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Abstract We introduce a new representation of the bivariate normal distribution
to first give a short derivation of the classic Margrabe exchange-option formula,
using elementary integration methods. The second application is a new and simple
technique to provide an accurate lower bound for the value of a spread option with
a nonzero strike.

1 Introduction

Exchange options were introduced by William Margrabe in a seminal paper [7],
published in 1978. This type of option allows the holder to exchange one asset
for another at expiration. Such options are ubiquitous in foreign exchange markets,
bond markets, stock markets, and commodity markets, among others. In energy
markets, in particular, they have found applications in locational spreads, calendar
spreads, crack spreads, and spark spreads. (See Clewlow and Strickland [4, pp. 80–
81], Geman [5, pp. 287–294], and Pilipovic [8, pp. 361–374].) The survey by
Carmona and Durrleman [2] provides a good introduction to the topic.

Margrabe studied European-style exchange options in a Black-Scholes frame-
work, where the rate of return on each asset is given by

d Si.t/ D Si.t/ Œr dt C �i dWi.t/� ; i D 0; 1; (1)

with r the risk-free interest rate, �i the instantaneous volatilities, Wi.t/ Wiener
processes, and � the correlation coefficient between the increments dW0 and dW1.
The payoff on the option to exchange S0 for S1 at time T , is given by

�
S1.T/ � S0.T/

�C
; (2)

where xC D maxfx; 0g.
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Margrabe derived the risk-neutral value of this option as

e�rT
E

�
S1.T/ � S0.T/

�C D S1.0/ˆ.dC/ � S0.0/ˆ.d�/; (3)

where E denotes the expectation operator, ˆ the cumulative density function of the
standard normal distribution, and

d˙ D ln.S1.0/=S0.0//

�
p

T
˙ 1

2
�

p
T and �2 D �2

0 C �2
1 � 2��0�1:

He obtains his formula by deriving a partial differential equation for the price of the
option, together with its initial and boundary conditions. He postulates a solution
and shows that it is the unique solution by employing a change-of-numéraire
approach that transforms the valuation into a Black-Scholes type problem.

The first objective of this article is to provide a brief and simple derivation of
the Margrabe formula that is based on a new representation of the bivariate normal
distribution. This approach reduces the derivation to an elementary integration, and
improves on previous approaches using plain integration, such as the one used by
Li et al. [6, Proposition 2]. The second and main objective is to showcase a new
lower bound for the value of a spread option with a nonzero strike, similar to the
one derived by Carmona and Durrleman [2, § 6.1], but arrived at by a much simpler
technique.

2 Bivariate Normal Distribution

In the Black-Scholes framework the logarithms of the asset prices at maturity follow
a bivariate normal distribution. So, it seems only natural to first study the expected
value of .X1 � X0/C, where ln X0 and ln X1 are correlated normal variables, without
the distraction of the stochastic process that generates them.

We derive this expectation for a particular case that is readily evaluated, and then
show that the general case can always be mapped to it. This implies that, within
the Black-Scholes framework, the particular case can be interpreted as a canonical
formulation for an exchange option.

2.1 The Particular Case

As the particular case, we take

ln X0 D �0 C aY C bZ and ln X1 D �1 C aY C cZ; (4)

where a � 0, b > c, and Y and Z are independent, standard normal variables.
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Lemma 1.

E .X1 � X0/C D EX1 ˆ
�
z� � c

� � EX0 ˆ
�
z� � b

�
; (5)

where z� D .�1 � �0/=.b � c/.

