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Abstract In this work we are concerned with valuing optionalities associated to
invest or to delay investment in a project when the available information provided
to the manager comes from simulated data of cash flows under historical (or
subjective) measure in a possibly incomplete market. Our approach is suitable
also to incorporating subjective views from management or market experts and to
stochastic investment costs.

It is based on the Hedged Monte Carlo strategy proposed by Potters, Bouchaud,
Sestovic (Phys. A Stat. Mech. Appl. 289(3–4):517–525, 2001) where options are
priced simultaneously with the determination of the corresponding hedging. The
approach is particularly well-suited to the evaluation of commodity related projects
whereby the availability of pricing formulae is very rare, the scenario simulations
are usually available only in the historical measure, and the cash flows can be highly
nonlinear functions of the prices.

1 Introduction

The use of quantitative finance techniques to evaluate projects while trying to
capture the value of active management and flexibility is known by the name of
Real Option Analysis (ROA). The importance of capturing such “non-passive” value
of projects can be a decisive factor when trying to decide upon investment within
a portfolio of projects. Most of the classical applications of ROA involves vanilla
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American options as the case of the option to postpone a project, or to abandon
it. However, when considering projects related to capacity planning, chemical or
petrochemical plants, oil refining, or indeed any commodities-based project, a sig-
nificant increase in complexity arises. Under these conditions, recurring problems
that are encountered in real options, as dealing with market incompleteness, become
particularly acute.

In many cases, the company has access to financial instruments that strongly
correlate with the projects, and sometimes, as in the case of commodities companies,
even with their final product. Thus, the company can hedge some of its exposition
yielded by a project, but usually not all of it, by an appropriate hedging portfolio.
This suggests that a hedging approach based on Monte Carlo simulations can be
a plausible alternative for pricing such real options. Indeed, on one hand quadratic
hedging has been used to price financial options in incomplete markets, and it is
based on the local minimization of a proxy to variance, that is readily recognized as a
risk measure by managers. On the other hand, Monte Carlo approach has been often
used when dealing both with options involving many assets—as baskets, rainbow,
etc.—or when asset price models are not readily available.

The aim of this work is to propose the use of the so-called Hedged Monte Carlo
Method—Monte Carlo pricing through quadratic hedging—to price such complex
options.

The plan for this article goes as follows: We close this introductory section
with a description of the project evaluation problem we are considering, a short
methodological review of the different approaches to real options, and its analysis
by means of hedging with financial instruments. In Sect. 2 we present an approach
to evaluating real options based on the Hedged Monte Carlo (HMC) method
of [39]. It has a number of desirable features: it uses the dynamics under the
historical/subjective measure; it allows for an easy determination of the optimal
exercise boundary, it has low variance, and allows for an assessment of the
nonhedgeable risk. Furthermore, the oracle approach easily allows to incorporate
managerial views in many different levels: it can either accommodate views of
different managers of related projects, or more global corporative views and
scenarios. The method developed is explored in Sect. 3 with some examples and a
few case studies. We conclude in Sect. 4 with some final comments and suggestions
for further developments.

1.1 Real Options Analysis

The use of mathematical finance techniques has been continuously growing in recent
times as a tool to capture the value of flexibility in projects. A classical account can
be found in the books of [9] and [48]. The subject blossomed under different names
but is generally known Real Options. See also [3, 8, 22, 28, 32, 35, 38, 46, 47, 49].

The original framework identifies the Net Present Value of the project as a
stochastic process correlated with a tradable risky asset. The risky asset is termed
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the twin or spanning asset whereas the project value is sometimes referred as the
surrogate asset. Subsequent approaches take this identification very far. Indeed, one
cannot expect to have a traded asset with a perfect correlation with the project, since
this would mean that project risk is totally diversifiable, and hence replicable via
financial markets. An alternative view, is to look for an asset, typically an index,
that yields a high correlation with the project returns. This is known as the modern
approach. Other approaches exist. See [2] for a classification, the discussion in [23],
and the remarks in Sect. 1.4.

A very strong critique of the real option approach was presented by [21]. There
they show, by means of a simple example, that the use of no-arbitrage techniques
to nontradable surrogate assets can lead to arbitrary (very high or very low) no-
arbitrage option prices. This in turn shows that the economic use of real options in
the context of incomplete markets is highly questionable. In the same work, they
also show that a variance minimization of the hedging error could be a way out of
the economical impasse caused by the lack of completeness of the market.

1.2 Complex Structured Real Options

We are concerned with the practical problem of quantitatively evaluating projects
under uncertainty from different scenarios taking into account flexibility of the
projects and the possibility of partial hedging with financial instruments. We assume
that we have available a fairly large number of scenarios organized in a time series
and that connected to the different scenarios we have an oracle that produces the
cash flows associated to each scenario. The scenarios in turn are linked to traded
assets or financial instruments which may be used for hedging the project. Figure 1
describes the situation.

