time being, a simplified one-dimensional approximation of the spread less fixed
running costs

Xt D �Lt � Ct � K (15)

where Xt follows a simple Brownian stochastic differential equation

dXt D adt C bdWt (16)
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where a and b are naively chosen to fit the model. To further simplify the process,
assume now that Zt has normally distributed jumps such that

dZt D JdNt (17)

where J � N.˛; ˇ2/. The two (Xt C Zt) can be combined into a jump diffusion
process Yt

dYt D adt C bdWt C JdNt (18)

with solution

Yt D Y0 C at C bWt C
nX

kD1

Jk (19)

where
Pn

kD1 Jk � N.n˛; nˇ2/.
The expected income of the facility over its lifespan is

Vi.y; t/ D sup
	;u

inf
�;˛

E

"Z T

t
e�r.s�t/fIs.Ys/ds C

nX
kD1

e�r.	k�t/Duk�1;uk

ˇ̌
ˇ̌
ˇ .Yt; u0/ D .y; i/

#

(20)

By application of dynamic programming (see [5] or [29]) for optimal switching
problems, the value function can be written as

Vi.y; t/ D sup
	

inf
�;˛

E

�Z 	

t
e�r.s�t/fi.Ys/ds C e�r.	�t/

˚
Vj.Y	 ; 	/ � Dij

��
(21)

where i; j 2 f0; 1g and 	 is the first time it is optimal to switch production regimes.
Now the problem consists of finding the optimal sets of prices and times to either

• hold production in its current state i, denoting this continuation or (hold) set as
Hi, or

• switch production into the other state j, denoting this switching set as Sij.

By another application of dynamic programming and Ito’s lemma for jump dif-
fusions, this equation leads to a coupled system of free boundary PID equations
(PIDEs). The free boundary problem can be written in complementary form by
noting that either it is optimal to switch and Vi D Vj � Dij or it is optimal to hold
and Vi satisfies a PIDE subject to Vi � Vj � Dij. Thus the equation extends on the
whole space easing the need to track the switching boundary as a PID variational
inequality (see [28] for an excellent reference on controlled jump diffusions). Thus
the system of equations may be expressed as

max

2
6664

@Vi

@t
C L ŒVi� C inf

�;˛
I ŒVi� C fi � rVi

„ ƒ‚ …
Hi

; .Vj � Dij/ � Vi„ ƒ‚ …
Sij

3
7775 D 0: (22)
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where the spatial differential part of the generator is

L ŒV� D a
@V

@y
C 1

2
b2 @2V

@y2
(23)

and the integro part is

I ŒV� D �.EŒV.y C J/� � V.y//: (24)

The expectation E is taken with respect to a normal N.˛; ˇ2/ kernel gN

EŒV.y C J/� D
Z 1

�1
V.y C J/gN.J/dJ: (25)

Theorem 1 (Worst Case Price). The minimal optimal control is given by

˛ D ˛min; � D
(

�min if EŒV.y C J/� � V.y/ � 0;

�max if EŒV.y C J/� � V.y/ < 0
(26)

Theorem 2 (Best Case Price). The maximal optimal control is given by

˛ D ˛max; � D
(

�max if EŒV.y C J/� � V.y/ � 0;

�min if EŒV.y C J/� � V.y/ < 0
(27)

Theorem 3 (Worst and Best Case Price if ˛ D 0). The minimal optimal control
is given by

� D �min; (28)

and the maximal optimal control is given by

� D �max; (29)

if ˛ D 0 for all y.

See Appendix 2 for proofs of the above.
An interpretation of the maximal (respectively minimal) optimal control is as

follows: (1) If the expected value post-jump EŒV.y C J/� is better than its current
value V.y/, assume that the jump arrives as (in)frequently as possible 1=�max

(1=�min). (2) Assume that the jumps are in general as (un)favourable as possible
˛max (˛min).
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3.1.1 Lessons from Merton

In the simplification where (1) the policy parameters .�; ˛/ are constant and
(2) switching costs Dij are zero, the problem reduces to a PIDE which yields the
option price

@V

@t
C a

@V

@y
C 1

2
b2 @2V

@y2
C �.EŒV.y C J/� � V.y// � rV C f .y/ D 0 (30)

where f .y/ D yC D max.y; 0/.
Using the Feynman-Kac Formula [28] and following Merton’s classical paper on

jump diffusions [25], the solution to the PIDE is

V.y; t/ D E

�Z T

t
e�r.s�t/f .Ys/ds

ˇ̌
ˇ̌ Yt D y

�
: (31)

Theorem 4 (Constant Coefficient Option Price). The option price V.y; t/
satisfies

V.y; t/ D
1X

nD0

Z T

t
e��.s�t/ �n.s � t/n

nŠ
e�r.s�t/

	
As;n˚.d/ C Bs;np

2

e� d2

2



ds (32)

where As;n D y C a.s � t/ C n˛, B2
s;n D b2.s � t/ C nˇ2, d D As;n=Bs;n and ˚.x/ is

the standard normal cumulative distribution function.

See Appendix 2 for the derivation of the governing PIDE and option price.

