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Abstract This paper addresses the issue of model calibration to electricity prices.
The non-storability of electricity introduces new problems in terms of modeling
and calibration, especially when the objective is to represent both spot prices and
forward products, the latter showing a particular time interval: the delivery period.
The two main approaches to model electricity prices are: (i) models on a fictitious
forward curve from what we can deduce spot prices and forward products with
any delivery period, and (ii) models on spot prices from what we can deduce any
forward products. In this paper we study both approaches and we focus on the
calibration issues. The first part of the paper studies different calibration methods for
a classic Gaussian factorial model as described in Benth and Koekebakker (2008),
Kiesel, Schidlmayr, and Borger (2009) and mostly based on Heath-Jarrow-Morton
approach (Heath, Jarrow, and Morton, Econometrica, 1992). In this case different
calibration methods can be proposed, based on spot and/or forward prices, but the
main objective is to compare or validate these estimation procedures. We compare
these procedures on the valuation of specific portfolios and we then stress the
high impact of the calibration method. The second part concerns the calibration
issues of a structural model proposed in Aid, Campi, Langrené (2013). In particular
we study the reconstruction performances of forward prices and we address the
issue of model calibration in terms of determining the parameters to exactly fit the
observable forward products. We propose a modification in the structural model to
ensure its ability to be calibrated on all the observed forward products and we give
some illustrations of calibration performances.
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1 Introduction

Modeling electricity prices is a very exciting challenge, as their behaviour is unique
compared to other assets like equities or even other commodities, a fact mostly due
to its non-storability. The underlying incompleteness of the recently deregulated
electricity markets makes possible a vast range of models to price electricity
contracts, and thus scientific literature abounds with models that try to capture the
well-known stylized facts of electricity prices.

An electricity producer needs price models for different applications: electricity
price prediction (in a short-term horizon), risk-management, hedging, pricing (in
a mid-term horizon) and investment decisions (in a long-term horizon). The price
models used must be adapted to the application of interest. In this paper we are
interested in a mid-term horizon and the financial application of risk-management,
pricing and the determination of hedging strategies. We position our study on the
case of an electricity producer who has to manage financial risks. His portfolios are
composed of physical and financial assets:

* Production units. The power generating plants can be represented, in a first
approximation, as a basket of European spread options whose underlying assets
are the spot prices of power and the fuel used to produce electricity. In the
case of thermal power plants the carbon spot price is a third underlying asset.
For example, a gas power plant can be represented as a basket of European
options of payoff (Sf — h8S§ — eS¢ — K)+, with S, being the spot prices and the
superscripts e, g and c are respectively for electricity, gas and carbon, 4% and h°
are coefficients determining the performances of the plant (the “heat rate”), and
K is the fixed production cost. Of course the modelization of power plants may
be more complex once we consider dynamic constraints, starting and stopping
costs. .. But the most important point to note is that the underlying assets are the
spot prices.

» Storage assets. Gas storage and hydraulic dams are the most common storage
assets of a power producer. They are classically represented as swing options that
let the option holder buy a predetermined quantity of energy at a predetermined
price while having some flexibility in the amount purchased and the price paid.
The underlying assets are the spot prices of power and gas for the gas storage
asset.

* Electricity supply contracts. On the other hand, an electricity producer has
contracts for supplying electricity. These contracts may have optionalities' that
allow them to be represented as swing options, moving average options or more
exotic derivatives. The underlying assets are spot prices of power and fuels, but
also forward prices in the case where the sale price depends on some historical
forward prices.

'For example, a load curve contract allows the owner to buy at a fixed price an undetermined
quantity g, of power in an interval [¢]"" ; g}"*"] around a specific load curve.
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In order to manage the risks of such portfolios, a price model is needed to represent
both spot prices and forward products, on several commodities in the Energy market.
Therefore we focus on adapted models for this objective, in particular we are
not interested in models that exclusively represent spot prices (see [7] for some
examples) or, on the other hand, exclusively represent forward products as it is
proposed, for example, in [6, 16].

We can classify the electricity price models into two main categories depending
on the element considered as the basis of modelization, but all the models aiming
to represent both spot prices and forward products need to determine the “forward
curve”, i.e. a function F,(T) defining fictitious forward contracts delivering IMWh
of electricity at dates 7' during one unit of time (1 h or 1 day).

The first class of models is dedicated to directly represent the forward curve and
is mostly related to classic interest rate models like in [13]. We refer to [6] and [16]
for some examples and [14] to justify using interest rate models for electricity prices.
The main advantage of this class of model is the ability to use the broad literature
of interest rate models which leads, in general, to a lot of closed-form formulas of
pricing and an easy determination of hedging strategies. However, the calibration of
these models is a real issue in the case of the power market because the observed
quotations are not some points of the forward curve, but a weighted average of the
forward curve over different periods (the delivery periods, as detailed in Sect. 2).
Therefore the relationship between the model parameters and the observed products
is more complex.

The second class of models focuses on the spot price representation. The starting
point is then to model power spot prices as finely as possible, using sophisticated
processes, as done for example in the popular jump-diffusion model from [10]. This
has also lead to a new methodology for forecasting and modeling spot prices, and we
refer to [19] for a complete panel of statistical methods that are used with reduced-
form models. These models may depend on several hidden factors [5] or other
observable factors. In particular, structural models define a relationship between the
power spot price, the fuel spot prices and other observable variables like demand
and production capacities, temperature. . . Various structural models exist which we
refer to [9] for a complete survey, underlying the fact that they differ depending
on the drivers they take into account. For example, some authors decide to link the
prices only to the demand, as [4] did in what is often referred to as the first structural
model. The most relevant drivers are the capacity, the demand, and the prices of fuels
needed to produce electricity, which are directly observable, and thus some have
studied the performances of their models by confronting their simulated spot prices
against historical data, as it was done in [2]. As for any spot price model, forward
prices are deduced using no-arbitrage arguments, leading, for structural models, to a
relationship between electricity forward prices and fundamental drivers like forward
prices on fuels.