Proof. Substitute the expressions for X0 and X1, separate the factor eaY , and take the
expectation over Y , to give

E .X1 � X0/C D e
1
2 a2

E
�
e�1CcZ � e�0CbZ

�C
: (6)

The value for Z, that renders the expression within brackets equal to zero, is given
by z� D .�1��0/=.b�c/. The expression is positive for values of Z smaller than z�,
and negative for values of Z larger than z�. Now integrate over Z, and simple algebra,
combined with the expectations EX1 D e�1C 1

2 a2C 1
2 c2

and EX0 D e�0C 1
2 a2C 1

2 b2
, will

show the validity of (5), and proves the lemma. ut
Note that the constant z� also has significance in that ˆ.z�/ is the probability that X0

is smaller than or equal to X1, and the corresponding exchange option pays out.

• The condition b > c is not really a restriction, as we can switch easily from the
case b < c, by taking �Z instead of Z in (4), using the fact that the standard
normal distribution is symmetric. It was chosen for convenience in the proof of
Lemma 1 to give the range of integration for Z as .�1; z��.

• The special case b D c implies that ln X0 and ln X1 are the same random variable,
except for a difference in their mean. The valuation in this case is simple as
E .X1 � X0/C D E

�
e�1C�0Z � e�0C�0Z

�C D .e�1 � e�0/C e
1
2 �2

0 ; and is equal
to EX1 � EX0, when �1 > �0, and zero otherwise. This is not a practical case
that one would encounter in the setting of an exchange option. However, it is
worth noting that Lemma 1 includes this as a boundary case and thus ensures
continuity of solution. Taking the limit of .�1 � �0/=.b � c/, as b approaches c
from above, gives z� D C1 and z� D �1, when �1 > �0 and �1 < �0,
respectively, so that (5) gives the correct limit values.

2.2 The General Case

In the general case, we have a bivariate normal distribution where the distributions
of the logarithm of X0 and X1 are normal with mean �0 and �1, standard deviation �0

and �1, and correlation coefficient �. We make the very mild assumption that �2
0 C

�2
1 ¤ 2��0�1. These two variables can be represented in several ways as a linear

combination of independent, standard normal variables. The linear combination that
is of interest in our setting is the following:
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ln X0 D �0 C �0q
�2

0 C �2
1 � 2��0�1

�
�1

p
1 � �2 Y C .�0 � ��1/Z

�
(7)

and

ln X1 D �1 C �1q
�2

0 C �2
1 � 2��0�1

�
�0

p
1 � �2 Y C .��0 � �1/Z

�
; (8)

where Y and Z are independent, standard normal variables. It is easy to verify
that this construct gives two normal variables with the required means, standard
deviations and correlation coefficient. Now note that the coefficients of Y in (7)
and (8) are identical and nonnegative, and that the coefficient of Z in (7) is strictly
larger than the coefficient of Z in (8). This implies that (7) and (8) are of the form (4),
with

a D �0�1

�

p
1 � �2; b D �0

�
.�0 � ��1/; and c D �1

�
.��0 � �1/; (9)

where �2 D �2
0 C �2

1 � 2��0�1. We note the following properties: a2 C b2 D �2
0 ,

a2 C c2 D �2
1 , and b � c D � .

• The above shows that one can always cast the general bivariate normal distribu-
tion into the form (4); thus, they are equivalent and justifies referring to (4) as a
canonical formulation. The representation of the bivariate normal distribution,
given in (7) and (8), seems to be new. Although, it should be noted that,
when �0 D �1 D 1 (and �0 D �1 D 0), it reduces to a well-known form that is
used to generate correlated, standard normal variables. (See Tong [9, p. 11].)

• We imposed the condition �2
0 C �2

1 ¤ 2��0�1, but this is not restrictive. Equality
holds if, and only if, � D 1 and �1 D �0. The implication is that ln X0 and ln X1

are the same random variable, except for a difference in their mean. This case
was dealt with in the last bullet point of Sect. 2.1.

3 Margrabe’s Formula

As noted in the introduction, the risk-neutral value of the exchange option within the
Black-Scholes framework is given by e�rT

E .S1.T/ � S0.T//C, where S0.T/ and
S1.T/ are correlated lognormal variables. This means that we can apply Lemma 1,
and, to do this, we take X1 D e�rTS1.T/ and X0 D e�rTS0.T/.

