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Preface

This volume is an outgrowth of the Focus Program on Commodities, Energy, and
Environmental Finance hosted by the Fields Institute during August 2013. The
Focus Program addressed the interaction of markets and the environment, including
analysis of the functioning of electricity markets, modeling of energy resources
(such as wind speeds or exploration of oil fields), and study of the influence of
traders on commodity prices.

The busy month had a variety of activities, including three summer school
mini-courses, two research workshops, and a lively seminar series. The first mini-
course by Glen Swindle (Scoville Risk Partners) gave an overview of practical
issues of energy risk management, highlighting the complexity of calibrating
models, dealing with spotty market data, worrying about unknown correlations,
and pinpointing seasonal patterns. This material has since been published in the
just-printed monograph on “Valuation and Risk Management in Energy Markets”
(Cambridge University Press).

In parallel with Glen’s mini-course, René Carmona (Princeton) gave a compre-
hensive overview of the emerging issue of financialization of commodities, whereby
commodity price swings are linked to the ebb and flow of funds in the related
contracts. These notes form the backbone of the first chapter of this volume. In
the second half of his mini-course, René then addressed the latest developments
in mean field games (MFG), especially as related to the (as yet unresolved) links
between MFG and controlled McKean-Vlasov dynamics. The third mini-course of
the Program was given by Fred E. Benth (Oslo) who concentrated on the modeling
of electricity prices. Because electricity demand is largely driven by weather,
stochastic modeling of related quantities, such as wind or solar intensity, is an
emerging research area. Fred is a co-author on Chap. 5 of the volume.

About 30 participants attended each mini-course; throughout there was a lot
of audience participation with many lectures ending with an extended Q&A
discussion. All the presentation slides of the mini-courses have been archived and
can be accessed by the public at the Program website http://www.fields.utoronto.ca/
programs/scientific/13-14/envirofinance/.

v

http://www.fields.utoronto.ca/programs/scientific/13-14/envirofinance/
http://www.fields.utoronto.ca/programs/scientific/13-14/envirofinance/


vi Preface

The Focus Program also included two research workshops. The first workshop
was devoted to modeling and risk-management in commodity markets and is
reflected in Parts I and II of this volume. The second research workshop corresponds
to Part IV and concentrated on new directions in stochastic analysis inspired by
theories of mean field games and stochastic equilibria in energy production. Beyond
the research workshops, further presentations were given under the auspices of the
Program Visitor Seminars. There was also industry partnership, with several partici-
pants from energy and utilities companies, and sponsorships from Zerofootprint and
Electricité de France (EDF).

Overall, over 40 different presentations were delivered during the Program.
Nearly all the presentations are posted on the Program website and all talks were
live-recorded and available for streaming via FieldsLive (http://www.fields.utoronto.
ca/live) providing a lasting record of the proceedings. Several of the volume chapters
are an outgrowth of these talks, though, of course, not all of them could be included.
For example, the volume only very briefly touches upon mean field games that were
discussed among others by Minyi Huang (Carleton), Francois Delarue (Nice), and
Daniel Lacker (Princeton) during the Focus Program.

Group photo during one of the Research Workshops, August 2013
Photography by Cedric Miao, Fields Institute

This volume is based on the presentations and discussions during the Focus
Program. The contributions present certain aspects of a disparate and multi-
faceted research area. The multi-disciplinary developments currently taking place
in the subject mean that mathematicians, probabilists, statisticians, industrial and
operations engineers, economists, and finance practitioners are all working simul-
taneously (and frequently together) on the same problems. This volume reflects
this breadth, with authors including mathematicians, economists, statisticians, and
market practitioners. The cross-disciplinary perspectives are unified by tools of
mathematical finance and economics, especially stochastic methods comprising
stochastic differential equations, dynamic game theory, stochastic control, and no-
arbitrage theory.

http://www.fields.utoronto.ca/live
http://www.fields.utoronto.ca/live


Preface vii

A particular emphasis of the Focus Program and this volume was on making
connections with the Mathematics of Planet Earth thematic year 2013. The volume
highlights the growing involvement of the mathematics community in vital themes
of sustainable development, effective risk management of weather events, and
the role of finance in the production and consumption of energy. Other open
mathematical challenges include analysis of best government policies to lean
on markets in mitigating climate change, encouraging technological transition to
renewable energy sources, and statistical investigations into weather data crucial for
renewable power generation. Some more discussion on these issues can be found
via the Mathematics of Planet Earth blog entries
http://mpe2013.org/2013/05/07/fields-institute-focus-program-on-commodities-
energy-and-environmental-finance/
http://mpe2013.org/2013/05/27/mathematics-shines-some-light-on-the-growing-
markets-for-solar-renewable-certificates/
http://mpe2013.org/2013/10/17/fields-institute-focus-program-on-commodities-
energy-and-environmental-finance-2/

The volume is organized into four parts containing a total of 15 chapters. Part I
on commodities and financial markets offers perspectives connecting mainstream
financial mathematics with the world of commodities. The opening chapter by
R. Carmona surveys the emerging topic of financialization, whereby commodity
prices seem to be affected by the finance-based traders, altering market dynamics,
and introducing new couplings between asset levels. The author presents a compre-
hensive review of the economic, statistical, and mathematical literatures that weigh
in on this issue, and also provides a summary of the different commodity indices that
have been a key driver in expanding the universe of commodity trading. The chapter
by K. Guo and T. Leung examines the performance of commodity Exchange Traded
Funds (ETFs), which have been a major investment vehicle in commodities and
presumably driving the ensuing financialization. The authors analyze the empirical
tracking performance of leveraged ETFs vis-a-vis their benchmark index and
discuss the issues of volatility drag and realized effective fees. The third chapter by
D. Lautier, J. Ling, and F. Raynaud illuminates the links between various commodity
classes from the angle of systemic risk. The authors map out the network graph
connecting different commodity futures (oil, agriculture, metals, etc.) and analyze
its time series properties, especially through the financial crisis of Fall 2008. The last
chapter of this section by H. Tuenter presents a new perspective on the problem of
valuing spread options. After reviewing existing methods (including an elegant new
proof of Margrabe’s classic formula), a new closed-form approximation for spread
options is obtained and shown to be highly accurate.

Part II covers electricity and related markets, in particular weather and emissions.
The chapter by A. Veraart, F.E. Benth, and O. Barndorff-Nielsen presents a model
based on ambit fields to capture the main stylized characteristics of energy futures
prices, such as non-Gaussianity, stochastic volatility, and Samuelson effect. The
model is set in a multi-dimensional framework that allows to take into account
the dependencies between energy prices. As an application, the authors present a

http://mpe2013.org/2013/05/07/fields-institute-focus-program-on-commodities-energy-and-environmental-finance/
http://mpe2013.org/2013/05/07/fields-institute-focus-program-on-commodities-energy-and-environmental-finance/
http://mpe2013.org/2013/05/27/mathematics-shines-some-light-on-the-growing-markets-for-solar-renewable-certificates/
http://mpe2013.org/2013/05/27/mathematics-shines-some-light-on-the-growing-markets-for-solar-renewable-certificates/
http://mpe2013.org/2013/10/17/fields-institute-focus-program-on-commodities-energy-and-environmental-finance-2/
http://mpe2013.org/2013/10/17/fields-institute-focus-program-on-commodities-energy-and-environmental-finance-2/
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pricing formula for spread options that generalizes Margrabe’s formula in the case
of ambit fields. The work by N. Oudjane and A. Nguyen Huu addresses the problem
of hedging a derivative upon a non-yet quoted asset. This situation is encountered
in the case of derivatives on electricity futures, wherein the most desirable contracts
are quoted only a short time before their maturity. The market being incomplete,
a partial hedging of a contingent claim is proposed based on an adaptation of the
stochastic target approach, including a detailed numerical example. In the chapter
by O. Féron and E. Daboussi, the authors provide an overview of the calibration
to data of different electricity price models, a point which is often ignored in the
literature. Moreover, the authors offer the readers a comparison between reduced-
form and structural models.

Part III focuses on real options, i.e., decision making associated with commodity
management, such as starting new projects or expanding/curtailing production.
S. Jaimungal and Y. Lawryshyn propose a new extension of this framework
that allows the incorporation of subjective beliefs of the decision maker into the
model. These beliefs are expressed in terms of a nontraded stochastic factor and
are then optimally hedged through trading in a correlated liquid market index
using indifference pricing. In the ninth chapter, M. Davison and C. Maxwell
analyze valuation of real options under regulatory uncertainty. Motivated by the
frequently changing government subsidies for renewable energy production, the
authors examine the impact of unpredictable regulatory shocks on profitability
and operational strategies. The chapter by E. Brigatti, F. Macias, M. Souza, and
J. Zubelli proposes an application of the HMC numerical algorithm due to Potters et
al. to the pricing of real options. The concluding chapter by R. Aïd and I. Ben Tahar
offers an application of the theory to an issue in renewable energy. The authors
propose a simple model to assess the effectiveness of subsidies to foster transition
to electric mobility.

Part IV showcases new game-theoretic approaches to commodity markets, in
particular addressing the questions of oligopolistic behavior and long-run equilibria
among commodity producers. The survey by M. Ludkovski and R. Sircar offers
a tour through game models of energy production, centering on the long-standing
concern of exhaustible resources and “peak oil” within a competitive dynamic mar-
ket. The chapter by M. Bossy, N. Maïzi, and O. Pourtallier considers game effects
that link electricity and CO2 emission markets, offering insights for the decisions of
power generators that participate in bid auctions simultaneously for both markets.
In the fourteenth chapter, M. Ludkovski and X. Yang describe competition between
exhaustible and renewable producers under changing market conditions. Their anal-
ysis of the interaction between stochastic demand and resource exploration brings
a new perspective to the cyclical exploration and production (E&P) investments by
energy producers. The final chapter, by A. Dasarathy and R. Sircar, examines the
impact on energy markets of variable costs in production from differing sources,
within a game-theoretic oligopolistic framework. An example is oil production
becoming more expensive, as we switch to shale oil, and renewables becoming
cheaper, due to technological advances.



Preface ix

Commodities and environmental finance continues its rapid growth and is sure to
bring forth many more developments in the near future.

Paris, France René Aïd
Santa Barbara, CA, USA Michael Ludkovski
Princeton, NJ, USA Ronnie Sircar
January 2015
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Part I
Commodities and Financial Markets



Financialization of the Commodities Markets:
A Non-technical Introduction

René Carmona

Abstract The goal of the first part of this chapter is threefold: (a) to introduce the
term structure of forward/futures commodity prices, the contango/backwardation
duality and the notion of rolling yield as it pertains to trading through commodity
indexes; (b) to use principal component analysis and the computation of equity
and commodity “betas” to provide empirical evidence of the dramatic changes
which occurred in the mid-2000s; (c) finally, to review the major arguments which
have been put forth in the debate over the financialization of these markets. While
conspicuously absent from some of the English language dictionaries, the word
financialization has been widely used to describe the increasing role of institutional
investors in the commodity markets. Using econometric data analyses for the
purpose of illustration, we concentrate on futures price data from the post-2004
period during which the commodity markets experienced a significant influx of new
financial investors. As far as we know, mathematical models attempting to reproduce
or illustrate (let alone explain) the empirical observations at the core of the debate
are few and far between. As a result, our approach remains mostly descriptive of
the data which have been used to back up the claims of the various sides of the
argument. The originality of our contribution, if any, is the discussion of a new
generation of roll yield maximizing commodity indexes, the empirical analysis of
the term structure of open interest, and the possible connections between the two.

1 Introduction

The main goal of this chapter is to document the dramatic changes in commodity
prices during the post-2004 period, when commodity markets experienced a large
influx of new money, especially from institutional investors. For the sake of
completeness, we review some of the idiosyncrasies of these markets as well as
the main data analysis techniques used to study the term structure of forward prices,

R. Carmona (�)
Department of ORFE, Bendheim Center for Finance, Princeton University,
Princeton, NJ 08544, USA
e-mail: rcarmona@princeton.edu

© Springer Science+Business Media New York 2015
R. Aïd et al. (eds.), Commodities, Energy and Environmental Finance,
Fields Institute Communications 74, DOI 10.1007/978-1-4939-2733-3_1
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4 R. Carmona

our objective being to focus on the changes which occurred over the last decade.
We rely on economic studies to explain why, according to the restricted form of the
financialization hypothesis, they produced changes in correlations, and rises in open
interest and trading volume. Whether this increase in open interest and volume is due
to index investing or herding behavior is still unclear. We demonstrate the increase
in trading volume and open interest throughout the period, and we analyze the
term structure of commodity open interest. We use Principal Component Analysis
to demonstrate the shift of open interest down the curve. This increase in open
interest along longer maturities coincides with the appearance of a new generation
of commodity indexes optimizing the roll yield. While the compositions of the
portfolio covered by these indexes is pretty much the same as the compositions of
the traditional indexes, the spectrum of contract maturities they comprise is different
because of the special nature of the rolling algorithms. While we cannot prove
causality between the appearance of these new indexes and the sliding down the
curve of the open interest, we highlight their simultaneity as food for thought.

First, we start by defining the meaning we shall give to the term financialization
which according to the New Oxford American Dictionary means the process by
which financial institutions, markets, etc., increase in size and influence. In this
chapter, we talk about the financialization of commodities to mean the increased role
of financial markets in the operation of the commodities markets. For the purpose
of this chapter, we restrict the scope of this definition and use the terminology
financialization hypothesis to mean that the sharp increase in volatility and the
price hikes observed in the commodity markets between 2004 and 2008 are due
to the overwhelming influence of large institutional investors using indexes to
gain exposure to commodities, and not to an imbalance in supply and demand for
physical commodities due to the growth in emerging economies such as China, India
and Brazil.

While there is no clear rhyme or reason for the timing of the emergence of
this financialization, it is widely accepted to be associated for the most part, with
the appearance of a new class of large investors who chose to take positions on
commodities as a group, in order to capture profits considered to be unattainable
from investments in more traditional assets. Treating commodities at the same level
as stocks, bonds, real estate, etc. they promoted commodities to the rank of a new
asset class.

This spectacular increase in investment in the commodity markets by investors
whose primary business or financial interests were not directly dependent upon
changes in the prices of the physical commodities was treated as pure speculation,
and has been the source of heated discussions among economists, policy makers as
well as in the media. Case in point, the 2008 bubble in the prices of a wide range of
commodities as shown in Fig. 1 with the plot of the evolution of a global commodity
index representative of the spot prices of a large group of commodities. Details on
the construction of the index plotted in Fig. 1 will be given in Sect. 3. As we are
about to explain, this bubble has caught the attention of policy makers and focus
their investigations on the roles of the various groups of financial investors in the
commodity markets.
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Fig. 1 Time series plot of the GSCI daily spot index

The emergence of specialized indexes and the growth in popularity of long-only
index-fund investing are some of the remarkable differences between commodities
and other asset classes. According to Barclays’ internal reports, in 2006–2007, index
fund investment increased from 90 billion to 200 billion USD. Simultaneously,
commodity prices increased 71 % as measured by the Commodity Research Bureau.
At the peak of the price bubble in 2008, commodity fund investors, including ETFs
and hedge funds like Soros Fund Management, controlled a record 4.51 billion
bushels of corn, wheat and soybeans through the futures markets of Chicago Board
of Trade, equal to half the amount held in U.S. silos on March 1, 2008. In his
testimony before the U.S. Senate Commerce Committee, George Soros stated that
commodity investment, as a new venue for institutional investors, had become ‘the
elephant in the room’ and as a result, investment in these assets might exaggerate
price rises. After the price collapse which occurred between June 2008 and early
2009, many pundits referred to this boom and bust as a bubble as futures prices far
exceeded fundamental values. The large scale speculative buying by index funds
was held as culprit. A number of studies on financial markets have suggested that
herd formation among large institutional investors may have destabilized market
prices and created excess volatility (see for example Dennis and Strickland [10],
and Gabaix et al. [12]). From these studies, one can argue that herd behavior in the
commodity markets, as driven by financial investors moving funds in and out of
commodities, was a contributing factor behind the booms and busts observed in a
wide range of commodities.

On the other end, some economists (including Nobel Prize winner P. Krugman
[22], Irwin and Sanders [16], Hamilton [13] and Kilian [19]) remained skeptic
about the bubble theory. They argue that commodity price cycles are driven by
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fundamental factors like supply and demand, and that the temporary imbalances
observed in 2008 are due to the spectacular growth in emerging economies. Adding
support to this view, Buyuksahin and Harris [4] examine the trading positions of
various types of traders in the crude oil market, and find little or no evidence that
financial investors’ position changes caused price changes in the oil market.

This did not stop commodity index investing from being under attack. Increased
participation in futures markets by non-traditional investors was deemed disruptive
and blamed for the 2007–2008 “Food Crisis” that is at the origin of the famous
“Casino of Hunger: How Wall Street Speculators Fueled the Global Food Crisis”
[11]. See also [3]. A report from the U.S. Senate Permanent Subcommittee on
Investigation “: : : finds that there is significant and persuasive evidence to conclude
that these commodity index traders, in the aggregate, were one of the major causes
of unwarranted increases in the price of wheat futures contracts relative to the price
of wheat in the cash market: : :..” . To add insult to injury, a group of 48 agriculture
ministers meeting in Berlin said that they were “: : : concerned that excessive price
volatility and speculation on international agricultural markets might constitute a
threat to food security: : :.”, according to a joint statement handed out to reporters
on January 22, 2011.

Broadly speaking, the financialization of commodities should refer to the
increased leverage and the exponential growth of financially settled contracts
dwarfing their physically settled counterparts. More recently, this term has also
been used to refer to the significant impact of index trading on commodity
prices, and even more narrowly speaking, to the increased correlations between
the commodities included in the same index, and also between equity returns
and commodity index returns. This last fact is illustrated in Fig. 2 which shows
the time evolution, as given by a Kalman filter, of the time-dependent “beta” of
the least squares linear regression of the Goldman Sachs Commodity Index Total
Return against the returns of the S&P 500 index. Instantaneous “betas” are typically
computed using Kalman linear filters as estimates of the slope of a local linear
regression whose domain varies with time. See for example section 7.5.2 entitled
Linear Models with Time Varying Coefficients of the textbook [6] for details. The
standard commodity indexes are reviewed in Sect. 3, and a new generation of roll
yield optimizing indexes is introduced in Sect. 5.

It is an empirical fact that return correlations are no longer what they used to be,
and it is now commonly accepted that correlation in price changes for commodities
included in the same index tightened before 2007. Tang and Xiong [32] argue that
commodity index trading is responsible for this correlation tightening. See also
[9], the works of Irwin and Sanders [16, 29], and especially [28, 30] for the
impact of index trading on the agricultural commodities. This restrictive form of
the financialization hypothesis is discussed in Sect. 4.

Note that it is likely that this correlation tightening is a scale dependent
phenomenon. Indeed, it seems that high frequency traders do not see (and hence
ignore) these correlation increases.
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Fig. 2 Instantaneous dependence (ˇ) of the daily GSCI-TR returns upon the corresponding S&P
500 returns

Commodity contract valuation is best understood by equilibrium arguments
based on supply and demand for the physical commodities. In [7], we advocate
structural models for the pricing of commodities and commodity derivatives.
However, one of the main contention of the financialization of commodities is
that the pricing models based on matching supply and demand are impaired by
the overwhelming sizes of trades by institutional investors which increase price
volatility and drive prices away from the levels predicted by fundamental supply
and demand relationships. As a result, commodity price dynamics no longer merely
reflect changes in fundamentals.

These conflicting views are yet to be reconciled, and investor behavior in the
commodity markets needs to be further investigated, especially for the role it plays
(if any) in the excessive price movements observed so frequently. The dramatic
increase of commodity trading volume (often referred to as the financialization of
commodity trading) occurred essentially at the same time as demand for physical
commodities from emerging economies increased rapidly. The simultaneity of these
two contributing factors make it extremely difficult to parse out their relative
contributions to the increased volatility of the markets, and disentangle their
respective price impacts.
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We close this introduction with a short summary of the contents of the chapter.
Section 2 offers a crash course focusing on the idiosyncrasies of the commodity
markets, while Sect. 3 takes an historical perspective to introduce the traditional
commodity indexes. The influx of institutional investors in the commodity markets
and the changes they are responsible for are documented in Sect. 4 where a short
review of the publications on the financialization debate is provided. Section 5
introduces the new generation of commodity indexes designed in most part for the
purpose of maximizing the roll yield, and Sect. 6 documents the changes in the term
structure of open interest as food for thought as a possible impact of the growing
popularity of these new indexes.

2 Generalities on the Commodity Markets

In order to set the stage for our discussion of the financialization hypothesis, we
review some of the basic idiosyncrasies of the commodity markets, focusing on
those relevant to the debate. As already emphasized in the introduction, the role
of institutional investors is paramount to the discussion of financialization of the
commodity markets. The large number of commodities, the large number of venues
on which these commodities are traded, added to the great variety of contract
maturities, physical commodity grades and delivery locations offer a wide range
of opportunities for hedgers and speculators. As a result, liquidly traded contracts
represent a rather small part of the commodity world. However, they are most likely
to be included in the commodity indexes, and traded for purely speculative purposes.
Consequently, they will be our favorite targets when we look for illustrations of
some of the claims used in the financialization debate.

2.1 The Markets and the Trades

Because of the physical nature of the interest underlying the contracts, commodity
prices are determined by equilibrium arguments which involve matching supply
and demand for the physical commodity itself. On the supply side, estimating
and predicting inventories and quantifying the costs of storage and delivery are
important factors which need to be taken into account. This is not always easy in the
context of standard valuation methods which are mostly based on traditional finance
theory (think for example of NPV which attempts to compute the present value of
the flow of future dividends).

Whether they were called spot markets (when they involved the immediate
delivery of the physical commodity), or forward markets (when delivery is sched-
uled at a later date), commodity markets started as physical markets. Trading
volume exploded with the appearance of financially settled contracts. While forward
contracts are settled Over the Counter (OTC), and as such, carry the risk that
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the counterparty may default and not meet the terms of the contract, most of the
financially settled contracts are exchange-traded futures for which the exchange
acts as clearing house controlling default risk by a system of margin calls, and
attracting speculators to provide liquidity to the markets. While trading in physically
and financially settled contracts were traditionally the two ways an investor could
gain exposure to commodities, the creation of indexes and the increasing popularity
of index tracking Exchange Traded Funds (ETFs) have offered a new way to gain
exposure to commodities.

In the early 2000s, investing in commodities was promoted as a fool-proof
portfolio diversification tool. After all, these financial interests were believed to be
uncorrelated or negatively correlated with stocks. Case in point, the prospectus of
the S&P GSCI (see the section on commodity indexes for details on the definition
and the properties of this index) claims “: : : and provides diversification with low
correlations to other classes”.

The exponential growth of this new form of investment in commodities which
took place over the last decade may have been a self-defeating prophecy as recent
econometric studies have shown that this form of index trading has created new cor-
relations between commodities and stocks, and between the commodities included
in the same index [32]. Pushing the argument even further, one could posit that
the influence of investors has overturned Keynes’ theory of normal backwardation1

(see for example [17], or [18] for a more modern account, and [8] for a discussion
focused on agricultural commodities), causing a recent predominance of forward
curves in contango, thus further weakening the attractiveness of investing in these
markets. We explain the duality contango/backwardation in Sect. 2.4 below.

One of the many convenient features of commodity trading is the specialization
of the exchanges, leading to simple correspondences between commodities and
locations where they are traded. In other words, a given commodity is traded on
one or a small number of specialized exchanges. This is in sharp contrast with the
equity markets for which a given stock can be traded on many platforms, leading
to subtle optimization problems as the choice of a particular venue for a trade can
affect the profits or losses on the trade.

The following table gives a few examples of some of these exchanges in the US
and in Europe.

1In Keynesian economics, the expected future spot price of a commodity should be higher than the
forward price. Indeed, according to this theory, the producers of commodities are eager to sell, and
willing to sell at a loss if necessary. As a result, the price of a forward or futures contract is below
the expected spot price at contract maturity, and the resulting futures or forward curve is downward
sloping (i.e. inverted), since contracts for further dates trade at lower prices. In practice, the term
backwardation is often used to refer to situations when the current spot price exceeds the price of
the future.
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Exchange Location Contracts

CME Group

CME Chicago Agriculture, weather

Chicago Board of Trade (CBOT) Chicago Agriculturals

COMEX Chicago Metals

NYMEX New York Energy, metals

Intercontinental Exchange (ICE)

ICE Atlanta, US Energy, emissions, agricultural

NYSE.Liffe London Agricultural

NYSE.Euronext Europe & US Agricultural, energy

Kansas City Board of Trade (KCBT) Kansas City Agricultural

Climex (CLIMEX) Amsterdam Emissions

European Climate Exch. (ECX) Europe Emissions

London Metal Exch. (LME) London Industrial metals, plastics

2.2 Trading Commodities

Traditionally, the investment portfolios of large institutional investors (e.g. pension
funds and endowment funds) included only stocks, bonds, and cash. The primary
advantage of including commodities is that commodity returns are expected to be
relatively uncorrelated with the returns of traditional asset classes. The absence of
correlation is attributable in part to inflation. In fact, holding commodity futures is
often considered to be an inflation hedge. Indeed, during periods of rising inflation,
traditional asset categories like stocks and bonds perform poorly. Commodities,
on the other hand, generally perform well during these periods. Indeed, increased
demand for goods and services, typical in periods of rising inflation, usually implies
increased demand for the commodities used in the production of those goods and
services.

There are several ways in which traditional investors used to gain exposure to
commodities.

1. The old-fashioned way to invest in commodities is to actually purchase the
physical commodity itself. However most investors are not ready or equipped to
deal with issues of transportation, delivery, storage and perishability. This form
of involvement in commodities was created for, and is essentially limited to,
the hedgers who mitigate the financial risks associated with uncertainties in the
production and delivery of commodities relevant to their businesses.

2. Another way to gain exposure to commodities is to invest in stocks in commodity
intensive businesses: for example buying shares of Exxon or Shell as a way
to invest in oil. Many exchange traded funds (ETFs) are tracking portfolios of
stocks of companies with well defined commonalities. The portfolios of a large
number of these ETFs comprise only energy companies, and as such, they call
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themselves commodity ETFs. They promote themselves as investment vehicles
to gain exposure to commodities despite the fact that they are technically equity
ETFs. However, this type of investment offers at best an indirect exposure as
shares of natural resource companies are not perfectly correlated with commodity
prices.

3. A more direct form of exposure to commodities is through straight investment in
commodity futures and options. The exchanges offer transparency and integrity
through clearing, and relatively small initial investments are needed to take large
positions through leverage. However, this convenience comes at a serious price,
as discovered by many rookies who ended up choking, unable to face the margin
calls triggered by adverse moves of the values of the interests underlying the
futures contracts. Also, purely speculative investments of this type may need to
be structured with a careful rolling forward of the contracts approaching maturity
in order to avoid having to take physical delivery of the commodity: trading
wheat futures can be done from the comfort of an office set up in a basement, but
taking physical delivery of one lot (i.e. 5;000 bushels) of wheat requires a large
backyard! Consequences of some of the simplest rolling strategies are discussed
in Sect. 2.4 below.

We first discuss the idiosyncrasies of commodity prices, and postpone to a later
section the presentation of the more recent (and most relevant to the focus of this
chapter) form of exposure to commodities based on index investing and/or tracking.

2.3 Data Used for Illustration Purposes

We use a specific set of commodities for the purpose of illustration. We chose Crude
Oil because of its overwhelming impact on the global economy, and Copper as
an example of metal. Copper is widely accepted by economists as a representative
commodity because historically, it has been a consistent predictor of the health of
the global economy, presumably because it is an important input in a huge number
of industrial processes. Figure 3 gives a time series plot of the values of the nearest
maturity Copper futures contract (as close as we can get from a spot price!).

We use Light Sweet Crude Oil futures price data from NYMEX (part of the
CME group) provided by Data Stream. These prices serve as a key international
benchmark. The contract sizes are for 1;000 barrels and the prices are quoted
in US dollars and cents per barrel. Prices are quoted for monthly contracts with
times to maturity up to 6 years. Trading in the nearest maturity contract ceases on
the third business day prior to the 25th calendar day of the month preceding the
delivery month. Delivery is free-on-board (FOB) at any pipeline or storage facility
in Cushing, Oklahoma.

When discussing Copper, we use forward data, also from CME COMEX, and
also provided by Data Stream. The contract sizes are for 25,000 pounds, and the
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Fig. 3 Time series plot of the daily price of the nearest copper futures contract between January
2, 1990 and September 9, 2013. Source: Data Stream

prices are quoted in US cent per pound. While more forward contract prices are
listed, we shall only use the nearest 23 maturity months. Trading in a contract with
a given delivery month (maturity) ends on the third last business day of the delivery
month. Note that these contracts are also traded on the London Metal Exchange
(LME) and the Shangai Futures Exchange.

During the period 1998 through 2007, the trading volume in exchange-traded
commodity futures and futures options experienced a five-fold increase. As an
example, Fig. 4 gives the time series plot of WTI Crude Oil daily open interest.
This plot represents on each day, the total number of contracts, irrespective of their
maturities, held by investors. Corresponding plots (see for example Fig. 10 for the
case of Copper) for other commodities would show the same dramatic increase,
attesting the significant influx of money in commodities.

However, most institutional investors do not have the sophisticated trading
operations necessary to manage a complex portfolio of futures contracts: commodity
index funds and OTC commodity return swaps appeared as attractive solutions. Both
forms of investment are transparent and passive, so no need to monitor the market
to identify underpriced commodities or timing profit opportunities.
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Fig. 4 Time series plot of the daily (total) open interest in WTI crude oil between January 3, 1994
and November 22, 2011. Source: Data Stream

2.4 Contango, Backwardation and the Roll Yield

We now introduce more of the jargon of the term structure of forward and futures
prices in the form of a definition for easier reference.

Definition 1. We say that the market is in backwardation, or that the forward curve
is backwarded, when futures prices are lower than the expected future values of the
spot price.

Because the futures prices must converge toward the expected spot price when
approaching maturity of the contract, futures prices are rising to get in line with
the expected spot price. Typically backwardation occurs when the left most part of
the curve is downward sloping.

Definition 2. We say that the market is in contango, or that the forward curve is in
contango, when futures prices are higher than the expected future values of the spot
price.

Because the futures prices must converge toward the expected spot price when
approaching maturity of the contract, futures prices are falling to get in line with
the expected spot price. Typically, contango occurs when the left most part of the
curve is upward sloping.

We close this subsection with a formal definition of the roll yield, and a simple
example showing that this yield is positive (resp. negative) when the forward curve
is in backwardation (resp. contango).
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Definition 3. The roll yield is the return (profit or loss) captured by a market
participant liquidating a long position in a contract approaching maturity, and taking
the same position in the new nearest maturity contract.

The typical example to keep in mind is the profit (in which case the roll yield is
positive) gained in backwardation, by merely maintaining a long position in the
nearest contract. Indeed, in the case of a backwarded forward curve we have p1 >
p2 if we denote by p1 and p2 the prices of the forward/futures contracts with the
shortest maturities T1 < T2 after the current time t. Consequently, maintaining a
long position in the nearest contract is done by closing the current position (i.e.
selling at the unit price p1 the contract with maturity T1 as t approaches T1), and
opening the same long position in the nearest maturity contract (i.e. buying the same
amount of contracts with maturity T2 at the price p2), locking a profit, just for rolling
the position to the new nearest maturity! So taking a long position in a backwarded
market guarantees a positive roll yield, and hence a profit, just for rolling the same
position from one maturity to the next when contracts approach maturity.

Similarly, maintaining (rolling) a long position in a contango market leads to
losses, and hence a negative roll yield as a result. A transition from a backwarded
market to a market in contango is one of the common fears of passive commodity
traders.

Systematic studies of the nature of the roll yield can be found in the academic
literature. As an example, the interested reader may want to look at [27].

2.5 The Term Structure of Forward Prices

On any given day t, the term structure of forward prices is given by the prices of the
futures contracts for a given set T1;T2; � � � ;Tn of maturity tenors. While t changes
from one day to the next, the tenors T1;T2; � � � ;Tn remain the same as long as t < T1.
While the actual values of the maturity dates Ti are crucial to understand seasonal
commodities such as natural gas or most of the grains, they can be a hindrance for
many statistical data analysis techniques which require some form of stationarity in
time of the data. On any given trading day, say t, if price quotes p1; p2; � � � ; pn are
available for maturity dates T1;T2; � � � ;Tn, the points

.T1; p1/; .T2; p2/; � � � ; .Tn; pn/

in the plane offer a discrete sampling of an hypothetical forward curve T ,! f .t;T/
which could be defined for T > t. One of the problems is that when time passes
by and t becomes, t C 1, t C 2, : : :, the maturity dates T1, T2, : : : do not change,
and eventually t gets too close to T1 and the contract with maturity T1 ceases to
be traded, and the nearest contract available for trading becomes T2. To avoid this
sudden change in the input data, it is often convenient to re-parameterize the term
structure of forward prices by the time to maturity � D T � t instead of the time of
maturity T .
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2.5.1 Data Pre-processing

Switching from the parameterization by time-of-maturity to time-to-maturity
requires extrapolation/smoothing and resampling of the forward prices. Below,
we describe the steps we took to produce the numerical illustrations given in this
chapter. Other procedures have been proposed to solve this issue. The problem is
especially delicate in illiquid markets with a small number of quoted forward prices,
and in highly volatile markets like the electricity markets. For example, the reader
is referred to Chapter 7 of [2] for a detailed discussion of the latter.

On any given trading day, say t, we replace the maturity times T1, T2, : : : after t
by the corresponding times to maturity �1 D T1 � t, �2 D T2 � t, : : :, �n D Tn � t,
and we plot the price quotes p1; p2; � � � ; pn against these values of � . In other words,
we consider the points

.�1; p1/; .�2; p2/; � � � ; .�n; pn/

as discrete sample observations of a hypothetical forward curve � ,! Qf .t; �/ which
could be defined for � > 0. The main advantage of this re-parameterization of the
curve is that its domain of definition does not change with t, and it is thus easier to
have meaningful comparisons between forward curves on different days. On each
day t, this hypothetical forward curve Qf .t; � / is often called a continuous maturity
forward curve. It can be estimated by regression. In all the examples considered
in this chapter, we used a standard cubic spline regression to produce continuous
maturity curves. Modelling the term structure of forward prices by parametric
families of classical functions is very convenient. This approach was successfully
implemented for the analysis of the term structure of interest rates, and central
banks, regulators and fixed income desks of major banks have developed their own
proprietary methods to do so. But from a practical point of view, handling functions
of a continuous variable is not always easy, and it is natural to work with discrete
subsamples

Qp1 D Qf .t; Q�1/; Qp2 D Qf .t; Q�2/; � � � � � � ; Qp1 D Qf .t; Q�m/;

for a fixed set Q�1, Q�2, : : : which will not change from day to day. The choice of these
fixed values of the time to maturity often starts with values like 1mo, 2mo, : : :, but
these values do not have to be regularly spaced, and they do not have to be in the
same number as the number n of original observations. The discrete forward curve
so obtained

. Q�1; Qp1/; . Q�2; Qp2/; � � � ; . Q�m; Qpm/

is called a constant maturity forward curve. Note that except for some exceptional
cases, the prices Qpi are the results of data analysis, and they are not observed quotes
from the market. So any conclusion drawn from the analysis of these modified prices
is subject to artifacts created by the way we massaged the data, and should possibly
be taken with a grain of salt!



16 R. Carmona

2010

20

15

10

5

2005200019951990

4

3

2

1

Tau

Forward

Date

Fig. 5 Surface plot of the daily forward curves for copper between January 3, 1990 and July 7,
2013

Figure 5 gives the plot of the daily forward curves for Copper between January 3,
1990 and July 7, 2013. The trading days t appear on the axis labelled “Date” while
the resampled time to maturity appears on the axis labelled “Tau”. We express � in
months and in the particular case of Copper, we resampled the continuous maturity
forward curve for the values � D 1, � D 2, � � � , � D 24 months.

Principal Component Analysis (PCA) is the most basic data analysis technique
to identify the effective dimension of multidimensional objects. It was successfully
used by Litterman and Scheinkman in [24] to identity the main factors in the
time evolution of the term structure of interest rates. Since then, it has been used
systematically each time a financial engineer faces a forward curve of any kind. We
performed PCA on the daily changes in the Copper constant maturity forward curves
over two different periods, period P1 ranging from January 3, 2000 to December 31,
2004, and period P2 ranging from January 3, 2010 to July 7, 2013 (Fig. 6).

The first four loadings of each of the PCAs are reproduced in Fig. 7. While the
shapes of the first loadings are strikingly similar (the first and main one representing
a parallel shift, the second one corresponding to a tilt of the curve, while the third
one provides convexity or concavity to the curve), the proportions of the variance
explained by the factors which are given in Fig. 6 deserve some explanation. Despite
the fact that the scales of the vertical axes partially mask the differences between the
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Fig. 6 Proportions of the variance explained by the loadings of the PCA of the copper forward
curves for the period P1 ranging from January 3, 2000 to December 31, 2004 (left) and the period
P2 ranging from January 3, 2010 to July 7, 2013 (right)
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Fig. 7 Loadings of the PCA of the copper forward curves for the period P1 ranging from January
3, 2000 to December 31, 2004 (left) and the period P2 ranging from January 3, 2010 to July 7,
2013 (right)

two periods, it appears clearly that the term structure of forward prices is stiffer in
the second period. By this we mean that a smaller number of factors explains the
same proportion of the fluctuations in the time evolution of the forward curves. This
phenomenon is widespread throughout the commodity markets and seems to have
appeared in the mid-2000s. More on that later on.
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2.6 Market Participants

The original raison d’être of the commodity markets was to facilitate price discovery
and allow the transfer of price risk from producers and consumers to agents
willing to assume that risk. Over the last decade, the growing financialization of
these markets has dramatically changed this idealized picture, and the activity of
these markets became increasingly murky and time and again more difficult to
compartmentalize.

In its weekly Commitment of Traders (COT) reports, the CFTC provides
information on the various categories of market participants which are active in the
commodity markets. Originally, these participants could be organized in two major
groups: hedgers trading in futures contracts to reduce an existing risk exposure in
their commercial business (which is the reason why they are also called commer-
cials), and speculators or non-commercials. However, through financialization, an
increasing number of commodity index swap dealers who hedge to offset financial
positions were categorized as commercials. To remedy this problem, starting in
2007, the CFTC added a supplementary Commodity Index Traders (CIT) report,
and more recently, weekly Disaggregated Commitment of Traders (DCOT) reports.
The five categories of market participants identified by the DCOT reports are given
in Table 1. The reader interested into more details is referred to [35].

The swap dealer category is not limited to passive investors tracking commodity
indexes. It includes swap dealers who do not have commodity index-related
positions. On the other hand, money managers trade on short-term horizons and
adopt active investment strategies.

Table 1 CFTC classification of commodity markets participants from its “Disaggregated
Commitment of Traders Reports”. See [35] for details

Trader categories Description

Producers, merchants,
processors, users (PMPU)

Entities that predominantly engage in the physical commodity
markets and use the futures markets to manage or hedge risks
associated with those activities

Swap dealers Entities that deal primarily in swaps for a commodity and use
the futures markets to manage or hedge the risks associated with
those swap transactions. The bulk of these traders’ clients are
index investors who invest in commodity indexes

Money managers Entities that manage and conduct organized futures trading on
behalf of their clients. This category includes registered
commodity trading advisers (CTAs), registered commodity pool
advisers (CPOs), and unregistered funds identified by the
CFTC. Hedge funds and large ETFs are part of this category

Other reporting traders Every other reportable trader that is not included in one of the
other three categories

Non-reporting traders Smaller traders who are not obliged to report their positions
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2.7 Exchange Traded Products and Index Investing

Exchange traded products (ETPs) include exchange traded funds (ETFs), exchange
traded vehicles (ETVs), exchange traded notes (ETNs) and exchange traded certifi-
cates (ETCs). Many energy or commodity ETFs are tracking proprietary benchmark
indexes measuring the aggregate performance of stocks in the energy or commodity
sector. For example, the Vanguard Energy ETF (VDE) is a typical passively
managed portfolio aiming at a full replication (whenever possible) of a portfolio of
stocks of companies involved in the exploration and production of energy products
such as oil, natural gas and coal. Most ETPs replicate the return on a single
commodity, or a group of commodities. ETPs issue shares that are traded like a
stock on a securities exchange. So the shares of ETPs are traded on equity markets.
Some of them are easily accessible by small-scale investors, while others offer large
single coupons, and are therefore more attractive to institutional investors such as
pension funds. Apart from ETFs for precious metals, such funds have traditionally
used futures contracts as collateral. But an important recent development is that
some ETPs, such as those in copper and aluminum, are now backed by physi-
cal commodities. Futures-backed ETPs expose investors to counterparty risk, as
transactions involving buying and selling of ETPs do not go through a clearing
house on commodity exchanges. The rising importance of physically-backed ETPs
indicates that risk aversion and growing concern with counterparty risk have made
it more acceptable for financial investors to bear the storage cost of the physical
commodities as they can be used as collateral. The currently very low interest
rates, which reduce the cost of credit used to finance storage costs, has most likely
also contributed to the increased importance of physically-backed ETPs. Returns
on such products are determined by spot price movements, while the returns on
futures-backed ETFs are largely influenced by the roll yield, and thus share the
characteristics of traditional index investments.

2.7.1 ETVs

Exchange Traded Vehicles (ETVs) provide investors exposure to commodity futures
contracts without actually trading futures or ever taking physical delivery of the
underlying commodity. Most often, they track a single commodity, as opposed to
an index computed on a portfolio of commodities. They are traded as equities on
equity markets. They can be short-only as well as long-only

2.7.2 ETNs

Exchange Traded Notes (ETNs) are debt securities issued by banks. Up until they
mature, their returns are based on the performance of an underlying index. They
combine features of bonds and ETFs. ETNs’ values are affected by the credit
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worthiness of the issuer. As a result, their values depend not only upon the value
of the underlying portfolio of commodity contracts, but also on the credit rating of
the issuer.

2.7.3 Commodity Mutual Funds vs ETFs

The reason for broad commodities mutual funds’ popularity, say professional
investors, is largely due to the fact that similar commodities ETFs hold futures
contracts. This leaves ETFs more prone to so-called contango effects, as well as
vulnerable to tax hits and front-running. As already mentioned earlier, precious
metals ETFs, however, avoid these problems by directly owning their underlying
commodities.

There are two types of commodity ETFs. Those which track an index computed
from the performance of a portfolio of stocks of companies whose business is
commodity intensive, and those which track the performance of a commodity index.
We are mostly concerned with the latter. They usually hold futures contracts because
the definitions of the indexes they track are based on the performances of specific
contracts. But this can lead to problems, as the ETFs have fallen victim to contango
when a fund loses money every time it rolls over from a near-month contract to a
further-dated contract. See the example of UNG discussed below.

Some mutual funds, case in point PIMCO Commodity Real Return Fund
PCRDX, have tried to avoid these pitfalls. Their strategy is to gain exposure to
commodities through debt instruments such as swaps and pre-paid forward notes,
rather than futures, in order to avoid the hit of a normal backwardation/congango
transition.

2.7.4 Index Investing

The final way to gain exposure to commodity which we discuss in this chapter
is investing directly in Commodity Indexes or in ETPs tracking these commodity
indexes. For liquidity reasons, most ETPs simply invest in contracts with the shortest
possible times to maturity. When the contracts they are holding approach maturity,
in order to avoid delivery or settlement issues, they automatically roll their holdings
by closing the positions in the contracts approaching maturity, and taking the same
exact positions in the contracts available for trading with the shortest possible
maturities. See the discussion of the example following the definition of roll yield in
Sect. 2.4 and of the roll algorithm in Sect. 3.5 below. This form of passive investment
(after all there is no need for a Commodity Trading Advisor (CTA) for that), has
become very popular as a way to diversify an investment portfolio with an exposure
to commodities without having to deal with the gory details of all the convoluted
idiosyncrasies of the relevant markets. Nevertheless, an understanding of forward
curve dynamics and the effect of frequent (typically monthly) rolls is still vital,
as a recent investor in a natural gas ETF would undoubtedly agree: between June
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2008 and March 2012 this ETF (called UNG) lost a shocking 96 % of its value,
with roughly half attributable to the spot price drop and half to the steep contango
witnessed throughout this period.

However, one the main original contribution of this chapter, if any, is to review
and investigate the impact of a new generation of commodity indexes with a
different roll mechanism, optimizing the roll yield. See Sect. 5 below for details.

2.8 Active Versus Passive Investing

Investing in a portfolio tracking the composition of an index like those discussed
in Sect. 3 below, is often called indexing. It is a form of passive investing because
managing such a portfolio does not require active involvement, except for setting
up the portfolio and periodic re-balancings. The expected performance of indexing
is no different from the performance of the benchmark index. This is in contrast
with active investing whose objective is to outperform the market or a benchmark
index. Depending upon their styles, active managers rely on fundamental analysis,
technical analysis or macroeconomic analysis to identify inefficiencies and anoma-
lies in the markets which they then try to exploit. In a recent report [33], the United
Nations Conference on Trade and Development (UNCTAD) argued that between
July 2009 and February 2011, the importance of index traders diminished at the
expense of active investment strategies. Based on Bloomberg and CFTC data, it
published Pearson correlation coefficients between prices in specific commodities
(e.g. oil, cocoa, maze, sugar and wheat) and positions in these commodities by index
investors on one hand, and money managers on the other hand. These numbers
show a close correlation between commodity prices and the positions of financial
investors that pursue an active trading strategy. See also the shorter and more
aggressive policy brief [34] mostly focused on WTI Crude oil prices.

3 Commodity Indexes

Indexes can be traded through the use of index swaps which involve the exchange of
a fixed payment for the value of the index at a pre-determined date. In most cases,
this type of passive investment relies on ETPs, such as ETFs, backed by portfolios
of futures contracts more often than individual futures contracts. The commodity-
related assets under this form of management was at a historic high in March 2011,
when it reached about $410 billion which is approximately the double of its pre-
crisis level of 2007. While index investment accounted for 65–85 % of the total
between 2005 and 2007 prior to the financial crisis, its relative importance fell to
45 % since 2008. This decline occurred despite a roughly 50 % increase in the value
of index investments between 2009 and the end of 2010.
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Table 2 Original commodity indexes

CRB/CCI GSCI Rogers RICI DJ-AIG

Started 1957/1986 1992 1996 1999

Exchange traded Yes Yes No No

Number of components 17 22 35 20

Energy (%) 18 50 44 31

Metals (gold) 24 6 12 2 21 3 29 9

Grains 18 18 21 21

Food/fiber 30 10 11 10

Livestock 12 11 3 9

3.1 Index Terminology

We now give specific definitions for some of the terms we already used when we
commented on some of the figures at the beginning of the chapter.

• A Spot Index is based on the prices of the contracts included in the index;
• An Excess Return Index incorporates the returns of the corresponding spot Index

as well as the discount or premium obtained by rolling hypothetical positions in
contracts approaching their delivery dates;

• A Total Return Index incorporates the returns of the corresponding excess return
index as well as the interests earned on fully collateralized contract positions on
the commodities included in the index.

As for the original indexes introduced in Table 2, we briefly review the main
features of CCI and RICI in Sects. 3.2 and 3.3 respectively, and we postpone the
discussion of the major indexes GSCI and DJ-AIG to Sect. 3.4.

3.2 The Continuous Commodity Index (CCI)

The Continuous Commodity Index has been around since 1986 as a means to track
the overall performance of the commodity markets and to offer investors a way to
trade a diversified group of commodities under one contract. CCI is a broad grouping
of 17 different commodity futures. It is one of many reincarnations of the original
CRB Index that was developed in 1957. It is equally weighted. Each member
commodity represents 5:88% of the index. Over the years, some commodities have
been dropped and replaced by new ones to give a better representation of the overall
performance of commodities.

For the sake of completeness, we list by groups the commodities currently
included in the Continuous Commodity Index CCI (Table 3):
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Table 3 CCI composition

Energies: 17.64 % Crude oil Heating oil Natural gas

Grains: 17.64 % Corn Soybeans Wheat

Softs: 29.40 % Coffee Cocoa Cotton Orange juice Sugar

Livestock: 11.76 % Lean hogs Live cattle

Metals: 23.52 % Copper Gold Platinum Silver

Notice that this partition of the index universe into commodity groups does not
coincide with the partition given in Table 5 of the universes of the S&P-GSCI and
DJ-UBSCI indexes into sectors. This is unfortunate, but typical of the historical lack
of standardization of commodity indexes which change over time.

3.3 The Rogers International Commodity Index (RICI)

This total return index was designed by James B. Rogers, Jr. in the mid 1990s. It
comprises futures contracts on 36 physical commodities ranging from agricultural
to energy and metals products, quoted in four different currencies, listed on 12
exchanges in five countries. Its goal is to capture the price of raw materials
throughout the world, and consumption patterns in developed as well as developing
economies.

Over the past decade, two commodity indexes have emerged as industry behe-
moths: the Standard and Poor’s-Goldman Sachs Commodity Index (S&P-GSCI),
and the Dow Jones-UBS Commodity Index (DJ-UBSCI). They are marketed as
tradable and for this reason, they are based on liquid commodity contracts traded
on highly active futures markets.

3.4 The Two Major Commodity Indexes

In this section, we present the two major commodity indexes: the S&P-Goldman
Sachs commodity index (SP-GSCI) and the Dow Jones-UBS commodity index (DJ-
UBSCI). While they have been historically fierce competitors, The McGraw-Hill
Companies owning the S&P indices and the CME Group, major shareholder in Dow
Jones Indexes merged in the summer of 2012 to form the giant index provider S&P
Dow Jones Indices.2

2On July 1st, 2014, 1 year after submission of the original version of this chapter, and 1 month
before its revision, Bloomberg took over the calculation, distribution, governance and licensing of
this index. In the process, it was renamed Bloomberg Commodity Index (BCOM). It is now part of
the Bloomberg commodity index family.
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3.4.1 The Dow Jones-UBS Commodity Index

Introduced on July 14, 1998, as the Dow Jones-AIG Commodity Index, this index
is rebalanced annually, the weights being based on production and liquidity as long
as, after each rebalancing, no commodity group constitutes more than 33% of the
index, and no single commodity constitutes more than 15% of the index. It was
acquired in May 2009 by the Swiss bank UBS AG.

3.4.2 The S&P-Goldman Sachs Commodity Index

Goldman Sachs published the GSCI starting 1991. It was acquired by S&P
Indices in February 2007 when it became the SP-GSCI. The weights used in the
computation of the index value are based on world production of the physical
commodities. When a futures contract included in the index approaches maturity,
a smoothed rolling procedure is implemented to replace the soon to mature contract
with the next to nearest maturity contract. As most commodity indexes, it comes in
three flavors: Excess Return, Total Return, and Spot. A time series plot of the spot
index was given in Fig. 1.

3.4.3 Comparison

Table 4 provides a detailed comparison, as of August 2013, of the compositions
of the two major commodity indexes. Table 5 provides a summary comparing the
weights given by the two indexes to the various commodity sectors.

3.5 The Roll Algorithm

While the composition of equity indexes can be relatively stable, commodity
indexes have to deal with the issue of maturing contracts. Even if the relative
proportions between the physical commodities entering an index can remain stable
over time, futures contracts approaching maturity need to be replaced by similar
contracts with longer maturities in order to avoid to have to take delivery of the
physical commodities. Each index prospectus describes the algorithm used to roll
the contracts approaching maturity into longer lived contracts. For the most part,
the indexes considered in the first part of this chapter use a simple roll strategy,
replacing contracts nearing delivery by contracts with the next maturity dates. There
are some exceptions, due mostly to liquidity considerations. These exceptions are
spelled out in documents publicly available, but the index boards reserve the right
to alter the rolling procedures on a case by case basis when exceptional market
conditions render the rolling algorithm unpractical.
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Table 4 Side by side comparison of the two major commodity indexes

S&P-GSCI DJ-UBSCI
Sector Commodity Exchange Ticker weights (%) weights

Energy Crude oil (Brent) ICE-UK LCO 22.34

Crude oil (WTI) NYM / ICE CL 24.71 11.16 %

Unleaded gas ICE-UK QS 3.76

Gasoil ICE-UK LGO 8.56

Heating oil NYM HO 6.17 3.88 %

Natural gas NYM / ICE NG 2.0 12.41 %

Oil (RBOB) NYM RB 5.90 2.58 %

Industrial metals Aluminum LME MAL 2.13 4.58 %

Copper LME MCU 3.28 6.78 %

Lead LME MPS 0.40

Nickel LME MNI 0.58 1.91 %

Zinc LME MZN 0.51 2.52 %

Precious metals Gold CMX GC 3.00 9.73 %

Silver CMX SI 0.49 3.23 %

Agriculture Cocoa ICE-US CC 0.23

Coffee ICE-US KC 0.82 2.00 %

Corn CBT C 4.66 5.26 %

Cotton #2 ICE-US CT 1.07 2.06 %

Wheat (Chicago) CBT W 3.22 3.17 %

Wheat (Kansas) KBT KW 0.88 1.22

Soybean oil CBT BO 2.53 %

Soybean meal CBT S 2.86 %

Soybeans CBT S 2.62 5.70 %

Sugar#11 ICE-US SB 1.85 3.57 %

Livestock Feeder cattle CME FC 0.52

Lean hogs CME LH 1.58 2.05 %

Live cattle CME LC 2.62 3.32 %

Table 5 Sector by sector
comparison of the two major
commodity indexes

Sector S&P-GSCI (%) DJ-UBSCI (%)

Energy 69.71 37.47

Industrial metals 6.90 15.79

Precious metals 3.50 12.96

Agriculture 15.17 28.42

Livestock 4.73 5.36

As mentioned several times already, when the forward curve is in backwardation,
replacing a maturing contract by the nearest maturity contract results in a net gain
which is called the roll yield. However, when the curve is in contango, rolling
contract is done at a cost. This simple fact needs to be kept in mind when one think
about investment in commodity futures.
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4 Review of the First Wave of Works on the Financialization
Hypothesis

In [31], Singleton uses data from the 2008 boom—bust in oil prices to argue that
flows from institutional investors have contributed significantly to the volatility of
commodity prices.

In a decisive study [32], Tang and Xiong refute the idea that growing demand
from emerging economies was the only driver of the commodity price burst in
2006–2008, and that commodity prices were influenced by financial factors and
financial investor behavior. They use correlation coefficients computed in a trailing
sliding window to argue that the co-movements between oil and other commodities
rose dramatically following the inflow of institutional investors starting from 2004.
Comparing with non-index commodities, they also demonstrate that this correlation
increase effect is especially pronounced among commodities included in the same
indexes. They show that the co-movements of the prices of different commodities
increased after 2003–2004, and argue that this coincides with the beginning of
significant position-taking by commodity index investors. A further evidence of that
claim is the fact that for the commodities included in the major indexes this increase
was significantly greater than for those not included.

We first illustrated the dramatic increase in return correlations between equities
(as represented by the S&P 500 index) and commodities (as represented by the GSCI
Spot index) in Fig. 2. There we can clearly see the increase in the instantaneous
“beta” over the period 2006–2009. We further stress this claim by reproducing in
Fig. 8 the time evolution of the instantaneous “betas” of Copper against the S&P
500. As expected this plot is noisier since we lost the averaging effect of the
commodity index, but it is still providing a strong evidence for the tightening of
the correlations between commodities and equities over that period.

Based on a thorough analysis of a proprietary dataset from the CFTC [5],
Buyuksahin and Robe argue that the recent increase in the correlation between
equity indices and commodities is due to the presence of hedge funds active in both
equity and commodity markets.

In a recent study [15], Henderson, Pearson and Wang show that large investments
in Commodity Linked Notes (CLNs) are the sources of hedges which cause
significant price changes in the underlying futures markets.

However, not all the evidence point in the same direction. Surveys by Irwin and
Sanders [16], and Fattouh, Kilian, and Mahadeva [21] argue against the claim that
increased speculation in oil futures markets was an important factor in oil prices
evolution. Furthermore, Kilian and Murphy [20] argue that the 2003–2008 oil price
surge was due to global demand shocks rather than speculation. See also [26]
and the technical report from the European Central Bank [25] for more balanced
conclusions.

Following Kyle and Xiong [23], one can argue that portfolio rebalancing of
commodity index funds can lead to correlated trades in related markets and thus
create spillover effects across different commodities. In a recent econometric study
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Fig. 8 Instantaneous dependence (ˇ) of copper daily returns upon S&P 500 returns

of agricultural commodities, Hamilton and Wu [14] found no evidence that the
positions of traders identified by the CFTC as index traders can help predict returns
on the front month futures contracts.

While there is still lack of agreement on whether institutional investors affect
commodity futures prices, it is well-established that institutional investors trades do
affect stock prices. In the case of equity markets, several studies have analyzed the
so-called asset class effect according to which correlations between assets belonging
to the same index are higher than those between index and non-index assets. The
co-movements associated to these unusually high correlations are attributed to the
presence of institutional investors. This type of analysis was extended in [1] with an
attempt to incorporate some of the idiosyncrasies of the commodity markets.

5 A New Generations of Indexes

Returns from investing in commodity futures contracts come typically from three
different sources: spot, collateral and roll returns. New generations of indexes have
chosen to optimize the roll return which was traditionally left to the backwarda-
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tion/contango transitions. Among the most successful of this new breed of indexes,
the Deutsche Bank Optimum Yield Commodity Index rolls according to a formula
rather than simply rolling month to month. The formula seeks to achieve the best roll
return possible given the shape of the forward curve at the time of the roll. Instead
of rolling a contract nearing maturity into the nearest available maturity contract,
the roll algorithm chooses the maturity with the best implied annual roll yield, as
long as some liquidity constraints are satisfied.

We shall speculate on the possible impacts of the tracking of such indexes in our
further look at consequences of this form of financialization.

5.1 Deutsche Bank PowerShare Optimum Yield
Commodity Index

This Index comprises futures contracts on 14 heavily-traded physical commodities.
with a distribution target of 55 % energy, 10 % precious metals, 12.5 % base metals,
and 22.5 % agriculture. The weights are computed according to a combination of
production and market liquidity. It is rebalanced annually in November. We give
below a snapshot of its composition. The main originality of this index is the
process used to implement the roll. As a general rule, commodity futures-based
indexes replace contracts before they expire, and automatically buy into the next
available maturity month. As explained earlier, this process is called “rolling”
futures contracts forward. Instead of following this common practice, PowerShares
DB Commodity Optimum Yield Index (and the ETFs tracking these indexes) use
a procedure which is called Optimum Yield Roll process. As described in public
prospectuses, it consists in choosing the maturity month among the next 13maturity
months available for trading at the time of the roll, which offers the best possible
roll yield. As a result, the maturities of the futures contracts used in the computation
of the PowerShares DB Commodity Index are not limited to the nearest month
(Table 6). Accordingly, the portfolios of the corresponding Tracking Funds includes
contracts with maturities further down the curve. While the details of the roll
algorithm remain somehow mysterious due to the liquidity factor coming into
the choice of the maturities to roll into, this roll strategy has been credited for
out-performing the major indexes, both the SP GSCI and the Dow Jones-UBS
commodity indexes, in the period 2006–2009 (Fig. 9).
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Table 6 Composition of the
DB iShare index as of
09-Aug-2013 12:00 AM

Component Contract date Weight (%)

Aluminium 16-Oct-2013/OCT3 4:11

Brent crude 14-Mar-2014/APR4 13:62

Copper - Grade A 19-Mar-2014/MAR4 4:16

Corn 13-Dec-2013/DEC3 4:24

Gold 28-Apr-2014/APR4 6:39

Heating oil 31-Mar-2014/APR4 13:26

Light crude 20-Jun-2014/JUL4 14:64

Natural gas 26-Sep-2013/OCT3 4:88

RBOB gasoline 31-Oct-2013/NOV3 14:36

RBOB gasoline 29-Nov-2013/DEC3 0:14

Silver 27-Dec-2013/DEC3 1:33

Soybeans 14-Nov-2013/NOV3 5:26

Sugar #11 30-Sep-2013/OCT3 5:21

Wheat 14-Jul-2014/JUL4 4:10

Zinc 18-Dec-2013/DEC3 4:28
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Fig. 9 Time series plot of the daily GSCI total return index (black) and Deutsche bank iShare
DBiS (red)

The commodities included in the index are traded on the following futures
exchanges:

• NYMEX: Light Sweet Crude Oil (WTI), Heating Oil, RBOB Gasoline and
Natural Gas;

• ICE Futures Europe: Brent Crude;
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• Commodity Exchange NY: Gold and Silver;
• London Metal Exchange: Aluminum, Zinc and Copper Grade A;
• Chicago Board of Trade: Corn, Wheat and Soybeans;
• ICE Futures U.S.: Sugar.

5.2 Dow Jones-UBS Roll Select Commodity Index

Deutsche Bank is by far not the only financial institution to have tried to capitalize
on the attractiveness of the roll yield optimization. Indeed, a version of the Dow
Jones-UBS Commodity Index was designed with the same goal in mind. Its goal
is to mitigate the effects of contango on index performance. For each commodity
included in the index, the roll algorithm chooses the futures contract (within the
next nine maturity month available), which exhibits the most backwardation or least
contango.

5.3 The UBS Bloomberg Constant Maturities
Commodity Index

Partly motivated by the losses incurred by the traditional indexes in the recent
contango period, the UBS Bloomberg Constant Maturity Commodity Index (CMCI)
uses constant maturity contracts to provide diversification across maturity dates.

While the distribution of the relative weights across the sectors is not much
different from the major commodity indexes, the goal of the index is to overload the
diversification across the 28 commodities included in the index by a diversification
across five constant maturities � D 3mo, � D 6mo, � D 1Y , � D 2Y and � D 3Y ,
with weights varying with the commodities. The details are given in Tables 7 and 8.

5.4 Still More Commodity Index Rolling Down the Curve

The Credit Suisse Commodity Benchmark (CSCB) index is also a long-only
index of commodities weighted by world production and liquidity. It is rebalanced

Table 7 Sector distribution
of the UBS Bloomberg
commodity indexes

Sector
UNS-Bloomberg
CMCI weight (%)

Energy 36.3

Industrial metals 25.5

Precious metals 36.1

Agriculture 28.1

Livestock 4.0
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Table 8 Composition of the UBS-Bloomberg constant maturities commodity index (Target
weights H1-2013)

Relative constant maturities weights

Sector Commodity
Total
weight (%) 3mo (%) 6mo (%) 1Y (%) 2Y (%) 3Y (%)

Energy Crude oil
(Brent)

7.72 49.20 19.84 15.17 9.32 6.48

WTI crude oil
(NYMEX)

8.83 45.66 18.74 16.81 11.48 7.32

WTI Crude oil
(ICE)

3.45 44.98 20.86 16.21 10.82 7.13

Heating oil 3.46 57.36 26.45 16.19

Gasoil 4.35 54.21 26.67 19.12

RBOB
gasoline

4.21 69.37 30.63

Natural gas 4.37 48.57 22.39 15.34 7.87 5.83

Industrial
metals

LME
aluminum

6.71 34.84 21.85 19.50 14.09 9.72

LME copper 9.18 30.65 21.01 22.85 15.94 9.55

High grade
copper

3.24 73.31 26.69

LME zinc 2.19 46.23 28.99 24.78

LME nickel 2.27 52.37 25.24 22.39

LME lead 1.29 50.98 27.75 21.28

Precious
metals

Gold 4.96 62.41 17.65 10.88 9.06

Silver 1.29 61.72 17.06 11.75 9.48

Agriculture SRW wheat 2.33 50.84 30.39 18.77

KCBOT HRW
wheat

1.20 59.56 40.44

Corn 6.06 48.33 31.81 19.86

Soybeans 5.37 53.30 29.63 17.06

Soybean meal 1.33 63.73 36.27

Soybean oil 1.63 64.27 35.73

Sugar #11 4.62 41.77 35.90 22.33

Sugar #5 2.23 62.57 37.43

Cocoa 0.69 58.49 41.51

Coffee ‘C’ 1.32 57.96 28.41 13.63

Cotton 1.64 56.74 43.26

Livestock Live cattle 2.31 63.24 36.76

Lean hogs 1.75 62.50 37.50

monthly, and contracts approaching maturity (starting 15 days prior to actual
maturity) are rolled into equally weighted averages of the three contracts with
maturities up to 3 months further out the term structure of forward prices.
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Barclays has also a suite of exchange traded products tracking commodity
indexes based on portfolios of futures contracts updated with optimized rolling
algorithms. Among its many ETPs, the Barclays Capital Commodity Index Pure
Beta TR and Barclays Capital Commodity Index TR are ETNs (iPath Pure Beta
ETNs) tracking commodity indexes created by Barclay implementing a rolling
algorithm involving varying expiration dates, typically choosing at roll time, the
contract with the highest positive implied roll yield when the curve is backwarded
or the lowest negative return when the forward curve is in contango.

We claim that the presence of these funds pushed the open interest down the
curve, phenomenon which we now demonstrate in Sect. 6 devoted to a discussion of
the impact of the financialization of commodities on open interest data.

6 Commodity Open Interest

So far, our discussion has been mostly concentrated on prices. We switch gear and
turn our attention to two important variables whose values and changes can shed
informative light on the future evolutions of prices. The first of these variables is
volume. On any given day, and for each contract maturity, volume quantifies the
trading activity in this particular contract. It provides a measure of the amount of
contracts that have changed hands, the amounts of new positions open or closed for
this specific maturity date. While a good indicator of the volatility of the market, it
may not be as representative of economic fundamentals as it is of trader sentiments
and behaviors. We choose to study open interest instead. On any given day, and for
each contract maturity, open interest is the total number of outstanding contracts
with that specific maturity that are held by market participants on that day. These
numbers are often aggregated over the set of all maturities available for trading and
a total open interest figure is given as the total number of outstanding contracts held
by market participants on that day. We used this aggregate open interest for Crude
Oil earlier in the chapter (recall Fig. 4) to illustrate the influx of investments over
the period 2004–2009. We give the corresponding plot for Copper in Fig. 10 below.

6.1 The Term Structure of Open Interest

The purpose of this section is to demonstrate the changes in the term structure
of open interest which occurred in the mid 2000s. Our contention is that open
interest slid down the curve as investment in longer maturity contracts increased.
We illustrate these claims with a close look at the two commodities we followed
throughout the chapter: WTI crude oil and copper. While crude oil may have a
seasonal component, it is not strong enough to overwhelm the features we are
looking for. The same analysis would have been more difficult with natural gas.
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Fig. 10 Time series plot of the daily open interest in copper futures contracts between January 2,
1990 and September 9, 2013. Source: Data Stream
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Fig. 11 Surface plot of the daily term structure of open interest for WTI crude oil (left) and copper
(right) futures contracts between January 3, 1990 and July 7, 2013
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Fig. 12 Proportions of the variance explained by the loadings of the PCA of the open interest
copper forward curves for the period January 3, 2000 to December 31, 2004 (left) and the period
P2 ranging from January 3, 2010 to July 7, 2013 (right)

Figure 11 gives the surface plots of the term structures of open interest for
WTI crude oil and copper. The plot in the left pane clearly shows that the highest
open interest is concentrated on the shortest available maturity (the variable Date
being close to 0), and that for longer times to maturity, a secondary bump appears.
However, the time evolution of the location of this bump shows a clear shift further
down the curve in the mid 2000s. A similar phenomenon, though not as clean
because of noise, can be observed in the right pane in the case of copper.

In order to provide one more graphical evidence of the open interest slide down
the curve, we performed the PCA of the daily term structure of open interest over the
two time periods considered so far. The results are reproduced in Fig. 12. Contrary
to the daily changes in price, it appears that more factors are needed to explain the
fluctuations over the second period. But looking at the loadings plotted in Fig. 13,
we clearly see a shift to the right of the bumps representing where most of the open
interest is expected.
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Fig. 13 Loadings of the PCA of the open interest forward curves of Copper for the period January
3, 2000 to December 31, 2004 (left) and the period ranging from January 3, 2010 to July 7, 2013
(right)
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Understanding the Tracking Errors
of Commodity Leveraged ETFs

Kevin Guo and Tim Leung

Abstract Commodity exchange-traded funds (ETFs) are a significant part of the
rapidly growing ETF market. They have become popular in recent years as they
provide investors access to a great variety of commodities, ranging from precious
metals to building materials, and from oil and gas to agricultural products. In this
article, we analyze the tracking performance of commodity leveraged ETFs and
discuss the associated trading strategies. It is known that leveraged ETF returns
typically deviate from their tracking target over longer holding horizons due to the
so-called volatility decay. This motivates us to construct a benchmark process that
accounts for the volatility decay, and use it to examine the tracking performance
of commodity leveraged ETFs. From empirical data, we find that many commodity
leveraged ETFs underperform significantly against the benchmark, and we quantify
such a discrepancy via the novel idea of realized effective fee. Finally, we consider
a number of trading strategies and examine their performance by backtesting with
historical price data.

1 Introduction

The advent of commodity exchange-traded funds (ETFs) has provided both insti-
tutional and retail investors with new ways to gain exposure to a wide array of
commodities, including precious metals, agricultural products, and oil and gas. All
commodity ETFs are traded on exchanges like stocks, and many have very high
liquidity. For example, the SPDR Gold Trust ETF (GLD), which tracks the daily
London gold spot price, is the most traded commodity ETF with an average trading
volume of 8 million shares and market capitalization of US $31 billion in 2013.1

1According to ETF Database website (http://www.etfdb.com/compare/volume).
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Within the commodity ETF market, some funds are designed to track a constant
multiple of the daily returns of a reference index or asset. These are called leveraged
ETFs (LETFs). An LETF maintains a constant leverage ratio by holding a variable
portfolio of assets and/or derivatives, such as futures and swaps, based on the
reference index. For example, the Dow Jones U.S. Oil & Gas Index (DJUSEN)
or the Dow Jones U.S. Basic Materials Index (DJUSBM) and their associated ETFs
track the stocks of a basket of commodities producers, as opposed to the physical
commodity prices. On the other hand, most LETFs are based on total return swaps
and commodity futures. The most common leverage ratios are ˙2 and ˙3, and
LETFs typically charge an expense fee. Major issuers include ProShares, iShares,
VelocityShares and PowerShares (see Table 1). For example, the ProShares Ultra
Long Gold (UGL) seeks to return 2x the daily return of the London gold spot price
minus a small expense fee. One can also take a bearish position by buying shares
of an LETF with a negative leverage ratio. The ProShares Ultra Short Gold (GLL)
is an inverse LETF that tracks �2x the daily return of the London gold fixing price.

Table 1 A summary of the 23 LETFs studied in this paper, arranged by commodity type and
then leverage

LETF Reference Underlying Issuer ˇ Fee (%) Inception

SLV SLVRLN Silver bullion iShares 1 0.50 04/21/2006

AGQ SLVRLN Silver bullion ProShares 2 0.95 12/01/2008

ZSL SLVRLN Silver bullion ProShares �2 0.95 12/01/2008

USLV SPGSSIG Silver bullion VelocityShares 3 1.65 10/13/2011

DSLV SPGSSIG Silver bullion VelocityShares �3 1.65 10/14/2011

GLD GOLDLNPM Gold bullion iShares 1 0.40 11/18/2004

UGL GOLDLNPM Gold bullion ProShares 2 0.95 12/01/2008

GLL GOLDLNPM Gold bullion ProShares �2 0.95 12/01/2008

UGLD SPGSGCP Gold bullion VelocityShares 3 1.35 10/13/2011

DGLD SPGSGCP Gold bullion VelocityShares �3 1.35 10/14/2011

IYE DJUSEN Oil & gas iShares 1 0.48 06/12/2000

DDG DJUSEN Oil & gas ProShares �1 0.95 06/10/2008

DIG DJUSEN Oil & gas ProShares 2 0.95 01/30/2007

DUG DJUSEN Oil & gas ProShares �2 0.95 01/30/2007

DBO DBOLIX WTI crude oil PowerShares 1 0.75 01/05/2007

UCO DJUBSCL WTI crude oil ProShares 2 0.95 11/24/2008

SCO DJUBSCL WTI crude oil ProShares �2 0.95 11/24/2008

UWTI SPGSCLP WTI crude oil VelocityShares 3 1.35 02/06/2012

DWTI SPGSCLP WTI crude oil VelocityShares �3 1.35 02/06/2012

IYM DJUSBM Building materials iShares 1 0.48 06/12/2000

SBM DJUSBM Building materials ProShares �1 0.95 03/16/2010

UYM DJUSBM Building materials ProShares 2 0.95 01/30/2007

SMN DJUSBM Building materials ProShares �2 0.95 01/30/2007

Notice that the non-leveraged (1x) ETFs have the smallest expense fees, and LETFs with higher
absolute leverage ratios, jˇj 2 f2; 3g, tend to have higher expense fees. Finally, notice that higher
ˇ LETFs are much more recent additions to the market
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LETFs are a highly accessible and liquid instrument, thereby making them attractive
instruments for traders who wish to gain leveraged exposure to a commodity without
borrowing money or using derivatives.

For a long LETF, with a leverage ratio ˇ > 0, the fund must add to a winning
position in a bull market to maintain a constant leverage ratio. On the other hand,
during a bear market, the fund must sell its losing positions to maintain the same
leverage ratio. Similar arguments can be made for short (or inverse) LETFs (ˇ < 0).
As a consequence, LETFs can potentially outperform ˇ times its reference during
periods of market trending. However, should the LETF exhibit high volatility but no
significant movement in price over a period of time, the constant daily re-balancing
would cause the fund to decline in value. Therefore, LETFs can be viewed as long
momentum but short volatility, and the value erosion due to realized variance of the
reference is called volatility decay (see [2–4]). This raises the important question of
how well do LETFs perform over a long horizon.

Since their introduction to the market, LETFs a number of criticisms from both
practitioners and regulators.2 Some are concerned that the returns of LETFs exhibit
some discrepancies from the goals stated in their prospectuses. In fact, some issuers
provide warnings that LETFs are unsuitable for long-term buy-and-hold investors.

Many existing studies focus on equity-based ETFs and their leveraged coun-
terparts. For example, Avellaneda and Zhang [2] study the price behavior and
discuss the volatility decay of equity LETFs in different sectors. They find minimal
1-day tracking errors among the most liquid equity ETFs. They explain that an
equity LETF can replicate the leveraged returns of its reference through a dynamic
portfolio consisting of the component equities.

In contrast, commodities are unique because the physical assets cannot be stored
easily. As such, ETF issuers are required to replicate through either warehousing,3

which is very costly, and thus uncommon except for precious metals such as
silver and gold, or trading futures with multiple counterparties (see [5]). Since the
reference indices may represent the spot prices of physical commodities, futures-
based commodity ETFs may fail to track their reference indices perfectly and their
tracking performance is subject to the fluctuation and term structure of futures
prices. On top of that, most commodity LETFs use over-the-counter (OTC) total
return swaps with multiple counterparties to generate the required leverage ratios.
The lower liquidity of OTC contracts and counterparty risk can contribute to
additional tracking errors. As we show in this paper, tracking errors can seriously
affect the long-term fund performance of LETFs.

In a related work, Murphy and Wright [12] perform a t-test based on 1-day
returns to determine if any commodity LETF has a non-zero tracking error. They
conclude that all LETFs have a very good daily tracking performance. However,

2In 2009, the SEC and FINRA issued an alert on the risk of leveraged ETFs on http://www.sec.
gov/investor/pubs/leveragedetfs-alert.htm.
3For more details on the issue of storage cost for commodity ETFs, we refer to the Morningstar
Report: “An Ugly Side to Some Commodity ETFs” by Bradley Kay, August 19, 2009.

http://www.sec.gov/investor/pubs/leveragedetfs-alert.htm
http://www.sec.gov/investor/pubs/leveragedetfs-alert.htm
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they do not conduct the analysis over a longer horizon, or account for the volatility
decay. There is also no discussion of trading strategies there. On the other hand,
Guedj et al. [5] discuss the difficulties faced by an ETF provider in replicating a
commodity index using futures. In particular, they point out that the term structure
of futures may lead to large deviations between the ETF price and the spot price of
a commodity.

In this paper, we analyze the tracking performance of commodity leveraged
ETFs. Through a series of regression analyses, we illustrate how the returns of
commodity LETFs deviate from the reference returns multiplied by the leverage
ratio over different holding periods. In particular, the average tracking error tends
to turn more negative over a longer horizon and for higher leveraged ETFs. With in
mind that realized variance of the reference can erode the LETF value, we examine
the over/under-performance of LETFs with respect to a benchmark that incorporates
the effect of volatility decay. From empirical data, we find that many commodity
leveraged ETFs in our study underperform significantly against the benchmark, and
we quantify such a discrepancy by introducing the realized effective fee. Finally, we
consider a static trading strategy that involves shorting two LETFs with leverage
ratios of different signs, and study its performance and dependence on the realized
variance of the reference. We find that the resulting portfolio is always long realized
variance both theoretically and empirically, but is also exposed to the tracking errors
associated with the two LETFs. We also backtest the strategy through examining its
empirical returns over rolling periods.

The rest of the paper is organized as follows. In Sect. 2, we analyze the returns of
commodity LETFs over different holding periods and illustrate horizon dependence
of tracking errors. In Sect. 3, we use a benchmark process that incorporates the
realized variance of the reference to study the over/under-performance of each
LETF. In Sect. 4, we discuss a static trading strategy and backtest using historical
data. Section 5 concludes the paper and points out a number of directions for future
research.

2 Analysis of Tracking Error

We first compare the returns of LETFs and their reference indices. For every
ETF, we obtain its closing prices and reference index values from Bloomberg
for the period Dec 2008–May 2013. We then calculate the n-day returns from
n D f1; 2; : : : ; 30g using disjoint successive periods (e.g. the return over days 1–30
then returns over days 31–60 for 30-day returns). Let Lt be the price of an LETF and
St be the reference index value at time t. For a given leverage ratio ˇ, we compare the
log-returns of the LETF to ˇ times the log-returns of the corresponding reference
index. This leads us to define the n-day tracking error at time t by

Y.n/t D ln
LtCn�t

Lt
� ˇ ln

StCn�t

St
; (1)
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where �t represents one trading day. We explore the empirical distribution of the
n-day tracking error, and then analyze the effect of holding horizon on the magnitude
of tracking errors. We remark there are alternative ways to define tracking errors for
ETFs. For example, one can consider the difference in relative returns as opposed to
log-returns, or the root mean square of the daily differences (see [10]).

2.1 Regression of Empirical Returns

We conduct a regression between log-returns of the LETF and its reference index
based on the linear model:

ln
Lt

L0
D Ǒ ln

St

S0
C Oc C �; (2)

where � � N.0; �2/ is independent of the reference index value St, 8t � 0. In other
words, we run an ordinary least square 1-variable regression between the log-returns
for every fixed horizon of n days. Then, we increase the holding period from 1 to 30
days, and observe how the regression coefficients vary.

We display the regression results in Figs. 1, 2, 3, and 4 for log-returns over
periods of 1, 5, 10, and 20 days. To avoid dependence among returns, we use disjoint
time intervals to calculate returns. For example, we use S20

S0
; S40

S20
: : : and L20

L0
; L40

L20
: : :

for 20-day log-returns as the inputs for the regression.
In Fig. 1, the regression coefficient Ǒ for DIG (ˇ D 2, oil & gas) increases from

2 to 2:1 as the holding period lengthens from 1 to 20 days. Although the coefficient
of determination R2 is close to 99 % for up to 20 days, it is highest for 1-day returns.
In Fig. 2 for DUG (ˇ D �2, oil & gas), one again observes Ǒ increasing, and R2

decreasing. For DUG (ˇ D �2, oil & gas), as n varies from 1 to 20, Ǒ increases
from �2 to �1:66. As a result, this implies that DIG (ˇ D 2, oil & gas) effectively
gains leverage as the holding time increases, while DUG (ˇ D �2, oil & gas) loses
leverage compared to the advertised fund ˇ.

On the other hand, UGL (ˇ D 2, gold) and GLL (ˇ D �2, gold) exhibit very
different return behaviors. In Fig. 3 the R2 for UGL (ˇ D 2, gold) is surprisingly
worst for the shortest holding period of 1 day, whereas it increases to 95 % over a
holding period of 20 days. In Fig. 4 for GLL (ˇ D �2, gold), the R2 increases from
35 % to 96 % when holding the fund from 1 to 20 days. Furthermore, the estimators
Ǒ for UGL (ˇ D 2, gold) and GLL (ˇ D �2, gold) both slowly approach their

advertised ˇ D ˙2. The variation of Ǒ for DIG (ˇ D 2, oil & gas) and UGL
(ˇ D 2, gold) over different holding periods is summarized in Fig. 5.