The objective of this paper is to study the calibration issues for each class of
models. Firstly we study a factorial model representing the forward curve, with
two Gaussian factors, as proposed in [16]. In the case of forward curve models,
the calibration on initial forward products is trivial, it is sufficient to determine
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the appropriate initial forward curve. However the model parameters have to
be estimated. In this part the proposed estimation procedures are not especially
original, though the calibration on forward volatilities has not been described, to
our knowledge, in previous literature. But the main objective is to highlight the
practical problem of calibration due to the complex relationship between parameters
and observed products, and also due to the real need to represent both spot prices
and forward products.

In a second part, we study the structural model proposed in [2] in terms of
forward price reconstruction and its ability to be calibrated. To our knowledge, this
topic has not been treated in the literature for structural models, hence this will form
the main contribution of this paper. The efficient method of calibration we propose
allows to widen the application scope of such a structural model. In particular it
opens up the possibility of using structural models for pricing applications.

The paper is organized as follows. Section 2 concerns the study of a 2-factor
model and proposes a comparison of calibration results in a simple example of
pricing application. Section 3 is focused on a structural model and its ability to
represent forward prices and to be calibrated. The conclusion and some perspectives
are proposed in Sect. 4.

2 Parameters Estimation for a 2-Factor Model

In this section we study the estimation problem for a very classic factorial model
used to represent power prices. The exposed procedures are not original but the
objective is to stress the estimation issue once the model is used to represent
both spot and forward prices. The factorial representation of the power forward
curve was already studied, for example in [18] and justified in [14]. The authors
in [17] highlight a decomposition in two factors for modeling power prices in the
Norwegian market, with a weak correlation between those two factors. And, in [16]
an explicit two-factor model is proposed in the risk-neutral probability:

dr(T) —a(T—1) Jy/) O
= o,(t dwy; 1dw 1
D) os(t)e i+t o()dw; (D

where a € R} and o,(f) and o;(f) are positive integrable functions. This model is
very close to the well known Gabillon model [3] and exactly the same for a specific
form of o;(¢). In all this paper the time is measured in years, the “mean-reverting”
parameter o will then be measured in year™'.

Because of the presence of ¢=*("= in the first factor we call it the “short-term
factor”, and the second term will be called the “long-term factor”. Also the form of
the short-term factor allows us to represent the specific behavior of power prices:
increasing volatility when the maturity goes to zero. For simplicity we consider no
correlation between the two Brownian motions but all that follows can be easily
extended with a non-zero correlation.
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The main advantage of using Heath-Jarrow-Morton [13] type factorial models
for power prices is its ability to be calibrated on observed forward products by
specifying an appropriate initial forward curve Fy(T), and, because of the broad
literature of this type of modeling (especially for interest rate models), an easy use
for pricing applications. We note also that in the case of commodity price modeling,
using HIM framework is simpler than for interest rates because no drift condition
must be satisfied, except drift equals zero.

In the following we aim to highlight, however, the estimation issue when, as a
power producer, both spot prices and forward products must be well represented. In
particular we will expose two different estimation methods.

* The first estimation method is based on the observed forward products where the
objective is to fit the volatility curve. In this context we stress the difficulty due
to the forward product properties (with a delivery period) that makes its process
generally non Markovian and we then propose an approximation on the diffusion
process to make the parameters estimation feasible.

* The second estimation method is based on both spot prices and forward products.
In this context we describe the spot price model in terms of an “observation-state
equations” system to use the classic Kalman filter and estimate the short-term
factor parameters. Long-term forward products are used to estimate the long-
term volatility o;(z).

With a simple example of pricing application we propose to stress the high impact
of estimation procedures to the indicators of interest. The objective is, in this simple
example, to give a performance measurement by comparing the different results to
a “benchmark” value. However the objective is not to come to a conclusion on any
ranking of calibration methods but only to stress their impact in the context of the
power market.

2.1 Method 1: Calibration on Forward Volatilities

In this section we develop a calibration method based on forward price observations.
The proposed approach aims to fit the forward price volatilities. Although this
approach is classic, the main issue is due to the specificities of power forward prices.
Indeed the difference between the forward prices represented in model (1) and
the observed forward products (with a delivery period) makes the calibration more
complex. In this context we propose some approximations to make the parameters
estimation feasible. In particular we propose an approximation of forward product
diffusion by a Markovian process.

Equation (1) gives the dynamics of a “unitary” forward price, i.e. a forward price
of an instantaneous (or unitary) delivery period. The available observed products
are defined by F,(T, ) as the price at time ¢ of IMWh delivered from 7 to T + 6,
6 being called the “delivery period”. Let us consider a discretization time step
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h (1h for example). From Eq. (1) and the assumption of absence of arbitrage
opportunity we can deduce the relationship between forward products and unitary
forward prices:

7—1

F(T,0) = Z F(T + ih) )

and their dynamics:

>

h . ,
dF(T.0) = 2 )" [os(z)e—a<T+l—’>dw§" n o,(t)dwi”] F(T + ih) 3)
i=0

=

The presence of F;(T + ih) illustrates that, in general, the SDE for F,(T, 6) is not
Markovian, as already shown in [6], which makes the calibration intricate. The
approximation we propose is based on the introduction of shaping factors, defined
as follows:

4T _ F(T + ih) : 0

L Vi=0,...,——1 4
FA(T,0) : I @)

These shaping factors can be interpreted as weighting factors applied in hour (or
day) i of the delivery period [T ; T + 6] with respect to the mean value F,(7T, ) of
forward prices over [T ; T+ 6]. One can note that the shaping factors are normalized

- -1 .
by definition because ) " AT — %. One can also note that these shaping factors

are random and depend on the quotation date r. With the introduction of shaping
factors the SDE on F;(T, ) can be rewritten:

dF (T, 6)

_ —a(T—1) () )
= o,(t v, T,0)dw dW. 5
FTg) —owe (1.7.0)aW;” + oy(1)dW, 5)

0
with U(¢,T,0) = g Zf;ol AE’T'Ge_“”’ being the weighted average of the shaping
factors over the delivery period. The fact that the dynamics on F,(T, ) is neither
Markovian nor Gaussian is now reflected in the fact that ¥ (¢, T, 8) is random and
depends on time .

tit1 — Iy We consider the following approximations.