It is straightforward to show that this implies EXi D Si.0/, �i D ln Si.0/� 1
2
�2

i T ,
b D �0

�
.�0 � ��1/

p
T and c D �1

�
.��0 � �1/

p
T , with �2 D �2

0 C �2
1 � 2��0�1.

Simple substitution of these expressions in (5) gives the Margrabe formula (3).
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4 Technical Interlude

In the subsequent analysis, it turns out to be beneficial to distinguish between a few
basic case types for the canonical formulation (4). These correspond to whether or
not the volatility parameters b and c are each positive or negative. Since we imposed
the condition b > c, this gives three cases, as listed in Table 1.

The breakdown into the different case types has a straightforward interpretation
in the general formulation in terms of a bound for the correlation coefficient. Note
that, all things being equal, type II is the one most likely to be encountered, as it
covers negative, zero and small positive correlations. We also note that, when one
is holding the asset with lower volatility, it corresponds to either type II or III, but
never to type I. Conversely, when one is holding the asset with higher volatility, it
corresponds to either type I or II, but never to type III.

4.1 Classification and Roots

The classification into different case types is not merely an exercise in taxonomy, but
plays a key role in the subsequent section on spread options. To ease the notational
burden, let us define the function

f .z/ D e�1Ccz � e�0Cbz: (10)

This function already appeared in the proof of Lemma 1, in particular Eq. (6), where
we had to find the unique root of f .z/ D 0, in order to determine the range of
integration. The situation is different for the general equation f .z/ D k, as it may
have a unique solution, none or two. The basic shape of f .z/ depends only on the
signs of b and c, as can be seen more clearly from f .z C z�/ D e�1Ccz�

�
ecz � ebz

�
,

where z� is the unique solution to f .z/ D 0, that already featured in Lemma 1.
The different shapes are graphed in Fig. 1, from which one can infer the location

of the roots of f .z/ D k.

Table 1 Characteristics of the different case types

Formulation Type I Type II Type III

Canonical b > c > 0 b > 0 > c 0 > b > c

General � > �1=�0 � < min f�0=�1; �1=�0g � > �0=�1

�0 < �1 – � < �0=�1 � > �0=�1

�0 > �1 � > �1=�0 � < �1=�0 –
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I II III

b > c > 0 b > 0 > c 0 > b > c

Fig. 1 The shape of f .z/ for the different case types

4.2 Case Type Analysis

To simplify the analysis, we will work with the normalized version f0.t/ D ect � ebt,
as the relevant properties of f .z/ are readily inferred from it. The former has exactly
one root at zero, and, under the imposed condition b > c, is positive for t < 0, and
negative for t > 0. The solvability of f0.t/ D k, depends on the case type. Since
the basic shapes of f0.t/ are the same as those of f .z/, the graphs in Fig. 1 will be
helpful in visualizing the analysis of the different case types.

Type I When b > c > 0, then f0.t/ has a unique extremum at

t� D � ln .b=c/

b � c
; with value f �

0 D
�

b

c

� b�c
c

�
�

b

c

� b�c
b

; (11)

and this extremum is positive and a maximum. The function f0.t/ has zero as a left
asymptote, is strictly increasing for t < t�, and strictly decreasing for t > t�. This
implies that f0.t/ D k has no solution when k > f �

0 , two solutions when 0 < k < f �
0 ,

and one when k D f �
0 or k � 0.

Type II When b > 0 > c, then f0.t/ is a strictly decreasing function of t, and has
no minimum or maximum. This implies that f0.t/ D k has exactly one solution, for
every value of k.