We observe that LETFs that track an illiquid reference, such as the gold bullion
index GOLDLNPM, tend to have more tracking errors than those tracking a liquid
index, such as the oil & gas index DJUSEN. The oil & gas commodity LETFs
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Fig. 1 From top left to bottom right: regression of DJUSEN-DIG (ˇ D 2, oil & gas) 1, 5, 10,
20-day log-returns. We consider disjoint periods from Dec 2008 to May 2013

involve exchange-traded futures which are liquid proxy to the spot price. The gold
and silver bullion LETFs consist of OTC total return swaps. The difficulty and
higher costs replication using swaps, as well as infrequent (typically daily) update
of the swaps’ mark-to-market values can weaken the fund’s tracking ability. For
example, the 1-day regressions of UGL and GLL (ˇ D ˙2, gold) yield R2 values
less than 40 %, while DIG and DUG (ˇ D ˙2, oil & gas ) have 1-day R2 values of
over 90 %. On the other hand, full physical replication yields the greatest R2, with
examples of the non-leveraged gold and silver ETFs, GLD and SLV, respectively.
Hence, the replication strategy can significantly affect a fund’s tracking errors.
A more precise understanding of the effectiveness of swaps, futures, and other
replication strategies requires the full holdings history from the ETF provider, which
is not publicly available at all times.4

4For a detailed snapshot of the holdings for a proshares ETF, please see http://www.proshares.com/
funds/XYZ_daily_holdings.html where fXYZg is the ETF ticker.

http://www.proshares.com/funds/{XYZ}_daily_holdings.html
http://www.proshares.com/funds/{XYZ}_daily_holdings.html
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Fig. 2 From top left to bottom right: regression of DJUSEN-DUG (ˇ D �2, oil & gas) 1, 5, 10,
20-day log-returns. We consider disjoint periods from Dec 2008 to May 2013

In addition, the LETFs we studied have an increasingly negative constant
coefficient Oc as the holding time increases. For example, over a holding period of
20-days, DUG (ˇ D �2, oil & gas) has a 3 % decay on returns compared to ˇ times
its reference index. We would expect this phenomenon, however, since the LETF
would need to buy high and sell low, while the reference investor would simply
hold his securities. Therefore, the longer the LETF is held, the more likely the fund
will underperform against ˇ times the reference index. As we will see in Sect. 3, the
constant coefficient Oc depends on two factors, the expense fee charged by the issuer
as well as the realized variance of the reference index.

Hence, with this simple linear model for LETF prices, we have observed that
although LETFs safely replicate ˇ times the reference over short holding periods,
they begin to exhibit negative tracking error and deviations in their leverage ratios
ˇ as the holding time increases. Furthermore, we see that LETFs which attempt to
track illiquid spot prices perform much more poorly than expected. We conclude
that more factors must be considered when modeling LETF returns.
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Fig. 3 From top left to bottom right: regression of GOLDLNPM-UGL (ˇ D 2, gold) 1, 5, 10,
20-day log-returns. We consider disjoint periods from Dec 2008 to May 2013

2.2 Distribution of Tracking Errors

As defined in (1), the tracking error is the difference between the LETF’s log-return
and the corresponding multiple of its reference index’s log-return. In this section, we
examine the distribution of the tracking error. This provides a picture of the LETF’s
efficiency in its stated goal of replicating the leveraged return of a reference index.

For the 23 LETFs in Table 2, we compute the mean � and standard deviation
� for the tracking errors using available price data during the period Dec 2008 to
May 2013. For all these funds, the mean 1-day tracking error has � � 0, ranging
from 0 % to �0:27%. Therefore, all these LETFs on average successfully replicate
the stated multiple ˇ of the daily reference return, with a slight negative bias. In
fact, many LETFs even continued to replicate returns over periods as long as 10
days. However, as the holding time increases, the average tracking error grows
more negative, so that the LETF in fact underperforms its intended goal over longer
holding periods (see Fig. 6).
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Fig. 4 From top left to bottom right: regression of GOLDLNPM-GLL (ˇ D �2, gold) 1, 5, 10,
20-day log-returns. We consider disjoint periods from Dec 2008 to May 2013

Fig. 5 The estimated Ǒ from the regressions for DJUSEN-DIG (ˇ D 2, oil & gas), and
GOLDLNPM-UGL (ˇ D 2, gold)

Interestingly, the tracking errors for the silver and gold LETFs (AGQ, ZSL
(ˇ D ˙2, silver); UGL, GLL (ˇ D ˙2, gold)) in Table 2 have � several magnitudes
higher than �. For example, AGQ (ˇ D 2, silver) has a tracking error � of 5 %
compared to a� of 0.01 %. In other words, these four LETFs, while they might track
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Table 2 Mean � and
standard deviation � of the
1-day tracking error by
commodity

LETF Underlying ˇ � �

SLV Silver bullion 1 0.0000 0.0302

AGQ Silver bullion 2 �0.0009 0.0539

ZSL Silver bullion �2 �0.0022 0.0543

USLV Silver bullion 3 �0.0014 0.0231

DSLV Silver bullion �3 �0.0027 0.0237

GLD Gold bullion 1 0.0000 0.0128

UGL Gold bullion 2 �0.0003 0.0221

GLL Gold bullion �2 �0.0005 0.0221

UGLD Gold bullion 3 �0.0006 0.0134

DGLD Gold bullion �3 �0.0010 0.0139

IYE Oil & gas 1 0.0000 0.0049

DDG Oil & gas �1 �0.0008 0.0118

DIG Oil & gas 2 �0.0005 0.0044

DUG Oil & gas �2 �0.0018 0.0087

DBO WTI crude oil 1 0.0000 0.0070

UCO WTI crude oil 2 �0.0006 0.0135

SCO WTI crude oil �2 �0.0016 0.0132

UWTI WTI crude oil 3 �0.0008 0.0147

DWTI WTI crude oil �3 �0.0017 0.0178

IYM Building materials 1 0.0000 0.0020

SBM Building materials �1 �0.0004 0.0065

UYM Building materials 2 �0.0005 0.0062

SMN Building materials �2 �0.0022 0.0149

their references well on average, may also exhibit positive and negative deviations
over 1-day holding periods as well. These observations are consistent with the
regressions in Figs. 3 and 4, where UGL and GLL (ˇ D ˙2, gold) show significant
1-day tracking errors. On the other hand, the non-leveraged gold and silver bullion
ETFs, GLD and SLV, have almost no tracking error � � 0, because they hold the
underlying bullion according to their prospectuses. Since many investors use these
ETFs to gain leveraged exposure to commodities, they should be aware of the large
variance of the associated tracking errors.

In Fig. 6, we show the histogram for the tracking error for each ETF along with
a quantile-quantile plot to illustrate the distribution. For DIG and DUG (ˇ D ˙2,
oil & gas), the quantile-quantile plot shows that the tracking error distribution is not
quite normal, and has a large negative tail, so that the commodity LETF tracking
error is negatively biased even for the shortest possible holding period of 1 day. On
the other hand, for UGL, GLL (ˇ D ˙2, gold) the distribution appears to be normal
with R2 close to 98 %. However, as noted in Table 2, the tracking errors for UGL
and GLL (ˇ D ˙2, gold) also have a very large variance.
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Fig. 6 Histograms and QQ plots of 1-day tracking errors for DIG, DUG (ˇ D ˙2, oil & gas);
UGL, GLL (ˇ D ˙2, gold) from top to bottom
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Fig. 7 A plot of no. of days vs the mean tracking error arranged by commodities tracked. From
top left to bottom right: US Oil & Gas, Gold, Crude Oil,and Silver. As the holding period increases,
the average tracking error becomes more negative as well

Next, we examine the horizon effect of tracking errors. Figure 7 indicates that
higher leveraged ETFs tend to have more negative average tracking errors, which
appear to be decreasing linearly over longer holding periods. In addition, negative
leveraged LETFs have a more negative average tracking error than their positive
counterparts. For example, in Fig. 7, GLL (ˇ D �2, gold) has a lower slope than
UGL (ˇ D 2, gold) even though they have the same absolute value of leverage ratio
jˇj. Furthermore, with few exceptions, the average tracking error is most negative
when ˇ D �3 followed by ˇ D 3;�2; 2;�1; 1. Thus, there is a higher holding
horizon punishment for buying short than long LETFs.

Our analysis of the tracking error distribution reveals several characteristics of
the tracking error defined in (1). Over a very short holding period, most LETFs
perform close to their objectives stated in their prospectuses. Nevertheless, the
realized tracking error varies over time, and can be positive or negative. For gold
and silver LETFs, the tracking error is more volatile. Moreover, the magnitude of
the mean tracking error depends heavily on the ˇ of the LETF, with bear LETFs
suffering a higher penalty than bull LETFs.



Tracking Errors of Commodity LETFs 51

3 Incorporating Realized Variance into Tracking
Error Measurement

As is well known in the industry (see [2, 3]), the price dynamics of an LETF depends
on the realized variance of the reference index. This leads us to incorporate the
realized variance in measuring the performance of an LETF. We run a regression
analysis based on empirical LETF and reference prices that incorporates the
realized variance as an independent variable. We then derive a realized effective
fee associated with each LETF and analyze the realized price behavior relative to a
theoretical benchmark to better quantify the over/under-performance.

3.1 Model for the LETF Price

Let St be the price of the reference index, and Lt be the price of the LETF at time t.
Also denote f as the expense rate, r as the interest rate and ˇ as the leverage ratio.
Assume the reference asset follows the SDE

dSt

St
D �tdt C �tdWt; t � 0; (3)

with stochastic drift .�t/t�0 and volatility .�t/t�0. For our analysis herein, we
assume a general diffusion framework, but do not need to specify a parametric
model. Many well-known models, including the CEV, Heston, and exponential
Ornstein-Uhlenbeck models, fit within the above framework.

A long ˇ-LETF L can be constructed through a dynamic portfolio. Specifically,
the portfolio at time t consists of the cash amount $ˇLt invested in the reference
index St, while $.ˇ�1/Lt is borrowed at the positive risk free rate r. As a result, the
LETF satisfies the SDE

dLt D Ltˇ
dSt

St
� Lt..ˇ � 1/r C f /dt: (4)

Solving the SDE, the log-return of the LETF is given by

ln
Lt

L0
D ˇ ln

St

S0
C ˇ � ˇ2

2
Vt C ..1 � ˇ/r � f /t; (5)

where

Vt D
Z t

0

�2s ds (6)
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is the realized variance of S accumulated up to time t. Therefore, under this general
diffusion model, the log-return of the LETF is proportional to the log-return of the
reference index by a factor of ˇ, but also proportional to the variance by a factor of
ˇ�ˇ2
2

. The latter factor is negative if ˇ … .0; 1/, which is true for every LETF traded
on the market. Also, the expense fee f reduces the return of the LETF.

Our regression analysis will focus on testing the functional form (5). We observe
from (5) that the functional form of Lt in terms of St and Vt holds for any parametric
model within the diffusion framework in (3). Considering the daily LETF returns,
we set�t D 1

252
as one trading day. Let RS

t be the daily return of the reference index
at time t. At any time t, the n-day log-returns of an LETF follows

ln
LtCn�t

Lt
D ˇ ln

StCn�t

St
C ˇ � ˇ2

2
V.n/

t C ..1 � ˇ/r � f /n�t; (7)

V.n/
t D

n�1X
iD0
.RS

tCi�t � NRt
S
/2; NRt

S D 1

n

n�1X
iD0

RS
tCi�t: (8)

This serves as a benchmark process for our subsequent analysis.

3.2 Regression of Empirical Returns

The log-return equation (7) suggests a regression with two predictors: the log-
returns and the realized variance of the reference over n-days. This results in the
linear model

ln
Lt

L0
D Ǒ ln

St

S0
C O�Vt C Oc C �; (9)

where Oc is a constant intercept to be determined, and " � N.0; �2/ is independent
of .St/t�0.

In Table 3, we summarize the estimated O� from our regression with holding
periods of 30 days. Again, we use price data from disjoint periods to calculate
returns. The realized variance is calculated using the inter-period returns (30 days).
The choice of 30-day periods gives us sufficient points to compute the realized
variance while providing enough disjoint periods during the period Dec 2008–May
2013 to perform a regression. A longer price history would certainly have helped in
balancing this tradeoff, but all these commodity LETFs were introduced only in the
past 5 years.

Our empirical analysis confirms several aspects of our theoretical model in (5)
and provides explanations in cases where there is discrepancy. The theoretical value

of � according to (5) is given by ˇ�ˇ2
2

. Table 3 shows that the estimator O� is typically
in the neighborhood of � , its theoretical value. For example, SCO (ˇ D �2, crude
oil) has O� D 2:93 versus a theoretical � of 3. In addition, the non-leveraged ETFs all
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Table 3 O� vs. � , estimated from 30-day multi-variable regression of returns, with
a partial correlation table

LETF Underlying ˇ O� � r2 r2xjy r2yjx

SLV Silver bullion 1 0.11 0 0.9799 0.9503 0.0078

AGQ Silver bullion 2 �1.31 �1 0.9885 0.9751 0.3892

ZSL Silver bullion �2 �3.27 �3 0.9995 0.9988 0.7514

USLV Silver bullion 3 �2.24 �3 0.9995 0.9988 0.7514

DSLV Silver bullion �3 �6.94 �6 0.9994 0.9989 0.9654

GLD Gold bullion 1 �0.14 0 0.9898 0.9791 0.0064

UGL Gold bullion 2 �2.44 �1 0.9934 0.9867 0.2900

GLL Gold bullion �2 �0.96 �3 0.9914 0.9828 0.0417

UGLD Gold bullion 3 �2.38 �3 0.9982 0.9955 0.6355

DGLD Gold bullion �3 �6.26 �6 0.9846 0.9685 0.0809

IYE Oil & gas 1 �0.06 0 0.9988 0.9965 0.1905

DDG Oil & gas �1 �0.99 �1 0.8866 0.7662 0.2342

DIG Oil & gas 2 �1.11 �1 0.9996 0.9989 0.9498

DUG Oil & gas �2 �3.31 �3 0.9884 0.9769 0.8873

DBO WTI crude oil 1 �0.02 0 0.9992 0.9981 0.0035

UCO WTI crude oil 2 �1.15 �1 0.9987 0.9972 0.7747

SCO WTI crude oil �2 �2.93 �3 0.9987 0.9975 0.9619

UWTI WTI crude oil 3 �2.14 �3 0.9974 0.9939 0.6218

DWTI WTI crude oil �3 �7.25 �6 0.9974 0.9939 0.6218

IYM Building materials 1 0.03 0 0.9996 0.9987 0.0495

SBM Building materials �1 �0.98 �1 0.9970 0.9920 0.5446

UYM Building materials 2 �1.10 �1 0.9997 0.9993 0.9380

SMN Building materials �2 �3.59 �3 0.9613 0.9221 0.5301

r2yjx stands for the marginal predictive power of adding the realized variance .y/
into the model, holding constant the predictive power of the reference index
returns .x/. Similar definition for r2xjy. Data from Dec 2008–May 2013

have O� close to 0, suggesting that realized variance does not play an important role in
its price process, as predicted. However, some LETFs have O� diverging significantly
from � . For example, the O� for UGL (ˇ D 2, gold) differs from its theoretical value
by a factor of 114 % even with a regression R2 of 99 %.

We attribute the deviation of O� from � in our regression to the collinearity effect
of the two predictors (ln St

S0
and Vt). Of course ln St

S0
and Vt cannot be independent

observations, since Vt depends on the price path process of St, the reference index.
In general, the reference returns and the realized variance are negatively correlated.
When the realized variance is high, it is likely the reference has suddenly dropped
in value. When the realized variance is low, it usually implies a period of steady
positive growth for the reference. Thus, the multi-collinearity effect is responsible
for shifting predictive power among the different predictor variables. In order
to measure the magnitude of the collinearity effect and the contribution of each
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correlated predictor variable, we compute the coefficients of partial determination
for our regression model.

The factor r2yjx which measures the marginal predictive power of adding the

realized variance into the model. As r2yjx increases, O� becomes closer to � , suggesting
a larger dependence of LETF returns on realized variance during holding periods
of high volatility. For example, for the 3 LETFs DIG (ˇ D 2, oil & gas), SCO
(ˇ D �2, crude oil), and UYM (ˇ D 2, building materials) all have r2yjx over

90 %. Their estimated O� is similarly very close to the theoretical � , never differing
by more than 10 %. However, for non-leveraged ETFs, the realized variance has
minimal added predictive power in the model. For those ETFs, we observe O� � 0.
For example, SLV (ˇ D 1, silver), GLD (ˇ D 1, gold), and DBO (ˇ D 1, crude
oil) all have r2yjx � 0, and they subsequently have O� � 0. In addition, r2xjy, which
is the marginal predictive power of adding the log-returns of the reference into our
regression model, is always very high, indicating that the log-returns of the reference
affect the LETF prices the most, but that the realized variance is still important for
predictive power, especially when leverage and the holding period is high.

3.3 Realized Effective Fee

In Fig. 8, we show three empirical price paths: the LETF log-returns, the benchmark
process defined in (5), and ˇ times the reference index log-returns. As we can
see, the value erosion due to realized variance (volatility decay) starts to play a
significant role in determining LETF prices as the holding time increases. The
path associated with ˇ times the reference log-returns dominates the LETF log-
returns after about 1 month of holding. After about 1 year, the benchmark which
incorporates volatility decay more closely models the empirical LETF log-returns.
For example, after 6 months of holding, SCO (ˇ D �2, crude oil) diverges from ˇ

times the reference, illustrating the effects of volatility decay.
However, there are also some strong deviations from the predictions given

by the benchmark, which compound as the holding time increases. This causes
the LETF to underperform even after the volatility decay is accounted for. For
example, DUG’s (ˇ D �2, oil & gas) empirical returns begin to trail its benchmark
significantly around 2009. Therefore, the volatility decay cannot explain all the
LETF underperformance.

We are therefore motivated to quantify the over/under-performance of the LETFs
after observing deviations from the benchmark in Fig. 8. We introduce the concept
of realized effective fee (REF) as the effective deduction rate charged by the LETF
provider over the frictionless dynamic portfolio from which the LETF is constructed
in Sect. 3.1. For a holding interval Œ0; t�, the corresponding REF is defined by

bft D .1 � ˇ/r � ln Lt
L0

� ˇ ln St
S0

� ˇ�ˇ2
2

Vt

t
: (10)
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Fig. 8 Cumulative empirical log-returns of the LETF (solid dark) vs benchmark (solid light) and
ˇ times reference (dashed light), from Dec 2008–May 2013. From top left to bottom right: UCO,
SCO (crude oil); UGL, GLL (gold); DIG, DUG (building materials). UCO, UGL, and DIG have
ˇ D 2 while SCO, GLL, and DUG have ˇ D �2

Since for each LETF, Lt, St, Vt, ˇ, and r are all known, we can calculate the REFbft
for any LETF over a given holding period Œ0; t� using historical prices. We remark
that the REF, which is indexed by time t, depends on the selected holding horizon.

In many cases, the REF is seen to be much larger than the fund’s advertised fee,
indicating significant underperformance. Out of the 23 commodity LETFs, 2 have
negative implied costs, so that the fund overperforms by the end of the 5 year period
Dec 2008 to May 2013. If the REF exceeds the advertised fee, then the investor
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effectively pays an extra price for the opportunity to invest in the LETF. As a general
trend, the bear LETFs tend to charge higher REFs than bull LETFs with the same
magnitude of leverage jˇj. For example, USLV (ˇ D 2, silver) has a REF of 93 bps,
while DSLV (ˇ D �2, silver) has an REF of 504 bps over the period Dec 2008–
May 2013. The two highest REFs correspond to DUG (ˇ D �2, oil & gas) and SMN
(ˇ D �2, building materials), whose REFs are 1,134 bps and 1,625 bps respectively.
Figure 8 illustrates that DUG (ˇ D �2, oil & gas) drastically underperforms the
benchmark, thereby realizing a high REF. Notice that in both cases, however, DUG
and SMN’s bull counterparts DIG (ˇ D 2, oil & gas) and UYM (ˇ D 2, building
materials) respectively display a negative REF, indicating overperformance during
the same period. It is possible that as the reference trends upwards for a long period
of time, the bear LETF will underperform, while the bull LETF will overperform
(Table 4).

Table 4 Comparison of the official fee for the LETF charged on the
fund prospectus and the REF calculated using 5 years of price data (Dec
2008–May 2013) for the LETF and reference (see (10))

LETF Underlying ˇ

Prospectus
fee (bps)

Realized effective
fee (bps)

SLV Silver bullion 1 50 96

AGQ Silver bullion 2 95 524

ZSL Silver bullion �2 95 567

USLV Silver bullion 3 165 93

DSLV Silver bullion �3 165 504

GLD Gold bullion 1 40 48

UGL Gold bullion 2 95 343

GLL Gold bullion �2 95 406

UGLD Gold bullion 3 135 139

DGLD Gold bullion �3 135 521

IYE Oil & gas 1 48 50

DDG Oil & gas �1 95 953

DIG Oil & gas 2 95 �142

DUG Oil & gas 2 95 1,134

DBO WTI crude oil 1 75 56

UCO WTI crude oil 2 95 84

SCO WTI crude oil �2 95 321

UWTI WTI crude oil 3 135 3

DWTI WTI crude oil �3 135 549

IYM Building materials 1 48 11

SBM Building materials �1 95 456

UYM Building materials 2 95 �204

SMN Building materials �2 95 1,625

We set r D 69:1 bps, the annualized LIBOR rate
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4 A Static LETF Portfolio

Taking advantage of the volatility decay, a well-known trading strategy used by
practitioners involves shorting a ˙ˇ pair of LETFs with the same reference, as
discussed in [2, 7, 9, 11]. Since the LETFs have opposite daily returns on the same
reference index, the portfolio has very little exposure to the reference as long as the
holding period is sufficiently short. With this strategy, the volatility decay can help
generate profit, which is the intuition of many practitioners. However, the portfolio
is exposed to risk during periods of low volatility and high trending, as well as
tracking errors. In this section, we describe an extension of this trading strategy
by allowing the positive and negative leverage ratios to differ. We determine the
portfolio weights to approximately eliminate the dependence on the reference. We
show that the resulting portfolio is long volatility. For a number of LETF pairs,
we find from empirical data that on average the strategy is profitable with enormous
tail risk.

We now construct a weighted portfolio which is short the LETF with leverage
ratio ˇC > 0 and short another LETF with leverage ratio ˇ� < 0. We emphasize
that both LETFs having the same reference, but that ˇC and jˇ�j may differ. We
hold fraction ! 2 .0; 1/ of the portfolio in the ˇC-LETF and .1�!/ of the portfolio
in the ˇ�-LETF. At time T , the normalized return from this strategy is

RT D 1 � ! LC
T

LC
0

� .1 � !/L�
T

L�
0

: (11)

Applying (5), RT admits the expression

RT D 1 � !
�

ST

S0

�ˇC

exp .	 C
T / � .1 � !/

�
ST

S0

�ˇ�

exp .	 �
T /; (12)

where

	Ṫ D ˇ˙ � ˇ2˙
2

VT C ..1 � ˇ˙/r � f˙/T; (13)

Here, ˇ˙ and f˙ are the respective leverage ratios and fees of the two LETFs in the
portfolio defined in (11). Over a short holding period such that LT

L0
� 1 , one can

pick an appropriate weight !� to approximately remove the dependence of RT on
ST .

Proposition 1. Select the portfolio weight !� D �ˇ�

ˇC�ˇ�
. For LT

L0
� 1, the return

from this strategy is given by

RT D �ˇ�ˇC
2

VT � ˇ�
ˇC � ˇ�

.fC � f�/T C .f� � r/T: (14)
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Table 5 Table of .ˇC; ˇ�/

pairs vs !� the weight of the
ˇC portfolio, and �ˇ�ˇC

2
the

dependence of the strategy on
Vt (see Proposition 1)

.ˇC; ˇ�/ !� �ˇ�ˇC

2

.1;�1/ 1=2 1=2

.1;�2/ 2=3 1

.1;�3/ 3=4 3=2

.2;�1/ 1=3 1

.2;�2/ 1=2 2

.2;�3/ 3=5 3

.3;�1/ 1=4 3=2

.3;�2/ 2=5 3

.3;�3/ 1=2 9=2

Proof. For LT
L0

� 1, we can substitute for LT
L0

with ln LT
L0

C 1 in (11). Then, we set
! D !� and apply (5) to conclude (14).

The return (14) corresponding to portfolio weight !� reflects a linear dependence
on the realized variance. In particular, the coefficient �ˇ�ˇC

2
is strictly positive, so

the strategy is effectively long volatility (VT ). Also, as it does not depend on ST , the
!� portfolio is �-neutral as long as the reference does not move significantly. In
Table 5, we summarize the coefficient of VT and the weighted portfolio .!�; 1�!�/
for different combinations of leverage ratios. Note that as long as ˇC D �ˇ�, we
end up with the portfolio weight !� D 1

2
. Also, the coefficient �ˇ�ˇC

2
exceeds or

equals to 1 except for the pair .ˇC; ˇ�/ D .1;�1/, and it is largest for the pair
.ˇC; ˇ�/ D .3;�3/.

We now backtest the !� strategy from Proposition 1 as follows. For each LETF
pair, we short $0.5 of the ˇC-LETF and $0.5 of the ˇ�-LETF with ˇC D �ˇ� D 2

and hold the position for some time T . The normalized return RT depends on the
relative weights on the long/short-LETFs but not the absolute cash amounts. More
generally, one can also test the strategy with different ˇ˙ and !�.

Dividing the price data from Dec 2008 to May 2013 into n-day rolling (over-
lapping) periods, we calculate the returns from the strategy over each period. For
every n-day return, we compare against the realized variance over the same period.
This is illustrated in Fig. 9. As a theoretical benchmark, we also plot RT in (14) as
a linear function. Each point (dot) on the plots represents a 5-day return, but over
rolling periods the returns are not independent. In other words, the lines in Fig. 9 are
not generated by regression but taken from (14). We choose (14) as a benchmark
because it is expected to hold pathwise as long as LT

L0
� 1 with negligible tracking

error.
We can observe from Fig. 9 that the returns exhibit positive dependence on the

realized variance (VT ). In particular, for the energy pairs (DIG-DUG (ˇ D ˙2,
oil & gas) and UCO-SCO (ˇ D ˙2, crude oil)), the returns tend to be very positive
when the realized variance is high. This is because the strategy captures the volatility
decay as profit. Nevertheless, there is also a visible amount of noise in the returns
deviating from the linear dependence on VT , especially for the gold and silver pairs
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DJUSEN-DIG-DUG GOLDLNPM-UGL-GLL

DJUBSCL-UCO-SCO SLVRLN-AGQ-ZSL

a b

c d

Fig. 9 Plot of trading returns vs realized variance for a double short strategy over 5-day rolling
holding periods, with ˇ˙ D ˙2 for each LETF pair. We compare with the empirical returns
(circle) from the !� strategy with the predicted return (solid line) in Proposition 1. Trading pairs
are DIG-DUG (oil & gas), UGL-GLL (gold), UCO-SCO (crude oil), AGQ-ZSL (silver)

(UGL-GLL (ˇ D ˙2, gold) and AGQ-ZSL (ˇ D ˙2, silver), respectively). This
can be partly attributed to tracking errors from both LETFs in the portfolio. Also,
the !�-strategy loses its �-neutrality if the reference moves significantly.

While this portfolio is expected to be �-neutral (with respect to the reference
index) for small reference movements, in reality the strategy is also short-	 .
One way to see this is through Fig. 10 that plots the returns against the reference
index returns. Common to all four LETF pairs, when the reference return is either
very positive or negative, the return of the !�-strategy tends to be negative. As
a theoretical benchmark, we also plot the normalized return equation (12) which
applies even for large reference movements.

In contrast to the energy pairs, the gold and silver pairs yield very noisy returns.
This is consistent with our earlier observations from our regressions in Figs. 3 and 4.
For instance, both UGL and GLL (ˇ D ˙2, gold) show substantial tracking errors
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DJUSEN-DIG-DUG GOLDLNPM-UGL-GLL

DJUBSCL-UCO-SCO SLVRLN-AGQ-ZSL

a b

c d

Fig. 10 Plot of returns of reference index vs trading returns for a double short strategy over 5-day
rolling, holding periods. ˇ˙ D ˙2 for each LETF pair. We compare the empirical returns from our
trading strategy (dark solid circle) with the predicted dependence on reference returns according
to (12), using 	˙

T D 0 (light solid line). Trading pairs are DIG-DUG (oil & gas), UGL-GLL
(gold), UCO-SCO (crude oil), AGQ-ZSL (silver)

over short periods such as 5 days, and their regressed leverage ratios differ from the
stated ones. On the other hand, the DIG and DUG (ˇ D ˙2, oil & gas) regressions
in Figs. 1 and 2 reflect much less tracking errors.

Furthermore, Fig. 11 shows that as the holding time increases, the returns from
the !� strategy increases as well. The performance is best for the energy pairs UCO-
SCO (ˇ D ˙2, crude oil) and DIG-DUG (ˇ D ˙2, oil & gas), but more subdued
for the bullion pairs UGL-GLL (ˇ D ˙2, gold) and AGQ-ZSL (ˇ D ˙2, silver).
However, over longer holding periods, the!� portfolio may lose its�-neutral status,
thereby generating more risk as well. Although average returns from the !� strategy
are positive, one is subject to enormous tail risk, which increases with the holding
time of the static portfolio. In order to ensure that we do not subject ourselves to
excessive tail risk, we should not only be sure of a high volatility environment, but
we must also adjust the holding time to account for the extra risk associated with
time horizon of returns.
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Fig. 11 Average returns
from a double short trading
strategy by commodity pair
over no. of days holding
period. ˇ˙ D ˙2 for each
LETF pair. Trading pairs are
DIG-DUG (oil & gas),
UGL-GLL (gold), UCO-SCO
(crude oil), AGQ-ZSL (silver)

Fig. 12 Time series of returns for a double short strategy over 30-day rolling, holding periods,
with ˇ˙ D ˙2 for each LETF pair. Notice how during the periods of greatest volatility the double
short strategy has the greatest return. Trading pairs are DIG-DUG (oil & gas), UGL-GLL (gold),
UCO-SCO (crude oil), AGQ-ZSL (silver)

Figure 12 gives another perspective of the !� strategy’s dependence on realized
variance. It shows the time series of the 30-day rolling returns along with the
realized variance of the reference index from Dec 2008 to May 2013. We see
that when the realized variance increases sharply, the strategy returns also spike
sharply. For example, when DJUSEN index realized variance spikes, the DIG-DUG
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(ˇ D ˙2, oil & gas) trading pair accumulates a 30 % return over a single 30-day
holding period. However, when realized variance is subdued over a period of time,
the !� returns may turn quite negative as well.

In summary, the double-short trading strategy studied herein is profitable on
average, but it is commodity specific and subject to enormous tail risk, as seen from
empirical prices. The strategy’s profitability depends strongly on a high volatility
from the reference index. Although longer holding times tend to enhance the average
return, they also enormously increase the horizon risk. According to these findings,
this strategy appears to be appealing only during times of high volatility in the
reference index.

5 Concluding Remarks

The ETF market has continued to grow in quantity and diversity, especially in the
past 5 years. For both investors and regulators, it is very important to understand
and quantify the risks involved with various ETFs. In this paper, we have focused
on commodity ETFs and their leveraged counterparts. We find that the LETF
returns tend to deviate significantly from the corresponding multiple of the reference
returns as the holding horizon lengthens. To study the performance of an LETF,
we have applied a new benchmark process that accounts for the realized variance
of the underlying. We find that many commodity LETFs still diverge, typically
negatively, from this benchmark over time. These empirical observations motivate
us to illustrate the over/under-performance of an LETF via the concept of realized
expense fee. Based on the funds and the time periods we have studied, most
commodity LETFs effectively charge significantly higher expense fees than stated
on their prospectuses.

In view of LETFs’ common pattern of value erosion over time, one well-known
trading strategy in the industry involves statically shorting both long and short
LETFs in order to capture the volatility decay as profit. We systematically study an
extension of this strategy that is applicable to LETF pairs with different asymmetric
leverage ratios. We analytically derive the specific weights in the LETFs so that the
resulting portfolio is approximately �-neutral, but short-	 as well. This strategy
can potentially be quite profitable but its return can be negatively impacted by
tracking errors generated by the LETFs and large movements of the reference index.
These two factors both depend on the holding horizon. This should motivate future
research on the horizon risk for LETF strategies. To this end, Leung and Santoli [7]
study the admissible holding horizon and leverage ratio given a risk constraint. The
recent papers [6, 13, 14] examine the dynamics of price spreads between ETF pairs,
for example, gold vs. silver.

Our analysis herein does not assume a parametric stochastic volatility model for
the underlying. It is of practical interest to investigate the price behavior of LETF
under a number of well-known stochastic volatility models, such as the Heston and
SABR models. On top of LETFs, there are also options written on these funds.
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This gives rise to the question of consistent pricing of LETF options across leverage
ratios (see [1, 8]). Finally, models that capture the connection between LETFs and
the broader financial market would be very useful for not only traders and investors,
but also regulators.
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Integration of Commodity Derivative Markets:
Has It Gone Too Far?

Delphine Lautier, Julien Ling, and Franck Raynaud

Abstract We examine the impact of two financial crises on commodity derivative
markets: the subprime crisis and the bankruptcy of Lehman Brothers. These crises
are “external” to the commodity markets because they occurred in the financial
sphere. Still, because commodity markets are now highly integrated with each other
and with other financial markets, such events could have had an impact. In order to
fully comprehend this possible impact, we rely on tools inspired by the graph theory
that allow for the study of large databases. We examine the daily price fluctuations
recorded in 14 derivative markets from 2000 to 2009 in three dimensions: the
observation time, the space dimension—the same underlying asset can be traded
simultaneously in two different places—and the maturity of the transactions. We
perform an event study in which we first focus on the efficiency of the price shock’s
transmission to the commodity markets during the crises. Then we concentrate
on whether the paths of shock transmission are modified. Finally, relying on the
measure proposed by Bonacich (Am J Sociol 92(5):1170–1182, 1987) for social
networks, we focus on whether the centrality of the price system changes.

1 Introduction

In this paper, we examine the impact of two financial crises on the commodity
derivative markets: the subprime crisis and the bankruptcy of Lehman Brothers.
These crises are exogenous to the commodity markets because they occurred in the
financial sphere. Still, such events could have propagated to the commodity markets
because these markets are highly integrated with each other and with other financial
markets (see [5–7, 12, 15, 22]).
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Specifically, in this paper, we analyze the shock transmission through the
dynamic behavior of the correlations between price returns. Following [13], we
consider that there is transmission if market co-movements increase significantly
after a shock.

In order to fully comprehend the potential impact of such crises on the com-
modity derivative markets, we perform an event study in which we examine price
fluctuations in three dimensions: the observation time, the space dimension—the
same underlying asset can be traded in two exchanges simultaneously—and the
maturity of the transactions. We focus on a time window of 1 month (i.e., ten trading
days before and after the beginning of the crises). We situate the triggering event on
August 9, 2007 for the subprime crisis and on September 15, 2008 for the Lehman
Brothers bankruptcy (see sections “Some Important Events Around the Subprime
Crisis” and “Some Important Events Around Lehman Brothers Bankruptcy” in
Appendix 1 for more details on the chronology of the crises).

Such an analysis requires the use of high dimensional data. In this context, the
tools of the graph theory have already proved to be very interesting in various fields
of finance. First, they provide a way to synthesize the information contained in the
data and to obtain meaningful visual representations, second they allow for the
quantification of high dimensional information (see for instance [10, 17, 19]). In
what follows, we rely mainly on the methodology proposed by Lautier et al. [17].
These authors provide a long-term analysis of the connections between 14 derivative
markets between 2000 and 2009. They give evidence of an increasing integration
along the time period under scrutiny, and they show that it is a condition for systemic
risk to appear. Taking advantage of the fact that between 2000 and 2009 two main
financial crises occurred, we perform an event study on the same markets. This study
gives us the possibility to concretely assess the potential consequences of market
integration. Moreover, we introduce a new method that was initially proposed by
Bonacich [3] for social networks. This method allows us to better evaluate the
organization of the graph. It gives insights into the localization of the center of the
graph that, as far as systemic risk is concerned, is crucial.

Following [17], the nodes of the graphs correspond to price returns: there is one
node per futures contract and per maturity. The link between each pair of nodes
depends on the correlations between their returns. Relying on several measures, we
provide a dynamic analysis of these graphs and their behavior around the crises. We
also empirically compute how exceptional these events are compared to what can
be observed in the whole period.

First, in order to filter the information contained in the graphs, we use Minimum
Spanning Trees—MST—[18]. Because they capture the most important links
between the markets, they are the most probable and the most efficient paths of price
shock transmission. Taking into account the length of the MST, we can ask a first
question: does the efficiency of the price shock transmission improve during crises?
We then concentrate on the organization of the graph, namely the topology of the
MST and ask a second question: do the paths of shock transmission change during
crises and how? In order to answer these questions, several tools are used. First,
we use survival ratios that indicate the number of links that change from one day
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to the other and give indications about large reorganizations of the graphs. Second,
the allometric coefficients measure how far a tree stands from a linear or, on the
contrary, a star-like organization. These two extreme configurations have radically
opposite consequences from the systemic point of view: with a chain-like tree, a
shock appearing at one extremity of the tree must spread through all nodes before
reaching the other extremity. On the contrary, with a star-like tree, a shock arising
at the center of the graph might rapidly affect all other nodes. Finally, we focus
on the centrality of the price system: does it change? Does it increase? In a first
approach, we simply identify the center of the price system as the most connected
node. We then improve this analysis with the measure developed by Bonacich [3]:
in a nutshell, instead of focusing on one single node, we take into account the whole
organization of the network, that is, the number and proximity of the direct as well
as the indirect neighbors of a node.

This paper is organized as follows. We first explain how to build a graph on
the basis of our data. We then examine the efficiency of the shock transmission, the
organization of the price system and its centrality. At each step, we compare the
behavior of the price system in the whole period with what happened during the
crises.

2 The Price System

After a short description of the data used for the study, we explain the way we build
price graphs.

2.1 Data

For the empirical study, we examine 14 futures markets corresponding to three
different sectors of activity: 6 energy markets that comprise 2 markets each of crude
oil, natural gas and petroleum products; 4 agricultural markets (wheat, corn, soy oil
and soy bean) and 4 financial assets (Mini S&P500 index, gold, USD/EUR exchange
rate, and 3 month Eurodollar interest rate). We selected the contracts that were
characterized by the largest transaction volumes over a long time period, thanks
to the Futures Industry Association’s monthly volume reports. We used Datastream
in order to collect settlement prices on a daily basis.

In the absence of reliable spot data for most commodity markets, we approxi-
mated all spot prices with the nearest futures prices. Such an approximation is very
common in finance. We also rearranged the futures prices in order to reconstitute
the daily term structures, i.e., the relationships linking, at a specific date, several
futures contracts with different delivery dates. We removed some maturities from
the database because the price curves were shorter at the beginning of the period.
The number of contract maturities indeed usually rises on a derivative market; the
growth in the transaction volumes of existing contracts results in the introduction
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Table 1 Characteristics of the collected data: nature of the underlying
asset, trading location (CME stands for Chicago Mercantile Exchange,
ICE for Inter Continental Exchange, US for United States and EU for
Europe), longest maturity traded (in months), number of contracts (this
number is added just after the name of the underlying asset on the figures)

Underlying asset Exchange-Zone Maturities # contracts

Light crude oil CME-US Up to 84 33

Brent crude ICE-EU Up to 18 17

Heating oil CME-US Up to 18 18

Gasoil ICE-EU Up to 12 12

Natural gas (US) CME-US Up to 36 36

Natural gas (Eu) ICE-EU Up to 9 9

Wheat CME-US Up to 15 6

Soy bean CME-US Up to 14 7

Soy oil CME-US Up to 15 15

Corn CME-US Up to 25 4

Eurodollar CME-US Up to 120 40

Gold CME-US Up to 60 17

USD/EUR Exchange rate CME-US Up to 12 4

Mini S&P500 CME-US Up to 6 2

of new delivery dates. Finally, when performing spatial and 3D analyses, we used
the longest common time period for all of the underlying assets, from 2000/01/04 to
2009/08/12. Once these selections have been carried out, our database still contains
more than 655,000 prices, that comprise 220 time series in the 3D analysis and a
subset of 14 in the spatial one.

Table 1 summarizes the main characteristics of our database.

2.2 Building the Graphs

Our graphs are built on the basis of the correlations between the price returns. We
use this measure in order to capture the synchronous price movements in the system.
To obtain a graph, these correlations are transformed into distances.

2.2.1 Correlations of Price Returns

The first step towards the analysis of market integration is the computation of the
synchronous correlation coefficients 
ij .t/ of the price returns, defined as follows:


ij .t/ D
˝
rirj
˛ � hrii

˝
rj
˛

r�˝
r2i
˛ � hrii2

� �D
r2j

E
� ˝

rj
˛2� ; (1)
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In the spatial dimension, i and j stand for the nearby futures contracts of a pair of
assets (crude oil or corn for example), whereas they stand for pairs of delivery dates
in the maturity dimension. Both are present in the 3D analysis with the 220 time
series. The daily logarithm price differential stands for the price returns ri, with
ri D .ln Fi.t/ � ln Fi .t ��t// =�t, where Fi.t/ is the price of the futures contract
i at date t. The time interval is �t and h:i denotes the statistical average performed
over time, for the trading days of the study period.

For a given time period and a given set of data, we thus compute the matrix C of
N � N correlation coefficients, for all of the pairs ij. C is symmetric with 
ij.t/ equal
to one when i D j. Thus, it is characterized by N .N � 1/ =2 coefficients.

Performing dynamic studies on the basis of rolling windows requires the choice
of a proper window length. On the one hand, we want it to represent typical
economic periods (one semester, 1 year, 5 years: : :) and to be as short as possible
in order to give evidence of sudden changes. On the other hand, we are confronted
with a technical constraint: in order to ensure representative results, the number of
observations has to be larger than the number of nodes. Having to deal with 220
series of price returns (i.e., 220 nodes), we thus use a rolling window of 1 year (252
trading days). We do the same in the spatial dimension for comparison purposes.
As robustness checks, we also perform computations with 2-year windows, as
illustrated in section “Robustness Checks” in Appendix 2. Further, we use rolling
windows situated before the observation date. So when we look at what happens
on August 9, 2007, the information used is situated 1 year before that event.
Fortunately, because the two crises are separated by more than 1 year, there is no
overlap between them.

2.2.2 From Correlations to Distances

In order to use the tools of the graph theory, we need to introduce a metric. The
correlation coefficient 
ij cannot be used as a distance dij between i and j because it
does not fulfill the three axioms that define a metric [14, p. 30]:

• dij D 0 if and only if i D j
• dij D dji

• dij � dik C dkj

However, a metric dij can be extracted from the correlation coefficients through a
nonlinear transformation. This Euclidean distance is defined as follows1:

dij.t/ D
q
2
�
1 � 
ij.t/

�
: (2)

A distance matrix D is thus extracted from each correlation matrix C (at each
date t) according to Eq. (2). The matrices C and D are both N � N dimensional.

1Taking the square of 
ij.t/ has no impact on the results (computations are available on request).
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While the coefficients 
ij.t/ can be positive for the correlated returns or negative for
the anti-correlated returns, the distance dij.t/ is always positive. The distance matrix
corresponds to a fully connected graph; it represents all the possible connections in
the price system.

3 The Efficiency of the Shock Transmission

Considering the dimensionality of our price system and the number of nodes in our
graph, it is very difficult to visualize. We thus resort to a filtering technique which
is especially suited to our context: the Minimum Spanning Tree (MST).

3.1 The Minimum Spanning Tree

In order to understand the organizing principles of a system through its representa-
tion as a graph, the latter needs to be spanned. However, there are a lot of paths that
span a graph. For a weighted graph like ours, the MST divulges the most relevant
connections of each element of the system and it reduces the information space from
N.N � 1/=2 to N � 1.

The MST is the path spanning all the nodes of the graph without any loop. It has
less weight than any other tree and is unique. The distance dij.t/ is more than just
an Euclidean metric; it is the subdominant ultrametric that satisfies the triangular
inequality: dij.t/ � max

˚
dik.t/I dkj.t/

�
.

When the graph is weighted with distances, the latter corresponding to the
correlations between the price returns, the MST is especially useful for the study of
systemic risk. In an analogy with signal transmission, the ultrametric provides the
shortest path between all of the nodes, that is, the path where the signal suffers the
least losses and travels the fastest. We interpret this feature as the efficiency (in speed
and in accuracy) in the transmission of the signal. Furthermore, if a price shock is
assimilated to a signal and if transmission is appreciated through the analysis of the
dynamic behavior of the correlations between the price returns, then the MST “can
be assimilated into the shortest and most probable path for the propagation of price
shocks” [17].

The visualization of the trees (which are plotted with the software Graphviz)
addresses the meaningfulness of the taxonomy that emerges from the system.
Because we are considering the links between markets and/or delivery dates
belonging to the MST, if a link between two markets or maturities does not appear
in the tree, it only means that this link does not correspond to a minimal distance.
Note also that, in such an analysis, the results depend on the nature and the number
of markets chosen for the study.

Figure 1 presents the MST obtained on the basis of our price system for
the spatial dimension and over the whole period. It is scaled: the closest nodes
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Eurodollar 40

Ex. rate USD/EUR 4

S&P500 2

Soy Oil 15

UK Nat. Gas 9

Gasoil 12
Heating Oil 18

US Nat. Gas 36

Brent 17

Light Crude 33

Gold 17

Soy bean 7

 Corn 4

Wheat 6

Fig. 1 Scaled MST in the spatial dimension, 2000–2009

correspond to the most correlated price series. Three sectors can be identified:
energy is in the top left-hand. It gathers American as well as European markets and
is situated between agriculture (on the right) and financial assets (at the bottom).

The link between the energy and agricultural products passes through soy
oil. This is interesting because soy oil can be used for fuel. The link between
commodities and financial assets passes through gold, which is also meaningful,
because gold can be seen as a commodity as well as a reserve of value. The only
surprise comes from the Mini S&P500 that is more correlated to soy oil than
to financial assets. This connection between the Mini S&P500 and agricultural
markets could be interpreted as evidence of the financialization of the commodity
markets. However, in a dynamic analysis, this connection is very unstable. At least
two reasons could explain such a result: first, Buyukşahin et al. [8] find that the
correlations between grains and equities fluctuate a lot; and second, compared to all
other contracts taken into account, the Mini S&P500 is the least actively traded.

At first glance (if we accept that counting the number of links allows for the
identification of the center of the graph) the most connected node is the one
corresponding to Brent crude oil, which makes it—a priori—the best candidate for
the transmission of price fluctuations in the tree (actually, the same could be said for
American crude oil—Light Crude—because the distance between these products is
very short). Last but not least, the energy sector seems the most integrated, as the
distances between the nodes are short.
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Fig. 2 Scaled MST in 3D, 2000–2009

Such a star-like organization leads to specific conclusions regarding systemic
risk. A price movement appearing in the energy markets, situated at the heart of
the price system, will have more impact than a fluctuation affecting the peripheral
markets such as interest rates or wheat. This configuration explains why we consider
the subprime and the Lehman Brothers crises as exogenous events in this study.

The 3D MST comprises 220 time series (nodes). Depicted by Fig. 2, it is less easy
to read (this is why we removed the captions in the nodes), but it can be interpreted
through the prism of the spatial tree. The same topology prevails, except that
adding the maturities introduces linear branches in each market (with the noticeable
exception of American natural gas). Moreover, this scaled representation shows that
some markets are more integrated than others: clusters of maturities can be seen, at
the center of the graph, for the energy sector (except for the two natural gas markets).
Strong integration can also be observed in the financial branch; this is especially true
for the Eurodollar contract after the eighth maturity.
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Because these topologies are very stable over time [17], we use them as
references in the remainder of this study.

3.2 How Does the Length of the MST Behave?

We first explain how this measure can be obtained and how it behaves on the whole
sample. We then study it around crises.

3.2.1 The Measure

The normalized length of the tree can be defined as the average of the lengths of the
edges belonging to the MST:

L .t/ D 1

N � 1
X

.i;j/2MST

dij.t/; (3)

where t denotes the date of the construction of the tree and N � 1 is the number of
edges in the MST. The length of a tree is higher when the distances increase and
consequently when correlations are low. Thus, the more the length diminishes, the
more integrated the system is.

Figure 3 represents the dynamic behavior of the normalized length of the MST in
the spatial dimension over the whole period under consideration. The general pattern
is that the length decreases, which reflects the increasing integration of the system.
Thus the most efficient transmission path for price fluctuations becomes shorter as
time goes by. This finding is consistent with e.g., [21] and [22]. A more in-depth
examination of the graph also shows some very important moves at specific dates,
one of them being around the Lehman Brothers bankruptcy.

3.2.2 The Length of the Trees Around the Crises

A first appraisal of the importance of the crises consists in measuring whether the
changes in the length of the MST that occurred around the events were tail events
or not.
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1,1
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Lehman bankruptcy
Subprime crisis

Fig. 3 Normalized tree’s length in the spatial dimension, 2000–2009
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We compute the empirical distribution of the length variations over the whole
sample and examine the probability of the occurrence of fluctuations situated above
(for increases) or below (for decreases) those observed around the crises. At 5 %,
the changes recorded on August 16, 2007 (five trading days after the beginning
of the subprime crisis) and on September 12, 2008 (one trading day before the
bankruptcy of Lehman Brothers) are in the tail of the distribution, both in the
spatial dimension and in 3D. In the spatial dimension only, we can add August
14, 2007, and in 3D only September 17, 2008. These last two events and the one
recorded on September 12, 2008 have a probability of occurrence that is close to
1 %. Consequently, compared to what was observed between 2000 and 2009, the
two crises have generated exceptional changes in the length of the MST.

A recurrent result in finance is the observation of an increase in the price
correlations just after a crisis (see, e.g., [9] for an analysis of the equity market
around Black Monday on October 19, 1987, [6] and [22] for commodity-equity
markets, or [20] for a review of several studies on these topics). Figure 4a–d, which
represent the evolution of the length of the trees on a 1-month time window around
the crises under consideration both in the spatial dimension and in 3D, do not exhibit
such behavior. On the contrary, in three cases (subsets b, c and d) out of four, we
find an increase in the length of the MST.

For the subprime crisis, the peak appears on August 15, 2007, four trading
days after the beginning of the crisis. For the Lehman Brothers bankruptcy, the
change in the behavior of the tree arrives before the event, between September
11 and 12 of 2008. These dates correspond to the period when the difficulties
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encountered by the bank became public knowledge (see sections “Some Important
Events Around the Subprime Crisis” and “Some Important Events Around Lehman
Brothers Bankruptcy” in Appendix 1).

However, this increase in the global length of the MST comes with a decrease
in certain subsets of the trees. This is especially the case for the Eurodollar market
around the Lehman Brothers bankruptcy as shown by the scaled MST in Fig. 5,
where there clearly is a shrink in the trees around the two crises. Such a result
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Fig. 5 Scaled MST in the maturity dimension, Eurodollar market. Subset (a) 2000–2009 ; subset
(b) 1-month time window including the subprime crisis; subset (c) 1-month time window including
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is reasonable: first because the 3-month interest rate is a pure financial asset and
second because what we observe here is a branch of the tree where only the maturity
dimension is taken into account. As mentioned by Lautier and Raynaud [17], under
the pressure of arbitrage operations, the markets are more integrated in the maturity
dimension than in the spatial one.

The analysis of the length of the trees shows that, even if our price system
becomes more and more integrated between 2000 and 2009, these two crises,
born in the financial sphere, did not harm the commodity markets as a whole.
This conclusion is consistent with the findings of Buyukşahin and Robe [5] who
observed that the link between the equity index and the energy futures is weaker in
times of crises or of Corsetti et al. [11] who find that correlations decrease in some
episodes of crisis. As expected, these crises had an impact on the financial sphere:
there is a local increase in the integration of the futures contracts written on the
financial assets. However, as far as commodity markets are concerned, they became
temporarily less connected with the financial assets.

4 The Organization of the Tree

Measuring the length of the MST does not give the possibility to ask whether or not
the paths for shock transmission change during the crises. In order to answer this
question, the graph theory provides several tools: first the survival ratios and second
the allometric coefficients.

4.1 The Survival Ratios

This measure (SR) indicates the fraction of links that survives, in the MST, between
two consecutive trading days [9]:

SR .t/ D 1

N � 1 jE .t/ \ E .t � 1/j : (4)

In this equation, E.t/ refers to the set of the tree edges at date t, \ is the
intersection operator and j : j gives the number of elements contained in the set.
Due to the finite number of links, the ratios take discrete values.

The use of this measure naturally raises the same question as before: how
exceptional are the values of the survival ratios observed around the crises? As
before, we evaluate the probability of the occurrence of high reconfigurations
in the graph. We find that only the changes recorded on September 18 and 19
of 2008 (the 17th is close) are below the 5 % probability of occurrence in the
spatial dimension. In 3D, only September 17 and 24 of 2008 appear below the 5 %
threshold. According to these figures, the subprime crisis shows nothing specific:



Integration of Commodity Derivative Markets: Has It Gone Too Far? 77

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

Feb-01 Feb-02 Feb-03 Feb-04 Feb-05 Feb-06 Feb-07 Feb-08 Feb-09

Lehman bankruptcy
Subprime crisis

Fig. 6 Survival ratios in the spatial dimension, 2000–2009

even if, as shown by the length of the MST, the trees locally shrink in the financial
sphere on this occasion, the path of the price shock transmission remains the same.

This result is confirmed by Fig. 6. The figure shows first that under normal
circumstances, the topology of the trees is very stable between two dates, in the
spatial dimension as well as in 3D: most of the time, between 2000 and 2009, more
than 85 % of the links remain unchanged from one day to the next. Second, nothing
special happens around the subprime crisis. This is far less obvious for the Lehman
Brothers bankruptcy. In this case, the most important reorganizations appear in the
spatial dimension, where more than 30 % of the graph is reorganized.

Finally, while some fluctuations of the survival ratios might be due to real
changes in the behavior of the system, it is worth noting that others might simply
be due to noise. This is why a deeper analysis is needed. We will perform it through
the use of allometric coefficients.

4.2 The Allometric Coefficients

The computation of the allometric coefficients of a MST quantifies where this tree
stands between two asymptotic topologies: star-like trees and chain-like trees. These
two topologies have very different implications for systemic risk.

The first model of the allometric scaling on a spanning tree was developed by
Banavar et al. [1]. In their method, the first step consists in assigning a value Ai equal
to 1 to each node i. Then the root (also called the central node) of the graph must be
identified. In what follows, the root is determined with Bonacich’s measure defined
in Sect. 5. As a robustness check, we perform the same tests with a root identified as
the node with the highest number of links. The results remain qualitatively the same
and are available on request.

Starting from the root, the second step of the method consists in updating the
coefficients Ai and in assigning the coefficients Bi of each node i as follows:

Ai D
X

j

Aj C 1 and Bi D
X

j

Bj C Ai; (5)
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Fig. 7 Star-like structure
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Fig. 8 Chain-like structure
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where j stands for all of the nodes connected to i in the MST. The allometric scaling
relation is defined as the relationship between Ai and Bi:

B � A�; (6)

where � is the allometric exponent. It represents the degree or complexity of the
tree and stands between two extreme values: 1C for star-like trees (Fig. 7) and 2�
for chain-like trees (Fig. 8).

A MST belonging to the first or to the second structure will not have the
same implications in terms of shock transmission. One way to explain such an
interpretation is to rely once again on the analogy with the transmission of a signal
in a network. Let us assume that a signal is transmitted in each network represented
by Figs. 7 and 8. In each case, the signal is transmitted from node S at time t and
there is some latency in the transmission. In the star-like tree, all of the others nodes
(A, B, C, D and E) will receive the transmission simultaneously at time t C 1.
Comparatively, in the chain-like tree, the first receiver is node A, the second is
node B, etc. In such a topology with N nodes, it takes N � 1 time periods (i.e.,
five in Fig. 8) before reaching the end of the network. Meanwhile, if there is noise
in the transmission channel, the signal will suffer some losses. In our case, where
the distances in the networks stand for correlations between price returns, a price
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Fig. 9 Allometric coefficients, in the spatial dimension and in 3D, for each event

shock emerging at node S will spread more efficiently if the structure of the tree is
star-like, because it will more quickly reach all of the other nodes. It is thus crucial
to correctly identify the center of the graph.

Relying on the allometric coefficients, [17] show that: (1) the MST are almost
linear in the maturity dimension of most markets, (2) they stand right in the middle
of the two extreme configurations in the spatial dimension at 1.5, and (3) the
allometric coefficients are around 1.75 in the 3D case. Around the crises, as shown
by Fig. 9, the levels of the allometric coefficients remain the same. Moreover, their
variations are not exceptional at 5 % except those recorded in 3D on September 2,
2008 and on September 29, 2008, around the bankruptcy of Lehman Brothers.

5 Examining the Centrality of the Graphs

When studying systemic risk, it is important to correctly detect the center of the
trees. For regulatory authorities, such nodes can be assimilated to regions of higher
fragility. Even though we examine exogenous events in this study, the question of
centrality remains crucial. What if these events create shocks that reach the center
of the graph? They would then spread rapidly to all of the other markets, as noted in
the above subsection.

The most common way to identify the center of a graph is to assess the degree
(i.e., the number of links) of each node in the trees. However, such an analysis might
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be insufficient: first because it does not take into consideration the distances between
the nodes, and second because it only accounts for the direct neighbors of a node.
It could be interesting, on the contrary, to be mindful of the overall configuration of
the graph.

In what follows, we first give an example of an analysis based on degree only:
we focus on the evolution of the trees in the spatial dimension around the Lehman
Brothers bankruptcy. As noted on the basis of the survival ratios, there is indeed
an important reconfiguration of the graph on this occasion. Then, we propose the
use of a new measure of centrality that was introduced by Bonacich in 1987 for
social networks and recently used by Bloch and Quérou [2], as well as, in finance,
by Cohen-Cole et al. [10].

5.1 The Degree of the Nodes

The scaled MST in the spatial dimension at the Lehman Brothers bankruptcy is
depicted by Fig. 10. If we compare this tree with the one computed for the whole
period as illustrated by Fig. 1 (as shown in Sect. 4.1 the MST is very stable; the tree
computed on the whole period can thus be taken as a reference) then we can see
some changes: the Mini S&P500 is not linked to soy oil anymore, but now to wheat;
the UK natural gas is not directly connected to the energy sector anymore; and, more
importantly, gold now stands at the center of the graph. From an economic point of
view, such a result is very reasonable. In a situation where high uncertainty affects
the whole financial system, we indeed expect investors to consider gold as a reserve
of value. Yet the story is not so simple.

FINANCE

AGRICULTURE

ENERGY

Eurodollar 40 Gold 17

S&P500 2Wheat 6

UK Nat. Gas 9

Gasoil 12

Heating Oil 18

US Nat. Gas 36

Light Crude  33
Brent 17 Soy Oil 15

Ex. rate USD/EUR 4

Soy bean 7
 Corn 4

Fig. 10 Scaled MST in the spatial dimension at Lehman Brothers bankruptcy (September 15,
2008)
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Fig. 11 Connectivity (A, B,
or C) versus centrality (S) A1

A

A2 A3

S

B CB1

B2

B3

C1

C2

C3

5.2 The Katz-Bonacich Centrality Measure

We first present the method and its advantages. Then we use it for the event study.

5.2.1 The Method

The Katz-Bonacich centrality measure aims at taking into consideration the whole
configuration of a graph, that is, the direct as well as the indirect neighbors of a node.
Looking only at the direct neighbors, as done when one relies on the degree, might
be insufficient as illustrated by Fig. 11: the node labelled “A” (or B or C) exhibits
the highest degree (four in this case). However, the “S” node is obviously the most
central one.

The measure proposed by Bonacich [3] is an extension of the one developed by
Katz [16]. This author was the first to pay attention to the indirect neighbors of a
node. In addition, the measure developed by Bonacich [3] gives the possibility of
taking into account the “negative” relations, i.e. the fact that, if the value of a node
increases, then its neighbors’ value decreases.

The centrality vector, which gives one value per node, is computed as follows:

c .˛; ˇ/ D ˛ .I � ˇR/�1 R1

where I is the identity square matrix, R is the matrix of the weights of the graph,
and 1 a vector of 1s. The coefficient ˛ is a scale factor. According to Bonacich,
the coefficient ˇ can be interpreted in different ways: “the degree to which an
individual’s status is a function of the statuses of those to whom he or she is
connected” or “a radius within which the researcher wishes to assess centrality”.
Note also that the centrality values are sensitive to both the weights of the graph and
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its topology. Since these values take into account infinitely far neighbors, a small
change in the topology of the graph can result in large changes in the centrality
values.

The use of this relationship matrix requires first a measure of similarity: the
quantities in R must be such that, the higher the ˇ, the easier the transmission.
A second requirement is that all Rij are positive. Third the Rii must be equal to zero.
To fulfill the first requirement, we use the correlation matrix for R. More precisely,
because we are interested in the central node of the MST, we consider the price
correlations in the MST, and we compute R as follows:

Rij.t/ D Cij.t/ 	 EMST
ij .t/;

where C.t/ is the correlation matrix and EMST.t/ is the edge matrix of the tree;
EMST

ij .t/ equals to one if there is a link between i and j in the MST and zero otherwise.
This matrix is symmetric, with N � 1 ones.

The use of the filtered correlation matrix for R simplifies the application of the
method developed by Bonacich. This matrix can be directly identified to R, because
it fits all of the requirements. Moreover, such a choice leads to more precise results,
because it allows for taking into account the specific value of each link instead of
averaging them into a ˇ coefficient (which we thus drop).

5.2.2 Empirical Results

For comparison purposes, it is interesting to go back to the scaled MST in the spatial
dimension commented on in Sect. 3 and represented by Fig. 1. When relying on the
degrees of the nodes, the root of the tree corresponds to crude oil. However, taking
into account the overall organization of the tree leads to a conclusion that is more
nuanced. Table 2 presents the results of the method when it is applied in the spatial
dimension between 2000 and 2009. Relying on the centrality measures leads to
putting more emphasis on both heating oil and crude oil; the heating oil is ranked
first. Moreover, a dynamic analysis shows that, especially after August 17, 2005,
the agricultural markets play a more important role. This result calls for further
analysis, but it is probably due to the introduction of the rules regarding bioethanol
in the United States in 2005. Second, half of the markets under consideration in
the spatial analysis never reach a centrality value above 1: this is true for the 3-
month eurodollar, the USD/EUR exchange rate, the Mini S&P500 index, gold,
gasoil and for the US and UK natural gases. These markets thus have a centrality
that is unusually low and are hence less important.

The results associated with the centrality measures around the crises are depicted,
for the spatial dimension, in sections “Ranking by Centrality Measure in the
Spatial Dimension, Around the Subprime Crisis (August 9, 2007)” and “Rankings
by Centrality Measure in the Spatial Dimension, Around the Lehman Brothers
Bankruptcy (September 15, 2008)” in Appendix 2. Once again, the subprime
crisis does not affect the organization of the trees, whereas the Lehman Brothers



Integration of Commodity Derivative Markets: Has It Gone Too Far? 83

Table 2 Bonacich’s
centrality measure in the
spatial dimension, 2000–2009

Market Centrality measure Rank

Heating oil 1.148228 1

Brent 1.108484 2

Light crude 0.856703 3

Gasoil 0.591487 4

US Natural gas 0.364067 5

Gold 0.231502 6

USD/EUR Exchange rate 0.036973 7

UK Natural gas 0.034241 8

Eurodollar �0.00875 9

Mini S&P500 �0.189855 10

Wheat �1.144788 11

Soy oil �1.159204 12

Corn �1.890017 13

Soy bean �1.979338 14

bankruptcy has an impact (mostly temporary, though). Around this event, the
ranking of the nodes puts light crude oil first, gold second and heating oil third.

In 3D, the most central nodes are about the same as in the spatial dimension. Due
to the large number of nodes (220), we cannot display the tables in this case but the
results are available on request. As before, we do not find many changes around the
subprime crisis and many more around the Lehman Brothers bankruptcy.

Finally, the most interesting phenomena appear in the maturity dimension around
the Lehman Brothers bankruptcy. There are some changes in the direction of certain
propagation paths. The most illustrative example of such behavior is that of light
crude on September 10, 2008: before that date, many short-term maturities of light
crude oil are among the most central nodes of the tree (they are situated above
the rank of 20 according to the centrality measure), while most of the long-term
maturities are among the least central (below the rank 200). From one day to the
next, however, there is an inversion: the least central nodes become the most central
ones (they even reach the rank 1) while the previously most central ones go as low
as rank 220. Finally, things revert back to the initial state.

6 Conclusion

For a decade, commodity derivative markets have been experiencing a process of
financialization due to managers seeking the diversification of their portfolios and
to the arrival of new actors. This phenomenon has raised questions and worries
about the eventuality of meaningless links, from an economic point of view, between
commodities and more traditional financial markets like bonds and stocks. These
fears have been largely confirmed by the acknowledgment of a growing integration
between commodity markets as well as between commodities and other financial
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assets. One could wonder to what extent a shock originating from financial markets
could propagate to commodities and strongly impact them. Investigating such a
question is the purpose of this paper.

To this aim we examine the impact, on commodity markets of two recent
financial crises: the Subprime crisis and the Lehman Brothers bankruptcy. Using
the insightful tools of the graph theory, on the basis of several measures, we show
that those shocks did not affect the commodity markets as hard as one might have
expected.
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Appendix 1: Timelines Around the Events

Some Important Events Around the Subprime Crisis

Based on [4], News feeds, Wikipedia (Table 3).

Table 3 Important events around the subprime crisis (S denotes the date of the trigger of the crisis,
on August 9th, 2008)

Trading date Calendar date Events

S-10 2007-07-26 � Home sales declined and largest home builder
reported loss

S-7 2007-07-31 � American Home Mortgage Investment Corp.
faces difficulties

S-6 to S 2007-08-01–2007-08-09 � Quantitative hedge funds suffered losses that
trigger margin calls, fire sales, and correlation
across strategies

S-6 2007-08-01 � US Crude oil prices reach a new high due to
declining stocks and decreased output

S-4 2007-08-03 � Officials state that the housing crisis should not
spread

S-3 2007-08-06 � America Home Mortgage Investment Corp. goes
bankrupt

S 2007-08-09 � BNP Paribas froze redemption of 3 of its
investment funds due to inability to value
structured products

� Triggered the first illiquidity wave on the
interbank market and support from Central Banks

SC1 2007-08-10 � Decreases propagate to Asian markets, triggering
support from Central Banks

SC2 to SC8 2007-08-13–2007-08-21 � Central Banks increase their support and lower
rates



Integration of Commodity Derivative Markets: Has It Gone Too Far? 85

Some Important Events Around Lehman Brothers Bankruptcy

Based on [4], News feeds, Wikipedia (Table 4).

Appendix 2: Additional Results

Robustness Checks

This section of the appendix is devoted to a sensitivity analysis. It provides the
results obtained around the two events, with the different measures used in the
analysis (length of the MST, survival ratios and allometric coefficients) when the
rolling window is extended to 2 years instead of 1 year. The comparison shows that
overall, the behavior remains qualitatively the same. As expected, compared with
the 1-year rolling window, the 2-year window has a smoothing effect (Figs. 12, 13,
and 14).

Table 4 Important events around Lehman Brothers bankruptcy (L denotes the date of Lehman
Brothers default, on September 15, 2008)

Trading date Calendar date Events

L-6 2008-09-05 US Government’s plan to bail out Fannie Mae and Freddie Mac
leaks

L-3 2008-09-10 OPEC will cut oil production by 500,000 barrels a day

Announcement of the worst losses of Lehman

L-1 2008-09-12 The Federal Reserve tries to find buyers for Lehman and warns
CME of a potential default

L 2008-09-15 Lehman files for bankruptcy in the morning, because of lack of
buyers and of bail out

Merrill Lynch is sold to Bank of America

LC1 2008-09-16 AIG is bailed out

LC2 2008-09-17 Russia helps its biggest banks

LC3 2008-09-18 Russia extends help

Lloyds TSB purchases HBOS, largely exposed to subprime
mortgages

LC4 2008-09-19 The Troubled Asset Relief Program leaks

US Treasury guarantees money market mutual funds up to $50
billion

Nigerian oil production is cut by 280,000 barrels per day and a
pipeline of Royal Dutch Shell was destroyed

LC5 2008-09-22 G7 commits to protect the financial system

LC9 2008-09-26 The Federal Deposit Insurance Corporation seizes Washington
Mutual to sell it to JPMorgan Chase
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Evolution of the Markets Rankings by Centrality, Around
the Events and Sector by Sector

Ranking by Centrality Measure in the Spatial Dimension, Around
the Subprime Crisis (August 9, 2007) (Fig. 15)

Rankings by Centrality Measure in the Spatial Dimension, Around
the Lehman Brothers Bankruptcy (September 15, 2008) (Fig. 16)
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Fig. 15 Evolution of the
ranks in the spatial dimension
around the Subprime crisis.
Subset (a) is for agricultural
markets, subset (b) is for only
4 energy markets (for
readability) and subset (c) is
for financial markets
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Fig. 16 Evolution of the ranks in the spatial dimension, around the Lehman Brothers bankruptcy.
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Hans J.H. Tuenter

Abstract We introduce a new representation of the bivariate normal distribution
to first give a short derivation of the classic Margrabe exchange-option formula,
using elementary integration methods. The second application is a new and simple
technique to provide an accurate lower bound for the value of a spread option with
a nonzero strike.

1 Introduction

Exchange options were introduced by William Margrabe in a seminal paper [7],
published in 1978. This type of option allows the holder to exchange one asset
for another at expiration. Such options are ubiquitous in foreign exchange markets,
bond markets, stock markets, and commodity markets, among others. In energy
markets, in particular, they have found applications in locational spreads, calendar
spreads, crack spreads, and spark spreads. (See Clewlow and Strickland [4, pp. 80–
81], Geman [5, pp. 287–294], and Pilipovic [8, pp. 361–374].) The survey by
Carmona and Durrleman [2] provides a good introduction to the topic.

Margrabe studied European-style exchange options in a Black-Scholes frame-
work, where the rate of return on each asset is given by

d Si.t/ D Si.t/ Œr dt C �i dWi.t/� ; i D 0; 1; (1)

with r the risk-free interest rate, �i the instantaneous volatilities, Wi.t/ Wiener
processes, and 
 the correlation coefficient between the increments dW0 and dW1.
The payoff on the option to exchange S0 for S1 at time T , is given by

�
S1.T/ � S0.T/

�C
; (2)

where xC D maxfx; 0g.
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Margrabe derived the risk-neutral value of this option as

e�rT
E

�
S1.T/ � S0.T/

�C D S1.0/ˆ.dC/ � S0.0/ˆ.d�/; (3)

where E denotes the expectation operator, ˆ the cumulative density function of the
standard normal distribution, and

d˙ D ln.S1.0/=S0.0//

�
p

T
˙ 1

2
�

p
T and �2 D �20 C �21 � 2
�0�1:

He obtains his formula by deriving a partial differential equation for the price of the
option, together with its initial and boundary conditions. He postulates a solution
and shows that it is the unique solution by employing a change-of-numéraire
approach that transforms the valuation into a Black-Scholes type problem.

The first objective of this article is to provide a brief and simple derivation of
the Margrabe formula that is based on a new representation of the bivariate normal
distribution. This approach reduces the derivation to an elementary integration, and
improves on previous approaches using plain integration, such as the one used by
Li et al. [6, Proposition 2]. The second and main objective is to showcase a new
lower bound for the value of a spread option with a nonzero strike, similar to the
one derived by Carmona and Durrleman [2, § 6.1], but arrived at by a much simpler
technique.

2 Bivariate Normal Distribution

In the Black-Scholes framework the logarithms of the asset prices at maturity follow
a bivariate normal distribution. So, it seems only natural to first study the expected
value of .X1 � X0/C, where ln X0 and ln X1 are correlated normal variables, without
the distraction of the stochastic process that generates them.

We derive this expectation for a particular case that is readily evaluated, and then
show that the general case can always be mapped to it. This implies that, within
the Black-Scholes framework, the particular case can be interpreted as a canonical
formulation for an exchange option.

2.1 The Particular Case

As the particular case, we take

ln X0 D �0 C aY C bZ and ln X1 D �1 C aY C cZ; (4)

where a � 0, b > c, and Y and Z are independent, standard normal variables.
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Lemma 1.

E .X1 � X0/
C D EX1 ˆ

�
z� � c

� � EX0 ˆ
�
z� � b

�
; (5)

where z� D .�1 � �0/=.b � c/.

Proof. Substitute the expressions for X0 and X1, separate the factor eaY , and take the
expectation over Y , to give

E .X1 � X0/
C D e

1
2 a2

E
�
e�1CcZ � e�0CbZ

�C
: (6)

The value for Z, that renders the expression within brackets equal to zero, is given
by z� D .�1��0/=.b�c/. The expression is positive for values of Z smaller than z�,
and negative for values of Z larger than z�. Now integrate over Z, and simple algebra,
combined with the expectations EX1 D e�1C 1

2 a2C 1
2 c2 and EX0 D e�0C 1

2 a2C 1
2 b2 , will

show the validity of (5), and proves the lemma. ut
Note that the constant z� also has significance in thatˆ.z�/ is the probability that X0
is smaller than or equal to X1, and the corresponding exchange option pays out.

• The condition b > c is not really a restriction, as we can switch easily from the
case b < c, by taking �Z instead of Z in (4), using the fact that the standard
normal distribution is symmetric. It was chosen for convenience in the proof of
Lemma 1 to give the range of integration for Z as .�1; z��.

• The special case b D c implies that ln X0 and ln X1 are the same random variable,
except for a difference in their mean. The valuation in this case is simple as
E .X1 � X0/

C D E
�
e�1C�0Z � e�0C�0Z

�C D .e�1 � e�0/C e
1
2 �

2
0 ; and is equal

to EX1 � EX0, when �1 > �0, and zero otherwise. This is not a practical case
that one would encounter in the setting of an exchange option. However, it is
worth noting that Lemma 1 includes this as a boundary case and thus ensures
continuity of solution. Taking the limit of .�1 � �0/=.b � c/, as b approaches c
from above, gives z� D C1 and z� D �1, when �1 > �0 and �1 < �0,
respectively, so that (5) gives the correct limit values.

2.2 The General Case

In the general case, we have a bivariate normal distribution where the distributions
of the logarithm of X0 and X1 are normal with mean�0 and�1, standard deviation �0
and �1, and correlation coefficient 
. We make the very mild assumption that �20 C
�21 ¤ 2
�0�1. These two variables can be represented in several ways as a linear
combination of independent, standard normal variables. The linear combination that
is of interest in our setting is the following:
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ln X0 D �0 C �0q
�20 C �21 � 2
�0�1

�
�1
p
1 � 
2 Y C .�0 � 
�1/Z

�
(7)

and

ln X1 D �1 C �1q
�20 C �21 � 2
�0�1

�
�0
p
1 � 
2 Y C .
�0 � �1/Z

�
; (8)

where Y and Z are independent, standard normal variables. It is easy to verify
that this construct gives two normal variables with the required means, standard
deviations and correlation coefficient. Now note that the coefficients of Y in (7)
and (8) are identical and nonnegative, and that the coefficient of Z in (7) is strictly
larger than the coefficient of Z in (8). This implies that (7) and (8) are of the form (4),
with

a D �0�1

�

p
1 � 
2; b D �0

�
.�0 � 
�1/; and c D �1

�
.
�0 � �1/; (9)

where �2 D �20 C �21 � 2
�0�1. We note the following properties: a2 C b2 D �20 ,
a2 C c2 D �21 , and b � c D � .

• The above shows that one can always cast the general bivariate normal distribu-
tion into the form (4); thus, they are equivalent and justifies referring to (4) as a
canonical formulation. The representation of the bivariate normal distribution,
given in (7) and (8), seems to be new. Although, it should be noted that,
when �0 D �1 D 1 (and �0 D �1 D 0), it reduces to a well-known form that is
used to generate correlated, standard normal variables. (See Tong [9, p. 11].)

• We imposed the condition �20 C �21 ¤ 2
�0�1, but this is not restrictive. Equality
holds if, and only if, 
 D 1 and �1 D �0. The implication is that ln X0 and ln X1
are the same random variable, except for a difference in their mean. This case
was dealt with in the last bullet point of Sect. 2.1.

3 Margrabe’s Formula

As noted in the introduction, the risk-neutral value of the exchange option within the
Black-Scholes framework is given by e�rT

E .S1.T/ � S0.T//
C, where S0.T/ and

S1.T/ are correlated lognormal variables. This means that we can apply Lemma 1,
and, to do this, we take X1 D e�rTS1.T/ and X0 D e�rTS0.T/.

It is straightforward to show that this implies EXi D Si.0/, �i D ln Si.0/� 1
2
�2i T ,

b D �0
�
.�0 � 
�1/

p
T and c D �1

�
.
�0 � �1/

p
T , with �2 D �20 C �21 � 2
�0�1.

Simple substitution of these expressions in (5) gives the Margrabe formula (3).
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4 Technical Interlude

In the subsequent analysis, it turns out to be beneficial to distinguish between a few
basic case types for the canonical formulation (4). These correspond to whether or
not the volatility parameters b and c are each positive or negative. Since we imposed
the condition b > c, this gives three cases, as listed in Table 1.

The breakdown into the different case types has a straightforward interpretation
in the general formulation in terms of a bound for the correlation coefficient. Note
that, all things being equal, type II is the one most likely to be encountered, as it
covers negative, zero and small positive correlations. We also note that, when one
is holding the asset with lower volatility, it corresponds to either type II or III, but
never to type I. Conversely, when one is holding the asset with higher volatility, it
corresponds to either type I or II, but never to type III.

4.1 Classification and Roots

The classification into different case types is not merely an exercise in taxonomy, but
plays a key role in the subsequent section on spread options. To ease the notational
burden, let us define the function

f .z/ D e�1Ccz � e�0Cbz: (10)

This function already appeared in the proof of Lemma 1, in particular Eq. (6), where
we had to find the unique root of f .z/ D 0, in order to determine the range of
integration. The situation is different for the general equation f .z/ D k, as it may
have a unique solution, none or two. The basic shape of f .z/ depends only on the
signs of b and c, as can be seen more clearly from f .z C z�/ D e�1Ccz� �

ecz � ebz
�
,

where z� is the unique solution to f .z/ D 0, that already featured in Lemma 1.
The different shapes are graphed in Fig. 1, from which one can infer the location

of the roots of f .z/ D k.

Table 1 Characteristics of the different case types

Formulation Type I Type II Type III

Canonical b > c > 0 b > 0 > c 0 > b > c

General 
 > �1=�0 
 < min f�0=�1; �1=�0g 
 > �0=�1

�0 < �1 – 
 < �0=�1 
 > �0=�1

�0 > �1 
 > �1=�0 
 < �1=�0 –
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I II III

b > c > 0 b > 0 > c 0 > b > c

Fig. 1 The shape of f .z/ for the different case types

4.2 Case Type Analysis

To simplify the analysis, we will work with the normalized version f0.t/ D ect � ebt,
as the relevant properties of f .z/ are readily inferred from it. The former has exactly
one root at zero, and, under the imposed condition b > c, is positive for t < 0, and
negative for t > 0. The solvability of f0.t/ D k, depends on the case type. Since
the basic shapes of f0.t/ are the same as those of f .z/, the graphs in Fig. 1 will be
helpful in visualizing the analysis of the different case types.

Type I When b > c > 0, then f0.t/ has a unique extremum at

t� D � ln .b=c/

b � c
; with value f �

0 D
�

b

c

� b�c
c

�
�

b

c

� b�c
b

; (11)

and this extremum is positive and a maximum. The function f0.t/ has zero as a left
asymptote, is strictly increasing for t < t�, and strictly decreasing for t > t�. This
implies that f0.t/ D k has no solution when k > f �

0 , two solutions when 0 < k < f �
0 ,

and one when k D f �
0 or k � 0.

Type II When b > 0 > c, then f0.t/ is a strictly decreasing function of t, and has
no minimum or maximum. This implies that f0.t/ D k has exactly one solution, for
every value of k.

Type III When 0 > b > c, we have the mirror image of case type I, and f0.t/ has a
unique extremum at t� with value f �

0 , as given in (11), with the difference that this
extremum is negative and a minimum. The function f0.t/ is strictly decreasing for
t < t�, strictly increasing for t > t�, and has zero as a right asymptote. This implies
that f0.t/ D k has no solution when k < f �

0 , two solutions when f �
0 < k < 0, and

one when k D f �
0 or k � 0.