* The functions o,(f) and o;(¢) are constant over each interval [z, ; tn+1]

» The shaping factors are constant with respect to time ¢: )t’ L0 = \L ;

2The time step 8¢ will be related to the observed prices, therefore §t may be different from the
discretization step & of the delivery period.
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0_ ‘
Therefore the function ¥(¢t,T,60) = ¥(T,0) = g Yo 01 /\iT’ee_O”h does not depend
on time ¢ and the return R, (T, ) of forward products between t,, and ¢, is given by:

Fil (T» 9)
Rn(T, 0) = log ﬁ
1
- —zaf(T, 0) + oy (t,)e” TP (T, 0) /v (e, 8t)e’ + 03(t,) vV Ste!,

with & and &/ two independent Gaussian random variables of zero-mean unit-
variance and

ast __ 1
(a,80) = <

02(T,0) = o2(t,)W*(t,. T, 0)e Ty (2a, 81) + 07 (1,)51

..........

constant volatility functions o,(f) = o, and 0;(f) = 07, we can therefore compute
the theoretical forward returns depending on the three parameters oy, 0; and o and
the corresponding volatility:

N—1
1
V2(T.0,a.0,0) = v 2::0 Var [R.(T, )] (6)

In the particular case where we assume constant shaping factors AiT’e = | we obtain:
Va(T,0,a,0,,0) = @AW (0)ov(2a, §) + o}t (7
with A = Nh the quotation period, and

11— 24 hl—e

¢(A) = Nm and l1’(9) = gm

®)

The calibration consists in estimating three parameters, oy, 0; and . A first
solution would be to estimate them by maximizing the likelihood function, therefore
to estimate parameters that fit as well as possible the observed values of forward
returns. However empirical studies have shown that the parameter values are
very sensitive to the choice of products considered for the estimation. Instead we
propose a calibration method consisting in fitting the volatilities of the observed
forward products. More precisely from the observed forward returns R°*(T, §) =

log F}TET(Z;) ) we can compute the empirical volatility:
Q. 1 &
V2 (T,0) = —— > (R?(T,0) —R(T,0))>, R(T,0)=— ) RP(T,0
em,,<)N_1n;<n() (T.0)) ()N;n()

€))
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Remark. If derivatives on forward products are available, it is possible to compute
the implied (Black) volatility instead of the historical volatility.

The calibration procedure then consists in optimizing the distance between
theoretical and empirical volatilities for all observed forward products:

(@, 6, 6)) = argmin (a, 05, UI)Z (mep(T, 0) — Va(T,0,a,0,, 0;))2 (10)
(T.0)

2.2 Method 2: Calibration on Spot Prices and Long-Term
Forward Products

By integration of (1) and taking the limit 7 — ¢ we obtain:

—2at

1
log S; = log F,(f) = log Fo(t) — = 03; + o,zt
21 20
t t
+ / o, T aW) 4 / o1 dW
0 0
By noting

t t
Xt; _ / Use—a(t—u)dwlis) and th = / U[dWl(j) (11
0 0

We can rewrite the spot price dynamics as a (state - observation equations) system:

dF (¢
d(log$S,) = (% + ,u(t)) dt + dX’ + dX! (12)
dX} = —aX’dt + o, dW" (13)
dx' = o aw!” (14)

with u(¢) = % [0'36_20” + 012].

The drift part can be treated as a seasonality component of the spot price.
Its estimation can be made by a deseasonalization step. In the following this
seasonality will be represented by seven daily parameters, 12 monthly parameters
and one parameter per year, which are estimated by a classic linear regression,
with additional constraints of normalization for the daily and monthly parameters.
After this deseasonalization step, the maximum likelihood estimation of (o, 0y, @)
can proceed from the residual by using a Kalman filter [12, 15] to compute the

likelihood. In order to also use forward products in the calibration we propose
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to first estimate o; from long-term forward products (year-ahead or season-ahead,
depending on the market) with the approximation:

dF(T. 9) aw!, fT—t>>0 (15)
—— X0 , 1T —
F(T.0)

The maximum likelihood estimation from spot prices then proceed to estimate the
short-term parameters o, and «, with this pre-estimated o;.

2.3 Results

This section shows an illustration on the impact of the calibration methods to a
simple pricing application. As already said the objective is not to give a ranking
of calibration methods, but only to stress and quantify the difference of results, in
terms of value for a simple portfolio, due to the choice of the calibration method.

2.3.1 Data Set

We consider a portfolio composed of a strip of European options on forward
products. More precisely, we consider 24 European options on monthly forward
products: product “April-2013” to product “March-2015”. The date of pricing is
to = March 12th, 2013 and all the options are at the money. We consider two
different markets: the UK power market and the French power market. The main
advantage of considering options on monthly forward products is the possibility to
have a “benchmark” value. Indeed, one can consider a model directly on forward
monthly products, as proposed in [6], calibrated on observed empirical volatilities.
let us denote by M, = T — ¢, then the benchmark model can be written as follows:

dr,(t+M,)
Fa+ M) o(M)dw, (16)

where o (M) is a piecewise constant function fitting exactly the empirical forward
volatilities.

We consider 1 year of historical data for the calibration on forward products. The
products used for calibration depend on the market.

* The products used for the calibration in the UK power market are: 1 to 4 Week-
ahead, 1 to 4 Month-ahead, 1 to 4 Quarter-ahead and 1 to 6 Season-ahead.

* The products used for the calibration in the French power market are: 1 Week-
ahead, 1 to 3 Month-ahead, 1 to 3 Quarter-ahead and 1 to 2 Year-ahead.

The shaping factors )tim are all considered equal to 1. This strong approximation
is only used for the calibration purpose because it has no significant impact on the
reconstructed volatilities.
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Concerning the calibration on spot prices, we consider 2 years of historical data
to estimate the seasonality part and 1 year of the residual signal to estimate the short
term parameters o, and «. The long term volatility oy is estimated as an averaged
volatility of the 1 and 2 year-ahead products for the French power market, and as an
averaged volatility of the 1 to 6 Season-ahead products for the UK power market.