This framework can arise when planning chemical plants or oil refineries. See
for example [30, 34, 36, 42, 45]. It also naturally appears when using real option
techniques for capacity planning. See [4, 29, 33]. In most of these problems, the
markets are overall incomplete, unless under very simplifying assumptions. In
addition, such incompleteness will also imply that data will be only available under
the historical measure.

We shall now consider different ingredients in such complex options. The first
one, stems from the fact that many corporations predict in a fairly precise way their
cash flows using a black box (oracle) whose stochasticity only comes through the

Fig. 1 Description of the
oracle producing the cash
flows at time t and scenario i
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inputs from the different assets, supply/demand curves, and production curves. Yet,
such oracle depends on the prices of many (stochastic) assets as well as on non-
tradable quantities. This is depicted in Fig. 1.

More generally, the cash flows may be produced by simplified models that
incorporate algorithms or analytical procedures.

Among the challenges that are present in the evaluation of projects under
uncertainty, especially those linked to commodity enterprises, we single out the
following:

• Historical measure: The simulations are usually presented in the historical
measure. Furthermore, the scenarios are provided by management and are loaded
with views from advisors or sector specialists. In fact, some corporations delegate
the scenario generation to part of the board of directors or an independent
division.

• Managerial views: It is crucial to incorporate managerial views in the cash flows,
as well as automated decisions. An example would be a commodity trading
company that has a limited amount of storage capacity for different products.
According to the relative prices and profits it may automatically determine how
much of each product it would store.

• Market incompleteness: The hedging is performed in incomplete financial mar-
kets. In fact, sometimes the firm does not have access to the liquidity provided by
the financial markets. In other cases, regulations might preclude the management
to hold some speculative positions to fully hedge against market variations.

• Unhedgeable risks: Investment decisions on commodity related projects have to
take into account not only the hedgeable risks, but also the unhedgeable ones.
For instance, the decision of exploring an oil field is highly dependent on its
production curve and also on ecological risks associated to the operation.

• Multiple assets: Investment decisions may depend on the relative value of several
traded underlyings. Such assets might have general correlation structures ranging
from low to high cross-correlation. Thus, the hedging might have to be very
diversified.

1.3 Real Option Analysis Through Hedging

The approach suggested here to attack the general problem mentioned above can
be loosely described as a risk minimization one where the project valuation is
performed by constructing a portfolio that includes the project delay optionality
and the possible hedging of such project by tradable assets. By a methodology
introduced by Potters et al. [39] (see also [17]) one can compute different financial
options (including American and Bermudian ones) by a recursive risk minimization
of historical-measure simulated paths. The importance of using historical simula-
tions in the solution of this problem is that managers consider their decisions by
looking at observed prices of different commodities and assets. We shall refer to the
methodology developed in [39] by the Hedged Monte Carlo method (HMC).
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Another motivation for the methodology presented here is the critique to the
traditional no-arbitrage arguments of real option theory present in the work of [21].
In the latter, the idea of minimizing the variance is considered as an alternative to the
shortcomings caused by market incompleteness. A number of different approaches
have been developed to deal with incomplete markets. To cite a few: indifference
pricing, minimal martingale measure, and minimal entropy measure.

The idea of using HMC or Monte Carlo algorithms to compute option prices
in incomplete markets is not new. See, for example, the work of [40] and the
references therein. It can also be traced to the preprint of [17]. The novelty of
the approach suggested herein is the idea of incorporating the different cash flows
in the evaluation, producing the different statistics that may be helpful for the
manager and allow for the possibility of incorporating managerial views in the
simulations. As it turns out, the HMC methodology corresponds to choosing the
minimal martingale measure of Schweizer and Föllmer [44]. See [25] and [12] and
references therein for details on such connection.

1.4 Remarks on Alternative Approaches

We shall now briefly review the various methodologies available to price real
options.

1.4.1 Hedging Public and Private Risks

As observed in the works of Borison [2] and of Jaimungal and Lawryshyn [23], one
of the main issues in evaluating different types of projects is whether the source of
risk is public or private. For projects with returns that are highly correlated to the
market, risk mitigation should be almost completely achievable by hedging it with
traded assets. In most approaches, the project is assumed to be perfectly correlated
to a single asset, and hence replicable. Notice that for projects which have a diverse
range of products, it might be necessary to use a basket of hedging assets.

On the other hand, projects with mainly private risks, such as for instance R&D,
are unlikely to be hedged with the use of traded assets. Moreover, in some cases the
valuation of the project can be highly dependent on management estimates. Thus,
one can think of such estimates as a non-traded asset that contributes to the value of
the project.