4.3 Generalization of Lemma 1

In this section, we consider the expected value of .X1 � X0 � K/C, where K is a
constant. Using the canonical formulation (4), one can write

E .X1 � X0 � K/C D E
�
eaY f .Z/ � K

�C
; (12)



Margrabe Revisited 97

where Y and Z are standard normal and independent random variables, and f .z/ is as
defined in (10). For K D 0, the expectation in (12) factorizes and results in (5). For
general values of K, a simple and closed-form expression is not known. However, as
noted by several researchers, expressions that provide good lower bounds do exist.
Carmona and Durrleman [2, § 6.1], in the context of spread options, provide such an
expression, although it involves solving a not-so-simple equation with quite a few
trigonometric functions. An important feature of their lower bound is that it has a
structure that is like that of the Margrabe formula, but with the addition of a term
that is linear in K. It turns out that one can use our canonical representation to derive
similar lower bounds with far less effort.

Lemma 2. When the equation

f .z/ D Ke� 1
2 a2 ; (13)

where K is nonnegative, has one or more solutions and z� is the largest of them,
then

E .X1 � X0 � K/C � EX1 ˆ.z
� � c/ � EX0 ˆ.z

� � b/ � Kˆ.z�/: (14)

Proof. We use representation (12). By conditioning on the value of Z, and then
taking the expectation over Y , one can derive the lower bound

E
�
eaY f .Z/ � K

�C � E

�
e
1
2 a2 f .Z/ � K

�C
: (15)

This follows easily from the fact that the function xC is convex and an application
of Jensen’s inequality. The problem is now reduced to that of determining the roots
of (13). These roots provide the range of integration that allows the lower bound to
be evaluated. From Sect. 4.2, we know that we have either one, none or two roots.
When we are dealing with case type II, then Eq. (13) has a unique solution z�, and
the same applies when we are dealing with case type III, as K is nonnegative. This
means that we can evaluate the right-hand side of (15) as

Z z�

�1

�
e
1
2 a2 f .z/ � K

�
dˆ.z/ D EX1 ˆ.z

� � c/ � EX0 ˆ.z
� � b/ � Kˆ.z�/:

When we are dealing with case type I, then Eq. (13) has roots z�
2 � z�

1 , as per
condition of the lemma, and the right-hand side of (15) evaluates to

Z z�
1

z�
2

�
e
1
2 a2 f .z/ � K

�
dˆ.z/ >

Z z�
1

�1

�
e
1
2 a2 f .z/ � K

�
dˆ.z/; (16)
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with the latter integral evaluating to the same expression as for case types II and III,
only with z�

1 instead of z�. This shows, when (13) has a solution, that the largest root
provides the lower bound (14) and proves the Lemma. ut
• The condition in Lemma 2 that the constant K is nonnegative is not restrictive.

Using the fact that xC D xC.�x/C, gives the parity formula E .X1�X0�K/C D
EX1�EX0�K CE .X0�X1CK/C, so that one can easily convert from a negative
value of K to a positive one.

• The condition in Lemma 2 that Eq. (13), where K is nonnegative, has one or
more solutions is easily verified. Case types II and III always have exactly one
solution. Case type I has one or two solutions if, and only if, max f .z/ � Ke� 1

2 a2 .
Using the analysis in Sect. 4.2, one can show that this is equivalent to

�1b � �0c
b � c

C ln f �
0 � ln K � 1

2
a2; (17)

with f �
0 as defined in (11).

• The convexity-based lower bound (14) has a format that is similar to the lower
bound derived by Carmona and Durrleman [2, Eqn. 6.3]. However, the arguments
of and inputs to their lower bound are much more complex and their computation
more involved. The computational effort to compute our lower bound is limited
to a simple root-finding procedure that can be implemented efficiently by a binary
search or a Newton-Raphson method, and has no convergence issues.

• The bound (15) holds with equality when either K D 0 or a D 0. This implies
that the convexity bound (14) is exact for the case K D 0, and thus that Lemma 2
is indeed a generalization of Lemma 1. When a is zero, this corresponds to X0
and X1 being perfectly correlated and 
 D ˙1.

5 Spread Options

In many practical settings it is not really the intent to exchange one asset for another,
but to lock in a price differential. In these settings, one has to overcome a fixed cost
or pay a price to exercise (or strike) the option. In the set-up of Sect. 2, this means
that we are considering the expected value of .X1 � X0 � K/C, where K denotes the
strike price. The exchange option can thus be seen as a spread option with a zero
strike.

5.1 Validation

To validate Lemma 2 and get a sense of its applicability and usefulness in deriving
a lower bound for the value of an exchange option, we use the test case from
Carmona and Durrleman [3, Table 1], and compare against their results. They take
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S0.0/ D 100; q0 D 2%; �0 D 15%, and S1.0/ D 110; q1 D 3%; �1 D 10%,
where the qi represent the continuous dividend yields. The time to maturity is
taken as T D 1 year and the risk-free rate as r D 5%. For the strike and
the correlation coefficient, all combinations of K 2 f�20;�10; 0; 5; 15; 25g and

 2 f�1;�0:5; 0; 0:3; 0:8; 1g are considered.

Although Margrabe’s original formulation did not include dividends (he only
considered capital gains), the introduction of the continuous dividend yields qi does
not fundamentally change things. The spot prices are now assumed to follow the
stochastic differential equation

d Si.t/ D Si.t/ Œ.r � qi/ dt C �i dWi.t/� ; i D 0; 1: (18)

The risk-neutral value of the spread option is given by e�rT
E .S1.T/ � S0.T/ � K/C.

This means that we can apply Lemma 2, with X1 D e�rTS1.T/ and X0 D e�rTS0.T/,
and a strike price of e�rTK. It is straightforward to show that EXi D e�qiTSi.0/,
�i D ln Si.0/ � .qi C 1

2
�2i /T , a D �0�1

�

p
1 � 
2pT , b D �0

�
.�0 � 
�1/

p
T , and

c D �1
�
.
�0��1/

p
T , with �2 D �20C�21�2
�0�1. Substitution of these expressions

in (14) gives the following lower bound for the value of this spread option:

e�q1TS1.0/ˆ.z
� � c/ � e�q0TS0.0/ˆ.z

� � b/ � e�rTKˆ.z�/; (19)

where z� solves f .z/ D e�rTKe� 1
2 a2 , and f .z/ is as defined in (10).

The numerical values of the three volatility parameters a, b and c, under each of
the six correlation coefficients considered, are given in Table 2. The results of the
lower bound (19) for the value of the spread option are listed in Table 3, together
with the lower bound, as derived by the Carmona-Durrleman method [3, p. 24].

As can be seen, the two methods give virtually the same results, with the
Carmona-Durrleman bound being a little bit better for large, positive values of
the strike.

5.2 Relevance of the Lower Bounds

Using a Monte Carlo simulation with 100,000 trials, Carmona and Durrle-
man [3, p. 24] showed that these lower bounds are extremely close to the true value.
This finding is corroborated in a study by van der Hoek and Korolkiewicz [10]
who use a different valuation technique. Their approach is based on a perturbation

Table 2 Volatility parameters for the Carmona-Durrleman test case
under the canonical formulation (4)


 �1 �0:5 0 0:3 0:8 1

a 0 0:05960 0:08321 0:09334 0:09762 0

b 0:15 0:13765 0:12481 0:11742 0:11389 0:15

c �0:1 �0:08030 �0:05547 �0:03588 0:02169 0:1
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Table 3 Comparison of the
lower bounds




K �1 �0:5 0 0:3 0:8 1

�20 29:656 28:994 28:381 28:070 27:770 27:754

29:656 28:990 28:373 28:062 27:769 27:754

-10 21:868 20:904 19:888 19:270 18:381 18:244

21:869 20:903 19:885 19:265 18:379 18:244

0 15:133 13:917 12:523 11:561 9:632 8:821

15:133 13:918 12:524 11:562 9:633 8:821

5 12:244 10:956 9:445 8:367 5:967 4:454

12:244 10:956 9:444 8:365 5:963 4:454

15 7:521 6:242 4:744 3:679 1:342 0:049

7:522 6:236 4:729 3:657 1:303 0:049

25 4:201 3:129 1:961 1:219 0:103 0

4:201 3:115 1:930 1:178 0:076 0

For every strike value, the first row gives the bound by the
Carmona-Durrleman method, and the second row the bound (19)
by our method

expansion of the solution to the differential equation that the price of the spread-
option satisfies, and they use this expansion to derive analytic formulae for
second-order approximations. They employ the same test case and validate their
bounds with a recombining binomial tree model. Bjerksund and Stensland [1] study
a modified version of the Kirk approximation, and verify their results with a quasi-
Monte Carlo method using a two-dimensional Halton sequence with 100,000 pairs,
combined with a variance reduction technique. They also use the test case from
Carmona and Durrleman, and show that the lower bounds are extremely accurate.
Their methodology appears simpler and as accurate as the Carmona-Durrleman
approach. The conclusion in each of these studies is the same: these lower bounds
provide extremely accurate approximations.

6 Improving the Lower Bounds

To obtain better lower bounds for E .X1 � X0 � K/C D E
�
eaY f .Z/ � K

�C
, we can

partition the range for Y , from the one interval, covering the totality of the real line,
into n intervals: Ii D Œyi; yiC1/, i D 0; : : : n � 1, with y0 D �1 and yn D C1.
This gives

E
�
eaY f .Z/ � K

�C D
n�1X
iD0

E

h�
eaY f .Z/ � K

�C j Y 2 Ii

i
Prob .Y 2 Ii/ �

n�1X
iD0

E

��
ˆ.yiC1 � a/ �ˆ.yi � a/

�
e
1
2 a2 f .Z/ �

�
ˆ.yiC1/ �ˆ.yi/

�
K
�C
;
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where the lower bound follows from applying Jensen’s inequality to the conditional
expectation. For this lower bound, similar to Lemma 2, let z�

i be the largest value
for Z that equates the argument of the expectation in the ith summand to zero.
This expectation is then evaluated by integrating Z over the interval .�1; z�

i �. To
simplify the notation, we define pi D Prob .Y 2 Ii/ and Qpi D Prob .Y C a 2 Ii/,
and derive the following generalization of the lower bound (14):

n�1X
iD0

Qpi

h
EX1ˆ.z

�
i � c/ � EX0ˆ.z

�
i � b/ � Kˆ.z�

i /pi=Qpi

i
; (20)

where z�
i is the largest of the values that solves f .z/ D Ke� 1

2 a2pi=Qpi.
This leaves us with a multitude of ways to choose the partition. An appealing

choice is the construction where the intervals Œyi � a; yiC1 � a/ are equally probable,
so that Qpi D 1=n. This implies yi D ˆ�1.i=n/C a, and gives the lower bound as

E
�
eaY f .Z/ � K

�C � 1

n

n�1X
iD0

E

�
e
1
2 a2 f .Z/ � npiK

�C
(21)

� 1

n

n�1X
iD0

h
EX1 ˆ.z

�
i � c/ � EX0 ˆ.z

�
i � b/ � npiKˆ.z

�
i /
i
: (22)

We note that these bounds might also give some insight into the structure of the
spread option formula. As the number of partitions goes to infinity, the limit of (21)
will converge to the true value of the spread option. For case type II, this evaluates

to 1
n

Pn�1
iD0

R z�
i�1 e

1
2 a2 f .z/ dz � Pn�1

iD0 piKˆ.z�
i /. This structure implies that there is

a �n, such that the first expression is the same as the integral
R �n

�1 e
1
2 a2 f .z/ dz, and

that there is a n, such that the second expression is the same as Kˆ.n/. These
aggregations imply that, for case type II, the value of E .X1�X0�K/C can be given
by a formula of the type:

EX1 ˆ.d1/ � EX0 ˆ.d0/ � Kˆ.d2/;

where d1 � d0 D b � c D
q
�20 � 2
�0�1 C �21 , which has a pleasant resemblance

to the Black-Scholes formula.

6.1 Test Results

To measure the effect of increasing the number of partitions, we implemented lower
bound (22) and again used the Carmona-Durrleman test case. The results for a
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selected number of partitions are given in Table 4. We note that our benchmark
values agree perfectly with those given by Bjerksund and Stensland [1, Table 1].

For negative values of the strike K, the choice of n D 1, corresponding to the
lower bound (14) from Lemma 2, already gives excellent results. This could already
have been surmised from Table 3, but the test results show that the approximations

Table 4 The effect of the number of partitions n on the accuracy of lower bound (22)




K n -1 -0.5 0 0.3 0.8 1

�20 1 29.656138 28.989825 28.372967 28.062162 27.768572 27.753786

2 28.992999 28.378177 28.067242 27.769537

5 28.994296 28.380299 28.069303 27.769931

10 28.994605 28.380802 28.069789 27.770024

20 28.994726 28.380997 28.069977 27.770061

50 28.994782 28.381088 28.070064 27.770078

100 28.994797 28.381112 28.070086 27.770082

1,000 28.994808 28.381129 28.070102 27.770086

-10 1 21.868637 20.902992 19.884984 19.265409 18.378517 18.243872

2 20.904239 19.887451 19.268381 18.380153

5 20.904750 19.888463 19.269599 18.380818

10 20.904873 19.888705 19.269891 18.380976

20 20.904921 19.888801 19.270005 18.381036

50 20.904943 19.888846 19.270059 18.381065

100 20.904949 19.888858 19.270073 18.381072

1,000 20.904954 19.888866 19.270083 18.381077

0 1 15.133217 13.917957 12.523665 11.561761 9.632542 8.821249

5 1 12.244123 10.955506 9.443681 8.364984 5.962979 4.454214

2 10.955956 9.444728 8.366512 5.965534

5 10.956141 9.445161 8.367146 5.966597

10 10.956185 9.445266 8.367300 5.966857

20 10.956203 9.445307 8.367361 5.966961

50 10.956211 9.445327 8.367390 5.967011

100 10.956213 9.445332 8.367398 5.967025

1,000 10.956215 9.445336 8.367404 5.967035

15 1 7.521812 6.235713 4.729195 3.657248 1.302566 0.048825

2 6.239841 4.738887 3.671555 1.328113
5 6.241535 4.742874 3.677442 1.338485

10 6.241941 4.743833 3.678856 1.340930

20 6.242101 4.744211 3.679413 1.341874

50 6.242176 4.744390 3.679677 1.342310

100 6.242196 4.744438 3.679748 1.342423

1,000 6.242210 4.744472 3.679798 1.342500

(continued)
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Table 4 (continued)




K n -1 -0.5 0 0.3 0.8 1

25 1 4.201368 3.114953 1.929799 1.177618 0.076431 0.000000

2 3.124543 1.950431 1.204798 0.094212
5 3.128465 1.958832 1.215786 0.101371

10 3.129400 1.960822 1.218362 0.103045
20 3.129765 1.961594 1.219351 0.103687

50 3.129936 1.961954 1.219806 0.103983

100 3.129981 1.962048 1.219923 0.104059

1,000 3.130013 1.962113 1.220002 0.104112

For the cases with K D 0 or 
 D ˙1, our method is exact and attained for n D 1, so these
numbers are not replicated further. For all other cases, we have taken the value for n D 1;000 as
the “true” and benchmark value. The numerical results that deviate more than 0.05 % from their
benchmark are typeset in italics, and those that deviate more than 0.5 % are typeset in bold-italics

are all within 0.05 % of their benchmark. For positive values of K, the results are
still very good, but decrease in accuracy with increasing value of the strike K, and
increasing value of the correlation coefficient 
. However, the choice of n D 5

partitions does give an approximation within 0.5 % of the benchmark, for all cases,
except for those with the highest correlation coefficient of 0:8.

7 Discussion

In this section we add a few comments and observations that would have obstructed
the flow of the discussion had they been incorporated into the main section.

Why Are the Lower Bounds So Accurate? One naturally wonders why the
analytical lower bounds for the price of the spread option are so accurate. All the
approaches that rely on using convexity arguments and replacing a random variable
by its expectation reduce the problem from a two-dimensional to a one-dimensional
one. The approximation being so accurate must mean that the problem is, in some
sense, close to a one-dimensional problem. The traditional formulation does not
show this, but the canonical formulation provides some insight. The convexity
argument uses the approximation E

	
eaY f .Z/ � K


C � E
	�
E eaY

�
f .Z/ � K


C
, so

that, the lower the variability of eay, the better the approximation is likely to be.
For the Carmona-Durrleman test case, the numerical value of a is close to zero, and
Table 5 shows that eaY is close to one, as measured by its expectation and standard
deviation.

For new test cases, with larger values of a, one would hazard a guess that the
lower bounds are likely to be less accurate. It would be interesting to compare the
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Table 5 Characteristics of the volatility parameter a


 �1 �0:5 0 0:3 0:8 1

a 0 0:05960 0:08321 0:09334 0:09762 0

E eaY 1 1:00178 1:00347 1:00437 1:00478 1

SDev eaY 0 0:09763 0:08364 0:09395 0:09832 0

Type II Type I
or III

0.00

0.02

0.04

0.06

0.08

0.10

a

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ρ

Fig. 2 The effect of the correlation on the volatility parameter a for the Carmona-Durrleman test
case. The maximum occurs at 
 D 2=3 with value 0.1. The bullets correspond to the values for

 2 f�1;�0:5; 0; 0:3; 0:8; 1g

results from the Carmona-Durrleman and the Bjerksund-Stensland approaches to
ours for a wider range of parameters.

The Effect of Correlation When the correlation is perfect, that is, 
 D ˙1, the
value of a is zero, and our lower bound gives the true value of the spread option.
Since larger values of a imply a larger standard deviation for eaY , the behavior of a
and its maximum, as a function of the correlation coefficient, is of interest. It is
easier to look at a2 and differentiate this with respect to 
:

@a2

@

D 2�20 �

2
1 .�1
 � �0/.
�0 � �1/

.�20 C �21 � 2
�0�1/2 :

This derivative is zero for either 
 D �0=�1 or 
 D �1=�0. As 
 lies within the
interval Œ�1; 1�, it is not difficult to show that a2 is strictly increasing for 
 � r,
where r D min f�0=�1; �1=�0g, and strictly decreasing for 
 � r. The unique
maximum of a2 is at 
 D r with value minf�20 ; �21 g, so that a � minf�0; �1g. Note
that the upper bound also follows from the fact that a2C b2 D �20 and a2C c2 D �21 .
For the Carmona-Durrleman test case, the value of a, as a function of 
, is graphed
in Fig. 2. Typically, for smaller values of a, the lower bound (14) is more accurate.
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Part II
Electricity and Related Markets



Cross-Commodity Modelling by Multivariate
Ambit Fields

Ole E. Barndorff-Nielsen, Fred Espen Benth, and Almut E.D. Veraart

Abstract This paper proposes a multivariate model for commodity forward curves
which is based on multivariate ambit fields. We show how a multivariate ambit field
can be used to describe complex dependencies between commodities while staying
in a tractable multivariate martingale framework. Moreover, we study in detail how
spread options can be priced in our new ambit framework. Here we consider both
calendar spreads written on one commodity as well as spread options on different
commodity futures.

1 Introduction

Modelling forward and futures prices is of key importance in commodity markets in
general, and in energy markets in particular. This paper introduces a new framework
for modelling various commodity forward curves simultaneously in a multivariate
framework.

Following the famous Heath-Jarrow-Morton methodology, see [23], we will
model forward prices directly rather than deriving them from the corresponding
spot prices. A forward price, denoted by F.t;T/, where t � 0 denotes the current
time and T � t denotes the time of maturity, can be regarded as a multiparameter
process, i.e. a random field, depending on two parameters t and T . This finding has
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triggered research on modelling the term structure of interest rates, but also more
general forward prices, by random fields, following the influential work by Kennedy
[26, 27].

In a recent article, Barndorff-Nielsen et al. [7], suggested to use so-called ambit
fields to model energy forward and futures prices in a univariate framework. Ambit
fields are special types of random fields, which have been developed in the context
of modelling turbulence in physics by Barndorff-Nielsen and Schmiegel [3]. Their
key building block is a stochastic integral of the form

X.t;T/ D
Z

A.t;T/
g.t;TI s; /�.s; /L.ds; d/;

where L is a so-called Lévy basis, g is a deterministic kernel function and � is a
stochastic volatility/intermittency component. In addition to the stochastic integral,
a shift term is often included which allows for rich model specification including
the possibility of modelling skewness in a flexible way.

The parameter space for T could be multivariate as well, however, here we will
focus on the case when t;T 2 R. The name ambit field comes from the fact that
the stochastic integral is computed over a so-called ambit set A.t;T/ which denotes
the sphere of influence of the random noise. A rigorous mathematical definition as
well as suitable integrability conditions which ensure that the stochastic integral is
well-defined will be given in the next section.

This paper builds upon the work of Barndorff-Nielsen et al. [7] and extends it
in the following directions: First of all, we extend the univariate ambit fields to a
multivariate set-up in order to be able to model various commodity forward curves
simultaneously. Second, we allow for the possibility of unbounded ambit sets A.t;T/
which allows to incorporate stationary processes in the modelling framework—an
aspect we will discuss in more detail later in the paper. Third, we build a two-factor
model, which allows for a Gaussian part with stochastic volatility as well as a pure
jump part.

The main challenge in the multivariate set-up is to understand and model
cross-commodity dependencies. We will discuss how serial and cross-sectional
dependence can be introduced in our ambit framework.

Having a multivariate set-up at hands, naturally raises the question of how
derivatives written on various commodity forward/futures can be priced in the new
model. In that context, pricing of so-called spread options is of key importance
in energy markets. Carmona and Durrleman [17] provide an excellent review of
the relevant literature on spread options pricing and discuss the most relevant
cases in the context of energy markets: Here we need to distinguish between both
the temporal spread and the location spread. While the former considers energy
commodities with different times of maturity, e.g. a calendar spread, a location
spread considers commodity futures for commodity at different locations with
potentially the same time of maturity.

Two of the most widely studied energy spread option are the crack spread options
and spark spread options. While the crack spread depends on daily futures prices of
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crude oil, unleaded gasoline and heating oil, there are also different variants, such
as the gasoline crack spread, which depends on crude oil and unleaded gasoline, or
the heating oil crack spread, which depends on crude oil and heating oil. Moreover,
the spark spread depends on the difference of electricity and natural gas and can be
considered as the cost of converting gas into electricity.

In order to find a fair price of such options, we need a multivariate modelling
framework. Here we follow the key idea of Margrabe [28] and link a spread option
with strike price zero to a classical European option. In the context of jump-diffusion
models, extensions of the Margrabe-formula have been studied in e.g. [18] and [12].
In this paper, we will go a step further and extend the Margrabe formula to the ambit
set-up. In addition, we study the case when the strike price is not equal to zero and
the Margrabe formula is no longer applicable.

The remaining part of this article is structured as follows. Section 2 lays out
the background of ambit fields and presents the model assumptions including in
particular the martingale condition which ensures that forward prices are martin-
gales under the risk neutral probability measure. Section 3 presents further important
model properties including a detailed survey on how we model dependence in the
ambit framework and how the forward price is linked to the corresponding spot
price. Next, Sect. 4 discusses in detail how spread options can be priced in our new
model, where we present both the case of temporal spreads as well as location spread
options. A further extension of our modelling framework is introduced in Sect. 5.
Finally Sect. 6 concludes. The proofs of our main results have been relegated to the
Appendix.

2 The Model

Throughout the paper, we denote by .˝;F ;P/ a complete probability space. Let
us first recall the basic traits of multivariate Lévy bases which have been introduced
by [5]. We will later use such multivariate Lévy bases to construct multivariate ambit
fields.

2.1 Preliminaries

Let .S;S ;Leb/ denote a Lebesgue-Borel space where S denotes a Borel set in R
k

for k 2 N. In this paper, we will choose k D 2, i.e. one parameter will represent the
time parameter and the other one the time of maturity parameter. We denote by S D
B.S/ the Borel � -algebra on S and by Leb the Lebesgue measure. Note that the
Lebesgue measure on matrix or vector spaces should be understood as the product
of the coordinate-wise Lebesgue measures throughout the paper. In addition, we
define Bb.S/ D fA 2 S W Leb.A/ < 1g, which is the subset of S that contains
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sets which have bounded Lebesgue measure. Note that the set Bb.S/ is closed under
finite union, relative complementation, and countable intersection and is therefore a
ı-ring.

Definition 1. Let n 2 N. A family of Rn-valued random variables denoted by L D
fL.A/ W A 2 Bb.S/g is called an R

n-valued Lévy basis on S, if it is a random
measure which is independently scattered and infinitely divisible, i.e. if it satisfies
the following three conditions:

1. For any pairwise disjoint sets .Ai/i2N 
 Bb.S/ satisfying [i2NAi 2 Bb.S/, the
infinite series

P
i2N L.Ai/ converges almost surely and L.[i2NAi/ D P

i2N L.Ai/

a.s. (i.e. L is a random measure);
2. for any d 2 N and for any pairwise disjoint sets A1; : : : ;Ad 2 S the R

n-valued
random variables L.A1/; : : : ;L.Ad/ are independent (i.e. L is independently
scattered);

3. the distribution of L.A/ is infinitely divisible for all A 2 Bb.S/ (i.e. L is infinitely
divisible).

Throughout this paper, we will restrict our attention to Lévy bases, which are
homogeneous and factorisable, in the sense that their characteristic function can be
expressed as

E.exp.i�>L.A/// D exp.�.�/Leb.A//;

for all � 2 R
n and A 2 Bb.S/, where

�.�/ D i�>� � 1

2
�>˙�� C

Z
Rn

�
ei�>z � 1 � i�>zIfjjzjj�1g.z/

�
�.dz/; (1)

where � 2 R
n denotes a constant, ˙ denotes a symmetric, positive semidefinite

n � n-dimensional matrix and � denotes a Lévy measure on R
n. Here jj � jj denotes

the Euclidean norm. We call .�;˙�; �;Leb/ the characteristic quadruplet (CQ)
associated with the Lévy basis L which determines the Lévy basis uniquely, see
[8, 30] for details. Note that we call the infinitely divisible R

n-valued random
variable L0 having cumulant function given by (1) the Lévy seed associated with
L. Note that one can define the Lévy process .L0

t/t�0 associated with L0 by setting
L0
1 WD L0.

From [5, Theorem 2.2] we know that the homogeneous, factorisable Lévy
basis L with characteristic quadruplet given by .�;˙�; �;Leb/ has a Lévy-Itô
decomposition. That is there exists a modification QL of L with identical CQ which
satisfies

QL.A/ D �Leb.A/C QLG.A/C
Z

A

Z
jjzjj�1

z.N.dz; dy/ � �.dz/dy/

C
Z

A

Z
jjzjj>1

zN.dz; dy/;
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for all A 2 Bb.S/, and for all ! 2 ˝, where QLG denotes an R
n-valued Lévy basis on

S with CQ .0;˙�; 0;Leb/ and N denotes an independent Poisson random measure
on .Rn � S;B.Rn � S// having intensity measure � ˝ Leb. We typically write QN D
N � � ˝ Leb for the compensated Poisson random measure.

2.2 Model Assumptions

Inspired by the success of jump-diffusion models, we will work with two types of
stochastic noise given by two R

n-valued Lévy bases. That is we build a two-factor
model, where the first factor is a mixed Gaussian random field and the second factor
is driven by a pure jump Lévy basis.

More precisely, suppose that W D .W1; : : : ;Wn/
> is a multivariate homogeneous

and factorisable Gaussian Lévy basis with CQ .0;˙�; 0;Leb/. By definition, W has
zero mean and its second moment exists. Moreover, we assume that the diagonal
elements of ˙� are all standardised to 1, so that we are dealing with unit variances
throughout.

Further, let L D .L1; : : : ;Ln/
> denote a multivariate homogeneous and factoris-

able Lévy basis with CQ .�; 0; �;Leb/. We assume that L has zero mean and finite
variance. The zero mean assumption implies that

� D �
Z

jjzjj>1
z�.dz/:

We know that there exists a modification QL of L such that under the zero-mean
assumption

QL.A/ D �Leb.A/C
Z

A

Z
jjzjj�1

z.N.dz; dy/ � �.dz/dy/C
Z

A

Z
jjzjj>1

zN.dz; dy/

D
Z

A

Z
Rn

z.N.dz; dy/ � �.dz/dy/:

Note that we write

JLj.dzj; dy/ D N.R; : : : ;R; dzj;R; : : : ;R; dy/;

for the Poisson random measure associated with the jth jump component, which
is obtained by integrating out the remaining components. Also the corresponding
univariate Lévy measure is given by

�Lj.dzj/ D �.R; : : : ;R; dzj;R; : : : ;R/:

Then QJLj denotes the compensated Poisson random measure associated with Lj. Note
further that W and L are assumed to be independent of each other.
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We will use W and L as stochastic integrators, where we define stochastic
integrals in the sense of Walsh [32], see [8] for a recent review of this integration
concept. The integration concept of Walsh [32] follows the idea of splitting the
integration domain into time and space and of working with an Itô-type integration
theory with respect to the time variable.

In particular, we define the (two-sided) stochastic process .W.t;A//t2R for fixed
A 2 Bb.R/ as follows: For t � 0, we set W.t;A/ D W.Œ0; t� � A/. For t < 0 we
take an independent copy of W denoted by W�, say, having the same characteristic
quadruplet as W. Then we define W.t;A/ D �W�.Œ0;�t�/ for t < 0. This is
analogue to the construction of a two-sided Brownian motion. Similarly, we define
the process .L.t;A//t2R.

Next, we need to define a suitable filtration. We assume that .Ft/t2R denotes a
filtration satisfying the usual conditions of right-continuity and completeness such
that for fixed A 2 Bb.R/ both .W.t;A//t2R and .L.t;A//t2R are martingales with
respect to that filtration.

Example 1. Let us briefly illustrate how a suitable filtration can be constructed. To
this end, we can define the filtration generated by the increments of the Gaussian
Lévy basis W by

FW;incr
t D \1

nD1F 0
tC1=n; where

F 0
t D �fW.u;A/ � W.s;A/;�1 < s � u � t;A 2 Bb.R/g _ N ;

where N denotes the P-null sets of F . Clearly, the filtration is right-continuous
and complete, and for fixed A 2 Bb.R/ the process .W.t;A//t2R is a martingale
with respect to the filtration .FW;incr

t /t2R.

However, the filtration .Ft/t2R is assumed to be bigger than just the one
generated from suitable increments of W and L in that it can also support drift
and stochastic volatility processes which are independent of L and W. That is let
� W R3 �˝ 7! R

n and � W R2 �˝ 7! R
nC denote the stochastic drift and volatility

processes, respectively. We assume that they are adapted in the temporal component
and that the .�j; �j/ are assumed to be independent of .Wj;Lj/ for j D 1; : : : ; n.

Throughout the paper, we will work with stochastic processes of the form

Yj.t;T/ D
Z

Aj.t/
�j.TI s; /dsd C

Z
Aj.t/

gj.TI s; /�j.s; /Wj.ds; d/

C
Z

Aj.t/
hj.TI s; /Lj.ds; d/; (2)

for j D 1; : : : ; n, where gj; hj W R3 ! R are measurable deterministic functions.
The range of integration is determined by the so-called ambit sets Aj.t/ 


.�1;T�� � Œ0;1/, where T� > 0 denotes the finite time horizon we consider
throughout the paper. That is we will have 0 � t � T � T�.
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In order to ensure that the integrals in (2) are well-defined, we require that the �j

are predictable for all j D 1; : : : ; n and that

k�jkLeb WD E

�Z
.�1;T���Œ0;1/

�j.�; s/dsd�

�
< 1; (3)

kgj�jk2W WD E

�Z
.�1;T���Œ0;1/

g2j .TI �; s/�2j .s; /Var.W 0
j /dsd�

�
< 1; (4)

khjk2L WD E

�Z
.�1;T���Œ0;1/

h2j .�; s/Var.L0
j/dsd�

�
< 1: (5)

Then, the integrals in (2) are well-defined in the L2-sense for 0 � t � T � T�.

Remark 1. Note that for purely deterministic integrands, the integration theory of
Rajput and Rosinski [30] can be employed, which has been formulated for the
multivariate case in [5]. For stochastic integrands, the L2-theory can be further
extended, see in particular [13] and also [10, 19] for recent work on the stochastic
integration theory for ambit processes and fields beyond the L2-framework.

2.3 The Geometric Model

We will model forward rates directly under the risk-neutral measure, which we will
denote by P throughout the paper. Under the modelling assumptions introduced in
the previous section, the random field Yj.t;T/ defined in (2) can be expressed as

Yj.t;T/ D
Z

Aj.t/
�j.TI s; /dsd C

Z
Aj.t/

gj.TI s; /�j.s; /Wj.ds; d/

C
Z

Aj.t/

Z
R

zhj.TI s; /QJLj.dz; ds; d/; (6)

for j D 1; : : : ; n and 0 � t � T � T�.
In our modelling framework we allow for stochastic volatility in the second

component, where we have a Gaussian Lévy basis as integrator. In the third term,
which reflects the jumps, we do not allow for stochastic volatility to keep the
exposition simple. However, from a mathematical point of view, it would be no
problem also to include stochastic volatility in the second factor. Note that stochastic
volatility could also be included via extended subordination by meta times, as
described in detail in [2].

In the definition of the ambit field, the so-called ambit sets Aj.t/ occur, which
determine the relevant range for the integration. In the following, we choose Aj.t/ D
.�1; t� � Œ0;1/. The reason for this choice is that the first parameter reflects the
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time parameter. Here we would like to be able to account for the entire past up to the
current time t and hence we choose the time interval .�1; t�. While we typically
consider modelling the forward price for t � 0, we require the infinite past in the
time domain to potentially obtain stationary processes. The second parameter relates
to the time of maturity of the contract, which could potentially be any positive
number. Hence we choose the interval Œ0;1/. Note that we are interested in the
case when t � T . Given that the variable s corresponds to the time-parameter and
the variable  to the time of maturity parameter, one could think of choosing kernel
functions gj which satisfy gj.TI s; / D 0 whenever s �  .

The forward price Fj.t;T/ at time t with delivery T � t of the jth commodity is
defined by a geometric model of the form

Fj.t;T/ D exp.Yj.t;T//; for 0 � t � T � T�; (7)

where �j.TI s; / is chosen such that Fj.t;T/ is a martingale.

Remark 2. In energy markets, forward prices typically do not just depend on a time
of maturity T , but typically on a delivery interval. It is well-known, how a model for
Fj.t;T/ can be extended to allow for a delivery period, see e.g. [7, Section 3.2]. In
the following, however, we will ignore any dependence on a delivery period to keep
our exposition as simple as possible when we work with the new ambit framework.

2.4 Martingale Condition

Since we model directly under the risk-neutral probability measure P, we need to
ensure that forward prices are martingales under P. This entails in a drift condition
on �j.TI s; /, as we shall see. First, notice that using the definition As

j .t/ D Œs; t� �
Œ0;1/ for s � t, we have

Yj.t;T/ D Yj.s;T/C
Z

As
j .t/
�j.TI u; /dud C

Z
As

j .t/
gj.TI u; /�j.u; /Wj.du; d/

C
Z

As
j .t/

Z
R

zhj.TI u; /QJLj.dz; du; d/:

Therefore,

Fj.t;T/ D Fj.s;T/ exp

 Z
As

j .t/
�j.TI u; /dud C

Z
As

j .t/
gj.TI u; /�j.u; /Wj.du; d/

C
Z

As
j .t/

Z
R

zhj.TI u; /QJLj.dz; du; d/

!
;
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with s � t. We have the following condition on the model for Fj ensuring the
martingale property.

Proposition 1. If Yj has an exponential moment and

�j.TI t; /C 1

2
g2j .TI t; /�2j .t; /C

Z
R

�
ezhj.TIt;/ � 1 � zhj.TI t; /

�
�Lj.dz/ D 0;

(8)

then t 7! Fj.t;T/ is a martingale for t � T. Under this martingale condition, we
have

Yj.t;T/ D �
Z

Aj.t/

1

2
g2j .TI s; /�2j .s; /dsd C

Z
Aj.t/

gj.TI s; /�j.s; /Wj.ds; d/

�
Z

Aj.t/

Z
R

�
ezhj.TIs;/ � 1 � zhj.TI s; /

�
�Lj.dz/dsd

C
Z

Aj.t/

Z
R

zhj.TI s; /QJLj.ds; d/:

The proof is given in the Appendix.

Proposition 2. Under the martingale condition, the dynamics of Fj can be
expressed as follows.

dtFj.t;T/

Fj.t�;T/ D
Z
R

gj.TI t; /�j.t; /Wj.dt; d/C
Z
R2

�
ezhj.TIt;/ � 1� QJLj.dz; dt; d/;

(9)

where dt indicates that we look at the differential with respect to the time parameter,
which is here denoted by t.

The proof is given in the Appendix.

Remark 3. Note that the integration with respect to Lévy bases should always be
understood as joint integration and not as iterative integration. Hence, Eq. (9) should
only be understood as a formal representation rather than an iterative integral.

Remark 4. Note that in this paper we are interested in ambit fields which are
indeed martingales since forward contracts are tradeable and hence need to satisfy
the martingale condition under a risk-neutral probability measure. So throughout
the paper, we will stick to our martingale set-up. However, when we compare
our model with the original model specification of ambit fields in the context of
modelling turbulence as discussed by Barndorff-Nielsen and Schmiegel [3], we see
that ambit fields are not in general (semi-) martingales and there is a lot of interest
in further developing the non-semimartingale case. This being particularly the case
in turbulence, but also in finance, as we discussed in more detail in the context of
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modelling energy spot prices in [6], which do not necessarily need to be modelled
as (semi-) martingales. For example electricity spot prices are not directly tradeable,
hence a non-semimartingale modelling framework could be applied.

2.5 Examples

In the following, we give some relevant examples how we can specify a fully
parametric model within our ambit framework. To this end, we need to specify
the weight functions gj and hj, the stochastic volatility processes �j and the Lévy
basis Lj.

2.5.1 Specifying the Lévy Basis

Let us start with the Lévy basis. In the following we consider a homogeneous Lévy
basis Lj with characteristic quadruplet .�j; 0; �Lj ;Leb/.

Example 2 (Poisson Lévy Basis). When we choose �Lj.dz/ D �jı1.dz/, where ı1
denotes the Dirac measure with point mass at 1 and �j > 0 is the intensity rate, then
L constitutes a Poisson Lévy basis.

Example 3 (Generalised Hyperbolic Lévy Basis). Suppose the Lévy measure is of
the form

�Lj.dz/ D �
rj

j ˛
1�2rj

jp
2�Krj.ıj�j/

Krj�1=2
�
˛j

q
ı2j C .z � �j/2

�
exp.ˇj.z � �j//dz; z 2 R;

i.e. we are dealing with the generalised hyperbolic (GH) distribution with parame-

ters .rj; ˛j; ˇj; �j; ıj/, where ˛j D
q
ˇ2j C �2j . Note that Kr is the modified Bessel

function of the third kind satisfying Kr.z/ D K�r.z/. Also, we set Kr.z/ D zrKr.z/.
Note that ˛j; ıj > 0, �j; rj 2 R and ˇj is such that ˛2j �ˇ2j > 0. The GH distribution
contains many well-known distributions as special cases. In our context, the normal
inverse Gaussian (NIG) distribution is particularly relevant, which we obtain when
setting rj D 1=2.

Example 4. In the above examples, we have specified the marginal Lévy measures.
The joint Lévy measure of L D .L1; : : : ;Ln/ can be constructed using Lévy
copulas, which allow for a great variability in terms of modelling the dependence
structure between the individual components. Alternatively, one could directly
specify a parametric model for the multivariate Lévy basis L. For example one could
assume that the multivariate Lévy measure of L follows a multivariate generalised
hyperbolic distribution.
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2.5.2 Specifying the Weight Functions

Next, one might ask how one could fully parameterise the weight functions gj and
hj. This has been discussed in [7] and we briefly review some relevant specifications
for gj, similar specifications could be used for hj.

Suppose the weight function factorises as

gj.T; s; / D g.1/j .T; s/g
.2/
j ./; (10)

for suitable functions g.1/j ; g
.2/
j .

Example 5 (Choices for g.1/j ). Extending the classical models for forward prices in
the literature, we can consider choosing

g.1/j .T; s/ D exp.�˛j.T � s//; for ˛j > 0;

which is motivated from Ornstein-Uhlenbeck processes. Extensions to weight
functions mimicking continuous-time ARMA (CARMA) processes could also be
considered.

A different specification, which is motivated by the work by Bjerksund et al. [14]
suggesting that it can model the Samuelson effect well, is given by

g.1/j .T; s/ D ˛j

T � s C ˇj
; for ˛j; ˇj > 0;

Example 6 (Choices for g.2/j ). While choices for g.1/j are rather straightforward to
come up with since there is a wide empirical literature on the time series properties
of forward and futures prices, modelling the dependence in the spatial variable
appears to be slightly trickier. This is mainly due to the fact that the data in the
time-to-maturity direction are much more sparse than in the time direction. While
choosing g.2/j ./ � 1 would essentially bring us back to classical one-parameter
models of forward rates, empirical work by Audet et al. [1] suggests that choosing

g.2/j ./ D exp.�ˇj/; for ˇj > 0;

could be a good starting point to allow for decreasing dependence when time to
maturity/date of maturity for different contracts are far apart. In future research, it
will be interesting to investigate empirically which functional forms are the most
suitable choices for commodity futures.

2.5.3 Specifying the Stochastic Volatility Field

In the mixed-Gaussian part of the model specification we allow for a stochastic
volatility component denoted by �j.s; /. That is in principle we allow for the
volatility to depend both on the time as well as on a time to/of maturity parameter.
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Let us consider the case when the volatility factorises as �j.s; / D �
.1/
j .s/�.2/j ./.

Also, consider the situation when the weight function factorises as in (10). Then we
have that

Z
.�1;t��Œ0;1/

g.1/j .T; s/g
.2/
j ./�j.s/Wj.ds; d/

is conditional on F �j normally distributed with zero mean and conditional variance
given by

Z t

�1

�
g.1/j .T; s/

�2 �
�
.1/
j .s/

�2
ds �

Z 1

0

�
g.2/j ./

�2 �
�
.2/
j ./

�2
d:

This is an interesting finding: The first factor resembles the accumulated stochastic
volatility in time—up to time t, which is very much in-line with classical time
series models for forward prices. However, the second factor can be regarded as
the accumulated stochastic volatility in the spatial direction, i.e. the time to delivery
direction. This is an important generalisation beyond the time-series framework.

Further (fully parametric) examples for the stochastic volatility can be found in
[7] and [8].

3 Properties of the Ambit Model

3.1 Autocorrelation and Cross-Correlation

Let us briefly investigate which types of dependence are implied by our multivariate
ambit model. Here we want to study both serial dependence as well as cross-
commodity dependence.

To simplify the exposition, we focus on two key building blocks in the model:
For j 2 f1; : : : ; ng, let

Yc
j .t;T/ WD

Z
Aj.t/

gj.TI s; /�j.s; /Wj.ds; d/;

Yd
j .t;T/ D

Z
Aj.t/

zhj.TI s; /QJLj.dz; ds; d/:

Recall that the correlation between the Gaussian Lévy bases is governed by the
covariance matrix ˙� in the CQ. More precisely, let us assume that

Cov
�
W.i/.d; ds/;W.j/.d; ds/

� D 
i;jdds;

for �1 � 
i;j � 1 and i; j 2 f1; : : : ; ng.
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For the jump part, we introduce the bivariate Lévy measure �i;j describing the
dependence between the i and jth component.

So we see that dependence between the two Lévy bases can be incorporated
either through the Gaussian part or the jump part or a combination of both. In
addition, the stochastic volatility component introduces an additional level of cross-
sectional dependence.

In order to shorten the exposition slightly, we focus on the Gaussian and pure-
jump cases separately.

Proposition 3. Under the assumptions above, we get the following covariation
functions:

Cov
�
Yc

i .t;T/;Y
c
j .Qt; QT/ˇ̌F �i _ F �j

�

D 
i;j

Z
Ai.t/\Aj.Qt/

gi.TI s; /gj. QTI s; /�i.s; /�j.s; /dsd:

The unconditional covariation is given by

Cov
�
Yc

i .t;T/;Y
c
j .Qt; QT/�

D 
i;j

Z
Ai.t/\Aj.Qt/

gi.TI s; /gj. QTI s; /E.�i.s; /�j.s; //dsd:

The above results can be easily verified by computing the joint characteristic
function of Yc

i .t;T/ and Yc
j .Qt; QT/ by first conditioning on F �i _ F �j , where F �i

and F �j denote the filtration generated by �i and �j, respectively. That is

F �i D �f�i.s; / W .s; / 2 Ai.T
�/g; F �j D �f�j.s; / W .s; / 2 Aj.T

�/g:

The unconditional result follows from the well-known law of total (co)variance.
Likewise, we get the following result in the pure jump case.

Proposition 4. Under the assumptions above, we get the following covariation
functions:

Cov
�
Yd

i .t;T/;Y
d
j .Qt; QT/�

D
Z

Ai.t/\Aj.Qt/
hi.TI s; /hj. QTI s; /dsd

Z
R2

zizj�i;j.dzi; dzj/:

Again, this result can be verified by computing the joint characteristic function of
Yd

i .t;T/ and Yd
j .Qt; QT/.

Note that from a modelling point of view there are many possibilities in
modelling the joint Lévy measure �i;j. For example one could work with classical
multivariate Lévy measures. Another possibility would be to apply Lévy copulas,
see e.g. [20], to model the dependence structure.
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Note that in the formulas above, we see that the intersection of the corresponding
ambit sets is an important ingredient in determining the correlation structure
for general ambit fields. In our modelling context, however, we work with a
rather simple structure of the ambit field, which is motivated by the fact that we
want to have a martingale structure, where we simply obtain Ai.t/ \ Aj.Qt/ D
.�1;min.t; Qt/� � Œ0;1/.

Note that the intersections of more general ambit sets typically lead to more
interesting shapes as the one obtained here, see e.g. the recent investigations by
Barndorff-Nielsen et al. [9].

3.2 Relation Between Forward and Spot

Let us briefly study the spot model which is implied by our forward model. At time
t D T , the spot price of commodity j is given by

Xj.T/ D exp.Yj.T;T//;

where

Yj.T;T/ D
Z

Aj.T/
�j.TI s; /dsd C

Z
Aj.T/

gj.TI s; /�j.s; /Wj.ds; d/

C
Z

Aj.T/
hj.TI s; /Lj.ds; d/: (11)

In the case when Aj.T/ D .�1;T� � Œ0;1/, we observe that Yj.T;T/ can be
regarded as a superposition of volatility modulated Lévy-driven Volterra (VMLV)
processes of the form

Z.T/ D
Z T

�1
�j.TI s/ds C

Z T

�1
gj.TI s/�j.s/W

0
j .ds/C

Z T

�1
hj.TI s/L0

j.ds/; (12)

where W 0
j and L0

j denote the Lévy processes associated with the Lévy seeds of W and
L. Note that as soon as the gj.TI s/ D g.T �s/ and hj.TI s/ D h.T �s/ we would call
the corresponding stochastic integrals Lévy semistationary (LSS) processes, see [6].

Barndorff-Nielsen et al. [6] have shown that arithmetic LSS processes can
describe the empirical behaviour of energy spot prices very well. The corresponding
result for the geometric model can be found in an earlier version of that paper. Hence
if we model forward prices by ambit fields, the implied spot price model is indeed a
rather realistic one, which is an encouraging result.
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Also note that the relation between spot and forward prices in an ambit
framework has been studied in detail in the univariate set-up by Barndorff-Nielsen
et al. [7] and we refer to that paper for more details since the results carry over
directly to the multivariate case. The extension of LSS processes to the multivariate
case has been studied by Veraart and Veraart [31] in the context of modelling
multivariate energy spot prices.

4 Application to Spread Options

Next we show how spread options prices can be computed in our multivariate
ambit framework. Spread options are popular derivatives in energy markets and their
payoff typically depends on the price of at least two commodities.

Carmona and Durrleman [17] provide a very detailed review of the spread option
market and survey the methods for pricing and hedging of spread options. One result
which is of particular importance is the so-called Margrabe formula, see [28], which
we will extend to our ambit framework in the following.

As mentioned before, we fix a finite time horizon T� > 0 and assume that all
options and futures expire before that point in time.

4.1 Spread Option Set-Up

Consider two asset prices Sj.t/ for j D 1; 2 and t � 0. Throughout this paper we only
consider asset prices which are indeed forward prices, meaning that the Sj.t/ are
martingales. Hence the following exposition will differ slightly from the classical
Margrabe result.

We denote the time of maturity of the spread option by To and the payoff is
given by

max.S2.To/ � S1.To/ � K; 0/;

for strike price K � 0. For now, we focus on the case that K D 0 (which is in fact
the case of an exchange option). Then the price of the spread option is given by the
risk-neutral expectation formula for the time 0 price of the option

Spr..S1.0/; S2.0//I To;K/ D e�rT0E0Œmax.S2.To/ � S1.To/ � K; 0/�;

see e.g. [25]. Here E0 is the short-hand notation for the conditional expectation given
F0. For K D 0 we can rewrite the price as follows.
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Spr..S1.0/; S2.0//I To; 0/ D e�rT0E0Œmax.S2.To/ � S1.To/; 0/�

D e�rT0E0

�
max

�
S2.To/

S1.To/
� 1; 0

�
S1.To/

�

D e�rT0S1.0/E
QP
0

�
max

�
S2.To/

S1.To/
� 1; 0

��
;

where we used S1.t/=S1.0/ as numeraire in the generalised Bayes’ formula, see
e.g. [4, p. 124]. Moreover, as the numeraire in the cases we are studying becomes
a martingale with mean equal to 1, we defined a new probability measure by
dQP
dP

ˇ̌
ˇ
Ft

D S1.t/
S1.0/

.

In the context when both S2 and S1 are geometric Brownian motions, Margrabe
[28] used the above result to link the pricing of an exchange option to the classical
Black-Scholes option pricing problem, see [15].

4.2 Calendar Spreads

First of all, we study the case of calendar spreads, which are written on one
commodity only. W.l.o.g. we study a calendar spread option written on F1.t;T/.
We fix two different dates of maturity satisfying To < T2 < T1 < T� and set

S1.t/ D exp.Y1.t;T1//; S2.t/ D exp.Y1.t;T2//:

First, we observe that from the martingale property of F1.t;T1/, it holds for
t � s � 0,

E

�
S1.t/

S1.0/

ˇ̌
ˇ̌ Fs

�
D 1

S1.0/
E ŒS1.t/ jFs� D S1.s/

S1.0/
:

Here, we applied the F0-measurability of S1.0/ D exp.Y1.0;T1//. Hence,
S1.t/=S1.0/ is a martingale for 0 � t � T1. But, as the expectation of a martingale
is equal to its expected value at zero, we find

E

�
S1.t/

S1.0/

�
D 1 :

Hence, S1.t/=S1.0/ is a density process and QP is a probability.
We need to find the dynamics of the ratio S2=S1 under the new probability

measure QP. In order to derive the dynamics, we proceed in three steps: First, we
formulate a Girsanov theorem which is relevant for our ambit set-up. Next, we use
an extended Itô’s formula, to derive the dynamics of S2=S1 under the risk-neutral
probability measure P. Finally, we combine the two results, to find the dynamics of
S2=S1 under the probability measure QP.
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In the following, we will state the results without proofs since we will present the
proofs for the more general cases covered in the next subsection in the Appendix.

Lemma 1. Define the probability measure dQP
dP

ˇ̌
ˇ
Ft

D S1.t/
S1.0/

, for 0 � t � T1, where

S1.t/

S1.0/
D exp

 
�
Z

A01.t/

1

2
g21.T1I s; /�21 .s; /dsd

C
Z

A01.t/
g1.T1I s; /�1.s; /W1.ds; d/

�
Z

A01.t/

Z
R

�
ezh1.T1Is;/ � 1 � zh1.T1I s; /

�
�L1 .dz/dsd

C
Z

A01.t/

Z
R

zh1.T1I s; /QJL1 .dz; ds; d/

!
:

Then,

OW1.ds; d/ D W1.ds; d/ � g1.TI s; /�1.s; /dsd

is a Gaussian homogeneous and factorisable Lévy bases under QP. Also,

ON1.dz1; ds; d/ D JL1 .dz1; ds; d/ � ez1h1.T1Is;/�L1 .dz1/dsd;

is a compensated Poisson random measure under QP.

Lemma 2. Under P, the dynamics of S2.t/=S1.t/ are given by

d
�

S2.t/
S1.t/

�

S2.t�/=S1.t�/ D
Z 1

0

.�g1.T1I t; /C g1.T2I t; //�1.t; /W1.dt; d/

C
Z 1

0

.g21.T1I t; / � g1.T1I t; /g1.T2I t; //�21 .t; /dtd

C
Z 1

0

Z
R

�
ez1h1.T2It;/ � ez1h1.T1It;/� QJL1 .dz1; dt; d/

C
Z 1

0

Z
R

�
ez1h1.T2It;/�z1h1.T1It;/ C ez1h1.T1It;/ � ez1h1.T2It;/ � 1� �L1 .dz1/dtd:
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Proposition 5. Using the same notation as in Lemma 1, the dynamics of S2=S1
under QP are given by

d
�

S2.t/
S1.t/

�

S2.t�/=S1.t�/ D
Z 1

0

.�g1.T1I t; /C g1.T2I t; //�1.t; / OW1.dt; d/

C
Z 1

0

Z
R

�
ez1.h1.T2It;/�h1.T1It;// � 1� ON1.dz1; dt; d/:

Then the solution is given by

S2.t/

S1.t/
D S2.0/

S1.0/
exp.Z.t//;

where

Z.t/ D
Z

A01.t/
.�g1.T1I s; /C g1.T2I s; //�1.s; / OW1.ds; d/

�1
2

Z
A01.t/

.�g1.T1I s; /C g1.T2I s; //2�21 .s; /dsd

C
Z

A01.t/

Z
R

.z1h1.T2I s; / � z1h1.T1I s; // ON1.dz1; ds; d/

C
Z

A01.t/

Z
R

.z1h1.T2I s; / � z1h1.T1I s; //C 1 � exp.z1h1.T2I s; /

�z1h1.T1I s; //�L1;QP.dz1/dsd; (13)

where �L1;QP denotes the Lévy measure of L1 under QP.

Based on the preceding results, we can now formulate the Margrabe formula for a
calendar spread option.

Proposition 6. The time 0 price of the calendar spread option is given by

Spr..S1.0/; S2.0//I To; 0/ D e�rT0S1.0/E
QP
0

�
max

�
S2.To/

S1.To/
� 1; 0

��
; (14)

where S2.To/=S1.To/ D S2.0/=S1.0/ exp.Z.To//, where Z is defined as in (13).

Remark 5. Note that the option price at time 0 is actually stochastic since it depends
on the random variables S1.0/ and S2.0/. In practice, however, one could use the
observations at time 0, which can be viewed as realisations of S1.0/ and S2.0/,
to pin down a price. By taking the expected value of Spr..S1.0/; S2.0//I To; 0/,
we find the best predicted option price from the model of the forwards. We may
also provide insight into the bid-ask spread of prices for this option based on the
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distribution of Spr..S1.0/; S2.0//I To; 0/ (computing its standard deviation, say). In
illiquid markets as electricity, it may be informative to have a random variable
describing the distribution of prices rather than one price.

Clearly, the key question is: How can we compute the expectation given in (14)?
Since

E
QP
0

�
max

�
S2.To/

S1.To/
� 1; 0

��
D E

QP
0

�
max

�
S2.0/

S1.0/
exp.Z.To// � 1; 0

��

D S2.0/

S1.0/
E

QP
0

�
max

�
exp.Z.To// � S1.0/

S2.0/
; 0

��
;

and since S1.0/=S2.0/ is F0-measurable, we know that, as soon as we can
compute E

QP
0 Œmax .exp.Z.To// � �; 0/�, for a positive constant �, we can derive the

corresponding price of the spread option when setting � D S1.0/=S2.0/.
In the absence of jumps and stochastic volatility, this essentially boils down to

the classical Margrabe formula, which is based on the Black-Scholes formula. In the
more general case we have here, we can for instance follow the approach of using
Fourier methods, see e.g. [25].

4.2.1 The Gaussian Case

Consider the case when h1 � 0, i.e. there is no jump component and we have

Z.t/ D
Z

A01.t/
.�g1.T1I s; /C g1.T2I s; //�1.s; / OW1.ds; d/

�1
2

Z
A01.t/

.�g1.T1I s; /C g1.T2I s; //2�21 .s; /dsd:

Conditional on F �1 _ F0, Z.t/ is normally distributed with mean

m.t/ D �1
2

Z
A01.t/

.�g1.T1I s; /C g1.T2I s; //2�21 .s; /dsd;

and variance

v2.t/ D
Z

A01.t/
.�g1.T1I s; /C g1.T2I s; //2�21 .s; /dsd:
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Proposition 7. Using the above notation, we get

E
QP
0 Œmax .exp.Z.To// � �; 0�/jF �1/

D �˚

�
m.To/ � log.�/

v.To/

�
� ˚

�
m.To/ � log.�/

v.To/
C v.To/

�
; (15)

where ˚ denotes the cumulative distribution function of the standard normal
distribution.

Note that the proof of the above results follows the classical arguments of computing
the call price associated with a lognormally distributed random variable and is hence
omitted.

Clearly, when �1 is just a deterministic function, we are done since the results
from Propositions 6 and 7 specify an extended version of the Margrabe formula.

However, in the case when �1 is truly stochastic, we need to compute the
conditional expectation of (15) given F0. This is in line with the approach advocated
in [24]. However, we are not able to find an analytic formula for this expectation and
hence need a different methodology for the case of stochastic volatility (and also
when we have a general jump term).

4.2.2 A Fourier Approach for the General Case

In the general case, we can work with the Fourier approach where the corresponding
integral needs to be computed numerically.

Proposition 8. For any R > 1 such that E
QP Œexp.i�Z.To//� < 1, for � WD

�.R; u/ WD �.u C iR/, we have

E
QP
0 Œmax .exp.Z.To// � �; 0/� D 1

2�

Z
R

E
QP
0 Œexp.i�.R; u/Z.To//� Of .��.R; u//du;

(16)

and Of .z/ D �1Ciz=.iz.1C iz// and

E
QP
0 Œexp.i�Z.To//�

D E
QP
0

"
exp

 �
��

2

2
� i�

2

�Z
A01.To/

.�g1.T1I s; /C g1.T2I s; //2�21 .s; /dsd

!#

� exp

 
.1 � i�/

Z
A01.To/

Z
R

�
ez1.h1.T2Is;/�h1.T1Is;// � 1� �L1;QP.dz1/dsd

!
:
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In the above result, there is still an expectation which needs to be computed if we
have a stochastic volatility component. In order to get an analytic expression for
this expectation, we introduce a modelling assumption for the volatility process.
Suppose that

�21 .s; / D $.s�; /; where $.s; / D
Z

A1.s/
l.s; I x; y/L� .dx; dy/;

where l is assumed to be a non-negative continuous function, which is integrable
with respect to the homogeneous and factorisable Lévy basis L� , which has CQ
given by .0; 0; �� ;Leb/ under QP, where �� corresponds to a Lévy measure of
a subordinator. An application of Fubini’s theorem (provided the corresponding
integrals exist) leads to

E
QP
0

"
exp

 �
��2 � i�

2

�Z
A01.To/

.�g1.T1I s; /C g1.T2I s; //2�21 .s; /dsd

!#

D exp

 Z
.�1;0��Œ0;1/

iK.x; y/L� .dx; dy/C
Z

A01.To/

�L� .K.x; y//dxdy

!
;

where �L� is the cumulant function, i.e. the distinguished logarithm of the charac-
teristic function, associated with L� and

K.x; y/ D
�

i�2 � �

2

�Z
Œx;To��Œ0;1/

.�g1.T1I s; /C g1.T2I s; //2l.s; I x; y/dsd:

4.3 Spreads Between Different Forward Contracts

Now we turn to spread options written on two commodities, where we need to use
our multivariate modelling framework. Hence we set the number of assets to n D 2

and consider assets labelled with subscripts 1 and 2. That is for i D 1; 2 we write

Si.t/ D exp.Yi.t;T//:

That is we consider the spread between forward prices for two different commodities
having the same times of maturity T .

In the following, we will denote by 
 D 
1;2 2 Œ�1; 1� the correlation coefficient
determined by E.W1.dt; d/W2.dt; d// D 
dtd .

Before we present the dynamics of the ratio S2=S1, we derive two lemmas. The
first lemma is a variant of the Girsanov theorem.
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Lemma 3. Define the probability measure by dQP
dP

ˇ̌
ˇ
Ft

D S1.t/
S1.0/

, for 0 � t � T, where

S1.t/

S1.0/
D exp

 
�
Z

A01.t/

1

2
g21.TI s; /�21 .s; /dsd

C
Z

A01.t/
g1.TI s; /�1.s; /W1.ds; d/

�
Z

A01.t/

Z
R

�
ezh1.TIs;/ � 1 � zh1.TI s; /

�
�L1 .dz/dsd

C
Z

A01.t/

Z
R

zh1.TI s; /QJL1 .dz; ds; d/

!
:

Then,

OW1.ds; d/ D W1.ds; d/ � g1.TI s; /�1.s; /dsd;

OW2.ds; d/ D W2.ds; d/ � 
g1.TI s; /�1.s; /dsd

are Gaussian homogeneous and factorisable Lévy bases under QP satisfying

OW1.ds; d/ OW2.ds; d/ D 
dsd:

Also,

ON1;2.dz1; dz2; ds; d/ D J.L1;L2/.dz1; dz2; ds; d/ � ez1h1.TIs;/�.L1;L2/.dz1; dz2/dsd;

is a compensated Poisson random measure under QP.

The proof is given in the Appendix.
Next, we would like to find the dynamics of the ratio S2=S1 under the new

probability measure QP. In a first step, we derive the dynamics under P and then
change measure.

Lemma 4. Under P the dynamics of S2.t/=S1.t/ are given by

d
�

S2.t/
S1.t/

�

S2.t�/=S1.t�/

D �
Z 1

0

g1.TI t; /�1.t; /W1.dt; d/C
Z 1

0

g2.TI t; /�2.t; /W2.dt; d/

C
Z 1

0

g21.TI t; /�21 .t; /dtd � 

Z 1

0

g1.TI t; /g2.TI t; /�1.t; /�2.t; /dtd
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C
Z 1

0

Z
R2

�
ez2h2.TIt;/ � ez1h1.TIt;/� QJ.L1;L2/.dz1; dz2; dt; d/

C
Z 1

0

Z
R2

�
ez2h2.TIt;/�z1h1.TIt;/ C ez1h1.TIt;/ � ez2h2.TIt;/ � 1�

��.L1;L2/.dz1; dz2/dtd:

The proof is given in the Appendix.

Proposition 9. Using the same notation as in Lemma 3, the dynamics of S2=S1
under QP are given by

d
�

S2.t/
S1.t/

�

S2.t�/=S1.t�/

D �
Z 1

0

g1.TI t; /�1.t; / OW1.dt; d/C
Z 1

0

g2.TI t; /�2.t; / OW2.dt; d/

C
Z 1

0

Z
R2

�
ez2h2.TIt;/�z1h1.TIt;/ � 1� ON1;2.dz1; dz2; dt; d/;

which is a geometric ambit field. Then the solution is given by

S2.t/

S1.t/
D S2.0/

S1.0/
exp.Z.t//;

where

Z.t/ D �
Z

A0j .t/
g1.TI s; /�1.s; / OW1.ds; d/C

Z
A0j .t/

g2.TI s; /�2.s; / OW2.ds; d/

�1
2

Z
A0j .t/

g21.TI s; /�21 .s; /dsd � 1

2

Z
A0j .t/

g22.TI s; /�22 .s; /dsd

C

Z

A0j .t/
g1.TI s; /g2.TI s; /�1.s; /�2.s; /dsd

C
Z

A0j .t/

Z
R2

.z2h2.TI s; / � z1h1.TI s; // ON1;2.dz1; dz2; ds; d/

C
Z

A0j .t/

Z
R2

.z2h2.TI s; / � z1h1.TI s; //C 1 � exp.z2h2.TI s; /

�z1h1.TI s; //�.L1;L2/;QP.dz1; dz2/dsd; (17)

where �.L1;L2/;QP denotes the Lévy measure of .L1;L2/ under QP.

The proof is given in the Appendix.
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As in the case of calendar spread options, we get the following Margrabe-type
formula for spread options written on different commodities.

Proposition 10. The time 0 price of the spread option is given by

Spr..S1.0/; S2.0//I To; 0/ D e�rT0S1.0/E
QP
0

�
max

�
S2.To/

S1.To/
� 1; 0

��
; (18)

where S2.To/=S1.To/ D S2.0/=S1.0/ exp.Z.To//, where Z is defined as in (17).

As before we note that as soon as we can compute EQP
0 Œmax .exp.Z.To// � �; 0/�, for

a positive constant �, we can derive the corresponding price of the spread option.

4.3.1 The Gaussian Case

First we consider the case when h1 � h2 � 0, i.e. there is no jump component and
we have

Z.t/ D �
Z

A0j .t/
g1.TI s; /�1.s; / OW1.ds; d/C

Z
A0j .t/

g2.TI s; /�2.s; / OW2.ds; d/

� 1

2

Z
A0j .t/

g21.TI s; /�21 .s; /dsd � 1

2

Z
A0j .t/

g22.TI s; /�22 .s; /dsd

C 


Z
A0j .t/

g1.TI s; /g2.TI s; /�1.s; /�2.s; /dsd:

Conditional on the F �1 _ F �2 _ F0, Z.t/ is normally distributed with mean

m.t/ D �1
2

Z
A0j .t/

g21.TI s; /�21 .s; /dsd � 1

2

Z
A0j .t/

g22.TI s; /�22 .s; /dsd

C

Z

A0j .t/
g1.TI s; /g2.TI s; /�1.s; /�2.s; /dsd;

and variance

v2.t/ D
Z

A0j .t/
g21.TI s; /�21 .s; /dsd C

Z
A0j .t/

g22.TI s; /�22 .s; /dsd

�2

Z

A0j .t/
g1.TI s; /g2.TI s; /�1.s; /�2.s; /dsd:
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Proposition 11. Using the same notation as above, we get

E
QP
0 Œmax .exp.Z.To// � �; 0�/jF �1 _ F �2/

D K˚

�
m.To/ � log.�/

v.To/

�
� ˚

�
m.To/ � log.�/

v.To/
C v.To/

�
; (19)

where ˚ denotes the cumulative distribution function of the standard normal
distribution.

As in the case of calendar spread options, we note that if �1 and �2 are just
deterministic functions, then we get a Margrabe-type formula from Propositions 10
and 11.

4.3.2 A Fourier Approach for the General Case

In order to find the option price in the general modelling framework, we apply the
Fourier approach again.

Proposition 12. For any R > 1 such that E
QP Œexp.i�Z.To//� < 1 for � WD

�.R; u/ WD �.u C iR/, we have

E
QP
0 Œmax .exp.Z.To// � �; 0/� D 1

2�

Z
R

E
QP
0 Œexp.i�.R; u/Z.To//� Of .��.R; u//du;

(20)

and Of .z/ D �1Ciz=.iz.1C iz// and

E
QP
0 Œexp.i�Z.To//�

D E
QP
0

"
exp

 �
��

2

2
� i�

2

�Z
A01.To/

.g21.TI s; /�21 .s; /

�2
g1.TI s; /g2.TI s; /�1.s; /�2.s; /C g22.TI s; /�22 .s; //dsd
�


� exp

 
.1 � i�/

Z
A01.To/

Z
R2

�
ez2h2.TIs;/�z1h1.TIs;/ � 1� �.L1;L2/;QP.dz1; dz2/dsd

!
:

4.3.3 Spreads with K 6D 0

In the case when the strike price equals K D 0, a spread option is in fact an
exchange option and we have discussed both an extension of the Margrabe formula
and a Fourier approach for determining the price of an exchange option in an ambit
framework.



134 O.E. Barndorff-Nielsen et al.

Let us now focus on the case when K 6D 0. Let

f .K/ WD E0Œmax.S2.To/ � S1.To/ � K; 0/�:

A first order Taylor approximation could be used for small K. In that case we would
have

f .K/ � f .0/C f 0.0/K;

where the derivative of f can be computed as follows. Suppose that the random
variable S.To/ WD S2.To/ � S1.To/ conditional on F0 has a probability density
denoted by fS.To/. Then

f 0.K/ D d

dK

Z 1

K
.x � K/fS.To/.x/dx D �

Z 1

K
fS.To/.x/dx D �P0.S.To/ > K/:

Hence we have

f .K/ � f .0/ � KP0.S2.To/ � S1.To/ > 0/:

Note that

P0.S2.To/ � S1.To/ > 0/ D P0.Y2.To;T/ > Y1.To;T//: (21)

In the Gaussian case (i.e. in the absence of stochastic volatility and jumps), this
probability can be computed explicitly. Since this goes along the lines of our
previous computations, we skip this and focus directly on the general case.

Note that [11] have carried out an analysis of the Taylor approximation for spread
options on Gaussian spot price models.

In the general case, we need to find the density of Y2.To;T/�Y1.To;T/ given F0

which we denote by fY2.To;T/�Y1.To;T/jF0
, then the probability in (21) can be computed

numerically.
It is well-known, see e.g. [22] for a survey, that the density can be obtained from

the inverse Fourier transform by

fY2.To;T/�Y1.To;T/jF0
.x/ D 1

2�

Z 1

�1
�Y2.To;T/�Y1.To;T/jF0

.t/e�itxdt;

where �Y2.To;T/�Y1.To;T/jF0
denotes the characteristic function of Y2.To;T/ �

Y1.To;T/ given F0. The latter can be computed in our model. Hence, we can
numerically approximate the correction term f 0.0/K which is needed in the first
order Taylor approximation.
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5 Extensions

So far, we have studied a multivariate model consisting of univariate ambit fields
which are linked together by multivariate Lévy bases. A generalisation of this
approach would be to work with a more general multivariate model of the type

Y.t;T/ D
Z

A.t/
�.TI s; /dsd C

Z
A.t/

G.TI s; /˙.s; /W.ds; d/

C
Z

A.t/
H.TI s; /L.ds; d/;

where A.t/ D .�1; t� � Œ0;1/ and the integrals should be understood componen-
twise (for each element in the vector). Here � denotes a possibly stochastic vector
taking values in R

n. G and H denote deterministic kernel functions taking values in
the n � n-dimensional matrices, and ˙ denotes a stochastic process taking values
in the n � n-dimensional positive semi-definite matrices. As in the univariate case,
we assume that the kernel function satisfy suitable integrability conditions and that
˙ is predictable in the time component. The Lévy bases W D .W1; : : : ;Wn/

> and
L D .L1; : : : ;Ln/

> are the same as before. W and L are assumed to be independent,
and .�;˙/ is assumed to be independent of .W;L/.

Note that for j 2 f1; : : : ; ng the jth component of Y is given by

Yj.t;T/ D
Z

A.t/
�j.TI s; /dsd C

nX
jD1

nX
lD1

Z
A.t/

Gj;k.TI s; /˙k;l.s; /Wl.ds; d/

C
nX

lD1

Z
A.t/

Hj;l.TI s; /Ll.ds; d/:

Example 7. Consider the special case where

G.TI s; / D diag.g1.TI s; /; : : : ; gn.TI s; //;

˙.s; / D diag.�1.s; /; : : : ; �n.s; //;

H.TI s; / D diag.h1.TI s; /; : : : ; hn.TI s; //:

Then we obtain the model we studied throughout the paper. Note that in that case, we
allow for stochastic volatility, but not for stochastic correlation. Such a modelling
assumption has often been used in the literature to obtain parsimonious multivariate
models, cf. the famous CCC model introduced by Bollerslev [16].

Clearly, a full multivariate model is more general and it can introduce dependence
between different commodities in an even more flexible way. So far, we have
introduced dependence through multivariate Lévy bases W and L. In addition, in
a full multivariate model, dependence can furthermore be modelled via the kernel
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function and the stochastic volatility matrix, which in particular makes it possible to
allow for stochastic correlation.

6 Conclusion

We have proposed a multivariate model based on two-factor multivariate geometric
ambit fields to model forward curves of various commodities simultaneously. We
have shown that our model is highly analytical tractable and accounts for key
stylised facts found in energy forward prices.

Moreover, we show how spread options can be priced in our new modelling
framework. Here we have considered both calendar spread options as well as
spread options written on two different commodities. First we considered the case
when the strike price of the spread option is equal to zero, meaning that we are
dealing with exchange options. We have obtained two key results: In the absence of
stochastic volatility and jumps, we have extended the Margrabe formula to Gaussian
ambit fields. In the general case, we have derived a pricing formula based on
Fourier techniques and the characteristic function of ambit fields, which is available
analytically. In the case when the strike price of the spread option is not equal to
zero, we have presented an approximation method for the option price based on a
first-order Taylor approximation.
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Appendix: Proofs

In the following, we provide the proofs of our main results.

Proof of Proposition 1

As Yj.t;T/ is assumed to have an exponential moment, Fj.t;T/ is integrable. We
have

Fj.t;T/ D Fj.s;T/ exp

 Z
As

j .t/
�j.TI u; /dud C

Z
As

j .t/
gj.TI u; /�j.u; /Wj.du; d/
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C
Z

As
j .t/

Z
R

zhj.TI u; /QJLj.dz; du; d/

!
;

for s � t. Hence

E
	
Fj.t;T/ jFs


 D Fj.s;T/E
	
exp.Zj.s; t;T// jFs



;

with

Zj.s; t;T/ D
Z

As
j .t/
�j.TI u; /dud C

Z
As

j .t/
gj.TI u; /�j.u; /Wj.du; d/

C
Z

As
j .t/

Z
R

zhj.TI u; /QJLj.dz; du; d/:

The martingale property follows if EŒexp.Zj.s; t;T// jFs� D 1 for all s � t � T .
But by double conditioning using F �j _F�j _Fs we have, by independence of the
two stochastic integrals,

E
	
exp.Zj.s; t;T// jFs




D E

"
exp

 Z
As

j .t/
�j.TI u; /dud C 1

2

Z
As

j .t/
g2j .TI u; /�2j .u; /dud

C
Z

As
j .t/

Z
R

ezhj.TIu;/ � 1 � zhj.TI u; /�Lj.dz/dud

! ˇ̌
ˇ̌
ˇ Fs

#
:

But this is equal to one by assumption. Then the result follows.

Proof of Proposition 2

Using Itô’s formula, we get

Fj.t;T/ DFj.0;T/C
Z t

0

Fj.s�;T/dsYj.s;T/C 1

2

Z t

0

Fj.s�;T/dsŒY�
c
j .s;T/

C
X
0�s�t

�sFj.s;T/ � Fj.s�;T/�sYj.s;T/

DFj.0;T/C
Z t

0

Fj.s�;T/dsYj.s;T/C 1

2

Z t

0

Fj.s�;T/dsŒY�
c
j .s;T/

C
X
0�s�t

Fj.s�;T/
�
exp.�sYj.s;T// � 1 ��sYj.s;T/

�
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DFj.0;T/C
Z

A0j .t/
Fj.s�;T/gj.TI s; /�j.s; /Wj.ds; d/

C
Z

A0j .t/

Z
R

Fj.s�;T/
�
ezhj.TIs;/ � 1� QJLj.dz; ds; d/:

Note that we have applied the Itô formula to the process .Fj.t;T//0�t�T for fixed
T . From Proposition 1 we deduce that this process is indeed a martingale and
hence we can apply the classical Itô formula when we fix the parameter T . The
corresponding results on the quadratic variation of Y are direct consequences of the
Walsh-integration theory.

Proof of Proposition 8

Formula (16) is a direct consequence of [21, Theorem 2.2] and the functional form
of Of has been derived in [21, Example 5.1]. Finally, we need to compute the extended
characteristic function E

QP
0 Œexp.i�.R; u/Z.t//�, where we set � D �.R; u/ 2 C in the

proof to simplify the exposition.
For fixed t define the two random variables

Z1.t/ WD
Z

A01.t/
.�g1.T1I s; /C g1.T2I s; //�1.s; / OW1.ds; d/

� 1

2

Z
A01.t/

.�g1.T1I s; /C g1.T2I s; //2�21 .s; /dsd

Z2.t/ WD
Z

A01.t/

Z
R

.z1h1.T2I s; / � z1h1.T1I s; // ON1.dz1; ds; d/

�
Z

A01.t/

Z
R

.z1h1.T2I s; / � z1h1.T1I s; //C 1 � exp.z1h1.T2I s; /

� z1h1.T1I s; //�L1;QP.dz1/dsd:

Note that the � -algebra �.Z2.t// is independent of �.F0;Z1.t// (assuming a suitable
choice of the underlying filtration .Ft/). Hence

E
QP
0 Œexp.i�Z.t//� D E

QP
0 Œexp.i�Z1.t//�E

QP Œexp.i�Z2.t//� ;

where

E
QP
0 Œexp.i�Z1.t//�
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D E
QP
0

"
exp

 �
��

2

2
� i�

2

�Z
A01.t/

.�g1.T1I s; /C g1.T2I s; //2�21 .s; /dsd

!#
;

where we conditioned on F �1 . For the jump part, we have

E
QP Œexp.i�Z2.t//�

D exp

 
.1 � i�/

Z
A01.t/

Z
R

�
ez1.h1.T2Is;/�h1.T1Is;// � 1� �L1;QP.dz1/dsd

!
:

Proof of Lemma 3

This follows directly from the martingale condition derived in Proposition 1 and
a straightforward extension of the Girsanov theorem for Itô-Lévy processes, see
e.g. [29, Theorem 1.33]. For the Poisson random measure, note that

ON1;2.dz1; dz2; ds; d/

D QJ.L1;L2/.dz1; dz2; ds; d/C .1 � ez1h1.TIs;//�.L1;L2/.dz1; dz2/dsd

D J.L1;L2/.dz1; dz2; ds; d/ � �.L1;L2/.dz1; dz2/dsd

C.1 � ez1h1.TIs;//�.L1;L2/.dz1; dz2/dsd

D J.L1;L2/.dz1; dz2; ds; d/ � ez1h1.TIs;/�.L1;L2/.dz1; dz2/dsd;

denotes the compensated Poisson random measure under QP.