2.3.2 Calibration Results

Table 1 shows the estimated parameters on the UK power market with respect to
the calibration method and Fig. 1 illustrates the resulting forward volatilities recon-
structed by the 2-factor model in comparison to the empirical forward volatilities.
We can note that the empirical volatilities do not seem to decrease monotically with
the maturity. This effect can be mainly explained by the overlapping delivery period
of the forward products. Concerning the reconstructed volatility curves we can
observe that the long-term volatility values are similar due to the quasi-similarity of
its estimation procedure. The most important point is the difference in value for the

Table 1 Estimation results on UK and French power: estimated parameters with respect to the
calibration method

Parameter | Calibration on forward volatilities Calibration on spot prices

UK power market | French power market | UK power market | French power market

0, (%) | 19.1 45 84.5 302

a¥™l) | 137 8.73 162.65 88.15

0, (%) 9.8 11 9.8 11
0.2,

-o- Empirical volatilities
—— Estimation on forward volatilities
0.18 - -s- Estimation on spot prices

0.16

0.14

012+ A

0} /\ ;
w Qv‘
0.08 L L L L )
1WAH 1MAH 1QAH 1SAH 6SAH

Product

Fig. 1 Estimation results on UK power market: empirical volatility (blue line with circles),
reconstructed volatility of the 2-factor model calibrated on forward volatilities (red line) and on
spot prices (black line with squares)



Calibration of Electricity Price Models 193
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35F
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15+ —e— Empirical volatilities
—— Estimation on forward volatilities
Tr -=- Estimation on spot prices

05 1 1 1 1 1 1 1 J
Mar-13 Jun-13 Sep-13 Jan-14 Apr-14 Jul-14 Oct-14 Feb-15 May-15
Month

Fig. 2 European option pricing on UK power market: benchmark value (blue line with circles),
values from the 2-factor model calibrated on forward volatilities (red line) and on spot prices (black
line with squares)

short-term parameters: a factor 4 in o, and a factor 100 in & from the estimation on
forward volatilities to the estimation on spot prices. In the case of calibration on spot
prices, the parameter « can be interpreted as a “mean-reverting” coefficient driving
the spot prices. Its estimated value then shows that the spot price presents highly
mean-reverting behavior, this being mostly due to the presence of spikes. This high
value of « leave a single constant volatility factor (the long-term factor) to fit the
whole forward volatility term structure. In this case the estimated forward volatility
curve, as shown in Fig. 1, is nearly completely flat and the well known Samuelson
effect cannot be captured. On the other hand, because the same parameter o drives
the decreasing speed of the forward volatility curve, it becomes obvious that the
estimated values are completely different and depend on the calibration method.

In Fig.2 we illustrate the impact of the estimation methods in the value of the
“toy” portfolio. Compared to the benchmark value, we notice a weak error with
the value computed from the two-factor model calibrated on forward volatilities.
This confirms the results of [17]: two factors can be sufficient to represent forward
products. However this does not take into account the need to also represent spot
prices. And, as shown in Fig. 2, the resulting value, when the two-factor is used with
parameters estimated on spot prices, highly underestimates the benchmark value
with an error of around 20 %. Similar remarks can be made in the French power
market (Table 1, Figs. 3 and 4) where the error can reach 30 % with the two-factor
model calibrated on spot prices.

The main conclusion is not to reject the calibration on spot prices, because
the chosen application context (pricing European options on forward products) is
completely adapted to a calibration on forward volatilities. This context allowed us
to build a benchmark value and then to make an objective comparison of calibration
methods. Another consideration, for example with a portfolio exposed on spot
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—o— Empirical volatilities
—— Estimation on forward volatilities
—-=— Estimation on spot prices

0
TWAH TMAH 2MAH 3MAH 1QAH 2QAH 3QAH 1YAH 2YAH

Fig. 3 Estimation results on French power market: empirical volatility (blue line with circles),
reconstructed volatility of the 2-factor model calibrated on forward volatilities (red line) and on
spot prices (black line with squares)

4~
35+
3F

25¢F

-e-Empirical volatilities
——Estimation on forward volatilities
—-=—Estimation on spot prices

O 1 1 1 1 J
Mar-13 Jun-13 Sep-13 Jan-14 Apr-14 Jul-14 Oct-14 Feb-15 May-15
Product

Fig. 4 European option pricing on French power market: benchmark value (blue line with circles),
vale from the 2-factor model calibrated on forward volatilities (red line) and on spot prices (black
line with squares)

prices, would have shown that the calibration on spot prices is more adapted, but
in this case a benchmark value cannot be built easily and is still an open problem.
The main conclusion is that, if the objective is to represent both spot forward prices,
two factors are not sufficient and, before the calibration methodology, a study of
more complex models is necessary. For example, adding at least a decay factor
(i.e. a second mean-reverting parameter) in the long-term factor would allow us to
capture both mean-reverting behaviour of spot prices and the Samuelson effect on
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the forward volatility curve. However this change of model will create a decreasing
volatility toward 0, which may be contrary to the observed volatility curves (see,
for example, Fig. 3 which shows that the forward volatility curve seems to converge
toward a positive value). Another solution would be to add a third factor of the
same form as the short-term factor, therefore to have two mean-reverting parameters
as previously and to keep a non-zero limit value of the forward volatility level.
However the issue of calibration will remain and increase with an increasing number
of factors.

3 Calibration of a Structural Model

In this section we study the second class of commonly used models for power prices:
the class of structural models. This approach is more recent and adapted to the
stylized facts of electricity. In particular it allows to represent a strong relationship
between the power spot price and the factors that explain it: the fuel spot prices, the
demand and the production capacities. This section focuses on a particular structural
model, proposed first in [1] and modified in [2]. By definition the model is adapted
to represent power spot prices. However, to our knowledge, there is no literature on
the performances of this kind of models in terms of forward price representation.
This is the first objective of this section and, as a natural sequel, we address the
issue of calibration on observed forward prices.

3.1 Reminder of the Model

The structural risk-neutral model we study in this paper is a modified version of
the one introduced in [1], and its complete presentation can be found in [2]. In this
section, we recall the approach and the main results obtained by the authors.

3.1.1 Approach and Main Results

The model is derived from the aggregation of two essential observations. On the
one hand, when the market is not in a period of stress, the price of the marginal fuel
of the generation system will be the dominant part of the electricity spot price. On
the other hand, at times of market stress, the well-known spikes of the electricity
spot prices will occur when the demand reaches the system maximal capacity. In
this model, such behaviour is captured by a “scarcity” function, that will explode to
form the prices spikes, thus leading to the following form for the spot price:

n
S, = g (C'" —D,) Z H'si1 (Dierl}: (17)

i=1
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Production Cost Demand Demand
(eur/GWh) Off Peak Peak

M, =S}

M, = n*S?