From the point of view of utility theory, this can be more precisely measured by
specifying the firm’s preferences through a utility function, and thus one can think
of using indifference pricing. This approach was pursued in a number of works, in
particularly in the work of Henderson and Hobson [20], of Grasselli and Hurd [17],
and of Grasselli and Hurd [19].
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1.4.2 The Classical Method

As mentioned in the introduction, the classical methodology of pricing real options
assumes that there is a spanning asset that is highly correlated to the net present
value (NPV) of the project. One example of such methodology is the so-called
Marketed Asset Disclaimer (MAD) Approach is based on the idea of taking the
NPV distribution both as the value of the project and as the underlying (tradable)
asset. Then, model the asset with a stochastic dynamics and perform Risk-Neutral
pricing, perhaps accounting for non-traded issues. See for example [6] and [7].
Among the advantages we mention that it mimics the standard mathematical finance
approach, the theory is fairly simple and many out-of-the-box numerical methods
are available. As for the disadvantages, besides the general criticism mentioned
before in reference to the work of [21], we should also note that often very
few data is available for calibration. This makes the choice of the underlying
dynamics somewhat arbitrary. Furthermore, for each project, a calibration/choice
of underlying dynamics is necessary. This ambiguity is typically tackled by a
simplifying assumption on the dynamics, which will hopefully be consistent with
the market scenarios.

1.4.3 Monte Carlo Based Approaches

In many situations the project or the firm has a simulator that we shall refer from now
on as an oracle. Such oracle produces information about the cash flows associated to
different projects or optionalities for different scenarios which in turn are generated
from inputs of tradable assets. The idea is then to take the oracle output as the payoff
distribution, and use the method of Longstaff and Schwartz [26] to compute the
corresponding conditional expected values subject to the traded asset prices. This
requires the underlying(s) to be simulated in the risk-neutral measure or taking into
account the market price of risk in the final result.

Among the pros of such approach, we should mention that it uses fully the oracle
information towards the option evaluation, it is easily integrated and automated with
the oracle thus leading to a project independent pricing mechanism. Furthermore, it
has a good managerial appeal. As for the cons, we have that since the simulation is
performed on the oracle data, the realizations are restricted to the ones generated by
the oracle. This can impair the quality of the results obtained. Furthermore, the risk-
neutral calibration of the scenario generation that will provide inputs to the oracle
might be very cumbersome and requires extra work.

1.4.4 Datar-Mathews (DM) Method

In the method proposed by [27] one assumes that it is given the NPV distributions
(usually by management). Then, one performs a Monte Carlo simulation to replicate
the distribution at the given times and to produce a simulated process for the
underlying asset.
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Among the advantages, we can mention that it is easily implemented and has
great managerial appeal. Yet, there is lack of theory to justify such approach.

1.4.5 Jaimungal-Lawryshyn (JL)

The work of Jaimungal and Lawryshyn [23] includes an extension of DM method
as follows: They take the NPV distributions and choose an observable sector index
(not-traded on their paper) that is highly correlated with cash flows. They choose a
dynamics for this index and based on the dynamics, find the payoff functions that
yield the NPV distribution as a function of this market index. Then, they identify
the value of the project as expected values of these payoffs (very much line in DM’s
method). Finally, they choose a correlated (if possible) traded asset or index and
perform a risk-neutral valuation using a Minimal Martingale Measure.

Among the advantages of this method, we can cite that as in the DM method, it
integrates the managerial view with the Real Option Analysis. Thus it has a good
managerial appeal. Furthermore, the theory is more sound. Yet, the market index
might not be easily available and one still needs to calibrate the model to the index.
This step might be hard if the data is not abundant.

2 The Hedged Monte Carlo Approach and Minimal
Martingale Measures

Since the typical data that will be used for the method comes from simulations, it
will be naturally discrete in time. Thus, it is natural to adopt a discrete time approach
for the algorithm. In this vein, we begin by reviewing the theory for quadratic
hedging in discrete time and how it can be used to price contingent claims. This
will follow closely the exposition of Föllmer and Schied [11]. Then, we proceed on
to discussing the algorithm itself, and present a brief remark about its relation to a
continuous version of the problem.

2.1 Hedging in Discrete Time Within an Incomplete
Market: A Review

In an incomplete market setting, from its very definition, a self-financing replicating
strategy is not usually available. In this scenario, one might give up the replicating
property, and look for self-financing hedging strategies that control the down side
risk—evaluated by means of a risk measure. See for example the work of Föllmer
and Schied [11]. Alternatively, one enforces a replicating strategy and looks for
the cheapest strategy with this property. In this latter case, a very popular strategy
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among practitioners is the minimization of the quadratic tracking error [43]. This
choice leads to strategies that are self-financing in the mean under very mild
assumptions, that we now briefly review.