3.2 The Complete Problem

Return now to the stochastic control problem for the real option

Vi.l; c; z; t/ D sup
	;u

inf
�;˛

E

�Z T

t
e�r.s�t/fIs.Ls; Cs; Zs/ds

C
nX

kD1

e�r.	k�t/Duk�1;uk

ˇ̌
ˇ̌
ˇ .Lt; Ct; Zt; u0/ D .l; c; z; i/

#
(33)

where � 2 Œ�min; �max� and ˛ 2 Œ˛min; ˛max�. We follow a similar argument as before
using dynamic programming to reduce the switching problem to a single decision 	

Vi.l; c; z; t/

D sup
	

inf
�;˛

E

�Z 	

t
e�r.s�t/fi.Ls; Cs; Zs/ds C e�r.	�t/fVj.L	 ; C	 ; Z	 ; 	/ � Dijg

�
: (34)
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Using Ito’s lemma for jump diffusions and noting as in [5, 29, 37] that the problem
can be written in complementary form as a variational inequality

max

2
6664

@Vi

@t
C L ŒVi� C inf

�;˛
I ŒVi� C fi � rVi

„ ƒ‚ …
Hi

; .Vj � Dij/ � Vi„ ƒ‚ …
Sij

3
7775 D 0: (35)

where the spatial differential part of the generator is

L ŒV� D �l
@V

@l
C ac

@V

@c
C 1

2
�2l2

@2V

@l2
C �� lbc

@2V

@l@c
C 1

2
b2c2 @2V

@c2
(36)

and the integro part is

I ŒV� D �.EŒV.l; c; J/� � V.l; c; z//: (37)

Theorem 5 (Worst Case Price). The minimal optimal control is given by

˛ D ˛min; � D
(

�min if EŒV.l; c; J/� � V.l; c; z/ � 0;

�max if EŒV.l; c; J/� � V.l; c; z/ < 0
(38)

Theorem 6 (Best Case Price). The maximal optimal control is given by

˛ D ˛max; � D
(

�max if EŒV.l; c; J/� � V.l; c; z/ � 0;

�min if EŒV.l; c; J/� � V.l; c; z/ < 0
(39)

See Appendix 2 for proofs of the above.

3.3 The Decision to Enter

Management’s optimal decision time to enter into the business 	 maximizes the
expected value

V.l; c; z; t/

D sup
	

inf
�;˛

E
�

e�r.	�t/ maxfV1; V0g.L	 ; C	 ; Z	 ; 	/ � B
ˇ̌
.Lt; Ct; Zt/ D .l; c; z/

�
(40)

and is a classical “American” style exercise call option. By dynamic programming,
the optimal stopping problem satisfies the PID variational inequality
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max

2
664

@V

@t
C L ŒV� C inf

�;˛
I ŒV� � rV

„ ƒ‚ …
H

; .max.V1; V0/ � B/ � V„ ƒ‚ …
S

3
775 D 0: (41)

This completes the jump diffusion analogue of [23] and represents the optimal entry
strategy for investment into a corn-ethanol biofuel production plant.

4 Numerical Results

This section begins with a numerical investigation of the behaviour of the constant
coefficient analytical model. The section then proceeds with an investigation of
the effects of policy uncertainty on the one-dimensional model including (i) the
loss in value and (ii) the effects on switching decisions (which is also a proxy
investigation of the effects on the entry decision). Finally, the section concludes
with an investigation of the change in value between the full model with both policy
uncertainty and model certainty or uncertainty.

4.1 The Constant Coefficient Model

Consider V.y; t/ in Eq. 32. Its behaviour is monotone increasing in y. Figure 2 shows
that the function is increasing in ˛. This is as expected since if the jumps tend to be
more positive (˛ > 0), the spread tends to jump non-locally to a higher value of y
(recall the option is monotone increasing in y), and vice versa if ˛ tends to be more
negative.

Figure 3 indicates V is an increasing function of � (although it is generally
insensitive to �). This makes sense intuitively since as the frequency of jumps
increases, more volatility is added to the option in terms of Bs;n, and Black-Scholes
style options are increasing functions in volatility.

Figure 4 shows that V is sensitive to � when there is an expected direction with
the jumps (i.e. ˛ ¤ 0).

4.1.1 Impact on Value

The parameters � and ˛ can be interpreted as measures of how infrequently
policy changes occur and where management expects the subsidy to level move
to, respectively. If the subsidy is expected to move up in value ˛ > 0, the jumps
make the project more favourable. The opposite occurs if ˛ < 0: The future policy
outlook is negative, and the project/option loses value.
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Fig. 2 The option value V.y; t/ at various levels of ˛ (expected jump level) given standard
parameters of � D 1 (Poisson arrival rate of jumps), ˇ D 1 (volatility of jump distribution),
a D 0 and b D 1 (drift and volatility of diffusion), r D 0:01 (discount rate), and T � t D 1

(remaining option tenor)

Fig. 3 The option value V.y; t/ at various levels of � (Poisson arrival rate of jumps) given standard
parameters of ˛ D 0 (expected jump level), ˇ D 1 (volatility of jump distribution), a D 0 and
b D 1 (drift and volatility of diffusion), r D 0:01 (discount rate), and T � t D 1 (remaining option
tenor)
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Fig. 4 The option value V.y; t/ at various levels of � (Poisson arrival rate of jumps) and ˛

(expected jump level) given standard parameters of ˇ D 1 (volatility of jump distribution), a D 0

and b D 1 (drift and volatility of diffusion), r D 0:01 (discount rate), and T � t D 1 (remaining
option tenor). On the left, ˛ D 1 and on the right ˛ D �1

As � increases, policy changes occur more frequently which adds project/option
value by means of the increased volatility associated with each jump. As the option
to switch production off mitigates downside jumps on value V , the upside value
of the jump volatility disproportionately increases the option’s value. Figure 3
also reveals that the option is very insensitive to � when there is no expected
“directionality” in the jumps, i.e. when ˛ D 0.