Proof of Lemma 4

First of all, we apply the Itô formula for higher dimensions and get

d
�

S2.t/
S1.t/

�

S2.t�/=S1.t�/ D � dS1.t/

S1.t�/ C dS2.t/

S2.t�/ C dŒS1�c.t/

S21.t�/
� 1

S1.t�/S2.t�/dŒS1; S2�
c.t/

C S1.t�/
S2.t�/

�
S2.t/

S1.t/
� S2.t�/

S1.t�/ ��S1.t/

�
�S2.t�/

S21.t�/
�

��S2.t/

�
1

S1.t�/
��
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D � dS1.t/

S1.t�/ C dS2.t/

S2.t�/ C dŒS1�c.t/

S21.t�/
� 1

S1.t�/S2.t�/dŒS1; S2�
c.t/

C S1.t�/
S2.t�/�

�
S2.t/

S1.t/

�
��S1.t/

�
�S2.t�/

S21.t�/
�

S1.t�/
S2.t�/

��S2.t/

�
1

S1.t�/
�

S1.t�/
S2.t�/

D � dS1.t/

S1.t�/ C dS2.t/

S2.t�/ C dŒS1�c.t/

S21.t�/
� 1

S1.t�/S2.t�/dŒS1; S2�
c.t/

C 1

S2.t�/=S1.t�/�
�

S2.t/

S1.t/

�
C �S1.t/

S1.t�/ � �S2.t/

S2.t�/ :

Since

dŒS1�c.t/

S21.t�/
D
Z 1

0

g21.TI t; /�21 .t; /dtd;

and

dŒS1; S2�c.t/

S1.t�/S2.t�/ D
Z 1

0

g1.TI t; /g2.TI t; /�1.t; /�2.t; /
dtd;

we have

d
�

S2.t/
S1.t/

�

S2.t�/=S1.t�/

D �
Z 1

0

g1.TI t; /�1.t; /W1.dt; d/ �
Z 1

0

Z
R

�
ezh1.TIt;/ � 1� QJL1 .dz; dt; d/

C
Z 1

0

g2.TI t; /�2.t; /W2.dt; d/C
Z 1

0

Z
R

�
ezh2.TIt;/ � 1� QJL2 .dz; dt; d/

C
Z 1

0

g21.TI t; /�21 .s; /dtd � 

Z 1

0

g1.TI t; /g2.TI t; /�1.t; /�2.t; /dtd

C 1

S2.t�/=S1.t�/�
�

S2.t/

S1.t/

�
C
Z 1

0

Z
R

�
ezh1.TIt;/ � 1� QJL1 .dz; dt; d/

�
Z 1

0

Z
R

�
ezh2.TIt;/ � 1� QJL2 .dz; dt; d/:
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In the case of jumps of finite variation, we can further simplify and get

d
�

S2.t/
S1.t/

�

S2.t�/=S1.t�/

D �
Z 1

0

g1.TI t; /�1.t; /W1.dt; d/C
Z 1

0

g2.TI t; /�2.t; /W2.dt; d/

C
Z 1

0

g21.TI t; /�21 .t; /dtd � 

Z 1

0

g1.TI t; /g2.TI t; /�1.t; /�2.t; /dtd

C 1

S2.t�/=S1.t�/�
�

S2.t/

S1.t/

�
:

In the general case—writing formally—we have

1

S2.t�/=S1.t�/�
�

S2.t/

S1.t/

�

D S1.t�/
S2.t�/�

�
S2.t/

S1.t/

�
D exp.Y1.t�;T/

exp.Y2.t�;T//�
�

exp.Y2.t;T/

exp.Y1.t;T/

�

D exp.Y1.t�;T/
exp.Y2.t�;T//

�
exp.Y2.t;T/

exp.Y1.t;T/
� exp.Y2.t�;T/

exp.Y1.t�;T/
�

D exp.Y1.t�;T/ � Y2.t�;T// .exp.Y2.t;T/ � Y1.t;T//

� exp.Y2.t�;T/ � Y1.t�;T///
D exp.�Y2.t/ ��Y1.t// � 1:

So altogether the finite variation jump term, has the form

1

S2.t�/=S1.t�/�
�

S2.t/

S1.t/

�
C�S1.t/

S1.t�/��S2.t/

S2.t�/De�Y2.t/��Y1.t/Ce�Y1.t/�e�Y2.t/�1:

Summing up and using the joint Poisson random measure, we have

X
0�s�t

�
1

S2.s�/=S1.s�/�
�

S2.s/

S1.s/

�
C �S1.s/

S1.s�/ � �S2.s/

S2.s�/
�

D
Z

Aj.t/

Z
R2

�
ez2h2.TIs;/�z1h1.TIs;/ C ez1h1.TIs;/ � ez2h2.TIs;/ � 1�

�J.L1;L2/.dz1; dz2; ds; d/:
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Also,

�
Z

Aj.t/

Z
R

�
ez1h1.TIs;/ � 1� QJL1 .dz1; ds; d/

C
Z

Aj.t/

Z
R

�
ez2h2.TIs;/ � 1� QJL2 .dz2; ds; d/

D
Z

Aj.t/

Z
R2

�
ez2h2.TIs;/ � ez1h1.TIs;/� QJ.L1;L2/.dz1; dz2; ds; d/:

Adding the jump terms, we get

Z
Aj.t/

Z
R2

�
ez2h2.TIs;/ � ez1h1.TIs;/� QJ.L1;L2/.dz1; dz2; ds; d/

C
Z

Aj.t/

Z
R2

�
ez2h2.TIs;/�z1h1.TIs;/ C ez1h1.TIs;/ � ez2h2.TIs;/ � 1�

� J.L1;L2/.dz1; dz2; ds; d/

D
Z

Aj.t/

Z
R2

�
ez2h2.TIs;/�z1h1.TIs;/ � 1� QJ.L1;L2/.dz1; dz2; ds; d/

C
Z

Aj.t/

Z
R2

�
ez2h2.TIs;/�z1h1.TIs;/ � 1C ez1h1.TIs;/ � ez2h2.TIs;/�

� �.L1;L2/.dz1; dz2/dsd:

Proof of Proposition 9

This is a direct consequence of the preceding two lemmas. Note in particular, that
for the Gaussian part, we have that W1 and W2 are Gaussian bases with correlation
coefficient 
, meaning that there exists a homogeneous, factorisable Gaussian basis
W3 (under P) such that W2 D 
W1 C p

1 � 
2W3. Under the new measure QP, we
have that W3 does not change and

OW1.ds; d/ D W1.ds; d/ � g1.TI s; /�.s; /dsd;

OW3.ds; d/ D W3.ds; d/;

OW2.ds; d/ D 
 OW1.ds; d/C
p
1 � 
2 OW3.ds; d/

D W2.ds; d/ � 
g1.TI s; /�.s; /dsd;
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are homogeneous, factorisable Gaussian bases under QP, where OW1 and OW3 are
independent and OW1 and OW2 have correlation coefficient 
. So for the mixed
Gaussian part, we have

�
Z 1

0

g1.TI t; /�1.t; /W1.dt; d/C
Z 1

0

g2.TI t; /�2.t; /W2.dt; d/

C
Z 1

0

g21.TI t; /�21 .t; /dtd � 

Z 1

0

g1.TI t; /g2.TI t; /�1.t; /�2.t; /dtd

D �
Z 1

0

g1.TI t; /�1.t; /.W1.dt; d/ � g1.TI t; /�1.t; /dtd/

C
Z 1

0

g2.TI t; /�2.t; /.W2.dt; d/ � 
g1.TI t; /�1.t; /dtd/

D �
Z 1

0

g1.TI t; /�1.t; / OW1.dt; d/C
Z 1

0

g2.TI t; /�2.t; / OW2.dt; d/:

For the jump part, we have

Z 1

0

Z
R2

�
ez2h2.TIt;/�z1h1.TIt;/ � 1� QJ.L1;L2/.dz1; dz2; dt; d/

C
Z 1

0

Z
R2

�
ez2h2.TIt;/�z1h1.TIt;/ � 1C ez1h1.TIt;/ � ez2h2.TIt;/�

� �.L1;L2/.dz1; dz2/dtd

D
Z 1

0

Z
R2

�
ez2h2.TIt;/�z1h1.TIt;/ � 1� . ON1;2.dz1; dz2; dt; d/C .ez1h1.TIt;/ � 1/

� �.L1;L2/.dz1; dz2/dtd/

C
Z 1

0

Z
R2

�
ez2h2.TIt;/�z1h1.TIt;/ � 1C ez1h1.TIt;/ � ez2h2.TIt;/�

� �.L1;L2/.dz1; dz2/dtd

D
Z 1

0

Z
R2

�
ez2h2.TIt;/�z1h1.TIt;/ � 1� ON1;2.dz1; dz2; dt; d/

C
Z 1

0

Z
R2

�
ez2h2.TIt;/�z1h1.TIt;/ � 1� .ez1h1.TIt;/ � 1/�.L1;L2/.dz1; dz2/dtd

C
Z 1

0

Z
R2

�
ez2h2.TIt;/�z1h1.TIt;/ � 1C ez1h1.TIt;/ � ez2h2.TIt;/�

� �.L1;L2/.dz1; dz2/dtd

D
Z 1

0

Z
R2

�
ez2h2.TIt;/�z1h1.TIt;/ � 1� ON1;2.dz1; dz2; dt; d/:
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Note in particular, that

ON1;2.dz1; dz2; dt; d/

D QJ.L1;L2/.dz1; dz2; dt; d/C .1 � ez1h1.TIt;//�.L1;L2/.dz1; dz2/dtd

D J.L1;L2/.dz1; dz2; dt; d/ � �.L1;L2/.dz1; dz2/dtd C .1 � ez1h1.TIt;//

��.L1;L2/.dz1; dz2/dtd

D J.L1;L2/.dz1; dz2; dt; d/ � ez1h1.TIt;/�.L1;L2/.dz1; dz2/dtd;

i.e. �.L1;L2/.dz1; dz2/ has become ez1h1.TIt;/�.L1;L2/.dz1; dz2/ under the new measure
QP. Overall, we get

d
�

S2.t/
S1.t/

�

S2.t�/=S1.t�/ D d�.t/;

with

d�.t/ D �
Z 1

0

g1.TI t; /�1.t; / OW1.dt; d/C
Z 1

0

g2.TI t; /�2.t; / OW2.dt; d/

C
Z 1

0

Z
R2

�
ez2h2.TIt;/�z1h1.TIt;/ � 1� ON1;2.dz1; dz2; dt; d/:

Note that this differential notation should be understood in the sense that we need
to consider stochastic integration over the ambit sets A0j .t/ D Œ0; t� � Œ0;1/. This

implies that �.0/ D 0. Also, the initial value is given by S2.0/
S1.0/

D exp.Y2.0;T/ �
Y1.0;T//, which depends on the corresponding stochastic integrals when we
integrate over the range .�1; 0� � Œ0;1/. We can solve this stochastic differential
equation using the stochastic exponential. More precisely, we have

S2.t/

S1.t/
D S2.0/

S1.0/
exp

�
�.t/ ��.0/ � 1

2
Œ��.t/

�

�
Y
0�s�t

.1C��s/ exp

�
���s C 1

2
.��s/

2

�

D S2.0/

S1.0/
exp

�
�.t/ ��.0/ � 1

2
h�ic.t/

� Y
0�s�t

.1C��s/ exp .���s/ :
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Note that

log

 Y
0�s�t

.1C��s/ exp .���s/

!
D

X
0�s�t

.log.1C��s/ ���s/

D
Z

A0j .t/

Z
R2

.z2h2.TI s; / � z1h1.TI s; //C 1 � exp.z2h2.TI s; /

� z1h1.TI s; //J.L1;L2/.dz1; dz2; ds; d/

D
Z

A0j .t/

Z
R2

.z2h2.TI s; / � z1h1.TI s; //C 1 � exp.z2h2.TI s; /

� z1h1.TI s; // ON1;2.dz1; dz2; ds; d/

C
Z

A0j .t/

Z
R2

.z2h2.TI s; / � z1h1.TI s; //C 1 � exp.z2h2.TI s; /

� z1h1.TI s; // O�.L1;L2/;QP.dz1; dz2/dsd:

From the jump terms we get the following overall contribution:

�.t/d C log

 Y
0�s�t

.1C��s/ exp .���s/

!

D
Z

A0j .t/

Z
R2

.z2h2.TI s; / � z1h1.TI s; // ON1;2.dz1; dz2; ds; d/

C
Z

A0j .t/

Z
R2

.z2h2.TI s; / � z1h1.TI s; //C 1 � exp.z2h2.TI s; /

� z1h1.TI s; // O�.L1;L2/;QP.dz1; dz2/dsd:

Overall we have

S2.t/

S1.t/
D S2.0/

S1.0/
exp.Z.t//;

where

Z.t/ D �
Z

A0j .t/
g1.TI s; /�1.s; / OW1.ds; d/C

Z
A0j .t/

g2.TI s; /�2.s; / OW2.ds; d/

� 1

2

Z
A0j .t/

g21.TI s; /�21 .s; /dsd � 1

2

Z
A0j .t/

g22.TI s; /�22 .s; /dsd
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C 


Z
A0j .t/

g1.TI s; /g2.TI s; /�1.s; /�2.s; /dsd

C
Z

A0j .t/

Z
R2

.z2h2.TI s; / � z1h1.TI s; // ON1;2.dz1; dz2; ds; d/

C
Z

A0j .t/

Z
R2

.z2h2.TI s; / � z1h1.TI s; //C 1 � exp.z2h2.TI s; /

� z1h1.TI s; //�.L1;L2/;QP.dz1; dz2/dsd:

Proof of Proposition 12

The first part of the proof is analogue to the proof of Proposition 8. Hence we only
need to compute the extended characteristic function E

QP Œexp.i�.R; u/Z.t//�, where
we again set � D �.R; u/ 2 C. Then

E
QP
0 Œexp.i�Z.t//� D E

QP
0 Œexp.i�Z1.t//�E

QP Œexp.i�Z2.t//� ;

where

E
QP
0 Œexp.i�Z1.t//�

WD E
QP
0

"
exp

 
�i�

Z
A0j .t/

g1.TI s; /�1.s; / OW1.ds; d/

C i�
Z

A0j .t/
g2.TI s; /�2.s; / OW2.ds; d/

� 1

2
i�
Z

A0j .t/
g21.TI s; /�21 .s; /dsd � 1

2
i�
Z

A0j .t/
g22.TI s; /�22 .s; /dsd

C
i�
Z

A0j .t/
g1.TI s; /g2.TI s; /�1.s; /�2.s; /dsd

!#

D E
QP
0

"
exp

 �
��

2

2
� i�

2

�Z
A01.t/

.g21.TI s; /�21 .s; /

�2
g1.TI s; /g2.TI s; /�1.s; /�2.s; /C g22.TI s; /�22 .s; //dsd
� #
;



Cross-Commodity Modelling by Multivariate Ambit Fields 147

where we conditioned on F �1 _ F �2 . For the jump part, we have

E
QP Œexp.i�Z2.t//�

WD E
QP
"

exp

 
i�
Z

A01.t/

Z
R2

.z2h2.TI s; / � z1h1.TI s; // ON1;2.dz1; dz2; ds; d/

Ci�
Z

A01.t/

Z
R2

.z2h2.TI s; / � z1h1.TI s; //C 1 � exp.z2h2.TI s; /

�z1h1.TI s; //�.L1;L2/;QP.dz1; dz2/dsd
�#

D exp

 
.1 � i�/

Z
A01.t/

Z
R2

�
ez2h2.TIs;/�z1h1.TIs;/ � 1� �.L1;L2/;QP.dz1; dz2/dsd

!
:
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Hedging Expected Losses on Derivatives
in Electricity Futures Markets

Adrien Nguyen Huu and Nadia Oudjane

Abstract We investigate the problem of pricing and hedging derivatives of
Electricity Futures contract when the underlying asset is not available. We propose
to use a cross hedging strategy based on the Futures contract covering the larger
delivery period. For that purpose we formulate the pricing problem in a stochastic
target form along the lines of Bouchard et al. (SIAM J. Control Optim. 48:3123–
3150, 2009), with a moment loss function. Following the same techniques as in the
latter, we avoid to demonstrate the uniqueness of the value function by comparison
arguments and explore convex duality methods to provide a semi-explicit solution
to the problem. We then propose numerical results to support the new hedging
strategy and compare our method to a Black–Scholes benchmark.

1 Introduction

We propose in this contribution a method involving numerical implementation for
partially hedging financial derivatives on electricity futures contracts. Electricity
futures markets present specific features. As a non-storable commodity, electrical
energy is delivered as a power over time periods. Similarly, futures contracts
exchange a present power price for delivery over a fixed future period against the
future quoted price on that period: they refer explicitly to swap contracts, see [4].
Electricity being non-storable, arbitrage arguments do not hold, preventing anyone
to construct a term structure via usual tools. As a natural result of liquidity restriction
and uncertainty in the future, a limited number of contracts are quoted and the length
of their delivery period increases with their time to maturity. This phenomenon we
call the granularity of the term structure, or cascading rule [2, 23], implies that the
most desired and flexible contracts (weekly or monthly-period contracts) are only
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quoted a short time before their maturity. If one desires a fixed price for power
delivered on a given distant month in the future, she shall get a contract covering a
wider period, e.g. a quarter or a year contract. However, the risk remains if one is
endowed with a derivative upon such a short period contract, before this contract is
even quoted.

This is the explored situation: we consider here an agent endowed with a
derivative upon a non-yet quoted asset. In practice, the unhedgeable risk of such
a position is managed by deploying a cross-hedging strategy with a correlated
quoted asset, see [13, 19] and [1]. The risk cannot be completely eliminated
without prohibitive cost: the market is incomplete and the methodology requires
a pricing criterion, as proposed in the above references. Lindell and Raab [19]
use monthly forward contracts to minimize the variance when hedging hourly
forward derivatives while [13] use additional hedging instruments such as power
plants to target a mean-risk criterion for hedging spot prices on the futures period.
This latter situation is closer to generation management than to financial hedging.
In [1], another approach based on utility indifference pricing is developed to hedge
derivatives on nontradable underlyings with correlated instruments. In what follows,
we develop a partial financial hedging procedure in order to satisfy a loss constraint
in expectation. One major interest of this approach is that the loss constraint is
easily understood. Unlike quadratic hedging our criterion differentiates losses from
gains. Besides, the expected loss threshold characterizing our criterion is easier
to interprete than the risk aversion coefficient of the utility function. Finally, we
are able to provide a ready-to-implement method to attain such objectives. This
necessitates recent tools of stochastic control [7] and numerical approximations of
coupled forward backward SDEs. However, we relate constantly the obtained results
to well-known formulas and concepts, so that the method is easy to assimilate. We
also provide strong and sufficient assumptions in order to avoid involved proofs
in difficult cases. We believe that the specific method proposed hereafter can be
understood and applied without much effort, and be profitable to a numerous variety
of hedging problems.

The approach we adopt has been originated by Föllmer and Leukert [14, 15]
but we develop the problem in the framework of control theory. The minimal
initial portfolio value needed to satisfy the constraint of expectation of losses can
be expressed as a value function of a stochastic target problem. The stochastic
target approach has been introduced by Soner and Touzi [21, 22] to formulate the
pricing problem in a control fashion. It has been extended to expectation criteria
by Bouchard et al. [7], and applied for quantile hedging [7], loss constraints
in liquidation problems [5], or loss constraints with small transaction costs [9].
However, the general approach is rather technical and necessitates to solve a non-
linear Partial Differential Equations (PDE), when one has first proved a comparison
theorem to resolve the uniqueness problem for the value function.

Here, we use the application of [7], where nice results can be provided in
complete market without appealing to comparison arguments. However, our initial
problem cannot be tackled directly with the stochastic target formulation of
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[7] or [20]. The unhedgeable risk coming from the apparition of the desired asset
price generates a non-trivial extension to the usual framework. Instead, we proceed
in three steps in a backward fashion:

1. We first formulate in Sect. 3 the stochastic target problem in complete market,
using an easy extension of the application in [7]. Our approach relies strongly
on the convexity of the loss function. By convex duality arguments, the expected
loss target can be expressed in order to provide a formula which is very close to a
usual risk-neutral pricing formulation. This allows to express the value function
V at the precise moment of the apparition of the missing contract.

2. To treat the random apparition of a non-yet traded asset, we use a face-
lifting procedure that provides a new (intermediary) target for the period before
quotation of the underlying asset. This is done in Sect. 4, in coherence with the
initial hedging criterion, and allows to retrieve a complete market setting where
results of step 1 can be partially used.

3. When the complete market setting cannot provide analytical formulas, as it
happens after step 2, we shall make use of numerical approximations. We propose
such an algorithm in Sect. 5, and illustrate the efficiency of the method in Sect. 6.

As it will be understood, this method can be applied recursively by proceeding
repeatedly to steps 1 and 2 along the numerical algorithm provided in step 3. The
remaining of the contribution follows the above order, preluded by the introduction
of the problem in Sect. 2, where we develop the archetypal situation encountered by
a financial agent on the market.

2 Description of the Control Problem

Let 0 < T < T� < 1. We consider an agent endowed with a financial option with
expiration date T�, payoff g on a futures covering a monthly period. However, this
asset is not yet quoted at initial time t D 0, and appears on the market at time T .
The month is covered by a futures with delivery over a larger period, e.g. a quarter
futures. We denote by X WD .Xt/t2Œ0;T�� the discounted price of this instrument,
avoiding the introduction of an interest rate hereafter. We assume it is available over
the whole period of interest Œ0;T��, whereas the monthly-period futures upon which
the agent has a position is only available on the interval ŒT;T��.

The heart of our approach is to assume a structural relation between the two
instruments above, namely that the return of the two assets are perfectly correlated.
More precisely, the monthly futures price is supposed to be given as the product,
�Xt, of the quarterly futures price Xt and a given shaping factor � > 0, assumed
to be a bounded random variable revealed at time T , completely independent of the
asset price X. This model is a simple generalization of the profile coefficients used
to construct a refined (for instance monthly or hourly) forward curve as described
in [17]. This profile carries many types of information such as prices seasonality.
For a given quarterly futures contract, the monthly coefficients provide monthly



152 A. Nguyen Huu and N. Oudjane

futures prices for every month inside the quarter by multiplying the quarterly futures
price with the associated monthly weight. In our approach, since the monthly
futures prices are not yet observed, the monthly weights are naturally modelled
by stochastic weights �. This model can also be related to [19, 23] and [2] which
exhibits strong co-integration between two available contracts of different length.
Here, considering the unavailability of the month contract, this model appears as a
simple convenient assumption. The boundedness condition follows from a structural
relation between the two futures contracts, assuming implicitly that the underlying
spot price is non-negative.

We consider a probability space .˝;F ;P/ supporting a Brownian motion W and
the variable �. The filtration F is given by Ft WD �.Ws; 0 � s � t/ for t < T , and
by Ft WD �.Ws; 0 � s � t/ ^ �.�/ for t � T .

Assumption 1. We denote by L the support of�, which is supposed to be a bounded
subset of RC, and 
 its probability measure on L.

On the period Œ0;T�, the agent trades with the asset Xt;x, which is assumed to be
solution to the SDE:

dXt;x
s D �.s;Xt;x

s /ds C �.s;Xt;x
s /dWs; for s � t; and Xt;x

t D x : (1)

We assume the following for Xt;x to be well and uniquely defined.

Assumption 2. The functions .�; �/ W Œ0;T�� � RC ! R � R
�C are assumed to

be such that the following properties are verified:

1. � and � are uniformly Lipschitz and verify j�.t; x/j C j�.t; x/j � K.1C jxj/ for
any .t; x/ 2 Œ0;T�� � RC.

2. for any x > 0, we have Xt;x
s > 0 P � a.s. for all s 2 Œ0;T��

3. �.t; x/ > 0 for any .t; x/ 2 Œ0;T�� � R
�C;

4. if x D 0 then �.t; x/ D 0 for all t 2 Œ0;T��;
5. � is continuous in the time variable on Œ0;T�� � RC;
6. � and � are such that

�.t; x/ WD �.t; x/

�.t; x/
< 1 uniformly in .t; x/ 2 Œ0;T�� � R

�C : (2)

Equation (2) implies the so-called Novikov condition.The submarket composed of
only .Xt/t2Œ0;T�� is then a complete market associated to the Brownian subfiltration.
The filtration F relates to an incomplete market because of �, which is unknown
on the interval Œ0;T/ and cannot be hedged by a self-financed admissible portfolio
defined as follows. In that manner, the market can be labelled as semi-complete in
the sense of Becherer [3].

Definition 1. An admissible self-financed portfolio is a F-adapted process Yt;x;y;�

defined by Yt;x;y;�
t D y � �� and

Yt;x;y;�
s WD y C

Z s

t
�udXt;x

u ; s 2 Œt;T�� ; (3)
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where � 2 Ut;y denotes a strategy and Ut;y the set of admissible strategies at
time t, which is the set of R-valued F-progressively measurable, square-integrable
processes such that Yt;x;y;�

s � �� P � a.s. for all s 2 Œt;T�� and some � � 0

representing a finite credit line for the agent.

According to the asset model (1), it is strictly equivalent to consider a hedging
portfolio with Xt;x on Œ0;T�� or a switch at any time r 2 ŒT;T�� for the newly
appeared asset �Xt;x:

Yt;x;y;�
s D y C

Z s^r

t
�udXt;x

u C
Z t

s^r
�0

ud.�Xt;x
u / ; r � T and t � 0 ;

if �0 D �=� for u � r. We thus assume that the agent trades with X on Œ0;T��.

Assumption 3. The final payoff of the option is given by g.�XT�/, where the
function g is assumed to be Lipschitz continuous.

As it is well-known in the literature, the superhedging price of such an option
can be prohibitive, even with Assumption 1 where� is bounded. To circumvent this
problem, we propose to control the expected losses on partial hedging. That means
that the agent gives herself a threshold p < 0 and a loss function ` to evaluate the
loss over her terminal position g.�Xt;x

T�/ � Yt;x;y;�
T� .

Definition 2. A loss function ` W RC ! RC is assumed to be continuous, strictly
convex and strictly increasing on RC with polynomial growth. We normalize the
function so that `.0/ D 0.

The agent’s objective at time t is to find the minimal value y and a portfolio
strategy � 2 Ut;y such that

E

h
�`
��

g
�
�Xt;x

T�

� � Yt;x;y;�
T�

�C�i � p : (4)

More generally, it will be useful to measure the deviation between the payoff and
the hedging portfolio through a general map � W RC � R ! R�. The previous
example corresponds to the specific case where

�.x; y/ D �`..g.x/ � y/C/: (5)

Assumption 3 and Definition 2 imply that � defined above satisfies the following
assumption:

Assumption 4. The function � W RC � R ! R� is assumed to be

• continuous with polynomial growth in .x; y/.
• concave and increasing in y on cl fy 2 Œ��;1/ W �.x; y/ < 0g for any x 2 RC.
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Notice that �.x; y/ D 0 in (5) for any y � g.x/, which makes � not invertible
on the domain R for any fixed x. Under Assumption 4, we can define the y inverse
��1.x; p/ on RC � R� as a convex increasing function of p, where

��1.x; 0/ D inf fy � �� W �.x; y/ D 0g : (6)

As explained above, the valuation approach of (4) has been introduced in [15, 16].
It can be written under the stochastic control form of [7] allowed by the Markovian
framework (1)–(3).

Definition 3. Let .t; x; p/ 2 S WD Œ0;T�� � R
�C � R

�� be given. Then we define the
value function V on S as

V.t; x; p/ WD inf
˚
y � �� W E

	
�.�Xt;x

T� ;Y
t;x;y;�
T� /


 � p for � 2 Ut;y
�
: (7)

Advanced technicalities and details on the general setting for the stochastic target
problem with controlled loss can be found in [7] and [20]. In particular, we introduce
the value function V only on the open domain of .x; p/, and avoid treating the
specific case x D 0 or p D 0. Furthermore, the function V is implicitly bounded
by the superhedging price of g.�Xt;x

T�/ as we will see in the next section. Notice that
the expectation in (7) involves an integration w.r.t. the law of� for t 2 Œ0;T/, before
the shaping factor� is revealed. Thus, the present problem is not standard due to the
presence of�: the filtration F is not only due to the Brownian motion, and dynamic
programming arguments of [7] do not apply directly. The approach we undertake is
to separate the complete and incomplete market intervals in a piecewise problem.

Example 1. A particular example of loss function we will use in Sects. 5 and 6 is
the special case of lower partial moment

`.x/ WD xk1fx�0g=k ; with k > 1 : (8)

In the case of k D 1, (which is not considered here) we obtain a criterion close to the
expected shortfall, independently studied in [12], whereas allowing k D 0 allows to
retrieve precisely the quantile hedging problem [7], although ` is not a loss function
as in Definition 2 in that case. The case k D 2 gets closer to the quadratic hedging
(or mean-variance hedging) objective, but with the advantage of considering only
losses, and not gains. Notice that ` as in Eq. (8) for k > 1 follows Definition 2 and
that Assumption 4 holds with (5) if Assumption 3 holds.

We finish this section with additional notations. In the sequel, we will denote
S WD S1 [ S2 where S1 WD Œ0;T� � R

�C � R
�� and S2 WD ŒT;T�� � R

�C � R
�� are the

two domains of the value function. For any real valued function ', defined on S, we
denote by 't or 'x the partial derivatives with respect to t or x. Partial derivatives of
other variables, or second order partial derivatives are written in the same manner.
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3 Solution in Complete Market

3.1 General Solution and Risk-Neutral Expectation

On the interval ŒT;T��, the variable � is known and the asset �X is tradable. We
assume that � takes the value � 2 L. On this interval, � can be seen as a coefficient
affecting the loss function � , and the problem (7) follows the standard formulation
of [7]: the filtration is generated by the paths of the Brownian motion. In Sect. 4, we
reduce the incomplete market setting of period Œ0;T/ to complete market problem of
the form (7) on ŒT;T��, in a similar Brownian framework, with a function � which
is no more derived from a loss function as in (5), motivating the introduction of the
general function � .

Consequently and without loss of generality, we temporarily assume L D f1g,
and omit � in the notation. On Œ0;T�� then, we can work on problem (7) in the
Brownian filtration and apply most results of [7]. The filtration F for t � T in that
case is given by Ft WD �.Ws W T � s � t/ on a complete probability space
.˝;F ;P/ with P Œ� D 1� D 1.

Proposition 1. Under Assumptions 2 and 4, the function V is given on S by

V.t; x; p/ D E
Qt
	
��1 �Xt;x

T� ; J
�
Xt;x

T� ;Q
t;q
T�

��

(9)

where J.x; q/ WD argsup
˚
pq � ��1.x; p/ W p � 0

�
and

Xt;x
s D x C

Z s

t
�.u;Xt;x

u /dWQt
u and Qt;q

s D q C
Z s

t
Qt;q

u �.u;X
t;x
u /dWQt

u ; (10)

with WQt being the Brownian motion under the probability Qt, the latter being
defined by dPt=dQt D Qt;1 and used for expectation (9). Finally q is given such
that E

	
J
�
Xt;x

T� ;Q
t;q
T�

�
 D p.

To obtain such a result, we proceed in several steps. We first use Proposition 3.1 in
[7] to express problem (7) in the standard form of [21], see Lemma 1 below. We
then apply the Geometric Dynamic Programming Principle (GDP) Principle of [21]
in order to obtain a PDE characterization of V in the viscosity sense. These results
are recalled in Appendix. We then use properties of the convex conjugate of V to
obtain V as the risk-neutral expectation (9) of Proposition 1.

Lemma 1. Let Pt;p;˛ be a F-adapted stochastic process defined by

Pt;p;˛
s D p C

Z s

t
˛uPt;p;˛

u dWu ; 0 � t � s � T� ; (11)

where ˛ is a F-progressively measurable process taking values in R. Let us denote
At;p the set of such processes such that Pt;p;˛ and ˛Pt;p;˛ are square-integrable
processes. Let Assumptions 2 and 4 hold. Then on S
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V.t; x; p/ D inf
˚
y � �� W Yt;x;y;�

T� � ��1.Xt;x
T� ;P

t;p;˛
T� / for .�; ˛/ 2 Ut;y � At;p

�
:

(12)

Moreover, for a given triplet .t; y; p/, if there exists � 2 Ut;y and a F-progressively
measurable process ˛ taking values in R such that

Yt;x;y;�
T� � ��1.Xt;x

T� ;P
t;p;˛
T� / P � a.s. ; (13)

then there exists ˛0 2 At;p such that Yt;x;y;�
T� � ��1.Xt;x

T� ;P
t;p;˛0

T� / P � a.s.

Proof. Under Assumption 4, ��1.x; p/ is well defined with (6). According to the
polynomial growth of � combined with Assumption 2, the stochastic integral
representation theorem can be applied. The first result (12) is then a reformulation
of Proposition 3.1 in [7].

The second result echoes Assumption 4 and Remark 6 in [5], as the statement is
missing in [7]. According to (11), for p < 0, the process Pt;p;˛ is a negative local
martingale, and therefore a bounded submartingale. Thus, E

	
�.Xt;x

T� ;Y
t;x;y;�
T� /


 � p.
According to the growth condition of � , the martingale representation theorem
implies the existence of a square-integrable martingale Pt;p;˛0

, with Pt;p;˛0

t D p and
according to (13),

E

h
�.Xt;x

T� ;Y
t;x;y;�
T� / � Pt;p;˛0

T�

i
D E

	
�.Xt;x

T� ;Y
t;x;y;�
T� /


 � p � 0 :

Since �.x; y/ 2 R� for any .x; y/ 2 RC � R, we can choose Pt;p;˛0
to follow

dynamics (11). This implies that ˛0 is a real-valued .Ft/-progressively measurable
process such that .˛0Pt;p;˛0

/ 2 L2.Œ0;T�� �˝/, and ˛0 2 At;p. ut
We can now turn to the proof of Proposition 1 by using the GDP recalled in

Appendix. The proof follows closely developments of section 4 in [7], and is given
for the sake of clarity, as for the introduction of important objects for Sect. 4.3.

Proof (of Proposition 1). We divide the proof in three steps

1. We introduce conjugate and local test functions. Let V� be the lower semi-
continuous version of V , as defined in Appendix. According to Assumption 4,
dynamics (3) and definition (7), V and V� are increasing functions of p on R�.
The boundedness of V implies also the finiteness of V�. For .t; x; q/ 2 Œ0;T�� �
R

�C � R
�C, we introduce the convex conjugate of V� in p < 0, i.e.,

QV.t; x; q/ WD sup fpq � V�.t; x; p/ W p � 0g :

The map q 7! QV.:; q/ is convex and upper-semi-continuous on R
�C.

Let Q' be a smooth function with bounded derivatives, such that .t0; x0; q0/ 2
Œ0;T�/ � R

�C � R
�C is a local maximizer of QV � Q' with . QV � Q'/.t0; x0; q0/ D 0.

The map q 7! Q'.:; q/ is convex. Without loss of generality, we can assume that
Q' is strictly convex with quadratic growth in q, see the proof in Section 4 of [7].
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The convex conjugate of Q' with respect to q is a strictly convex function of
p defined by '.t; x; p/ WD sup fqp � Q'.t; x; q/ W q � 0g. We can then properly
define the map .t; x; q/ 7! .'p/

�1.t; x; q/ on Œ0;T���R
�C �R

�C, where the inverse
is taken in the p variable. According to the definition of QV and the quadratic
growth of Q', there exists p0 � 0 such that for the fixed q0,

p0q0 � V�.t0; x0; p0/ D QV.t0; x0; q0/ D Q'.t0; x0; q0/ D sup
p�0

fpq0 � '.t0; x0; p/g

which, by taking the left and right sides of the above equation, implies that
.t0; x0; p0/ is a local minimizer of V� � ' and .V� � '/.t0; x0; p0/ D 0. The
first order condition in the definition of ' implies that p0 D .'p/

�1.t0; x0; q0/.
2. We prove that QV is subsolution to a linear PDE. In our case, the control � takes

unbounded values by definition of Ut;y. It implies, together with Assumption 2,
that

N0.t; x; p; dx; dp/ WD ˚
.u; a/ 2 R

2 W ˇ̌
�.t; x/ .u � dx/ � apdp

ˇ̌ D 0
� ¤ ;

(14)

for any .t; x; p; dx; dp/ 2 Œ0;T���RC �R� �R
2. This holds in particular for the

set N0.t0; x0; p0; 'x.t0; x0; p0/; 'p.t0; x0; p0//which is then composed of elements
of the form ..'x C ap'p=�/.t0; x0; p0/; a/ for a 2 R. According to Theorem 2 in
Appendix and changing � for its new expression, ' in .t0; x0; p0/ verifies

� 't � 1

2
�2.t0; x0/'xx � inf

a2R


1

2
.ap0/

2'pp � ap0.�.t0; x0/'p � �'xp/

�
� 0 :

(15)

Since 'pp.t0; x0; p0/ > 0, the infimum in the above equation is reached for

a WD �
�
�'xp � �'p

p0'pp

�
.t0; x0; p0/ 2 R ; (16)

which can be plugged back into (15) to obtain a new inequality at .t0; x0; p0/:

� 't � 1

2
�2.t0; x0/'xx C 1

2
.'pp/

�1��.t0; x0/'p � �.t0; x0/'xp
�2 � 0 : (17)

Recall that p0 D .'p/
�1.t0; x0; q0/. According to the Fenchel–Moreau

theorem, Q' is its own biconjugate, Q'.t; x; q/ D sup fpq � '.t; x; p/ W p � 0g,
and Q'.t0; x0; q0/ D p0q0 � '.t0; x0; p0/. By differentiating in p, we get
'p.t0; x0; p0/ D q0. It follows by differentiating again that at point .t0; x0; p0/ we
have the following correspondence:

�
't; 'x; 'xx; 'pp; 'xp

� D
 

� Q't;� Q'x;� Q'xx C Q'2xq

Q'qq
;
1

Q'qq
;� Q'xq

Q'qq

!
: (18)
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Plugging (18) into (17), we get that Q' satisfies at .t0; x0; q0/

� Q't � 1

2

�
�2 Q'xx C j� j2q20 Q'qq C 2� Q'xq

�
.t0; x0; q0/ � 0 : (19)

By arbitrariness of .t0; x0; q0/ 2 Œ0;T�/ � R
�C � R

�C, this implies that QV is a
subsolution of (19) on Œ0;T�/�R

�C �R
�C. The terminal condition is given by the

definition of QV and Theorem 2 in Appendix:

QV.T�; x; q/ D sup
p�0

fpq � V�.T�; x; p/g D sup
p�0

˚
pq � ��1.x; p/

�
: (20)

3. We compare V to a conditional expectation. Let NV be the function defined
by NV.t; x; q/ D E

Qt
	 QV.T�;Xt;x

T� ;Q
t;q
T�/



for .t; x; q/ 2 Œ0;T�� � .0;1/2, with
dynamics for s 2 Œ0;T�� given by

Xt;x
s D x C

Z s

t
�.u;Xt;x

u /dWQt
u and Qt;q

s D q C
Z s

t
Qt;q

u �.u;X
t;x
u /dWQt

u ;

where Qt is a P-equivalent measure such that dP=dQt D Qt;1. According to
the Feynman–Kac formula, NV is a supersolution to Eq. (19), and thus NV � QV .
According to Assumption 4, p 7! ��1.:; p/ is convex increasing on R�. Thus,
for sufficiently large values of q, J.x; q/ WD arg sup

˚
pq � ��1.x; p/ W p � 0

�
is well-defined and can take any value in R�. By the implicit function theorem,

there exists a function q of .t; x; p/ such that EQt

h
Qt;1

T�J
�

Xt;x
T� ;Q

t;q.t;x;p/
T�

�i
D p.

Therefore,

V.t; x; p/ � V�.t; x; p/ � sup
˚
qp � NV.t; x; q/ W q � 0

�
� pq.t; x; p/ � E

Qt

h QV
�

T�;Xt;x
T� ;Q

t;q.t;x;p/
T�

�i

� q.t; x; p/
�

p � E
Qt

h
Qt;1

T�J
�

Xt;x
T� ;Q

t;q.t;x;p/
T�

�i�

CE
Qx

h
��1

�
Xt;x

T� ; J
�

Xt;x
T� ;Q

t;q.t;x;p/
T�

��i

� E
Qt

h
��1

�
Xt;x

T� ; J
�

Xt;x
T� ;Q

t;q.t;x;p/
T�

��i
DW y.t; x; p/ :

By the martingale representation theorem, there exists � 2 Ut;y such that

Yt;y.t;x;p/;�
T� D ��1 �Xt;x

T� ; J
�

Xt;x
T� ;Q

t;q.t;x;p/
T�

��

which implies that for p � 0

E

h
�
�

Xt;x
T� ;Y

t;y.t;x;p/;�
T�

�i
� E

h
J
�

Xt;x
T� ;Q

t;q.t;x;p/
T�

�i
D E

Qt

h
Qt;1

T�J
�

Xt;x
T� ;Q

t;q.t;x;p/
T�

�i
� p

and therefore, by definition of the value function y.t; x; p/ � V.t; x; p/ which
provides the equality and (9) for .t; x; p/ 2 S. ut
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3.2 Application to the Interval ŒT; T��

We now come back to ŒT;T��, where the shaping factor �, is assumed to take the
known value � at time T . To highlight the effect of � as a given state parameter for
t � T , we denote by V.t; x; p; �/ the value function defined similarly as (7) where
� is given by (5).

Definition 4. Let .t; x; p; �/ 2 S2�L. We can define the value function on S2�L as

V.t; x; p; �/ WD inffy � �� W E

h
`
�
g
�
�Xt;x

T�

� � Yt;x;y;�
T�

�Ci � �p for � 2 Ut;yg ;
(21)

Notice that if X is an exponential process, then we can explicitly change V.t; x; p; �/
for V.t; �x; p; 1/, recalling the assumption P Œ� D 1� D 1 of the previous section.
Let us recall the standard pricing concepts in complete market. Under Assumption 2,
we can define Q the P-equivalent martingale measure defined by

dQ

dP

ˇ̌
ˇ̌
Ft

D exp


�
Z t

T
�.s;Xs/dWs � 1

2

Z t

T
j�.s;Xs/j2ds

�
; t � T : (22)

In the present setting, Q is the unique risk-neutral measure with the drifted Brownian
motion WQ

t D Wt C R t
T �.s;Xs/ds, and we can provide a unique no-arbitrage price

for g.�XT�/.

Definition 5. We define for .t; x; �/ 2 ŒT;T�� � R
�C � L the function

C.t; x; �/ WD E
QŒg.�Xt;x

T�/� for t � T: (23)

According to Assumption 2 and Assumption 3, we can apply Proposition 6.2,
in [18], which implies that for any � 2 L, .t; x/ 7! C.t; x; �/ is Lipschitz continuous
in the spatial variable with the same Lipschitz constant K as g. Moreover, C.�; �; �/
is the unique classical solution of polynomial growth to the Black–Scholes equation

� Ct � 1

2
�2.t; x/Cxx D 0 on ŒT;T�/ � .0;C1/ (24)

with terminal condition C.T�; x; �/ D g.�x/. Now Proposition 1 applies to provide
the following when we use a loss function as in Definition 2.

Corollary 1. Let Assumptions 2 and 3 hold. Then V is given on S2 � L by

V.t; x; p; �/ D E
QŒg.�Xt;x

T�/ � `�1.�Pt;p
T�/� (25)

where Pt;p
T� is a FT� -measurable random variable defined by



160 A. Nguyen Huu and N. Oudjane

Pt;p
T� D j

 
q exp

 Z T�

t
�.s;Xt;x

s /dWQ

s � 1

2

Z T�

t
�2.s;Xt;x

s /ds

!!
(26)

with j.q/ WD �..`�1/0/�1.q/ and q in (26) such that EQ
	
Pt;p

T�


 D p : Moreover, V is
convex and increasing in p and is C 1;2 in .t; x/ on ŒT;T�� � R

�C.

The solution (25)–(26) can be explicitly computed in simple cases, see Sect. 5 below.
Notice that V is bounded on ŒT;T���R

�C�R
���L by C. Since ` is convex increasing

on RC, �`�1 is convex. A look at (25)–(26) then convinces that V is continuous in
p on R

��, but Proposition 3.3 in [7] can be used in our setting to assert that V is also
convex in p. According to what was said about the function C, V is C 1;2 in .t; x/ on
ŒT;T�� � R

�C.

Remark 1. It is noticeable that the value function (25) is composed of the Black–
Scholes price of the claim g.�Xt;x

T�/minus a term that corresponds to a penalty in the
dual expression of the acceptance set if ` is a risk measure, see [16]. The hedging
strategy is to be modified in consequence. First note that (25) is a conditional
expectation of a function of two Markov processes .Xt;x;Qt;q/, for q well chosen,
so that we can write Yt;V.t;x;p/;�

s WD y.Xt;x
s ;Q

t;q
s / WD V.s;Xt;x

s ;P
t;p
s /. According

to Corollary 1, y is a regular function, and Xt;x;Qt;q are martingales under the
probability Q, as well as Yt;V.t;x;p/;� . Therefore Itô formula provides

dYt;V.t;x;p/;�
s D yx.X

t;x
s ;Q

t;q
s /dXt;x

s C yq.X
t;x
s ;Q

t;q
s /dQt;q

s :

Now expressing dWQ

s with respect to dXt;x
s , we obtain

dYt;V.t;x;p/;�
s D �

yx.X
t;x
s ;Q

t;q
s /C �.s;Xt;x

s /Q
t;q
s yq.X

t;x
s ;Q

t;q
s /
�

dXt;x
s (27)

which allows to deduce the optimal dynamic strategy �.

Corollary 1 retrieves solutions of [15]. The original problem in the latter is to
minimize the expected loss given an initial portfolio value, but the authors prove
that our version of the problem is equivalent. The stochastic target problem of
Definition 3 is actually linked to an optimal control problem in a similar way, as
noticed in the introduction of [7] and developed in [6]. We can introduce the value
function giving the minimal loss that can be achieved at time T�, with at time t, the
initial capital y, Xt;x

t D x and the shaping factor � D �.

Definition 6. For .t; x; y; �/ 2 ŒT;T�� � R
�C � R � L we define

U.t; x; y; �/ WD sup
n
E

h
�`
��

g
�
�Xt;x

T�

� � Yt;y;�
T�

�C�i W � 2 Ut;y

o
: (28)

This corresponds to the problem of finding the best reachable threshold p if the
initial portfolio value is given by y at time t. This result is of great use in the
forthcoming resolution of the problem before T , by the following connection with V .
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Lemma 2. For .t; x; y; �/ 2 ŒT;T���R
�C � Œ��;1/�L we define V�1.t; x; y; �/ WD

sup fp � 0 W V.t; x; p; �/ � yg. Then we have

U.t; x; y; �/ D V�1.t; x; y; �/ : (29)

Moreover the function U is a concave increasing function of y bounded by 0 from
above.

Equality (29) is a direct application of Lemma 2.1 in [6], whereas the properties of
U fall from the properties of V and Definition 6.

4 Solution in Incomplete Market

We now turn to the solution of the problem before T , i.e., when � is unknown.
We first provide the face-lifting procedure that allows to reduce the new situation
to the one handled in Sect. 3. This procedure can be done according to two model
paradigms:

1. the law 
 of � is supposed to be known;
2. only the support L of the law of � is supposed to be known.

The first approach is a probabilistic approach with a prior distribution, whereas the
second one is a robust approach, in connection with robust finance with parameter
uncertainty, see [8] for a control theory version. Finally, the numerical complexity
of the face-lifting procedure pushes us to give up explicit formulas for a numerical
approach. We thus modify results of Sect. 3 to provide a convenient formulation of
the problem to be numerically approximated in Sect. 5.

4.1 Faced-Lifted Intermediary Condition with Prior
on the Shaping Factor

When t < T , the problem (7) cannot be treated with the methodology developed
in [7]. To solve the problem, we are guided by the following argument. Considering
.t; y/ 2 Œ0;T/ � Œ��;1/ and a strategy � 2 Ut;y, we arrive at time T to the
wealth Yt;x;y;�

T � ��, at the apparition of the exogenous risk factor �. Assume
that the agent wants to control the expected level of risk p < 0, at time T , by
using the portfolio Yt;x;y;�

T . It is obviously not possible with certainty if � takes a
value � such that Yt;y;�

T < V.T;Xt;x
T ; p; �/. However, the optimal strategy after T

consists in optimizing the portfolio by trying to achieve the optimal expected level
of loss U.T;Xt;x

T ;Y
t;y;�
T ; �/ given by Definition 6. In the complete market setting, this

achievement is possible.
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Lemma 3. Under Assumptions 2 and 4, there exists a map .x; y; �/ 7! �.x; y; �/ 2
UT;y on R

�C � Œ��;1/ � L such that

E

h
�
�
�XT;x

T� ;Y
T;y;�.x;y;�/
T�

�i
� U.T; x; y; �/ : (30)

Proof. Fix .x; y; �/ 2 R
�C � Œ��;1/ � L. Let p WD U.T; x; y; �/. According to

Lemma 2, y � V.T; x; p; �/. Following Corollary 1 and Remark 1, and since �

is increasing in y, there exists � such that E
h
�
�
�XT;x

T� ;Y
T;y;�
T�

�i
� p for .x; y; �/

arbitrarily fixed. ut
Then the expected loss at T resulting from this strategy is averaged among the
realizations of � for fixed Xt;x

T and Yt;y;�
T . The expectation is thus done also with

regard to � just before T .

Definition 7. We define � W RC � Œ��;1/ ! R� by

�.x; y/ WD
Z

L
U.T; x; y; r/
.dr/ : (31)

The above function � represents the expected optimal level of loss the agent can
reach if she attains the wealth y at time T with a state XT;x

T D x.

Lemma 4. The function� takes non-positive values, is C 2 in x 2 R
�C and concave

increasing in y.

This is a direct consequence of Lemma 2 and corollary 1. This property ensures
that parts of Assumption 4 hold in the new following problem, in order to apply
Theorem 2 of Appendix. In particular, Lemma 4 allows to define a terminal
condition with the generalized inverse ��1.

Definition 8. For .t; x; p/ 2 S1, we define

NV.t; x; p/ WD inf
˚
y � �� W E

	
�.Xt;x

T ;Y
t;x;y;�
T /


 � p for � 2 Ut;y
�
: (32)

We now prove that this new problem coincides with the one of Definition 3 on S1.

Proposition 2. Let Assumptions 2 and 4 hold. Then NV.t; x; p/ D V.t; x; p/ on S1.

Proof. 1. Fix .t; x; p/ 2 S1 and take y > V.t; x; p/. Then by definition there
exists � 2 Ut;y such that E

	
�
�
Xt;x

T� ;Y
t;x;y;�
T�

�
 � p. Since t < T , the control
can be written �t D �t1ft2Œ0;T/g C �t.�/1ft2ŒT;T��g where �t.:/ follows from
the canonical construction of F: it is a measurable map from L to the set of
square integrable control processes on ŒT;T��which are adapted to the Brownian
filtration �.Ws; T � s � :/. From the flow property of Markov processes Xt;x

and Yt;x;y;� (see [21]) and the tower property of expectation,
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E
	
�
�
Xt;x

T� ;Y
t;x;y;�
T�

�
 D

E

�Z
L
E

�
�

�
X

T;Xt;x
T

T� ;Y
T;Xt;x

T ;Y
t;x;y;�
T ;�.�/

T�

� ˇ̌
ˇ �Xt;x

T ;Y
t;x;y;�
T ; �

��

.d�/

�
:

(33)

By taking the supremum over all possible maps �.�/ and by Definition 6, we
obtain

p � E

�
�

�
X

T;Xt;x
T

T� ;Y
T;Y

t;x;y;�
T ;�.�/

T�

� ˇ̌
ˇ �Xt;x

T ;Y
t;x;y;�
T ; �

�� � U
�
T;Xt;x

T ;Y
t;x;y;�
T ; �

�
:

(34)

By integrating in � over L, and then take the expectation, we immediately get
that y � NV.t; x; p/. By arbitrariness of y, V.t; x; p/ � NV.t; x; p/.

2. Take y > NV.t; x; p/. There exists a control � 2 Ut;y on Œt;T� such that

E

�Z
L

U
�
T;Xt;x

T ;Y
t;x;y;�
T ; �

�

.d�/

�
� p :

Now Lemma 3 allows to assert the existence of a control ��.�/ on ŒT;T�� such
that for any � 2 L

E

�
�

�
X

T;Xt;x
T

T� ;Y
T;Y

t;x;y;�
T ;��.�/

T�

��
D U

�
T;Xt;x

T ;Y
t;x;y;�
T ; �

�
:

By choosing the new admissible control �0 2 Ut;y defined by the concatenation
�0

t D �t1ft2Œ0;T/g C ��
t .�/1ft2ŒT;T��g, we obtain y � V.t; x; p/ for an arbitrary

y > NV.t; x; p/. We thus have equality of V and NV on S1.
ut

In the present context when the law of� is known, the face-lifting procedure of (31)
allows to retrieve a stochastic target problem in expectation of [7] on the interval
Œ0;T�. However, it is improbable that the terminal condition (31) is explicit for non-
trivial models.

4.2 Variation to a Robust Approach

Due to the lack of data, or some non stability of the problem, it might be interesting
to adopt an approach where the agent wants to control the expected level of loss
without assuming the law 
 on L. Under Assumption 1, the robust approach is easy
to undertake and is the following. Since the law of � is not known, we have to
consider the worst case scenario, i.e., the supremum of (31) over a set of probability
measures on L.
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Definition 9. Let P.L/ be the set of all probability measures over L including
singular measures. Then we define for any .x; y/ 2 R

�C � Œ��;1/ the function

.x; y/ WD sup

2P.L/

�.x; y/ : (35)

It is straightforward that by considering singular measures in P.L/ we shall have

.x; y/ D max
�2L

U.T; x; y; �/ ; (36)

which is finite for all .x; y/ 2 R
�C � Œ��;1/ following Lemma 2. The reasoning

of the previous section can be applied here with the new intermediary condition
E
	
.Xt;x

T ;Y
t;x;y;�
T /


 � p. We thus introduce the other stochastic target problem with
controlled loss if t < T:

NVR.t; x; p/ WD inf
˚
y > �� W E

	
.Xt;x

T ;Y
t;x;y;�
T /


 � p for � 2 Ut;y
�
: (37)

The monotonicity of U with respect to �, provided by some additional assumption
on g, leads to a direct solution to Eq. (36). In general, the resolution of problem (37)
is similar to (32) with a terminal condition that is more tractable. In the sequel, we
thus focus on problem (32).

4.3 From the Control Problem to an Expectation Formulation

In this section, we want to emphasize formally the link between the solution of
the nonlinear PDE (15) (in the proof of Proposition 1) and a simple conditional
expectation, in sufficiently regular settings. This idea will be used to propose a
numerical scheme to approximate the solution of our partial hedging problem.
Assume of starting that the nonlinear PDE (15) has a classical solution NV on S1
such that it also verifies
8<
:

NVt C �2.t; x/

2
NVxx C a�p

�
�.t; x/ NVxp � �.t; x/ NVp

�C 1

2
.a�p/2 NVpp D 0 ; for t < T

NV.T; x; p/ D ��1.x; p/ ;
(38)

where we recall the specific form of the control (16):

a� WD �
p NVpp

��1 �
�.t; x/ NVp � �.t; x/ NVxp

�
; (39)

and the terminal condition is

��1.x; p/ WD inf fy � �� W �.x; y/ � pg : (40)
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In particular if a� in (39) is well defined (by strict convexity of NV in p) and
corresponds to the optimal value in (15), then formulations (15) and (38) are
equivalent. Now let us assume that the function OV such that

OV.t; x; p/ D E
QŒ��1.Xt;x

T ;P
t;p;˛�

T /� ; 0 � t � T ; (41)

is well defined, with dynamics under Q given by

Xt;x
s D x C

Z s

t
�.u;Xt;x

u /dWQ

u I Pt;p;˛�

s D p C
Z s

t
Pt;p;˛�

u ˛�
u

�
dWQ

u � �.u;Xt;x
u /
�
du

(42)

and where the feedback control ˛� is defined for s 2 Œt;T� by

˛�
s D

�
Pt;p;˛�

s
NVpp

��1 �
�.s;Xt;x

s /
NVp � �.s;Xt;x

s /
NVxp
� �

s;Xt;x
s ;P

t;p;˛�

s

�
: (43)

Assume moreover that OV is sufficiently regular to be a classical solution to the
related linear Feynman–Kac PDE

8<
:
't C �2.t; x/

2
'xx C a�p

�
�.t; x/'xp � �.t; x/'p

�C 1

2
.a�p/2'pp D 0 ; for t < T

'.T; x; p/ D ��1.x; p/ ;
(44)

where we recall the specific form of the control (39) given as a function of NV and
its derivatives. Now observe that NV is also a classical solution to this linear PDE.
Hence, if the classical solution to (44) is unique then we can conclude that OV D NV .
In the following section, we propose a numerical scheme to solve (38) which relies,
in some sense on this relation between the non linear PDE (38) and the conditional
expectation (41) with dynamic (42)–(43).

5 Numerical Approximation Scheme

In the present section, we propose a numerical algorithm dedicated to the specific
problem (41)–(43). The problem is specific for two reasons. First, the terminal
condition at T is given by ��1 which may be unexplicit and has to be numerically
studied. Second, the optimal control is explicitly given by (43) so that the non-linear
operator can be replaced by a proper expectation approximation. At this stage, the
algorithm is presented as the result of a series of standard approximations. However,
we do not provide any analysis of the approximation error induced by this algorithm
so that it can only be considered as an heuristic. Nevertheless, some numerical
simulations are provided in the next section and emphasize the practical interest
of such numerical scheme.
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5.1 Specification and Hedging in Complete Market

In this section, we will retrieve all the regularity assumptions by specifying the
model. The question of the generalization of the presented procedure is a matter
that is not treated in this paper. We assume that X is described by a geometrical
Brownian motion:

�.t; x/ D �x ; and �.t; x/ D �x ; (45)

with .�; �/ 2 R � R
�C. The loss function is given as in Example 1, with k > 1. For

the partial lower moment function `.x/ D xk1fx�0g=k for k > 1, Corollary 1 has an
explicit solution, given for t � T by

V.t; x; p; �/ D C.t; x; �/ � .�kp/1=k
E
Q

"
exp

(
1

2.k � 1/
Z T�

t
j�.u;Xt;x

u /j2du

)#

D C.t; x; �/ � .�kp/1=k exp


�2

2.k � 1/.T
� � t/

�
; where � D �

�
;

(46)

where in this precise case, C.t; x; �/ is given by the Black–Scholes price of the
option with payoff x 7! g.�x/, as in Definition 5. Following Sect. 3, .t; x/ 7!
C.t; x; �/ 2 C 1;2.ŒT;T�/ � R

�C/ for any � 2 L, so that according to (46) all the
required partial derivatives of V exist. Note also that V is strictly convex in p since
k > 1.

Consequently, we can explicit the strategy to hedge the expected loss constraint.
If a� is given by (39), then

��.t; x; p/ D
�

Vx C a�pVp

x�

�
.t; x; p/ : (47)

All the required derivatives are given by

8̂
ˆ̂̂<
ˆ̂̂̂
:

Vt.t; x; p; �/ D Ct.t; x; �/C �2

2.k�1/ exp
n

�2

2.k�1/ .T � t/
o

Vx.t; x; p; �/ D Cx.t; x; �/
Vxx.t; x; p; �/ D Cxx.t; x; �/

Vp.t; x; p; �/ D exp
n
1�k

k log.�kp/C �2

2.k�1/ .T � t/
o
:

As anticipated in Remark 1, the strategy consists in hedging the claim g.�Xt;x
T�/ plus

a correcting term corresponding in hedging the constraint Pt;p;˛�

T� .
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5.2 The Intermediary Target

In order to initiate the numerical procedure for 0 � t � T , we need to compute
the intermediary condition and its partial derivatives intervening in (38). According
to (29) and (46),

U.t; x; y; �/ D �1
k
.C.t; x; �/�y/k exp


� k�2

2.k � 1/.T
� � t/

�
1fC.t;x;�/�yg ; (48)

which provides the value of �.x; y/ by integration according to the law 
 of �:

�.x; y/ D �1
k

exp


� k�2

2.k � 1/.T
� � T/

� Z
L
.C.T; x; �/ � y/k1fC.T;x;�/�yg
.d�/ :

(49)

A numerical computation of the integral in (49) can be proceeded via numerical
integration or Monte-Carlo expectation w.r.t. the law 
. This in turn allows to obtain
the desired function ��1, since the latter is monotonous in p.

For fixed .x; p/ 2 R
�C � R

��, define

M WD ˚
� 2 L W C.T; x; �/ ���1.x; p/ � 0

�
:

Let us introduce four real-valued functions .fk�1; Qfk�1; fk�2; Qfk�2/ of .x; p/ 2 R
�C�R��

defined by


fn.x; p/ D R

M

�
C.T; x; �/ ���1.x; p/

�n

.d�/

Qfn.x; p/ D R
M �Cx.T; x; �/

�
C.T; x; �/ ���1.x; p/

�n

.d�/ ;

(50)

for n D k �1; k �2, recalling that k denotes the exponent parameter determining the
loss function (8). Then by a straightforward calculus we derive the partial derivative
of ��1 as follows

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

��1
x .x; p/ D Qfk�1

fk�1
.x; p/

��1
p .x; p/ D exp

n
�2k

2.k�1/ .T
� � T/

o 1

fk�1
.x; p/

��1
pp .x; p/ D

h
.k � 1/ fk�2

fk�1

�
��1

p

�2i
.x; p/

��1
xp .x; p/ D

"
.k � 1/��1

p

�Qfk�1fk�2�Qfk�2fk�1

�
�

fk�1

�2
#
.x; p/ :

(51)

The functions .fk�1; Qfk�1; fk�2; Qfk�2/ can be computed numerically with the same
methods as ��1. Having these derivatives, it is thus possible to obtain the values of
controls at time T , .��.T; x; p/; a�.T; x; p//, given by (47) and (39).
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5.3 Discrete Time Approximation and Regression Scheme

The approximation scheme that is proposed here is first based on a time discretiza-
tion of the forward–backward dynamic determined by the system (41)–(43).

5.3.1 Time Discretization

Let us define a deterministic time grid � WD f0 D t0 < : : : < tN WD Tg
with regular mesh jtiC1 � tij D T=N DW �t. We consider in this paragraph a
discrete time approximation of the process .X0;x0 ;P0;p0;˛

�
/ solution of (42) with

initial condition at time 0, .X0;x00 ;P0;p0;˛
�

0 / D .x0; p0/. The process X0;x0 possesses
an exact discretization at times .ti/iD0::N which is denoted .Xi/iD0::N , with increments
of the Q-Brownian motion given by

WtiC1
� Wti WD p

�t"i ; (52)

."i/iD0;��� ;N�1 being a sequence of i.i.d. centered and standard Gaussian random
variables. We introduce the sequence of random variables .Pa�

i /iD0���N obtained by
taking the exponential of the Euler approximation of log.P0;p0;˛

�
/ on the mesh � .

Then, we can approximate the solution of (42), at the mesh instants � by the Markov
chain .Xi;Pa�

i /iD0;��� ;N satisfying the following dynamic for i D 0; : : : ;N � 1:

8<
:

XiC1 D Xi exp
n
�

p
�t"i � .�2�t/=2

o

Pa�

iC1 D Pa�

i exp
n
�a�

i .Xi;Pa�

i /
��
� C 1

2
a�

i .Xi;Pa�

i /
�
�t C p

�t"i

�o (53)

with the initial condition, X0 D x0 and Pa�

0 D p0 and where at each time step i, a�
i

is actually the function given by (39) at time ti

a�
i .x; p/ WD a�.ti; x; p/ D �p NVp.ti; x; p/ � �xp NVxp.ti; x; p/

pp NVpp.ti; x; p/
(54)

In the sequel, we will denote Xi;x
iC1 and Pi;x;p;ai

iC1 the random variables satisfying
Eq. (53) with Xi D x, Pa�

i D p and the function a�
i D ai.

5.3.2 Piecewise Constant Approximation of a�
i and Tangent

Process Formula

Assume that at the discrete time ti, for i 2 f0; � � � ;N � 1g, a piecewise constant
approximation of a�

i is available, such that for any positive reals x and p, we have
the approximation Oai defined as follows
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Oai.x; p/ D
RX

rD1
ai;r1Ci;r .x; p/ ; (55)

where .Ci;r/rD1;���R is a partition of R�C � R
�� and .ai;r/rD1;���R is a sequence of reals.

By the expectation formula (41), we obtain that the solution of problem (32) and
equivalently (7) satisfies the following backward dynamic for i 2 f0; � � � ;N � 1g

OV.ti; x; p/ D E
QŒ OV.tiC1;Xti;x

tiC1
;Pti;p;˛�

tiC1
/� for .x; p/ 2 R

�C � R
�� :

Then, one can approximate OV at the discrete instants of the mesh � , by injecting in
the above formula two approximations consisting in:

1. replacing .Xti;x
tiC1
;Pti;p;x;˛�

tiC1
/ by the Markov chain approximation .Xi;x

iC1;P
i;p;x;a�

i
iC1 /,

obtained by the Euler scheme (53);
2. replacing the function a�

i by the piecewise constant approximation Oai (55);

For i 2 f0; � � � ;N � 1g, we define OVi the resulting approximation of OV.ti; �; �/
satisfying the following backward approximation scheme

OVi.x; p/ D EŒ OViC1.Xi;x
iC1;P

i;p;x;Oai
iC1 /� : (56)

Let us assume, at this stage, that OViC1 is a given approximation of OV.tiC1; �; �/, which
is two times continuously differentiable w.r.t. both variables. Now recall that Oai is
supposed to be constant on Ci;r, for any r 2 f1; � � � ;Rg. Then, for any .x; p/ 2
Int.Ci;r/, .X

i;x
iC1;P

i;x;p;Oai
iC1 / follows a log-normal distribution (53) and we can apply

tangent process approach [10] on (56) to obtain that OVi is two times continuously
differentiable and a backward formula for the derivatives

8̂
ˆ̂̂<
ˆ̂̂̂
:

OVi
p.x; p/ D 1

pE

h
Pi;x;p;Oai

iC1 OViC1
p .Xi;x

iC1;P
i;x;p;Oai
iC1 /

i

OVi
xp.x; p/ D 1

xpE

h
Xi;x

iC1P
i;x;p;Oai
iC1 OViC1

xp .Xi;x
iC1;P

i;x;p;Oai
iC1 /

i

OVi
p.x; p/ D 1

ppE

h
.Pi;x;p;Oai

iC1 /2 OViC1
pp .Xi;x

iC1;P
i;x;p;Oai
iC1 /

i
:

(57)

5.3.3 Piecewise Constant Regression and Fixed Point Algorithm

Besides, recall that a�
i is defined as a function of NVp.ti; �; �/, NVpx.ti; �; �/ and NVpp.ti; �; �/

according to Eq. (54). Similarly, we want to impose the same relation between Oai

and OVi
p, OVi

px and OVi
pp. For this purpose, let us define the map f 7! Ti.f / such that for

any real valued function f defined on R
�C � R

��,

Ti.f /.x; p/ WD �EŒPi;x;p;f
iC1 OViC1

p .Xi;x
iC1;P

i;x;p;f
iC1 /� � �EŒXi;x

iC1P
i;x;p;f
iC1 OViC1

xp .Xi;x
iC1;P

i;x;p;f
iC1 /�

EŒ.Pi;x;p;f
iC1 /2 OViC1

pp .Xi;x
iC1;P

i;x;p;f
iC1 /�

;

(58)
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for all .x; p/ 2 R
�C � R

��. Notice that the map Ti, defined above, depends implicitly
on the previous approximations OViC1

p , OViC1
px and OViC1

pp . Then Oai could be obtained as
a piecewise constant approximation of a fixed point of Ti.

One way to do this, is to approximate Ti by OTi, obtained in replacing the
conditional expectation, in (58), by a regression operator, OEi, on a set of regression
functions which are piecewise constant. Consider for instance the following set of
regression functions .1Ci;r /rD1;��� ;R. We introduce

OTi.f /.x; p/ WD � OEiŒP
i;x;p;f
iC1 OViC1

p .Xi;x
iC1;P

i;x;p;f
iC1 /� � � OEiŒX

i;x
iC1P

i;x;p;f
iC1 OViC1

xp .Xi;x
iC1;P

i;x;p;f
iC1 /�

OEiŒ.P
i;x;p;f
iC1 /2 OViC1

pp .Xi;x
iC1;P

i;x;p;f
iC1 /�

(59)
so that OTi.f / is automatically piecewise constant on the partition .Ci;r/rD1;��� ;R.

Adding up all these approximations, we finally obtain, at each point, ti, of the
mesh grid, � , an approximation . OVi; OVi

p;
OVi

px;
OVi

pp; Oai/ of

� NV.ti; �; �/; NVp.ti; �; �/; NVpx.ti; �; �/; NVpp.ti; �; �/; a�.ti; �; �/
�

by the following algorithm applied with a fixed tolerance parameter " > 0:

Initialization

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

OVN.x; p/ D ��1.x; p/
OVN

p .x; p/ D ��1
p .x; p/

OVN
px.x; p/ D ��1

px .x; p/OVN
pp.x; p/ D ��1

pp .x; p/

OaN.x; p/ D �p OVN
p .x;p/��xp OVN

xp.x;p/

pp OVN
pp.x;p/

:

(60)

From step A(N � 1) to A(0) :

A(i) : SET a WD OaiC1; GOTO B(i; a);
B(i; a):

1. SET a0 WD OTi.a/ .recall that OTi depends on OViC1
p , OViC1

px and OViC1
pp /;

2. IF ja0 � aj � "

– THEN SET

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Oai D a0
OVi.x; p/ D OEiŒ OViC1.Xi;x

iC1;P
i;p;x;Oai
iC1 /�

OVi
p.x; p/ D 1

p
OEi

h
Pi;x;p;Oai

iC1 OViC1
p .Xi;x

iC1;P
i;x;p;Oai
iC1 /

i
OVi

xp.x; p/ D 1
xp

OEi

h
Xi;x

iC1P
i;x;p;Oai
iC1 OViC1

xp .Xi;x
iC1;P

i;x;p;Oai
iC1 /

i
OVi

p.x; p/ D 1
pp

OEi

h
.Pi;x;p;Oai

iC1 /2 OViC1
pp .Xi;x

iC1;P
i;x;p;Oai
iC1 /

i
:
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� IF i D 0 THEN STOP;
� ELSE GOTO A(i � 1);

– ELSE GOTO B(i; a0);

Notice that limiting the previous algorithm to one fixed point iteration (in B.i; a/)
reduces to an explicit scheme for which Oai is given as a function of the derivatives at
the next time step tiC1, . OViC1; OViC1

p ; OViC1
px ; OViC1

pp / and the control OaiC1. However, in
practice at most three iterations are sufficient to obtain reasonable convergence to the
fixed point. In theory, the contraction of OTi should be proved for a sufficiently small
time step �t. But this is left for future works. If we don’t proceed to a convergence
analysis of the scheme with N, for a general diffusion and general loss function,
we can still provide a numerical confirmation of the relevance of the method. To
validate the algorithm we proceed in Sect. 6 to a comparison between the explicit
formula of Corollary 1 and the value provided by the algorithm.

6 Numerical Tests

The present section is devoted to tests on real and simulated data meant to illustrate
the interest of the partial hedging strategy developed in this article and to validate the
numerical scheme introduced in the previous section. We proceed into four steps.
First, we fit the parameters of the exponential model (1) on real data. Then, we point
out the importance of the risk induced by the random shaping factor, by evaluating
the hedging error implied, on real data, by the naive Black–Scholes hedging
strategy based on a prediction of the shaping factor (without taking into account
its randomness). This naive hedging approach will constitute our benchmark. To
validate the numerical approximation scheme introduced in Sect. 5, we analyse its
performance on the explicit case of Sect. 3. We finally compare the partial hedging
procedure, on simulations, to the benchmark that shall be introduced right away.

6.1 Black–Scholes Benchmark

We consider the following Black–Scholes strategy for a naive agent. The naive
agent assumes that the set L reduces to a singleton f�0g. This belief is accepted
for example as a raw approximation of the expected value of �. In this situation,
the previous setting reduces to the case of Sect. 3. However, since the market is
complete, the naive agent desires to put in place a complete hedging strategy allowed
by the Black–Scholes framework. The naive benchmark is thus given by

1. an initial value provided by the Black–Scholes price of the contingent claim
g.�0X

t;x
T�/, given by Eq. (23): C.t; x; �0/.
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2. A hedging strategy, associated to that belief, and given by the delta-hedging
procedure �s D Cx.s;Xt;x

s ; �0/ on Œ0;T�. After the apparition at T of the asset�X,
the option price is impacted immediately by the real value taken by �, different
from �0, but the portfolio stays self-financed, and continuous. We assume here
that the naive agent continues with the delta-hedging strategy until T�.

3. A terminal hedging error that spreads from time T with value "T WD C.T; x; �0/�
C.T; x; �/. In the Black–Scholes setting, by a simple no-arbitrage argument and
zero interest rate, this error remains constant until T�.

The motivation of such a strategy is to average the losses by averaging the
possible values taken by �. This is however wrong as the price of the derivative
is mostly a non-linear function of the underlying price. In the studied example of
the Call option below, if � is fixed, we obtain a non-linear function of the strike:

CBS.t; �0x;K/ WD E
QŒ.�0X

t;x
T� � K/C� D �0E

QŒ.Xt;x
T� � K=�0/C�

D �0CBS.t; x;K=�0/:

6.2 Analysis on Real Data

To provide a realistic framework, we refer to historical data. This allows to
propose a model for L and �, and values for parameters .�; �/ of the exponential
dynamics (1). The available data designates daily quotations of futures prices on the
French Power Market, provided by EEX. We consider a delivery period covering the
period from October 2004 to March 2011, i.e., 78 Month delivery Futures during
their whole quotation period and the respective Quarter delivery futures contracts
covering them. Two estimations are made out of it.

1. This provides 78 observations for a supposedly repeated realisation of the
random variable �. The average is O� D 1:0012 and its variance V.�/ D 0:081.
We then assume that � follows a scaled beta law with these characteristics:
� � 3ˇ.114; 227/. This is justified by the fact that � shall have a bounded
support, which is assumed here to be the interval Œ0; 3�.

2. The parameters � and � in the exponential dynamics (1) are computed on the
aggregated returns of month futures and quarter futures. Here, � contains the
discount rate (since we assumed that the interest rate is null by omitting it).
The obtained drift O� is null, and the obtained (yearly) volatility O� D 28%.

To quantify the impact of neglecting the uncertainty on the shaping factor
� D ��, on the performance of the hedging strategy, we have implemented, on
real data, the naive Black–Scholes hedging strategy supposing different given
parameters � varying around the real observed value �� with an amplitude of error
of 50%. In our tests, we have considered call options on our 78 Month delivery
futures with various maturities and strikes as indicated on Fig. 1. The resulting
hedging error can be decomposed into four sources:



Hedging Expected Losses on Derivatives in Electricity Futures Markets 173

Fig. 1 Standard deviation of
the hedging error as a
function of the ratio between
the shaping factor used in the
hedging strategy � and the
real shaping factor ��

impacting the historical
scenarios. (a) K D 0; 8XT .
(b) K D XT . (c) K D 1:2XT
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1. hedging at discrete times (the Delta hedging strategy is indeed implemented
daily);

2. errors on the dynamical model or on the parameters (the hedging instrument
may not have i.i.d. log-returns with log-normal distributions, O� and O� are only
estimations);

3. the limited number of hedging scenario inducing a statistical error;
4. error on the shaping factor value.

The scope of this paper focuses specifically on the latter source of error. Hence, to
distinguish the contribution of each error and to separate the fourth one, we have
represented in Fig. 1 four quantities:

1. Real error We evaluate the hedging error using the naive strategy on real data.
2. Simulated Error (78 data) We then do the same on simulated data on the same

time grid, and with the same number of trajectories (78). This allows to quantify
the error due to the model and the parameters estimation, by comparing it to the
previous error.

3. Simulated Error (78� 100 data) We repeat this procedure with a greater number
of simulations .78 � 100/ in order to confirm that the previous error is not
erroneous because of the low number of studied trajectories.

4. Theoretical error We represent the error induced by hedging in the Black–
Scholes framework (in continuous time) with the wrong shaping factor. This
represents exclusively the hedging error due to the error on the shaping factor.
Notice that for t � T , �� is known, hence on ŒT;T�� the naive Black–Scholes
strategy is equal to the complete market replication strategy that would have
been implemented from time 0 if �� was known. Hence the theoretical hedging
error reduces to the difference between the values at time T of the naive hedging
portfolio (with the wrong value of �) and the perfect hedging portfolio (with the
right value of � D ��): CBS.t; �x;K/ � CBS.t; ��x;K/.

Altogether, the results presented in Fig. 1 push to the following temporary conclu-
sions. An error on the value of � can significantly impact the error. After that,
the main error is due to the discretization of the hedging strategy. Hence, it is
worth developing a specific methodology to take into account the uncertainty of
the shaping factor in the hedging strategy.

6.3 Convergence of the Approximation Scheme to Explicit
Solution

We shall test the efficiency of the algorithm presented in Sect. 5. To do so, we
compute the hedging strategy and the value function in the specific case of Sect. 3.2.
Assume without loss of generality that � D 1. Recall that we obtain the following
explicit expression for the P-martingale Pt;p;˛ initialized at time t � T and the
function v for any s 2 Œt;T��,
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8<
:
v.s;Xt;x

s ;P
t;p;˛
s ; 1/ D C.s;Xt;x

s ; 1/ � .�kPt;p;˛
s /1=k exp

n
�2

2.k�1/ .T
� � s/

o

Pt;p;˛
s D p

�
Xt;x

s
x

�� k
k�1

�

�2 exp
n

k2.�2��/
2.k�1/ .s � t/

o
; :

(61)

Observe that Pt;p;˛
s can be expressed as a function of Xt;x

s i.e. Pt;p;˛
s D p.t; s;Xt;x

s /.
Hence we analyse the performance of our algorithm by observing its ability to
approximate the one dimensional real valued function us such that

us.x/ D V.s; x; p.t; s; x// : (62)

In our simulations, we consider the following parameters.

1. The model parameters are slightly modified with values . O�; O�/ D .0:1; 0:28/.
The initial asset price value is fixed at x D 50:89.

2. The convexity parameter of the loss function is k D 2 and the level p takes the
value 0:1 Euro2.

3. The option is a call option with a strike K and a maturity of 20 trading days, i.e.,
T D 20=250.

4. We have performed our algorithm with M D 105 particles to estimate at each
step of time the conditional expectations and a time discretization mesh t0 D
0; � � � ti; � � � tN D T with a time step �t D 1=250.

In our tests, the fixed point algorithm was limited to three iterations. We have
represented on Fig. 2 the value of us.x/ with respect to x computed by the explicit
formula and the numerical algorithm. We also provide the value of the control � at
the initial date to illustrate the convergence of derivatives too.

6.4 Performance with a Call Option

We now compare the loss approach (hereafter denoted shortfall risk, or SR) and
the benchmark strategy (hereafter Black–Scholes, or BS) upon a call option. For
each approach, we implement the associated hedging strategy on i.i.d. Mhedge D
10;000 simulated price paths. For each path we compute both hedging errors.
Then we compute by Monte Carlo approximation (on these i.i.d. Mhedge D 10;000

simulations) the expected loss associated to the Black–Scholes approach and the
shortfall risk hedge. Recalling Sect. 6.2, the trading strategies are not implemented
continuously and the resulting hedging errors may differ from the theoretical time
continuous setting.

1. The naive Black–Scholes strategy is settled with the value �0 D E Œ�� D 1:0012.
The variable� is given by a law ˇ.114; 227/, and the price model as in Sect. 6.3.

2. For the option, we compare several strike possibilities for the Call option:
KD��0x with � taking values in the set f0:85I 0:9I 0:95I 1I 1:05; 1:1I 1:15I 1:2g.
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Fig. 2 Comparison between the numerical solution and the explicit formula. (a) Value function
x 7! us.x/ with p D 0:1 Euros and time steps i D2 f1; 5; 10; 15; 19g. (b) Optimal strategy
x 7! �.t; x; p/ for p D 0:1 Euros and time steps i 2 f1; 5; 10; 15; 19g
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3. The loss function is the partial moment loss function of Sect. 5 with k D 2, and
the threshold p varies enough to evaluate its impact. In the following comparison,
we consider the square root of the obtained error in order to express it in
euros. This justifies the terminology shortfall, which is a monetary homogeneous
quantity.

4. Strategies are rebalanced daily, T D 128 days and T� D 184 days, 1 year
corresponds to 250 days and X0 D 50:89.

Figure 3 sums up the simulations and compares, for the different values of K,
the value function as a function of p. Figure 4 provides a comparison between
the two approaches for another criterion: the conditional Value-at-Risk, or expected
shortfall. These two figures lead us to the two following conclusions. The first one
is that the partial hedging procedure SR allows to hedge the quadratic loss function
more efficiently and with less initial amount of money than the BS strategy. The
second figure illustrates the fact that this new strategy stays more interesting for
another risk criteria than the one used in the specified control problem, providing
also possible robustness of the consideration of the shaping factor � in our model.

Appendix: Geometric Dynamic Principle and HJB Equation

In what follows, we put ourselves in the Brownian filtration setting of [22] and
[7], which encompasses our framework. We omit the presence of � by assuming
P Œ� D 1� D 1 and place ourselves on the interval Œ0;T��. We provide one side of
the GDP used to derive the supersolution property.

Theorem 1 (Th 3.1, [22]). Fix .t; x; p; y/ 2 S�Œ��;1/ such that y > V.t; x; p/ and
a family of stopping times

˚
��;˛ W .�; ˛/ 2 Ut;y � At;p

�
. Then there exists .�; ˛/ 2

Ut;y � At;p such that

Yt;x;y;�
��;˛ � V.��;˛;Xt;x

��;˛ ;P
t;p;˛
��;˛ / P � a.s.

and Yt;x;y;�
s^��;˛ � �� for all s 2 Œt;T�� P � a.s.

Let V� be defined by V�.t; x; p/ WD lim inf fV.t0; x0; p0/ W B 3 .t0; x0; p0/ ! .t; x; p/g
where B denotes an open subset of Œ0;T�� � R

�C � R
�� with .t; x; p/ 2 cl.B/. We

assume that V is locally bounded on S, so that V� is finite. In what follows, we
introduce only the supersolution property for V�, deriving from Theorem 1, in
the special case given by dynamics (1), (3) and (11).