As usual, we assume to be in a filtered probability space .˝;FT ;P/ and write
L2.P/ D L2.˝;FT ;P/, where P denotes the historical measure. In what follows,
�N denotes the investment (short or long) in the numéraire asset, and � denotes the
position on d risk assets, with prices given by a d-dimensional stochastic process X.
Furthermore, X and V denote discounted prices with respect to a risk-free process.

Definition 1. A trading strategy is a pair of stochastic processes .�N ; �/, where �N
t

is an adapted process and � is a d-dimensional predictable process. The discounted
value of the portfolio is

Vt WD �N
t C �t � Xt

The gain process is

Gt WD
tX

sD1
�s � .Xs � Xs�1/ :

The cost process is defined as

Ct WD Vt � Gt:

Let H denote a random claim, and assume that

1. H 2 L2.P/;
2. Xt 2 L2.˝;FT ;PIRd/, for all t.

Definition 2. An admissible L2-strategy for H is a trading strategy such that it is
replicating, i.e.,

VT D H P a.s.;

and such that both the value process and the gain process are square-integrable, i.e.,

Vt;Gt 2 L2.P/; 8t 2 Œ0;T�:

We can now introduce a suitable risk process

Definition 3. Let .�N ; �/ be an L2-admissible strategy. The corresponding local risk
process is given by

Rloc
t .�

N ; �/ D EŒ.CtC1 � Ct/
2jFt�:
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Let . O�N ; O�/ be an L2-admissible strategy with value process OVt. This strategy is said
to be a locally risk-minimizing strategy if, for each t, we have that

Rloc
t .

O�N ; O�/ � Rloc
t .�

N ; �/; P a.s.

for each L2-admissible strategy whose value process Vt satisfies VtC1 D OVtC1.

Definition 4. A trading strategy is a mean self-financing strategy, if its correspond-
ing cost process is a martingale, i.e.:

EŒCtC1 � CtjFt� D 0:

Definition 5. We say that two adapted processes U and V are strongly orthogonal if

cov.UtC1 � Ut;VtC1 � VtjFt/ D 0;

where cov denotes the conditional covariance, i.e., cov.A;BjFt/ D EŒABjFt� �
EŒAjFt�EŒBjFt�.

The following result (see [11]) guarantees the existence of the corresponding hedge:

Theorem 1.

1. An L2-admissible strategy is locally risk minimizing if, and only if, it is mean
self-financing, and its cost process is strongly orthogonal do X.

2. There exists a locally risk minimizing strategy if, and only if, H admits the
so-called Follmer-Schweiser decomposition:

H D c C
TX

tD1
�t � .Xt � Xt�1/C LT ; P -a.s.;

where c is a constant, � is a d-dimensional predictable process, such that
�t � .Xt � Xt�1/ 2 L2.P/ for each t, and L is a square-integrable martingale that
is strongly orthogonal to X, and satisfies L0 D 0.

In this case, the locally risk-minimizing strategy . O�N ; O�/ is given by :

O� D �

O�N
t D c C

tX

sD1
�s � .Xs � Xs�1/C Lt � �t � Xt:

Notice that the associated cost process is Ct D c C Lt.
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2.2 Pricing by Risk Minimization

The proof of Theorem 1 is actually constructive and yields the following algorithm:

Algorithm 1.

1. Set OVT WD H;
2. For t D T � 1 down to t D 0 do

a. Set

. OVt; O�tC1/ WD argmin
.Vt ;�tC1/

E

�� OVtC1 � .Vt C �tC1 � .XtC1 � Xt//
�2 ˇ̌

Ft

�
I (1)

3. Set OCt WD OVt �Pt
sD1 O�s � .Xs � Xs�1/, t D 0; � � � ;T;

4. Set Oc WD OC0;
5. Set OLt WD OCt � Oc, t D 0; � � � ;T;
6. Set O�N

t WD Oc CPt
sD1 O�s � .Xs � Xs�1/C OLt � O�t � Xt, t D 0; � � � ;T.

Notice that if P is a risk-neutral measure, then Xt is a square-integrable
martingale. In this case, the Galtchouk-Kunita-Watanabe decomposition ([5]) yields

EŒHjFt� D OV0 C
tX

sD1
O�s � .Xs � Xs�1/C Lt

and hence we have

EŒHjFt� D OVt:

This allows for a consistent interpretation of the value of a local risk minimizing
strategy as an arbitrage-free price of H. However, in general, X will not be a
martingale under P, and in the incomplete setting there will be many martingale
measures that are equivalent to P. It turns out that one of these measures is
particularly relevant for hedging under local risk minimization.

Definition 6. Let P denote the set of martingale measures that are equivalent to P.
We say that OP 2 P is a minimal martingale measure if

E

2

4
 

d OP
dP

!23

5 < 1;

and if every square-integrable martingale under P, which is strongly orthogonal to
X is also a martingale under OP.