4.2 The One-Dimensional Model

We now turn to an investigation of the effects of model uncertainty for a risk averse
investor into the real option ethanol project. In this analysis, f1.y/ D y and f0.y/ D 0

while D01 D 0:2 and D10 D 0:1.
Figure 5 shows the project valuation results for the expected price with policy

uncertainty, best and worst case prices given policy uncertainty where ˛ D 0 is
fixed and � 2 Œ0; 1�. The underlay shows the switching boundaries Sij in y. Figure 6
shows the same information as Fig. 5 but in this case there is model uncertainty
˛ 2 Œ�0:2; 0:2� with expected parameter ˛ D 0.

4.2.1 Impact on Value

The gap between the best and worst case prices can be significantly large if ˛ is
allowed to vary indicated in Fig. 6; otherwise the difference is small (Fig. 5) as
expected from our results with the constant coefficient model. Since this function
is convex, the integral operator is single-signed and the parameter � assumes either
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Fig. 5 The option value V.y; t/ at an “expected case” of � D 0:1 (Poisson arrival rate of jumps)
and .�min; �max/ D .0; 1/ (parameter boundaries), ˛ D 0 and ˇ2 D 0:1 (mean and variance of
jump distribution), a D 0 and b D 1 (drift and volatility of diffusion), r D 0:01 (discount rate),
and T � t D 1 (option tenor). Switching costs are D01 D 0:2 and D10 D 0:1

Fig. 6 The option value V.y; t/ at an “expected case” of � D 0:1 (Poisson arrival rate of jumps)
and ˛ D 0 (expected mean jump size), but where � 2 Œ0; 1� and ˛ 2 Œ�0:2; 0:2� (parameter
boundaries). The remaining parameters are ˇ2 D 0:1 (variance of jump distribution), a D 0 and
b D 1 (drift and volatility of diffusion), r D 0:01 (discount rate), and T � t D 1 (option tenor).
Switching costs are D01 D 0:2 and D10 D 0:1

�min in the worst case or �max in the best case when ˛ D 0 in the example in Fig. 5
by Jensen’s inequality. The constant coefficient expected case model will always be
bounded by the best and worst case project prices. In these examples, the expected
case is nearer to the worst case since � D 0:1 is closer to �min D 0 than �max D 1.
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4.2.2 Impact on Switching Decision

Although the effects are not very pronounced on the 1 year time horizon, model
uncertainty has an impact on switching decisions. The lower charts in Figs. 5 and 6
represent the switching boundaries

• S01 D fy W V0.y; 0/ D V1.y; 0/�D01g, the set of prices where the operating status
is optimally switched on from idle, and

• S10 D fy W V1.y; 0/ D V0.y; 0/�D10g, the set of prices where the operating status
is optimally switched off from running.

It can be seen that in the. . .

. . . worst case scenario: The operator switches production on later than in the
expected case (i.e. at y > y� if y� is where the operator would switch production
on in the expected case). Similarly, the operator switches production off earlier
compared to the expected case (i.e. at y < y� if y� is where the operator would
switch production off in the expected case).

. . . best case scenario: The operator switches production on earlier and switches
production off later compared to the expected case.

In the example where ˛ D 0 is fixed, the differences in switching boundaries
between the best, worst and expected cases are almost negligible (Fig. 5). However
in the other example where �0:2 � ˛ � 0:2 can vary, the differences in switching
boundaries between the best, worst and expected cases can deviate a great deal.
Thus it is not so much when management thinks a change in policy might occur (i.e.
�-driven) but rather how management expects that policy to change with respect to
its current policy conditions—that is, ˛-driven.

4.3 The Complete Model

This section concludes with a numerical investigation of the ethanol plant value in
the presence or absence of policy uncertainty and model uncertainty. The ethanol
plant is assumed to have a 10 year investment horizon, T � t D 10.