R Capacity
(GW)

Wind

R,

max
i

D, el}? D, eI}

Fig. 5 Illustration scheme of electricity price construction

with D, the demand, C;', i = 1,...,n the capacities of the fuels used in the
production system, /' the corresponding heat rates, S’ the corresponding spot prices
of fuels, I' the capacity interval where fuel i is marginal (see Fig.5), C"* =
> 7_, C% the total capacity of the production system, and g the “scarcity” function:

g(x) = min (M, 1) Lo + M1, .
x\}

Equation (17) that defines the model can be summarized in a simpler way: when
the demand is in the marginal interval of the i fuel, the spot price of electricity is
equal to the cost needed to produce 1IMWh of electricity from the i fuel, times the
scarcity factor.

Remark. In this model the merit order of fuels is assumed to be fixed. For this
study we keep the same assumption for more simplicity and also in order to keep
acceptable computation time.

This spot model has been backtested, using historical data for demand, capacities,
and fuel spot prices. The parameter M of the scarcity function is estimated so as to
roughly match the high cap on electricity spot price, defined by the market as 3,000
€MWh.? Its estimated value is 30. The other parameters of the scarcity function

3http://www.epexspot.com/en/product-info/auction/france.
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Table 2 Hourly parameters of the scarcity function g

Hour (h) |y v Hour (h) |y v

0 0.44634 | 2.5137 |12 0.73737 | 6.517
1 0.67993 | 4.0184 |13 0.53414 | 4.1539
2 0.82051 | 5.2762 |14 0.6109 4.6532
3 0.86753 | 5.0142 |15 0.68395 | 5.0617
4 0.84629 | 4.7554 |16 0.9543 8.9007
5 0.68841 | 4.2384 |17 1.5229 | 29.843
6 0.7833 6.4935 |18 1.8399 | 57.121
7 0.97349 | 12.1802 |19 1.1405 | 14.1943
8 0.77457 | 7.5105 |20 1.0153 9.7041
9 0.8497 8.521 |21 0.56393 | 3.8245
10 0.72403 | 6.5117 |22 0.55286 | 3.973
11 0.63956 | 5.6207 |23 0.6688 4.6805

have been estimated to best fit the model price with the historical spot prices, for
each hour of the day. The results can be seen in Table 2 and more performance
illustrations can be found in [2].

The main objective is not to pursue the performance evaluation of the spot model.
We intend to take a closer look at the underlying structural relationship for the
forward prices, and then we start by recalling the pricing methodology adopted for
this model. The presence of the demand and capacities implies an incomplete market
setting, and thus an infinity of no-arbitrage prices for any derivative or, equivalently,
an infinite number of risk-neutral measures. The criterion used to value an electricity
derivative for this model is the Local Risk Minimization approach, which allows us
to choose a risk-neutral measure Q. Technical details concerning the choice of this
measure, which uses the Local Risk Minimization principle (introduced in [11]),
can be found in the original paper. The main results are detailed in Appendix 1 and
lead to a no-arbitrage price for a forward price F¢(T) on electricity that takes the
form:

F(T) = E¥[S;| 7],

with 7, = Z5Vv .ZE v .ZP the filtration representing the market information at time
t, which is the filtration generated by the randomness of the fuels, the demand and
the capacities, and @ obtained using Local Risk Minimization, satisfying @ =Pon
FE v FP. Consequently, the forward price takes the simple form:

F{(T) =Y WG (t.T.C,.D,) FI(T).

i=1

G'(1.T.C..D) = E [¢(C} = D)1, e |72
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If we want to reconstruct the real forward prices that are exchanged on electricity
markets, we need to average the forward price with instantaneous delivery over the
delivery period [T, T + 0] leading to the final form:

n 1 T+6 . o
F(T.0) =) (5 pREAE T’,Cf,Df)) W F(T) (18)
i=1 T'=T

stochastic weights

This result is the core of this study: starting from a spot model, we necessarily have
a result on forward prices involving the forward prices on fuels, the demand process
and the capacities processes. In the following we will study the performances of
this forward relationship as well as classic studies on spot prices like for example in
[1, 8]. Because this relationship shows the historical probability of demand D, and
capacities C! the global model needs a specification of their dynamics.

3.1.2 Demand and Capacities Modeling

We now need to model the behaviour of the electricity demand and capacities that
we take into account in the model. We follow the same model introduced in [2], and
thus we decide to decompose the demand and capacities processes into two parts: a
deterministic part fx(¢) and a stochastic part Z (¢):

D, = fp(1) + Zp(),

Ci=fi(t) + Z(®), fori=1,...,n
The deterministic part will model the seasonal trend of the demand or capacities,
while the stochastic part will capture the randomness of these processes. We choose
to slightly modify the original model for the seasonality functions. For all the
processes, we will take into account the yearly seasonality, and a week trend, that
will capture the trend of every hour of the week, leading to a 168 parameters. This

can be interpreted as a week scheme, that will be reproduced all year long, following
a yearly seasonality drift. We decide to assume:

fo(r) = weekp(t) + di + dy cos 2n (1 — d3)),
fi(t) = week;(t) + ¢} + ¢} cos (271(t — c’3)) fori=1,...,n

We keep the Ornstein-Uhlenbeck form of the stochastic parts, leading to:

dZp(t) = —apZp(t)dt + opdW>, (19)
dz,(t) = —a;Zi(t)dt + 0,dW', fori=1,...,n (20)
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3.2 Results on Reconstructed Forward Prices
3.2.1 Description of the Dataset

The whole dataset consists in 4 years of historical data from January 1st, 2009 to
December 31st, 2012. Data from Demand and capacities have been retrieved from
Réseau de Transport Electrique (RTE,*) whereas data of fuel and electricity prices
come from Platts.’ We consider a simple case with three types of production units:
nuclear, gas/coal and oil power plants. This allows us to consider a fixed ranking of
production cost, the cheapest cost being for nuclear plants and the most expensive
being for the oil power plant. Carbon emission taxes are taken into account. Table 3
presents the datasets used in the estimation. It is interesting to note that we used
day-ahead demand, because the demand, as it appears in the spot model, is used
to model the spot price of electricity, which is a day-ahead price as well. Thus, in
this forward framework, we need to stay consistent with the spot model, and use
day-ahead demand.