Theorem 2. If there exists a minimal martingale measure OP, and denoting by OV the
value process of the local risk minimizing strategy, then we have that
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OVt D OE ŒHjFt� :

We close this section with some practical remarks. The first one is that the crucial
part of Algorithm 1, as far as valuation of the contingent claim is concerned, is
composed of steps 1 and 2. The second one is that for real options and numerical
simulations it is more convenient to work with undiscounted prices of the assets and
the contract. Thus, from now on we shall revert to actual prices and use a discounting
factor of � D exp.r�t/ where r is the risk-free rate.

If we are given a payment stream of cashflows, ct for t D T0; � � � TF � 1, under
the minimal martingale measure OP and discounting by the constant interest rate, the
expected value Vt is given by

Vt D OE
"

TFX

sDt

cs=�
s�t
ˇ̌
Ft

#
.

In this case, the generalization of Algorithm 1 is straightforward. Under the
assumption that we are working in a Markovian setting such value becomes

Vt D OE
"

TFX

sDt

cs=�
s�t
ˇ̌
Xt D x

#
. (2)

We shall now address the question of computing such conditional expectation from
historical simulations. If we have a large number N of simulations to the process
fXtgtD0;1;���, we can approximate the term on the R.H.S. of the local risk term Rloc

t by

Rloc
t � 1

N

NX

iD1

�
��1VtC1.Xi

tC1/ � Vt.X
i
t/ � �tC1.Xi

t/
�
��1Xi

tC1 � Xi
t

�	2
.

The next step is to make the problem numerically tractable. But this, following
the ideas of Longstaff and Schwartz [26] and Potters et al. [39], can be accomplished
by introducing a function basis for the unknown function �tC1.x/ (respec. Vt.x/) and
considering a finite element expansion. More precisely, let us write

Vt.x/ D
bX

aD1
�a

t Ka.x/

and

�tC1.x/ D
bX

aD1
 a

tC1Ha.x/ ,
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where Ha (respec. Ka ) forms a basis for the space of functions �tC1 (respec. Vt.x/).
Then, one can substitute the minimization problem in Eq. (1) by the minimization:

argmin
n
�

j
t ; 

j
tC1

ob

jD1

NX

iD1

"
��1VtC1.Xi

tC1/�
bX

aD1
�a

t Ka.X
i
t/�

bX

aD1
 a

tC1Ha.X
i
t/ � .��1Xi

tC1� Xi
t/

#2

(3)

In other words, the expected value is computed by expanding the function in
L2.˝;Ft; d OP/ in a suitable basis and truncating at an appropriate level. Needless to
say, there are a number of relevant issues, ranging from conditions on the processes
to approximation spaces. A more detailed analysis of the non-Markovian case and of
such approximation spaces would take us too far afield. See for example Section 1.3
of the work of Lipp [25].

2.3 The HMC Algorithm for Real Options

We shall now present the proposed algorithm for the evaluation of the delay option
of a project that could be started at any time between say the time T0 � 0 and T . In
financial terms, this consists of a Bermudian option that could be exercised at any
time between T0 and T . Obviously, it reduces to an American option if T0 D 0 is
the present time. In mathematical terms this corresponds to a discrete version of a
free boundary problem. We assume further that our cash flows could come at any
time till TF. The main building block of our algorithm is the regression described in
Eq. (3).

We assume we are given the following inputs:

• A vector time series of traded assets xi
t, for a period of times t D T0; � � � ;T , and

for the scenarios i D 1; � � � ;N.
• The corresponding cash flows associated to the different scenarios ci

t for t D
T0; � � � ;TF, and i D 1; � � � ;N. Such cash flows would be produced by an oracle
which takes into account the different traded asset values and the non-traded
ones.1

• A long term behavior for the project value or the cash flows (possibly under the
different scenarios).

• The exercise period of the optionality T0; � � � ;T , where 0 � T0 < T � TF.

We now perform the following algorithm:

1In principle, it could be also time dependent and even scenario dependent. Furthermore, it can
incorporate managerial views by emphasizing specific regions of the probability space.
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Algorithm 2. [HMC for Real Options]

1. Initialize the project value VT.Xi
T/ for the different scenarios i D 1; � � � ;N by

using Eq. (2) for t D T0 � � � T.
2. Initialize for t D T the payoff OVT.Xi

T/ D .VT.Xi
T/ � K/C for the different

scenarios i D 1; � � � ;N.
3. For t D T � 1; � � � ;T0 do:

a. Define the functions:
Vt.x/ WD Pb

aD1 �a
t Ka.x/ and �tC1.x/ WD Pb

aD1  a
tC1Ha.x/

b. Solve the quadratic minimization problem in terms of the coefficients �a
t ;  

a
tC1:

argmin
n
�a

t ; 
a
tC1

ob

aD1

NX

iD1

"
��1 OVtC1.Xi

tC1/�
bX

aD1
�a

t Ka.X
i
t/�

bX

aD1
 a

tC1Ha.X
i
t/ � .��1Xi

tC1�Xi
t/

#2

c. Define OVt.Xi
t/ WD maxf.V i

t � K/C; OVt.Xi
t/g.