4.3.1 With and Without Policy Uncertainty

We compare the real option project valuation of the ethanol plant in two cases
where:

• Management ignores the uncertainty in the ethanol subsidy policy and assumes
Zt D Z (constant) to take its Jan/2011 value (Table 1),

– in this case, f1.Ls; Cs; Z/ D �.Ls � K1 C Z/ � Cs where Z D $0:45/gallon is
constant (also � D 0); and
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Fig. 7 V.Lt; Ct; Z; t/ without policy uncertainty vs V.Lt; Ct; Zt; t/ with policy uncertainty. Param-
eters (from Tables 2 and 3) are � D 0 and � D 0:156 (drift and volatility of ethanol), a D 0

and b D 0:123 (drift and volatility of corn), Z D 0:45 without policy uncertainty and Zt D 0:45,
� D 0:24, ˛ D �0:69 and ˇ2 D 0:015 (arrival rate, mean and variance of jumps) with policy
uncertainty

• Management considers the uncertainty in the ethanol subsidy policy with known
parameters (model certainty) and assumes the model parameters in Table 3
subject to the initial subsidy level being its Jan/2011 value as above,

– in this case, f1.Ls; Cs; Zs/ D �.Ls � K1 C Zs/ � Cs where Zt D $0:45/gallon.

Figure 7 shows the value functions at various levels of Ct in the presence and
absence of policy uncertainty. Figure 8 shows the switching boundaries in both
cases.

Impact of Policy Uncertainty on Value As inferred from our one-dimensional
analysis in Sect. 3.1, policy uncertainty adds more value to the real option due to
two distinct factors: (1) Given Zt D 0:45 < 0:51 D e˛C 1

2 ˇ2 D EŒJ�, it is likely
that the subsidy policy will jump to a higher level giving the option more value in
the presence of policy uncertainty. (2) The extra volatility provided by the jump
process adds volatility value to the option. The downside of policy switches on an
ethanol plant can be mitigated by switching production off, while the upside value is
maintained by keeping (or switching) production on when prices favourably allow
for it. The capitalized cost of construction on a per bushel basis �B is also included
in Fig. 8.

Impact of Policy Uncertainty on Switching Decisions The boundary at which
production is switched on from an idle state is @S01 and the boundary at which
production is turned off from a running state is @S10. In this case, the initial subsidy



Real Options with Regulatory Policy Uncertainty 259

Fig. 8 The switching boundaries @S01 and @S10 in the presence and absence of policy uncertainty.
Parameters (from Tables 2 and 3) are � D 0 and � D 0:156 (drift and volatility of ethanol), a D 0

and b D 0:123 (drift and volatility of corn), Z D 0:45 without policy uncertainty and Zt D 0:45,
� D 0:24, ˛ D �0:69 and ˇ2 D 0:015 (arrival rate, mean and variance of jumps) with policy
uncertainty

level Zt is less than the long run average EŒJ� D e˛C 1
2 ˇ2

, Zt D 0:45 < 0:51 D
e�0:69C 1

2 0:015. Thus, the operator generally waits longer before turning production
off, due to a positive outlook that the subsidy might jump up to its long term average.
Similarly, the operator generally turns production on sooner in hope that the subsidy
might again jump to its (higher) long run average. More precisely, given a point .c; l/
on @S01 in the absence of policy uncertainty, if .c; l�/ is on @S�

01 in the presence of
policy uncertainty, then l� < l (respectively l� > l) when production is shut down
earlier (later).

Changes in z shift value and switching decisions up or down non-locally as Zt

jumps. The general direction of the jumps is illustrated in Fig. 8 by the arrow Zt
J�!

ZtCdt.
It should be noted that if management were expecting the subsidy to jump to

a lower level, the opposite situation as described above would occur. Management
would switch production off earlier and turn production on later for fear that the
subsidy might fall.

4.3.2 Policy Uncertainty with Model Uncertainty

In the likely event that the distribution and parameters of the regulatory uncertainty
process are unknown, management may choose a worst case valuation for the
ethanol plant project value. The assumed boundaries for policy change arrival rate
are � 2 Œ0; 0:60� and expected mean subsidy policy ˛ 2 Œ�1:118; �0:309�.
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Fig. 9 V.Lt; Ct; Zt; t/ vs inf�;˛ V.Lt; Ct; Zt; t/ with policy (and model) uncertainty. Constant
parameters (from Tables 2 and 3) are � D 0 and � D 0:156 (drift and volatility of ethanol),
a D 0 and b D 0:123 (drift and volatility of corn), and Zt D 0:45, � D 0:24, ˛ D �0:69

and ˇ2 D 0:015 (arrival rate, mean and variance of jumps). Non-constant parameters for model
uncertainty are ˛ 2 Œ�1:118; �0:309� and � 2 Œ0; 0:60�

Figure 9 illustrates the worst case value compared to the expected case given by
the model parameters in Tables 2 and 3. The switching boundaries are illustrated in
Fig. 10 comparing the worst case operating decisions to the expected case.

For completeness, Fig. 11 shows the envelope of best case, worst case and
expected project values in the presence of policy and model uncertainty. The bounds
can be quite large between the best and worst project values even for “seemingly
small” parameter boundaries. The switching boundaries are illustrated in Fig. 12
comparing the best case operating decisions to the expected case.