For " � 0, we introduce the relaxed operator � 7! NF".�/ for the variable
� D .t; x; p; d; dx; dp; dxx; dpp; dxp/ 2 S � R

6 given by

NF".�/ WD sup
.u;a/2N".�/


.u � dx/ �.t; x/ � 1

2

�
�2.t; x/dxx C a2p2dpp C 2ap�.t; x/dxp

��

(63)
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with

N".�/ WD ˚
.u; a/ 2 R

2 W ˇ̌
�.t; x/ .u � dx/ � apdp

ˇ̌ � "
�
: (64)

to finally introduce NF�.�/ WD lim sup
˚ NF".�0/ W " & 0;�0 ! �

�
. We adopt the

convention sup ; D �1 and

NF�' D NF�.t; x; p; '.x; p/; 'x.t; x/; 'p.t; x/; 'xx.t; x/; 'pp.t; x/; 'xp.t; x//

for a smooth function '. We hence formulate the supersolution property of V�.
For definitions and use of viscosity solutions, we refer to [11]. The supersolution
property inside the domain is given by Theorem 2.1 and Corollary 3.1 in [7]. The
boundary condition at t D T� is given by Theorem 2.2 in [7]. In our case, by
assuming the concavity of � in y, we have the convexity of ��1 in the p variable.
We also have N0.�/ ¤ ; for any�. According to these two properties, the terminal
condition takes a much more simple form. Altogether, we obtain the following.

Theorem 2 (Th. 2.1-2.2, [7]). The function V� is a viscosity supersolution of

 �'t.t; x; p/C NF�'.t; x; p/ D 0 on Œ0;T�/ � R
�C � R

��
V�.T; x; p/ � ��1.x; p/ on R

�C � R
��

: (65)

There is a special Cauchy boundary problem for p D 0 we elude here. In our
case, since �.0/ D 0, the stochastic target problem reduces to the superhedging
problem. The target must be reached P-almost surely and we obtain directly the
HJB equation of [22]. In our complete market framework, it straightly provides the
Black–Scholes equation (24) to which V�.:; 0/ is also a viscosity solution.
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Calibration of Electricity Price Models

Olivier Féron and Elias Daboussi

Abstract This paper addresses the issue of model calibration to electricity prices.
The non-storability of electricity introduces new problems in terms of modeling
and calibration, especially when the objective is to represent both spot prices and
forward products, the latter showing a particular time interval: the delivery period.
The two main approaches to model electricity prices are: (i) models on a fictitious
forward curve from what we can deduce spot prices and forward products with
any delivery period, and (ii) models on spot prices from what we can deduce any
forward products. In this paper we study both approaches and we focus on the
calibration issues. The first part of the paper studies different calibration methods for
a classic Gaussian factorial model as described in Benth and Koekebakker (2008),
Kiesel, Schidlmayr, and Börger (2009) and mostly based on Heath-Jarrow-Morton
approach (Heath, Jarrow, and Morton, Econometrica, 1992). In this case different
calibration methods can be proposed, based on spot and/or forward prices, but the
main objective is to compare or validate these estimation procedures. We compare
these procedures on the valuation of specific portfolios and we then stress the
high impact of the calibration method. The second part concerns the calibration
issues of a structural model proposed in Aïd, Campi, Langrené (2013). In particular
we study the reconstruction performances of forward prices and we address the
issue of model calibration in terms of determining the parameters to exactly fit the
observable forward products. We propose a modification in the structural model to
ensure its ability to be calibrated on all the observed forward products and we give
some illustrations of calibration performances.
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1 Introduction

Modeling electricity prices is a very exciting challenge, as their behaviour is unique
compared to other assets like equities or even other commodities, a fact mostly due
to its non-storability. The underlying incompleteness of the recently deregulated
electricity markets makes possible a vast range of models to price electricity
contracts, and thus scientific literature abounds with models that try to capture the
well-known stylized facts of electricity prices.

An electricity producer needs price models for different applications: electricity
price prediction (in a short-term horizon), risk-management, hedging, pricing (in
a mid-term horizon) and investment decisions (in a long-term horizon). The price
models used must be adapted to the application of interest. In this paper we are
interested in a mid-term horizon and the financial application of risk-management,
pricing and the determination of hedging strategies. We position our study on the
case of an electricity producer who has to manage financial risks. His portfolios are
composed of physical and financial assets:

• Production units. The power generating plants can be represented, in a first
approximation, as a basket of European spread options whose underlying assets
are the spot prices of power and the fuel used to produce electricity. In the
case of thermal power plants the carbon spot price is a third underlying asset.
For example, a gas power plant can be represented as a basket of European
options of payoff

�
Se

t � hgSg
t � hcSc

t � K
�C

, with St being the spot prices and the
superscripts e, g and c are respectively for electricity, gas and carbon, hg and hc

are coefficients determining the performances of the plant (the “heat rate”), and
K is the fixed production cost. Of course the modelization of power plants may
be more complex once we consider dynamic constraints, starting and stopping
costs. . . But the most important point to note is that the underlying assets are the
spot prices.

• Storage assets. Gas storage and hydraulic dams are the most common storage
assets of a power producer. They are classically represented as swing options that
let the option holder buy a predetermined quantity of energy at a predetermined
price while having some flexibility in the amount purchased and the price paid.
The underlying assets are the spot prices of power and gas for the gas storage
asset.

• Electricity supply contracts. On the other hand, an electricity producer has
contracts for supplying electricity. These contracts may have optionalities1 that
allow them to be represented as swing options, moving average options or more
exotic derivatives. The underlying assets are spot prices of power and fuels, but
also forward prices in the case where the sale price depends on some historical
forward prices.

1For example, a load curve contract allows the owner to buy at a fixed price an undetermined
quantity qt of power in an interval Œqmin

t I qmax
t � around a specific load curve.
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In order to manage the risks of such portfolios, a price model is needed to represent
both spot prices and forward products, on several commodities in the Energy market.
Therefore we focus on adapted models for this objective, in particular we are
not interested in models that exclusively represent spot prices (see [7] for some
examples) or, on the other hand, exclusively represent forward products as it is
proposed, for example, in [6, 16].

We can classify the electricity price models into two main categories depending
on the element considered as the basis of modelization, but all the models aiming
to represent both spot prices and forward products need to determine the “forward
curve”, i.e. a function Ft.T/ defining fictitious forward contracts delivering 1MWh
of electricity at dates T during one unit of time (1 h or 1 day).

The first class of models is dedicated to directly represent the forward curve and
is mostly related to classic interest rate models like in [13]. We refer to [6] and [16]
for some examples and [14] to justify using interest rate models for electricity prices.
The main advantage of this class of model is the ability to use the broad literature
of interest rate models which leads, in general, to a lot of closed-form formulas of
pricing and an easy determination of hedging strategies. However, the calibration of
these models is a real issue in the case of the power market because the observed
quotations are not some points of the forward curve, but a weighted average of the
forward curve over different periods (the delivery periods, as detailed in Sect. 2).
Therefore the relationship between the model parameters and the observed products
is more complex.

The second class of models focuses on the spot price representation. The starting
point is then to model power spot prices as finely as possible, using sophisticated
processes, as done for example in the popular jump-diffusion model from [10]. This
has also lead to a new methodology for forecasting and modeling spot prices, and we
refer to [19] for a complete panel of statistical methods that are used with reduced-
form models. These models may depend on several hidden factors [5] or other
observable factors. In particular, structural models define a relationship between the
power spot price, the fuel spot prices and other observable variables like demand
and production capacities, temperature. . . Various structural models exist which we
refer to [9] for a complete survey, underlying the fact that they differ depending
on the drivers they take into account. For example, some authors decide to link the
prices only to the demand, as [4] did in what is often referred to as the first structural
model. The most relevant drivers are the capacity, the demand, and the prices of fuels
needed to produce electricity, which are directly observable, and thus some have
studied the performances of their models by confronting their simulated spot prices
against historical data, as it was done in [2]. As for any spot price model, forward
prices are deduced using no-arbitrage arguments, leading, for structural models, to a
relationship between electricity forward prices and fundamental drivers like forward
prices on fuels.

The objective of this paper is to study the calibration issues for each class of
models. Firstly we study a factorial model representing the forward curve, with
two Gaussian factors, as proposed in [16]. In the case of forward curve models,
the calibration on initial forward products is trivial, it is sufficient to determine
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the appropriate initial forward curve. However the model parameters have to
be estimated. In this part the proposed estimation procedures are not especially
original, though the calibration on forward volatilities has not been described, to
our knowledge, in previous literature. But the main objective is to highlight the
practical problem of calibration due to the complex relationship between parameters
and observed products, and also due to the real need to represent both spot prices
and forward products.

In a second part, we study the structural model proposed in [2] in terms of
forward price reconstruction and its ability to be calibrated. To our knowledge, this
topic has not been treated in the literature for structural models, hence this will form
the main contribution of this paper. The efficient method of calibration we propose
allows to widen the application scope of such a structural model. In particular it
opens up the possibility of using structural models for pricing applications.

The paper is organized as follows. Section 2 concerns the study of a 2-factor
model and proposes a comparison of calibration results in a simple example of
pricing application. Section 3 is focused on a structural model and its ability to
represent forward prices and to be calibrated. The conclusion and some perspectives
are proposed in Sect. 4.

2 Parameters Estimation for a 2-Factor Model

In this section we study the estimation problem for a very classic factorial model
used to represent power prices. The exposed procedures are not original but the
objective is to stress the estimation issue once the model is used to represent
both spot and forward prices. The factorial representation of the power forward
curve was already studied, for example in [18] and justified in [14]. The authors
in [17] highlight a decomposition in two factors for modeling power prices in the
Norwegian market, with a weak correlation between those two factors. And, in [16]
an explicit two-factor model is proposed in the risk-neutral probability:

dFt.T/

Ft.T/
D �s.t/e

�˛.T�t/dW.s/
t C �l.t/dW.l/

t (1)

where ˛ 2 R
C� and �s.t/ and �l.t/ are positive integrable functions. This model is

very close to the well known Gabillon model [3] and exactly the same for a specific
form of �l.t/. In all this paper the time is measured in years, the “mean-reverting”
parameter ˛ will then be measured in year�1.

Because of the presence of e�˛.T�t/ in the first factor we call it the “short-term
factor”, and the second term will be called the “long-term factor”. Also the form of
the short-term factor allows us to represent the specific behavior of power prices:
increasing volatility when the maturity goes to zero. For simplicity we consider no
correlation between the two Brownian motions but all that follows can be easily
extended with a non-zero correlation.
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The main advantage of using Heath-Jarrow-Morton [13] type factorial models
for power prices is its ability to be calibrated on observed forward products by
specifying an appropriate initial forward curve F0.T/, and, because of the broad
literature of this type of modeling (especially for interest rate models), an easy use
for pricing applications. We note also that in the case of commodity price modeling,
using HJM framework is simpler than for interest rates because no drift condition
must be satisfied, except drift equals zero.

In the following we aim to highlight, however, the estimation issue when, as a
power producer, both spot prices and forward products must be well represented. In
particular we will expose two different estimation methods.

• The first estimation method is based on the observed forward products where the
objective is to fit the volatility curve. In this context we stress the difficulty due
to the forward product properties (with a delivery period) that makes its process
generally non Markovian and we then propose an approximation on the diffusion
process to make the parameters estimation feasible.

• The second estimation method is based on both spot prices and forward products.
In this context we describe the spot price model in terms of an “observation-state
equations” system to use the classic Kalman filter and estimate the short-term
factor parameters. Long-term forward products are used to estimate the long-
term volatility �l.t/.

With a simple example of pricing application we propose to stress the high impact
of estimation procedures to the indicators of interest. The objective is, in this simple
example, to give a performance measurement by comparing the different results to
a “benchmark” value. However the objective is not to come to a conclusion on any
ranking of calibration methods but only to stress their impact in the context of the
power market.

2.1 Method 1: Calibration on Forward Volatilities

In this section we develop a calibration method based on forward price observations.
The proposed approach aims to fit the forward price volatilities. Although this
approach is classic, the main issue is due to the specificities of power forward prices.
Indeed the difference between the forward prices represented in model (1) and
the observed forward products (with a delivery period) makes the calibration more
complex. In this context we propose some approximations to make the parameters
estimation feasible. In particular we propose an approximation of forward product
diffusion by a Markovian process.

Equation (1) gives the dynamics of a “unitary” forward price, i.e. a forward price
of an instantaneous (or unitary) delivery period. The available observed products
are defined by Ft.T; �/ as the price at time t of 1MWh delivered from T to T C � ,
� being called the “delivery period”. Let us consider a discretization time step
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h (1 h for example). From Eq. (1) and the assumption of absence of arbitrage
opportunity we can deduce the relationship between forward products and unitary
forward prices:

Ft.T; �/ D h

�

�
h �1X
iD1

Ft.T C ih/ (2)

and their dynamics:

dFt.T; �/ D h

�

�
h �1X
iD0

h
�s.t/e

�˛.TCi�t/dW.s/
t C �l.t/dW.l/

t

i
Ft.T C ih/ (3)

The presence of Ft.T C ih/ illustrates that, in general, the SDE for Ft.T; �/ is not
Markovian, as already shown in [6], which makes the calibration intricate. The
approximation we propose is based on the introduction of shaping factors, defined
as follows:

�
t;T;�
i D Ft.T C ih/

Ft.T; �/
; 8i D 0; : : : ;

�

h
� 1 (4)

These shaping factors can be interpreted as weighting factors applied in hour (or
day) i of the delivery period ŒT I T C �� with respect to the mean value Ft.T; �/ of
forward prices over ŒT I T C��. One can note that the shaping factors are normalized

by definition because
P �

h �1
iD0 �

t;T;�
i D �

h . One can also note that these shaping factors
are random and depend on the quotation date t. With the introduction of shaping
factors the SDE on Ft.T; �/ can be rewritten:

dFt.T; �/

Ft.T; �/
D �s.t/e

�˛.T�t/�.t;T; �/dW.s/
t C �l.t/dW.l/

t (5)

with �.t;T; �/ D h
�

P �
h �1
iD0 �

t;T;�
i e�˛ih being the weighted average of the shaping

factors over the delivery period. The fact that the dynamics on Ft.T; �/ is neither
Markovian nor Gaussian is now reflected in the fact that �.t;T; �/ is random and
depends on time t.

Let .tn/nD0;:::;N be a time discretization with t0 D 0 and constant time step2 ıt D
tnC1 � tn. We consider the following approximations.

• The functions �s.t/ and �l.t/ are constant over each interval Œtn I tnC1�.
• The shaping factors are constant with respect to time t: �t;T;�

i D �
T;�
i .

2The time step ıt will be related to the observed prices, therefore ıt may be different from the
discretization step h of the delivery period.
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Therefore the function �.t;T; �/ D �.T; �/ D h
�

P �
h �1
iD0 �

T;�
i e�˛ih does not depend

on time t and the return Rn.T; �/ of forward products between tn and tnC1 is given by:

Rn.T; �/ D log
FnC1.T; �/
Fn.T; �/

D �1
2
�2n .T; �/C �s.tn/e

�˛.T�tn/�.T; �/
p
�.2˛; ıt/"s

n C �l.tn/
p
ıt"l

n

with "s
n and "l

n two independent Gaussian random variables of zero-mean unit-
variance and

�.a; ıt/ D eaıt � 1
a

�2n .T; �/ D �2s .tn/�
2.tn;T; �/e

�2˛.T�tn/�.2˛; ıt/C �2l .tn/ıt

Now suppose N C 1 observations .Fn.T; �//nD0;:::;N at dates .tn/nD0;:::;N and
constant volatility functions �s.t/ D �s and �l.t/ D �l, we can therefore compute
the theoretical forward returns depending on the three parameters �s; �l and ˛ and
the corresponding volatility:

V2
th.T; �; ˛; �s; �l/ D 1

N

N�1X
nD0

Var ŒRn.T; �/� (6)

In the particular case where we assume constant shaping factors �T;�
i D 1we obtain:

V2
th.T; �; ˛; �s; �l/ D ˚.�/�2.�/�2s �.2˛; �/C �2l ıt (7)

with � D Nh the quotation period, and

˚.�/ D 1

N

1 � e�2˛�

1 � e�2˛h
and �.�/ D h

�

1 � e�˛�

1 � e�˛h
(8)

The calibration consists in estimating three parameters, �s; �l and ˛. A first
solution would be to estimate them by maximizing the likelihood function, therefore
to estimate parameters that fit as well as possible the observed values of forward
returns. However empirical studies have shown that the parameter values are
very sensitive to the choice of products considered for the estimation. Instead we
propose a calibration method consisting in fitting the volatilities of the observed
forward products. More precisely from the observed forward returns Robs

n .T; �/ D
log FnC1.T;�/

Fn.T;�/
we can compute the empirical volatility:

V2
emp.T; �/ D 1

N � 1
NX

nD1
.Robs

n .T; �/ � R.T; �//2; R.T; �/ D 1

N

NX
nD1

Robs
n .T; �/

(9)
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Remark. If derivatives on forward products are available, it is possible to compute
the implied (Black) volatility instead of the historical volatility.

The calibration procedure then consists in optimizing the distance between
theoretical and empirical volatilities for all observed forward products:

. Ǫ ; O�s; O�l/ D arg min .˛; �s; �l/
X
.T;�/

�
V2

emp.T; �/ � V2
th.T; �; ˛; �s; �l/

�2
(10)

2.2 Method 2: Calibration on Spot Prices and Long-Term
Forward Products

By integration of (1) and taking the limit T ! t we obtain:

log St D log Ft.t/ D log F0.t/ � 1

2

�
�2s
1 � e�2˛t

2˛
C �2l t

�

C
Z t

0

�se
�˛.t�u/dW.s/

u C
Z t

0

�ldW.l/
u

By noting

Xs
t D

Z t

0

�se
�˛.t�u/dW.s/

u and Xl
t D

Z t

0

�ldW.l/
u (11)

We can rewrite the spot price dynamics as a (state - observation equations) system:

d.log St/ D
�
@F0.t/

@t
C �.t/

�
dt C dXs

t C dXl
t (12)

dXs
t D �˛Xs

t dt C �sdW.s/
t (13)

dXl
t D �ldW.l/

t (14)

with �.t/ D 1
2

	
�2s e�2˛t C �2l



.

The drift part can be treated as a seasonality component of the spot price.
Its estimation can be made by a deseasonalization step. In the following this
seasonality will be represented by seven daily parameters, 12 monthly parameters
and one parameter per year, which are estimated by a classic linear regression,
with additional constraints of normalization for the daily and monthly parameters.
After this deseasonalization step, the maximum likelihood estimation of .�s; �l; ˛/

can proceed from the residual by using a Kalman filter [12, 15] to compute the
likelihood. In order to also use forward products in the calibration we propose
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to first estimate �l from long-term forward products (year-ahead or season-ahead,
depending on the market) with the approximation:

dFt.T; �/

Ft.T; �/
� �ldWl

t; if T � t >> 0 (15)

The maximum likelihood estimation from spot prices then proceed to estimate the
short-term parameters �s and ˛, with this pre-estimated �l.

2.3 Results

This section shows an illustration on the impact of the calibration methods to a
simple pricing application. As already said the objective is not to give a ranking
of calibration methods, but only to stress and quantify the difference of results, in
terms of value for a simple portfolio, due to the choice of the calibration method.

2.3.1 Data Set

We consider a portfolio composed of a strip of European options on forward
products. More precisely, we consider 24 European options on monthly forward
products: product “April-2013” to product “March-2015”. The date of pricing is
t0 D March 12th, 2013 and all the options are at the money. We consider two
different markets: the UK power market and the French power market. The main
advantage of considering options on monthly forward products is the possibility to
have a “benchmark” value. Indeed, one can consider a model directly on forward
monthly products, as proposed in [6], calibrated on observed empirical volatilities.
let us denote by Mt D T � t, then the benchmark model can be written as follows:

dFt.t C Mt/

Ft.t C Mt/
D �.Mt/dWt (16)

where �.Mt/ is a piecewise constant function fitting exactly the empirical forward
volatilities.

We consider 1 year of historical data for the calibration on forward products. The
products used for calibration depend on the market.

• The products used for the calibration in the UK power market are: 1 to 4 Week-
ahead, 1 to 4 Month-ahead, 1 to 4 Quarter-ahead and 1 to 6 Season-ahead.

• The products used for the calibration in the French power market are: 1 Week-
ahead, 1 to 3 Month-ahead, 1 to 3 Quarter-ahead and 1 to 2 Year-ahead.

The shaping factors �T;�
i are all considered equal to 1. This strong approximation

is only used for the calibration purpose because it has no significant impact on the
reconstructed volatilities.
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Concerning the calibration on spot prices, we consider 2 years of historical data
to estimate the seasonality part and 1 year of the residual signal to estimate the short
term parameters �s and ˛. The long term volatility �l is estimated as an averaged
volatility of the 1 and 2 year-ahead products for the French power market, and as an
averaged volatility of the 1 to 6 Season-ahead products for the UK power market.

2.3.2 Calibration Results

Table 1 shows the estimated parameters on the UK power market with respect to
the calibration method and Fig. 1 illustrates the resulting forward volatilities recon-
structed by the 2-factor model in comparison to the empirical forward volatilities.
We can note that the empirical volatilities do not seem to decrease monotically with
the maturity. This effect can be mainly explained by the overlapping delivery period
of the forward products. Concerning the reconstructed volatility curves we can
observe that the long-term volatility values are similar due to the quasi-similarity of
its estimation procedure. The most important point is the difference in value for the

Table 1 Estimation results on UK and French power: estimated parameters with respect to the
calibration method

Parameter Calibration on forward volatilities Calibration on spot prices

UK power market French power market UK power market French power market

�s (%) 19.1 45 84.5 302

˛.Y�1/ 1.37 8.73 162.65 88.15

�l (%) 9.8 11 9.8 11

1WAH 1MAH 1QAH 1SAH 6SAH
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Estimation on forward volatilities
Estimation on spot prices

Empirical volatilities

Product

Fig. 1 Estimation results on UK power market: empirical volatility (blue line with circles),
reconstructed volatility of the 2-factor model calibrated on forward volatilities (red line) and on
spot prices (black line with squares)
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Fig. 2 European option pricing on UK power market: benchmark value (blue line with circles),
values from the 2-factor model calibrated on forward volatilities (red line) and on spot prices (black
line with squares)

short-term parameters: a factor 4 in �s and a factor 100 in ˛ from the estimation on
forward volatilities to the estimation on spot prices. In the case of calibration on spot
prices, the parameter ˛ can be interpreted as a “mean-reverting” coefficient driving
the spot prices. Its estimated value then shows that the spot price presents highly
mean-reverting behavior, this being mostly due to the presence of spikes. This high
value of ˛ leave a single constant volatility factor (the long-term factor) to fit the
whole forward volatility term structure. In this case the estimated forward volatility
curve, as shown in Fig. 1, is nearly completely flat and the well known Samuelson
effect cannot be captured. On the other hand, because the same parameter ˛ drives
the decreasing speed of the forward volatility curve, it becomes obvious that the
estimated values are completely different and depend on the calibration method.

In Fig. 2 we illustrate the impact of the estimation methods in the value of the
“toy” portfolio. Compared to the benchmark value, we notice a weak error with
the value computed from the two-factor model calibrated on forward volatilities.
This confirms the results of [17]: two factors can be sufficient to represent forward
products. However this does not take into account the need to also represent spot
prices. And, as shown in Fig. 2, the resulting value, when the two-factor is used with
parameters estimated on spot prices, highly underestimates the benchmark value
with an error of around 20%. Similar remarks can be made in the French power
market (Table 1, Figs. 3 and 4) where the error can reach 30% with the two-factor
model calibrated on spot prices.

The main conclusion is not to reject the calibration on spot prices, because
the chosen application context (pricing European options on forward products) is
completely adapted to a calibration on forward volatilities. This context allowed us
to build a benchmark value and then to make an objective comparison of calibration
methods. Another consideration, for example with a portfolio exposed on spot
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Fig. 3 Estimation results on French power market: empirical volatility (blue line with circles),
reconstructed volatility of the 2-factor model calibrated on forward volatilities (red line) and on
spot prices (black line with squares)
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Fig. 4 European option pricing on French power market: benchmark value (blue line with circles),
vale from the 2-factor model calibrated on forward volatilities (red line) and on spot prices (black
line with squares)

prices, would have shown that the calibration on spot prices is more adapted, but
in this case a benchmark value cannot be built easily and is still an open problem.
The main conclusion is that, if the objective is to represent both spot forward prices,
two factors are not sufficient and, before the calibration methodology, a study of
more complex models is necessary. For example, adding at least a decay factor
(i.e. a second mean-reverting parameter) in the long-term factor would allow us to
capture both mean-reverting behaviour of spot prices and the Samuelson effect on
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the forward volatility curve. However this change of model will create a decreasing
volatility toward 0, which may be contrary to the observed volatility curves (see,
for example, Fig. 3 which shows that the forward volatility curve seems to converge
toward a positive value). Another solution would be to add a third factor of the
same form as the short-term factor, therefore to have two mean-reverting parameters
as previously and to keep a non-zero limit value of the forward volatility level.
However the issue of calibration will remain and increase with an increasing number
of factors.

3 Calibration of a Structural Model

In this section we study the second class of commonly used models for power prices:
the class of structural models. This approach is more recent and adapted to the
stylized facts of electricity. In particular it allows to represent a strong relationship
between the power spot price and the factors that explain it: the fuel spot prices, the
demand and the production capacities. This section focuses on a particular structural
model, proposed first in [1] and modified in [2]. By definition the model is adapted
to represent power spot prices. However, to our knowledge, there is no literature on
the performances of this kind of models in terms of forward price representation.
This is the first objective of this section and, as a natural sequel, we address the
issue of calibration on observed forward prices.

3.1 Reminder of the Model

The structural risk-neutral model we study in this paper is a modified version of
the one introduced in [1], and its complete presentation can be found in [2]. In this
section, we recall the approach and the main results obtained by the authors.

3.1.1 Approach and Main Results

The model is derived from the aggregation of two essential observations. On the
one hand, when the market is not in a period of stress, the price of the marginal fuel
of the generation system will be the dominant part of the electricity spot price. On
the other hand, at times of market stress, the well-known spikes of the electricity
spot prices will occur when the demand reaches the system maximal capacity. In
this model, such behaviour is captured by a “scarcity” function, that will explode to
form the prices spikes, thus leading to the following form for the spot price:

St D g
�
Cmax

t � Dt
� nX

iD1
hiSi

t1fDt2Ii
tg; (17)
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Fig. 5 Illustration scheme of electricity price construction

with Dt the demand, Ci
t, i D 1; : : : ; n the capacities of the fuels used in the

production system, hi the corresponding heat rates, Si
t the corresponding spot prices

of fuels, Ii
t the capacity interval where fuel i is marginal (see Fig. 5), Cmax

t DPn
kD1 Ck

T the total capacity of the production system, and g the “scarcity” function:

g.x/ D min
�

M;
�

x�

�
1x>0 C M1x<0:

Equation (17) that defines the model can be summarized in a simpler way: when
the demand is in the marginal interval of the ith fuel, the spot price of electricity is
equal to the cost needed to produce 1MWh of electricity from the ith fuel, times the
scarcity factor.

Remark. In this model the merit order of fuels is assumed to be fixed. For this
study we keep the same assumption for more simplicity and also in order to keep
acceptable computation time.

This spot model has been backtested, using historical data for demand, capacities,
and fuel spot prices. The parameter M of the scarcity function is estimated so as to
roughly match the high cap on electricity spot price, defined by the market as 3,000
eMWh.3 Its estimated value is 30. The other parameters of the scarcity function

3http://www.epexspot.com/en/product-info/auction/france.

http://www.epexspot.com/en/product-info/auction/france
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Table 2 Hourly parameters of the scarcity function g

Hour (h) � � Hour (h) � �

0 0.44634 2:5137 12 0.73737 6:517

1 0.67993 4:0184 13 0.53414 4:1539

2 0.82051 5:2762 14 0.6109 4:6532

3 0.86753 5:0142 15 0.68395 5:0617

4 0.84629 4:7554 16 0.9543 8:9007

5 0.68841 4:2384 17 1.5229 29:843

6 0.7833 6:4935 18 1.8399 57:121

7 0.97349 12:1802 19 1.1405 14:1943

8 0.77457 7:5105 20 1.0153 9:7041

9 0.8497 8:521 21 0.56393 3:8245

10 0.72403 6:5117 22 0.55286 3:973

11 0.63956 5:6207 23 0.6688 4:6805

have been estimated to best fit the model price with the historical spot prices, for
each hour of the day. The results can be seen in Table 2 and more performance
illustrations can be found in [2].

The main objective is not to pursue the performance evaluation of the spot model.
We intend to take a closer look at the underlying structural relationship for the
forward prices, and then we start by recalling the pricing methodology adopted for
this model. The presence of the demand and capacities implies an incomplete market
setting, and thus an infinity of no-arbitrage prices for any derivative or, equivalently,
an infinite number of risk-neutral measures. The criterion used to value an electricity
derivative for this model is the Local Risk Minimization approach, which allows us
to choose a risk-neutral measure OQ. Technical details concerning the choice of this
measure, which uses the Local Risk Minimization principle (introduced in [11]),
can be found in the original paper. The main results are detailed in Appendix 1 and
lead to a no-arbitrage price for a forward price Fe

t .T/ on electricity that takes the
form:

Fe
t .T/ D E

OQŒST jFt�;

with Ft D F S
t _FC

t _FD
t the filtration representing the market information at time

t, which is the filtration generated by the randomness of the fuels, the demand and
the capacities, and OQ obtained using Local Risk Minimization, satisfying OQ D P on
FC

t _ FD
t . Consequently, the forward price takes the simple form:

Fe
t .T/ D

nX
iD1

hiGi .t;T;Ct;Dt/Fi
t .T/ ;

Gi.t;T;Ct;Dt/ D E

h
g.Cmax

T � DT/1DT 2Ii
T
jFD;C

t

i
:
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If we want to reconstruct the real forward prices that are exchanged on electricity
markets, we need to average the forward price with instantaneous delivery over the
delivery period ŒT;T C �� leading to the final form:

Ft.T; �/ D
nX

iD1

�
1

�

TC�X
T0DT

Gi.t;T 0;Ct;Dt/

�

„ ƒ‚ …
stochastic weights

hiFi
t.T

0/ (18)

This result is the core of this study: starting from a spot model, we necessarily have
a result on forward prices involving the forward prices on fuels, the demand process
and the capacities processes. In the following we will study the performances of
this forward relationship as well as classic studies on spot prices like for example in
[1, 8]. Because this relationship shows the historical probability of demand Dt and
capacities Ci

t the global model needs a specification of their dynamics.

3.1.2 Demand and Capacities Modeling

We now need to model the behaviour of the electricity demand and capacities that
we take into account in the model. We follow the same model introduced in [2], and
thus we decide to decompose the demand and capacities processes into two parts: a
deterministic part f�.t/ and a stochastic part Z�.t/:

Dt D fD.t/C ZD.t/;

Ci
t D fi.t/C Zi.t/; for i D 1; : : : ; n

The deterministic part will model the seasonal trend of the demand or capacities,
while the stochastic part will capture the randomness of these processes. We choose
to slightly modify the original model for the seasonality functions. For all the
processes, we will take into account the yearly seasonality, and a week trend, that
will capture the trend of every hour of the week, leading to a 168 parameters. This
can be interpreted as a week scheme, that will be reproduced all year long, following
a yearly seasonality drift. We decide to assume:

fD.t/ D weekD.t/C d1 C d2 cos .2�.t � d3// ;

fi.t/ D weeki.t/C ci
1 C ci

2 cos
�
2�.t � ci

3/
�

for i D 1; : : : ; n

We keep the Ornstein-Uhlenbeck form of the stochastic parts, leading to:

dZD.t/ D �˛DZD.t/dt C �DdWD
t ; (19)

dZi.t/ D �˛iZi.t/dt C �idWi
t; for i D 1; : : : ; n (20)
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3.2 Results on Reconstructed Forward Prices

3.2.1 Description of the Dataset

The whole dataset consists in 4 years of historical data from January 1st, 2009 to
December 31st, 2012. Data from Demand and capacities have been retrieved from
Réseau de Transport Electrique (RTE,4) whereas data of fuel and electricity prices
come from Platts.5 We consider a simple case with three types of production units:
nuclear, gas/coal and oil power plants. This allows us to consider a fixed ranking of
production cost, the cheapest cost being for nuclear plants and the most expensive
being for the oil power plant. Carbon emission taxes are taken into account. Table 3
presents the datasets used in the estimation. It is interesting to note that we used
day-ahead demand, because the demand, as it appears in the spot model, is used
to model the spot price of electricity, which is a day-ahead price as well. Thus, in
this forward framework, we need to stay consistent with the spot model, and use
day-ahead demand.

3.2.2 Estimation Results for Demand and Capacities Parameters

To estimate the parameters of the demand or capacities processes, we follow the
same framework: first we estimate the parameters of the seasonality function, and
then we estimate the Ornstein-Uhlenbeck parameters. The seasonality estimation is
done by using classic statistical tools like linear regression methods and the details
can be found in Appendix 2. For the stochastic parameters, we used ordinary least
squares to estimate the parameters of the Ornstein-Uhlenbeck processes, securing
confidence intervals (Table 4).

Table 3 Description of the dataset

Name Source Data Frequence/type Dates covered/value

Demand RTE Dt Hourly 2009–2012

Nuclear capacity C1
t

Coal+gas capacity C2
t

Oil capacity C3
t

Fuel forwards Platts Fi
t.T/ Daily 2009–2012

Nuclear heat rate h1 Constant 0:84:10�4

Coal+gas heat rate h2 0.45

Oil heat rate h3 1.5

4www.rte-france.com.
5www.platts.com.

www.rte-france.com
www.platts.com
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Table 4 Demand and capacities parameters estimated from the whole dataset

Parameter Estimate Confidence interval Parameter Estimate Confidence interval

d1 0:37389 0.3464-0.40137 c21 4:6952 4.6855-4.7049

d2 1:967 1.9123-2.0218 c22 1:3929 1.3753-1.4105

d3 0:14137 0.14095-0.14181 c23 0:19436 0.19345-0.19529

˛D 32:7958 27.2804-38.3112 ˛2 21:367 16.7558-25.9782

�D 16:7316 16.1176-17.4223 �2 5:0362 4.8514-5.2441

c11 7:7918 7.785-7.7985 c31 49:6449 49.6182-49.6716

c12 0:91707 0.90447-0.9297 c32 7:0054 6.9545-7.0563

d13 0:18299 0.18218-0.18382 c33 0:17465 0.17428-0.17501

˛1 26:4656 21.4961-31.4351 ˛3 7:842 4.8483-10.8358

�1 4:8794 4.7003-5.0808 �3 11:7357 11.305-12.2201

Mon Tue Wed Thu Fri Sat Sun Mon
−6

−4

−2

0

2

Days of the week

V
ol

um
e 

(G
W

h)

Demand Coal capacity Oil capacity Nuclear capacity

Fig. 6 Estimated week parameters

Figure 6 shows the estimated values of the weekly parameter for demand and
capacities. It underlines the fact that no weekly seasonality can be seen for the
capacities, while it is a major feature of the demand.

3.2.3 Reconstructed Forward Prices

In order to study the performances of forward price reconstruction we implemented
the following algorithm: at each date t from January 1st, 2009 to December 31st,
2012,

1. Estimate parameters of demand and capacities processes from 2 years of
historical data.

2. Consider the observed forward fuel prices Fi
t.T; �/ for all observable .T; �/ and

assume Fi
t.T

0/ D Fi
t.T; �/ for all T 0 2 ŒT; I T C ��

3. Compute Eq. (18) to build the electricity forward price and compare to the
observed one.
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The algorithm is implemented in Matlab 2010a on a laptop.6 The computation time
is mainly due to the computation of the functions H and G defined in the section
“Computing the Stochastic Weights” in Appendix 1. If we use the series expansion
approach proposed in [2], based on the extended incomplete gamma function, the
reconstruction of the 1-Year-ahead product for only one date takes 21 s. If, instead,
we approximate the functions H and G by Monte Carlo approach with 400 samples,7

the reconstruction of the 1-year-ahead product takes 2.3 s.
Figure 7 shows the reconstruction results for 1-month-ahead, 1-quarter-ahead

and 1-year-ahead products. We can remark satisfactory reconstruction of the
1-month-ahead product, capturing level and seasonality quite well. The fundamental
relationship (18), i.e. the link between electricity forward prices and an expectation
of demand and capacities levels, seems dominant in the explanation of the 1-month-
ahead. The 1-year-ahead reconstruction is also efficient, but we have to note a level
underestimation for the period 2009 to 2010. Although no changes in demand and
capacities have been observed at the end of 2010, the reconstruction results are more
efficient during the period 2011 to 2012. There is no explanation at this time about
this particular change of behavior and it remains an open question. Reconstruction
results are less efficient for the 1-quarter-ahead product, where, in particular, the
level is not well captured. The relationship (18) is then not the fundamental element
that drives the price of this product. We must further investigate the comprehension
of the market actors to understand this particular effect.

3.3 Calibration

In the previous section, we have seen the ability of the model when it comes to
reconstructing the forward prices. But a new question arises: is it possible, with this
model, to reproduce exactly the forward prices that we can observe, at a certain
time? This question is extremely important on the markets, as it is very important
to be able to fit a model to the real prices in order to avoid any arbitrage possibility.
In this section, the aim will be to calibrate the model on the forward contracts that
we can observe on the markets, which is completely different from a standard spot
model calibration: indeed, if we follow an implied volatility framework, we need to
find a parameter of the model that makes the price a strictly monotonous one, and
thus we can obtain an implied parameter, at each calibration date, for the price. This
is feasible, as the model has a lot of parameters, and that their behavior is flexible,
but it does not actually give us the calibration that we are looking for. When it comes

6Intel(R) Core(TM) i3-2375M CPU @ 1.50 GHz.
7The number of samples is empirically chosen so as to obtain a difference between the series
expansion and Monte Carlo computations lower than 0.1e on the reconstructed price.
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Fig. 7 Results of forward product reconstruction: observed (solid-blue line) and reconstructed
(dashed-red line) 1 month-ahead (top), 1-quarter-ahead (middle) and 1-year-ahead (bottom) prices
from January 1st, 2009 to December 31st, 2012

to calibrating on forward contracts, the problem is much more complicated, we have
to calibrate the model to fit a given curve: the forward curve, that contains all the
available contracts at a certain date.

3.3.1 Adjusting the Demand Parameter

In our model, we looked closely at the influence of the parameters of the demand
and capacities processes, and we found the deterministic part of the demand to be a
pertinent adjustment parameter, as it was already proposed in [9]. Let us recall the
model for the demand process:

Dt D fD.t/C ZD.t/
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In this case the expected value of DT conditional to Ft:

E
	
DT jFD;C

t


 D fD.T/C e�˛D.T�t/.Dt � fD.t// WD mD
t;T

The introduction of a non-zero long-term mean " 2 R in the process of ZD.t/:

dZD.t/ D ˛D." � ZD.t//dt C �DdWD
t

will only affect the mean of the demand process, conditional to Ft:

E
	
DT jFD;C

t


 D mD
t;T C ".1 � e�˛D.T�t// (21)

This modification may be interpreted as a change of probability for the demand
process, leading to a difference between the risk-neutral and the historical proba-
bilities. In this case the resulting pricing measure is no longer the one obtained by
Local Risk Minimization.

The stochastic weights (the details of calculus are available in Appendix 1) are
all affected:

G1."; t;T;Dt;Ct/ D H.m2
t;T C m3

t;T ;m
1
t;T � mD

t;T � ".1 � e�˛D.T�t//; �32 ; �
1;D
1 /

G2."; t;T;Dt;Ct/ D H.m3
t;T ;m

1
t;T C m2

t;T � mD
t;T � ".1 � e�˛D.T�t//; �33 ; �

1;D
1 /

�H.m2
t;T C m3

t;T ;m
1
t;T � mD

t;T � ".1 � e�˛D.T�t//; �32 ; �
1;D
1 /

G3."; t;T;Dt;Ct/ D G .m1
t;T C m2

t;T C m3
t;T � mD

t;T � ".1 � e�˛D.T�t//; �
3;D
1 /

�H.m3
t;T ;m

1
t;T C m2

t;T � mD
t;T � ".1 � e�˛D.T�t//; �33 ; �

1;D
1 /

with mi
t;T D E

h
Ci

T0 jFD;C
t

i
, i D 1; 2; 3 and functions H and G defined in

Appendix 1. We also remark that the function " 7�! Ft.T; �; "/ is strictly increasing,
and that we have the following asymptotical results:

lim
"!C1 Ft.T; �; "/ D MhnFn

t .T/ ' 3000 eur/MWh

lim
"!�1 Ft.T; �; "/ D 0

This shows that, for any contract Fobs
t .T; �/ observed at time t, we can find a

unique value of " able to exactly reproduce it. We can use a dichotomic algorithm
to solve the equation Ft.T; �; "/ D Fobs

t .T; �/, as our interest function is strictly
monotonous, but the regularity of this function in fact allows us to use the
Newton-Raphson algorithm, which gives a quadratic convergence instead of a linear
convergence, using the derivatives of Ft.T; �; "/:8<

:
"0 D 0

"nC1 D "n � Ft.T;�;"/�Fobs
t .T;�/

@Ft
@" .T;�;"/
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To compute the derivatives of Ft.T; �; "/, we compute the derivatives of the weights:

@G1

@"
D �.1 � e�˛D.T�t//

�
@H

@x2
.m2

t;T C m3
t;T ;m

1
t;T � mD

t;T � ".1 � e�˛D.T�t//; �32 ; �
1;D
1 /

�

@G2

@"
D �.1 � e�˛D.T�t//

�
@H

@x2
.m3

t;T ;m
1
t;T C m2

t;T � mD
t;T � ".1 � e�˛D.T�t//; �33 ; �

1;D
1 /

� @H

@x2
.m2

t;T C m3
t;T ;m

1
t;T � mD

t;T � ".1 � e�˛D.T�t//; �32 ; �
1;D
1 /

�

@G3

@"
D �.1 � e�˛D.T�t//

�
@G

@x1
.m1

t;T C m2
t;T C m3

t;T � mD
t;T � ".1 � e�˛D.T�t//; �

3;D
1 /

� @H

@x2
.m3

t;T ;m
1
t;T C m2

t;T � mD
t;T � ".1 � e�˛D.T�t//; �33 ; �

1;D
1 /

�

The derivatives of the functions G and H can be found in the appendix of the
original paper [2]. In practice we define a function ".T/ added in the deterministic
part of the demand process in order to calibrate the model on all observable forward
products. This function will be piecewise constant, with constant parts inside the
delivery periods.

3.3.2 Calibration Results

The results of the calibration are given in Figs. 8 and 9. Figure 8 shows an example of
estimated ".T/ at date June 28th, 2011 considering the observable baseload forward
products in the French power market: 1 to 6 Month-ahead, 1 to 3 Quarter-ahead
and 1 Year-ahead. This example of result shows that the bias is more important for
small maturities, but is reasonable (�1.5 GW in maximum) compared to the total
available capacity in France (between 80 and 130 GW). When it comes to contracts
with a longer granularity, the calibration shows that the values of " needed to fit the
model given by the model, with the real prices, are small, especially for the 1YAH
contract. In Fig. 9 we repeated the calibration procedure from January 1st, 2011 to
December 31st, 2012 (with a weekly frequency) for three values of ".T/: the ones
needed to exactly retrieve the 1 Month-ahead, 1 Quarter-ahead and 1 Year-ahead
products. This result confirms the previous remarks on a decreasing level of " with
an increasing maturity. It also confirms that the resulting values are acceptable (less
than 3 GW) compared to the total capacity.

4 Conclusion

In this paper we exposed specific calibration issues for electricity price models. In
the first part we stressed that interest rate models, currently used in practice for elec-
tricity price modeling, present additional difficulties for calibration. This is mostly
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due to the non storability of electricity and, hence, the presence of a delivery
period in the observed forward products. In this specific context, the calibration
procedures must introduce some approximation in the diffusion processes to make
the parameter estimation feasible. Also, when the objective is to represent both
spot prices and forward products, as an electricity producer aims to, the previous
studies [17] about a sufficient number of factors to represent all the products, must
be revisited.

In the second part we proposed an original study of how a structural model for
electricity prices, initially dedicated to a good representation of spot prices, is able to
model forward products. This kind of study is essential for practitioners and can help
in the modeling choice. We proposed an easy algorithm, with a modification of the
demand model in the risk-neutral probability, to calibrate the model from observed
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forward products. This idea has already been proposed in [9], for example, and we
show how to use it in the structural model described in [2].

In further work the forward price reconstruction will be deepened by introducing
a price confidence interval induced by the uncertainties on estimated parameters for
demand and capacities processes. This will allow us to measure the impact of these
uncertainties to reconstructed forward products. The problem of fixed merit order,
as it is assumed in [2], will be addressed as a direct extension of the model. Also,
following the calibration results, the future objective will be to price specific power
derivatives like, for example, a power plant and study the resulting hedging strategy.

Appendix 1: Structural Model Description

In this appendix, we recall the main results concerning the model, and we detail
the computation of the forward prices and stochastic weights. We refer to [1, 2] for
more details and proofs.

Forward Pricing

In this section, we detail the computation of a forward contract Ft.T; �/. We first
need to compute the forward price Ft.T 0/, for any T 0 2 ŒT;T C ��, and thus we
need a pricing formula, i.e. we need to take a closer look at the EMM that we will
use. To do so, we consider the submarket composed by the ith fuel only: assuming
this submarket to be complete, there is a unique risk-neutral measure Q

i that is
a risk-neutral measure for the ith fuel. It is shown, in the original paper, that this
measure is one of the EMM for the spot price of electricity St. Also, the Local
Risk Minimization approach, used in this structural model, leads to a Föllmer and
Schweizer minimal EMM OQ that corresponds to zero risk premiums for the demand
and the capacities. In other words, OQ is an EMM for the fuels, and coincides with
the historical measure P for the demand and capacities.

These remarks, along with the mutual independence between the demand, fuel
prices and capacities, lead to:

Fe
t .T

0/ D OEŒST0 jFt� D OE
�

g
�
Cmax

T0 � DT0

� nX
iD1

hiS
i
T01DT0 2Ii

T0

ˇ̌
ˇ̌Ft

�

D
nX

iD1
hiE

�
g
�
Cmax

T0 � DT0

�
1DT0 2Ii

T0

ˇ̌
ˇ̌Ft

�
E

i
	
Si

T0 jFt



D
nX

iD1
hiGi.t;T;Ct;Dt/F

i
t .T/ ;
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for any T 0 > t. To obtain the real forward price with delivery period ŒT;T C ��, we
only have to take the mean of the instantaneous prices Ft.T 0/, for any T 0 2 ŒT;TC��.
The next section will focus on the computation of the stochastic weights.

Computing the Stochastic Weights

Using the models introduced in Sect. 3.1.2 for the demand and capacities, the
random variables DT0 et Ci

T0 are Gaussian, conditional to the filtration FD;C
t , and

we have:

E
	
DT0 jFD;C

t


 D mD
t;T0 D fD.T

0/C e�˛D.T0�t/.Dt � fD.t//

Var
	
DT0 jFD;C

t


 D
�
� i

t;T0

�2 D �2D
2˛D

h
1 � e�2˛D.T0�t/

i

E
	
Ci

T0 jFD;C
t


 D mi
t;T0 D fi.T

0/C e�˛i.T0�t/.Ci
t � fi.t//

Var
	
Ci

T0 jFD;C
t


 D
�
� i

t;T0

�2 D �2i
2˛i

h
1 � e�2˛i.T0�t/

i
(22)

We are trying to compute the following quantities:

Gi.t;T 0;Ct;Dt/ D E

h
g.Cmax

T0 � DT0/1DT0 2Ii
T0

jFD;C
t

i

In the original paper, it is shown that:
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and:

G .m; �/ D
Z
R

g.x/�N.x;m; �/dx

H.m1;m2; �1; �2/ D
Z 1

0

G .x C m1; �1/�.x;m2; �2/dx

where x 7�! �.x; �; �/ the probability density function of a Gaussian random
variable with mean � and variance �2.

In our case, n D 3, these computations lead to, using the more convenient
notation mi D mi

t;T0 and mD D mD
t;T0 :

G1.t;T 0;Ct;Dt/ D H.m2 C m3;m1 � mD; �32 ; �
1;D
1 /

G2.t;T 0;Ct;Dt/ D H.m3;m2 C m1 � mD; �33 ; �
2;D
1 / � H.m2 C m3;m1 � mD; �32 ; �

1;D
1 /

G3.t;T 0;Ct;Dt/ D G .m2 C m3 C m1 � mD; �
3;D
1 / � H.m3;m2 C m1 � mD; �33 ; �

2;D
1 /

Appendix 2: Estimation of Demand and Capacities
Parameters: The Deterministic Part

The model for the deterministic part is:

fD.t/ D d.D/1 C d.D/2 cos
�
2�.t � d.D/3 /

�
C weekD.t/

We denote by .Yi/ D .Dti/ the demand data, and ti the dates corresponding with
the data. To estimate the deterministic part minus the weekly scheme, we start with
the following least-square regression:

Yi D p1 C p2 cos.2� ti/C p3 sin.2� ti/C "i; with "i � N .0; �2/

This equation becomes, using a more convenient matrix notation:

Y D Xp C ";

with:

X D

0
B@
1 cos.2� t1/ sin.2� t1/
:::

:::
:::

1 cos.2� tn/ sin.2� tn/

1
CA
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We can then estimate the parameters, by using the least-square estimator:

Op D .XtX/�1XtY

We can have access to .1 � ˛/-confidence intervals for the first three deterministic
parameters:

�
Op C t1�˛n�2S; Op � t1�˛n�2S

�

With:

S D
s

1
n�2

Pn
iD1 O"2iPn

iD1.xi � Nx/2 D
s

Var.Y/

Var.X/

1p
n � 2

We can then transform the previous regression into one that fits our model:

p2 cos.2� ti/C p3 sin.2� ti/ D
q

p22 C p23 cos.2� ti C �/

D d.D/2 cos.2�.t � d.D/3 /

Thus we change p into d.D/, using :

d.D/2 D
q

p22 C p23

d.D/3 D 1

2�
arccos

 
p3

d.D/2

!

This transformation also allows us to compute confidence bounds for d.D/1 , d.D/2

and d.D/3 . This first part of the estimation procedure gives us estimated parameters
such as:

fD.t/ D d.D/1 C d.D/2 cos
�
2�.t � d.D/3

�

We now need to estimate the weekly scheme weekD.t/. To do so, we use a the
following method, which is quite classic when it comes to estimating a weekly
pattern:

• First, we compute the weekly mean of the data, and store it in a variable called
W 2 R

nw , if nw is the number of weeks for which we have data.
• Then we compute the weekly residuals, which are the distance between data and

the mean of the corresponding week: Rti D Dti � Wki , if ti is in the weekly
number ki. The residuals are then a centered version of the demand.
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• Finally, we compute the mean of these residuals, for every hour of the week
(which means that we take 168 means of the corresponding residuals):

weekD.ti/ D 1

nw

X
tk	tiŒ24�

Rtk
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Part III
Real Options



Incorporating Managerial Information into Real
Option Valuation

Sebastian Jaimungal and Yuri Lawryshyn

Abstract The adoption of real options analysis (ROA) by practitioners, despite
being widely viewed as a superior method for valuing managerial flexibility, remains
limited due to varied difficulties in its implementation. In this work, we propose
an approach that utilizes cash-flow estimates from managers as key inputs and
results in project value cash-flows that exactly match the arbitrarily distributed
estimates. We achieve this through the introduction of an observable, but not
tradable, market stochastic driver process which drives the project’s cash-flow,
rather than modeling the project value directly. Our framework can be used to value
managerial flexibilities and obtain hedges in an easy to implement manner for a
variety of real options such as entry/exit, multistage, abandonment, etc. As well, our
approach to ROA provides a co-dependence between cash-flows, is consistent with
financial theory, requires minimal subjective input of model parameters, and bridges
the gap between theoretical ROA frameworks and practice.

1 Introduction

Real options analysis (ROA) has been recognized as a superior method to quantify
the value of real-world investment opportunities where managerial flexibility can
influence their worth, as compared to standard net present value (NPV) and
discounted cash-flow (DCF) analysis (see, e.g., [6, 9, 21]). Moreover, the literature
tends to fall into two streams: practical methods and implementation, and theoretical
frameworks. Practical methods aim to develop valuation techniques that can be
implemented by practitioners, and, by design, are generally not mathematically
complex. However, a number of these methods make simplifying assumptions that
may be hard to accept, and some are inconsistent with financial theory. Theoret-
ical frameworks tend to be mathematically rigorous and aim to highlight issues
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Fig. 1 An example of typical, optimistic and pessimistic cash-flow stream provided by a manager.
The triangles depict the triangular distribution corresponding to that cash-flow on that date

associated with real option valuation and decision making. Theoretical approaches
are difficult for managers to accept, and therefore use in practice, because they
rely on assumptions, such as a project’s value is modeled as a geometric Brownian
motion (GBM), which may not reflect the manager’s view of future cash-flows.
Indeed, managers tend to have a very simplified and condensed view of what the
potential cash-flows might be worth and certainly do not have a stochastic process
in mind, even one as simple as a GBM, when coming to these views, nor do they
believe that a stochastic process provides an approximation which helps in decision
making.

For example, in the most simplistic situation, a manager may have three views
on a future cash-flow (as in Fig. 1): (i) a typical scenario, (ii) an optimistic scenario,
and (iii) a pessimistic scenario. The manager will then typically provide a sequence
of these views representing a sequence of cash-flows from a project. If the manager
is particularly sophisticated, she may even provide a sequence of distributions (e.g.,
normal, triangular, etc: : :) for the set of the cash-flows. Furthermore, the manager
must take decisions based on their cash-flow distributions and any ad-hoc matching
of a sequence of cash-flow distributions to a stochastic process will not lead to
valuations, and, therefore strategies, that respect their condensed views. It is the aim
of this paper to incorporate the manager’s cash-flow views into real options analysis.
More specifically, we will study two classical examples: (i) irreversible investment
(at a fixed future time) into a sequence of cash-flows and (ii) an entry-exit problem
where the manager decides to invest at a fixed future date, but may stop the cash-
flow (with a cost) once invested. Our approach is, however, very generic and can be
applied to essentially all real option problems. Before providing an overview of our
approach, we first provide a limited review of the recent literature on ROA.

Borison [3] categorizes the main practical approaches to ROA into five cat-
egories: (i) the Classical, (ii) the Subjective, (iii) the Market Asset Disclaimer
(MAD), (iv) the Revised Classical and (v) the Integrated. Each method has its
strengths and weaknesses and for a thorough review we refer the reader to [3].
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Most of the practical approaches assume that the risk embedded in the real option
is spanned by a traded asset (i.e., that the market is complete). The error in this
assumption is somewhat taken into account by modifying the discount factor using
the weighted average cost of capital (WACC). This modification, despite being
partly grounded in capital asset pricing model (CAPM) theory, is in the best case,
adhoc. Further, this assumption causes the value of the option to irreversibly invest
in a project to be strictly increasing in volatility. Such a result contradicts the
observations of an empirical study by [18] as well as the results of theoretical
frameworks that will be discussed below. Our approach agrees with the theoretical
frameworks as well as the empirical study.

Berk et al. [2] develop a real options model of a staged R&D project. The cash
flows are modeled as a GBM with partial correlation to a pricing kernel, i.e. a traded
asset. Included in the model are uncertainties related to catastrophic failure, techni-
cal uncertainty and investment costs. Projects are valued by assuming managers will
invest optimally given the state of observed exogenous and endogenous parameters.
While the model brings insights regarding the type of information available to
managers and its impact on decision making, the author provides no way to tie the
model to manager specified cash-flow distributions, making it difficult to implement
in practice.

Recently, a number of theoretical formulations for treating managerial flexibility
with market incompleteness have been developed. For example, [16] present
four incomplete market real options models and show that standard real options
approaches, which assume complete markets, can lead to contradictory results.
Under certain conditions, contrary to the standard real options approaches (see [9],
for example), in the presence of enough risk aversion, the option value decreases
as idiosyncratic risk increases, as does the optimal timing of investment. This work
highlights issues associated with standard real options models, and especially, the
complete market assumption.

Henderson [12] presents an incomplete market model for a perpetual (irre-
versible) option to invest in a lump-sum payment. She assumes that the project value
is a GBM and that the Brownian driver is partially correlated to a risky traded asset
(itself a GBM). Henderson utilizes the indifference pricing paradigm, whereby the
manger solves two optimization problems: one with the real-option payoff and one
without, and determines the amount of wealth she is willing to pay, which renders
both value functions equal (see, e.g., [5]). She assumes exponential utility without
consumption and derives a closed form solution for the perpetual option to her
model, and establishes the existence of three distinct parameter regions. Depending
on the region, Henderson shows that in incomplete markets, the optimal exercise
time may or may not behave in a consistent manner when considering different
levels of cash-flow risk, compared to standard real option approaches. We note that
[11] presents a finite time horizon version of the [12] model and provides similar
conclusions through numerical experiments. Both [12] and [11] highlight issues
associated with the standard real options models. Also noteworthy, but not directly
applicable, is the work of [14] who study early exercise employee stock options
using indifference pricing on an underlier which the employee is not allowed to (or
cannot—because it is private equity) trade.
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Hugonnier and Morellec [13] examine managerial agency issues associated with
investment opportunities. The authors show that a manager’s investment decisions
are biased by the manager’s need to reduce his own idiosyncratic risk associated
with the idiosyncratic risk of the project and reward mechanisms associated with
project success, which leads to earlier than optimal investment, reducing value
for potentially well diversified shareholders. Many other theoretical approaches
have been presented in the literature. We highlight, however, that no formulation
presented to date is able to, almost universally, meld these theoretical approaches to
managerial supplied cash-flow estimates.

We now provide a brief overview of our approach to valuing real-options
that take into account the manager’s condensed views on the project’s value, as
well as market incompleteness, and highlight some of our key results. First, we
assume that future cash-flow estimates are provided by the manager in the form
of a sequence fF�

k W k D 1; : : : ; ng of probability distributions at a sequence
ftk W k D 1; : : : ; ng of payment dates1—this can be viewed as the input data into
the model and encapsulates the manager’s view, however she developed them, on
the future cash-flow of the project (once invested). This input “data” can simply
be triangular (representing typical, optimistic and pessimistic scenarios), normal,
log-normal, or any other continuous density. Second, we assume that there exists a
non-tradable underlying stochastic process St called the stochastic driver,2 taken
in this work to be an Ito process, which will drive the cash-flows. Specifically,
we uniquely determine a sequence of mappings 'k W R 7! R between the
stochastic driver and the manager specified cash-flow distributions which renders
the transformed stochastic driver 'k.Stk/ equal in distribution to the manager
specified distribution F�

k . In this manner, although we do utilize an underlying
stochastic process, that process is mapped so that it exactly matches the collection
of manager specified distributions. Hence, as far as the manager is concerned, she
need only supply her condensed views and be confident in the fact that the real
options analysis provides strategies that are entirely consistent with those views.
Next, we assume that the stochastic driver is correlated to a traded market index
It, which we assume to be a GBM. This market index will allow us to partially
hedge the real options, but correlation may be zero in which case there is no partial
hedge. Finally, we will utilize the notation of indifference pricing, along the lines of
[12], but account for the sequence of cash-flows as well as the mapping between the
stochastic driver and the cash-flow distributions.

Beyond the new modeling paradigm, this work contains two main results. As
in most models that account for risk-aversion, the value of the real option decreases
with increase risk-aversion. This is not new. However, our results show that there is a
critical level of risk-aversion above which the manager assigns a value of zero to the
real-option regardless of the option. This is a new result, and one which corresponds
to the manner in which manager’s behave.

1This can be easily generalized to a project which pays out a continuous dividend.
2In earlier versions of this work, we referred to this process as the market sector indicator.
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2 Replicating Cash-Flow Distributions

When managers think about investing in projects, they typically have in mind
a cash-flow associated with three scenarios: (i) the most likely scenario (ii) the
optimistic scenario and (iii) the pessimistic scenario. Datar and Mathews [7] propose
a methodology based on such scenarios and we formulate our approach in a
similar manner. An example of the three cash-flow scenarios is depicted graphically
in Fig. 1. The three scenarios may be derived through Monte Carlo simulations
representing the technical risk inherent in the project, the corporations potential
market share, the market value of the end product and so on. Regardless of how the
manager comes to this cash-flow distribution, one of our main goals is to provide
a consistent dynamic model which leads to a project cash-flow possessing any
distribution which a manager provides. Our analysis is not limited to the triangular
distribution shown in the example, although this distribution is, perhaps, the simplest
form that managers employ widely.

Here, we introduce an underlying observable, but not tradable, process St which
drives the project cash-flows. This underlying process can be thought of as a
stochastic driver. We model the stochastic driver as an Ito process as follows

dSt D �.t; St/ dt C �.t; St/ dWt; (1)

where Wt is a standard Brownian motion under the real-world measure P, � W
RC � R 7! R represents the stochastic driver’s drift and � W RC � R 7! R

represents its volatility, assumed to satisfy the usual conditions so that (1) admits a
weak solution. Throughout this article we work on the filtered completed probability
space .˝;P;F D f.Fs/0�s�Tng/ where the filtration F is the natural filtration
generated by the two correlated Brownian motions Wt and Bt (which will be used to
drive a tradable market index later on). Here Tn is the time at which the last cash-
flow is received or incurred (in the case of a cost) and designates the terminal time
of the project. Specific stochastic driver examples of interest are

8<
:
�.t; S/ D � S ; �.t; S/ D � S ; Geometric Brownian Motion,
�.t; S/ D �

�
S � S

�
; �.t; S/ D � ; Ornstein-Uhlenbeck process,

�.t; S/ D �
�
S � S

�
; �.t; S/ D �

p
S ; Feller process.

(2)
Ornstein-Uhlenbeck (OU) processes have been argued as more realistic than

GBM as early as [9] and [15], and utilized by many others in various real options
contexts. Two recent works include [20], who studies real options with stochastic
costs, and [22], who extends Sarkar’s work. Carlos and Nunes [4] study the case of
constant elasticity of variance model for real option valuation.

GBM and OU processes are often used in the real options literature since they
capture the essential source of uncertainty inherent in valuation. However, both
processes are typically applied directly to the project value (or its log). Here, we
do not model the project value, instead, the stochastic driver is only an underlying
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source of uncertainty for the cash-flows. Specifically, the cash-flows fVk W k D
1; : : : ; ng received at time fTk W k D 1; : : : ; ng are each modeled as a function 'k.�/
of the underlying stochastic driver, so that

Vk D 'k.STk/: (3)

As a result, the project value can be viewed as a strip of European contingent claims
on the stochastic driver with payoff functions 'k at time Tk. When the stochastic
driver is high, the project value will be high, and when the stochastic driver is
low, the project value will be low. Furthermore, since the cash-flows are all driven
by the same underlying stochastic driver, and the stochastic driver is dependent
on its past, there is a natural correlation between cash-flows induced by the path
dependence in the stochastic driver. If the stochastic driver is high at the time of
one cash-flow, resulting in a large cash-flow, then the probability of a large cash-
flow at the next time-step is also high. This is a very desirable feature which has
clear economic grounding. Contrastingly, in a number of practical approaches, the
cash-flow distributions are typically assumed to be independent or correlation is
introduced in a rather adhoc manner (as in the [7] approach).

Although the stochastic driver St is not itself tradable, we do assume it is
correlated with a market index It that is tradable. This market index is, for simplicity,
assumed to be a GBM

dIt D � It dt C � It dBt; (4)

where Bt is a standard Brownian motion under the real-world measure. Since the
stochastic driver and the market index are likely correlated, we assume that the
processes Wt and Bt are correlated with correlation coefficient 
. The assumption
that such a traded market index exists will allow us to partially hedge the cash-flows
and the option to invest in the project.

Focusing on a single cash-flow distribution, our task is to determine ' such that at
some cash-flow date T , VT possesses the manager specified distribution F�.v/—we
use an asterisk to remind the reader that this distribution is provided by the manager.
This requirement can be restated as, find ' such that

P.VT < v/ D P.'.ST/ < v/ D F�.v/; (5)

and can be visualized as in Fig. 2 for the case of a triangular managerial distribution
and GBM stochastic driver. We will require the marginal distribution function of
the stochastic driver, specifically let F.T; S/ WD P.ST < S/, which we assume is
known either in closed form, or through solving the appropriate forward equation
numerically (for the three cases, GBM, OU and Feller, the pdf are known in closed
form).

It is not difficult to see that if '.S/ is assumed invertible and the cash-flow
distribution F�.v/ is invertible, then the solution is unique. However, invertibility
is by no means necessary. Nonetheless, we restrict our analysis to this case as it
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Fig. 2 The underlying pdf fST .S/ is mapped through the function '.S/ to match the triangular
distribution

leads to sound economically meaningful results. Note that the probability matching
Eq. (5) can be also be interpreted as a quantile matching relationship where ' acts as
a probability distortion function. One of our main results is recorded in the following
Proposition.

Proposition 1 (The Replicating Payoff). The payoff function 'k.S/ which pro-
duces the manager specified distribution F�

k .v/ for the cash-flow at time Tk, when
the stochastic driver satisfies (1), is given by

'k.S/ D F��1
k .F.Tk; S// : (6)

For the GBM and OU cases, we have F.T; S/ D ˚.z.T; S// where ˚ is the standard
normal cdf and

z.T; S/ D

8̂
<̂
ˆ̂:

1

�
p

T
ln S

S0
� .�� 1

2 �
2/

�

p
T ; GBM case

.S � S/ � .S0 � S/e��T

�
p
.1 � e�2�T/ =2�

; OU case :
(7)

We emphasize that the payoff function ' and the resulting valuations will depend
on the process chosen for the stochastic driver. However, numerical examples have
shown that the sensitivity of the valuations to the driver process are significantly less
than the sensitivity associated with managerial specified cash-flow distributions. In
a practical setting, it is likely that managers will have a much stronger opinion on
the form of the cash-flow distributions than the driver process. As mentioned earlier,
in the real options literature, the GBM and OU processes are generally the processes
most often chosen, and most often are used to drive the value of the cash-flows, not
the cash-flows themselves, as done here.

An important feature of our approach is that the cash-flow distributions inherit a
co-dependence structure from the underlying dynamics of the stochastic driver. In
Fig. 3, the stochastic driver is shown to evolve through time and at cash-flow dates,
transformed via the cash-flow functions 'k into the actual cash-flow amount. The
implied co-dependence can be formalized and for the GBM and OU cases reduce
to a Gaussian copula (see, e.g., [1] and [17]). Cash-flows which are far apart from
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Fig. 3 The cash-flows between dates inherit a Gaussian co-dependence structure since the
underlying stochastic driver (shown here on the x-y plane) which drives the cash-flow is a gaussian
process

one another are less dependent because the correlation of the stochastic driver’s
level decays as the time separation increases. This intuitive feature is captured in
the copula’s correlation matrix which decreases as one moves away from the center
band of the matrix.

Proposition 2 (The Implied Cash-Flow Co-Dependence (GBM/OU)). The
co-dependence of the cash-flow stream is governed by a Gaussian copula.
Specifically, the joint distribution of the cash-flows Vk is given by the expression

P.V1 < v1; : : : ;Vn < vn/ D ˚˝
�
˚�1.F1.v1//; : : : ; ˚�1.Fn.vn//

�
; (8)

where, the elements of the matrix ˝ are

˝jk D

8̂
ˆ̂<
ˆ̂̂:

q
Tmin.j;k/

ı
Tmax.j;k/ ; GBM case

s
1 � e�2�Tmin.j;k/

1 � e�2�Tmax.j;k/
; OU case :

(9)

and˚˝.�/ denotes the multi-variate standard normal cdf with correlation matrix˝.

The above result shows that as the time between cash-flows increase, their
co-dependence decreases. Our resulting co-dependence is consistent with the under-
lying economics of nearby cashflows and does not require any adhoc assumptions
on generating the co-dependence structure. Notice that the OU case allows the
manager to tune the co-dependence structure by choosing �. In principle, if
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the mean-reversion rate and/or volatility is made time-dependent (e.g., piecewise
constant between cash-flows), then quite arbitrary co-dependence structures can be
generated, and the expressions can be found in closed form. This can be useful if
the manager has a very specific view on the co-dependence structure, in addition to
their view on the cash-flow distribution.

The cash-flow matching described here can be embedded into many practical
real-option valuation questions ranging from an irreversible investment in a project
at a fixed future, to the timing option to invest in a project, or abandon a project, and
so on. As well, our cash-flow matching approach can be layered on top of theoretical
approaches. In the next section we will demonstrate how to layer our approach on
top of indifference valuation for the case of an irreversible investment and in Sect. 5
we address the optimal exit problem.

3 Indifference Valuation

In this section, we address how our framework can be used to incorporate a
manager’s aversion to risk, and in particular, the implication this risk-aversion has
on valuing the idiosyncratic risks embedded in the project valuation. Recall that
in our approach the cash-flows are themselves options on the stochastic driver and
are chosen to exactly match the manager’s specified distribution. To value the cash-
flows, as well as the option to invest, we adopt the principle of indifference valuation
along the lines of [12]. Henderson studies the perpetual option to invest in a project
which provides a single lump-sum payment upon investment. Grasselli [11] studies
a finite time horizon version of the Henderson framework and develops a tree
approach to valuation. Moreover, [14] study the American version of Henderson in
the context of employee stock options with early exercise. Our formulation instead
focuses on the matching of manager specified sequence of cash-flow distributions
with the investment decision made on a fixed future date. The optimal timing
problem, where the investment can be made on any date between now and a fixed
future time, is not considered here, but is a relatively straightforward generalization.
We will address an optimal exit version of the problem in Sect. 5 to illustrate how
timing problems can easily be treated.

3.1 Indifference Valuation Methodology

Indifference valuation requires solving two optimal investment problems: (i) the
investment problem in the absence of the option to invest, and (ii) the investment
problem in the presence of the option to invest. The indifference price is then defined
as the amount of wealth f the manager is willing to give up in scenario (ii) such that
her value function equals the value function in scenario (i) without giving up f .
A precise definition follows the problem set up and discussions below.
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As before, we assume the manager has supplied a series of uncertain cash-flow
projections v1; v2; : : : ; vk at a sequence of dates T1;T2; : : : ;Tn. To value the option,
the manager must provide a distributional assumption on the set of future cash-
flows—e.g. in the form of the triangular distributions discussed earlier. Let F�

k .v/

denote the distribution of the cash-flow occurring on date Tk for k D 1; : : : ; n. Given
these cash-flow distributions, Proposition 1 provides the payoff function 'k.S/ for
which vk D 'k.STk/ has the manager specified distribution F�

k .v/.
The optimal investment problem without the option to invest is the classical

Merton problem. Here we adopt exponential utility, i.e., the manager’s utility
u.x/ D �e��x when his/her discounted wealth is x and allow the manager to invest
in the traded index It and the risk-free money-market. The manager’s value function
without investment in the option is then

V.0/.t; x; I/ D sup
�2At

Et;xŒ�e��X�Tn �; (10)

where Et;x;I Œ�� denotes P-expectation conditional on Xt D x and It D I, At is the set
of self-financing admissible strategies At D f.�s/t�s�Tn W EŒ

R Tn

t �2s ds� < C1g
and �s denotes the dollar amount invested in the index at time s so that dX�s D
.�� r/�s ds C ��s ds, X�t D x. As is well known, when managers have exponential
utility, the value function is in fact independent of I and is explicitly given by

V.0/.t; x; I/ D �e�� x� 1
2 �

2.Tn�t/; (11)

where � D ��r
�

is the market-price-of-risk of the traded index and the optimal
investment is constant

�
�.0/
t D 1

�

� � r

�2
: (12)

Next, we consider the optimal investment problem when the manager invests
in the option. In this case, the manager faces the idiosyncratic risks embedded in
the future project cash-flows together with the potential of investing in the hedging
asset. Consequently, the manager solves the following optimal control problem

V.1/.t; x; S; I/ D sup
�2At

Et;x;S;I

h
�e��X�Tn

i
(13)

where Et;x;S;I Œ�� denotes P-expectation conditional on Xt D x, St D S, and It D I.
Moreover, the discounted wealth process now satisfies the SDE

dX�t D .� � r/�t dt C � �t dBt ; 8 t 2 .Tk�1;Tk/; and (14a)

X�T0 D X�T�
0

� QK I fE g ; (14b)

X�Tk
D X�T�

k
C Q'k.STk/ I fE g ; (14c)
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for k D 1; : : : ;N, QK D e�rT0K, Q'k.S/ D e�rTk'.S/ and the FT0 -measurable set
E WD fV.1/.T0;X�T�

0
� QK; ST0 ; IT0 / > V.0/.T0;X�T�

0
; IT0 /g. The manager uses the set

E to decide whether or not to invest, because the manager is assumed to be a utility
maximizer, hence, at time T0, she will pick the option (invest or not) which provides
the highest value function at time T0. The intuition behind the dynamics in (14)
is that (i) between cash-flow dates the manager’s wealth evolves continuously,
according to the self-financing investment policy � ; (ii) at T0 the manager must
decide whether to invest in the option—which reduces her discounted wealth by QK
if investment is made, otherwise there is no change and the value function reduces
to the Merton value function; (iii) if it was optimal to invest in the option at time T0,
then on cash-flow dates Tk her wealth jumps by the cash-flow amounts.3

The indifference price is then defined as the amount of wealth which the manager
is willing to resign to receive the option such that her value function remains
unchanged relative to not receiving the option. More precisely, the indifference price
f solves

V.1/.t; x � f .t; x; S; I/ ; S; I/ D V.0/.t; x; I/: (15)

The Merton value function V.0/ is already provided in (11), so our remaining task is
to obtain V.1/.

The optimization problem (13) for V.1/ is similar to the classical Merton problem,
except that the manager is faced with the series of uncertain cash-flows 'k.STk/. This
sequence of cash-flows is a strip of European options on the stochastic driver St,
which is not tradable, but is partially spanned by the hedging asset It.

To solve the optimal investment problem, it is convenient to introduce a third
value function representing the value function of a manager who receives the project
cash-flows for free—i.e., with a strike of K D 0. This value function is given by

V.2/.t; x; S; I/ D sup
�2At

Et;x;S;I

h
�e��X�Tn

i
(16)

where the discounted wealth process satisfies the SDE

dX�s D .� � r/�s ds C � �s dBs ; 8 s 2 .Tk�1;Tk/; and (17a)

X�Tk
D X�T�

k
C Q'k.STk/ I fE g : (17b)

This differs from the full problem (13) in that the cost to receive the future cash-
flows K is not paid at T0. For all times t > T0 and on the set of events in which

3In principle, it is possible to consider the cash-flow as a continuous stream of cash-flows, in
which case (17a) would be modified to dXs D .� � r/�s ds C � �s dBs C 's.Ss/ ds. However,
Managers rarely specify a continuous stream of cash-flows, and although operations can be viewed
as providing income on a continuous basis, we opt to leave the cash-flows discrete as this is how
managers typically estimate cash-flow streams.
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Fig. 4 The value function for the manager’s optimization problem (13) when holding the option
to invest can be viewed as first solving for (i) the Merton problem (10) and (ii) the cash-flow
optimization problem (16) in the region ŒT0;Tn�; and then pasting them together at the critical
level S�

IfE g D 1 (i.e., on the set of events in which the manager exercises the option to
invest), the two value functions are equal, V.1/.t; x; S; I/ D V.2/.t; x; S; I/. Moreover,
for all times t > T0 and on the set of events in which IfE g D 0 (i.e., on the set of
events in which the manager does not exercise the option), the full value function
equals the Merton solution, V.1/.t; x; S; I/ D V.0/.t; x; I/. Thus, we can solve the full
problem by solving for V.2/ and V.0/ on the interval t � T0, paste them together at T0,
along the boundary of the set E , to obtain V.1/ at T0 and then propagate backwards to
the interval t < T0. This decomposition of the problem can be visualized as in Fig. 4.
Since the boundary conditions and cash-flows do not depend on the hedging asset (in
this case the traded index It), the value functions V.0/, V.1/, V.2/ (and therefore S�)
are in fact independent of I (but not S). Consequently, the indicator IfE g switches
from 1 to 0 at the critical point S� defined by V.2/.T0; x � QK; S�; I/ D V.0/.T0; x; I/.
This critical point is unique because the value function is increasing in S since the
embedded option is a call on a strip of options which have payoffs 'k.S/ increasing
in S. Moreover, this asset value S� can be viewed as the critical stochastic driver
level above which the future cash-flow has an indifference value greater than QK. We
will see in Sect. 4 that having a strip of cash-flows, rather than a lump-sum at the
investment time, may lead to the real-option being valued at exactly zero.

The dynamic programming principal (DPP) implies that the value functions V.2/

and V.1/ satisfy the Hamilton-Jacobi-Bellman (HJB) equations

.@t C LS/V.2/

C sup
�

˚
.� � r/� @xV.2/ C 1

2
�2�2 @xxV.2/ C 
�� � S@xSV.2/

� D 0;
(18a)
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for t 2 .Tk�1;Tk/, k D 1; : : : ; n, subject to the sequence of boundary conditions

V.2/.T�
k ; x; S/ D V.2/.Tk; x; S/ exp f�� Q'k.S/g ; for k D 1; : : : ; n � 1 and

(18b)

V.2/.Tn; x; S/ D exp f�� Q'n.S/g ; (18c)

and

.@t C LS/V.1/

C sup
�

˚
.� � r/� @xV.1/ C 1

2
�2�2 @xxV.1/ C 
�� � S@xSV.1/

� D 0;
(19a)

for t 2 Œ0;T0/, subject to the T0 boundary condition

V.1/.T�
0 ; x; S/ D V.2/.T0; x � QK; S/ IfS > S�g C V.0/.T0; x; S/ IfS � S�g :

(19b)

In the above LS denotes the generator of the stochastic driver St, i.e.,

LS D �.t; S/ @S C 1
2
�2.t; S/ @SS : (20)

The T0 boundary condition in (19) accounts for the option to invest in the cash-flow,
and as commented on earlier, occurs at the critical stochastic driver level S� above
which the indifference value of the cash-flow is greater than QK.

It is possible to reduce the HJB equations into a system of linear PDEs through
a sequence of transformations. The result of these computations are recorded in the
following Theorem.

Theorem 1 (Value Function and Optimal Investment.). The solution to the HJB
equations (18) and (19) admit the representation

V.a/.t; x; S; I/ D V.0/.t; x; I/
�
H.a/.t; S/

�ˇ

where ˇ D .1�
2/�1 for a D 1; 2. Further, let OLS denote the infinitesimal generator
of the stochastic driver under the minimal martingale measure OQ induced by the
Radon-Nikodym derivative

d OQ
dP

D e� 1
2
�2TnC�WTn : (21)

Specifically,

OLS D O�.t; S/ @S C 1

2
�2.t; S/ @SS ; and O� D �.t; S/ � 
 �.t; S/ � : (22)
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Then, H.a/.t; S/ satisfy the linear PDEs

@tH
.2/ C OLSH.2/ D 0; t 2 .Tk�1;Tk/; k D 1; : : : ; n (23a)

with terminal/pasting conditions

H.2/.T�
k ; S/ D H.2/.Tk; S/ exp

n
� �

ˇ
Q'k.S/

o
; for k D 1; : : : ; n � 1; and

(23b)

H.2/.Tn; S/ D exp
n
� �

ˇ
Q'n.S/

o
; (23c)

and

@tH
.1/ C OLSH.1/ D 0; t 2 Œ0;T0/; (24a)

with terminal condition

H.1/.T�
k ; S/ D 1 �

�
1 � H.2/.Tk; S/e

�
ˇ

QK�
IfS > S�g; (24b)

where S� is the unique solution to

H.2/.T0; S
�/ D e� �

ˇ
QK
: (25)

Moreover, the optimal investment policy is

�.a/ D 1

�

� � r

�2
C 


�

�

ˇ

�
S @S ln H.a/ : (26)

The previous theorem shows that manager’s value function is obtained by solving
the PDE (23) in the region t 2 ŒT0;Tn� and then (24) in the region t 2 Œ0;T0/.
Although analytical solutions are in general not available, standard finite difference
techniques (such as implicit-explicit schemes) can be used to approximate the
solution. In the region t < T0, the manager’s value function is unique, however,
for t > T0, the value function is either given by V.2/ or V.0/ depending on whether
the option to invest was exercised at T0.

Armed with the value functions, the indifference price easily follows and a simple
application of Feyman-Kac leads to a stochastic representation for the indifference
value. These results are recorded in the Corollary below.