4. Output: The values of OVT0 .x/ for x 2 ˚
Xi
0


N

iD1 and the points in the exercise
region.

It T0 D 0 we could continue the downward loop without the comparison and the
computed values in V0 would give an approximation for the option value and the
different scenarios2 at the initial time t D 0.

If we were working with the risk neutral simulations in a complete market,
this algorithm reduces to a variant of the celebrated algorithm of Longstaff and
Schwartz [26].

Remark 1. In the actual implementation, the user may be interested in having
access to the exercise region as well as to more information about the suitability
of investment by using different statistics. Thus, it may be interesting to refine the
Item 3.c. of the algorithm as follows:

3.c. Define OVt.Xi
t/ WD maxf.Vt.Xi

t/ � K/C; OVt.Xi
t/g and store:

i. It WD fi 2 f1; � � � ;Ng= OVt.Xi
t/ � .Vt.Xi

t/ � K/Cg
ii. �t WD minf.Vt.Xi

t/ � K/=i 2 Itg
iii. Prt WD P

�
.Vt.Xt/ � K/C � �t

	 � #fi 2 f1; � � � ;Ng=.Vt.Xi
t/ � K/C �

�tg � N�1

The stored values of the points .t; OVt.Xi
t// for i 2 It correspond to an approximate

description of the exercise region.
The quantity Vt.Xi

t/ � K will be called intrinsic value of the investment option
in the sequel. It refers to the best estimate of the stream of cash flows under the
minimal martingale measure given the scenario i minus the investment K.

2Such different scenarios may reduce to a single point in case the initial scenario is known.
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The managerial usage of these statistics springs from the fact that, in many cases,
the stochastic generated cash flows inherit a corporate view of the market scenarios.
As such, these statistics provide a subjective view on the investment scenarios that
is appreciated by managers.

2.3.1 Implementation Notes

The attentive reader will notice that the main bottle-neck of the whole procedure
is precisely in the minimization of 3.(b). A fast and stable algorithm here would
make the difference in practical applications. This minimization can be performed
very efficiently by using the QR algorithm to solve an overdetermined system of
linear equations. See the text of Golub and Van Loan [16] for the numerical analysis
background. The methodology can then be implemented (as we did) in a matlab-
like environment with the standard Linpack packages. It can be easily ported to
other popular programming languages such as R and Java.

The choice of the basis function is the subject of research by many authors even in
the case of the classical LSM algorithm of Longstaff and Schwartz [26]. We follow
the suggestion in the work of Potters et al. [39] for the one-dimensional case of
taking the elements of the basis for hedge to be derivative of the ones for the option.
We also take into account the suggested basis in [13]. In the multidimensional case
we consider tensor products of the elements in the different dimensions.

2.4 Remark on the Continuous Limits

In the case of data simulated or estimated from a continuous model, we might
consider realizations with arbitrarily small time intervals and refined asset price
grids. Then, a very natural question is whether the discrete algorithm has any form
of limit as �t & 0. This problem then can be divided into two parts. First, the
continuous limit of discrete time model. Secondly, the numerical method to solve
the limit case, its accuracy and efficiency.

Concerning the first issue, in the case of European options it is well established
that the minimal martingale measure of Fölmer and Schweizer is associated to
Backward Stochastic Differential Equations (BSDEs). See for example [10] for an
early account. In the work of Pham [37] the main results of the theory of quadratic
hedging in a general incomplete model of continuous trading with semi-martingale
price process are reviewed. In particular, two types of criteria are studied: the mean-
variance approach and the (local) risk-minimization, which is connected to the
continuous limit of the approach considered here. In the work of Bobrovnytska and
Schweizer [1] the mean-variance hedging problem is treated as a linear-quadratic
stochastic control problem. They show for continuous semi-martingales in a general
filtration that the adjoint equations leads to BSDEs for the three coefficients of the
quadratic value process.
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Concerning the second issue, the use of regression-like Monte Carlo methods has
received a lot of attention recently. See [14, 15, 24] In particular, under appropriate
conditions, the convergence of the HMC method can be proved and the error
analysis has been performed in [14]. Furthermore, in [25] the HMC method has been
implemented to some exotic options and its numerical aspects have been studied. In
[12] the HMC method was implemented for actuarial problems.