Impact of Worst Case Model Uncertainty on Value The worst case real option
ethanol plant value represents a lower bound in project value. Figure 9 also includes
the capitalized cost of construction on a per bushel of capacity basis �B. As
expected, fewer projects are net present value positive in the worst case project
value compared to the expected case. That is, given the two sets of prices at a time
t the set of prices that are “Net Present Value (NPV) positive” for entering into the
project are

NPV D f.l; c/ W max.V1; V0/�B > 0g and NPV� D f.l; c/ W inf
�;˛

max.V1; V0/�B > 0g;
(42)

then

NPV� � NPV (43)
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Fig. 10 The switching boundaries @S01 and @S10 in the presence of policy uncertainty and model
uncertainty in the worst case. Constant parameters (from Tables 2 and 3) are � D 0 and � D 0:156

(drift and volatility of ethanol), a D 0 and b D 0:123 (drift and volatility of corn), and Zt D 0:45,
� D 0:24, ˛ D �0:69 and ˇ2 D 0:015 (arrival rate, mean and variance of jumps). Non-constant
parameters for model uncertainty are ˛ 2 Œ�1:118; �0:309� and � 2 Œ0; 0:60�

Fig. 11 V1.Lt; Ct; Zt; t/ vs inf�;˛ V1.Lt; Ct; Zt; t/ vs sup�;˛ V1.Lt; Ct; Zt; t/ with policy uncertainty.
Constant parameters (from Tables 2 and 3) are � D 0 and � D 0:156 (drift and volatility of
ethanol), a D 0 and b D 0:123 (drift and volatility of corn), and Zt D 0:45, � D 0:24, ˛ D �0:69

and ˇ2 D 0:015 (arrival rate, mean and variance of jumps). Non-constant parameters for model
uncertainty are ˛ 2 Œ�1:118; �0:309� and � 2 Œ0; 0:60�
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Fig. 12 The switching boundaries @S01 and @S10 in the presence of policy uncertainty and model
uncertainty in the best case. Constant parameters (from Tables 2 and 3) are � D 0 and � D 0:156

(drift and volatility of ethanol), a D 0 and b D 0:123 (drift and volatility of corn), and Zt D 0:45,
� D 0:24, ˛ D �0:69 and ˇ2 D 0:015 (arrival rate, mean and variance of jumps). Non-constant
parameters for model uncertainty are ˛ 2 Œ�1:118; �0:309� and � 2 Œ0; 0:60�

This means that fewer investments are entered into during times of high policy
uncertainty if management is risk averse.

In certain cases, the integral operator may be I ŒV� D EŒV.l; c; J/� �
V.l; c; 0:45/ > 0 and accordingly � D �min D 0 in the minimization. This is
similar to the case with zero policy uncertainty. Thus, the worst case option value
may at times approach the option value in the absence of policy uncertainty.

Impact of Worst Case Model Uncertainty on Operating Decisions The possible
subsidy outcomes in the worst case scenario have a much more negative outlook
than the expected case. Thus in the worst case scenario, the optimal strategy tends
to be conservative when making switching decisions (Fig. 10). The net result is that
management switches production on much later and switches production off much
earlier compared to the expected case operating strategy.

Comments on the Best Case Model Figure 11 shows that the gap between the
best and worst case prices can be quite large. This is an artifact of the stochastic
optimization problem that leads to very large arbitrage free price good deal bounds
in practice with financial derivatives. Similar to before, management switches
production on earlier and switches production off later compared to the expected
case operating strategy (Fig. 12).
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5 Conclusions

The goal of our paper is to develop a quantitative model for managing and
pricing regulatory risk. The accomplishments and overall theme of our paper are
summarized in what follows.

5.1 Summary

Our paper laid out several research goals to contribute to the existing real options
literature and the less developed body of research in policy uncertainty.

We presented a real option model to attempt to quantitatively model policy
uncertainty using a jump diffusion process. This model allows for the valuation
of long term energy projects in the presence of policy uncertainty. For a corn-
ethanol case study (following [23]), we presented a real option model involving
both standard price uncertainty modelled using a simplified one dimensional jump
diffusion process for the relevant price spread and stochastic subsidy. We followed
this with a more sophisticated multivariate model which independently modeled
both the input and the output price. In addition, this model included the impact
of policy uncertainty using a randomly fluctuating subsidy level. This fluctuating
subsidy was quantified using a pure jump process. Given that there may be model
uncertainty for the subsidy policy process, our proposed model includes a “worst
case” (modelled using a VaR level) policy uncertainty scenario which allows
the project investor to quantify and manage his worst case regulatory downside
risk. This work allowed us to draw some general conclusions with policy level
implications, as summarized and described in the next section.

5.2 Policy Conclusions

We outline the policy effects and numerical conclusions from our analysis in Sect. 4.

5.2.1 Policy Uncertainty

In the case of policy certainty versus uncertainty, for the convex (or “long vol”) real
options considered here, the effects of policy uncertainty always increase the value
of the option when there is no directionality in the subsidy jumps.

More generally, the effects of policy uncertainty may be positive or negative for
the project valuation. For example, if the subsidy is currently low and the future
subsidy level is expected to be higher, the possibility of a jump in policy increases
the overall value of the option. The opposite holds when the subsidy is high and the
future subsidy is expected to be lower than today.
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5.2.2 Model Uncertainty

Typically, the effect of ambiguity in policy uncertainty models on project valuation
is negative: A strongly risk averse manager taking a long position in the option
should price the project using the worst case of possible parameters.