Type III When 0 > b > c, we have the mirror image of case type I, and f0.t/ has a
unique extremum at t� with value f �

0 , as given in (11), with the difference that this
extremum is negative and a minimum. The function f0.t/ is strictly decreasing for
t < t�, strictly increasing for t > t�, and has zero as a right asymptote. This implies
that f0.t/ D k has no solution when k < f �

0 , two solutions when f �
0 < k < 0, and

one when k D f �
0 or k � 0.

4.3 Generalization of Lemma 1

In this section, we consider the expected value of .X1 � X0 � K/C, where K is a
constant. Using the canonical formulation (4), one can write

E .X1 � X0 � K/C D E
�
eaY f .Z/ � K

�C
; (12)
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where Y and Z are standard normal and independent random variables, and f .z/ is as
defined in (10). For K D 0, the expectation in (12) factorizes and results in (5). For
general values of K, a simple and closed-form expression is not known. However, as
noted by several researchers, expressions that provide good lower bounds do exist.
Carmona and Durrleman [2, § 6.1], in the context of spread options, provide such an
expression, although it involves solving a not-so-simple equation with quite a few
trigonometric functions. An important feature of their lower bound is that it has a
structure that is like that of the Margrabe formula, but with the addition of a term
that is linear in K. It turns out that one can use our canonical representation to derive
similar lower bounds with far less effort.

Lemma 2. When the equation

f .z/ D Ke� 1
2 a2

; (13)

where K is nonnegative, has one or more solutions and z� is the largest of them,
then

E .X1 � X0 � K/C � EX1 ˆ.z� � c/ � EX0 ˆ.z� � b/ � Kˆ.z�/: (14)

Proof. We use representation (12). By conditioning on the value of Z, and then
taking the expectation over Y , one can derive the lower bound

E
�
eaY f .Z/ � K

�C � E

�
e

1
2 a2

f .Z/ � K
�C

: (15)

This follows easily from the fact that the function xC is convex and an application
of Jensen’s inequality. The problem is now reduced to that of determining the roots
of (13). These roots provide the range of integration that allows the lower bound to
be evaluated. From Sect. 4.2, we know that we have either one, none or two roots.
When we are dealing with case type II, then Eq. (13) has a unique solution z�, and
the same applies when we are dealing with case type III, as K is nonnegative. This
means that we can evaluate the right-hand side of (15) as

Z z�

�1

�
e

1
2 a2

f .z/ � K
�

dˆ.z/ D EX1 ˆ.z� � c/ � EX0 ˆ.z� � b/ � Kˆ.z�/:

When we are dealing with case type I, then Eq. (13) has roots z�
2 � z�

1 , as per
condition of the lemma, and the right-hand side of (15) evaluates to

Z z�

1

z�

2

�
e

1
2 a2

f .z/ � K
�

dˆ.z/ >

Z z�

1

�1

�
e

1
2 a2

f .z/ � K
�

dˆ.z/; (16)
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with the latter integral evaluating to the same expression as for case types II and III,
only with z�

1 instead of z�. This shows, when (13) has a solution, that the largest root
provides the lower bound (14) and proves the Lemma. ut
• The condition in Lemma 2 that the constant K is nonnegative is not restrictive.

Using the fact that xC D xC.�x/C, gives the parity formula E .X1 �X0 �K/C D
EX1�EX0�K CE .X0�X1CK/C, so that one can easily convert from a negative
value of K to a positive one.

• The condition in Lemma 2 that Eq. (13), where K is nonnegative, has one or
more solutions is easily verified. Case types II and III always have exactly one
solution. Case type I has one or two solutions if, and only if, max f .z/ � Ke� 1

2 a2

.
Using the analysis in Sect. 4.2, one can show that this is equivalent to

�1b � �0c

b � c
C ln f �

0 � ln K � 1

2
a2; (17)

with f �
0 as defined in (11).

• The convexity-based lower bound (14) has a format that is similar to the lower
bound derived by Carmona and Durrleman [2, Eqn. 6.3]. However, the arguments
of and inputs to their lower bound are much more complex and their computation
more involved. The computational effort to compute our lower bound is limited
to a simple root-finding procedure that can be implemented efficiently by a binary
search or a Newton-Raphson method, and has no convergence issues.