3 Examples and Case Studies

We shall now exemplify the methodology proposed in the previous sections. The
first set of examples will be purely illustrative ones aiming to exemplify the efficacy
of the algorithm for option evaluation. They serve as validation and accuracy check
for the codes. The second set comes from a large number of real data and practical
evaluations. The examples take into account a large number of hedging energy
commodities in the evaluation of a potential project in the energy sector. Finally,
we present an exploration on a fictitious example involving gas data (Henry Hub
index) and a technology stock (Google). The project cash flows would be associated
to the difference of (rescaled) values of such underlyings added to an uncorrelated
and nonhedgeable noise component.

3.1 Illustrative Theoretical Examples

The first example concerns the running of the algorithm in the classical Black-
Scholes market with simulated prices taken in the historical measure. More
precisely, we consider a European option expiring in 3 months with strike K D 100,
current asset price varying around the at-the-money value X.0/ D 100, volatility
� D 0:3, and interest rate r D 0:05. The number of basis elements (monomials 1,
x and x2) was b D 3 and a total of N D 5;000 simulations in an arbitrary (fixed)
probability measure.

Although this is a very simple text-book example, Fig. 2 conveys the fact that the
results are pretty accurate even for such a small number of simulations and small
number of basis elements.

In the second example we check the algorithm performance of the difference of
two hedgeable assets X1 and X2. More precisely we consider a 65 days exchange
option with payoff .X1;TF � X2;TF /

C. The variables X1 and X2 satisfy geometrical
Brownian motion dynamics with �1 D 0:3, �2 D 0:2, and r D 0:05. The
analytical results are obtained using the Margrabe’s formula. In our setting this
formula states that the fair price for the option is: X1;0N.d1/ � X2;0N.d2/, where
N denotes the cumulative distribution function for a normal distribution and d1;2 D�
lnŒX1;0=X2;0�˙ �2TF=2

	
=�

p
TF, with � D p

0:32 C 0:22. See [31]. Here, we used
two monomials and N D 10;000 simulations. The results are displayed in Fig. 3.
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Fig. 2 The results of a comparison of the actual Black-Scholes formula price and the Hedged
Monte Carlo algorithm result. On the left we display the prices and on the right we display the
hedge value
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Fig. 3 Results of the comparison between the HMC algorithm and the Margrabe formula

3.2 Practical Examples

3.2.1 First Example

An energy company considers the optionality of starting a new project that would
last for 11 years. The project value Vt is dependent on 12 different underlyings.
The option is exercizable every year during the first 5 years. The company also has
a trading desk that could be used for financial investment in some or all of such
different assets.

The optionality was evaluated using several different sets of hedging assets.
We now report on the results obtained with one hedging variable (in this example
the Brent price) and considering 2;000 paths along 11 years with a (continuously
compounded annualized) interest rate r D 0:08. We also computed examples with
more hedging variables.

In Fig. 4 we present the option evaluation using one hedging variable. In this
example the project works as a hedge towards low prices of the Brent. The fact that
the intrinsic value of the project is smaller than the optionality indicates that the
company should wait to start the project.
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Fig. 4 Option evaluation using one hedging variable as a function of the Brent value. The
difference between the project and the investment .VtD0.X1/� K/ is plotted in (red) crosses while
the optionality VtD0.X1/ is plotted with (blue) circles. Here, the investment (strike) is K D 10:89

and the risk free interest rate r D 0:08

Fig. 5 A description of the
cash flow under the different
scenarios. The lower line
corresponds to the 5 %
quantile and top one to the
95 %. The marked region
indicates the 90 % frequency
region
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3.2.2 Second Example

In this example we consider a project that would run for 15 years, an investment of
1;500 monetary units and a yearly free interest rate of 8:00%. The cash flows for
this period are the results of an oracle that depends on a number of traded and non-
tradable variables and in turn are produced by means of running different scenarios.
Some of their descriptive statistics is presented in Fig. 5.

The intrinsic values of the optionality for the different times, including the 5 %,
and 95 % quantiles for the project value are presented in Figs 6 and 7. By applying
the Hedged Monte Carlo method we compute the value of the delay optionality
considering three hedging variables. The project should be exercised if at a certain
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Fig. 6 Value of the project
optionality. The lower line
corresponds to the 5 %
quantile and top one to the
95 %. The marked region
indicates the 90 % frequency
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time and corresponding scenario the intrinsic project value is more than the delay
optionality. This leads to a trigger curve that tells us for each scenario whether to
invest or not (Fig. 7).

3.2.3 Third Example

Differently from the previous examples whereby the actual cash flows came from
complex (black-box type) oracles, our present example concerns a fictitious project
where the cash flows would come from a (fairly) simple mathematical function.
It concerns an artificial potential investment on a gas propelled vehicle that could
be used by an information technology company to gather geographical data and to
use in their web-based advertisements. For simplicity we take the cash flow highly
correlated to Google stock through the equation
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ct.X; 	/ D H .aX1;t � bX2;t � I C 	t/ , (4)

where X1 is the price of a Google stock, X2 is Henry Hub (HH) gas index, I is a fixed
running cost, 	t is a nonhedgeable noise. The function H in our example is defined as

H.x/ D
8
<

:

0 , x � 0 ,
x , x 2 .0; 1/ ,
1 , x � 0 .