The optimal operating strategy in terms of the sets of prices, times, and subsidy
levels to switch production vary based on the scenario. The strategy however
generally obeys the following rules: (1) If the scenario is a worst case (respectively
best case), then production is switched off earlier (later) compared to the constant
parameter expected case, and production is switched on later (earlier) compared to
the expected case. This represents an pessimistic (optimistic) outlook on regulatory
policy changes. (2) If the scenario is a constant parameter case with policy
uncertainty, then production is switched on earlier (later) if the current policy regime
is lower (higher) than the expected long run trend. Similarly production is switched
off later (earlier) if the current policy regime is lower (higher) than the expected
long run trend.

The anecdotal evidence that suggests businesses delay investment longer in
periods of high policy uncertainty is seen to be consistent with our model,
supporting those claims [3, 17, 35]. In particular, given the tendency is
generally to delay during periods of policy uncertainty suggests that investors
use pessimistic model outlooks when making investment decisions. Given that
fewer projects were net present value positive in the model uncertainty case
versus the policy uncertainty with known parameters case, our model supports
the claim that fewer investments are entered into during periods of high policy
uncertainty.

5.3 Possible Extensions

The lognormal distribution for the policy subsidy jump process was chosen for
several reasons: (1) subsidies cannot become negative; (2) model familiarity, since
geometric Brownian motion itself leads to a lognormal distribution and Merton’s
seminal jump diffusion paper [25]; (3) analytical tractability; and (4) its second
moments exist. The distribution however has large positive skew with a fat tail.
This choice of distribution can lead to results which are relatively indifferent toward
downside risk in the subsidy process, as the probability of observing very low
subsidies is much smaller than the probability of observing very high subsidies.
For reference, plots of the expected, worst and best case subsidy jump probability
distribution functions are shown in Fig. 13 along with a reference case to better
illustrate the positive skew and fat tail.
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Fig. 13 The probability distribution functions dP.J/ of the jumps J of the expected case
LogN.�0:69; 0:015/, worst case LogN.�1:118; 0 W 015/, best case LogN.�0:309; 0:015/, and
a reference case LogN.�0:7; 0:1/ highlight the skew

To improve the model, more classes of jump distributions or non-constant Pois-
son arrival rates could be considered for future work. Another possible improvement
to the expected subsidy jump model would be to incorporate management’s views
on the probability of possible policy outcomes or cases, each with an associated
probability determined by management (an idea motivated by [20] but here simpli-
fied). This is both easier to justify to industry practitioners and greatly simplifies
the analysis as it effectively removes the continuous variable J and replaces it with a
discrete variable Ji. This reduces the dimensionality of the PID variational inequality
system, which greatly reduces the computational time by reducing the problem
to solving discrete weighted probabilities for each outcome Ji. For completeness,
the integro operator would be replaced with I ŒV� D �.

P
i ViPi � V/ and a PID

variational inequality solved for each outcome i with associated value function Vi

and management probability estimate Pi.

Appendix 1: Numerical Method

A brief exposition of the numerical method used to solve this PID variational
inequality system is presented below. We refer the reader to [9, 14, 18, 28] for a more
detailed analysis of the finite difference solutions to stochastic control problems and
PIDEs.
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The general PID variational inequality is of the form

max

�
@V

@t
C L ŒV� C I ŒV� C f � rV; h � V

�
D 0: (44)

where the differential operator is (occasionally suppressing any l; c; z dependence of
�; �; a; b)

L ŒV� D �
@V

@l
C a

@V

@c
C 1

2
�2 @2V

@l2
C ��b

@2V

@l@c
C 1

2
b2 @2V

@c2
(45)

and the integro operator is

I ŒV� D �.EŒV.l; c; J/� � V.l; c; z// (46)

and the constraint is

h D Vu � Du (47)

The numerical solution is obtained via finite differences at grid points
V.li; cj; zp; tk/ D Vk

i;j;p usually using second order centred differences except
possibly at the boundary conditions. The grid points are

tk D t0 C k�t (48)

li D l0 C i�l (49)

cj D c0 C j�c (50)

zp D z0 C p�z (51)

where the increments � need not necessarily be uniform. Divided differences are
used to approximate the derivatives. Two are shown below for reference

@V

@l
� Vk

iC1;j;p � Vk
i�1;j;p

2�l
(52)

@V

@t
� VkC1

i;j;p � Vk
i;j;p

�t
(53)

The integral EŒV.l; c; J/� is simply truncated and approximated along a grid as well

EŒV.l; c; J/� �
Z Jmax

0

V.l; c; J/P.J/dJ �
PX

pD0

Vk
i;j;pg.zp/�z (54)
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where the expectation is truncated by a point Jmax D zP at which the error in the
approximation is small. Note any kind of quadrature rule can be used along with
non-uniform grid spacing besides the rule shown above.