3.2.2 Estimation Results for Demand and Capacities Parameters

To estimate the parameters of the demand or capacities processes, we follow the
same framework: first we estimate the parameters of the seasonality function, and
then we estimate the Ornstein-Uhlenbeck parameters. The seasonality estimation is
done by using classic statistical tools like linear regression methods and the details
can be found in Appendix 2. For the stochastic parameters, we used ordinary least
squares to estimate the parameters of the Ornstein-Uhlenbeck processes, securing
confidence intervals (Table 4).

Table 3 Description of the dataset

Name Source | Data | Frequence/type | Dates covered/value
Demand RTE D, Hourly 2009-2012

Nuclear capacity !

Coal+gas capacity C?

il capacity c?

Fuel forwards Platts | Fi(T) | Daily 2009-2012

Nuclear heat rate I Constant 0.84.10—4
Coal+gas heat rate hy 0.45

Oil heat rate h3 1.5

4www.rte— france.com.

Swww.platts.com.


www.rte-france.com
www.platts.com

200

0. Féron and E. Daboussi

Table 4 Demand and capacities parameters estimated from the whole dataset

Parameter | Estimate | Confidence interval | Parameter | Estimate | Confidence interval
d; 0.37389 | 0.3464-0.40137 c? 4.6952 4.6855-4.7049
d> 1.967 1.9123-2.0218 3 1.3929 1.3753-1.4105
d; 0.14137 | 0.14095-0.14181 | c3 0.19436 | 0.19345-0.19529
ap 32.7958 | 27.2804-38.3112 o 21.367 16.7558-25.9782
op 16.7316 | 16.1176-17.4223 02 5.0362 4.8514-5.2441
cl 7.7918 7.785-7.7985 c 49.6449 | 49.6182-49.6716
cl 0.91707 | 0.90447-0.9297 a 7.0054 6.9545-7.0563
di 0.18299 | 0.18218-0.18382 | c3 0.17465 | 0.17428-0.17501
o 26.4656 | 21.4961-31.4351 a3 7.842 4.8483-10.8358
01 4.8794 4.7003-5.0808 03 11.7357 | 11.305-12.2201
= Demand =—— Coal capacity === Oil capacity Nuclear capacity
T T T T T T T
2 - |

AW AW A WA AN

2 0 — ]

o Vv VN

g J

=

S -

-6 ! ! ! ! ! ! !
Mon Tue Wed Thu Fri Sat Sun Mon

Days of the week

Fig. 6 Estimated week parameters

Figure 6 shows the estimated values of the weekly parameter for
capacities. It underlines the fact that no weekly seasonality can be

capacities, while it is a major feature of the demand.

3.2.3 Reconstructed Forward Prices

demand and
seen for the

In order to study the performances of forward price reconstruction we implemented
the following algorithm: at each date ¢ from January 1st, 2009 to December 31st,
2012,

1.

2.

Estimate parameters of demand and capacities processes from 2 years of

historical data.

Consider the observed forward fuel prices Fi(T, ) for all observable (T, §) and

assume F!(T') = FI(T,0) forall T’ € [T, ; T + 0]

. Compute Eq.(18) to build the electricity forward price

observed one.

and compare to the
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The algorithm is implemented in Matlab 2010a on a laptop.® The computation time
is mainly due to the computation of the functions H and ¢ defined in the section
“Computing the Stochastic Weights” in Appendix 1. If we use the series expansion
approach proposed in [2], based on the extended incomplete gamma function, the
reconstruction of the 1-Year-ahead product for only one date takes 21 s. If, instead,
we approximate the functions H and ¢4 by Monte Carlo approach with 400 samples,’
the reconstruction of the 1-year-ahead product takes 2.3 s.

Figure 7 shows the reconstruction results for 1-month-ahead, 1-quarter-ahead
and 1-year-ahead products. We can remark satisfactory reconstruction of the
I-month-ahead product, capturing level and seasonality quite well. The fundamental
relationship (18), i.e. the link between electricity forward prices and an expectation
of demand and capacities levels, seems dominant in the explanation of the 1-month-
ahead. The 1-year-ahead reconstruction is also efficient, but we have to note a level
underestimation for the period 2009 to 2010. Although no changes in demand and
capacities have been observed at the end of 2010, the reconstruction results are more
efficient during the period 2011 to 2012. There is no explanation at this time about
this particular change of behavior and it remains an open question. Reconstruction
results are less efficient for the 1-quarter-ahead product, where, in particular, the
level is not well captured. The relationship (18) is then not the fundamental element
that drives the price of this product. We must further investigate the comprehension
of the market actors to understand this particular effect.

3.3 Calibration

In the previous section, we have seen the ability of the model when it comes to
reconstructing the forward prices. But a new question arises: is it possible, with this
model, to reproduce exactly the forward prices that we can observe, at a certain
time? This question is extremely important on the markets, as it is very important
to be able to fit a model to the real prices in order to avoid any arbitrage possibility.
In this section, the aim will be to calibrate the model on the forward contracts that
we can observe on the markets, which is completely different from a standard spot
model calibration: indeed, if we follow an implied volatility framework, we need to
find a parameter of the model that makes the price a strictly monotonous one, and
thus we can obtain an implied parameter, at each calibration date, for the price. This
is feasible, as the model has a lot of parameters, and that their behavior is flexible,
but it does not actually give us the calibration that we are looking for. When it comes

%Intel(R) Core(TM) i3-2375M CPU @ 1.50 GHz.

"The number of samples is empirically chosen so as to obtain a difference between the series
expansion and Monte Carlo computations lower than 0.1€ on the reconstructed price.
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—— Market Price - - - Model Price
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Fig. 7 Results of forward product reconstruction: observed (solid-blue line) and reconstructed
(dashed-red line) 1 month-ahead (fop), 1-quarter-ahead (middle) and 1-year-ahead (bottom) prices
from January 1st, 2009 to December 31st, 2012

to calibrating on forward contracts, the problem is much more complicated, we have
to calibrate the model to fit a given curve: the forward curve, that contains all the
available contracts at a certain date.