The rationale behind H is to simulate the saturation given by very large values of
the stock and to clip the values below zero.

We performed the data collection using publicly available data downloaded by
using public domain R software.3 The historical results between August 19th, 2004
and November 24th, 2013 are displayed in Fig. 8. We calibrated the historical log-
returns of the data with a GARCH(1,1) model, and then performed a principal
component analysis of the bi-dimensional innovation time series. From that we
generated the simulations of future scenarios (Figs. 8 and 9).

In this example we consider a project that would run for a maximum period of
say 3 years and the decisions could be performed monthly. The cash flows for this
period are the results of the oracle described in Eq. (4) that depends on a value of
Google and HH Gas. Finally we choose an investment of INV D 3:5 and a risk-free
interest rate of 8:00%.
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Fig. 8 Time series for the assets between August 19th, 2004 and November 24th, 2013

3See for example [41].
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Fig. 10 Asset simulations

In Fig. 10 we present some simulations of the assets, and in Fig. 11 a description
of the simulations of the cash flows by showing their mean, their quantiles.

The results in Fig. 13 show how the statistics of the values for the Intrinsic Value
(defined as V � I) relates to the curve of minimum value of the Intrinsic Value for
exercise (�t) that was calculated in the refined algorithm leading to Eq. (1). As the
time varies between t D 1 and t D 12, the exercise curve crosses the average of
the Intrinsic Values for the different scenarios. The case of �t being smaller than the
Intrinsic Value mean implies a small Prt WD P.NPV < �t/. These small values of
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Fig. 11 Cash flow
simulations for the fictitious
oracle described by Eq. (4).
Using the parameters value
a D 1:2895� 10�4,
b D �5:3191� 10�5,
I D 0:05, "t � N .0; 0:005/
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Prt give a good suggestion of when to invest. But the decision to invest also has to
involve the option value described in Fig. 12 and the expected Intrinsic Value value
of Fig. 13.

4 Discussion and Conclusions

In this work we addressed the problem of pricing real options on projects that have
their cash flow estimates based on an oracle prediction. Such oracle is typically
a combination of asset prices either used for production or obtained as a result
of the working project and non-traded specific variables. They can also forecast
prices or demand, and they can include managerial views or other non-tradable
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Fig. 13 A description of the
project Intrinsic Value
statistics under the different
scenarios and the minimum
value for exercise
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information that impacts the project value. These prices and variables may further be
processed by an optimization procedure, and this leads to the project cash flows. As
discussed in the Introduction, this appears naturally in many situations, in particular
for chemical or oil industries.

For such problems, we proposed a method that is based on minimizing the
tracking error variance of the hedge. This can be interpreted as assuming that we are
in an incomplete market and that the investor is naturally risk averse. In this context,
this variance is a natural risk measure for the investor. Under this framework, we
show how to price real options using the method of Potters et al. [39]. This lead
to a set of consistent prices that reduces to that of the Black-Scholes theory when
the market is complete. The obtained price will depend on the set of assets chosen
for the hedge. This is natural since companies with access to different markets and
vulnerable to different scenarios can have very different values for the same project.
Theoretically, one could include all hedging assets on a maximal set, but this is
unfeasible from a practical point of view.

Once more, we reinforce the idea that our simulations are all done in the
historical measure where the calibration of the models take place. We could also
have incorporated managerial views by emphasizing scenarios that would be more
likely due to management selective information. On the other extreme, even if the
decision maker and the business at hand had access to a completely correlated asset
that could be used to hedge the project value, among the advantages of the present
approach over a risk-neutral Monte Carlo evaluation we can mention: The reduction
of variance of price estimation (for the same precision the number of paths can be up
to 100 times smaller). This was already documented in the original work of Potters
et al. [39]. The estimation of the hedging strategy, residual risk (in the form of the
local variance), and possibly other risk measures (such as VaR and CVaR) at each
time step.
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As explained in the conclusion of the work of Grasselli [18], it is the time
flexibility itself, more than the possibility of replication, that bears the extra value of
an investment opportunity. Thus, the fact that we cannot replicate the project value
should not be the reason for not trying to quantify such extra value. The work of
Grasselli [18] takes the point of view of utility functions and indifference pricing. In
contradistinction, here we took the point of view of minimizing risk as measured by
the variance. A very natural follow up of the present work would be to compare the
different approaches in the case of real world examples, such as the ones presented
here. An exploration of the numerical issues related to the choice of the projection
basis would also be very welcome.
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