• The bound (15) holds with equality when either K D 0 or a D 0. This implies
that the convexity bound (14) is exact for the case K D 0, and thus that Lemma 2
is indeed a generalization of Lemma 1. When a is zero, this corresponds to X0

and X1 being perfectly correlated and � D ˙1.

5 Spread Options

In many practical settings it is not really the intent to exchange one asset for another,
but to lock in a price differential. In these settings, one has to overcome a fixed cost
or pay a price to exercise (or strike) the option. In the set-up of Sect. 2, this means
that we are considering the expected value of .X1 � X0 � K/C, where K denotes the
strike price. The exchange option can thus be seen as a spread option with a zero
strike.

5.1 Validation

To validate Lemma 2 and get a sense of its applicability and usefulness in deriving
a lower bound for the value of an exchange option, we use the test case from
Carmona and Durrleman [3, Table 1], and compare against their results. They take
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S0.0/ D 100; q0 D 2 %; �0 D 15 %, and S1.0/ D 110; q1 D 3 %; �1 D 10 %,
where the qi represent the continuous dividend yields. The time to maturity is
taken as T D 1 year and the risk-free rate as r D 5 %. For the strike and
the correlation coefficient, all combinations of K 2 f�20; �10; 0; 5; 15; 25g and
� 2 f�1; �0:5; 0; 0:3; 0:8; 1g are considered.

Although Margrabe’s original formulation did not include dividends (he only
considered capital gains), the introduction of the continuous dividend yields qi does
not fundamentally change things. The spot prices are now assumed to follow the
stochastic differential equation

d Si.t/ D Si.t/ Œ.r � qi/ dt C �i dWi.t/� ; i D 0; 1: (18)

The risk-neutral value of the spread option is given by e�rT
E .S1.T/ � S0.T/ � K/C.

This means that we can apply Lemma 2, with X1 D e�rTS1.T/ and X0 D e�rTS0.T/,
and a strike price of e�rTK. It is straightforward to show that EXi D e�qiTSi.0/,
�i D ln Si.0/ � .qi C 1

2
�2

i /T , a D �0�1

�

p
1 � �2

p
T , b D �0

�
.�0 � ��1/

p
T , and

c D �1

�
.��0��1/

p
T , with �2 D �2

0 C�2
1 �2��0�1. Substitution of these expressions

in (14) gives the following lower bound for the value of this spread option:

e�q1TS1.0/ˆ.z� � c/ � e�q0TS0.0/ˆ.z� � b/ � e�rTKˆ.z�/; (19)

where z� solves f .z/ D e�rTKe� 1
2 a2

, and f .z/ is as defined in (10).
The numerical values of the three volatility parameters a, b and c, under each of

the six correlation coefficients considered, are given in Table 2. The results of the
lower bound (19) for the value of the spread option are listed in Table 3, together
with the lower bound, as derived by the Carmona-Durrleman method [3, p. 24].

As can be seen, the two methods give virtually the same results, with the
Carmona-Durrleman bound being a little bit better for large, positive values of
the strike.

5.2 Relevance of the Lower Bounds

Using a Monte Carlo simulation with 100,000 trials, Carmona and Durrle-
man [3, p. 24] showed that these lower bounds are extremely close to the true value.
This finding is corroborated in a study by van der Hoek and Korolkiewicz [10]
who use a different valuation technique. Their approach is based on a perturbation

Table 2 Volatility parameters for the Carmona-Durrleman test case
under the canonical formulation (4)

� �1 �0:5 0 0:3 0:8 1

a 0 0:05960 0:08321 0:09334 0:09762 0

b 0:15 0:13765 0:12481 0:11742 0:11389 0:15

c �0:1 �0:08030 �0:05547 �0:03588 0:02169 0:1
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Table 3 Comparison of the
lower bounds