A fitted scheme is used to write out a system of equations for Vk
i;j;p at the grid

points

VkC1 � Vk

�t
C �LVkC1 C .1 � �/LVk C �IVkC1 C .1 � �/IVk C f � 0 (55)

where L is the differentiation matrix associated with the partial differential operator
L including the source term �rV and I is the integration matrix associated with the
integro operator I . The parameters � and � blend averages of the discretized PIDE
at time steps k and k C 1 (e.g. � D 0 is fully implicit and � D 1

2
yields a Crank-

Nicholson scheme). A small abuse of notation Vk refers to the entire collection
of grid points i; j; p at time step k. The running profit function at all grid points is
simply f . The differentiation matrix L tends to be stiff whereas the integration matrix
I tends to be non-stiff allowing for the use of IMEX style time marching schemes.4

For reference, L can be considered a tensor that operates on a square Vi;j at all p.
In tensor notation, at the interior points L is for example

Li;j;i;j D � 2

�l2
1

2
�2

i;j � 2

�c2

1

2
b2

i;j � r (56)

Li;j;i;j�1 D � 1

2�c
ai;j C 1

�c2

1

2
b2

i;j (57)

Li;j;i�1;j�1 D 1

4�l�c
��i;jbi;j (58)

where Li;j;iCi�;jCj� D 0 if ji�j; jj�j � 2. Conditions must be applied along the
boundary (e.g. linearity at far field). The integration matrix I is applied to a column
Vi;j;p across all p at a point .i; j/, like a matrix in p constant across all i; j. For
example,

Ip;p D �

�
1

2
g.zp/.zpC1 � zp/ � 1

�
(59)

Ip;q D �
1

2
g.zq/.zqC1 � zq�1/: (60)

using a trapezoidal quadrature rule.
The system is solved subject to a known final condition V.l; c; z; T/ D Q.l; c; z/

(being a backward Kolmogorov type equation). If there is no salvage value at the

4We note that using a Crank-Nicholson scheme in both L and I appeared to deliver good results.
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end of the facility life VK
i;j;p D Qi;j;p D 0 (where T D t0 C K�t) but in general the

salvage value should satisfy some inequalities around the switching costs Dij.
This is a complementary problem

MVk � b � 0; h � Vk;
�
MVk � b

�T
.Vk � h/ D 0 (61)

where superscript T denotes the matrix transpose. The matrix M is an aggregation of
the integration and differentiation matrix pre-multipliers of Vk while b is a vector of
collected knowns at time k (from k C 1). This matrix system is then solved using an
iterative fixed point method similar to projected successive over-relaxation. Several
iterative schemes for non-linear control problems are described in [1, 9, 10, 14, 18,
28, 37].

Appendix 2: Optimal Control

The intuition behind the proofs of the theorems in Sect. 3 are presented in this
appendix.

Regarding the One-Dimensional Model Optimal Stochastic
Control 3.1

Proof (Theorems 1 and 2). Consider the optimization with respect to �

inf
�min����max

I ŒV�: (62)

Due to the boundedness of �, this problem is nonsingular. Since I ŒV� D �.EŒV.yC
J/� � V.y// is linear in �, it achieves its critical values at the endpoints Œ�min; �max�

and the optimal � satisfies

� D
(

�min if EŒV.y C J/� � V.y/ � 0;

�max if EŒV.y C J/� � V.y/ < 0:
(63)

Turning now to the optimization with respect to ˛,

inf
˛min�˛�˛max

�.EŒV.y C J/� � V.y// ) inf
˛

EŒV.y C J/� (64)
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where we drop the ˛ bounds for notational brevity. The expectation can be written as

inf
˛

EŒV.y C J/� D inf
˛

Z 1

�1
V.y C J/gN.J/dJ; gN is the normal kernel N.˛; ˇ2/ (65)

D
Z 1

�1
inf
˛

fV.y C ˛ C z/gg�
z .z/dz; g�

N is the kernel N.0; ˇ2/ (66)

D
Z 1

�1
V.y C ˛min C z/g�

z .z/dz (67)

if V.y/ is monotone increasing in y which is true of the class of profit functions f .y/

considered in this analysis. (This result follows from the Feynman-Kac or Green’s
formula for V.y/ given f .y/ is monotone increasing.)

A similar argument applies for deriving the maximal optimal control (Theorem 2)
but applied in the opposite direction.

Summarizing, the worst case project value is given by the minimal optimal
control and the best case is given by the maximal optimal control subject to certain
regularity conditions on V and f (namely monotonicity). ut
Proof (Theorem 3). Note that the integro operator I is single-signed almost
everywhere if f is such that V.y/ is convex and ˛ D 0. The justification follows
from Jensen’s inequality V.EŒy C J�/ � EŒV.y C J/� and that EŒy C J� D y C ˛ D y.
Thus

EŒV.y C J/� � V.EŒy C J�/ D (68)

EŒV.y C J/� � V.y/ D 1

�
I ŒV� � 0 (69)

and accordingly � D �min for all y (and vice versa for the maximal control). ut

Regarding the Constant Coefficient Option Price 3.1.1

Proof (Theorem 4). For a function u.Yt D y; t/, applying Ito’s lemma for jump
diffusions results in

u.YT ; T/ � u.y; t/ D
Z T

t
b

@u

@y
dWs C

Z T

t

	
@u

@t
C a

@u

@y
C 1

2
b2 @2u

@y2



ds

C
Z T

t
Œu.Ys C J; s/ � u.Ys; s/�dNt: (70)
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Taking the expectation causes the Ito integral to become zero (since EŒ
R T

t udWsjFt�

D 0 for smooth functions u). The expectation of the jump term becomes

E

�Z T

t
Œu.Ys C J; s/ � u.Ys; s/�dNt

�
D

Z T

t
EJ Œu.Ys C J; s/ � u.Ys; s/� �ds

(71)
since the Poisson arrivals dNt and Brownian motion dWt are independent, and
dNt D 1 with probability �ds or 0 otherwise. Here EJ denotes an expectation with
respect to J only (recall J?Wt).