3.3.1 Adjusting the Demand Parameter

In our model, we looked closely at the influence of the parameters of the demand
and capacities processes, and we found the deterministic part of the demand to be a
pertinent adjustment parameter, as it was already proposed in [9]. Let us recall the
model for the demand process:

D, = fp(t) + Zp(t)
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In this case the expected value of Dy conditional to .%;:
E [Dr|.ZPC] = fo(T) + e TD; — fp (1) := m;
The introduction of a non-zero long-term mean ¢ € R in the process of Zp(¢):
dZp(t) = ap(e — Zp(t))dt + UDde)

will only affect the mean of the demand process, conditional to .%;:
E[Dr|FPC] = mP + e(1 — e T0) (1)

This modification may be interpreted as a change of probability for the demand
process, leading to a difference between the risk-neutral and the historical proba-
bilities. In this case the resulting pricing measure is no longer the one obtained by
Local Risk Minimization.

The stochastic weights (the details of calculus are available in Appendix 1) are
all affected:

G' (,t,T,D;,Cy) = H(miT + miT, m,lyT - me —e(l— e_‘"”(r_’)), 023, all’D)

G*(e,t,T,D,,C,) = H(mfj, m,l’T + miT - me —e(l— e_“D(T_’)), 033, 011,0)

2 3 D —ap(T—i)y -3 1D
_H(mz,T +mt,T’mz,T_mt.T_8(1 —e )»02’01 )

G(e.t.T.D,,C)) =G (m} z +mip +mz—mlp —e(l— eIy )Py

3 —ap(T— 1.D
—H(m; ;. mtl.T + miT — me —e(1 — eIy, 033, o,")

with m;T = E[C;/IKD’C], i = 1,2,3 and functions H and ¢ defined in

Appendix 1. We also remark that the function ¢ — F((T, 0, ¢) is strictly increasing,
and that we have the following asymptotical results:

lim F(T,6,¢&) = Mh,F"(T) ~ 3000 eur/MWh
g—>+00

lim F(T,0,s) =0
E—>—00

This shows that, for any contract F ;’bS(T, 0) observed at time ¢, we can find a
unique value of ¢ able to exactly reproduce it. We can use a dichotomic algorithm
to solve the equation F,(T,6,¢) = F;’b“‘(T, ), as our interest function is strictly
monotonous, but the regularity of this function in fact allows us to use the
Newton-Raphson algorithm, which gives a quadratic convergence instead of a linear
convergence, using the derivatives of F;(T, 0, ¢):

&y = 0
F(T,0,6)—F?"(T,0)

& =&, — 3
n+1 n %(Tﬂ,s)
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To compute the derivatives of F,(T, 0, €), we compute the derivatives of the weights:

387(:5 =—(1- e—aD(T—f))[gTZ m2p +mpmly —mP — (1 — e 1) o3, UII'D)]
aTCj =—(1- €_a”(T_t))|:gTZ(mt3,T’mtl-T + miT — m?T —e(1 — eon(T=0)y, 033’ 011,0)
_%(sz + o myp —mpp = e(l— e 070), 03, of’D)}
887((;93 =—(1- e_UD(T—t))[gij(mtl‘T + miT + miT — me —e(l — e_OtD(T—t))’O'?,D)
oH

B 3 > D 1 —ap(T—i)\ ~3 LD
axz(mt,T’mt.T+mt,T my—e(l—e ),03.01")

The derivatives of the functions ¢ and H can be found in the appendix of the
original paper [2]. In practice we define a function &(7) added in the deterministic
part of the demand process in order to calibrate the model on all observable forward
products. This function will be piecewise constant, with constant parts inside the
delivery periods.

3.3.2 Calibration Results

The results of the calibration are given in Figs. 8 and 9. Figure 8 shows an example of
estimated &(7') at date June 28th, 2011 considering the observable baseload forward
products in the French power market: 1 to 6 Month-ahead, 1 to 3 Quarter-ahead
and 1 Year-ahead. This example of result shows that the bias is more important for
small maturities, but is reasonable (—1.5 GW in maximum) compared to the total
available capacity in France (between 80 and 130 GW). When it comes to contracts
with a longer granularity, the calibration shows that the values of ¢ needed to fit the
model given by the model, with the real prices, are small, especially for the 1 YAH
contract. In Fig. 9 we repeated the calibration procedure from January 1st, 2011 to
December 31st, 2012 (with a weekly frequency) for three values of &(T): the ones
needed to exactly retrieve the 1 Month-ahead, 1 Quarter-ahead and 1 Year-ahead
products. This result confirms the previous remarks on a decreasing level of ¢ with
an increasing maturity. It also confirms that the resulting values are acceptable (less
than 3 GW) compared to the total capacity.

4 Conclusion

In this paper we exposed specific calibration issues for electricity price models. In
the first part we stressed that interest rate models, currently used in practice for elec-
tricity price modeling, present additional difficulties for calibration. This is mostly
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Fig. 8 Calibrated ¢(T') on observed baseload forward prices (IMAH — 6MAH, 1QAH — 3QAH
and 1YAH in French power market) at date June 28th, 2011
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Fig. 9 Evolution of calibrated ¢ for IMAH (blue), 1QAH (red) and 1YAH (black) from January
1st, 2011 to December 31st, 2012

due to the non storability of electricity and, hence, the presence of a delivery
period in the observed forward products. In this specific context, the calibration
procedures must introduce some approximation in the diffusion processes to make
the parameter estimation feasible. Also, when the objective is to represent both
spot prices and forward products, as an electricity producer aims to, the previous
studies [17] about a sufficient number of factors to represent all the products, must
be revisited.

In the second part we proposed an original study of how a structural model for
electricity prices, initially dedicated to a good representation of spot prices, is able to
model forward products. This kind of study is essential for practitioners and can help
in the modeling choice. We proposed an easy algorithm, with a modification of the
demand model in the risk-neutral probability, to calibrate the model from observed
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forward products. This idea has already been proposed in [9], for example, and we
show how to use it in the structural model described in [2].