�

K �1 �0:5 0 0:3 0:8 1

�20 29:656 28:994 28:381 28:070 27:770 27:754

29:656 28:990 28:373 28:062 27:769 27:754

-10 21:868 20:904 19:888 19:270 18:381 18:244

21:869 20:903 19:885 19:265 18:379 18:244

0 15:133 13:917 12:523 11:561 9:632 8:821

15:133 13:918 12:524 11:562 9:633 8:821

5 12:244 10:956 9:445 8:367 5:967 4:454

12:244 10:956 9:444 8:365 5:963 4:454

15 7:521 6:242 4:744 3:679 1:342 0:049

7:522 6:236 4:729 3:657 1:303 0:049

25 4:201 3:129 1:961 1:219 0:103 0

4:201 3:115 1:930 1:178 0:076 0

For every strike value, the first row gives the bound by the
Carmona-Durrleman method, and the second row the bound (19)
by our method

expansion of the solution to the differential equation that the price of the spread-
option satisfies, and they use this expansion to derive analytic formulae for
second-order approximations. They employ the same test case and validate their
bounds with a recombining binomial tree model. Bjerksund and Stensland [1] study
a modified version of the Kirk approximation, and verify their results with a quasi-
Monte Carlo method using a two-dimensional Halton sequence with 100,000 pairs,
combined with a variance reduction technique. They also use the test case from
Carmona and Durrleman, and show that the lower bounds are extremely accurate.
Their methodology appears simpler and as accurate as the Carmona-Durrleman
approach. The conclusion in each of these studies is the same: these lower bounds
provide extremely accurate approximations.

6 Improving the Lower Bounds

To obtain better lower bounds for E .X1 � X0 � K/C D E
�
eaY f .Z/ � K

�C
, we can

partition the range for Y , from the one interval, covering the totality of the real line,
into n intervals: Ii D Œyi; yiC1/, i D 0; : : : n � 1, with y0 D �1 and yn D C1.
This gives

E
�
eaY f .Z/ � K

�C D
n�1X
iD0

E

h�
eaY f .Z/ � K

�C j Y 2 Ii

i
Prob .Y 2 Ii/ �

n�1X
iD0

E

��
ˆ.yiC1 � a/ � ˆ.yi � a/

�
e

1
2 a2

f .Z/ �
�
ˆ.yiC1/ � ˆ.yi/

�
K

�C
;
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where the lower bound follows from applying Jensen’s inequality to the conditional
expectation. For this lower bound, similar to Lemma 2, let z�

i be the largest value
for Z that equates the argument of the expectation in the ith summand to zero.
This expectation is then evaluated by integrating Z over the interval .�1; z�

i �. To
simplify the notation, we define pi D Prob .Y 2 Ii/ and Qpi D Prob .Y C a 2 Ii/,
and derive the following generalization of the lower bound (14):

n�1X
iD0

Qpi

h
EX1ˆ.z�

i � c/ � EX0ˆ.z�
i � b/ � Kˆ.z�

i /pi=Qpi

i
; (20)

where z�
i is the largest of the values that solves f .z/ D Ke� 1

2 a2

pi=Qpi.
This leaves us with a multitude of ways to choose the partition. An appealing

choice is the construction where the intervals Œyi � a; yiC1 � a/ are equally probable,
so that Qpi D 1=n. This implies yi D ˆ�1.i=n/ C a, and gives the lower bound as

E
�
eaY f .Z/ � K

�C � 1

n

n�1X
iD0

E

�
e

1
2 a2

f .Z/ � npiK
�C

(21)

� 1

n

n�1X
iD0

h
EX1 ˆ.z�

i � c/ � EX0 ˆ.z�
i � b/ � npiKˆ.z�

i /
i

: (22)