When u.�; T/ D 0, and the jumps J and Brownian motion are independent, the
expectation is

EŒu.YT ; T/ � u.y; t/�

D �u.y; t/

D E

�Z T

t

	
@u

@t
C a

@u

@y
C 1

2
b2 @2u

@y2
C �.EJŒu.Ys C J; s/� � u.Ys; s//



ds

�
(72)

If u.y; t/ satisfies the nonhomogeneous PIDE

@u

@t
C a

@u

@y
C 1

2
b2 @2u

@y2
C �.EJŒu.y C J; t/� � u.y; t// D �f .y/; (73)

the solution has the probabilistic (Feynman-Kac) representation

u.y; t/ D E

�Z T

t
f .Ys/ds

ˇ̌
ˇ̌ Yt D y

�
(74)

The discounted value function V.Ys; s/ D e�r.s�t/u.Ys; s/ satisfies the PIDE of
Theorem 4 and has probabilistic representation

V.y; t/ D E

�Z T

t
e�r.s�t/f .Ys/ds

ˇ̌
ˇ̌ Yt D y

�
: (75)

The key to solving this expectation is to condition Y on n, the number of jumps
so far, denoted Ys;njn. Note that the probability of observing n Poisson jumps over a
time period s � t is P.n; s � t/ D e��.s�t/ �n.s�t/n

nŠ
. Thus

V D E

	
E

�Z T

t
f .Ys;n/ds

ˇ̌
ˇ̌ n

�

(76)

D
1X

nD0

Z 1

�1

Z T

t
e��.s�t/ �n.s � t/n

nŠ
e�r.s�t/yC

s;n

1q
2
B2

s;n

e
� .ys;n�As;n/2

2B2
s;n dsdys;n (77)
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where As;n D y C a.s � t/ C n˛ and B2
s;n D b2.s � t/ C nˇ2.

V D
1X

nD0

Z 1

�1

Z T

t
e��.s�t/ �n.s � t/n

nŠ
e�r.s�t/.As;n C Bs;nz/C 1p

2

e� z2

2 dsdz (78)

D
1X

nD0

Z T

t

Z 1

�d
e��.s�t/ �n.s � t/n

nŠ
e�r.s�t/.As;n C Bs;nz/

1p
2


e� z2
2 dzds (79)

where d D As;n=Bs;n. Changing variables x D �z and flipping the limits of
integration yields

V D
1X

nD0

Z T

t
e��.s�t/ �n.s � t/n

nŠ
e�r.s�t/

	
	Z d

�1
As;n

1p
2


e� x2

2 dx �
Z d

�1
Bs;nx

1p
2


e� x2

2 dx



ds (80)

V.y; t/ D
1X

nD0

Z T

t
e��.s�t/ �n.s � t/n

nŠ
e�r.s�t/

	
As;n˚.d/ C Bs;np

2

e� d2

2



ds (81)

where ˚.x/ is the standard normal cumulative distribution function. ut

Regarding the Complete Stochastic Control Problem 3.2

Proof (Theorems 5 and 6). The argument for obtaining the optimal � is identical to
the one-dimensional case. Determining the optimal ˛ is similar to the previous case,
but slightly more delicate. Again, it rests on the monotonicity of f . Recall

f1.l; c; z/ D �.l C z � K1/ � c; f0.l; c; z/ D ��K0 (82)

and thus f1 is monotone increasing in z and f0 is unaffected by z. By the Feynman-
Kac representation for V1 in Eq. 34, V1 is monotone increasing in z. Similarly V0,
via the free boundary condition V0 D V1 � D01 in Eq. 35, is monotone increasing in
z by virtue of the boundary condition and regularity results along the free boundary
[28, 29]. Now it remains to show that the expectation has a minimum

inf
˛

EŒV.l; c; J/�

D inf
˛

Z 1

0

V.l; c; J/gLN.J/dJ; gLN is the lognormal kernel LogN.˛; ˇ2/ (83)
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D
Z 1

0

inf
˛

fV.l; c; xe˛/gg�
LN.x/dx; gLN is the kernel LogN.0; ˇ2/ (84)

D
Z 1

0

V.l; c; xe˛min/g�
LN.x/dx (85)

Summarizing, the PID variational inequality yields the worst case project value
(minimal optimal control) when

˛ D ˛min; � D
(

�min if EŒV.l; c; J/� � V.l; c; z/ � 0;

�max if EŒV.l; c; J/� � V.l; c; z/ < 0
(86)

and following a similar argument as above yields the best case value (maximal
optimal control) when

˛ D ˛max; � D
(

�max if EŒV.l; c; J/� � V.l; c; z/ � 0;

�min if EŒV.l; c; J/� � V.l; c; z/ < 0
(87)

ut
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