In further work the forward price reconstruction will be deepened by introducing
a price confidence interval induced by the uncertainties on estimated parameters for
demand and capacities processes. This will allow us to measure the impact of these
uncertainties to reconstructed forward products. The problem of fixed merit order,
as it is assumed in [2], will be addressed as a direct extension of the model. Also,
following the calibration results, the future objective will be to price specific power
derivatives like, for example, a power plant and study the resulting hedging strategy.

Appendix 1: Structural Model Description

In this appendix, we recall the main results concerning the model, and we detail
the computation of the forward prices and stochastic weights. We refer to [1, 2] for
more details and proofs.

Forward Pricing

In this section, we detail the computation of a forward contract F,(T, 6). We first
need to compute the forward price F,(T"), for any T’ € [T, T + 6], and thus we
need a pricing formula, i.e. we need to take a closer look at the EMM that we will
use. To do so, we consider the submarket composed by the ith fuel only: assuming
this submarket to be complete, there is a unique risk-neutral measure Q' that is
a risk-neutral measure for the ith fuel. It is shown, in the original paper, that this
measure is one of the EMM for the spot price of electricity S;. Also, the Local
Risk Minimization approach, used in this structural model, leads to a Féllmer and
Schweizer minimal EMM Q that corresponds to zero risk premiums for the demand
and the capacities. In other words, @ is an EMM for the fuels, and coincides with
the historical measure P for the demand and capacities.

These remarks, along with the mutual independence between the demand, fuel
prices and capacities, lead to:

Fte(T/) = E[ST/LQ\I] = E|:g( ;_n/ax _DT/) ZhiS;"/lDT/EI;/

i=1

= D E| ¢ (CF = D) Ly, | 71 [5717]
i=1

= Z WG(t,T,C;,D)F (T),

i=1
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for any T” > 1. To obtain the real forward price with delivery period [T, T + 0], we
only have to take the mean of the instantaneous prices F;(T”), forany T’ € [T, T+6)].

The next section will focus on the computation of the stochastic weights.

Computing the Stochastic Weights

Using the models introduced in Sect. 3.1.2 for the demand and capacities, the

random variables Dy et C;, are Gaussian, conditional to the filtration E,D’C

we have:

E[Dp|ZPC) = mPy = fo(T') + e T =0(D, — fp (1))

SN2 o2 ,
Var[Dr|77) = (ofz) = 52 [1= o]
ap

E[Cl | FPC] = m) = f(T) + " =0(Cl - fi(1)

2
i D1 (i o _ i _—ai(T' =)
Var [CL |7 ] = (0] 1 =57 l—e
: ;

We are trying to compute the following quantities:
i / max ) D.C
G(t.T.C.D,) = [g(C — D)y e |, ]
In the original paper, it is shown that:

G'(t,T',C,,D,) = H(ms, m 02,01 Dy

i / _ n i,D n z 1.D n i—1,D
G(tsT7Ct9D[)—H(mi+1,ml ’Ul+1’01 ) H(m O-- O-l

i

Vi=2...n—1
G"(t.T,C,,Dy) = g(mT'D,Ol”’D) _H(m?+lamli’D,U;l+l7Uf,D)

with:
m; = imﬁr (0{’)2 = Z ((IfT/)
k=i i
zm (o) = (k) + (o)

)

, and

(22)
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and:
4 (m, o) :/g(x)¢>N(x,m,0)dx
R
o0
H(my,my,01,07) =/ Y (x + my, 01)p(x, my, 02)dx
0

where x —> ¢(x, u,0) the probability density function of a Gaussian random

variable with mean p and variance o2.

In our case, n = 3, these computations lead to, using the more convenient
notation m’ = m'! ,, and m®” = m?,,:

G't,T,C,D) =Hm* +m’,m" — mD,023,Ull‘D)
G*(1, T',.C,,D,) = H(m®, m*> + m! —mD,US,olz’D) —Hm?> +m*,m! —mD,03,Ull’D)

Gt,T,C.,D) =%m®> +m’ +m! —mD,of‘D) —H@m®, m* + m' —mD,Ug,Ulz’D)

Appendix 2: Estimation of Demand and Capacities
Parameters: The Deterministic Part

The model for the deterministic part is:
fot) = d? + dP cos (27‘[(1‘ . ng>)) + weekp (7)

We denote by (Y;) = (D,,) the demand data, and #; the dates corresponding with
the data. To estimate the deterministic part minus the weekly scheme, we start with
the following least-square regression:

Y; = p1 + pacos(2mt;) + p3sin(2wt;) + &;, with g; ~ A(0,07)
This equation becomes, using a more convenient matrix notation:
Y=Xp+e
with:

1 cos(2zty) sin(27t;)
X=1: : :
1 cos(2rt,) sin(27t,)
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We can then estimate the parameters, by using the least-square estimator:
A tyv\—1 yt
p=XX)"XY

We can have access to (1 — «)-confidence intervals for the first three deterministic
parameters:

[ﬁ s r,i_;'s}

With:

S = =
er‘l=1 (xi - )_5)2

Var(X) /n =2

We can then transform the previous regression into one that fits our model:

ﬁzlrf:lélz _ \/Var(Y) 1

p2cos(2rt;) + p3 sin(2rt;) = /p3 + p3 cos(2nt; + ¢)

= ng) cos(2m (t — ng))

Thus we change p into d?), using :
D
dy” = \/p3 + P}

1

D) _ P3

dy” = oy arccos <_d(D)>
2

This transformation also allows us to compute confidence bounds for d?D), ng)

and ng). This first part of the estimation procedure gives us estimated parameters
such as:

fo@) =d? + d® cos <2ﬂ(t - ng))

We now need to estimate the weekly scheme weekp(f). To do so, we use a the
following method, which is quite classic when it comes to estimating a weekly
pattern:

 First, we compute the weekly mean of the data, and store it in a variable called
W e R™, if n,, is the number of weeks for which we have data.

* Then we compute the weekly residuals, which are the distance between data and
the mean of the corresponding week: R, = D, — W, if ¢; is in the weekly
number k;. The residuals are then a centered version of the demand.
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Finally, we compute the mean of these residuals, for every hour of the week
(which means that we take 168 means of the corresponding residuals):

1
weekp(f;)) = — Z R,

n
w 1=t;[24]
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