We note that these bounds might also give some insight into the structure of the
spread option formula. As the number of partitions goes to infinity, the limit of (21)
will converge to the true value of the spread option. For case type II, this evaluates

to 1
n

Pn�1
iD0

R z�

i�1 e
1
2 a2

f .z/ dz � Pn�1
iD0 piKˆ.z�

i /. This structure implies that there is

a �n, such that the first expression is the same as the integral
R �n

�1 e
1
2 a2

f .z/ dz, and
that there is a �n, such that the second expression is the same as Kˆ.�n/. These
aggregations imply that, for case type II, the value of E .X1 �X0 �K/C can be given
by a formula of the type:

EX1 ˆ.d1/ � EX0 ˆ.d0/ � Kˆ.d2/;

where d1 � d0 D b � c D
q

�2
0 � 2��0�1 C �2

1 , which has a pleasant resemblance
to the Black-Scholes formula.

6.1 Test Results

To measure the effect of increasing the number of partitions, we implemented lower
bound (22) and again used the Carmona-Durrleman test case. The results for a
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selected number of partitions are given in Table 4. We note that our benchmark
values agree perfectly with those given by Bjerksund and Stensland [1, Table 1].

For negative values of the strike K, the choice of n D 1, corresponding to the
lower bound (14) from Lemma 2, already gives excellent results. This could already
have been surmised from Table 3, but the test results show that the approximations

Table 4 The effect of the number of partitions n on the accuracy of lower bound (22)

�

K n -1 -0.5 0 0.3 0.8 1

�20 1 29.656138 28.989825 28.372967 28.062162 27.768572 27.753786

2 28.992999 28.378177 28.067242 27.769537

5 28.994296 28.380299 28.069303 27.769931

10 28.994605 28.380802 28.069789 27.770024

20 28.994726 28.380997 28.069977 27.770061

50 28.994782 28.381088 28.070064 27.770078

100 28.994797 28.381112 28.070086 27.770082

1,000 28.994808 28.381129 28.070102 27.770086

-10 1 21.868637 20.902992 19.884984 19.265409 18.378517 18.243872

2 20.904239 19.887451 19.268381 18.380153

5 20.904750 19.888463 19.269599 18.380818

10 20.904873 19.888705 19.269891 18.380976

20 20.904921 19.888801 19.270005 18.381036

50 20.904943 19.888846 19.270059 18.381065

100 20.904949 19.888858 19.270073 18.381072

1,000 20.904954 19.888866 19.270083 18.381077

0 1 15.133217 13.917957 12.523665 11.561761 9.632542 8.821249

5 1 12.244123 10.955506 9.443681 8.364984 5.962979 4.454214

2 10.955956 9.444728 8.366512 5.965534

5 10.956141 9.445161 8.367146 5.966597

10 10.956185 9.445266 8.367300 5.966857

20 10.956203 9.445307 8.367361 5.966961

50 10.956211 9.445327 8.367390 5.967011

100 10.956213 9.445332 8.367398 5.967025

1,000 10.956215 9.445336 8.367404 5.967035

15 1 7.521812 6.235713 4.729195 3.657248 1.302566 0.048825

2 6.239841 4.738887 3.671555 1.328113
5 6.241535 4.742874 3.677442 1.338485

10 6.241941 4.743833 3.678856 1.340930

20 6.242101 4.744211 3.679413 1.341874

50 6.242176 4.744390 3.679677 1.342310

100 6.242196 4.744438 3.679748 1.342423

1,000 6.242210 4.744472 3.679798 1.342500

(continued)
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Table 4 (continued)