Corollary 1 (Indifference Price Stochastic Representation). The indifference
price f .t; S/ (in discounted dollars) of the cash-flow is given by

f .t; S/ D
8<
:

�ˇ

�
ln H.1/.t; S/; t 2 Œ0;T0/;

�ˇ

�
ln H.2/.t; S/ IfS > S�g; t 2 ŒT0;Tn�;

(27)
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where, H.a/.t; S/ solve the PDEs (23a) and (24a). Moreover, H.a/.t; S/ admit the
expectation representation

H.2/.t; S/ D E
OQ
t;S

h
e� �

ˇ

Pn
mWt<Tme�r .Tm�t/'.STm /

i
; t 2 Œ0;Tn�; (28a)

H.1/.t; S/ D E
OQ
t;S

h
e� �

ˇ IfST0>S�gPn
mD1 e�r .Tm�t/'.STm /

i
; t 2 Œ0;T0/: (28b)

Proof. From the definition of the indifference price in (15), and applying the form
of the value functions in Theorem 1, Eq. (27) follows immediately. The stochastic
representation follows from an inductive application of Feynman-Kac applied to the
collection of linear PDEs in (23a) and (24a). ut

When the risk-aversion of the manager tends to zero, it is well known that the
indifference price converges to the so-called Davis price ([8])—also known as the
marginal price. In particular, the value of the option reduces to an expectation under
the minimal martingale measure. Indeed, from Corollary 1, it is easy to see that

f .t; S/ ��!
�#0

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

E
OQ
t;S

2
4 nX

mWt<Tm

e�r .Tm�t/'.STm/

3
5 ; t 2 Œ0;T0/;

E
OQ
t;S

"
nX

mD1
e�r .Tm�t/'.STm/ IfST0 > S�g

#
; t 2 ŒT0;Tn�:

(29)

It is also well known that the valuation in incomplete markets using the mini-
mal martingale measure leads to hedges which are locally risk minimizing—see
e.g., [10].

4 An Illustrative Example

In this section, we illustrate how our methodology can be applied to the example of
[7], who consider the option to invest in developing an unmanned aerial vehicle
(UAV). The project consists of a significant investment of $200 k required in 2
years, after which, the company will receive the estimated cash-flow stream of
Table 1, where management has provided optimistic, likely and pessimistic cash-
flow estimates. Clearly, management has the option to not invest at the end of year
2, at which point the future cash-flows would be forfeited. Thus, the project should
be treated as a real option. The traded index parameters are � D 8% and � D 20%,
and the risk-free rate is taken as r D 5%; moreover, for the stochastic driver we
choose the OU process with parameters S0 D 50, � D 0:25, S D 50 and � D 10.
Finally, the correlation 
 D 0:5. These parameters are used in the remainder of the
document unless otherwise stated.
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Table 1 An example
cash-flow for a UAV project
which costs $200 to invest in
at year 2

End of year
Scenario 3 4 5 6 7 8 9

Optimistic 80 116 153 177 223 268 314

Most Likely 52 62 74 77 89 104 122

Pessimistic 20 23 24 18 20 20 22

a b

c d

Fig. 5 Real option value and optimal investment strategy for the cash-flow in Table 1 when the
stochastic driver is an OU process. (a) Value Surface � D 0:1. (b) Investment Surface � D 0:1.
(c) Value along St D S0. (d) Investment along St D S0

To solve the system of PDEs (23) and (24) we utilize a simple a Crank-Nicholson
finite-difference scheme on a finite grid of points in time and driver space. At the
upper/lower boundaries (S/S) in S, we apply the boundary conditions that @SSHjS D
@SSHjS D 0. Between each epoch period, we use the finite-difference scheme to
recursively solve the PDEs backwards. At the cash-flow dates, the function H is
modified according to the appropriate pasting conditions, and the solver continues
in the new epoch using the modified H as the terminal boundary condition.

The real option value as a function of the market stochastic driver and time is
shown in Fig. 5a for the case of � D 0:1. There are two main observations. First,
the value of the RO is increasing in the stochastic driver, but flattens out towards
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small and large values. The reason is that as one moves to large/smaller values
the pessimistic/optimistic scenario are more likely to occur, and these scenarios
are bounded. Second, the RO value increases as a cash-flow approaches, and then
drops immediately after a cash-flow, reflecting the payout. The optimal investment
I �.t; S/ in the traded asset is shown in Fig. 5b. Note that the optimal investment is
smooth across the investment date T0, but jumps at the investment times since there
are fewer cash-flows remaining once a cash-flow has been paid out. Secondly, the
optimal investment contains a peak around the mean-reverting level of 50 and also
has a peak in the time dimension. The peak in S is because the optimal investment
depends on the sensitivity of the RO with respect to the stochastic driver and as we
can see from Fig. 5a, although the RO increases in S, it is bounded above and below,
and therefore flattens out for large and small S. This leads to a peak in the optimal
investment in the S direction. The peak in the time seems at first contradictory since
there are less cash-flows remaining. However, between every cash-flow, the optimal
investment amount increases in time because as a cash-flow approaches, its outcome
is more certain and, just as in a standard call option, the investment increases in time.
After a cash-flow the optimal investment drops.

The lower panels of Fig. 5 (panels (c) and (d)) show slices (from a fixed S)
through time of the value and optimal investment when the stochastic driver is fixed
at its mean-reverting point for four different risk aversion levels. Both the value
and optimal investment decreases as risk aversion increases. What is interesting,
however, is that for the largest risk-aversion level of � D 1, while the RO has non-
zero value post exercise, prior to exercise it is worthless. The reason is that at the
time of investment, for this level of risk-aversion, the RO’s indifference value is less
than the strike K (no matter what is the outcome for the stochastic driver), hence, the
manager will never exercise the option and it is worthless prior to T0. This is quite
different from approaches which consider lump-sum payments upon investment.
If a lump-sum payment is provided upon investment, then, since the lump-sum is
measurable on the investment day (i.e., FT0), the indifference price of the lump-
sum is the lump-sum amount itself, and as long as there is a positive probability that
the lump-sum is greater than the investment amount, then the real-option will have
a non-zero value (albeit it may be arbitrarily small).

5 Indifference Valuation for Optimal Exit

In many circumstances, if an investment is made at T0, then the manager may have
the option to permanently shutdown (with shutdown cost of C) the project prior to
the last cash-flow date of Tn. It may be optimal to shutdown early if the stochastic
driver is so low that the future remaining cash-flows provide the manager with lower
utility than not shutting the project down. In this case, the valuation becomes a
compound option where the option to shutdown the project acts as an American-
styled option which feeds into the European option to invest in the project at time T0.
In terms of indifference pricing, the valuation problem in the region t > T0 requires
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optimally comparing the value function provided by holding onto the option to
keep running and receive the cash-flows versus paying the shutdown costs and then
reducing to the Merton problem for the remainder of the time to Tn.

Consequently, the manager solves the following optimal control problem

V.3/.t; x; S; I/ D sup
�2At

sup
�2T

Et;x;S;I

h
�e��X�Tn

i
(30)

where the discounted wealth process now satisfies the SDE

dX�t D .� � r/�t dt C � �t dBt ; 8 t 2 .Tk�1;Tk/ ; and (31a)

X�T0 D X�T�
0

� QK I fE g ; (31b)

X�Tk
D X�T�

k
C . Q'k.STk/ � F/ I fE \ � > Tkg ; (31c)

X�� D X��� � C : (31d)

and, as before, the set E WD fV.3/.T0;X�T�
0

� QK; ST0 ; IT0 / > V.0/.T0;X�T�
0
; IT0 /g

represents the set on which the option to invest in the project is exercised at T0.
Moreover, T represents the set of F -adapted stopping times in the interval .T0;Tn�.
Under general assumptions,4 such optimal stopping/control problems can be solved
by searching for stopping times which are of the form � D infft W .t; St/ … Dg
for some compact domain D 
 .T0;Tn� � RC (see for example [19]). In this case,
the interior of the domain D represents the shutdown region and its boundary is the
optimal shutdown boundary.

As before, to aid in the distinction between the pre (t < T0) and post (t > T0)
investment regions, we introduce another value function corresponding to a manager
who pays nothing to receive the cash-flows (together with the option to shutdown).
To this end, let

V.4/.t; x; S; I/ D sup
�2At

sup
�2T

Et;x;S;I

h
�e��X�Tn

i
(32)

where the discounted wealth process now satisfies the SDE

dX�t D .� � r/�t dt C � �t dBt ; 8 t 2 .Tk�1;Tk/ ; and (33a)

X�Tk
D X�T�

k
C . Q'k.STk/ � F/ I f� > Tkg ; (33b)

X�� D X��� � C : (33c)

Then, on the investment date T0, the value function

4Since we have diffusion processes driving the relevant dynamics.
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V(3)

V(0)

V(4)

T0
T0

T0

Tn

Tn

S∗

Merton

O
pt

io
n

critical
investment level

Pay C

Shutdown
regions

cash-flow region

Fig. 6 The value function for the manager’s optimization problem (30) when holding the option to
invest and shutdown after investment can be viewed as first solving for (i) the Merton problem (10)
and (ii) the cash-flow optimization problem (32) with shutdown option in the region .T0;Tn�; and
then pasting them together at the critical level S�

V.3/.T0; x; S; I/ D V.4/.T0; x; S; I/ IfE g C V.0/.T0; x; S; I/ IfE cg:

This decomposition of the problem is similar to the previous case without the
shutdown option and can be visualized as in Fig. 6. The difference is that now,
the option to shutdown after investment allows the manager to pay the shutdown
cost of C and revert to the Merton problem. Once again, the optimal investment set
E D fST0 > S�g for some S�.

The DPP now implies that value function V.4/.t; x; S; I/ satisfies the quasi-
variational inequality (QVI)

max

"
.@t C LS/V.4/

C sup
�

˚
.� � r/� @xV.4/ C 1

2
�2�2 @xxV.4/ C 
�� � S@xSV.4/

� I

V.0/.t; x � C; S; I/ � V.4/.t; x; S; I/

#
D 0;

(34a)

for t 2 .Tk�1;Tk/, k D 1; : : : ; n, subject to the sequence of terminal/pasting
conditions

V.4/.T�
k ; x; S; I/ D V.4/.Tk; x; S; I/ e�� Q'k.S/ ; for k D 1; : : : ; n � 1 &

(34b)

V.4/.Tn; x; S; I/ D e�� Q'n.S/ : (34c)
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Clearly, V.4/ is independent of I and we will drop I from its arguments from here
onwards. The DPP implies that the value function V.3/.t; x; S; I/ satisfies the same
HJB equation as V.1/, but with a new terminal condition, specifically,

.@t C LS/V.3/ C sup
�

˚
.� � r/� @xV.3/ C 1

2
�2�2 @xxV.3/ C 
�� � S@xSV.3/

� D 0 ;

(35a)
for t 2 Œ0;T0/, subject to the T0 terminal condition

V.3/.T�
0 ; x; S/ D V.4/.T0; x � QK; S/ IfS > S�g C V.0/.T0; x; S/ IfS � S�g :

(35b)

It is once again possible to reduce the dynamic programming equations into a
system of quasi-variational inequalities and a linear PDE through a sequence of
transformations. The final result is recorded in the following Theorem.

Theorem 2 (Value Function and Optimal Investment for Exit Problem). The
solution to Eqs. (34) and (35) admit the representation

V.a/.t; x; S; I/ D V.0/.t; x; I/
�
H.a/.t; S/

�ˇ

where ˇ D .1 � 
2/�1 for a D 3; 4. Moreover, H.4/.t; S/ satisfies the linear QVI

max
n
@tH

.4/ C OLSH.4/ I e
�
ˇ C � H.4/

o
D 0; t 2 .Tk�1;Tk/; k D 1; : : : ; n

(36a)
with terminal/pasting conditions

H.4/.T�
k ; S/ D H.4/.Tk; S/ exp

n
� �

ˇ
Q'k.S/

o
; for k D 1; : : : ; n � 1; and

(36b)

H.4/.Tn; S/ D exp
n
� �

ˇ
Q'n.S/

o
; (36c)

and H.3/.t; S/ satisfies the linear PDE

@tH
.3/ C OLSH.3/ D 0; t 2 Œ0;T0/; (37a)

with terminal condition

H.3/.T�
k ; S/ D 1 �

�
1 � H.4/.Tk; S/e

�
ˇ

QK�
IfS > S�g; (37b)

where S� is the unique solution to

H.4/.T0; S
�/ D e� �

ˇ
QK
: (38)
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a b

Fig. 7 The indifference valuation surface and optimal exit boundaries for the entry-exit problem
with the cash-flow in Table 1 when the stochastic driver is an OU process. The fixed cost F D 50,
shutdown costs C D 10. (a) Indifference Value with � D 0:1. (b) Exit Boundaries

Moreover, the optimal investment policy is

�.a/ D 1

�

� � r

�2
C 


�

�

ˇ

�
S @S ln H.a/ : (39)

To solve this system numerically, we once again applied a simple Crank-Nicholson
finite-difference scheme to obtain the continuation value at each step and compare
with the immediate exercise value between epoch dates. At epoch dates, the pasting
conditions are applied and the modified H used as the terminal condition for the next
epoch. The additional boundary conditions along (S/S) of @SSHjS D @SSHjS D 0

were once again applied. Naturally, there are many more efficient and methods that
have faster convergence, such as SOR or penalty methods; however, such numerical
issues are not the focus here.

We next apply these results to the example RO introduced in Sect. 4 and illustrate
the results in Fig. 7. Here, in addition, we include a running cost F, so that all cash-
flows are reduced by this fixed amount. Figure 7a shows the indifference valuation
surface. Notice that this surface has some negative values when the stochastic driver
is significantly small which reflects the fact that in those scenarios the resulting cash-
flows will be pushed towards the pessimistic predictions and therefore the manager
is more likely to pay the exit cost and shutdown the project. Figure 7b shows the
effect that risk aversion has on the optimal exit boundaries. For the early cash-
flows, the exit boundaries move upwards as the manager becomes more risk averse
and hence the manager shuts down the project earlier to avoid potential losses.
Closer to the end of the investment horizon, however, the optimal exit boundaries
decrease. This reversal of the manager’s behaviour is because we have assumed that
the manager also pays the shutdown costs at the end of investment horizon in all
scenarios.
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6 Conclusions

In this work we present a real options approach that is practical to implement,
and utilizes manager’s specified cash-flows distributions rather than postulating an
adhoc stochastic model for project values. We developed an approach where any
cash-flow estimate can be matched exactly and demonstrate how our matching
approach can be layered on top of indifference pricing through two classical
real-options problems: the option to invest in a project and the optimal exit
problem. One key economic finding from our approach is that if the manager’s risk
aversion is high, the real-option value may drop to zero. This occurs because the
indifference value of the future cash-flows, on the date of the investment, may be
lower than the strike price of the option if the manage is risk averse enough. Many
indifference pricing approaches instead always assign a value to the real option
regardless of the level of risk aversion. The main aspect of standard approaches
which results in this behaviour is that they typically assume the project value is
paid as a lump-sum upon investment, while here we assume the manager receives a
cash-flow stream.

Several other directions are still open for future research. For example, inves-
tigating other real option problems such as valuing the early entry problem, early
entry and exit, the duopoly problem, among others. As well, it would be interesting
to assess the resulting hedging strategy and hedging performance using our frame-
work. Finally, incorporating regime-switching and/or jumps in the stochastic driver
process could lead to interesting features in the valuation as well as the resulting
hedging strategies.
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Appendix: Proof of Results

In this Appendix we provide concise proofs of the main results.

Proof of Proposition 1

We seek '.:/ such that P.'.ST/ � vjF0/ D F�.v/. Since,

ST jF0

dD S0 exp
n
.� � 1

2
�2/T C �

p
TZ
o

where Z �
P

N .0; 1/;

we have that

P.'.ST/ � vjF0/ D ˚

0
@ ln '�1.v/

S0
� .� � 1

2
�2/T

�
p

T

1
A , F�.v/ : (40)
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Consequently, if F�.:/ is invertible then

'.S/ D F��1
 
˚

 
ln S

S0
� .� � 1

2
�2/T

�
p

T

!!
(41)

and the proof is complete. �

Proof of Proposition 2

Here, we prove that the co-dependence structure of the cash-flow distribution is
governed by a Gaussian copula. We require the following joint distribution function:

P.V1 < v1; : : : ;Vn < vn/

D P.'1.ST1 / < v1; : : : ; 'n.STn/ < vn/

D P.F��1
1

�
˚.z.T1; ST1 /// < v1; : : : ;F

��1
n .˚.z.Tn; STn/// < vn

�
;

where z.T; S/ D 1

�
p

T
ln S

S0
� �� 1

2 �
2

�

p
T . Clearly,

STk

dD S0 exp


.� � 1

2
�2/Tk C �

p
Tk Zk

�

where fZ1; : : : ;Zkg are jointly normal with mean zero and covariance matrix ˝ij Dp
Tmin.i;j/=Tmax.i;j/.
Since each distribution function F�

k is assumed invertible, we then have

P.V1 < v1; : : : ;Vn < vn/ D P
�
Z1 < ˚

�1 �F�
1 .v1/

�
; : : : ;Zn < ˚

�1 �F�
n .vn/

��
D ˚˝

�
˚�1 �F�

1 .v1/
�
; : : : ; ˚�1 �F�

n .vn/
��
:

This completes the proof. �

Proof of Theorem 1

Here we provide a sketch of the proof. The first order condition in the HJB
equations (18) and (19) provide the optimal investment policy in feedback control
form as

�.a/ D � .� � r/@xV.a/ C 
��S@xSV.a/

�2@xxV.a/
: (42)
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The HJB equations then reduce to

.@t C LS/V.a/ � 1

2

	
.� � r/@xV.a/ C 
��S@xSV.a/


2
�2@xxV.a/

D 0; (43)

subject to the appropriate terminal conditions. Writing

V.a/.t; x; S; I/ D V.0/.t; x; I/h.a/.t; S/;

the above PDE reduces to

.@t C LS/ h.a/.t; S/C 
�� S@Sh.a/.t; S/C .
�/2
.S@Sh.a/.t; S//2

h.t; S/
D 0; (44)

Now setting h.a/.t; S/ D �
H.a/.t; S/

�ˇ
after some tedious computations, the above

non-linear PDEs for h.a/ reduces into the linear PDEs (23) and (24) for H.a/.
Moreover, the boundary conditions for V.a/ become the stated boundary conditions
for H.a/. Since classical solutions exist for the linear PDE system (23) and (24),
and the resulting feedback controls are admissible, the usual arguments imply that
the solution of DPE is the solution to the original optimal control problem. The
uniqueness of S� follows from the fact the terminal conditions and the subsequent
pasting conditions are decreasing functions of S. Hence, the H function inherits this
property and, therefore, the solution to (25) is unique. �

Proof of Theorem 2

Here we provide a sketch of the proof. The first order condition in the HJB
equations (46) and (35a) provide the optimal investment policy in feedback control
form as (a D 3; 4)

�.a/ D � .� � r/@xV.a/ C 
��S@xSV.a/

�2@xxV.a/
: (45)

The DPEs then reduce to

max

(
.@t C LS/V.4/ � 1

2

	
.� � r/@xV.4/ C 
��S@xSV.4/


2
�2@xxV.4/

I

V.0/.t; x � C; S; I/ � V.4/.t; x; S; I/

)
D 0;

(46)
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and

.@t C LS/V.3/ � 1

2

	
.� � r/@xV.3/ C 
��S@xSV.3/


2
�2@xxV.3/

D 0; (47)

subject to the appropriate terminal conditions. Writing

V.a/.t; x; S; I/ D V.0/.t; x; I/h.a/.t; S/;

and setting h.a/.t; S/ D �
H.a/.t; S/

�ˇ
after some tedious computations, the above

non-linear DPEs for h.a/ reduce into the linear DPEs (36) and (37) for H.a/.
Moreover, the boundary conditions for V.a/ become the stated boundary conditions
for H.a/. Standard results imply that the viscosity solution of the linear DPE
system (36) and (37) is the solution to the original optimal control problem. The
exercise point S� is unique once again due to the boundary conditions and pasting
conditions being decreasing in S. �
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Real Options with Regulatory Policy
Uncertainty

Christian Maxwell and Matt Davison

Abstract Energy Finance as a field is particularly bedeviled by regulatory
uncertainty. This is notably the case for the real option analysis of long-lived
energy infrastructure. How can one decide optimal build times on a 50 year project
horizon when regulations regarding pricing and costs change on a much shorter
time scale? In this paper we present a quantitative framework for modelling and
interpreting regulatory changes for energy real options as a Poisson jump process,
in a context where other relevant prices follow diffusion processes. We illustrate
this conceptual framework with a case study involving the US corn ethanol market
for which subsidy levels have experienced frequent changes. Subsidy levels have
an easily quantified impact on operations and profitability, making this a nice arena
to introduce ideas which might later be extended to less easily quantified regulatory
changes. Numerical techniques are presented to solve the resulting partial integro
differential variational inequalities. These solution techniques are deployed to solve
instructive numerical examples, and conclusions for public policy are drawn.

1 Introduction

All large energy and natural resource projects are subject to government policy or
regulation of some kind. These regulations are intended to achieve public policy
goals and their effects should be taken into account by firms planning to enter
into energy or resource investments. Energy and resource projects often have long
project horizons and operating life spans on the order of decades. Consider the
example of a firm deciding to enter into a 50 year energy production investment.
Policy in terms of taxation, environmental regulations and other laws may materially
affect project cash flows. These policies have been known to change. Some policy
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amendments are well broadcast and announced while others are not. Although
policy changes may appear “predictable” in the short term, forecasting onto a 50
year project horizon renders the policy changes apparently random, and hence
requiring models of policy uncertainty.

Policy Uncertainty is characterized by changes in taxation, legal and other regu-
latory policies that affect a business’ operations and profitability. The uncertainty
derives from the inability to predict policy in the long term; uncertainty about
forthcoming policy or announcements of policy changes; or sudden and abrupt
changes in policy. Some anecdotal examples of policy uncertainty in energy and
resource markets from recent North American news headlines follow:

Ontario Looks Set to Cut Green Energy Subsidies Solar rates expected to be cut
substantially. Industry has 6 weeks to provide input. [31]

Ontario Drops Plan for TransCanada Power Plant Ontario cancels planned Trans
Canada power plant with province to discuss compensation with TransCanada.
Costs may exceed $1 billion CAD and affect off peak pricing. [24, 30]

Ivanhoe ‘Surprised’ by New Mongolian Windfall Tax Mongolia sets surprise
windfall tax on (among possibly others) Ivanhoe’s Oyu Tolgoi mine of 68 % when
gold hits $500 per ounce. [7]

This does not by any means represent an exhaustive list. Attempts have been
made to quantify and measure policy uncertainty (e.g. [3]). In [3] and [17] the
authors also note that policy uncertainty can make firms hesitate or delay to enter
into long term projects as they wait for more policy certainty before making
decisions. This has caught the eye of Canadian and American macroeconomic
policy makers noting both that firms appear to accumulate cash and hesitate to make
business decisions amidst regulatory uncertainty [16, 35].

In this paper we present a quantitative framework for modelling and interpreting
regulatory changes for energy real options as a jump diffusion process, in a context
where other relevant prices follow pure diffusion processes. Policy uncertainty is
by its nature very difficult to hedge and leads to market incompleteness even if the
remaining underlying prices could otherwise be traded.

This real option method of modelling resource project management decisions
was introduced by [6] in a seminal paper that considered the problem of optimally
starting and stopping production to maximize the profits of a natural resource
project. The optimal entry and exit from investment projects was also considered
by [11] in another classical real option paper. A collection of illustrative real option
papers can be found in [12].

In particular, we consider a firm contemplating the option to invest in an ethanol
from corn production plant. We build on the analysis of our past work [23] which
intended to quantify the impact (both intended and unintended consequences) of
ethanol policy on production. This current work adds the complication of policy
uncertainty deriving from a volumetric production tax subsidy which has changed
several times over the past 35 years. We aim to understand the effects of ethanol
policy uncertainty on production from the producer’s perspective. An example of
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the application of real option analysis to understand the effects of windfall taxes on
mining operations can be found in [33]. A complementary and interesting analysis
on policy uncertainty and real options can be found in [17]. The authors of [17]
use empirical data to determine how regulatory uncertainty in American electricity
markets affects start up and shut down decisions for power plants; their evidence
supports the anecdotal claims mentioned above that uncertainty leads management
to defer decision making. Our real option model sets out to design a framework
to quantitatively model this added uncertainty and capture its effects on decision
making.

1.1 Corn Ethanol Production and Subsidy Policy

The ethanol market in the US is large, estimated at 13.3 billion gallons produced
in 2012 by over 209 plants [32]. Efforts to promote US energy independence
and initiatives to obtain fuel from environmentally friendly sources have led to
the subsidization of the production of ethanol biofuel from corn. Subsidies have
historically been provided to ethanol producers by means of a volumetric ethanol
excise tax credit for blenders and a small ethanol producer tax credit. The subsidy
amount has changed from $0.40/gallon at its introduction in 1978 (Energy Tax
Act) and been adjusted several times until its final level $0.45/gallon in the 2008
Farm Bill followed by termination (by non-renewal) at the end of 2012 [13, 15].
Table 1 shows the history of ethanol subsidy policy changes and amendments since
its inception.

A year following the lapse of many of the energy subsidies, about one quarter
of Nebraska’s ethanol plants were in idle status [27]. The loss of the subsidy was a
possible contributing factor to the shut downs as [21] note that, without subsidies,
ethanol plants may lose their economic viability.

Table 1 Historical ethanol subsidies. Source: [15]

Act Year Subsidy ($/gallon)

Energy tax act 1978 0.40

Surface transportation assistance act of 1982 1983 0.50

Tax reform act 1984 0.60

Omnibus budget reconciliation act 1990 0.54

1998 policy adjustment effective 2001 2001 0.53

1998 policy adjustment effective 2003 2003 0.52

Extension of policy with adjustment 2005 0.51

Farm bill 2008 0.45

Expiration of tax credit 2012 –



242 C. Maxwell and M. Davison

1.2 Outline

Our paper uses a crush spread analysis to value a facility which produces ethanol
from corn using a real options analysis following our framework in [23]. The outline
is as follows: Section 2 specifies the plant characteristics, management decisions,
and associated costs and profits. Section 3 derives the stochastic optimal control
problem for the optimal plant operating rule. Section 4 illustrates the numerical
results. Finally Sect. 5 draws conclusions about policy uncertainty and its effects on
ethanol production, closing off with some policy recommendations.

2 The Real Option Model

Management contemplating the decision to invest in an ethanol production plant
has the flexibility to enter or defer the project given price conditions and expected
future profitability [12]. After initiating and building the ethanol plant, management
again has the flexibility to switch production on (1) and off (0) given prevailing
economic conditions. The goal of this paper is to examine how ethanol price and
policy uncertainty affects a producer’s business entry and subsequent operating
decisions given price conditions, subsidy policy expectations, and the remaining
project life.

Following our analysis [23], throughout this paper all currency is in United States
dollars (USD); liquid volume is in gallons; solid volume is in bushels; weight is
in tons; and interest is percent per year appropriate to USD deposits continuously
compounded.

2.1 Plant Specification and Operating Costs

The following costs are scaled in terms of gallon of production capacity per year
and were estimated by [34]. The model is based on our detailed ethanol real option
analysis in [23]. This valuation considers the income stream associated with the
production of ethanol from corn along with the ethanol-gasoline blender subsidy.

The capitalized construction cost B is estimated at $1.40/gallon for a “typical”
sized facility with nameplate capacity of 40,000,000 gallons/year. The plant salvage
value Q is estimated at 10 % of capitalized cost. The switching cost D01 to resume
production from an idle state is estimated at 10 % of capitalized cost per gallon of
annual production capacity. Similarly, the switching cost D10 to pause production
from an active operating state is estimated at 5 % of capitalized cost per gallon of
annual production capacity.
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2.2 Running Profits

The plant produces ethanol Lt (priced in USD/gallon) from corn Ct (priced in
USD/bushel). The running profit from the corn ethanol crush spread is developed
in [23] on a per bushel per year basis assuming the popular dry grind process for
producing ethanol [4].

corn ! ethanol C by-products (1)

The profit function while operating, f1, is given by

f1.Lt;Ct;Zt/ D �.Lt C Zt � K1/ � Ct (2)

where Zt is the government volumetric subsidy (USD/gallon). The conversion factor
� D 2:8 is the yield in terms of gallons of ethanol produced per bushel of corn
[4] and is consistent with the CME Group’s references on trading ethanol crush
spreads [8].

The net running cost while on can be decomposed in terms of the fixed
running cost p of $0.68/gallon, less the average by-product distillers dried grains
G (USD/ton) produced per bushel of corn [21, 23, 34]

K1 D p � !

�
G: (3)

The process produces 17 lbs of by-product per bushel and hence the yield factor
! D 17=2000 [4].1

While production is idle, [34] estimated that fixed running costs K0 are roughly
1 % of capitalized construction costs per gallon of production capacity or 20 % of
fixed running cost while in production (note that, while idle, no ethanol is produced
and consequently no subsidy is applied). The profit function while off, f0, is

f0.Lt;Ct;Zt/ D ��K0 (4)

where the midpoint between the two estimates is used [23]

K0 D 0:01B C 0:20p

2
: (5)

Finally, the interest rate r is taken to be a target return of 8 % per annum
continuously compounded to capture the risk associated with the ethanol project
cash flows [23, 34]. Our analysis uses only the physical measure for the stochastic
assets. We note however that the price risk associated with corn and ethanol can

1There are 2000 lbs in a ton.
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be hedged using futures and the arbitrage free return can be determined by noting
that the jumps are not correlated with the market following an argument popularized
in [25].

2.3 Stochastic Price Models

Following our analysis in [23], ethanol Lt and corn Ct are modelled by a joint
geometric Brownian motion (GBM) diffusion

dLt D �Ltdt C �LtdW1t (6)

dCt D aCtdt C bCtdW2t (7)

CorrŒW1t;W2t� D 
 (8)

where .W1t;W2t/ is a two-dimensional Brownian motion defined on a filtered
probability space .˝;Ft;P/ which satisfies the usual conditions [28].

The econometric model parameters are estimated by ordinary least-squares
regression of the log time series ln Xt

Xt�1
using the 10 year monthly historical price

series from Dec/02-Jan/11 capitalizing on earlier work in [23]. Prices for no. 2
yellow corn Omaha, NE underlying the CME corn futures contract were obtained
from [36]. Average rack prices freight on board for ethanol were obtained from [26].
The correlation estimate 
 was obtained via the sample correlation of the residuals.
Parameter estimation results are in Table 2. Note that both drifts were found to
be statistically zero at the 95 % confidence interval. The estimate for the average
distillers dried grains price OG was estimated by regressing the time series against a
constant.

The stochastic subsidy Zt is modelled as a pure Poisson arrival time jump process
with arrival rate � and jumps of size J.

dZt D .J � Zt/dNt (9)

Table 2 Regression
estimation results Parameter estimate Value t-test

O� 0 P
�

O���

s:e: > t
ˇ̌
ˇ� D 0

�
D 0:409

O� 0.156 –

Oa 0 P
�

Oa�a
s:e: > t

ˇ̌
ˇ� D 0

�
D 0:202

Ob 0.123 –

O
 0.105 –

OG $115.6 G 2 Œ108:4; 122:8�a

a based on 95 % confidence interval Student-t with 119 degrees of
freedom
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Table 3 Maximum likelihood estimation results

Parameter estimate Estimator Value 95 % confidence interval

O� �
1
n

Pn
iD1 ti � ti�1

��1
0.24 Œ0:10; 0:42�

Ǫ 1
n

Pn
iD1 ln xi �0:69 Œ�0:79;�0:58�

Ǒ2 1
n�1

Pn
iD1.ln xi � Ǫ/2 0:015a Œ0:0066; 0:062�

a Corrected unbiased estimator

where dNt, defined on the probability space, is a continuous-time counting process
fNt; t � 0g that counts the number of jumps over time dt and

dNt D
(
1 with probability �dt

0 otherwise.
(10)

The times between jumps ti � ti�1 are seen to be quite well modelled by indepen-
dently exponentially distributed Poisson arrivals. The jumps J are assumed to be
drawn from a lognormal distribution with parameters LogN.˛; ˇ2/. The parameters
are estimated via maximum likelihood using the data in Table 1. The estimation
results are summarized in Table 3.

The sample set for the subsidy policy is small (8 observations) and requires a
test of the goodness of fit. By our model choice, the time between arrivals �t of
subsidy changes is exponentially distributed with parameter � (Exp.�/) and the
series ln Zt� Ǫ

Ǒ has a Student’s t-distribution since ln Zt � N.˛; ˇ2/. The plots of the

estimated theoretical cumulative distribution functions (CDFs) versus the empirical
distributions are included in Fig. 1 along with the QQ plots. By visual inspection,
both data appear to be well suited to the proposed subsidy model.

Lilliefors tests (a nonparametric variant of the Kolmogorov-Smirnoff test) were
applied to test for normality in the log subsidy series and exponentiality in the
subsidy arrival times using MATLAB’s lilliefors.m function. Both samples
accepted the null hypothesis of normality and exponentiality at the 5 % significance
level. This statistical evidence further supports our proposed model.

2.4 Policy Uncertainty “at its Worst”

Since the policy uncertainty cannot be hedged and is presumably not correlated with
any market assets, there is cause for concern in terms of how to price this ethanol
real option. Not only is there risk in the randomness of the process, but there is an
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Fig. 1 The empirical CDF (solid black) vs the theoretical CDF (grey dashed) of the time between
arrivals �t 
 Exp.O�/ (upper left). The QQ plot of the time between arrivals (upper right). The
empirical CDF (solid black) vs the theoretical CDF (grey dashed) of the normalized subsidy series
ln Zt�Ǫ

Ǒ

 t7 (lower left). The QQ plot of the subsidy series (lower right)

added complexity of uncertainty risk in the choice of model so-called “Knightian”
uncertainty. To account for this model risk, uncertainty around the jump process
parameters is included.

There are several possible ways to deal with model uncertainty and market
incompleteness including: (1) cautiously deploying assumptions to simplify the
problem; (2) utility indifference pricing with model uncertainty [19, 22]; and
(3) best/worst case pricing (similar to the idea of good deal bounds and super-
replication) [2]. Our analysis follows alternative (3) due to its financial intuition,
transparency, and lack of subjectivity around economic aversion parameters or
choice utility functions associated with utility-based pricing (which produce a
subjective “personal price”). There is a connection between (2) and (3) however,
in that as the risk aversion parameter tends to infinity, the utility indifference price
tends to the worst-case price. Management buying into an ethanol project can be
considered “long” the real option. The worst case price is what a strongly risk averse
buyer may consider when purchasing an option.

Management contemplating investment in an ethanol project may ask the
question: Given the uncertainty around subsidy policy over the past 35 years, what
is the expected case and worst case project value? To answer this question, the ref-
erence policy uncertainty distribution is adjusted within the following heuristically
determined parameter bounds to form best and worst case bounds for the project
value.
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2.4.1 Bounds on ˛

Suppose management assumes VaR05 style bounds on ˛.2 In order to choose a lower
bound for ˛, management chooses a parameter ˛min such that the probability of
observing a subsidy level J lower than the lowest historical subsidy Zmin D 0:40

is 95 %, i.e. P.J < Zmin/ D 0:95. For a lognormal distribution with variance
ˇ2 D 0:015, ˛min D �1:118. An upper bound can be chosen as ˛max such that the
probability of observing a lower subsidy J than the historical maximum Zmax D 0:60

is also less than 5 %, i.e. P.J < Zmax/ D 0:05. In this case, the upper bound is
˛max D �0:309.3

2.4.2 Bounds on �

Similarly, the average arrival time of subsidy changes is bounded by infinity (i.e.
no changes at all) where �min D 0. Reasoning that the US Farm Bill is the primary
means by which ethanol subsidy policies are amended and that a new omnibus bill is
passed every 5 years or so, �max can be chosen such that the probability of observing
at least one jump in a 5 year cycle is at least 95 %. Thus management seeks �max

such that P.k D 0I�max; t D 5/ � 0:05 (i.e. the probability of observing zero
jumps is at most 5 %) where the probability of exactly k jumps occurring over t
is P.kI�; t/ D .�t/n

nŠ e��t. This is given by e��max5 � 0:05 ) �max D ln.0:05/
5

or
�max D 0:60.

2.4.3 The Best and Worst Case Bounds

The best and worst case bounds can be summarized by the following:

˛ 2 Œ˛min; ˛max� D Œ�1:118;�0:309� (11)

� 2 Œ�min; �max� D Œ0; 0:60�: (12)

2We note that management could use another technique to choose bounds such as the 95 %
confidence intervals on the mean estimate for example in Table 3.
3We note that these bounds were chosen heuristically based on ethanol policy history and with
reference to political precedent of the subsidy level. They do not represent a rigorous mathematical
treatment of the small sample population time series.
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3 The Stochastic Control Problem

In this section, we develop the jump diffusion counterpart of our model in [23] which
leads to a system of interconnected obstacle problems, i.e. partial integro differential
(PID) variational inequalities.

The total expected earnings Vi over the life of the project is given by the sum of
its profits, plus the sum of any switching costs incurred over its operating life

Vi.l; c; z; t/ D sup
�;u

E

�Z T

t
e�r.s�t/fIs.Ls;Cs;Zs/ds

C
nX

kD1
e�r.�k�t/Duk�1;uk

ˇ̌
ˇ̌
ˇ .Lt;Ct;Zt; u0/ D .l; c; z; i/

#
(13)

The pair .�; u/ is the control that the manager has over the facility in his ability to
toggle production on and off. It consists of a set of switching times �k and states
to be switched into uk with It D uk; t 2 Œ�k; �kC1/. Thus �k is an increasing set
of switching times with �k 2 Œt;T� and �k < �kC1 given the initial operating state
u0 D i.

If management assumes a worst case pricing scenario for the policy parameters
.�; ˛/, then

Vi.l; c; z; t/ D sup
�;u

inf
�;˛

E

�Z T

t
e�r.s�t/fIs.Ls;Cs;Zs/ds

C
nX

kD1
e�r.�k�t/Duk�1;uk

ˇ̌
ˇ̌
ˇ .Lt;Ct;Zt; u0/ D .l; c; z; i/

#
(14)

where � 2 Œ�min; �max� and ˛ 2 Œ˛min; ˛max�. The limits on � and ˛ prevent
the optimization argument from growing unbounded and becoming singular [29].
The controls .u; �; ˛; �/ come from an admissible set of non-anticipating controls
(i.e. Ft-measurable and Markovian).

3.1 An Intuition Building One-Dimensional Simplified Model

To make the full model exposition easier and to develop intuition consider, for the
time being, a simplified one-dimensional approximation of the spread less fixed
running costs

Xt D �Lt � Ct � K (15)

where Xt follows a simple Brownian stochastic differential equation

dXt D adt C bdWt (16)



Real Options with Regulatory Policy Uncertainty 249

where a and b are naively chosen to fit the model. To further simplify the process,
assume now that Zt has normally distributed jumps such that

dZt D JdNt (17)

where J � N.˛; ˇ2/. The two (Xt C Zt) can be combined into a jump diffusion
process Yt

dYt D adt C bdWt C JdNt (18)

with solution

Yt D Y0 C at C bWt C
nX

kD1
Jk (19)

where
Pn

kD1 Jk � N.n˛; nˇ2/.
The expected income of the facility over its lifespan is

Vi.y; t/ D sup
�;u

inf
�;˛

E

"Z T

t
e�r.s�t/fIs.Ys/ds C

nX
kD1

e�r.�k�t/Duk�1;uk

ˇ̌
ˇ̌
ˇ .Yt; u0/ D .y; i/

#

(20)

By application of dynamic programming (see [5] or [29]) for optimal switching
problems, the value function can be written as

Vi.y; t/ D sup
�

inf
�;˛

E

�Z �

t
e�r.s�t/fi.Ys/ds C e�r.��t/

˚
Vj.Y� ; �/ � Dij

��
(21)

where i; j 2 f0; 1g and � is the first time it is optimal to switch production regimes.
Now the problem consists of finding the optimal sets of prices and times to either

• hold production in its current state i, denoting this continuation or (hold) set as
Hi, or

• switch production into the other state j, denoting this switching set as Sij.

By another application of dynamic programming and Ito’s lemma for jump dif-
fusions, this equation leads to a coupled system of free boundary PID equations
(PIDEs). The free boundary problem can be written in complementary form by
noting that either it is optimal to switch and Vi D Vj � Dij or it is optimal to hold
and Vi satisfies a PIDE subject to Vi � Vj � Dij. Thus the equation extends on the
whole space easing the need to track the switching boundary as a PID variational
inequality (see [28] for an excellent reference on controlled jump diffusions). Thus
the system of equations may be expressed as

max

2
6664
@Vi

@t
C L ŒVi�C inf

�;˛
I ŒVi�C fi � rVi

„ ƒ‚ …
Hi

; .Vj � Dij/ � Vi„ ƒ‚ …
Sij

3
7775 D 0: (22)
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where the spatial differential part of the generator is

L ŒV� D a
@V

@y
C 1

2
b2
@2V

@y2
(23)

and the integro part is

I ŒV� D �.EŒV.y C J/� � V.y//: (24)

The expectation E is taken with respect to a normal N.˛; ˇ2/ kernel gN

EŒV.y C J/� D
Z 1

�1
V.y C J/gN.J/dJ: (25)

Theorem 1 (Worst Case Price). The minimal optimal control is given by

˛ D ˛min; � D
(
�min if EŒV.y C J/� � V.y/ � 0;

�max if EŒV.y C J/� � V.y/ < 0
(26)

Theorem 2 (Best Case Price). The maximal optimal control is given by

˛ D ˛max; � D
(
�max if EŒV.y C J/� � V.y/ � 0;

�min if EŒV.y C J/� � V.y/ < 0
(27)

Theorem 3 (Worst and Best Case Price if ˛ D 0). The minimal optimal control
is given by

� D �min; (28)

and the maximal optimal control is given by

� D �max; (29)

if ˛ D 0 for all y.

See Appendix 2 for proofs of the above.
An interpretation of the maximal (respectively minimal) optimal control is as

follows: (1) If the expected value post-jump EŒV.y C J/� is better than its current
value V.y/, assume that the jump arrives as (in)frequently as possible 1=�max

(1=�min). (2) Assume that the jumps are in general as (un)favourable as possible
˛max (˛min).
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3.1.1 Lessons from Merton

In the simplification where (1) the policy parameters .�; ˛/ are constant and
(2) switching costs Dij are zero, the problem reduces to a PIDE which yields the
option price

@V

@t
C a

@V

@y
C 1

2
b2
@2V

@y2
C �.EŒV.y C J/� � V.y// � rV C f .y/ D 0 (30)

where f .y/ D yC D max.y; 0/.
Using the Feynman-Kac Formula [28] and following Merton’s classical paper on

jump diffusions [25], the solution to the PIDE is

V.y; t/ D E

�Z T

t
e�r.s�t/f .Ys/ds

ˇ̌
ˇ̌Yt D y

�
: (31)

Theorem 4 (Constant Coefficient Option Price). The option price V.y; t/
satisfies

V.y; t/ D
1X

nD0

Z T

t
e��.s�t/ �

n.s � t/n

nŠ
e�r.s�t/

�
As;n˚.d/C Bs;np

2�
e� d2

2

�
ds (32)

where As;n D y C a.s � t/C n˛, B2s;n D b2.s � t/C nˇ2, d D As;n=Bs;n and ˚.x/ is
the standard normal cumulative distribution function.

See Appendix 2 for the derivation of the governing PIDE and option price.

3.2 The Complete Problem

Return now to the stochastic control problem for the real option

Vi.l; c; z; t/ D sup
�;u

inf
�;˛

E

�Z T

t
e�r.s�t/fIs.Ls;Cs;Zs/ds

C
nX

kD1
e�r.�k�t/Duk�1;uk

ˇ̌
ˇ̌
ˇ .Lt;Ct;Zt; u0/ D .l; c; z; i/

#
(33)

where � 2 Œ�min; �max� and ˛ 2 Œ˛min; ˛max�. We follow a similar argument as before
using dynamic programming to reduce the switching problem to a single decision �

Vi.l; c; z; t/

D sup
�

inf
�;˛

E

�Z �

t
e�r.s�t/fi.Ls;Cs;Zs/ds C e�r.��t/fVj.L� ;C� ;Z� ; �/ � Dijg

�
: (34)
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Using Ito’s lemma for jump diffusions and noting as in [5, 29, 37] that the problem
can be written in complementary form as a variational inequality

max

2
6664
@Vi

@t
C L ŒVi�C inf

�;˛
I ŒVi�C fi � rVi

„ ƒ‚ …
Hi

; .Vj � Dij/ � Vi„ ƒ‚ …
Sij

3
7775 D 0: (35)

where the spatial differential part of the generator is

L ŒV� D �l
@V

@l
C ac

@V

@c
C 1

2
�2l2

@2V

@l2
C 
� lbc

@2V

@l@c
C 1

2
b2c2

@2V

@c2
(36)

and the integro part is

I ŒV� D �.EŒV.l; c; J/� � V.l; c; z//: (37)

Theorem 5 (Worst Case Price). The minimal optimal control is given by

˛ D ˛min; � D
(
�min if EŒV.l; c; J/� � V.l; c; z/ � 0;

�max if EŒV.l; c; J/� � V.l; c; z/ < 0
(38)

Theorem 6 (Best Case Price). The maximal optimal control is given by

˛ D ˛max; � D
(
�max if EŒV.l; c; J/� � V.l; c; z/ � 0;

�min if EŒV.l; c; J/� � V.l; c; z/ < 0
(39)

See Appendix 2 for proofs of the above.

3.3 The Decision to Enter

Management’s optimal decision time to enter into the business � maximizes the
expected value

V.l; c; z; t/

D sup
�

inf
�;˛

E
	

e�r.��t/ maxfV1;V0g.L� ;C� ;Z� ; �/ � B
ˇ̌
.Lt;Ct;Zt/ D .l; c; z/



(40)

and is a classical “American” style exercise call option. By dynamic programming,
the optimal stopping problem satisfies the PID variational inequality
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max

2
664@V

@t
C L ŒV�C inf

�;˛
I ŒV� � rV

„ ƒ‚ …
H

; .max.V1;V0/ � B/ � V„ ƒ‚ …
S

3
775 D 0: (41)

This completes the jump diffusion analogue of [23] and represents the optimal entry
strategy for investment into a corn-ethanol biofuel production plant.

4 Numerical Results

This section begins with a numerical investigation of the behaviour of the constant
coefficient analytical model. The section then proceeds with an investigation of
the effects of policy uncertainty on the one-dimensional model including (i) the
loss in value and (ii) the effects on switching decisions (which is also a proxy
investigation of the effects on the entry decision). Finally, the section concludes
with an investigation of the change in value between the full model with both policy
uncertainty and model certainty or uncertainty.

4.1 The Constant Coefficient Model

Consider V.y; t/ in Eq. 32. Its behaviour is monotone increasing in y. Figure 2 shows
that the function is increasing in ˛. This is as expected since if the jumps tend to be
more positive (˛ > 0), the spread tends to jump non-locally to a higher value of y
(recall the option is monotone increasing in y), and vice versa if ˛ tends to be more
negative.

Figure 3 indicates V is an increasing function of � (although it is generally
insensitive to �). This makes sense intuitively since as the frequency of jumps
increases, more volatility is added to the option in terms of Bs;n, and Black-Scholes
style options are increasing functions in volatility.

Figure 4 shows that V is sensitive to � when there is an expected direction with
the jumps (i.e. ˛ ¤ 0).

4.1.1 Impact on Value

The parameters � and ˛ can be interpreted as measures of how infrequently
policy changes occur and where management expects the subsidy to level move
to, respectively. If the subsidy is expected to move up in value ˛ > 0, the jumps
make the project more favourable. The opposite occurs if ˛ < 0: The future policy
outlook is negative, and the project/option loses value.
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Fig. 2 The option value V.y; t/ at various levels of ˛ (expected jump level) given standard
parameters of � D 1 (Poisson arrival rate of jumps), ˇ D 1 (volatility of jump distribution),
a D 0 and b D 1 (drift and volatility of diffusion), r D 0:01 (discount rate), and T � t D 1

(remaining option tenor)

Fig. 3 The option value V.y; t/ at various levels of � (Poisson arrival rate of jumps) given standard
parameters of ˛ D 0 (expected jump level), ˇ D 1 (volatility of jump distribution), a D 0 and
b D 1 (drift and volatility of diffusion), r D 0:01 (discount rate), and T � t D 1 (remaining option
tenor)
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Fig. 4 The option value V.y; t/ at various levels of � (Poisson arrival rate of jumps) and ˛

(expected jump level) given standard parameters of ˇ D 1 (volatility of jump distribution), a D 0

and b D 1 (drift and volatility of diffusion), r D 0:01 (discount rate), and T � t D 1 (remaining
option tenor). On the left, ˛ D 1 and on the right ˛ D �1

As � increases, policy changes occur more frequently which adds project/option
value by means of the increased volatility associated with each jump. As the option
to switch production off mitigates downside jumps on value V , the upside value
of the jump volatility disproportionately increases the option’s value. Figure 3
also reveals that the option is very insensitive to � when there is no expected
“directionality” in the jumps, i.e. when ˛ D 0.

4.2 The One-Dimensional Model

We now turn to an investigation of the effects of model uncertainty for a risk averse
investor into the real option ethanol project. In this analysis, f1.y/ D y and f0.y/ D 0

while D01 D 0:2 and D10 D 0:1.
Figure 5 shows the project valuation results for the expected price with policy

uncertainty, best and worst case prices given policy uncertainty where ˛ D 0 is
fixed and � 2 Œ0; 1�. The underlay shows the switching boundaries Sij in y. Figure 6
shows the same information as Fig. 5 but in this case there is model uncertainty
˛ 2 Œ�0:2; 0:2� with expected parameter ˛ D 0.

4.2.1 Impact on Value

The gap between the best and worst case prices can be significantly large if ˛ is
allowed to vary indicated in Fig. 6; otherwise the difference is small (Fig. 5) as
expected from our results with the constant coefficient model. Since this function
is convex, the integral operator is single-signed and the parameter � assumes either
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Fig. 5 The option value V.y; t/ at an “expected case” of � D 0:1 (Poisson arrival rate of jumps)
and .�min; �max/ D .0; 1/ (parameter boundaries), ˛ D 0 and ˇ2 D 0:1 (mean and variance of
jump distribution), a D 0 and b D 1 (drift and volatility of diffusion), r D 0:01 (discount rate),
and T � t D 1 (option tenor). Switching costs are D01 D 0:2 and D10 D 0:1

Fig. 6 The option value V.y; t/ at an “expected case” of � D 0:1 (Poisson arrival rate of jumps)
and ˛ D 0 (expected mean jump size), but where � 2 Œ0; 1� and ˛ 2 Œ�0:2; 0:2� (parameter
boundaries). The remaining parameters are ˇ2 D 0:1 (variance of jump distribution), a D 0 and
b D 1 (drift and volatility of diffusion), r D 0:01 (discount rate), and T � t D 1 (option tenor).
Switching costs are D01 D 0:2 and D10 D 0:1

�min in the worst case or �max in the best case when ˛ D 0 in the example in Fig. 5
by Jensen’s inequality. The constant coefficient expected case model will always be
bounded by the best and worst case project prices. In these examples, the expected
case is nearer to the worst case since � D 0:1 is closer to �min D 0 than �max D 1.



Real Options with Regulatory Policy Uncertainty 257

4.2.2 Impact on Switching Decision

Although the effects are not very pronounced on the 1 year time horizon, model
uncertainty has an impact on switching decisions. The lower charts in Figs. 5 and 6
represent the switching boundaries

• S01 D fy W V0.y; 0/ D V1.y; 0/�D01g, the set of prices where the operating status
is optimally switched on from idle, and

• S10 D fy W V1.y; 0/ D V0.y; 0/�D10g, the set of prices where the operating status
is optimally switched off from running.

It can be seen that in the. . .

. . . worst case scenario: The operator switches production on later than in the
expected case (i.e. at y > y� if y� is where the operator would switch production
on in the expected case). Similarly, the operator switches production off earlier
compared to the expected case (i.e. at y < y� if y� is where the operator would
switch production off in the expected case).

. . . best case scenario: The operator switches production on earlier and switches
production off later compared to the expected case.

In the example where ˛ D 0 is fixed, the differences in switching boundaries
between the best, worst and expected cases are almost negligible (Fig. 5). However
in the other example where �0:2 � ˛ � 0:2 can vary, the differences in switching
boundaries between the best, worst and expected cases can deviate a great deal.
Thus it is not so much when management thinks a change in policy might occur (i.e.
�-driven) but rather how management expects that policy to change with respect to
its current policy conditions—that is, ˛-driven.

4.3 The Complete Model

This section concludes with a numerical investigation of the ethanol plant value in
the presence or absence of policy uncertainty and model uncertainty. The ethanol
plant is assumed to have a 10 year investment horizon, T � t D 10.

4.3.1 With and Without Policy Uncertainty

We compare the real option project valuation of the ethanol plant in two cases
where:

• Management ignores the uncertainty in the ethanol subsidy policy and assumes
Zt D Z (constant) to take its Jan/2011 value (Table 1),

– in this case, f1.Ls;Cs;Z/ D �.Ls � K1 C Z/ � Cs where Z D $0:45/gallon is
constant (also � D 0); and
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Fig. 7 V.Lt;Ct;Z; t/ without policy uncertainty vs V.Lt;Ct;Zt; t/ with policy uncertainty. Param-
eters (from Tables 2 and 3) are � D 0 and � D 0:156 (drift and volatility of ethanol), a D 0

and b D 0:123 (drift and volatility of corn), Z D 0:45 without policy uncertainty and Zt D 0:45,
� D 0:24, ˛ D �0:69 and ˇ2 D 0:015 (arrival rate, mean and variance of jumps) with policy
uncertainty

• Management considers the uncertainty in the ethanol subsidy policy with known
parameters (model certainty) and assumes the model parameters in Table 3
subject to the initial subsidy level being its Jan/2011 value as above,

– in this case, f1.Ls;Cs;Zs/ D �.Ls � K1 C Zs/ � Cs where Zt D $0:45/gallon.

Figure 7 shows the value functions at various levels of Ct in the presence and
absence of policy uncertainty. Figure 8 shows the switching boundaries in both
cases.

Impact of Policy Uncertainty on Value As inferred from our one-dimensional
analysis in Sect. 3.1, policy uncertainty adds more value to the real option due to
two distinct factors: (1) Given Zt D 0:45 < 0:51 D e˛C 1

2 ˇ
2 D EŒJ�, it is likely

that the subsidy policy will jump to a higher level giving the option more value in
the presence of policy uncertainty. (2) The extra volatility provided by the jump
process adds volatility value to the option. The downside of policy switches on an
ethanol plant can be mitigated by switching production off, while the upside value is
maintained by keeping (or switching) production on when prices favourably allow
for it. The capitalized cost of construction on a per bushel basis �B is also included
in Fig. 8.

Impact of Policy Uncertainty on Switching Decisions The boundary at which
production is switched on from an idle state is @S01 and the boundary at which
production is turned off from a running state is @S10. In this case, the initial subsidy
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Fig. 8 The switching boundaries @S01 and @S10 in the presence and absence of policy uncertainty.
Parameters (from Tables 2 and 3) are � D 0 and � D 0:156 (drift and volatility of ethanol), a D 0

and b D 0:123 (drift and volatility of corn), Z D 0:45 without policy uncertainty and Zt D 0:45,
� D 0:24, ˛ D �0:69 and ˇ2 D 0:015 (arrival rate, mean and variance of jumps) with policy
uncertainty

level Zt is less than the long run average EŒJ� D e˛C 1
2 ˇ

2
, Zt D 0:45 < 0:51 D

e�0:69C 1
2 0:015. Thus, the operator generally waits longer before turning production

off, due to a positive outlook that the subsidy might jump up to its long term average.
Similarly, the operator generally turns production on sooner in hope that the subsidy
might again jump to its (higher) long run average. More precisely, given a point .c; l/
on @S01 in the absence of policy uncertainty, if .c; l�/ is on @S�

01 in the presence of
policy uncertainty, then l� < l (respectively l� > l) when production is shut down
earlier (later).

Changes in z shift value and switching decisions up or down non-locally as Zt

jumps. The general direction of the jumps is illustrated in Fig. 8 by the arrow Zt
J�!

ZtCdt.
It should be noted that if management were expecting the subsidy to jump to

a lower level, the opposite situation as described above would occur. Management
would switch production off earlier and turn production on later for fear that the
subsidy might fall.

4.3.2 Policy Uncertainty with Model Uncertainty

In the likely event that the distribution and parameters of the regulatory uncertainty
process are unknown, management may choose a worst case valuation for the
ethanol plant project value. The assumed boundaries for policy change arrival rate
are � 2 Œ0; 0:60� and expected mean subsidy policy ˛ 2 Œ�1:118;�0:309�.
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Fig. 9 V.Lt;Ct;Zt; t/ vs inf�;˛ V.Lt;Ct;Zt; t/ with policy (and model) uncertainty. Constant
parameters (from Tables 2 and 3) are � D 0 and � D 0:156 (drift and volatility of ethanol),
a D 0 and b D 0:123 (drift and volatility of corn), and Zt D 0:45, � D 0:24, ˛ D �0:69
and ˇ2 D 0:015 (arrival rate, mean and variance of jumps). Non-constant parameters for model
uncertainty are ˛ 2 Œ�1:118;�0:309� and � 2 Œ0; 0:60�

Figure 9 illustrates the worst case value compared to the expected case given by
the model parameters in Tables 2 and 3. The switching boundaries are illustrated in
Fig. 10 comparing the worst case operating decisions to the expected case.

For completeness, Fig. 11 shows the envelope of best case, worst case and
expected project values in the presence of policy and model uncertainty. The bounds
can be quite large between the best and worst project values even for “seemingly
small” parameter boundaries. The switching boundaries are illustrated in Fig. 12
comparing the best case operating decisions to the expected case.

Impact of Worst Case Model Uncertainty on Value The worst case real option
ethanol plant value represents a lower bound in project value. Figure 9 also includes
the capitalized cost of construction on a per bushel of capacity basis �B. As
expected, fewer projects are net present value positive in the worst case project
value compared to the expected case. That is, given the two sets of prices at a time
t the set of prices that are “Net Present Value (NPV) positive” for entering into the
project are

NPV D f.l; c/ W max.V1;V0/�B > 0g and NPV� D f.l; c/ W inf
�;˛

max.V1;V0/�B > 0g;
(42)

then

NPV� � NPV (43)
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Fig. 10 The switching boundaries @S01 and @S10 in the presence of policy uncertainty and model
uncertainty in the worst case. Constant parameters (from Tables 2 and 3) are � D 0 and � D 0:156

(drift and volatility of ethanol), a D 0 and b D 0:123 (drift and volatility of corn), and Zt D 0:45,
� D 0:24, ˛ D �0:69 and ˇ2 D 0:015 (arrival rate, mean and variance of jumps). Non-constant
parameters for model uncertainty are ˛ 2 Œ�1:118;�0:309� and � 2 Œ0; 0:60�

Fig. 11 V1.Lt;Ct;Zt; t/ vs inf�;˛ V1.Lt;Ct;Zt; t/ vs sup�;˛ V1.Lt;Ct;Zt; t/ with policy uncertainty.
Constant parameters (from Tables 2 and 3) are � D 0 and � D 0:156 (drift and volatility of
ethanol), a D 0 and b D 0:123 (drift and volatility of corn), and Zt D 0:45, � D 0:24, ˛ D �0:69
and ˇ2 D 0:015 (arrival rate, mean and variance of jumps). Non-constant parameters for model
uncertainty are ˛ 2 Œ�1:118;�0:309� and � 2 Œ0; 0:60�
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Fig. 12 The switching boundaries @S01 and @S10 in the presence of policy uncertainty and model
uncertainty in the best case. Constant parameters (from Tables 2 and 3) are � D 0 and � D 0:156

(drift and volatility of ethanol), a D 0 and b D 0:123 (drift and volatility of corn), and Zt D 0:45,
� D 0:24, ˛ D �0:69 and ˇ2 D 0:015 (arrival rate, mean and variance of jumps). Non-constant
parameters for model uncertainty are ˛ 2 Œ�1:118;�0:309� and � 2 Œ0; 0:60�

This means that fewer investments are entered into during times of high policy
uncertainty if management is risk averse.

In certain cases, the integral operator may be I ŒV� D EŒV.l; c; J/� �
V.l; c; 0:45/ > 0 and accordingly � D �min D 0 in the minimization. This is
similar to the case with zero policy uncertainty. Thus, the worst case option value
may at times approach the option value in the absence of policy uncertainty.

Impact of Worst Case Model Uncertainty on Operating Decisions The possible
subsidy outcomes in the worst case scenario have a much more negative outlook
than the expected case. Thus in the worst case scenario, the optimal strategy tends
to be conservative when making switching decisions (Fig. 10). The net result is that
management switches production on much later and switches production off much
earlier compared to the expected case operating strategy.

Comments on the Best Case Model Figure 11 shows that the gap between the
best and worst case prices can be quite large. This is an artifact of the stochastic
optimization problem that leads to very large arbitrage free price good deal bounds
in practice with financial derivatives. Similar to before, management switches
production on earlier and switches production off later compared to the expected
case operating strategy (Fig. 12).
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5 Conclusions

The goal of our paper is to develop a quantitative model for managing and
pricing regulatory risk. The accomplishments and overall theme of our paper are
summarized in what follows.

5.1 Summary

Our paper laid out several research goals to contribute to the existing real options
literature and the less developed body of research in policy uncertainty.

We presented a real option model to attempt to quantitatively model policy
uncertainty using a jump diffusion process. This model allows for the valuation
of long term energy projects in the presence of policy uncertainty. For a corn-
ethanol case study (following [23]), we presented a real option model involving
both standard price uncertainty modelled using a simplified one dimensional jump
diffusion process for the relevant price spread and stochastic subsidy. We followed
this with a more sophisticated multivariate model which independently modeled
both the input and the output price. In addition, this model included the impact
of policy uncertainty using a randomly fluctuating subsidy level. This fluctuating
subsidy was quantified using a pure jump process. Given that there may be model
uncertainty for the subsidy policy process, our proposed model includes a “worst
case” (modelled using a VaR level) policy uncertainty scenario which allows
the project investor to quantify and manage his worst case regulatory downside
risk. This work allowed us to draw some general conclusions with policy level
implications, as summarized and described in the next section.

5.2 Policy Conclusions

We outline the policy effects and numerical conclusions from our analysis in Sect. 4.

5.2.1 Policy Uncertainty

In the case of policy certainty versus uncertainty, for the convex (or “long vol”) real
options considered here, the effects of policy uncertainty always increase the value
of the option when there is no directionality in the subsidy jumps.

More generally, the effects of policy uncertainty may be positive or negative for
the project valuation. For example, if the subsidy is currently low and the future
subsidy level is expected to be higher, the possibility of a jump in policy increases
the overall value of the option. The opposite holds when the subsidy is high and the
future subsidy is expected to be lower than today.
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5.2.2 Model Uncertainty

Typically, the effect of ambiguity in policy uncertainty models on project valuation
is negative: A strongly risk averse manager taking a long position in the option
should price the project using the worst case of possible parameters.

The optimal operating strategy in terms of the sets of prices, times, and subsidy
levels to switch production vary based on the scenario. The strategy however
generally obeys the following rules: (1) If the scenario is a worst case (respectively
best case), then production is switched off earlier (later) compared to the constant
parameter expected case, and production is switched on later (earlier) compared to
the expected case. This represents an pessimistic (optimistic) outlook on regulatory
policy changes. (2) If the scenario is a constant parameter case with policy
uncertainty, then production is switched on earlier (later) if the current policy regime
is lower (higher) than the expected long run trend. Similarly production is switched
off later (earlier) if the current policy regime is lower (higher) than the expected
long run trend.

The anecdotal evidence that suggests businesses delay investment longer in
periods of high policy uncertainty is seen to be consistent with our model,
supporting those claims [3, 17, 35]. In particular, given the tendency is
generally to delay during periods of policy uncertainty suggests that investors
use pessimistic model outlooks when making investment decisions. Given that
fewer projects were net present value positive in the model uncertainty case
versus the policy uncertainty with known parameters case, our model supports
the claim that fewer investments are entered into during periods of high policy
uncertainty.

5.3 Possible Extensions

The lognormal distribution for the policy subsidy jump process was chosen for
several reasons: (1) subsidies cannot become negative; (2) model familiarity, since
geometric Brownian motion itself leads to a lognormal distribution and Merton’s
seminal jump diffusion paper [25]; (3) analytical tractability; and (4) its second
moments exist. The distribution however has large positive skew with a fat tail.
This choice of distribution can lead to results which are relatively indifferent toward
downside risk in the subsidy process, as the probability of observing very low
subsidies is much smaller than the probability of observing very high subsidies.
For reference, plots of the expected, worst and best case subsidy jump probability
distribution functions are shown in Fig. 13 along with a reference case to better
illustrate the positive skew and fat tail.
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Fig. 13 The probability distribution functions dP.J/ of the jumps J of the expected case
LogN.�0:69; 0:015/, worst case LogN.�1:118; 0 W 015/, best case LogN.�0:309; 0:015/, and
a reference case LogN.�0:7; 0:1/ highlight the skew

To improve the model, more classes of jump distributions or non-constant Pois-
son arrival rates could be considered for future work. Another possible improvement
to the expected subsidy jump model would be to incorporate management’s views
on the probability of possible policy outcomes or cases, each with an associated
probability determined by management (an idea motivated by [20] but here simpli-
fied). This is both easier to justify to industry practitioners and greatly simplifies
the analysis as it effectively removes the continuous variable J and replaces it with a
discrete variable Ji. This reduces the dimensionality of the PID variational inequality
system, which greatly reduces the computational time by reducing the problem
to solving discrete weighted probabilities for each outcome Ji. For completeness,
the integro operator would be replaced with I ŒV� D �.

P
i ViPi � V/ and a PID

variational inequality solved for each outcome i with associated value function Vi

and management probability estimate Pi.

Appendix 1: Numerical Method

A brief exposition of the numerical method used to solve this PID variational
inequality system is presented below. We refer the reader to [9, 14, 18, 28] for a more
detailed analysis of the finite difference solutions to stochastic control problems and
PIDEs.
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The general PID variational inequality is of the form

max

�
@V

@t
C L ŒV�C I ŒV�C f � rV; h � V

�
D 0: (44)

where the differential operator is (occasionally suppressing any l; c; z dependence of
�; �; a; b)

L ŒV� D �
@V

@l
C a

@V

@c
C 1

2
�2
@2V

@l2
C 
�b

@2V

@l@c
C 1

2
b2
@2V

@c2
(45)

and the integro operator is

I ŒV� D �.EŒV.l; c; J/� � V.l; c; z// (46)

and the constraint is

h D Vu � Du (47)

The numerical solution is obtained via finite differences at grid points
V.li; cj; zp; tk/ D Vk

i;j;p usually using second order centred differences except
possibly at the boundary conditions. The grid points are

tk D t0 C k�t (48)

li D l0 C i�l (49)

cj D c0 C j�c (50)

zp D z0 C p�z (51)

where the increments � need not necessarily be uniform. Divided differences are
used to approximate the derivatives. Two are shown below for reference

@V

@l
� Vk

iC1;j;p � Vk
i�1;j;p

2�l
(52)

@V

@t
� VkC1

i;j;p � Vk
i;j;p

�t
(53)

The integral EŒV.l; c; J/� is simply truncated and approximated along a grid as well

EŒV.l; c; J/� �
Z Jmax

0

V.l; c; J/P.J/dJ �
PX

pD0
Vk

i;j;pg.zp/�z (54)
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where the expectation is truncated by a point Jmax D zP at which the error in the
approximation is small. Note any kind of quadrature rule can be used along with
non-uniform grid spacing besides the rule shown above.

A fitted scheme is used to write out a system of equations for Vk
i;j;p at the grid

points

VkC1 � Vk

�t
C �LVkC1 C .1 � �/LVk C �IVkC1 C .1 � �/IVk C f � 0 (55)

where L is the differentiation matrix associated with the partial differential operator
L including the source term �rV and I is the integration matrix associated with the
integro operator I . The parameters � and � blend averages of the discretized PIDE
at time steps k and k C 1 (e.g. � D 0 is fully implicit and � D 1

2
yields a Crank-

Nicholson scheme). A small abuse of notation Vk refers to the entire collection
of grid points i; j; p at time step k. The running profit function at all grid points is
simply f . The differentiation matrix L tends to be stiff whereas the integration matrix
I tends to be non-stiff allowing for the use of IMEX style time marching schemes.4

For reference, L can be considered a tensor that operates on a square Vi;j at all p.
In tensor notation, at the interior points L is for example

Li;j;i;j D � 2

�l2
1

2
�2i;j � 2

�c2
1

2
b2i;j � r (56)

Li;j;i;j�1 D � 1

2�c
ai;j C 1

�c2
1

2
b2i;j (57)

Li;j;i�1;j�1 D 1

4�l�c

�i;jbi;j (58)

where Li;j;iCi�;jCj� D 0 if ji�j; jj�j � 2. Conditions must be applied along the
boundary (e.g. linearity at far field). The integration matrix I is applied to a column
Vi;j;p across all p at a point .i; j/, like a matrix in p constant across all i; j. For
example,

Ip;p D �

�
1

2
g.zp/.zpC1 � zp/ � 1

�
(59)

Ip;q D �
1

2
g.zq/.zqC1 � zq�1/: (60)

using a trapezoidal quadrature rule.
The system is solved subject to a known final condition V.l; c; z;T/ D Q.l; c; z/

(being a backward Kolmogorov type equation). If there is no salvage value at the

4We note that using a Crank-Nicholson scheme in both L and I appeared to deliver good results.
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end of the facility life VK
i;j;p D Qi;j;p D 0 (where T D t0 C K�t) but in general the

salvage value should satisfy some inequalities around the switching costs Dij.
This is a complementary problem

MVk � b � 0; h � Vk;
�
MVk � b

�T
.Vk � h/ D 0 (61)

where superscript T denotes the matrix transpose. The matrix M is an aggregation of
the integration and differentiation matrix pre-multipliers of Vk while b is a vector of
collected knowns at time k (from k C 1). This matrix system is then solved using an
iterative fixed point method similar to projected successive over-relaxation. Several
iterative schemes for non-linear control problems are described in [1, 9, 10, 14, 18,
28, 37].

Appendix 2: Optimal Control

The intuition behind the proofs of the theorems in Sect. 3 are presented in this
appendix.

Regarding the One-Dimensional Model Optimal Stochastic
Control 3.1

Proof (Theorems 1 and 2). Consider the optimization with respect to �

inf
�min����max

I ŒV�: (62)

Due to the boundedness of �, this problem is nonsingular. Since I ŒV� D �.EŒV.yC
J/� � V.y// is linear in �, it achieves its critical values at the endpoints Œ�min; �max�

and the optimal � satisfies

� D
(
�min if EŒV.y C J/� � V.y/ � 0;

�max if EŒV.y C J/� � V.y/ < 0:
(63)

Turning now to the optimization with respect to ˛,

inf
˛min�˛�˛max

�.EŒV.y C J/� � V.y// ) inf
˛

EŒV.y C J/� (64)
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where we drop the ˛ bounds for notational brevity. The expectation can be written as

inf
˛

EŒV.y C J/� D inf
˛

Z 1

�1
V.y C J/gN.J/dJ; gN is the normal kernel N.˛; ˇ2/ (65)

D
Z 1

�1
inf
˛

fV.y C ˛ C z/gg�
z .z/dz; g�

N is the kernel N.0; ˇ2/ (66)

D
Z 1

�1
V.y C ˛min C z/g�

z .z/dz (67)

if V.y/ is monotone increasing in y which is true of the class of profit functions f .y/
considered in this analysis. (This result follows from the Feynman-Kac or Green’s
formula for V.y/ given f .y/ is monotone increasing.)

A similar argument applies for deriving the maximal optimal control (Theorem 2)
but applied in the opposite direction.

Summarizing, the worst case project value is given by the minimal optimal
control and the best case is given by the maximal optimal control subject to certain
regularity conditions on V and f (namely monotonicity). ut
Proof (Theorem 3). Note that the integro operator I is single-signed almost
everywhere if f is such that V.y/ is convex and ˛ D 0. The justification follows
from Jensen’s inequality V.EŒy C J�/ � EŒV.y C J/� and that EŒy C J� D y C˛ D y.
Thus

EŒV.y C J/� � V.EŒy C J�/ D (68)

EŒV.y C J/� � V.y/ D 1

�
I ŒV� � 0 (69)

and accordingly � D �min for all y (and vice versa for the maximal control). ut

Regarding the Constant Coefficient Option Price 3.1.1

Proof (Theorem 4). For a function u.Yt D y; t/, applying Ito’s lemma for jump
diffusions results in

u.YT ;T/ � u.y; t/ D
Z T

t
b
@u

@y
dWs C

Z T

t

�
@u

@t
C a

@u

@y
C 1

2
b2
@2u

@y2

�
ds

C
Z T

t
Œu.Ys C J; s/ � u.Ys; s/�dNt: (70)
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Taking the expectation causes the Ito integral to become zero (since EŒ
R T

t udWsjFt�

D 0 for smooth functions u). The expectation of the jump term becomes

E

�Z T

t
Œu.Ys C J; s/ � u.Ys; s/�dNt

�
D
Z T

t
EJ Œu.Ys C J; s/ � u.Ys; s/� �ds

(71)
since the Poisson arrivals dNt and Brownian motion dWt are independent, and
dNt D 1 with probability �ds or 0 otherwise. Here EJ denotes an expectation with
respect to J only (recall J?Wt).

When u.�;T/ D 0, and the jumps J and Brownian motion are independent, the
expectation is

EŒu.YT ;T/ � u.y; t/�

D �u.y; t/

D E

�Z T

t

�
@u

@t
C a

@u

@y
C 1

2
b2
@2u

@y2
C �.EJŒu.Ys C J; s/� � u.Ys; s//

�
ds

�
(72)

If u.y; t/ satisfies the nonhomogeneous PIDE

@u

@t
C a

@u

@y
C 1

2
b2
@2u

@y2
C �.EJŒu.y C J; t/� � u.y; t// D �f .y/; (73)

the solution has the probabilistic (Feynman-Kac) representation

u.y; t/ D E

�Z T

t
f .Ys/ds

ˇ̌
ˇ̌Yt D y

�
(74)

The discounted value function V.Ys; s/ D e�r.s�t/u.Ys; s/ satisfies the PIDE of
Theorem 4 and has probabilistic representation

V.y; t/ D E

�Z T

t
e�r.s�t/f .Ys/ds

ˇ̌
ˇ̌Yt D y

�
: (75)

The key to solving this expectation is to condition Y on n, the number of jumps
so far, denoted Ys;njn. Note that the probability of observing n Poisson jumps over a
time period s � t is P.n; s � t/ D e��.s�t/ �n.s�t/n

nŠ . Thus

V D E

�
E

�Z T

t
f .Ys;n/ds

ˇ̌
ˇ̌ n

��
(76)

D
1X

nD0

Z 1

�1

Z T

t
e��.s�t/ �

n.s � t/n

nŠ
e�r.s�t/yC

s;n

1q
2�B2s;n

e
� .ys;n�As;n/2

2B2s;n dsdys;n (77)
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where As;n D y C a.s � t/C n˛ and B2s;n D b2.s � t/C nˇ2.

V D
1X

nD0

Z 1

�1

Z T

t
e��.s�t/ �

n.s � t/n

nŠ
e�r.s�t/.As;n C Bs;nz/C

1p
2�

e� z2
2 dsdz (78)

D
1X

nD0

Z T

t

Z 1

�d
e��.s�t/ �

n.s � t/n

nŠ
e�r.s�t/.As;n C Bs;nz/

1p
2�

e� z2
2 dzds (79)

where d D As;n=Bs;n. Changing variables x D �z and flipping the limits of
integration yields

V D
1X

nD0

Z T

t
e��.s�t/ �

n.s � t/n

nŠ
e�r.s�t/

�
�Z d

�1
As;n

1p
2�

e� x2
2 dx �

Z d

�1
Bs;nx

1p
2�

e� x2
2 dx

�
ds (80)

V.y; t/ D
1X

nD0

Z T

t
e��.s�t/ �

n.s � t/n

nŠ
e�r.s�t/

�
As;n˚.d/C Bs;np

2�
e� d2

2

�
ds (81)

where ˚.x/ is the standard normal cumulative distribution function. ut

Regarding the Complete Stochastic Control Problem 3.2

Proof (Theorems 5 and 6). The argument for obtaining the optimal � is identical to
the one-dimensional case. Determining the optimal ˛ is similar to the previous case,
but slightly more delicate. Again, it rests on the monotonicity of f . Recall

f1.l; c; z/ D �.l C z � K1/ � c; f0.l; c; z/ D ��K0 (82)

and thus f1 is monotone increasing in z and f0 is unaffected by z. By the Feynman-
Kac representation for V1 in Eq. 34, V1 is monotone increasing in z. Similarly V0,
via the free boundary condition V0 D V1 � D01 in Eq. 35, is monotone increasing in
z by virtue of the boundary condition and regularity results along the free boundary
[28, 29]. Now it remains to show that the expectation has a minimum

inf
˛

EŒV.l; c; J/�

D inf
˛

Z 1

0

V.l; c; J/gLN.J/dJ; gLN is the lognormal kernel LogN.˛; ˇ2/ (83)
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D
Z 1

0

inf
˛

fV.l; c; xe˛/gg�
LN.x/dx; gLN is the kernel LogN.0; ˇ2/ (84)

D
Z 1

0

V.l; c; xe˛min/g�
LN.x/dx (85)

Summarizing, the PID variational inequality yields the worst case project value
(minimal optimal control) when

˛ D ˛min; � D
(
�min if EŒV.l; c; J/� � V.l; c; z/ � 0;

�max if EŒV.l; c; J/� � V.l; c; z/ < 0
(86)

and following a similar argument as above yields the best case value (maximal
optimal control) when

˛ D ˛max; � D
(
�max if EŒV.l; c; J/� � V.l; c; z/ � 0;

�min if EŒV.l; c; J/� � V.l; c; z/ < 0
(87)

ut
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A Hedged Monte Carlo Approach to Real
Option Pricing

Edgardo Brigatti, Felipe Macías, Max O. Souza, and Jorge P. Zubelli

Abstract In this work we are concerned with valuing optionalities associated to
invest or to delay investment in a project when the available information provided
to the manager comes from simulated data of cash flows under historical (or
subjective) measure in a possibly incomplete market. Our approach is suitable
also to incorporating subjective views from management or market experts and to
stochastic investment costs.

It is based on the Hedged Monte Carlo strategy proposed by Potters, Bouchaud,
Sestovic (Phys. A Stat. Mech. Appl. 289(3–4):517–525, 2001) where options are
priced simultaneously with the determination of the corresponding hedging. The
approach is particularly well-suited to the evaluation of commodity related projects
whereby the availability of pricing formulae is very rare, the scenario simulations
are usually available only in the historical measure, and the cash flows can be highly
nonlinear functions of the prices.

1 Introduction

The use of quantitative finance techniques to evaluate projects while trying to
capture the value of active management and flexibility is known by the name of
Real Option Analysis (ROA). The importance of capturing such “non-passive” value
of projects can be a decisive factor when trying to decide upon investment within
a portfolio of projects. Most of the classical applications of ROA involves vanilla
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American options as the case of the option to postpone a project, or to abandon
it. However, when considering projects related to capacity planning, chemical or
petrochemical plants, oil refining, or indeed any commodities-based project, a sig-
nificant increase in complexity arises. Under these conditions, recurring problems
that are encountered in real options, as dealing with market incompleteness, become
particularly acute.

In many cases, the company has access to financial instruments that strongly
correlate with the projects, and sometimes, as in the case of commodities companies,
even with their final product. Thus, the company can hedge some of its exposition
yielded by a project, but usually not all of it, by an appropriate hedging portfolio.
This suggests that a hedging approach based on Monte Carlo simulations can be
a plausible alternative for pricing such real options. Indeed, on one hand quadratic
hedging has been used to price financial options in incomplete markets, and it is
based on the local minimization of a proxy to variance, that is readily recognized as a
risk measure by managers. On the other hand, Monte Carlo approach has been often
used when dealing both with options involving many assets—as baskets, rainbow,
etc.—or when asset price models are not readily available.

The aim of this work is to propose the use of the so-called Hedged Monte Carlo
Method—Monte Carlo pricing through quadratic hedging—to price such complex
options.

The plan for this article goes as follows: We close this introductory section
with a description of the project evaluation problem we are considering, a short
methodological review of the different approaches to real options, and its analysis
by means of hedging with financial instruments. In Sect. 2 we present an approach
to evaluating real options based on the Hedged Monte Carlo (HMC) method
of [39]. It has a number of desirable features: it uses the dynamics under the
historical/subjective measure; it allows for an easy determination of the optimal
exercise boundary, it has low variance, and allows for an assessment of the
nonhedgeable risk. Furthermore, the oracle approach easily allows to incorporate
managerial views in many different levels: it can either accommodate views of
different managers of related projects, or more global corporative views and
scenarios. The method developed is explored in Sect. 3 with some examples and a
few case studies. We conclude in Sect. 4 with some final comments and suggestions
for further developments.

1.1 Real Options Analysis

The use of mathematical finance techniques has been continuously growing in recent
times as a tool to capture the value of flexibility in projects. A classical account can
be found in the books of [9] and [48]. The subject blossomed under different names
but is generally known Real Options. See also [3, 8, 22, 28, 32, 35, 38, 46, 47, 49].

The original framework identifies the Net Present Value of the project as a
stochastic process correlated with a tradable risky asset. The risky asset is termed
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the twin or spanning asset whereas the project value is sometimes referred as the
surrogate asset. Subsequent approaches take this identification very far. Indeed, one
cannot expect to have a traded asset with a perfect correlation with the project, since
this would mean that project risk is totally diversifiable, and hence replicable via
financial markets. An alternative view, is to look for an asset, typically an index,
that yields a high correlation with the project returns. This is known as the modern
approach. Other approaches exist. See [2] for a classification, the discussion in [23],
and the remarks in Sect. 1.4.

A very strong critique of the real option approach was presented by [21]. There
they show, by means of a simple example, that the use of no-arbitrage techniques
to nontradable surrogate assets can lead to arbitrary (very high or very low) no-
arbitrage option prices. This in turn shows that the economic use of real options in
the context of incomplete markets is highly questionable. In the same work, they
also show that a variance minimization of the hedging error could be a way out of
the economical impasse caused by the lack of completeness of the market.

1.2 Complex Structured Real Options

We are concerned with the practical problem of quantitatively evaluating projects
under uncertainty from different scenarios taking into account flexibility of the
projects and the possibility of partial hedging with financial instruments. We assume
that we have available a fairly large number of scenarios organized in a time series
and that connected to the different scenarios we have an oracle that produces the
cash flows associated to each scenario. The scenarios in turn are linked to traded
assets or financial instruments which may be used for hedging the project. Figure 1
describes the situation.

This framework can arise when planning chemical plants or oil refineries. See
for example [30, 34, 36, 42, 45]. It also naturally appears when using real option
techniques for capacity planning. See [4, 29, 33]. In most of these problems, the
markets are overall incomplete, unless under very simplifying assumptions. In
addition, such incompleteness will also imply that data will be only available under
the historical measure.

We shall now consider different ingredients in such complex options. The first
one, stems from the fact that many corporations predict in a fairly precise way their
cash flows using a black box (oracle) whose stochasticity only comes through the

Fig. 1 Description of the
oracle producing the cash
flows at time t and scenario i

Xi  
t —traded assets

Y i  
t —non-traded assets

Oracle for

Cash Flow

Generation

c(t,Xi  
t  ,Y

i  
t)
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inputs from the different assets, supply/demand curves, and production curves. Yet,
such oracle depends on the prices of many (stochastic) assets as well as on non-
tradable quantities. This is depicted in Fig. 1.

More generally, the cash flows may be produced by simplified models that
incorporate algorithms or analytical procedures.

Among the challenges that are present in the evaluation of projects under
uncertainty, especially those linked to commodity enterprises, we single out the
following:

• Historical measure: The simulations are usually presented in the historical
measure. Furthermore, the scenarios are provided by management and are loaded
with views from advisors or sector specialists. In fact, some corporations delegate
the scenario generation to part of the board of directors or an independent
division.

• Managerial views: It is crucial to incorporate managerial views in the cash flows,
as well as automated decisions. An example would be a commodity trading
company that has a limited amount of storage capacity for different products.
According to the relative prices and profits it may automatically determine how
much of each product it would store.

• Market incompleteness: The hedging is performed in incomplete financial mar-
kets. In fact, sometimes the firm does not have access to the liquidity provided by
the financial markets. In other cases, regulations might preclude the management
to hold some speculative positions to fully hedge against market variations.

• Unhedgeable risks: Investment decisions on commodity related projects have to
take into account not only the hedgeable risks, but also the unhedgeable ones.
For instance, the decision of exploring an oil field is highly dependent on its
production curve and also on ecological risks associated to the operation.

• Multiple assets: Investment decisions may depend on the relative value of several
traded underlyings. Such assets might have general correlation structures ranging
from low to high cross-correlation. Thus, the hedging might have to be very
diversified.

1.3 Real Option Analysis Through Hedging

The approach suggested here to attack the general problem mentioned above can
be loosely described as a risk minimization one where the project valuation is
performed by constructing a portfolio that includes the project delay optionality
and the possible hedging of such project by tradable assets. By a methodology
introduced by Potters et al. [39] (see also [17]) one can compute different financial
options (including American and Bermudian ones) by a recursive risk minimization
of historical-measure simulated paths. The importance of using historical simula-
tions in the solution of this problem is that managers consider their decisions by
looking at observed prices of different commodities and assets. We shall refer to the
methodology developed in [39] by the Hedged Monte Carlo method (HMC).
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Another motivation for the methodology presented here is the critique to the
traditional no-arbitrage arguments of real option theory present in the work of [21].
In the latter, the idea of minimizing the variance is considered as an alternative to the
shortcomings caused by market incompleteness. A number of different approaches
have been developed to deal with incomplete markets. To cite a few: indifference
pricing, minimal martingale measure, and minimal entropy measure.

The idea of using HMC or Monte Carlo algorithms to compute option prices
in incomplete markets is not new. See, for example, the work of [40] and the
references therein. It can also be traced to the preprint of [17]. The novelty of
the approach suggested herein is the idea of incorporating the different cash flows
in the evaluation, producing the different statistics that may be helpful for the
manager and allow for the possibility of incorporating managerial views in the
simulations. As it turns out, the HMC methodology corresponds to choosing the
minimal martingale measure of Schweizer and Föllmer [44]. See [25] and [12] and
references therein for details on such connection.

1.4 Remarks on Alternative Approaches

We shall now briefly review the various methodologies available to price real
options.

1.4.1 Hedging Public and Private Risks

As observed in the works of Borison [2] and of Jaimungal and Lawryshyn [23], one
of the main issues in evaluating different types of projects is whether the source of
risk is public or private. For projects with returns that are highly correlated to the
market, risk mitigation should be almost completely achievable by hedging it with
traded assets. In most approaches, the project is assumed to be perfectly correlated
to a single asset, and hence replicable. Notice that for projects which have a diverse
range of products, it might be necessary to use a basket of hedging assets.

On the other hand, projects with mainly private risks, such as for instance R&D,
are unlikely to be hedged with the use of traded assets. Moreover, in some cases the
valuation of the project can be highly dependent on management estimates. Thus,
one can think of such estimates as a non-traded asset that contributes to the value of
the project.

From the point of view of utility theory, this can be more precisely measured by
specifying the firm’s preferences through a utility function, and thus one can think
of using indifference pricing. This approach was pursued in a number of works, in
particularly in the work of Henderson and Hobson [20], of Grasselli and Hurd [17],
and of Grasselli and Hurd [19].
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1.4.2 The Classical Method

As mentioned in the introduction, the classical methodology of pricing real options
assumes that there is a spanning asset that is highly correlated to the net present
value (NPV) of the project. One example of such methodology is the so-called
Marketed Asset Disclaimer (MAD) Approach is based on the idea of taking the
NPV distribution both as the value of the project and as the underlying (tradable)
asset. Then, model the asset with a stochastic dynamics and perform Risk-Neutral
pricing, perhaps accounting for non-traded issues. See for example [6] and [7].
Among the advantages we mention that it mimics the standard mathematical finance
approach, the theory is fairly simple and many out-of-the-box numerical methods
are available. As for the disadvantages, besides the general criticism mentioned
before in reference to the work of [21], we should also note that often very
few data is available for calibration. This makes the choice of the underlying
dynamics somewhat arbitrary. Furthermore, for each project, a calibration/choice
of underlying dynamics is necessary. This ambiguity is typically tackled by a
simplifying assumption on the dynamics, which will hopefully be consistent with
the market scenarios.

1.4.3 Monte Carlo Based Approaches

In many situations the project or the firm has a simulator that we shall refer from now
on as an oracle. Such oracle produces information about the cash flows associated to
different projects or optionalities for different scenarios which in turn are generated
from inputs of tradable assets. The idea is then to take the oracle output as the payoff
distribution, and use the method of Longstaff and Schwartz [26] to compute the
corresponding conditional expected values subject to the traded asset prices. This
requires the underlying(s) to be simulated in the risk-neutral measure or taking into
account the market price of risk in the final result.

Among the pros of such approach, we should mention that it uses fully the oracle
information towards the option evaluation, it is easily integrated and automated with
the oracle thus leading to a project independent pricing mechanism. Furthermore, it
has a good managerial appeal. As for the cons, we have that since the simulation is
performed on the oracle data, the realizations are restricted to the ones generated by
the oracle. This can impair the quality of the results obtained. Furthermore, the risk-
neutral calibration of the scenario generation that will provide inputs to the oracle
might be very cumbersome and requires extra work.

1.4.4 Datar-Mathews (DM) Method

In the method proposed by [27] one assumes that it is given the NPV distributions
(usually by management). Then, one performs a Monte Carlo simulation to replicate
the distribution at the given times and to produce a simulated process for the
underlying asset.
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Among the advantages, we can mention that it is easily implemented and has
great managerial appeal. Yet, there is lack of theory to justify such approach.

1.4.5 Jaimungal-Lawryshyn (JL)

The work of Jaimungal and Lawryshyn [23] includes an extension of DM method
as follows: They take the NPV distributions and choose an observable sector index
(not-traded on their paper) that is highly correlated with cash flows. They choose a
dynamics for this index and based on the dynamics, find the payoff functions that
yield the NPV distribution as a function of this market index. Then, they identify
the value of the project as expected values of these payoffs (very much line in DM’s
method). Finally, they choose a correlated (if possible) traded asset or index and
perform a risk-neutral valuation using a Minimal Martingale Measure.

Among the advantages of this method, we can cite that as in the DM method, it
integrates the managerial view with the Real Option Analysis. Thus it has a good
managerial appeal. Furthermore, the theory is more sound. Yet, the market index
might not be easily available and one still needs to calibrate the model to the index.
This step might be hard if the data is not abundant.

2 The Hedged Monte Carlo Approach and Minimal
Martingale Measures

Since the typical data that will be used for the method comes from simulations, it
will be naturally discrete in time. Thus, it is natural to adopt a discrete time approach
for the algorithm. In this vein, we begin by reviewing the theory for quadratic
hedging in discrete time and how it can be used to price contingent claims. This
will follow closely the exposition of Föllmer and Schied [11]. Then, we proceed on
to discussing the algorithm itself, and present a brief remark about its relation to a
continuous version of the problem.

2.1 Hedging in Discrete Time Within an Incomplete
Market: A Review

In an incomplete market setting, from its very definition, a self-financing replicating
strategy is not usually available. In this scenario, one might give up the replicating
property, and look for self-financing hedging strategies that control the down side
risk—evaluated by means of a risk measure. See for example the work of Föllmer
and Schied [11]. Alternatively, one enforces a replicating strategy and looks for
the cheapest strategy with this property. In this latter case, a very popular strategy
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among practitioners is the minimization of the quadratic tracking error [43]. This
choice leads to strategies that are self-financing in the mean under very mild
assumptions, that we now briefly review.

As usual, we assume to be in a filtered probability space .˝;FT ;P/ and write
L2.P/ D L2.˝;FT ;P/, where P denotes the historical measure. In what follows,
N denotes the investment (short or long) in the numéraire asset, and  denotes the
position on d risk assets, with prices given by a d-dimensional stochastic process X.
Furthermore, X and V denote discounted prices with respect to a risk-free process.

Definition 1. A trading strategy is a pair of stochastic processes .N ; /, where N
t

is an adapted process and  is a d-dimensional predictable process. The discounted
value of the portfolio is

Vt WD N
t C t � Xt

The gain process is

Gt WD
tX

sD1
s � .Xs � Xs�1/ :

The cost process is defined as

Ct WD Vt � Gt:

Let H denote a random claim, and assume that

1. H 2 L2.P/;
2. Xt 2 L2.˝;FT ;PIRd/, for all t.

Definition 2. An admissible L2-strategy for H is a trading strategy such that it is
replicating, i.e.,

VT D H P a.s.;

and such that both the value process and the gain process are square-integrable, i.e.,

Vt;Gt 2 L2.P/; 8t 2 Œ0;T�:

We can now introduce a suitable risk process

Definition 3. Let .N ; / be an L2-admissible strategy. The corresponding local risk
process is given by

Rloc
t .

N ; / D EŒ.CtC1 � Ct/
2jFt�:
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Let . ON ; O/ be an L2-admissible strategy with value process OVt. This strategy is said
to be a locally risk-minimizing strategy if, for each t, we have that

Rloc
t .

ON ; O/ � Rloc
t .

N ; /; P a.s.

for each L2-admissible strategy whose value process Vt satisfies VtC1 D OVtC1.

Definition 4. A trading strategy is a mean self-financing strategy, if its correspond-
ing cost process is a martingale, i.e.:

EŒCtC1 � CtjFt� D 0:

Definition 5. We say that two adapted processes U and V are strongly orthogonal if

cov.UtC1 � Ut;VtC1 � VtjFt/ D 0;

where cov denotes the conditional covariance, i.e., cov.A;BjFt/ D EŒABjFt� �
EŒAjFt�EŒBjFt�.

The following result (see [11]) guarantees the existence of the corresponding hedge:

Theorem 1.

1. An L2-admissible strategy is locally risk minimizing if, and only if, it is mean
self-financing, and its cost process is strongly orthogonal do X.

2. There exists a locally risk minimizing strategy if, and only if, H admits the
so-called Follmer-Schweiser decomposition:

H D c C
TX

tD1
t � .Xt � Xt�1/C LT ; P -a.s.;

where c is a constant,  is a d-dimensional predictable process, such that
t � .Xt � Xt�1/ 2 L2.P/ for each t, and L is a square-integrable martingale that
is strongly orthogonal to X, and satisfies L0 D 0.

In this case, the locally risk-minimizing strategy . ON ; O/ is given by :

O D 

ON
t D c C

tX
sD1

s � .Xs � Xs�1/C Lt � t � Xt:

Notice that the associated cost process is Ct D c C Lt.
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2.2 Pricing by Risk Minimization

The proof of Theorem 1 is actually constructive and yields the following algorithm:

Algorithm 1.

1. Set OVT WD H;
2. For t D T � 1 down to t D 0 do

a. Set

. OVt; OtC1/ WD argmin
.Vt ;tC1/

E

�� OVtC1 � .Vt C tC1 � .XtC1 � Xt//
�2 ˇ̌

Ft

�
I (1)

3. Set OCt WD OVt �Pt
sD1 Os � .Xs � Xs�1/, t D 0; � � � ;T;

4. Set Oc WD OC0;
5. Set OLt WD OCt � Oc, t D 0; � � � ;T;
6. Set ON

t WD Oc CPt
sD1 Os � .Xs � Xs�1/C OLt � Ot � Xt, t D 0; � � � ;T.

Notice that if P is a risk-neutral measure, then Xt is a square-integrable
martingale. In this case, the Galtchouk-Kunita-Watanabe decomposition ([5]) yields

EŒHjFt� D OV0 C
tX

sD1
Os � .Xs � Xs�1/C Lt

and hence we have

EŒHjFt� D OVt:

This allows for a consistent interpretation of the value of a local risk minimizing
strategy as an arbitrage-free price of H. However, in general, X will not be a
martingale under P, and in the incomplete setting there will be many martingale
measures that are equivalent to P. It turns out that one of these measures is
particularly relevant for hedging under local risk minimization.

Definition 6. Let P denote the set of martingale measures that are equivalent to P.
We say that OP 2 P is a minimal martingale measure if

E

2
4
 

d OP
dP

!23
5 < 1;

and if every square-integrable martingale under P, which is strongly orthogonal to
X is also a martingale under OP.

Theorem 2. If there exists a minimal martingale measure OP, and denoting by OV the
value process of the local risk minimizing strategy, then we have that
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OVt D OE ŒHjFt� :

We close this section with some practical remarks. The first one is that the crucial
part of Algorithm 1, as far as valuation of the contingent claim is concerned, is
composed of steps 1 and 2. The second one is that for real options and numerical
simulations it is more convenient to work with undiscounted prices of the assets and
the contract. Thus, from now on we shall revert to actual prices and use a discounting
factor of 
 D exp.r�t/ where r is the risk-free rate.

If we are given a payment stream of cashflows, ct for t D T0; � � � TF � 1, under
the minimal martingale measure OP and discounting by the constant interest rate, the
expected value Vt is given by

Vt D OE
"

TFX
sDt

cs=

s�t
ˇ̌
Ft

#
.

In this case, the generalization of Algorithm 1 is straightforward. Under the
assumption that we are working in a Markovian setting such value becomes

Vt D OE
"

TFX
sDt

cs=

s�t
ˇ̌
Xt D x

#
. (2)

We shall now address the question of computing such conditional expectation from
historical simulations. If we have a large number N of simulations to the process
fXtgtD0;1;���, we can approximate the term on the R.H.S. of the local risk term Rloc

t by

Rloc
t � 1

N

NX
iD1

�

�1VtC1.Xi

tC1/ � Vt.X
i
t/ � tC1.Xi

t/
	

�1Xi

tC1 � Xi
t


�2
.

The next step is to make the problem numerically tractable. But this, following
the ideas of Longstaff and Schwartz [26] and Potters et al. [39], can be accomplished
by introducing a function basis for the unknown function tC1.x/ (respec. Vt.x/) and
considering a finite element expansion. More precisely, let us write

Vt.x/ D
bX

aD1
�a

t Ka.x/

and

tC1.x/ D
bX

aD1
 a

tC1Ha.x/ ,
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where Ha (respec. Ka ) forms a basis for the space of functions tC1 (respec. Vt.x/).
Then, one can substitute the minimization problem in Eq. (1) by the minimization:

argminn
�

j
t ; 

j
tC1

ob

jD1

NX
iD1

"

�1VtC1.Xi

tC1/�
bX

aD1
�a

t Ka.X
i
t/�

bX
aD1

 a
tC1Ha.X

i
t/ � .
�1Xi

tC1� Xi
t/

#2

(3)

In other words, the expected value is computed by expanding the function in
L2.˝;Ft; d OP/ in a suitable basis and truncating at an appropriate level. Needless to
say, there are a number of relevant issues, ranging from conditions on the processes
to approximation spaces. A more detailed analysis of the non-Markovian case and of
such approximation spaces would take us too far afield. See for example Section 1.3
of the work of Lipp [25].

2.3 The HMC Algorithm for Real Options

We shall now present the proposed algorithm for the evaluation of the delay option
of a project that could be started at any time between say the time T0 � 0 and T . In
financial terms, this consists of a Bermudian option that could be exercised at any
time between T0 and T . Obviously, it reduces to an American option if T0 D 0 is
the present time. In mathematical terms this corresponds to a discrete version of a
free boundary problem. We assume further that our cash flows could come at any
time till TF. The main building block of our algorithm is the regression described in
Eq. (3).

We assume we are given the following inputs:

• A vector time series of traded assets xi
t, for a period of times t D T0; � � � ;T , and

for the scenarios i D 1; � � � ;N.
• The corresponding cash flows associated to the different scenarios ci

t for t D
T0; � � � ;TF, and i D 1; � � � ;N. Such cash flows would be produced by an oracle
which takes into account the different traded asset values and the non-traded
ones.1

• A long term behavior for the project value or the cash flows (possibly under the
different scenarios).

• The exercise period of the optionality T0; � � � ;T , where 0 � T0 < T � TF.

We now perform the following algorithm:

1In principle, it could be also time dependent and even scenario dependent. Furthermore, it can
incorporate managerial views by emphasizing specific regions of the probability space.
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Algorithm 2. [HMC for Real Options]

1. Initialize the project value VT.Xi
T/ for the different scenarios i D 1; � � � ;N by

using Eq. (2) for t D T0 � � � T.
2. Initialize for t D T the payoff OVT.Xi

T/ D .VT.Xi
T/ � K/C for the different

scenarios i D 1; � � � ;N.
3. For t D T � 1; � � � ;T0 do:

a. Define the functions:
Vt.x/ WD Pb

aD1 �a
t Ka.x/ and tC1.x/ WD Pb

aD1  a
tC1Ha.x/

b. Solve the quadratic minimization problem in terms of the coefficients �a
t ;  

a
tC1:

argminn
�a

t ; 
a
tC1

ob

aD1

NX
iD1

"

�1 OVtC1.Xi

tC1/�
bX

aD1
�a

t Ka.X
i
t/�

bX
aD1

 a
tC1Ha.X

i
t/ � .
�1Xi

tC1�Xi
t/

#2

c. Define OVt.Xi
t/ WD maxf.V i

t � K/C; OVt.Xi
t/g.

4. Output: The values of OVT0 .x/ for x 2 ˚
Xi
0

�N

iD1 and the points in the exercise
region.

It T0 D 0 we could continue the downward loop without the comparison and the
computed values in V0 would give an approximation for the option value and the
different scenarios2 at the initial time t D 0.

If we were working with the risk neutral simulations in a complete market,
this algorithm reduces to a variant of the celebrated algorithm of Longstaff and
Schwartz [26].

Remark 1. In the actual implementation, the user may be interested in having
access to the exercise region as well as to more information about the suitability
of investment by using different statistics. Thus, it may be interesting to refine the
Item 3.c. of the algorithm as follows:

3.c. Define OVt.Xi
t/ WD maxf.Vt.Xi

t/ � K/C; OVt.Xi
t/g and store:

i. It WD fi 2 f1; � � � ;Ng= OVt.Xi
t/ � .Vt.Xi

t/ � K/Cg
ii. �t WD minf.Vt.Xi

t/ � K/=i 2 Itg
iii. Prt WD P

�
.Vt.Xt/ � K/C � �t

� � #fi 2 f1; � � � ;Ng=.Vt.Xi
t/ � K/C �

�tg � N�1

The stored values of the points .t; OVt.Xi
t// for i 2 It correspond to an approximate

description of the exercise region.
The quantity Vt.Xi

t/ � K will be called intrinsic value of the investment option
in the sequel. It refers to the best estimate of the stream of cash flows under the
minimal martingale measure given the scenario i minus the investment K.

2Such different scenarios may reduce to a single point in case the initial scenario is known.
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The managerial usage of these statistics springs from the fact that, in many cases,
the stochastic generated cash flows inherit a corporate view of the market scenarios.
As such, these statistics provide a subjective view on the investment scenarios that
is appreciated by managers.

2.3.1 Implementation Notes

The attentive reader will notice that the main bottle-neck of the whole procedure
is precisely in the minimization of 3.(b). A fast and stable algorithm here would
make the difference in practical applications. This minimization can be performed
very efficiently by using the QR algorithm to solve an overdetermined system of
linear equations. See the text of Golub and Van Loan [16] for the numerical analysis
background. The methodology can then be implemented (as we did) in a matlab-
like environment with the standard Linpack packages. It can be easily ported to
other popular programming languages such as R and Java.

The choice of the basis function is the subject of research by many authors even in
the case of the classical LSM algorithm of Longstaff and Schwartz [26]. We follow
the suggestion in the work of Potters et al. [39] for the one-dimensional case of
taking the elements of the basis for hedge to be derivative of the ones for the option.
We also take into account the suggested basis in [13]. In the multidimensional case
we consider tensor products of the elements in the different dimensions.

2.4 Remark on the Continuous Limits

In the case of data simulated or estimated from a continuous model, we might
consider realizations with arbitrarily small time intervals and refined asset price
grids. Then, a very natural question is whether the discrete algorithm has any form
of limit as �t & 0. This problem then can be divided into two parts. First, the
continuous limit of discrete time model. Secondly, the numerical method to solve
the limit case, its accuracy and efficiency.

Concerning the first issue, in the case of European options it is well established
that the minimal martingale measure of Fölmer and Schweizer is associated to
Backward Stochastic Differential Equations (BSDEs). See for example [10] for an
early account. In the work of Pham [37] the main results of the theory of quadratic
hedging in a general incomplete model of continuous trading with semi-martingale
price process are reviewed. In particular, two types of criteria are studied: the mean-
variance approach and the (local) risk-minimization, which is connected to the
continuous limit of the approach considered here. In the work of Bobrovnytska and
Schweizer [1] the mean-variance hedging problem is treated as a linear-quadratic
stochastic control problem. They show for continuous semi-martingales in a general
filtration that the adjoint equations leads to BSDEs for the three coefficients of the
quadratic value process.
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Concerning the second issue, the use of regression-like Monte Carlo methods has
received a lot of attention recently. See [14, 15, 24] In particular, under appropriate
conditions, the convergence of the HMC method can be proved and the error
analysis has been performed in [14]. Furthermore, in [25] the HMC method has been
implemented to some exotic options and its numerical aspects have been studied. In
[12] the HMC method was implemented for actuarial problems.

3 Examples and Case Studies

We shall now exemplify the methodology proposed in the previous sections. The
first set of examples will be purely illustrative ones aiming to exemplify the efficacy
of the algorithm for option evaluation. They serve as validation and accuracy check
for the codes. The second set comes from a large number of real data and practical
evaluations. The examples take into account a large number of hedging energy
commodities in the evaluation of a potential project in the energy sector. Finally,
we present an exploration on a fictitious example involving gas data (Henry Hub
index) and a technology stock (Google). The project cash flows would be associated
to the difference of (rescaled) values of such underlyings added to an uncorrelated
and nonhedgeable noise component.

3.1 Illustrative Theoretical Examples

The first example concerns the running of the algorithm in the classical Black-
Scholes market with simulated prices taken in the historical measure. More
precisely, we consider a European option expiring in 3 months with strike K D 100,
current asset price varying around the at-the-money value X.0/ D 100, volatility
� D 0:3, and interest rate r D 0:05. The number of basis elements (monomials 1,
x and x2) was b D 3 and a total of N D 5;000 simulations in an arbitrary (fixed)
probability measure.

Although this is a very simple text-book example, Fig. 2 conveys the fact that the
results are pretty accurate even for such a small number of simulations and small
number of basis elements.

In the second example we check the algorithm performance of the difference of
two hedgeable assets X1 and X2. More precisely we consider a 65 days exchange
option with payoff .X1;TF � X2;TF /

C. The variables X1 and X2 satisfy geometrical
Brownian motion dynamics with �1 D 0:3, �2 D 0:2, and r D 0:05. The
analytical results are obtained using the Margrabe’s formula. In our setting this
formula states that the fair price for the option is: X1;0N.d1/ � X2;0N.d2/, where
N denotes the cumulative distribution function for a normal distribution and d1;2 D�
lnŒX1;0=X2;0�˙ �2TF=2

�
=�

p
TF, with � D p

0:32 C 0:22. See [31]. Here, we used
two monomials and N D 10;000 simulations. The results are displayed in Fig. 3.
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Fig. 2 The results of a comparison of the actual Black-Scholes formula price and the Hedged
Monte Carlo algorithm result. On the left we display the prices and on the right we display the
hedge value
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Fig. 3 Results of the comparison between the HMC algorithm and the Margrabe formula

3.2 Practical Examples

3.2.1 First Example

An energy company considers the optionality of starting a new project that would
last for 11 years. The project value Vt is dependent on 12 different underlyings.
The option is exercizable every year during the first 5 years. The company also has
a trading desk that could be used for financial investment in some or all of such
different assets.

The optionality was evaluated using several different sets of hedging assets.
We now report on the results obtained with one hedging variable (in this example
the Brent price) and considering 2;000 paths along 11 years with a (continuously
compounded annualized) interest rate r D 0:08. We also computed examples with
more hedging variables.

In Fig. 4 we present the option evaluation using one hedging variable. In this
example the project works as a hedge towards low prices of the Brent. The fact that
the intrinsic value of the project is smaller than the optionality indicates that the
company should wait to start the project.
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Fig. 4 Option evaluation using one hedging variable as a function of the Brent value. The
difference between the project and the investment .VtD0.X1/� K/ is plotted in (red) crosses while
the optionality VtD0.X1/ is plotted with (blue) circles. Here, the investment (strike) is K D 10:89

and the risk free interest rate r D 0:08

Fig. 5 A description of the
cash flow under the different
scenarios. The lower line
corresponds to the 5 %
quantile and top one to the
95 %. The marked region
indicates the 90 % frequency
region
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3.2.2 Second Example

In this example we consider a project that would run for 15 years, an investment of
1;500 monetary units and a yearly free interest rate of 8:00%. The cash flows for
this period are the results of an oracle that depends on a number of traded and non-
tradable variables and in turn are produced by means of running different scenarios.
Some of their descriptive statistics is presented in Fig. 5.

The intrinsic values of the optionality for the different times, including the 5 %,
and 95 % quantiles for the project value are presented in Figs 6 and 7. By applying
the Hedged Monte Carlo method we compute the value of the delay optionality
considering three hedging variables. The project should be exercised if at a certain
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Fig. 6 Value of the project
optionality. The lower line
corresponds to the 5 %
quantile and top one to the
95 %. The marked region
indicates the 90 % frequency
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time and corresponding scenario the intrinsic project value is more than the delay
optionality. This leads to a trigger curve that tells us for each scenario whether to
invest or not (Fig. 7).

3.2.3 Third Example

Differently from the previous examples whereby the actual cash flows came from
complex (black-box type) oracles, our present example concerns a fictitious project
where the cash flows would come from a (fairly) simple mathematical function.
It concerns an artificial potential investment on a gas propelled vehicle that could
be used by an information technology company to gather geographical data and to
use in their web-based advertisements. For simplicity we take the cash flow highly
correlated to Google stock through the equation
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ct.X; �/ D H .aX1;t � bX2;t � I C �t/ , (4)

where X1 is the price of a Google stock, X2 is Henry Hub (HH) gas index, I is a fixed
running cost, �t is a nonhedgeable noise. The function H in our example is defined as

H.x/ D
8<
:
0 , x � 0 ,
x , x 2 .0; 1/ ,
1 , x � 0 .

The rationale behind H is to simulate the saturation given by very large values of
the stock and to clip the values below zero.

We performed the data collection using publicly available data downloaded by
using public domain R software.3 The historical results between August 19th, 2004
and November 24th, 2013 are displayed in Fig. 8. We calibrated the historical log-
returns of the data with a GARCH(1,1) model, and then performed a principal
component analysis of the bi-dimensional innovation time series. From that we
generated the simulations of future scenarios (Figs. 8 and 9).

In this example we consider a project that would run for a maximum period of
say 3 years and the decisions could be performed monthly. The cash flows for this
period are the results of the oracle described in Eq. (4) that depends on a value of
Google and HH Gas. Finally we choose an investment of INV D 3:5 and a risk-free
interest rate of 8:00%.
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Fig. 8 Time series for the assets between August 19th, 2004 and November 24th, 2013

3See for example [41].
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Fig. 10 Asset simulations

In Fig. 10 we present some simulations of the assets, and in Fig. 11 a description
of the simulations of the cash flows by showing their mean, their quantiles.

The results in Fig. 13 show how the statistics of the values for the Intrinsic Value
(defined as V � I) relates to the curve of minimum value of the Intrinsic Value for
exercise (�t) that was calculated in the refined algorithm leading to Eq. (1). As the
time varies between t D 1 and t D 12, the exercise curve crosses the average of
the Intrinsic Values for the different scenarios. The case of �t being smaller than the
Intrinsic Value mean implies a small Prt WD P.NPV < �t/. These small values of
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Fig. 11 Cash flow
simulations for the fictitious
oracle described by Eq. (4).
Using the parameters value
a D 1:2895� 10�4,
b D �5:3191� 10�5,
I D 0:05, "t 
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Prt give a good suggestion of when to invest. But the decision to invest also has to
involve the option value described in Fig. 12 and the expected Intrinsic Value value
of Fig. 13.

4 Discussion and Conclusions

In this work we addressed the problem of pricing real options on projects that have
their cash flow estimates based on an oracle prediction. Such oracle is typically
a combination of asset prices either used for production or obtained as a result
of the working project and non-traded specific variables. They can also forecast
prices or demand, and they can include managerial views or other non-tradable
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Fig. 13 A description of the
project Intrinsic Value
statistics under the different
scenarios and the minimum
value for exercise
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information that impacts the project value. These prices and variables may further be
processed by an optimization procedure, and this leads to the project cash flows. As
discussed in the Introduction, this appears naturally in many situations, in particular
for chemical or oil industries.

For such problems, we proposed a method that is based on minimizing the
tracking error variance of the hedge. This can be interpreted as assuming that we are
in an incomplete market and that the investor is naturally risk averse. In this context,
this variance is a natural risk measure for the investor. Under this framework, we
show how to price real options using the method of Potters et al. [39]. This lead
to a set of consistent prices that reduces to that of the Black-Scholes theory when
the market is complete. The obtained price will depend on the set of assets chosen
for the hedge. This is natural since companies with access to different markets and
vulnerable to different scenarios can have very different values for the same project.
Theoretically, one could include all hedging assets on a maximal set, but this is
unfeasible from a practical point of view.

Once more, we reinforce the idea that our simulations are all done in the
historical measure where the calibration of the models take place. We could also
have incorporated managerial views by emphasizing scenarios that would be more
likely due to management selective information. On the other extreme, even if the
decision maker and the business at hand had access to a completely correlated asset
that could be used to hedge the project value, among the advantages of the present
approach over a risk-neutral Monte Carlo evaluation we can mention: The reduction
of variance of price estimation (for the same precision the number of paths can be up
to 100 times smaller). This was already documented in the original work of Potters
et al. [39]. The estimation of the hedging strategy, residual risk (in the form of the
local variance), and possibly other risk measures (such as VaR and CVaR) at each
time step.
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As explained in the conclusion of the work of Grasselli [18], it is the time
flexibility itself, more than the possibility of replication, that bears the extra value of
an investment opportunity. Thus, the fact that we cannot replicate the project value
should not be the reason for not trying to quantify such extra value. The work of
Grasselli [18] takes the point of view of utility functions and indifference pricing. In
contradistinction, here we took the point of view of minimizing risk as measured by
the variance. A very natural follow up of the present work would be to compare the
different approaches in the case of real world examples, such as the ones presented
here. An exploration of the numerical issues related to the choice of the projection
basis would also be very welcome.
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Transition to Electric Mobility: An Optimal
Price Subsidy Rule

René Aïd and Imen Ben Tahar

Abstract Many public policies declare electric mobility as a key lever for insuring
the carbon emission target and attaining the objectives of oil-dependence reduction.
However, the cost of an electric vehicle (ev) is still way too expensive compared to
the conventional fuel-powered vehicle (fv) and constitutes a serious barrier against
its diffusion. In this note we formulate a tractable model to analyse the dynamics
of the adoption of ev’s. The dynamic is driven by increasing marginal production
returns and consumer’s willingness to pay. We define the social benefit of replacing
an fv by an ev as the fuel-economy it allows to realize, and solve for the optimal
subsidy rule. We show that in a context of expensive fuel price, a voluntary policy
of subsidy can transform the present fuel-powered fleet into an electric one.

1 Introduction

As highlighted in [7, 8], the last decade is marked by new socio-technical devel-
opments which have the potential to trigger the emergence of a viable trajectory
for electric mobility. These new developments are mainly led by: (i) Progress in
battery technology: where significant achievements in terms of performance and
range have already been realized making ev a more viable product. (ii) Public
policies: the last decade witnessed greater concerns about climate change. Many
governments are committed to binding green-house-gas (GHG) emission reduction
targets and number of public policies support electric mobility, declaring it as
a key lever for insuring the sustainability of the transport sector while attaining
the objectives of GHG limitation and oil-dependence reduction. For instance, the
European Commission states a set of objectives among which halving the use of

R. Aïd (�)
EDF R&D, Finance for Energy Market Research Centre, Clamart, France
e-mail: rene.aid@edf.fr

I. Ben Tahar
Université Paris-Dauphine, CEREMADE, France and Finance for Energy Market Research
Centre, Clamart, France
e-mail: imen@ceremade.dauphine.fr

© Springer Science+Business Media New York 2015
R. Aïd et al. (eds.), Commodities, Energy and Environmental Finance,
Fields Institute Communications 74, DOI 10.1007/978-1-4939-2733-3_11

301

mailto:rene.aid@edf.fr
mailto:imen@ceremade.dauphine.fr


302 R. Aïd and I. Ben Tahar

‘conventionally-fuelled’ cars in urban transport by 2030 and phasing them out in
cities by 2050 [9].

Alongside these favorable elements, there are however important obstacles
hindering the deployment of evs. A major one is the high cost of the battery. Surveys
about Consumers Willingness to pay for ev reveal that, in spite of the high premium
some consumers are willing to pay, ‘battery cost need to drop considerably if ev
are to be competitive without subsidy at current gasoline prices’ [10]. A critical
question is to understand how subsidy policies combine with potential battery-cost
reduction via technological learning (learning-by-doing and increasing returns to
scale effects) so that the ev becomes economic.

We formulate a tractable model allowing to quantify the effect of purchase
subsidy on the dynamics of ev’s adoption. Here, we assimilate the benefit of
substituting an fv by an ev to the realized fuel economy over the lifetime of the
vehicle. Indeed, while the individual consumer has a short-term view, the public
authority has a long-term policy, which gives, from a social perspective, advantage
to ev’s future fuel economy over present battery expenses. In this note, we stick to a
simple deterministic setting where the fv’s purchase price and the energy costs for
both vehicles are assumed to be constant over time. It constitutes a reference case
for a more involved stochastic model which is the object of an upcoming paper.

In Sect. 2 we present the basic hypothesis of our model and introduce the
dynamics of the ev adoption. This dynamics is inspired from Brian Arthur [1]
seminal paper analyzing competing technologies with increasing returns. It captures
the fact that the cost of ev is experiencing a learning curve where the speed at which
learning occurs, is spurred by the number of new ev adopters. It implies that the
post-subsidy purchase price spread between ev and fv , denoted by x.t/, evolves
according to

Px.t/ D �˛�x.t/˚.x.t/ � s.t//

where s is the subsidy rule, and ˚ is the complementary cumulative distribution
function for the consumers’ willingness to pay for evs. In Sect. 3, we justify the
social benefit of subsidizing ev purchases, then we formulate and solve the problem
of optimal purchase subsidy rule allowing to maximize the social benefit. We show
that the optimal subsidy rule consists in guaranteeing a relatively low net purchase
price P� which is constant (up to the interest rate). The value of the subsidy vanishes
as the pre-subsidy price of the ev tends to P?. We show that using this optimal
subsidy rule in a context of hugh fuel price, the fuel-powered vehicle fleet can
be transform into an electric one in a few decades. Finally, Sect. 4 is dedicated to
concluding remarks.
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2 Modeling the Dynamics of Electric Vehicle Adoption

Analyzing the potential demand for ev is crucial to model or forecast how
manufactures strategies and public policy incentives may influence the deployment
of electric mobility. Several studies addressed the demand side, in particular
consumers willingness to pay for an electric car compared the reference gasoline
powered vehicle, see for example [5, 10]. For our model, we retain two important
observations which are often reported:

(i) significant preference (willingness to pay) heterogeneity across the population,
(ii) required substantial battery price reduction if evs are to meet target volume.

These facts are illustrated on Fig. 1 with a sample of data extracted from [5] on
willingness-to-pay of European consumers. We will use these data for the numerical
application in Sect. 3.3.

As for battery technology, there is an on-going intense R&D activity where
close collaborations between automakers and manufacturers are observed [8].
As shown in Fig. 2, the industry projects better performances as well as cost
reductions to follow through learning-by-doing and increasing returns to scale
effects: production costs for the not yet mature battery technology shall decline as
production cumulates.

2.1 Basic Hypothesis and Notations

For the sake of tractability, we make some simplifying assumptions on the market
of new personal vehicles:

Potential Market We assume a constant annual rate of new car purchases, denoted
by �. We suppose that consumers have the choice between two types of standard
vehicles, either an electric vehicle (ev) or a fossil-fuel powered car (fv). The
hypothesis for standard vehicle we consider are given in Table 1 and correspond
to genuine data, except for the gasoline price for which a high price scenario is
considered.

Fig. 1 Willingness-to-pay
for ev for European
consumers according to [5]
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Fig. 2 Battery learning curve: LI-ION battery pack cost and production 2010–2030—Source:
Bloomberg new energy finance

Purchase Price and the Battery Learning Curve The purchase price of the
conventional fv, p, is supposed to be constant over time. Whereas, accounting for
potential technological learning, the purchase price of the ev, pe

t , is supposed to
vary (possibly decline) in the future. We denote by xt the purchase price spread:

xt WD pe
t � p : (1)

We assume that this spread is essentially explained by the battery cost. Indeed,
relevant literature report that the cost of batteries is the critical factor within the
investment cost for electric vehicle [4, 6, 11, 12]. As it is explained in the French
Green Book on non-emissive vehicles [12, p. 42] fv and ev share most of their
costs (body work, passenger space, communication to drive wheels. . . ) and the only
differences come for the battery. Following [2], we assume that the battery costs,
and consequently the spread xt, decreases at a learning rate proportional to the
number of new ev adopters.

Energy Cost We denote, respectively, by f and e the annual energy cost of an fv
and an ev. They are assumed to be constant over time. Hence, in our model we do
not take into account possible future energy cost reduction. We also do not take into
account uncertainty regarding oil prices. Indeed, we intend to isolate the effect of
battery technological learning.

2.2 Dynamics of Electric Vehicle Adoption

To model the dynamics of ev deployment, we adapt the framework of Brian
Arthur [1] who proposed a simple and insightful model of explore the dynamics
of allocation between competing technologies with increasing returns.
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Sequentially arriving consumers, indexed by i, choose between the competing ev
and fv technologies each agent i is characterized by his willingness-to-pay for the
ev, denoted by ! i. Let ti denote the date at which consumer i makes his purchase
decision. The consumer i chooses an ev if and only if

xti � ! i :

where xti is the purchase price spread defined in (1). The sequence .! i/i�1
is assumed to be a sequence of i.i.d. random variables. We denote by ˚ the
complementary cumulative distribution function of ! i:

˚.x/ WD P.! i � x/ : (2)

As explained in the previous subsection, we aim to capture the fact that the spread
xt decreases because the cost of ev is experiencing a learning curve where the speed
at which learning occurs, is spurred by the number of new ev adopters. For now on,
we fix a time step ıt, and assume the following dynamics:

xtCıt D xt � ˛ xt nev
t : (3)

Here, nev
t is number of new ev adopters between the dates t and t C ıt, and ˛

represents the learning rate.

A Limiting o.d.e. It can be shown that the stochastic system (3) can be approxi-
mated by the solution of ordinary differential equation (o.d.e.)

Pt D �˛�t˚.t/ ; 0 D x0 ; (4)

where � is the annual rate of new vehicle purchases.

Proposition 2.1. Define the piecewise continuous linear interpolation Nx by

Nx.tk/ D xtk and Nx.t/ D xtk C .xtkC1
� xtk/

.t � tk/

.tkC1 � tk/
; t 2 Œtk; tkC1� ; tk WD kıt :

Then, for any T > 0

e

"
sup

t2Œ0;T�
jNxt � tj2

#
D O.ıt/ :

Proof. This result follows from a direct application of Lemma 9.2.1 in [3]. �
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3 Social Benefit and Optimal Subsidy Rule

3.1 Social Benefit of the Electric Vehicle

In our analysis, we identify the social benefit of the electric mobility with the fuel
economy realized by substituting ev to fv. When estimating the lifecycle cost to
energy, a key issue is the discount rate at which future consumption is valued today.
The individual consumers has a short-term view, reflected by a relative high discount
rate. On the other hand, the public authority has a long-term policy reflected by a
relatively low discount rate. Considering our standard vehicles data, Table 1, this
difference in the discount rate is sufficient to justify from the social perspective the
energy-economy benefits resulting from substituting an ev to an fv ; a collective
benefit which is not perceived at the individual level.

In order to formalize this discussion, we introduce the social cost, P, of a single
fv

P D p C
Z 1

0

e�
tf dt D p C f=
 ; (5)

and the social cost, Pe
t , of a single ev

Pe
t D pe

t C
Z 1

0

e�
tedt D pe
t C e=
 ; (6)

Here, 
, is the social discount rate supposed to be constant over time. We consider
the lifetime of the vehicle to be sufficiently long to make the approximation of an
infinite time horizon. There is a social benefit to the ev if Pe

0 � P. Consider the cost
difference:

P � Pe
t D p � pe

t C .f � e/=
 D b � xt

Table 1 Cost and fuel economy for the electric vehicle

fv ev

Energy consumption 5 l/100 km 20 kWh/100 km

Fuel price 1,5 e/l 0,9 e/kWh

Km/year 15.000 15.000

Energy cost/year (e) 1.125 270

Vehicle price (e) 15.000 30.000

Individual discount rate 16 % 16 %

Individual cost 22.000 31.700

Individual benefit of the ev(e) �9:700
Social discount rate 4 % 4 %

Social cost (e) 43.125 36.750

Social benefit of the ev(e) 6.375
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where b WD .f � e/=
 is, from the social perspective, the fuel economy resulting
from substituting an ev to an fv.

Table 1 summarizes the various costs for the standard vehicles. Energy consump-
tion, fuel price, km per year and vehicle price are taken from the French Green Book
on non-emissive vehicle [12, p. 42] . These data corresponds to a urban use of the
vehicle. The electricity price is an off-peak price, considering that the vehicles will
charge during the night or on non-peaking hours. The hypothesis for the fuel price is
high. It corresponds to a situation where the oil would be around 200 USD per baril.
The individual discount rate (16 %) is sensibly higher then the social rate (4 %). It
reflects the individual’s ‘impatience’ when arbitrating between immediate costs and
future benefits. From the social perspective, substituting an fv by an ev results in
a benefit of e6;000: a fuel economy of b D e21;000, minus the initial battery cost
x0 D e15;000.

3.2 Optimal Purchase Subsidy

A purchase subsidy is used as a public policy to stimulate the number of ev
adopters. We denote by st the value of the purchase subsidy at time t, and by xs

the price spread resulting from applying the subsidy rule s D fst; t � 0g. Here we
shall work directly with the approximating dynamics (4). Then, the rate of new ev
adopters, when applying the subsidy rule s, is approximated by

�˚.xs
t � st/ ; (7)

the resulting price-spread dynamics is given by

Pxs
t D �˛�˚.xs

t � st/ xs
t with xs

0 D x0 : (8)

Hence, from the social perspective, the subsidy rule s D fst; t � 0g leads to an
energy-economy evaluated by

Z 1

0

�˚.xs
t � st/

�
P � Pe

t

�
dt D

Z 1

0

�˚.xs
t � st/

�
b � xs

t

�
dt :

Here the objective of the public authority is to maximise over a fixed time horizon
T the social surplus defined as the social energy-economy minus the subvention
amount:

max
s

Z T

0

�˚.xs
t � st/

�
b � xs

t � st
�

dt: (9)

The question of financing this subsidy policy is left aside here.
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It turns out that is possible to characterize explicitly the optimal subsidy rule. We
shall assume the complementary distribution function ˚ satisfies:

˚ has a bounded support Œxmin; xmax� (10)

˚ 0 > 0 on �xmin; xmax� (11)

h W z 7! z C ˚.z/=˚ 0.z/ is non-decreasing on Œxmin; xmax� (12)

and consider as a canonical example the truncated Pareto distribution function:

˚p.z/ WD
�

xmax � z

xmax � xmin

�p

1Œxmin;xmax�.z/ with p > 0 : (13)

Proposition 3.1. Assume (10)–(12) hold. Let x0 < b be the initial spread value. If
s? is an optimal subsidy strategy, then s? consists in having the consumer pay for
the ev a post subsidy price which is constant equal to p C xs?

t � s?t D p C z? where:

8<
:

z? D xmin if 2x0e�˛�T � b � h.xmin/;

z? D xmax if 2x0 � b � h.xmax/;

and h.z?/ D 2x0e�˛�˚.z?/T � b otherwise :
(14)

Proof. Let H be the Hamiltonian function for the control problem (9)–(8):

H W .x; p/ 7! sup
s�0

�˚.x � s/ fb C x � s � x.2C ˛p/g

Assume that s? WD fs?t ; t 2 Œ0;T�g is an optimal subsidy strategy. Denote by x? WD
xs? the associated price spread and let z? WD x?�s?. Then, by Pontryagin Maximum
principle, there exists an absolutely continuous map p? W Œ0;T� ! R such that
.x?; p?/ satisfies the Hamiltonian system

 Px?.t/ D rpH.x?.t/; p?.t// D �˛x?�˚.z?.t//; x.0/ D x0
Pp?.t/ D �rxH.x?.t/; p?.t// D .2C ˛p?.t//�˚.z?.t//; p.T/ D 0 :

(15)

and the condition

H.x?; p?/ D �˚.z?/ fb C z? � x?.2C ˛p?/g : (16)

From (15) we get

d

dt
.x?.2C ˛p?// D 0 :

Then, by (16), z? is constant on Œ0;T�with: z?Dargmax˚.z?/ fbCz?�x?.2C ˛p?/g,
and from conditions (10)–(12) we get (14). �
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In the case where the willingness to pay follows a truncated Pareto distribution
function ˚ D ˚p, then (14) fully characterizes the subsidy policy:

Proposition 3.2. Let ˚ D ˚p, and assume that

either (i): p � 1 or (ii): p > 1 and .xmax � xmin/ <
p

1C p
.xmax C b/

Let x0 < b be the initial spread value. An optimal subsidy strategy s? consists in
having the consumer pay for the ev a post subsidy price which is constant equal to
p C z?.x0/ where z?.x0/ is defined by

(i) z?.x0/ D xmin if 2x0e
�˛�T � b � h.xmin/;

(ii) z?.x0/ is the unique solution in Œxmin; xmax� to W
h.z/ D 2x0e

�˛�˚.z/T � b otherwise:

Proof. Let � W .�; x; z/ 7! h.z/C b � 2xe�˛��˚.z/, and denote by U the set:

U WD f.�; x/ W x < b and �.�; x; xmin/ < 0g :

Notice that for all .�; x/ 2 U, �.�; x; xmax/ D xmax C b � 2x0 > 0. If either (i) or
(ii) is satisfied, then a straightforward, but rather lengthy, analysis of the variations
of the function z ! �.�; x; z/ shows that for all .�; x/ 2 U there exists a unique
z?.�; x/ 2�xmin; xmaxŒ such that

�.�; x; z?.�; x// D 0 with
@�

@z
.�; x; z?.�; x// > 0:

Then .�; x/ 2 U 7! z?.�; x/ is C1 on U��xmin; xmaxŒ with

@z?

@�
.�; x/ D �@��.�; x; z

?.�; x//

@z�.�; x; z?.�; x//
and

@z?

@x
.�; x/ D �@x�.�; x; z?.�; x//

@z�.�; x; z?.�; x//

For .�; x/ … U we set z?.�; x/ D xmin.
To verify that s? is indeed the optimal strategy rule, we consider the function:

w.t; x/ D
Z T

t
�˚.z?.T � t; x//

n
b C z?.T � t; x/ � 2xe�˛�˚.z?.T�t;x//.u�t/

o
du

D �˚.z?.T � t; x//.b C z?.T � t; x//.T � t/ � 2x

˛
.1 � e�˛�˚.z?.T�t;x//.T�t//

A direct calculation shows that w solves the Hamilton-Jacobi-Bellman-Equation
associated to our problem:
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Fig. 3 Complementary cumulative distribution function ˚ fitted to the panel data of European
consumers from [5]

@w

@t0
C H.x0;

@w

@x0
/ D 0 ; w.T; �/ D 0 :

and we conclude by standard verification argument that s? is optimal. �

3.3 Numerical Experiments

First, we fitted the willing-to-pay function ˚ with the data provided by [5] and
presented in Sect. 2 on European consumers. Although the sample is very sparse,
Fig. 3 shows that the approximation captures the threshold effect around a null value
of the spread.

Now we illustrate and compare the evolution of ev adoption over a time horizon
of 50 years for three policies:

• the zero purchase subsidy case,
• with the optimal subsidy rule solving (9),
• and with a subsidy capped at e7;000 as it is the case for the current French policy.

The evolution of the price spread x and of the number of ev annual purchases are
reported in Fig. 4. We see that the optimal subsidy rule leads to a relatively rapid
decrease in the price spread. The optimal policy itself, illustrated in Fig. 5, decreases
at the same rate as the price of the ev: it ensures a constant ‘post-subsidy’ price for
the ev which, approximatively exceeds the price of the fv by e1;000.
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Fig. 4 Evolution of the price spread and of the ev adoption for the three rules
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Fig. 5 Optimal subsidy policy and of the ‘post-subsidy’ purchase price

When applying the optimal subsidy policy, the evolution of ev adoption is
immediate and corresponds to a constant annual number of 800,000 ev purchases.
Indeed, from the social perspective, there is an immediate social benefit to replacing
fvs by evs, and it is optimal to ensure a very rapid transition. Notice that the amount
of the optimal subsidy at the initial date is significantly larger than the e7;000 of
the current French subsidy policy.

Observe, as it is illustrated in Fig. 4, that the effect current subsidy policy of
e7;000 is not significantly different from the no-subsidy case during the first 25
years. It appears that this current subsidy amount is not sufficient—with regard to
consumers willingness-to-pay—to insure a rapid transition to the electric mobility.
This relatively negligible effect during decades may quickly discourage the public
decision-maker to persevere in this policy.

The effect of the optimal subsidy policy is illustrated in Fig. 6. It appears that the
optimal policy induces at first losses due to substantial subsidies, before insuring
large gains from future fuel-economy. In the first 5 years the cumulated amount of
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Fig. 6 Evolution of the social surplus and of the cumulated amount of subsidy

subsidies is of e 35 billion, whereas the social surplus is negative. Yet, after 10
years, le social surplus is about e 25 billion for a total amount of subsidy equal to
e 50 billion. These short term losses may explain the reluctance of current public
policies to put in place the important subsidies needed for massive ev adoption.

4 Conclusion

Motivated by the tractability of the qualitative analysis of the optimal subsidy for ev
market, we adopted a quite simple and stylized model for the transition to electric
mobility. Hence, the numerical experiments presented here are intended to be
illustrative and do not pretend to be accurate. Nevertheless, this model allows to have
important insights about the nature of the optimal subsidy rule which may allow a
rapid adoption of evs.The optimal subsidy rule derived here, consists in insuring a
constant ‘post-subsidy’ purchase price for the consumer. This result does not depend
on the form of the cumulative distribution function of consumers willingness to pay.
However, a precise knowledge of the willingness-to-pay distribution is crucial in
determining the amount of the subsidy and reveals to be more important that the
battery learning rate. The findings of our model allow, also, to question the efficiency
of the current subsidy policy, and the modalities with which subsidy amounts are
decided.

Perspectives However, in this state of development, this model can not escape
certain criticisms. In particular, the fact that the gasoline price is constant and high
makes the transition to electric mobility quite natural whereas one main problem is
the uncertainty on the oil price. Thanks to the fact that the present model is simple,
we have good confidence in our capacity to deal with the introduction of various
forms of oil price uncertainty in the same kind of dynamic.
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Dynamic Games in Commodity Markets



Game Theoretic Models for Energy Production

Michael Ludkovski and Ronnie Sircar

Abstract We give a selective survey of oligopoly models for energy production
which capture to varying degrees issues such as exhaustibility of fossil fuels, devel-
opment of renewable sources, exploration and new technologies, and changing costs
of production. Our main focus is on dynamic Cournot competition with exhaustible
resources. We trace the resulting theory of competitive equilibria and discuss
some of the major emerging strands, including competition between renewable and
exhaustible producers, endogenous market phase transitions, stochastic differential
games with controlled jumps, and mean field games.

1 Introduction

The recent decline in oil prices, from around $100 per barrel in June 2014 to
less than $50 in January 2015 is a dramatic illustration of the evolution of energy
production as a result of competition between different sources. Indeed, the price
drop was prompted in large part by OPEC’s strategic decision not to decrease its
oil output in the face of increased production of shale oil in the US, itself arising
from new technologies that were spurred by investment in exploration and research
in times of higher oil prices. These complex interactions are in addition to long-
running concerns about dwindling fossil fuel reserves (‘peak oil’), as well as climate
change and the transition to sustainable energy sources.

We survey a (necessarily) selective line of work that builds models successively
incorporating various of these features starting from a competitive oligopolistic view
of an idealized global energy market, in which game theory describes the outcome of
competition. In particular, the oligopoly will be taken to be in a Cournot framework,
in which players choose quantities of production, and then prices are determined
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by aggregate supply. This seems reasonable for energy production in which major
players determine their output relative to their production costs, as in the expected
scenario that OPEC will cut production in order to increase the market price of oil.
The complementary framework of Bertrand markets, in which players set prices, is
more typically suitable for consumer goods markets, among other examples.

We begin with static, or one-period games, as an introduction to some of the
effects that can arise, for instance the non-competitiveness of producing a relatively
expensive renewable source, such as wind, against a cheap fossil fuel in plentiful
supply. However, the very nature of the complexities calls for a dynamic model in
which there are (to use a much over-employed cliché) game changers over time.
Changes in the competitive environment may come from:

• dwindling reserves of oil or coal, ramping up their scarcity value;
• discoveries of new oil reserves (there were over 30 major finds in 2009, for

instance);
• technological innovation such as fracking, which has led to extraction of shale

oil and gas;
• government subsidies for renewable energy sources such as solar and wind

power;
• varying costs of energy production, for instance cheaper solar power due to

falling silicon prices and improved solar cell efficiency.

Many if not all of these phenomena are unpredictable and dramatic, and motivate the
development of stochastic models, particularly with potentially significant ‘jumps’
(for instance in costs or reserves). Moreover, dealing with stochastic dynamic
(nonzero-sum) games involving many influential interacting energy producers cre-
ates computational challenges, and some approximation methods include numerical
discretization, parameter asymptotics, and continuum (mean field) games.

2 Static Cournot Games

The classic work of [10] gives perhaps the earliest example of a Nash equilibrium
for describing the outcome of a game. Cournot was concerned with competition
between producers of an inexhaustible resource (mineral water): their effect on sales
was such that the more each bottled and brought to the market, the lower the price
for mineral water that they would receive.

A Cournot market is described by N � 1 profit-maximizing producers (or
players) that compete in a non-cooperative way. In a market with homogenous
goods, the players compete based on production quantity (producing identical
goods). The market is specified by an inverse demand curve P.�/, which maps
aggregate production to market price, and as such is a decreasing function. The
players choose their production levels qi. Given total production level Q D q1 C
: : :C qN , the market clearing price is P.Q/. A simple illustrative example is linear
inverse demand, P.Q/ D �� Q, where � is the saturation level beyond which prices
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collapse to zero (and may become negative, meaning a producer would have to pay
to have his good taken away). Such linear demand can be derived from the behavior
of a representative consumer with a quadratic utility function (see, for instance,
[35]), and allows to present explicit equilibrium calculations.

The players produce at per-unit (constant) cost of production si � 0, which
in general will be different, reflecting the costs of producing from heterogeneous
energy sources. The profit of player i is the quantity he produces multiplied by price
minus cost:

�.qi;Q�i; si/ D


qi .P.Q�i C qi/ � si/ if qi > 0;

0 if qi D 0;
(1)

where Q�i D P
j¤i qj is total production by the players other than i. The last line

of (1) allows for the possibility that P.0C/ D C1, but if a player does not produce
anything, then he makes zero profit.

2.1 Nash Equilibrium

Definition 1. A Nash equilibrium is a vector q� D .q�
1 ; q

�
2 ; : : : ; q

�
N/ 2 Œ0;1/N such

that, for all i,

�.q�
i ;Q

��i; si/ D max
qi2Œ0;1/

�.qi;Q
��i; si/; (2)

where Q��i D P
j¤i q�

j . That is, each player’s equilibrium production q�
i maximizes

his own profit �.�;Q��i; si/ when the other N � 1 players produce their equilibrium
quantities. If, in addition, q�

i > 0 for all i, then q� is an interior Nash equilibrium.

Under suitable conditions on the price function P and the cost vector s D
.s1; s2; � � � ; sN/, a Nash equilibrium exists and is unique. An important issue arising
from this is that it may be too costly for some players to participate. We refer to [35,
Chapter 4] for a discussion and references on general existence results for static
Cournot games.

Assumption 1. The price function P is twice continuously differentiable,
with P0 < 0 everywhere on .0;1/; and there exists � 2 .0;1/ such that P.�/ D 0.

We order the firms by their costs and assume the latter are strictly less than the choke
price P.0C/:

0 � s1 � s2 � : : : � sN < P.0C/: (3)

When some firms have equal costs, the ordering is arbitrary and does not affect the
result that follows. The behavior of P is best characterized in terms of the relative
prudence of P, namely
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.Q/ D � Q P00.Q/
P0.Q/

: (4)

We also define


 D sup
Q2.0;1/


.Q/: (5)

The following is taken from [20].

Theorem 1. Suppose that 
 < 2. Then there is a unique Nash equilibrium which
can be constructed as follows. Let NQ� D max

˚
Q�

n j 1 � n � N
�
, where Q�

n is the
unique non-negative solution to the scalar equation

QP0.Q/C nP.Q/ D
nX

jD1
sj:

The unique Nash equilibrium production quantities are given by

q�
i .s/ D max

(
P
� NQ�� � si

�P0 � NQ�� ; 0
)
; 1 � i � N;

and the corresponding profits are

Gi.s/ D q�
i .s/.P. NQ�/ � si/; 1 � i � N:

In particular, q�
i and Gi are Lipschitz continuous, and the number of active players

(that is, players with q�
i > 0), in the unique equilibrium is m D min

˚
n j Q�

n D NQ��.
Moreover, in the case of a price function with a constant prudence, 
.Q/ � 


P.Q/ D

8̂
<̂
ˆ̂:

�

1 � 


 
1 �

�
Q

�

�1�
!

 ¤ 1

�.log � � log Q/ 
 D 1;

(6)

one can weaken the requirement N
 < 2 to simply 
 < N C 1.

The cost profile s is the main parameter of a Cournot game and the respective
sensitivity analysis is crucial, especially in dynamic models. Intuitively, we expect
that if player-i costs si decrease, her production and profits will rise, and the
production and profits of the other players will fall. However, the precise impact
depends on the properties of the price function Q 7! P.Q/; for example there are
well known examples where higher costs increase production for all players [35].
Analysis of the precise dependence of equilibria on s, including explicit formulas
for the sensitivity of q�

i to s under constant prudence price functions of (6), is given
in [20].
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2.2 Blockading

The non-negativity constraint on production endogenizes the market structure in
terms of the cost profile s. Oligopolies with symmetric production costs generate
a trivial market structure, namely either all firms active or all firms inactive. In
contrast, in models where firms are asymmetric, some firms may be inactive in
equilibrium. Moreover, in dynamic models asymmetric costs induce different entry
times into the market. This aspect is especially pertinent to energy markets, where
producers using different fuels and technologies have widely different costs of
production: for example, oil and coal sources are much cheaper than renewables,
such as solar or wind.

To illustrate this effect, consider a very simple case of Theorem 1, namely a
duopoly N D 2 with linear demand P.Q/ D 1 � Q (i.e., � D 1; 
 D 0). When there
is one player with marginal cost of production s1 2 Œ0; 1/, he chooses his optimal
quantity q1 � 0 to maximize his monopoly profit function

˘1 D q1.1 � q1/ � s1q1:

The optimal quantity and profit are given by

q�
1 .s1/ D 1

2
.1 � s1/; G1.s1/ D 1

4
.1 � s1/

2:

When there are two players with costs .s1; s2/ 2 Œ0; 1�2 and non-negative production
quantities .q1; q2/, the aggregate quantity is Q D q1 C q2 and each player’s profit
function is

˘i D qi.1 � qi � qj/ � siqi; i D 1; 2I j ¤ i:

In a Nash equilibrium .q�
1 ; q

�
2 / 2 Œ0; 1�2 for the duopoly, each player maximizes

profit as a best response to the other player’s equilibrium strategy:

Gi.s1; s2/ D max
qi�0

qi.1 � qi � q�
j / � siqi; i D 1; 2I j ¤ i:

For costs s1; s2 <
1
2
, it is easy to see that both players have positive equilibrium

productions

q�
i .s1; s2/ D 1

3
.1 � 2si C sj/; Gi.s1; s2/ D 1

9
.1 � 2si C sj/

2; (7)

where i D 1; 2I j ¤ i. However, if player j’s cost is too high relative to player
i’s, specifically sj >

1
2
.1 C si/, then he is blockaded from production, meaning his

equilibrium quantity is zero. In this case, player i has a monopoly and the Nash
equilibrium is given by
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Fig. 1 Type of game equilibrium in a Cournot duopoly with linear demand P.Q/ D 1� Q

q�
i D 1

2
.1 � si/; q�

j D 0; Gi D 1

4
.1 � s1/

2; G�
j D 0:

See Fig. 1 for the resulting monopoly wedges.
A current example may be OPEC holding back on cuts in production to drive

shale oil producers out of the market and into bankruptcy, which an Op-Ed in The
New York Times on 27 January, 2015 described thus: “the plunge in oil prices offers
a sobering reminder of the power of markets over policy”.

A full characterization of the static N-player game for a wide class of general
inverse-demand functions is given in [20, Section 2], and for Bertrand games in [29,
Section 2]; a comparison between Cournot and Bertrand in terms of the number of
blockaded players is in [30].

3 Exhaustible Resources and Dynamic Games

When a resource, for instance a fossil fuel, is in finite supply, the energy oligopolies
are necessarily changing over time due to the increasing scarcity value of the
exhaustible resource.

3.1 Monopoly and Hotelling’s Rule

The seminal work of [21] introduced a mathematical model for management of an
exhaustible resource stock. Hotelling considered a single producer (a monopolist),
and set up a continuous-time calculus of variations problem for maximizing total
discounted value of the resource between now and exhaustion point. A crucial
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insight of Hotelling is the fact that along the optimum path the marginal value
of reserves must grow at the risk-free rate, precisely offsetting the time value of
money. This spawned a large body of economic literature based on optimizing
social planning in the context of resource management or on Ramsey-type growth
models that aim to optimize investment across several economic sectors. The
link to exhaustible resources has become especially relevant in the past decade
in connection with sustainable production in the face of climate change. For
example development of clean energy backstops to guard against exhaustibility of
conventional fossil fuels is addressed in [17, 26, 34] among others.

Consider a single oil producer who has reserves x.t/ at time t, with the dynamics

dx

dt
D �q.x.t//1Ifx.t/>0g; (8)

where q.x.t// is his production (or extraction) rate. When his reserves run out, he
no longer participates in the market. The producer extracts to maximize lifetime
discounted profit, and his value function v is defined by

v.x/ D sup
q

Z �x

0

e�rtq.x.t//P.q.x.t// dt:

Here the maximization is over control strategies q � 0, r > 0 is the discount rate,
P is the inverse demand (or price) function satisfying Assumption 1, and �x is the
exhaustion time

�x D infft > 0 j x.t/ D 0g:

Moreover x here stands for the initial resource level: x.0/ D x, and we have assumed
zero extraction costs.

By standard dynamic programming arguments, v.x/ solves the Hamilton-Jacobi
(ordinary) differential equation

rv D sup
q�0

qP.q/ � qv0; x > 0; (9)

where v0 D dv=dx, and the boundary condition describing exhaustibility is
v.0/ D 0. Denote by G.s/ the solution to the static monopoly problem with cost
s:

G.s/ D max
q�0 q .P.q/ � s/ ;

and the corresponding optimizer q�.s/, where the parameter again refers to the
production costs. Then the ODE (9) is simply rv D G.v0/, so that v0 plays the role
of a shadow cost, or scarcity value in the dynamic exhaustible resources monopoly
problem, and the optimal extraction policy is q�.v0.x.t///.
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The first-order condition defining q� is

P.q�/C q�P0.q�/ D s; ) G.s/ D �.q�/2P0.q�/: (10)

Then, differentiating the ODE (9) with respect to x, we have

rv0 D �q�0.v0/ � v00 �2q�.v0/ � P0 �q�.v0/
�C .q�.v0//2 � P00 �q�.v0/

��
;

and differentiating the Eq. (10) for q�.s/ with respect to s gives

q�0 �2P0.q�/C q�P00.q�/
� D 1:

Therefore, we have rv0 D �q�.v0/v00, which evaluated along the optimal trajectory
defined by dx

dt D �q�.v0.x.t/// (up until the exhaustion time �x) leads to

rv0.x.t// D �q�.v0.x.t//v00.x.t// D dx

dt
v00.x.t// D d

dt
v0.x.t//:

This is known as Hotelling’s rule (for a monopolist with exhaustible resources):

d

dt
v0.x.t// D rv0.x.t//; (11)

or v0.x.t// D v0.x.0//ert.

3.2 Multiple Players with Exhaustible Resources

Incorporating other players into a genuine game framework elevates the single
player control/ODE problem to the setting of nonzero-sum differential games and
partial differential equations (PDEs). Here existence and regularity theory is scarce
(outside of the case of linear-quadratic (LQ) games). General dynamic programming
equations are studied in [1], and some applications are presented in [15]. The
solution approach generally goes through the feedback strategy representation,
which allows to express optimal policies in terms of local properties of the game-
value functions. For stationary models, one can utilize Euler-Lagrange methods,
while in non-stationary or stochastic contexts, more involved analysis is necessary
using Hamilton-Jacobi-Bellman-Isaacs tools. For a nonzero-sum dynamic game
between N players, each with their own resources, the computation of a solution
generally requires dealing with coupled systems of N fully nonlinear PDEs, with
one value function per player. This quickly becomes very challenging as N grows
and explains the focus on the duopoly N D 2 case.
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To illustrate the complexity in the duopoly case, we let xi.t/ be the reserves of
each player at time t, which are depleted at their extraction rates qi:

dxi

dt
D �qi.x.t//; i D 1; 2 where x.t/ D .x1.t/; x2.t//:

With assumed zero extraction costs and the same discount rate r > 0, each player
maximizes lifetime discounted profit in (best) response to the extraction policy of
the other. A Nash (or Markov perfect) equilibrium .q�

1 ; q
�
2 /, if it exists, describes the

value functions

vi.x/ D sup
qi�0

Z �xi

0

e�rtqi.x.t//P
�
qi.x.t//C q�

j .x.t//
�

dt; i D 1; 2I j ¤ i; (12)

where �xi D infft > 0 j xi.t/ D 0g are the exhaustion times starting at xi D
xi.0/. The state-space approach in (12) restricts attention to policies specified in
closed-loop feedback form qi.x/, linking to the single-agent control frameworks
and removing technical challenges related to equilibrium existence. Moreover,
it naturally generalizes to the stochastic extensions discussed below. Dynamic
programming arguments lead to the following equations for the value functions in
x1; x2 > 0:

rvi D sup
qi�0


qiP.qi C q�

j / � qi
@vi

@xi

�
� q�

j

@vi

@xj
; j ¤ i;

which, using the notation introduced in (1), we can write as

rvi D sup
qi�0

�

�
qi;Q

��i;
@vi

@xi

�
� q�

j

@vi

@xj
:

This identifies the infinitesimal problem in the dynamic programming equation as
the static Nash equilibrium problem with scarcity costs si D @vi

@xi
. The interaction

of exhaustibility and blockading allows to endogenize market structure. As players
deplete their reserves, their marginal costs may rise sufficiently to make further
production uneconomical and causing them to drop out of competition.

Using the notation of Theorem 1 for the solution of the static game, we can write
the dynamic game PDEs as

rvi D Gi.Dv/ � q�
j .Dv/

@vi

@xj
; i D 1; 2I j ¤ i; Dv D

�
@vi

@xi
;
@vj

@xj

�
:

For the linear pricing function example, the functions Gi and q�
i were given in (7).

In a model of only exhaustible resources, when player i runs out, player j has a
monopoly until he also exhausts, which lead to boundary conditions on xi D 0

and at .0; 0/ respectively. A more nuanced (and optimistic) view of future energy
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production allows that when an oil producer exits, he is replaced by an inexhaustible
producer (such as from solar) with infinite (or sustainable) supply. This type of
model is analyzed by asymptotic and numerical methods in [20].

Alternatively, one can consider models with a single exhaustible producer, and
hence a single state variable, along with N �1 renewable producers that do not need
to worry about reserves. This maintains game effects but minimizes mathematical
complexity (see [20, 30]), and allows to study the effect of blockading: how low
must oil reserves go before it becomes profitable to start producing from more
expensive but sustainable sources? As (levelized) costs of setting up and maintaining
energy production from different sources are different, the entry points for solar and
wind, for instance, may likewise be very different. This generates phase transitions
in the dynamic game characterized by the (endogenously determined) number of
active producers n.t/. The respective blockading points can be computed explicitly
for the linear price function model, see [30] where it is also shown that a modified,
piecewise, version of Hotelling’s rule holds in the presence of competition. Namely,
there exist blockading times �b

1 � �b
2 � : : : ; such that for t 2 Œ�b

n�1; �b
n / there are n

energy producers (one exhaustible oil producer and n�1 active renewables), and the
marginal value function for the oil producer along the equilibrium extraction path
grows according to

d

dt
v0.x.t// D

�
1

2
C 1

2n

�
rv0.x.t//; t 2 Œ�b

n�1; �b
n /: (13)

The above relationship recovers the classical Hotelling rule when n D 1 (oil
monopoly) and blunts the sharp price increases associated with ‘peak oil’ (the
growth rate of v0 declines as oil runs out and renewables enter).

4 Renewability and Exploration

Exhaustibility is manifested through consideration of the resource reserves which
must remain non-negative. Exhaustible resource stocks can be divided into three
types: non-renewable, renewable, and replenishable. Non-renewable resources are
only available one time, and once used-up are gone forever. Thus, the level
of remaining reserves x.t/ is non-increasing. The extreme case of x.t/ D 0

represents complete exhaustion and requires a boundary condition to specify the
resulting utility for the producers. A common example are fossil fuels in a global
physical context. Once fossil fuels are removed, one can imagine that production
is permanently suspended vi.0/ D 0; alternatively one could switch to a more
expensive (green) backstop, as described above.

Renewable resources, like fisheries or forests, can grow back on their own if left
unexploited. A common setup is a logistic growth model with a finite capacity, such
that dx

dt D F.x.t//, an ordinary differential equation (see e.g., [5]). With renewable
resources the main concern is over-exploitation: if production is too high, stocks
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can be damaged in the long-term (or completely exhausted). However, sustainable
extraction is possible all on its own, and only requires enforceable discipline.
Mathematically, sustainability/renewability leads to a stationary model where a
local-in-time equilibrium between production and extraction generates a global
solution (as a long-term steady state); in contrast non-renewable game equilibria
are inherently time-dependent and in particular strongly affected by the “terminal
condition” of running out of reserves. While steady-state models are not suited for
most energy sources, they are common for describing pollution stock dynamics.

Replenishable resources capture the middle ground—reserves can grow, but this
requires separate effort/costs. This is meant to represent costly search for, say, new
mines or oil fields and matches the industrial exploration-and-production (E&P)
cycle. Indeed, with economic incentives the reserve base is not fixed and can be
increased. For example, while oil is exhaustible, it is also replenishable since there
is a difference between total abstract reserves on Earth, and what is actually com-
mercially “proven” and drives production decisions. Under replenishable reserves,
both the upward and downward dynamics in x.t/ are controlled. Mathematically,
exploration is modeled via a separate control at (which may be coupled to pro-
duction level qt). Under exploration, the boundary case x.t/ D 0 requires separate
consideration in terms of whether players can “resurrect” themselves. Assuming
that future discoveries can finance present exploration [31, 33] leads to an implicit
boundary condition for vi.0/.

In a pure resource model, each player has their own, independent, reserves
xi.t/, which she has complete control over. In such models, players interact solely
through the price mechanism; reserves then add a separate individual marginal
cost of production, introducing a new source of asymmetry between the players.
Alternatively, especially for renewable resources, one may add further game effects
by tying together reserves. This can be done by postulating a single, common reserve
stock x.t/ (akin to the classical tragedy of the commons [3]), or by considering
individual reserves levels that have coupled dynamics. For example [9] used

dxi

dt
D ıxi.t/1fX.t/< NX=2g C ı. NXi � xi.t//1fX.t/> NX=2g;

where X.t/ D P
i xi.t/ is the total resource stock, and ı is the resource growth rate.

Thus, up to the aggregate sustainable level NX=2, resource stocks grow exponentially;
beyond NX=2 growth rates lessen linearly, turning negative above the individual
carrying capacity NXi.

Turning our attention to the shocks affecting reserves, the classical formulation
provides the deterministic dynamics

dxi

dt
D �qi.t/C F.Xi.t/; ai.t//;

where the first term represents lower reserves due to extraction, and the second
term represents reserves growth (thanks to either exogenous or endogenous factors).
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Thus, the future level of reserves is completely determined by the players’ strategies
and can be extrapolated to any future date t. While mathematically convenient,
this is not very realistic, since practical forecasts of future stocks clearly involve
a lot of uncertainty (consider for example forecasting of fishery stocks in 2020, or
the fossil fuel exhaustion point somewhere in the next few hundred years). This
uncertainty permeates even central planner growth models, so is not solely a feature
of uncertainty about future equilibria.

4.1 Shocks to Reserves

Taking a stochastic tack, some models have therefore incorporated stochastic
dynamics for reserves, now denoted by a stochastic process Xi.t/:

dXi.t/ D �qi.t/ dt C �idWi
t; (14)

arguing that reserve levels are uncertain and subject to ongoing up/down revisions
described by the Brownian motions Wi. Within a Bertrand competition, [29] justified
similar Brownian shocks through small fluctuations in the respective demand levels.

Stochastic shocks become especially pertinent for replenishable stocks, where
the attendant exploration efforts yield intrinsically stochastic outcomes. Thus,
starting with the seminal work of [25], there has been a long literature on stochastic
exploration. In particular, discrete upward jumps in reserves, modeled as a Poisson
process, have been advocated, leading to dXi.t/ D �qi.t/ dt C ıdNi

t where ı are
(random) increments and Ni is a controlled point process. A common setup is to
specify controlled intensity of Ni, i.e., �i

t D G.ai.t// where �i is the hazard rate of
arrivals of Ni. This leads to HJB-I system of equations for the game value functions,
see [31].

4.2 More Stochasticity

Beyond the aforementioned stochastic shocks to reserves, one can imagine other
factors that generate random environment for the Cournot producers. This is
especially so over the medium- and long-run contexts that are often used to motivate
the models. Clearly on a longer scale essentially every aspect of the market,
including demand, costs, reserves, etc., is subject to unpredictable changes.

To capture macroeconomic cycles, [32] considered stochastic demand, so that
Pt D P.Dt; qt/ has exogenous shocks from the stochastic factor Dt. For example,
taking Dt to be a 2-state independent Markov chain allows to maintain tractability,
while representing the low- and high-demand regimes that can be associated with
commodity booms and recessions. In combination with non-renewable resources,
stochastic demand generates the phenomenon of strategic mothballing, whereby
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Fig. 2 Estimated oil extraction costs from varying sources. Source: [24]

producers may temporarily shut-down production during low demand periods.
Another regime-switching model with exhaustibility but a single agent is in [12].

From a different angle, [11] considered non-constant production costs to mimic
the non-stationary economics of extracting more and more difficult to access
reserves. Indeed, as well-documented empirically, extraction costs of say crude
oil steadily rise as conventional, cheap sources are depleted and replaced by non-
conventional oil sands, deep off-shore and shale fields: see Fig. 2.

Accordingly, [11] take costs si.x/ to depend on reserves, such that si.x/ increases
as x decreases for exhaustible players, and decreases as x decreases for renewable
players (due to government subsidies as conventional energy sources are depleted).
The resulting dynamic game can force the exhaustible player to leave early, i.e. Xt

never reaches zero.

4.3 Other Types of Strategic Interactions

Beyond production/exploration, the literature has also considered other player
controls. One major idea from industrial organization (IO) concerns Research and
Development (R&D) which generates additional benefits (such as lower production
costs or first-mover advantages) to the innovator. In the context of R&D, efforts to
innovate may lead to spillovers [7, 13], introducing a different source of coupling
between players. Spillovers are well-documented empirically and tend to lower
R&D investments and therefore reduce productivity growth. Game-theoretically,



330 M. Ludkovski and R. Sircar

spillovers can be viewed as either raising the innovation rate of competitors in a
static set-up, or removing first-mover advantages after innovation success. A notable
reference is [16] who consider an oligopoly where each of the N firms maximizes
R&D effort. The random first innovator is determined stochastically and temporarily
collects extra profits. [7] studied a deterministic R&D game with spillovers.