�

K n -1 -0.5 0 0.3 0.8 1

25 1 4.201368 3.114953 1.929799 1.177618 0.076431 0.000000

2 3.124543 1.950431 1.204798 0.094212
5 3.128465 1.958832 1.215786 0.101371

10 3.129400 1.960822 1.218362 0.103045
20 3.129765 1.961594 1.219351 0.103687

50 3.129936 1.961954 1.219806 0.103983

100 3.129981 1.962048 1.219923 0.104059

1,000 3.130013 1.962113 1.220002 0.104112

For the cases with K D 0 or � D ˙1, our method is exact and attained for n D 1, so these
numbers are not replicated further. For all other cases, we have taken the value for n D 1;000 as
the “true” and benchmark value. The numerical results that deviate more than 0.05 % from their
benchmark are typeset in italics, and those that deviate more than 0.5 % are typeset in bold-italics

are all within 0.05 % of their benchmark. For positive values of K, the results are
still very good, but decrease in accuracy with increasing value of the strike K, and
increasing value of the correlation coefficient �. However, the choice of n D 5

partitions does give an approximation within 0.5 % of the benchmark, for all cases,
except for those with the highest correlation coefficient of 0:8.

7 Discussion

In this section we add a few comments and observations that would have obstructed
the flow of the discussion had they been incorporated into the main section.

Why Are the Lower Bounds So Accurate? One naturally wonders why the
analytical lower bounds for the price of the spread option are so accurate. All the
approaches that rely on using convexity arguments and replacing a random variable
by its expectation reduce the problem from a two-dimensional to a one-dimensional
one. The approximation being so accurate must mean that the problem is, in some
sense, close to a one-dimensional problem. The traditional formulation does not
show this, but the canonical formulation provides some insight. The convexity
argument uses the approximation E

�
eaY f .Z/ � K

	C � E
��
E eaY

�
f .Z/ � K

	C
, so

that, the lower the variability of eay, the better the approximation is likely to be.
For the Carmona-Durrleman test case, the numerical value of a is close to zero, and
Table 5 shows that eaY is close to one, as measured by its expectation and standard
deviation.

For new test cases, with larger values of a, one would hazard a guess that the
lower bounds are likely to be less accurate. It would be interesting to compare the



104 H.J.H. Tuenter

Table 5 Characteristics of the volatility parameter a

� �1 �0:5 0 0:3 0:8 1

a 0 0:05960 0:08321 0:09334 0:09762 0

E eaY 1 1:00178 1:00347 1:00437 1:00478 1

SDev eaY 0 0:09763 0:08364 0:09395 0:09832 0

Type II Type I
or III

0.00

0.02

0.04

0.06

0.08

0.10

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ρ

Fig. 2 The effect of the correlation on the volatility parameter a for the Carmona-Durrleman test
case. The maximum occurs at � D 2=3 with value 0.1. The bullets correspond to the values for
� 2 f�1; �0:5; 0; 0:3; 0:8; 1g

results from the Carmona-Durrleman and the Bjerksund-Stensland approaches to
ours for a wider range of parameters.

The Effect of Correlation When the correlation is perfect, that is, � D ˙1, the
value of a is zero, and our lower bound gives the true value of the spread option.
Since larger values of a imply a larger standard deviation for eaY , the behavior of a
and its maximum, as a function of the correlation coefficient, is of interest. It is
easier to look at a2 and differentiate this with respect to �:

@a2

@�
D 2�2

0 �2
1 .�1� � �0/.��0 � �1/

.�2
0 C �2

1 � 2��0�1/2
:

This derivative is zero for either � D �0=�1 or � D �1=�0. As � lies within the
interval Œ�1; 1�, it is not difficult to show that a2 is strictly increasing for � � r,
where r D min f�0=�1; �1=�0g, and strictly decreasing for � � r. The unique
maximum of a2 is at � D r with value minf�2

0 ; �2
1 g, so that a � minf�0; �1g. Note

that the upper bound also follows from the fact that a2 C b2 D �2
0 and a2 C c2 D �2

1 .
For the Carmona-Durrleman test case, the value of a, as a function of �, is graphed
in Fig. 2. Typically, for smaller values of a, the lower bound (14) is more accurate.
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