Another link is to the theory of real options, by modeling the strategic opportu-
nities available to producers as one-shot events to be optimally timed. For example,
a classical setting concerns producers competing to initiate a new project (such as
development of a renewable energy backstop to an exhaustible resource, see [23])
that carries first-mover advantage and leads to a so-called preemption game. Such
timing games partition the global model into distinct phases, providing a different
mechanism to endogenize market structure. They can be seen as intermediate
ground between a static and differential game.

5 Mean Field Games

In dynamic oligopoly problems with a finite number of players, the HJB system of
PDEs does not admit an explicit solution, except possibly in the monopoly case.
As a result, one needs numerical means for computing the value functions, as well
as the equilibrium strategies, which of course quickly becomes infeasible as the
number of players goes beyond three. Moreover, even in the two-player case, these
equations are hard to handle. To overcome this problem, one may study the market
dynamics when the number of firms tends to infinity by using the concept of a mean
field game (MFG). MFGs were proposed by Lasry et al. [27, 28] and independently
by Huang et al. [22] to handle certain types of competition in the continuum limit
of an infinity of small players.

The interaction is modeled by assuming that each player only sees and reacts
to the statistical distribution of the states of other players. Optimization against
the distribution of other players leads to a backward (in time) Hamilton-Jacobi-
Bellman (HJB) equation; and in turn their actions determine the evolution of the
state distribution, encoded by a forward Kolmogorov equation. We refer to the
survey article by [19] and the recent monograph of [6] for further background. In
our context, the mean-field interaction is captured by making the market price be a
function of equilibrium global supply, which in turn is affected by the distribution of
reserves mt.�/, which is a measure on RC. Thus, inverse demand curve translates into
a functional relationship between reserve distribution mt.�/ and resulting price Pt,
according to D.t;Pt/ D R

RC
q�

t .x/mt.dx/. Numerical resolution of MFG equations
is an active area of research; simultaneously dealing with the forward-backward
system of PDEs typically requires a fixed-point iteration scheme. At the same
time, removing the awkward dependence on the number of players simplifies the
equations and provides a unified theory in terms of measure-valued processes.

The analysis of the relationship between Markov perfect equilibria in finite-
N Cournot games and the MFG limit was carried in [8] considering the general
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situation of differentiated goods and asymmetric players. [8] also show that in
the continuum MFG limit, the linear Bertrand and Cournot models are equivalent,
removing the usual distinction observed with a finite number of players.

In a related work, [18] analyzed a MFG formulation of oil oligopoly for both
the deterministic case (reserves endogenously determined by production rates)
and the stochastic case (reserves include Brownian noise, generating a parabolic
forward Kolmogorov equation for mt). [18] proposed an iterative numerical scheme
and presented some numerical examples for both linear and constant elasticity of
substitution (CES) demand curves. One particular focus was on the marginal cost
of exhaustibility (Hotelling rent) and also on substitution effects in a two-energy
model. See also [2] who treated a robust version of above which adds another first-
order quadratic term to the MFG equations.

6 Summary of Game Models for Exhaustible Resources

In the table below g refers to a green producer, so that 1C g is a duopoly with one
exhaustible and one renewable player, see Sect. 3.2. Infinity of players corresponds
to mean-field models. Demand refers to the shape of the price function P.Q/.

# Players Type Demand Randomness Replenish

Hot31 [21] 1 – Linear Determ. No

DS81 [12] N Cournot Constant Single-shock No

DS83 [14] 1 – Regimes Poisson Yes

Ben08 [4] N Cournot Linear Determ. Yes

BHW09 [5] N Cournot Linear Determ. Yes

HHS [20] 1+g Cournot Linear Brownian No

LS11 [31] 1+g Cournot Regimes Poisson Yes

LS12 [30] 1+N Bertrand Linear Determ. No

LY14 [32] 1+g Cournot Linear Poisson Yes

CL13 [9] N Cournot Linear Determ. Yes

DS14 [11] 1+N Cournot Linear Poisson Yes

GLL11 [18] 1 Cournot CES Determ. No

CS14 [8] 1 Bertrand Linear Brownian No
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Game Theory Analysis for Carbon Auction
Market Through Electricity Market Coupling

Mireille Bossy, Nadia Maïzi, and Odile Pourtallier

Abstract In this paper, we analyze Nash equilibria between electricity produc-
ers selling their production on an electricity market and buying CO2 emission
allowances on an auction carbon market. The producers’ strategies integrate the
coupling of the two markets via the cost functions of the electricity production. We
set out a clear Nash equilibrium on the power market that can be used to compute
equilibrium prices on both markets as well as the related electricity produced and
CO2 emissions released.

1 Introduction

The aim of this paper is to develop analytic tools in order to design a relevant
mechanism for carbon markets, where relevant refers to emissions reduction. For
this purpose, we focus on electricity producers in a power market linked to a carbon
market. The link between markets is established through a market microstructure
approach. In this context, where the number of agents is limited, standard game
theory applies. The producers are considered as players behaving on the two
financial markets represented here by carbon and electricity. We establish a Nash
equilibrium for this non-cooperative J-player game through a coupling mechanism
between the two markets.

The original idea comes from the French electricity sector, where the spot
electricity market is often used to satisfy peak demand. Producers’ behavior is
demand driven and linked to the maximum level of electricity production. Each
producer strives to maximize its market share. In the meantime, it has to manage
the environmental burden associated with its electricity production through a mech-
anism inspired by the EU ETS (European Emission Trading System) framework:
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each producer unit of emissions must be counterbalanced by a permit or through the
payment of a penalty. Emission permit allocations are simulated through a carbon
market that allows the producers to buy allowances at an auction. Our focus on the
electricity sector is motivated by its prevalence in the emission share (45 % of the
whole emission level worldwide), and the introduction in phase III of the EU ETS of
an auction-based allowance allocation mechanism. In the present paper, the design
assumptions made on the carbon market aim to foster emissions reduction in the
entire electricity sector.

Our approach proposes an original framework for the coupling of bidding
strategies on two markets.

Given a static elastic demand curve on the electricity market (referring to the time
stages in an organized electricity market, mainly day-ahead and intra-day), we solve
the local problem (just a single time period of the same length for both markets) of
establishing a non-cooperative Nash equilibrium for the two coupled markets. This
simplification is justified here, as we aim to raise the condition under which a carbon
market would be a real efficient instrument for carbon mitigation policies.

This analysis is conducted for non-continuous and non-strictly monotone supply
functions and bidding strategies on both markets in the complete information
framework.

While literature on applied game theory to strategic bidding on power markets
mainly addresses profit maximization (see eg [5] with complete information, [6]
with private information, [7] with incomplete information), our objective function
is share maximization.

The equilibria of the coupled markets are based on the full characterization
of the equilibrium electricity price (on the electricity market alone). We prove
the uniqueness of the price and shares, for share maximization whereas, to our
knowledge this property is not established (under our hypotheses) for profit
maximization (see eg [2]).

Moreover, share maximization approach deals with profit by making specific
assumptions, i.e. no-loss sales, and a tradeoff between the purchase of allowances
and the carbon footprint of the electricity generated. Hence, this work is the first
attempt on power and carbon markets coupling through game theory approach.
Other coupling approaches use, for instance, models that produce dynamics for both
electricity and carbon prices jointly, as in [3, 4].

In Sect. 2, we formalize the market (carbon and electricity) rules and the
associated admissible set of players’ coupled strategies.

We start by studying (in Sect. 3.1) the set of Nash equilibria on the electricity
market alone (see Proposition 1). This set constitutes an equivalence class (same
prices and market shares) from which we exhibit a dominant strategy.

Section 3.2 is devoted to the analysis of coupled markets equilibria: given
a specific carbon market design (in terms of penalty level and allowances), we
compute the bounds of the interval where carbon prices (derived from the previous
dominant strategy) evolve. We specify the properties of the associated equilibria.
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Fig. 1 The orange curve is the function q 7! D�1.q/ on the EPEX market. The evolution of
the spot market confirms the relevance of Assumption 1 on the demand function p 7! D.p/.
(a) Delivery 9–10 am. (b) Delivery 3–4 pm

2 Coupling Markets Mechanism

2.1 Electricity Market

In the electricity market, demand is aggregated and summarized by a function p 7!
D.p/, where D.p/ is the quantity of electricity that buyers are ready to obtain at
maximal unit price p (see Fig. 1). We assume the following:

Assumption 1. The demand function D.�/ W R
C ! R

C is non-increasing, left
continuous, and such that D.0/ > 0.

Each producer j 2 f1; : : : ; Jg is characterized by a finite production capacity �j

and a bounded and non-decreasing function cj W Œ0; �j� �! R
C that associates a

marginal production cost to any quantity q of electricity. These marginal produc-
tion costs depend on several exogenous parameters reflecting the technical costs
associated with electricity production e.g. energy prices, O&M costs, taxes, carbon
penalties, etc. This parameter dependency makes it possible to build different market
coupling mechanisms. In the following we use it to link the carbon and electricity
markets.

The merit order ranking features marginal cost functions sorted according to their
production costs. These are therefore non-decreasing step functions whereby each
step refers to the marginal production cost of a specific unit owned by the producer.

The producers trade their electricity on a dedicated market. For a given producer
j, the strategy consists of a function that makes it possible to establish an asking
price on the electricity market, defined as

sj WCj � R
C �! R

C

.cj.�/; q/ �! sj.cj.�/; q/;
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where Cj the set of marginal production cost functions are explicitly given in the
following (see (14)); sj.cj.�/; q/ is the unit price at which the producer is ready to
sell quantity q of electricity. An admissible strategy carries out the following sell at
no loss constraint

sj.cj.�/; q/ � cj.q/; 8q 2 Dom.cj/: (1)

A possible example of such strategy is sj.cj.�/; q/ D cj.q/ or sj.cj.�/; q/ D cj.q/ C
�.q/, where �.q/ stands for any additional profit.

The constraint (1) guarantees profitable trade and incorporates an aspect of profit
maximization (ie, loss avoidance) into the market share approach. In what follows,
we include this profit constraint in the considered class of admissible strategies.

We define the class of admissible strategy profiles on electricity market S as:

S D
8<
:

s D .s1; : : : ; sJ/I sj W Cj � R
C �! R

C
.cj.�/; q/ �! sj.cj.�/; q/

such that sj.cj.�/; q/ � cj.q/; 8q 2 Dom.cj/

9=
; : (2)

As a function of q, sj.cj.�/; q/ is bounded on Dom.cj/. For the sake of clarity, we
define for each q 62 Dom.cj/, sj.cj.�/; q/ D plolc, where plolc is the loss of load cost,
chosen as any overestimation of the maximal production costs.

For producer j’s strategy sj, we define the associated asking size at price p as

O.cj.�/; sjI p/ WD supfq; sj.cj.�/; q/ < pg (3)

with sup ; D 0. Hence O.cj.�/; sjI p/ is the maximum quantity of electricity at unit
price p supplied by producer j on the market. We also call p 7! O.cj.�/; sjI p/ the
offer function of producer j.

Remark 1.

(i) The asking size function p 7! O.cj.�/; sjI p/ is, with respect to p, an non-
decreasing surjection from Œ0;C1/ to Œ0; �j�, right continuous and such that
O.cj.�/; sjI 0/ D 0. For a non-decreasing strategy sj, O.cj.�/; sjI :/ is its
generalized inverse function with respect to q.

(ii) Given two strategies q 7! sj.cj.�/; q/ and q 7! s0
j.cj.�/; q/ such that sj.cj.�/; q/ �

s0
j.cj.�/; q/, for all q 2 Dom.cj/ we have for any positive p

O.cj.�/; sjI p/ � O.cj.�/; s0
jI p/:

Indeed, if p1 � p2 then fq; sj.cj.�/; q/ � p2g 
 fq; sj.cj.�/; q/ � p1g from
which we deduce that O.cj.�/; sjI �/ is non-decreasing. Next, if sj.cj.�/; �/ �
s0

j.cj.�/; �/, for any fixed p, we have fq; s0
j.cj.�/; q/ � pg 
 fq; sj.cj.�/; q/ � pg

from which the reverse order follows for the requests.
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We shall now describe the electricity market clearing. Note that from a market
view point, the dependency of the supply with respect to the marginal cost does not
need to be explicit. For the sake of clarity, we write sj.q/ and O.sjI p/ instead of
sj.cj.�/; q/ and O.cj.�/; sjI p/. The dependency will be expressed explicitly whenever
needed.

By aggregating the J asking size functions, we can define the overall asking
function p 7! OO.sI p/ a producer strategy profile s D .s1; : : : ; sJ/ as:

OO.sI p/ D
JX

jD1
O.sjI p/: (4)

Hence, for any producer strategy profile s, OO.sI p/ is the quantity of electricity that
can be sold on the market at unit price p.

The overall supply function p 7! OO.sI p/ is a non-decreasing surjection defined
from Œ0;C1/ to Œ0;

PJ
jD1 �j�, such that OO.sI 0/ D 0.

2.1.1 Electricity Market Clearing

Taking producer strategy profile s D .s1.�/; : : : ; sJ.�// the market sets the electricity
market price pelec.s/ together with the quantities .'1.s/; : : : ; 'J.s// of electricity
sold by each producer.

The market clearing price pelec.s/ is the unit price paid to each producer
for the quantities 'j.s/ of electricity. The price p.s/ may be defined as a price
whereby supply satisfies demand. As we are working with a general non-increasing
demand curve (possibly locally inelastic), the price that satisfies the demand is not
necessarily unique. We thus define the clearing price generically with the following
definition.

Definition 1 (The Clearing Electricity Price). Let us define

p.s/ D inf fp > 0I OO.sI p/ > D.p/g
and Np.s/ D sup fp 2 Œp.s/; plolc�I D.p/ D D.p.s//g (5)

with the convention that inf ; D plolc. The clearing price may then be established as
any pelec.s/ 2 Œp.s/; Np.s/� as an output of a specific market clearing rule. To keep the
price consistency, the market rule must be such that for any two strategy profiles s
and s0,

if p.s/ < p.s0/ then pelec.s/ < pelec.s0/;

if p.s/ D p.s0/ then pelec.s/ D pelec.s0/:
(6)
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Fig. 2 Electricity price p.s/ and Np.s/

Note that p.s/ ¤ Np.s/ only if the demand curve p 7! D.p/ is constant on some
intervals Œp.s/; p.s/ C �� (see Fig. 2). In that case, p.s/ corresponds to the best ask
price, while Np.s/ is the best bid price. The demand/offer curves that result from the
buyer/seller aggregation in a given time period implies some market fixing rules
that allocate buyer surplus and seller surplus. In that sense pelec.s/ is a fixing price.1

Note that pelec.s/ D p.s/ maximizes buyer surplus while pelec.s/ D Np.s/ maximizes
seller surplus. Note also that price p.s/ is well defined in the case where demand
does not strictly decrease. This includes the case where demand is constant. In such
case, p.s/ D plolc only if the demand curve never crosses the supply.

Next, we define the quantity of electricity sold at price pelec.s/. When pelec.s/
is such that OO.sI pelec.s// � D.pelec.s//, each producer sells O.sjI pelec.s//, but
cases where OO.sI pelec.s// > D.pelec.s// may occur, requiring the introduction of an
auxiliary rule to share D.pelec.s// among the producers that propose OO.sI pelec.s//.
Note that in this last case, due to the clearing property (6) on pelec.�/, we have
OO.sI p.s// > D.pelec.s// D D.p.s//: Hence the D.pelec.s// is totally provided by
producers with non null offer at price p.s/. The rule of the market is to share
D.pelec.s// among these producers only. This gives an explicit priority to the best
offer prices p.s/.

Let us break down supply as follows:

OO.sI p.s// D
JX

jD1
O.sjI p.s/�/C

JX
jD1

��O.sjI p.s//;

where ��O.sjI p.s// WD O.sjI p.s// � O.sjI p.s/�/ and f .x�/ denotes the left value
at x of a function f .

1One can imagine that Power market participants have access to the detailed fixing rules, but
information proves hard to be found.
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The market’s choice is to fully accept the asking size of producers with
continuous asking size curve at point p.s/. For producers with discontinuous asking
size curve at p.s/, a market rule based on proportionality that favors abundance is
used to share the remaining part of the supply: any extra supply available at the
clearing price OO.sI p.s// � D.p.s// is split among all generators offering at that
price such that they each get the same percentage of their offered quantity allocated
to production.

We summarize the market rule on quantities as follows.

Definition 2 (Clearing Electricity Quantities). The quantity 'j.s/ of electricity
sold by Producer j on the electricity market is

'j.s/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

O.sjI pelec.s//D O.sjI p.s//; if D.pelec.s// � OO.sI pelec.s//;

O.sjI p.s/�/C��O.sjI p.s//
D.p.s// � OO.sI p.s/�/

��OO.sI p.s//
;

if D.p.s// < OO.sI p.s//;
(7)

where ��OO.sI p.s// WD
JX

jD1
��O.sjI p.s// > 0.

Note that, when D.p.s// < OO.sI p.s//, we have ��OO.sI p.s// > 0. Note also that

JX
iD1

'j.s/ D D.pelec.s// ^ OO.sI pelec.s// D D.p.s// ^ OO.sI p.s//; (8)

and for all j; O.sjI p.s/�/ � 'j.s/ � O.sjI p.s//: (9)

2.2 Carbon Market

Let us recall the CO2 regulation principle on which we base our analysis. Producers
are penalized according to their emission level if they do not own allowances.
Hence, in parallel to their position on the electricity market, producers buy CO2

emission allowances on a separate CO2 auction market. In the following, we
formalize producer strategy on the CO2 market only.

If they are allowed to, producers buying permits on the CO2 market will use
them either to cap their own power production emissions, either to prevent other
players from buying permits. The following assumption introduces some market
design rules that control players behavior on that market.
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Assumption 2 (Capped Carbon Market).

(i) The carbon market is capped and has a finite known quantity ˝ of CO2

emission allowances available.
(ii) Each producer j can buy a capped number of allowances Ej, related to its own

CO2 emission capacity.
(iii) Emissions that are not covered by allowances are penalized at a unit rate p.

Note that if one chose Ej � ˝ for all producers then item (ii) is void. Other
choice for the Ej can be seen as strengthen regulation tool.

On this market, producers adopt a strategy that consists of an offer function � 7!
Aj.�/ defined from Œ0; p� to Œ0;Ej�. Quantity Aj.�/ is the quantity of allowances that
producer j is ready to buy at price � . This offer may not be a monotonic function.
We denote A the strategy profile set on the CO2 market,

A WD fA D .A1; : : : ;AJ/I s.t. Aj W Œ0; p� ! Œ0;Ej�g:

The CO2 market reacts by aggregating the J offers by

AA .�/ WD
JX

jD1
Aj.�/;

and the clearing market price is established following a second item auction2 as:

pCO2 .A/ WD supf� IAA .�/ > ˝g; with the convention sup ; D 0: (10)

Note that pCO2 .A/ D 0 indicates that there are too many allowances to sell.
It is worth a reminder here that the aim of allowances is to decrease emissions.
In Sect. 3.2, we discuss a design hypothesis (Assumption 5) that guarantees an
equilibrium price pCO2 .A/ > 0. Therefore, in the following, we assume that the
overall quantity ˝ of allowances, is such that pCO2 .A/ > 0.

Next, we define the amount of allowances bought at price pCO2 .A/ by the
producers. By Definition (10), we have AA .pCO2 .A// � ˝ and AA .pCO2 .A/C/ � ˝.
When AA .pCO2 .A// > ˝, the CO2 market must decide between the producers with
an additional rule. We define

�.Ai/ WD Ai.p
CO2 .A/C/ � Ai.p

CO2 .A//:

For a producer i, �.Ai/ � 0 means that its CO2 demand does not decrease
if the price increases. It is therefore ready to pay more to obtain the quantity of

2Also called Dutch auction market with several units to sell, in a second item auction market, the
seller begins with a very high price and reduces it. The price is lowered until a bidder accepts the
current price.
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allowances it is asking for at price pCO2 .A/. The CO2 market gives priority to this
kind of producer, which will be fully served. The producers such that �.Aj/ < 0

share the remaining allowances. This can be written as follows.
Each producers with Aj.pCO2 .A// > 0 obtains the following quantity ıj.A/ of

allowances

ıj.A/ WD

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

Aj.pCO2 .A//; if �.Aj/ � 0;

Aj.pCO2 .A/C/C .��.Aj//
C

JX
iD1
.��.Ai//

C

 
˝ �

JX
iD1

Ai.p
CO2 .A//1f�.Ai/�0g

!
;

otherwise.
(11)

2.3 Carbon and Electricity Market Coupling

In the following, we formalize the coordination of a producer’s strategy on the CO2

and electricity markets. This could be seen as if both markets were synchronized
during a single time period with the same length (eg, 1 h).

As mentioned earlier, for each producer, the marginal cost function is
parametrized by the positions A of the producers on the carbon market. Indeed,
producer j can obtain CO2 emission allowances on the market to avoid penalization
for (some of) its emissions. Those emissions that are not covered by allowances are
penalized at a unit rate p.

A profile of an offer to buy from the producers A D .A1; : : : ;AJ/, through the
CO2 market clearing, corresponds to a unit price of pCO2 .A/ of the allowance and
quantities ıj.A/ of allowances bought by each producer (defined by the market
rules (10),(11)).

This yields to the following modified marginal production cost function3 cA
j .�/,

parametrized by the emission regulations:

q 7! cA
j .q/ D

(
cj.q/C ej.q/pCO2 .A/; for q 2 Œ0; �CO2

j .A/ ^ �j�

cj.q/C ej.q/p; for q 2 Œ�CO2
j .A/ ^ �j; �j�

(12)

where for all producers fj D 1; : : : ; Jg,

• q 7! ej.q/ is the emission rate (originally in CO2 t/Mwh),
• �

CO2
j .A/ is the electricity capacity covered by the bought allowances ıj.A/ � Ej:

3Note that this representation might also include the allowances possibly stored by the producers
in the previous periods.
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�
CO2
j .A/ D argmaxfkI

Z k

0

ej.z/dz � ıj.A/g:

In this coupled market setting, the strategy of producer j thus makes a pair .Aj; sj/.
The set of admissible strategy profile is defined as

¢¢ D f.A; s/I A 2 A; s 2 Sg ; (13)

where in the definition of S in (2), we use

Cj D ˚
cA

j I A 2 A
�
: (14)

Prices for allowances and electricity, pCO2 ..A; s// and pelec..A; s//, quantities of
allowances bought by each producer, ıj..A; s// and market shares on electricity
market 'j..A; s// of each producer corresponds to any strategy profile .A; s/ 2 ††,
through the market mechanisms described.

3 Nash Equilibrium Analysis

We suppose that the J producers behave non-cooperatively, aiming at maximizing
their individual market share on the electricity market. For a strategy profile .A; s/ 2
††, the market share of a producer j depends upon its strategy .Aj; sj.�// but also on
the strategies .A�j; s�j/ of the other producers.4 In this set-up the natural solution
is the Nash equilibrium (see e.g. [1]). More precisely we are looking for a strategy
profile

.A�; s�/ D ..A�
1 ; s

�
1 /; � � � ; .A�

J ; s
�
J // 2 ††

that satisfies Nash equilibrium conditions: none of the producers would strictly
benefit, that is, would strictly increase its market share from a unilateral deviation.
Namely, for any producer j strategy .Aj; sj/ such that ..A��j; s

��j/; .Aj; sj// 2 ††, we
have

'j..A�; s�// � 'j..A��j; s
��j/; .Aj; sj//; (15)

where 'j is the quantity of electricity sold. Note that the dependency in terms of A
through the marginal cost cA

j is now made explicit in 'j.
Condition (15) has to be satisfied for any unilateral deviation of any producer j.

In particular (15) has to be satisfied for a producer j admissible deviation .A�
j ; sj/

such that ..A��j; s
��j/; .A

�
j ; sj// 2 †† where producer j would only change its behavior

on the electricity market.

4Here we use the generic notation b�j that stands for the profile set .b1; � � � ; bj�1; bjC1; � � � ; bJ/.
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Remark 2. The electricity strategy component s� of the Nash equilibrium .A�; s�/
is also a Nash equilibrium for the restricted electricity game, where producers only
behave on the electricity market with marginal electricity production costs cA�

j .�/,
j D 1; � � � J.

The next section focuses on determining a Nash equilibrium on the game
restricted to the electricity market.

3.1 Equilibrium on the Power Market

In this restricted set-up, we consider that the marginal costs fcj; j D 1 : : : ; Jg are
known data, possibly fixed through the position A on the CO2 market. In this section,
we refer to S as the set of admissible strategy profiles, in the particular case where
Cj D fcjg for each j D 1; : : : ; J.

The Nash equilibrium problem is as follows: find s� D .s�
1 ; : : : ; s

�
J / 2 S such

that

8j;8 sj ¤ s�
j ; 'j.s�/ � 'j.s��j; sj/: (16)

The following proposition exhibits a Nash equilibrium, whereby each producer
must choose the strategy denoted by Cj, and referred to as marginal production cost
strategy. It is defined by

Cj.q/ D


cj.q/; for q 2 Dom.cj/

plolc; for q 62 Dom.cj/:
(17)

Proposition 1.

(i) For any strategy profile s D .s1; : : : ; sJ/, no producer j 2 f1; : : : ; Jg can be
penalized by deviating from strategy sj to its marginal production cost strategy
Cj, namely,

'j.s/ � 'j.s�j;Cj/: (18)

In other words, for any producer j, Cj is a dominant strategy.
(ii) The strategy profile C D .C1; : : :CJ/ is a Nash equilibrium.

(iii) If the strategy profile s 2 S is a Nash equilibrium, then we have Np.s/ D Np.C/,
and for any producer j, 'j.s/ D 'j.C/.

Point (ii) exhibits a Nash equilibrium strategy profile as a direct consequence of
the dominance property (i). Clearly the Nash equilibrium is non-unique, since we
can easily show that a producer’s given supply can follow from countless different
strategies. Nevertheless point (iii) shows that there is a unique associated quantities
of electricity sold by producers. The market coupling mechanism that we propose
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in the following section is based on this uniqueness property which allows the
computation of the equilibrium shares on electricity and carbon markets. Moreover,
any Nash equilibrium price evolves in the interval pelec.s/ 2 Œp.C/; Np.C/�, which
reduces to the point fNp.C/g in various situations, in particular when D.�/ strictly
decreases at p.C/, or when pelec is chosen equal to Np.

Proofs of (i) and (iii), which are rather tedious due to non-strictly monotony
and possible discontinuity of supply and offers, are postponed to “Proof of
Proposition 1” in Appendix.

3.2 Coupled Market Design Using the Nash Equilibrium

From this point we restrict our attention to a particular market design. In the
following, the scope of the analysis applies to a special class of producers, a specific
electricity market price clearing (satisfying Definition 1) and a range of quantities˝
of allowances available on the CO2 market. Although not necessary, the following
restriction simplifies the development.

Assumption 3 (On the Producers). Each producer j operates a single production
unit, for which

(i) the initial marginal cost contribution (that does not depend on the producer
positions A in the CO2 market) is constant, q 7! cj.q/ D cj. The related
emission rate q 7! ej.q/ D ej is also assumed to be a positive constant,

(ii) the producers are different pairwise: 8i; j 2 f1; � � � Jg; .ci; ei/ ¤ .cj; ej/.

In what follows (according to Assumption 2), in order to limit the number of
parameters involved in the discussion, the maximal cap of allowances that each
producer j may buy is set to Ej D ej�j. This arbitrary but natural choice does not
penalize producers capacity level, and does not bring any restriction to the following
equilibrium analysis.

As a consequence of Assumption 3, the marginal production cost in (12) can
simply be written as

q 7! cA
j .q/ D

8̂
<̂
ˆ̂:

cj C ejpCO2 .A/; for q 2 Œ0; ıj.A/
ej

^ �j�

cj C ejp; for q 2 Œ ıj.A/
ej

^ �j; �j�:

(19)

For a given strategy profile on the electricity market, Definition 1 gives a range of
possible determinations for the electricity price. Previously, the analysis of the Nash
Equilibrium restricted to the electricity market did not require a precise clearing
price determination. Nevertheless to extend our analysis to the coupling we need to
make explicit this determination and assume the following:
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Assumption 4 (On the Electricity Market). For a given strategy profile s of the
producers, the clearing price of electricity is pelec.s/. The market rule fixes pelec.�/ D
Np.�/ or pelec.�/ D p.�/ as defined in (5).

We will illustrate below that this choice of clearing price ensures the increasing
behavior of pelec.�/ and right continuity in terms of the carbon price (see Lemma 1).

The quantity ˝ of CO2 allowances available plays a crucial role in the market
design. If this quantity is too high, the allowance’s market price will drop to zero,
leaving the market incapable of fulfilling its role of decreasing CO2 emissions.
Therefore we clearly need to make an assumption that restricts the number of
allowances available. Appropriately capping the maximum quantity of allowances
available requires information on which producers are willing to obtain allowances.
This is the objective of the following paragraph where we define a willing to buy
function that plays a central role in the analysis of Nash equilibria.

3.2.1 Willing to Buy Functions

In this paragraph, we aim at guessing a Nash equilibrium candidate. We base
our reasoning on the dominant strategies on the electricity market alone (see
Proposition 1). Remark 2 allows us to fix the electricity market strategy as a
marginal production cost strategy, given the marginal cost functions CA D fcA

j ; j D
1; : : : Jg imposed by the output of the CO2 clearing, as in (19).

In particular, when A 2 A, we observe that the strategies .A; fcA
j ; j D 1; : : : Jg/

are in the set of admissible strategies defined in (13).
From now on, all the strategy profiles that we consider on the carbon market are

assumed to be admissible.
In the following, as the discussion will mainly focus on the impact of strategies

A through the carbon market, we denote the electricity market output as:

pelec.A/ instead of pelec.CA/

.'1.A/; : : : ; 'J.A// instead of .'1.CA/; : : : ; 'J.CA//:
(20)

To begin with, we consider an exogenous CO2 cost � similar to a CO2 tax rate:
the producers’ marginal cost becomes for any � 2 Œ0; p�, c�j .�/,

c�j .q/ D cj C �ej; for q 2 Œ0; �j�; j D 1; : : : ; J:

In this tax framework, the dominant strategy on the electricity market is also
parametrized by � as C� D fc�j ; j D 1; : : : Jg defined in (17). The clearing electricity
price and quantities follow as

pelec.�/ D pelec.C� /;

.'1.�/; : : : ; 'J.�// D .'1.C� /; : : : ; 'J.C� //:
(21)
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Price pelec.�/ will be referred to as the taxed electricity price, by contrast with
price pelec.A/ issued from the marginal production cost strategy that results from
the position A on the carbon market.

Remark 3. Considering a carbon tax � and a carbon market strategy A such that
� D pCO2 .A/, we emphasize the fact that the corresponding electricity prices are not
equivalent, but we always have the following inequality

pelec.�/ � pelec.A/:

This follows from the fact that for all i, c�i .�/ � cA
i .�/ and hence O.cA

i I �/ � O.c�i I �/.
The gap between C� .�/ and CA.�/ comes both from the width (˝ effect) and the
height (penalty effect) of their steps.

We start with the following:

Lemma 1. Under Assumption 4, the map � 7! pelec.�/ is non-decreasing and right
continuous.

We determine the willing-to-buy-allowances functions Wj.�/ and W .�/, as follows:

Wj.�/ D ej'j.�/ and W .�/ D
JX

jD1
Wj.�/: (22)

For producer j, Wj is the quantity of emissions it would produce under the
penalization � , and consequently the quantity of allowances it would be ready
to buy at price � . Given the CO2 value � , the total amount W .�/ represents the
allowances needed to cover the global emissions generated by the players who have
won electricity market shares. We also define the functions

W j.�/ D ej�j1f'j.�/>0g; and W .�/ D
JX

jD1
W j.�/: (23)

Given that the CO2 value � , W .�/ is the amount of allowances needed by the
producers who have won electricity market shares and want to cover their overall
production capacity �j. Obviously we have

W .�/ � W .�/; 8� 2 Œ0; p�:
Moreover,

Lemma 2. The function � 7! W .�/ is non-increasing:

W .t0/ � W .t/; 8 0 � t < t0 � p:

The proofs of both Lemma 1 and Lemma 2 can be found in Proofs of Lemmas 1 and
2 Appendix.
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3.2.2 Towards an Equilibrium Strategy

The main result of the section is the computation of the bounds of the interval in
which the coupled carbon market Nash equilibria prices evolve: we demonstrate
that there is no possible deviation enabling a Nash equilibrium carbon price outside
this interval. The price bounds are elaborated as specific carbon prices associated
to two explicit strategies, build from the willing-to-buy-allowances functions: the
Lower price strategy, and the Higher price strategy.

In order to characterize further Nash equilibria candidates, evolving in this price
interval, we analyze a third set of strategies that are intermediate strategies.

Those strategies rely on our last design assumption which prevents the carbon
market from market failure:

W .0/ � ˝ W no auction, W .p/ � ˝ W allowances shortage.

Assumption 5 (On the Carbon Market Design). The available allowances ˝
satisfy

W .p/ < ˝ < W .0/:

Moreover, p is chosen such that no producer is sidelined from the game: for all j,
� 7! W j.�/ is not identically zero on Œ0; p�.

Assumption 5 allows to define two prices of particular interest for the game analysis:

� lower D supf� 2 Œ0; p� s.t. W .�/ > ˝g; (24)

and �higher D supf� 2 Œ0; p� s.t. W .�/ > ˝g: (25)

Observe that we always have � lower � �higher.

3.2.3 Lower Price Through Lower Price Strategy

Lemma 3. Consider any strategy AW D .AW
1 ; : : : ;A

W
J / such that

AW
j .�/ D


Wj.�

lower/; for 0 � � � � lower;

anything admissible; for � > � lower:
(26)

(i) pCO2 .AW / � � lower.
(ii) In the case where pCO2 .AW / D � lower, there is no unilateral favorable deviation

that clears the market at a CO2 price lower than � lower.

We call the Lower price strategy .W1; : : : ;WJ/, as pCO2 ..W1; : : : ;WJ// D � lower by
price definitions (10) and (24).
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Proof. Point (i) is a consequence of the definition of � lower D supf� 2 Œ0; p�;
s.t. W .�/ > ˝g. Since AW

j .�/ D Wj.�/ for � � � lower, it follows that pCO2 .AW / D
supf� 2 Œ0; p�; s.t.

P
j AW

j .�/ > ˝g � � lower.
To prove (ii), first note that, since we assume pCO2 .AW / D � lower, we have

'j.AW / � 'j.�
lower/ D 1

ej
Wj.�

lower/. Indeed, the carbon market clearing can

decrease the global function OO.C� lower I �/ to OO.AW I �/, but the demand function stay
unchanged. So, we still have 'j.AW / D 1

ej
ıj.AW /.

Suppose one producer, say Producer 1, deviates and chooses QA1.�/ instead
of AW

1 .�/. Suppose the new carbon price Q� WD pCO2 .AW�1; QA1/ < � lower. Since
AW

j . Q�C/ D AW
j . Q�/ for j ¤ 1, necessarily we have QA1. Q�C/ � QA1. Q�/, by definition

of Q� . Then �. QA1/ � 0 and it follows that ı1.AW�1; QA1/ � ı1.AW /, but ıj.AW�1; QA1/ �
ıj.AW / for the others j ¤ 1.

If pelec.AW�1; QA1/ � pelec.AW /, the others j ¤ 1 produce at least electricity for the
allowances they have, 'j.AW�1; QA1/ � 'j.AW /. Since the demand is decreasing we
have '1.AW�1; QA1/ � '1.AW /.

Now, if pelec.AW�1; QA1/ < pelec.AW /, the offer of Producer 1 based on his penal-
ized marginal production cost is also greater than pelec.AW�1; QA1/. Then '1.AW�1; QA1/
� 1

e1
ı1.AW�1; QA1/ � '1.AW /. ut

Lemma 4. Suppose A is such that pCO2 .A/ < � lower. Then A is not a Nash
equilibrium.

Proof. To prove this lemma we exhibit an unilateral favorable deviation of a
producer.

.a/ Assume first that at least one producer exists, say Producer 1, such that '1.A/ <
�1 and there exists a tax value O�1 such that pCO2 .A/ < O�1 � � lower and, W1.�/ D
e1�1 for any � 2 ŒpCO2 .A/; O�1�.

This means that Producer 1 may sell �1, for any tax level � in ŒpCO2 .A/; O�1�, and
consequently we have c1 C �e1 < pelec.�/ for � in ŒpCO2 .A/; O�1�.

Consider a deviation QA1 of player 1, such that the resulting clearing price on CO2

market, pCO2 .A�1; QA1/ 2 ŒpCO2 .A/; O�1�. From Remark 3, we have

C1 C �e1 � pelec.pCO2 .A�1; QA1// � pelec.A�1; QA1/:

This means that Producer 1 may sell its overall covered capacity: '1.A�1; QA1/ D
1
e1
ı1.A�1; QA1/.
Now we define � 7! QA1.�/ as follows, for " > 0 arbitrarily small

and pCO2 .A/ � � ,
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QA1.pCO2 .A// D e1�1;
QA1.�/ D

�
˝ �P

j>1 Aj.�/ � "
�
1f
X
j¤1

Aj.�/C ı1.A/ � ˝g

Ce1�11f
X
j¤1

Aj.�/C ı1.A/ < ˝g for � 2 .pCO2 .A/; O�1�

D A1.�/; for � > O�1:

Note that QA1.�/ � A1.�/ for pCO2 .A/ � � � O�1, and consequently
pCO2 .A�1; QA1/ � pCO2 .A/.

If pCO2 .A�1; QA1/ > pCO2 .A/, then e1'1.A�1; QA1// D ı.A�1; QA1/ > ı.A/ �
e1'1.A/, and we get our favorable deviation.

If pCO2 .A�1; QA1/ D pCO2 .A/, we observe that when �.A1/ � 0, we also have
�. QA1/ D 0. Then by the CO2 market clearing mechanism, Producer 1 gets
e1�1 allowances instead of ı.A/ and strictly improves its electricity market share.
when �.A1/ < 0, we have QA1.pCO2 .A/C/ > A1.pCO2 .A/C/, that also insures that
Producer 1 increases ı.A�1; QA1/ > ı.A/ (see (11)).

.b/ Assume now that all producers are either such that 'j.A/ D �j or such that
'j.A/ < �j and Wj.pCO2 .A/C/ < ej�j. Among the second category, there exists
at least one producer (say Producer 1) such that '1.A/ < '1.pCO2 .A// with
'1.pCO2 .A// > 0 (unless to contradict pCO2 .A/ < � lower). Here we have used
the notation (20) and (21). W1.pCO2 .A/C/ < e1�1 means that c1 C e1pCO2 .A/ D
pelec.pCO2 .A// (as pelec.�/ is right-continuous).

A strictly favorable deviation QA1 of Producer 1, thus consists in increasing its ask
at the price pCO2 .A/C, in order to increase its ı.A�1; QA1/ (see (11)):

QA1.�/ D
0
@˝ �

X
j>1

Aj.�/ � "
1
A1fpCO2 .A/ < �g C e1�11fpCO2 .A/ D �g:

Then pCO2 .A�1; QA1/ D pCO2 .A/, QA1.pCO2 .A// � A1.pCO2 .A//, but QA1.pCO2 .A/C/ >
A1.pCO2 .A/C/, for " sufficiently small. This last inequality guarantees that
ı1.A�1; QA1/ > ı1.A/ and finally '1.pCO2 .A// � '1.A�1; QA1/ > '1.A/. ut

3.2.4 Higher Price Through Higher Price Strategy

Lemma 5. Consider any strategy AW D .AW
1 ; � � � ;AW

J / such that

AW
j .�/ D


anything admissible; for � � �higher;

W j.�/; for � > �higher:
(27)
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(i) pCO2 .AW / � �higher.
(ii) There is no unilateral favorable deviation that clears the market at a CO2 price

higher than �higher.

We call the Higher price strategy .W 1; : : : ;W J/, as pCO2 ..W 1; : : : ;W J// D �higher

by price definitions (10) and (25).

Proof. Point (i) follows directly from the definition of �higher.
To prove (ii), suppose one producer, say Producer 1, chooses its strategy QA1.�/

instead of AW
1 .�/, and that the resulting CO2 price is Q� WD pCO2 .AW�1; QA1/ > �higher.

Necessarily, due to the definition of AW , this means that W 1. Q�/ D 0, which in
turn means that c1 C Q�e1 > pelec. Q�/. To conclude, it is sufficient to notice that
any Producer j ¤ 1 obtains what he asks for, i.e. ıj.AW�1; QA1/ D W j. Q�C/, from
which it follows that the coupled electricity price equals the taxed electricity price:
pelec.AW�1; QA1/ D pelec. Q�/, and then '1.AW�1; QA1/ D W i. Q�/ D 0 and the deviation of
Producer 1 is not favorable. ut

A strategy A is said to be effective if all the producers that bought some
allowances produce some electricity:

8j; ıj.A/ > 0 ) 'j.p
CO2 .A// > 0:

Lemma 6.

(i) Let A admissible such that pCO2 .A/ > �higher. Then A is not an effective strategy.
(ii) Let A admissible such that pCO2 .A/ > �higher. Then A is not a strong Nash

equilibrium.

As a consequence of this lemma, if a producer (or a set of producers) that does
not produce electricity, tries to block the auction game of the carbon market by
buying all the allowances he can, then there always exists a coalition with favorable
deviation.

Proof.

.i/. Effective means that for all producers such that ıj.A/ > 0, we have
W j.pCO2 .A// D ej�j, which is clearly in contradiction with the definition
of �higher.

.ii/. Given A, such that pCO2 .A/ > �higher, we consider the coalition of producers K
such that for j 2 K , W j.pCO2 .A// D 0. K is clearly non-empty by definition
of �higher. Consider the following cooperating deviation of K :

QAj.�/ D AW
j .�/; for j 2 K :

Then pCO2 .A�K ; QAK / < pCO2 .A/, and at least for one member of the coalition
K , ıj.A�K ; QAK / > 0 when W j.pCO2 .A�K ; QAK // > 0. This means that
'j.A�K ; QAK / > 0 which is a strictly favorable deviation of j, whereas the
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situation is unchanged for the others in K that still produce nothing. Thus,
we exhibit a coalition that allows a deviation from A that benefits to all of its
members, and that benefits strictly to at least one. Then A is not a strong Nash
equilibrium. ut

3.2.5 Price Interval

From Lemmas 4 and 6, we have the following:

Corollary 1. If A is a strong Nash equilibrium, or if it is an effective Nash
equilibrium, then pCO2 .A/ 2 Œ� lower; �higher�.

The interval in which the coupled carbon market Nash equilibria prices evolve
is then Œ� lower; �higher�. This price range is generated by the existing gap between the
functions W .�/ and W .�/.

Thus a condition for a single unique carbon price is that this gap shrinks to zero:
the equality between the two willing-to-buy-allowances functionals occurs i.e. for
any value � , and any producer i, the allowances needed to cover the global emissions
generated by a player who has won electricity market shares and the allowances
needed by a producer who has won electricity market shares and wants to cover its
overall production capacity are the same. Clearly, this is very unlikely to happen.

It is worth of mentioning that the same lemmas apply when producers have an
electricity production power plants portfolio, or when one modifies the maximal cap
Ej of allowances that each producer j may buy while one redefines � 7! W j.�/ by

W j.�/ D Ej1f'j.�/>0g:

Note that if one increases the maximal cap, �higher increases.

3.2.6 Intermediate Strategies

Consider any strategy profile B D .B1; � � � ;BJ/ satisfying the following:

Bj.�/ D
8<
:
Wj.�

lower/; for � � � lower;

anything admissible; for � lower < � � �higher;

W j.�/; for � > �higher:

(28)

This is not in general an equilibrium, nevertheless we have the following properties:

Lemma 7.

(i) pCO2 .B/ 2 Œ� lower; �higher�.
(ii) If there exists a favorable deviation from a producer, say Producer 1, that

chooses QB1 instead of B1, such that pCO2 .B�1; QB1/ < � lower, then there exists
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another favorable deviation OB1 defined by

OB1 D
 QB1.�/; for � > � lower;

W1.�
lower/; for � � � lower

such that pCO2 .B�1I OB1/ D � lower, and such that '1.B�1; OB1/ � '1.B�1; QB1/.
Proof. Point (i) follows directly from Lemma 3–(i) and Lemma 5–(i).

To prove (ii), we first observe that, as producers j ¤ 1 are served first on the
carbon market,

ı1.B�1I QB1/ D ˝ �
X
j¤1

Wj.�
lower/:

Moreover, we have pCO2 .B�1; OB1/ D � lower, and from the CO2 market mechanism it
follows that

ı1.B�1; OB1/ � ı1.B�1; QB1/:

Since QBj.pCO2 .B�1; QB1// D QBj.pCO2 .B�1; QB1/C/ D Wj.�
lower/ for any j ¤ 1, it

follows that ı1.B�1; QB1/ D ˝ � P
j¤1Wj.�

lower/. Indeed, for strategy .B�1; OB1/,
the producers j ¤ 1 such that Bj.�

lowerC/ < Wj.�
lower/ receive a quantity of

quotas ıj.B�1; OB1/ � Wj.�
lower/, from which ı1.B�1; OB1/ D ˝ �P

j ıj.B�1; OB1/ �
ı1.B�1; OB1/. We also deduce that '1.B�1; OB1/ D 1

e1
ı1.B�1; OB1/. To conclude, it

is sufficient to notice that '1.B�1; OB1/ D 1
e1
ı1.B�1; OB1/ � 1

e1
ı1.B�1; QB1/ �

'1.B�1; QB1/. ut
The following aims to characterize the form of effective Nash equilibria.

Corollary 2. Let E be an effective Nash equilibrium (i.e pCO2 .E/ � �higher). Then
the following E0 is also an effective Nash equilibrium:

E0
j.�/ D

8<
:
Wj.�

lower/; for � � � lower;

Ej.�/; for � lower < � � �higher;

W j.�/; for � > �higher:

(29)

Proof. From Lemmas 3 and 5, pCO2 .E/ 2 Œ� lower; �higher�. Consider a deviation
that produces a bigger carbon price: Producer 1 deviates from E0

1 to QE0
1 with

pCO2 . QE0
1;E

0�1/ > �higher. Then by definition of �higher, '1. QE0
1;E

0�1/ D 0. Indeed,
a deviation to this bigger price is possible only if W 1.pCO2 .. QE0

1;E
0�1// D 0.

Now if Producer 1 deviates from E0
1 to QE0

1 with pCO2 .. QE0
1;E

0�1// < � lower, and
if we assume that this deviation is strictly favorable: '1. QE0

1;E
0�1/ > '1.E0/. Then

according to Lemma 7, we consider OE0
1 that gives pCO2 . OE1;E0�1/ D � lower. And we
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still have that '1. OE0
1;E

0�1/ > '1.E0/. But the deviation . OE0
1;E�1/ from E produces

the same price and shares than . OE0
1;E

0�1//. Since we also have '1.E0/ D '1.E/, we
get a strictly favorable deviation to E which gives the contradiction.

Same arguments apply when Producer 1 deviates from E0
1 to QE0

1 with pCO2 . QE0
1/ in

Œ� lower; �higher�. ut

4 Conclusion

Once CO2 is emitted into the atmosphere, it remains there for more than a century.
Estimating its value is an essential indicator for efficiently defining policy. Carbon
valuation is crucial for designing markets that foster emission reductions. In this
paper, we established the links between an electricity market and a carbon auction
market through an analysis of electricity producers’ strategies. We proved that they
lead to the interval where relevant Nash equilibria evolve, enabling the computation
of equilibrium prices on both markets. For each producer, each equilibrium derives
the level of electricity produced and the CO2 emissions covered.

For a given design and set of players, the information provided by the interval
may be interpreted as a diagnosis of market behavior in terms of prices and volume.
Indeed, it enables the computation of the CO2 emissions actually released, and opens
the discussion of a relevant carbon market in terms of mitigation issues.

In addition to this analysis of the Nash equilibrium we plan to analyze the
electricity production mix, with a particular focus on renewable shares that do not
participate in emissions.

Acknowledgements This work was partly supported by Grant 0805C0098 from ADEME.

Appendix

Proof of Proposition 1

A. First We Prove the Dominance Property (i)

Suppose that one producer, let us say producer 1, deviates and chooses C1 instead
of s1. We have to show that its market share cannot be reduced by this deviation. By
definition of the admissibility (see (2)) we have

s1.q/ � C1.q/;8q 2 Œ0; �1�:

Hence the offer functions defined by (3) satisfy O.s1I �/ � O.C1I �/: By adding the
unchanged offers of the other producers
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OO..s�1; s1/I �/ � OO..s�1;C1/I �/; (A.1)

where .s�1;C1/ denotes the strategy profile that includes producer 1 deviation. The
minimum market clearing price (5) for strategy profile s is

p.s/ D inffp; OO.sI p/ > D.p/g:

The minimum market clearing price (5) for strategy profile .s�1;C1/ is

p.s�1;C1/ D inffp; OO..s�1;C1/I p/ > D.p/g:

The inequality (A.1) together with the fact that the demand D.�/ is a non-increasing
function imply that p.s�1;C1/ � p.s/, from which, with (6) we deduce that

pelec.s�1;C1/ � pelec.s/:

Now let us show that Producer 1 does not reduce its market share by deviating from
s1.�/ to C1.�/, that is '1.s�1;C1/ � '1.s/.

For the sake of clarity we adopt, in this paragraph, the following notation:

ps WD p.s/
pelec

s WD pelec.s/
and

psC WD p.s�1;C1/
pelec

sC WD pelec..s�1;C1//:

We first consider the case where psC < ps. By definition of the minimum clearing
price psC, the fact that D.ps/ � D.psC/ and the fact that OO..s�1;C1/I �/ is non-
decreasing, we have

D.pelec
s / � D.ps/ � D.psC/ � OO..s�1;C1/I psC/ � OO..s�1;C1/I pelec

sC /:

Hence,

OO..s�1; s1/; pelec
s / ^ D.pelec

s / � OO..s�1;C1/I pelec
sC / ^ D.pelec

sC /;

OO..s�1; s1/; ps/ ^ D.ps/ � OO..s�1;C1/I psC/ ^ D.psC/:

From the market clearing (8) we get

'1.s�1; s1/ � '1.s�1;C1/

D OO..s�1; s1/; pelec
s / ^ D.pelec

s / � OO..s�1;C1/I pelec
sC / ^ D.pelec

sC /

C
X
j>1

�
'j.s�1;C1/ � 'j.s�1; s1/

�
:

According to Definition 2, let us denote

E .ps/ D ˚
j 2 f2; : : : ; Jg s.t. ��O.sjI ps/ > 0

�
:
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We have

'1.s�1; s1/ � '1.s�1;C1/

D OO..s�1; s1/I pelec
s / ^ D.pelec

s / � OO..s�1;C1/I pelec
sC / ^ D.pelec

sC /

C
X

j>1;j…E .ps/

�
'j.s�1;C1/ � O.sjI pelec

s /
�

C
X

j>1;j2E .ps/

.'j.s�1;C1/ � 'j.s�1; s1//

� OO..s�1; s1/I pelec
s / ^ D.pelec

s / � OO..s�1;C1/I pelec
sC / ^ D.pelec

sC /

C
X

j>1;j…E .ps/

�
O.sjI pelec

sC / � O.sjI pelec
s /

�

C
X

j>1;j2E .ps/

.'j.s�1;C1/ � 'j.s�1; s1//

Since pelec
sC � pelec

s we get

'1.s�1; s1/ � '1.s�1;C1/ �
X

j>1;j2E .ps/

.'j.s�1;C1/ � 'j.s�1; s1//:

But for any j 2 E .ps/, the quantity O.sjI p�
s / � 'j.s�1; s1/. As O.sjI �/ is non-

decreasing a since we have assumed psC < ps, we get

O.sjI p�
sC/ � O.sjI p�

s / � 'j.s�1; s1/:

For such j > 1, we thus have

'j.s�1;C1/ � 'j.s�1; s1/ � 'j.s�1;C1/ � O.sjI pelec
s

�
/

� 'j.s�1;C1/ � O.sjI pelec
sC / � 0;

from which it follows that '1.s�1; s1/ � '1.s�1;C1/ � 0:

Now consider the case where ps D psC WD p. Due to the market rule (6), we
necessarily have pelec

s D pelec
sC WD pelec.

• If OO..s�1; s1/I pelec/ � OO..s�1;C1/I pelec/ � D.pelec/, then by the market
clearing

'1.s�1; s1/ D O.s1I pelec/ � O.C1I pelec/ D '1.s�1;C1/:

• If OO..s�1; s1/I pelec/ � D.pelec/ � OO..s�1;C1/I pelec/, then
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'1.s�1; s1/DO.s1I pelec/ �D.pelec/�
X
j>1

'j.s�1; s1/DD.pelec/�
X
j>1

O.sjI pelec/

�D.pelec/ �
X
j>1

'j.s�1;C1/ D '1.s�1;C1/:

• If D.pelec/ < OO..s�1; s1/I pelec/ � OO..s�1;C1/I pelec/, by the market clearing we
get

'1.s�1; s1/ � '1.s�1;C1/

D OO..s�1; s1/; pelec/ ^ D.pelec/ � OO..s�1;C1/I pelec/ ^ D.pelec/

C
X
j>1

.'j.s�1;C1/ � 'j.s�1; s1//

�
X
j>1

.'j.s�1;C1/ � 'j.s�1; s1//

�
X

j>1;j2E .p/
.'j.s�1;C1/ � 'j.s�1; s1//:

From (7), we have for j 2 E .p/

'j.s�1; s1/ D O.sj; p
�/C��O.sjI p/

.D.p/ � OO..s�1; s1/; p�//
��OO..s�1; s1/; p/

and 'j.s�1;C1/ D O.sjI p�/C��O.sjI p/
.D.p/ � OO..s�1;C1/I p�//

��OO..s�1;C1/I p/
:

Hence, if E .p/ is non empty then at least one producer exists, j ¤ 1 such that
��O.sjI p/ > 0. and from the desegregation of OO and definition of �� it results
that

'1.s�1; s1/ � '1.s�1;C1/

D
X

j>1;j2E .p/
��O.sj; p/

�
.D.p/ � OO.s�1; p�/ � O.C1I p�//

OO..s�1;C1/I p/ � OO.s�1; p�/ � O.C1I p�/

� .D.p/ � OO.s�1; p�/ � O.s1; p�//
OO..s�1; s1/; p/ � OO.s�1; p�/ � O.s1I p�/

�
:

We note that

0 < OO..s�1; s1/I p/ � OO.s�1; p�/ � O.C1I p�/

< OO..s�1;C1/I p/ � OO.s�1; p�/ � O.C1I p�/;
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and that D.p/ � OO..s�1;C1/I p�/ > 0 by definition of p. Then

'1.s�1; s1/ � '1.s�1;C1/

�
X

j>1;j2E .p/
��O.sjI p/ �

�
.D.p/ � OO.s�1; p�/ � O.C1I p�//

OO..s�1; s1/I p/ � OO.s�1; p�/ � O.C1I p�/

� .D.p/ � OO.s�1; p�/ � O.s1I p�//
OO..s�1; s1/I p/ � OO.s�1; p�/ � O.s1I p�/

�
:

Since D.p/ � OO..s�1; s1/I p/ and O.C1I p�/ � O.s1I p�/, we can deduce that
'1.s�1; s1/ � '1.s�1;C1/ � 0: This follows from the fact that when A � B, the

map x 7! A � x

B � x
is decreasing on Œ0;A/.

A.0.0.7 B. We Prove the Uniqueness Property (iii)

All Nash equilibria induce the same electricity price and same quantities of
electricity bought to each producer.

First, we state the following consequence of the dominance property (i):

Lemma 8. For any admissible strategy s D .s1; : : : ; sJ/, such that p.s/ D p.C/, if
producer j is such that sj D Cj, then

'j.s/ � 'j.C/:

Proof. As arguments are very similar to the proof of (i), we just sketch them. Let s
such that p.s/ D p.C/ WD p. Assume that Producer 1 is such that s1 D C1.

• If OO.sI p/ � D.p/, then by the market clearing

'1.s/ D O.s1I p/ D O.C1I p/ � '1.C/:

• If D.p/ < OO.sI p/ � OO.CI p/, by the market clearing we get

'1.s�1;C1/ D O.C1I p�/C��O.C1I p/
.D.p/ � OO..s�1I C1/I p�//

��OO..s�1I C1/I p/

and '1.C�1;C1/ D O.C1I p�/C��O.C1I p/
.D.p/ � OO..C�1I C1/; p�//

��OO..C�1I C1/; p/
:

Thus,

'1.s�1;C1/ � '1.C�1;C1/
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D ��O.C1I p/

�
.D.p/ � OO..s�1;C1/I p�//

OO..s�1;C1/I p/ � OO..s�1;C1/I p�/

� .D.p/ � OO..C�1;C1/I p�//
OO..C�1;C1/I p/ � OO..C�1;C1/I p�/

�
:

Assuming that ��O.C1I p/ > 0, we note that

0 < OO..s�1;C1/I p/ � OO..s�1;C1/I p�/ � OO..C�1;C1/I p/ � OO..s�1;C1/I p�/:

Since D.p/ � OO..C�1;C1/I p�/ > 0 by definition of p,

'1.s�1;C1/ � '1.C�1;C1/

� ��O.C1I p/

�
.D.p/ � OO..s�1;C1/I p�//

OO..C�1;C1/I p/ � OO..s�1;C1/I p�/

� .D.p/ � OO..C�1;C1/I p�//
OO..C�1;C1/I p/ � OO..C�1;C1/I p�/

�
:

As OO..s�1;C1/I p�/ � OO..C�1;C1/I p�/, we get '1.s�1;C1/ � '1.C�1;C1/ � 0:

ut
We prove that the quantities are the same for all Nash equilibria. Let w an
other Nash equilibrium that differs from C. On the global offers we always have
OO.wI �/ � OO.CI �/ that implies p.w/ � p.C/: Note that when p.C/ D plolc, all
admissible strategies s are Nash as 'j.C/ D 'j.s/ D �j; for all j:

By the offers ordering, it is straightforward to show that

JX
jD1

'j.w/ �
JX

jD1
'j.C/:

Assume that the quantities are not the same, then there exists a producer, say
Producer 1, such that '1.w/ < '1.C/: And we also have

'1.w/ < '1.C/ � O.C1I pelec.C// � O.C1I pelec.w�1;C1/:

If p.C/ D p.w�1;C1/, then by Lemma 8, we have that '1.w�1;C1/ � '1.C/ and
hence '1.w�1;C1/ > '1.w/. In other words, w has a strictly favorable deviation for
Producer 1 that contradicts the assumption that w is a Nash equilibrium.

Now if p.C/ < p.w�1;C1/, by (9),

'1.w/ < '1.C/ � O.C1I p.C// � O.C1I p..w�1;C1//�/ � '1.w�1;C1/;

and the same conclusion follows.
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We prove that the equilibrium best bid price is unique: Np.w/ D Np.C/, for
an other Nash equilibrium w. Assume the contrary, Np.w/ > Np.C/. Then by the
definition of Np.�/, we have that D.p.w// < D.p.C//:

From (8) and (9),

JX
jD1

'j.w/ � D.p.w// < D.p.C/C/ � D.p.C// ^ OO.CI p.C// D
JX

jD1
'j.C/

that contradicts the fact that Nash equilibria have same clearing quantities.

Proofs of Lemmas 1 and 2

Proof of Lemma 1. Although the result of this lemma is intuitive, the proof is rather
technical. This is due to our assumptions, in particular regarding demand, that allow
the demand function to have discontinuity points and some non-elasticity areas (see
Assumption 1).

More precisely, if we define the map � 7! OO.� I p/ by

OO.� I p/ D
JX

iD1
O.C�

j .�/I p/ D
JX

iD1
�i1fp�ciC�eig D

JX
iD1

�i1f�� p�ci
ei

g;

then we can observe that, for any p > 0 far enough from the ci, and any � 0 � � ,

OO.� 0I p/ � OO.� I p/ and lim
�!0C

OO.� C �I p/ D OO.� I p/:

We call SD D fpdI lim�!0C D.pd C �/ < D.pd/g, the set of discontinuity points
of the Demand function.

We call S� D fpcI D.pc/ D P
�ig, the set of prices that make demand coincide

with some accumulation of production capacities.
We observe that pelec.�/ 2 fci C �ei; i D 1; : : : ; jg [ SD [ S� . In particular, from

Definition 1, p.�/ D inffp > 0IOO.� I p/ > D.p/g; and we obtain that D.p.�C�// �
OO.�C�I p.�C�// � OO.� I p.�C�// from which we conclude that p.�C�/ � p.�/.

Now we prove the right continuity of � 7! p.�/. Let us fix a � .

(i) We first consider the case D.p.�// < OO.� I p.�//.

This means that p.�/ is of the form c` C �`, for a given `. Then when � > 0 is small
enough, we also have p.� C �/ D c` C .� C �/e`. Indeed, D.c` C .� C �/e`/ �
D.c` C �e`/ and for a small enough �,

OO.� I c` C �e`/ D �` C
X
i¤`

�i1f�� c`�ci
1�ei=e`

g D OO.� C �I c` C .� C �/e`/:



362 M. Bossy et al.

Thus, D.c`C.�C�/e`/ < OO.�C�I c`C.�C�/e`/ which implies that p.�/Ce`� D
c` C .� C �/e` � p.� C �/ and hence e`� � p.� C �/ � p.�/:

(ii) We consider next the case D.p.�// > OO.� I p.�//.
This means that p.�/ 2 SD is at a discontinuity point, say pd of the demand, p.�/ D
pd. Then, for any ı > 0,

D.p.�/C ı/ < OO.� I p.�/C ı/:

But,

OO.� I pd C ı/ D
JX

iD1
�i1f�� pdCı�ci

ei
g;

and we can choose ı to be small enough so that � ¤ pdCı�ci
ei

. Then, for a small
enough �,

D.p.�/C ı/ < OO.� I p.�/C ı/ D OO.� C �I p.�/C ı/;

which implies that p.�/C ı � Np.� C �/, so we obtain ı � p.� C �/ � p.�/ � 0:

(iii) We consider now the case D.p.�// D OO.� I p.�//.
This means that p.�/ 2 S� , say p.�/ D pc Then, for any ı > 0,

D.p.�/C ı/ < OO.� I p.�/C ı/:

But,

OO.� I pc C ı/ D
JX

iD1
�i1f�� pcCı�ci

ei
g

and we can choose ı small enough such that � ¤ pcCı�ci
ei

. Then, for � small enough,

D.p.�/C ı/ < OO.� I p.�/C ı/ D OO.� C �I p.�/C ı/

which implies that p.�/ C ı � p.� C �/, so we get ı � p.� C �/ � p.�/ � 0:

The right-continuity of � 7! Np.�/ follows, by definition as Np.�/ is a continuous
transformation of p.�/. ut
Proof of Lemma 2. The proof consists in a complete analysis of the entire combina-
tion of situations, but each situation is elementary.

Let us suppose the opposite, that is there exists 0 � t < t0 � p such that the
emission levels are W .t0/ > W .t/.

We define the function � 7! I.�/ valued in the subsets of f1; : : : ; Jg that lists the
producers in the electricity market producing at tax level � :

i 2 I.�/ if 'i.�/ > 0:
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In particular we have for all � 2 Œ0; p�,

W .�/ D
X

i2I.�/

ei'i.�/:

(i) We first examine the situation I.t0/ D I.t/.
To shorten the expressions, we adopt the following notation

I.t/ D I and I.t0/ D I0:

(i-a) If
P

i2I 'i.t/ D D.t/ then, from the demand constraint (DC) and the
emission levels hypothesis (EH), we have

X
i2I

'i.t/ D D.t/ � D.t0/ �
X
i2I0

'i.t
0/ (DC)

X
i2I

'i.t/ei <
X
i2I0

'i.t
0/ei: (EH)

We denote by OI the subset of I of index such that ci C tei D p.t/. In particular,
when j 2 I n OI, then 'j.t/ D �j.

Note that there exists at most one index (say `) in the set OI \bI0. If j 2 OI nbI0
and k 2 bI0 n OI, then, by the definition of the sets

cj C ejt D c` C e`t; ck C ekt < cj C ejt;
cj C ejt0 < c` C e`t0; ck C ekt0 D c` C e`t0;
cj C ejt0 < ck C ekt; ck C ekt < c` C e`t;

from which we easily deduce that

maxfej; j 2 OI nbI0g < e` < minfek; k 2 bI0 n OIg: (A.2)

Now we decompose the sets I and I0 in the demand constraint (DC) and the
emission levels hypothesis (EH) as follows:

X
n2InOI[bI0

�n C '`.t/C
X

i2OInbI0

'i.t/C
X

k2bI0nOI
�k

�
X

n2InOI[bI0

�n C '`.t
0/C

X
i2OInbI0

�i C
X

k2bI0nOI
'k.t

0/; (DC)
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X
n2InOI[bI0

en�n C e`'`.t/C
X

i2OInbI0

ei'i.t/C
X

k2bI0nOI
ek�k

<
X

n2InOI[bI0

en�n C e`'`.t
0/C

X
i2OInbI0

ei�i C
X

k2bI0nOI
ek'k.t

0/: (EH)

After simplification, we obtain

'`.t/C
X

i2OInbI0

'i.t/C
X

k2bI0nOI
�k � '`.t

0/C
X

i2OInbI0

�i C
X

k2bI0nOI
'k.t

0/; (DC)

e`'`.t/C
X

i2OInbI0

ei'i.t/C
X

k2bI0nOI
ek�k < e`'`.t

0/C
X

i2OInbI0

ei�i C
X

k2bI0nOI
ek'k.t

0/:

(EH)
Assume first that '`.t/ C P

i2OInbI0 'i.t/ � '`.t0/ C P
i2OInbI0 �i. Equivalently, we

have

'`.t/ � '`.t0/ �
X

i2OInbI0

.�i � 'i.t//

and from (A.2),

e`
�
'`.t/ � '`.t0/

� �
X

i2OInbI0

ei.�i � 'i.t//:

By combining the above with the emission levels hypothesis (EH), we obtain
the following contradiction:

P
k2bI0nOI ek�k <

P
k2bI0nOI ek'k.t0/.

Assume now that '`.t/CP
i2OInbI0 'i.t/ < '`.t0/CP

i2OInbI0 �i. Multiplying the

demand constraint (DC) by Oe WD minfek; k 2 bI0 n OIg, we get

X
k2bI0nOI

ek.�k � 'k.t
0// � Oe �'`.t/ � '`.t0/

�C Oe
X

i2OInbI0

.�i � 'i.t//:

But from (EH) and (A.2), we also have

X
k2bI0nOI

ek.�k � 'k.t
0// < e`

�
'`.t/ � '`.t0/

�C e`
X

i2OInbI0

.�i � 'i.t//;

then
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0 � .Oe � e`/
�
'`.t/ � '`.t0/

�C .Oe � e`/
X

i2OInbI0

.�i � 'i.t//;

which contradicts our assumption.

(i-b) If
X
i2I

'i.t/ < D.t/ then, for all i 2 I, 'i.t/ D �i and (EH) is necessarily

false.

(ii) We examine the situation I.t0/ ¤ I.t/.

We add the following shortened notation: I.t/ \ I0.t/ D II0.
We break down I and I0 into the sets II0, InI0 and I0nI. We denote by OI the set of
index i 2 I such that ci C tei D p.t/. In particular, when j 2 InOI, then 'j.t/ D �j.

We first derive some generic relations between the emission rates for these.
Among the indexes in the set II0, we observe that at most one index exists (say `)

in the set OI \bI0. If j 2 OInbI0, if k 2 bI0nOI, then, by the definition of the sets

cj C ejt D c` C e`t; ck C ekt < cj C ejt;
cj C ejt0 < c` C e`t0; ck C ekt0 D c` C e`t0;
cj C ejt0 < ck C ekt; ck C ekt < c` C e`t;

from which, we easily deduce that

Oe WD max
n
ej; j 2 II0 \

�OInbI0�o < e` < min
n
ek; k 2 II0 \

�bI0nOI
�o

WD Oe0: (A.3)

For j 2 InI0 and k 2 I0nI, we have

cj C ejt < ck C ekt and cj C ejt
0 > ck C ekt0

from which, we also easily deduce that

maxfek; k 2 I0nIg < minfej; j 2 InI0g: (A.4)

For the same j and k, for .Oc; Oe/ representative of index in II0 \ OI n bI0, and .Oc0; Oe0/
representative of index in II0 \bI0 n OI, we also have

cj C ejt � Oc C Oet
cj C ejt0 > Oc C Oet0 and

ck C ekt > Oc0 C Oe0t
ck C ekt0 � Oc0 C Oe0t0

from which, we deduce that

minfej; j 2 InI0g > .e`; Oe/ _ maxfek; k 2 I0nIg
maxfek; k 2 I0nIg < .e`; Oe0/ ^ minfej; j 2 InI0g: (A.5)
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We divide the analysis in cases. In the first one the demand is fully satisfied for
the price pelec.t/.

(ii-a) If
P

i2I 'I.t/ D D.pelec.t//,

X
i2InI0

'I C
X
i2II0

'i.t/ D D.pelec.t// � D.pelec.t0// �
X
i2II0

'i.t
0/C

X
i2I0nI

'i.t
0/;

(DC)X
i2InI0

'i.t/ei C
X
i2II0

'i.t/ei <
X
i2II0

'i.t
0/ei C

X
i2I0nI

'i.t/ei: (EH)

We must then examine the following two subcases, relative to the situations
where the demand is satisfied or not at the price pelec.t0/.

(ii-a-1) If
P

i2I0 'i.t0/ < D.pelec.t0//, then 'i.t0/ D �i for all i 2 I0 and

X
j2InI0

'j.t/C
X
i2II0

'i.t/ >
X
i2II0

�i C
X

k2I0nI

�k; (DC)

X
j2InI0

'j.t/ej C
X
i2II0

'i.t/ei <
X
i2II0

�iei C
X

k2I0nI

�kek: (EH)

As 'i.t/ D �i when i 2 .InOI/\II0, we can simplify the two sides of (DC) and (EH)

by the sum over .InOI/ \ II0. The remaining part of II0 is f`g [
�OInbI0 \ II0

�
:

X
j2InI0

'j.t/C '` C
X

i2OInbI0\II0

'i.t/ > �` C
X

i2OInbI0\II0

�i C
X

k2I0nI

�k; (DC)

X
j2InI0

ej'j.t/Ce`'`C
X

i2OInbI0\II0

ei'i.t/ < e`�`C
X

i2OInbI0\II0

ei�i C
X

k2I0nI

ek�k: (EH)

Then we multiply (DC) by Ne WD .e`; Oe/ _ maxfek; k 2 I0nIg, and we obtain
by (A.5)

X
j2InI0

ej'j.t/C Ne'` C Ne
X

i2OInbI0\II0

'i.t/ > Ne�` C Ne
X

i2OInbI0\II0

�i C
X

k2I0nI

ek�k:

We subtract with (EH) :

.Ne � e`/'` C
X

i2OInbI0\II0

.Ne � ei/'i.t/ > .Ne � e`/�` C
X

i2OInbI0\II0

.Ne � ei/�i:
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But Ne � e` when ` exists, and Ne � Oe � ei for i 2 OInbI0 \ II0. So we obtain our
contradiction.

(ii-a-2) If
P

i2I0 'i.t0/ D D.pelec.t0//, then

X
j2InI0

'j.t/C
X
i2II0

'i.t/ >
X
i2II0

'i.t
0/C

X
k2I0nI

'k.t
0/; (DC)

X
j2InI0

'j.t/ej C
X
i2II0

'i.t/ei <
X
i2II0

'i.t
0/ei C

X
k2I0nI

'k.t
0/ek: (EH)

We decompose InI0 D
�

In.I0 [ OI/
�

[ OInI0 and I0nI D
�

I0n.I [bI0/
�

[bI0nI:

X
j2In.I0[OI/

�j C
X

j2OInI0

'j.t/C
X
i2II0

'i.t/ >
X
i2II0

'i.t
0/C

X
k2bI0nI

'k.t
0/C

X
k2I0n.I[bI0/

�k;

(DC)

X
j2In.I0[OI/

ej�j C
X

j2OInI0

ej'j.t/C
X
i2II0

ei'i.t/

<
X
i2II0

ei'i.t
0/C

X
k2bI0nI

ek'k.t
0/C

X
k2I0n.I[bI0/

ek�k: (EH)

We also break down the set II0 D .I \ I0/:

II0 D �
II0 \ f`g� [

�
II0 \ OInbI0� [

�
II0 \bI0nOI

�
[
�

InOI \ I0nbI0/
�
:

X
j2In.I0[OI//

�j C
X

j2OInI0

'j.t/C '`.t/C
X

i2OInbI0\II0

'i.t/C
X

i2bI0nOI\II0

'i.t/

> '`.t
0/C

X
i2OInbI0\II0

'i.t
0/C

X
i2bI0nOI\II0

'i.t
0/C

X
k2bI0nI

'k.t
0/C

X
k2I0n.I[bI0/

�k;

(DC)

X
j2In.I0[OI/

ej�j C
X

j2OInI0

ej'j.t/C e`'`.t/C
X

i2OInbI0\II0

ei'i.t/C
X

i2bI0nOI\II0

ei'i.t/

<e`'`.t
0/C

X
i2OInbI0\II0

ei'i.t
0/C

X
i2bI0nOI\II0

ei'i.t
0/C

X
k2bI0nI

ek'k.t
0/C

X
k2I0n.I[bI0/

ek�k:

(EH)
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For index i in the last subset .InOI \ I0nbI0/, we have 'i.t/ D �i and 'i.t0/ D �i, so
we simplify (DC) and (EH) from this last subset. Thus,

X
j2In.I0[OI/

�j C
X

j2OInI0

'j.t/C '`.t/C
X

i2OInbI0\II0

'i.t/C
X

i2bI0nOI\II0

�i

> '`.t
0/C

X
i2OInbI0\II0

�i C
X

i2bI0nOI\II0

'i.t
0/C

X
k2bI0nI

'k.t
0/C

X
k2I0n.I[bI0/

�k;

(DC)

X
j2In.I0[OI/

ej�j C
X

j2OInI0

ej'j.t/C e`'`.t/C
X

i2OInbI0\II0

ei'i.t/C
X

i2bI0nOI\II0

ei�i

<e`'`.t
0/C

X
i2OInbI0\II0

ei�iC
X

i2bI0nOI\II0

ei'i.t
0/C

X
k2bI0nI

ek'k.t
0/C

X
k2I0n.I[bI0

ek�k:

(EH)

We multiply (DC) by Ne WD .e`; Oe/ _ maxfek; k 2 I0nIg , we get by (A.5)

X
j2In.I0[OI/

ej�j C
X

j2OInI0

ej'j.t/C Ne'`.t/C Ne
X

i2OInbI0\II0

'i.t/C Ne
X

i2bI0nOI\II0

�i

> Ne'`.t0/C Ne
X

i2OInbI0\II0

�i C Ne
X

i2bI0nOI\II0

'i.t
0/C

X
k2bI0nI

ek'k.t
0/C

X
k2I0n.I[bI0

ek�k:

We subtract (EH)

.Ne � e`/'`.t/C
X

i2OInbI0\II0

.Ne � ei/'i.t/C
X

i2bI0nOI\II0

.Ne � ei/�i

> .Ne � e`/'`.t
0/C

X
i2OInbI0\II0

.Ne � ei/�i C
X

i2bI0nOI\II0

.Ne � ei/'i.t
0/:

We arrange the terms

.Ne � e`/'`.t/C
X

i2OInbI0\II0

.Ne � ei/'i.t/C
X

i2bI0nOI\II0

.Ne � ei/�i

> .Ne � e`/'`.t
0/C

X
i2OInbI0\II0

.Ne � ei/�i C
X

i2bI0nOI\II0

.Ne � ei/'i.t
0/:
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If ` exists, then Ne D e` and

X
i2bI0nOI\II0

.e` � ei/
�
�i � 'i.t

0/
�
>

X
i2OInbI0\II0

.e` � ei/ .�i � 'i.t// ;

X
i2bI0nOI\II0

.e` � Oe0/
�
�i � 'i.t

0/
�
>

X
i2OInbI0\II0

.e` � Oe/ .�i � 'i.t// :
(A.6)

But Oe < e` < Oe0, and the contradiction follows.
If ` does not exist, then Ne D Oe _ maxfek; k 2 I0nIg

X
i2bI0nOI\II0

.Ne � ei/
�
�i � 'i.t

0/
�
>

X
i2OInbI0\II0

.Ne � ei/ .�i � 'i.t// ;

X
i2bI0nOI\II0

.Ne � Oe0/
�
�i � 'i.t

0/
�
>

X
i2OInbI0\II0

.Ne � Oe/ .�i � 'i.t// :
(A.7)

But maxfek; k 2 I0nIg < Oe0, and the contradiction follows.
(ii-b) If

P
i2I 'i.t/ < D.pelec.t// then for all i 2 I, 'i.t/ D �i.

(ii-b-1) If
P

i2I0 'i.t0/ < D.pelec.t0//, then 'i.t0/ D �i for all i 2 I0. Moreover,
we have that OO.t; p.t// � D.p.t//C "/ � D.p.t0// > OO.t0; p.t0// and (DC)–
(EH) becomes

X
j2InI0

�j >
X

k2I0nI

�k; (DC)

X
j2InI0

ej�j <
X

k2I0nI

ek�k: (EH)

Then, we multiply (DC) by minfejI j 2 InI0g � maxfekI k 2 I0nIg, and we
obtain a contradiction with (EH).

(ii-b-2) If
P

i2I0 'i.t0/ D D.pelec.t0//, we go back to the analysis of the case
(ii-a-2), with the main difference that all quantities 'i.t/ are now equal to �i.
We go to inequalities (A.6) and (A.7) which are simplified as the right-had
sides are now zero. The contradiction follows with the same arguments

ut
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Dynamic Cournot Models for Production
of Exhaustible Commodities Under Stochastic
Demand

Michael Ludkovski and Xuwei Yang

Abstract We extend the dynamic Cournot model of Ludkovski and Sircar (2011)
by considering stochastic demand. We analyze a duopoly between an exhaustible
producer and a “green” competitor. Both producers dynamically make decisions
regarding their production rates; in addition the exhaustible producer optimizes
search for new reserves. The aggregate price earned by the producers switches
between high and low demand regimes with exogenously given holding rates. We
study how the regime changes and the relative cost of production, which is a proxy
for market competitiveness, affect game equilibria, and compare with the case of
deterministic demand. A novel feature driven by stochasticity of demand is that
production may shut down during low demand to conserve reserves.

1 Introduction

Dynamic models of competition have been a major application of game theory in
finance and industrial organization [16]. Beyond the traditional optimization settings
that feature a single economic agent maximizing her economic value (in terms
of terminal wealth, consumption, investment, etc.), game theoretic frameworks
consider interaction of multiple players, replacing the notion of optimality by
equilibrium. For commodities markets, exemplified by natural resources such as
energy, agricultural, and metals commodities, two basic notions of a competitive
equilibrium are given by the Cournot and Bertrand models. Both models were first
proposed back in the nineteenth century and focus on producers competing against
each other via a non-cooperative game. In a Cournot game, producers choose their
supply levels (i.e. quantities of goods produced) and the common clearing price is
determined by an exogenous inverse demand curve. In a Bertrand game producers
set prices and quantities are determined from the resulting aggregate demand. In
both models, the main mechanism through which players interact is the aggregate
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demand curve which translates supply into price (and vice-versa). Generally, this
curve is assumed to be given; the agents can only strategically shift the supply.

Classical game theory deals with deterministic setups where game payoffs are
fully prescribed by the agents’ joint strategy. To address the observed “noise”
in empirical settings (arising from fluctuations in any number of game parame-
ters), stochastic dynamic models have become increasingly popular. Such models
typically introduce a stochastic state variable that drives behavior of the agents
and is modeled as a (controlled) stochastic process. The state variable could be
a macroeconomic indicator, price level of a reference asset, size/capacity of the
players, etc. In the context of commodities and environmental finance a common
choice is to model the reserves. If the commodity is in finite supply (exhaustible)
then its total level is important since there is the exhaustibility constraint on
production. Reserves introduce a long-term memory effect into the competition and
force agents to pay attention not just to their nominal profits but also to the marginal
shadow cost of having fewer reserves. The presence of reserves necessarily makes
players non-symmetric since each agent has their own (private) shadow cost. Study
of non-symmetric stochastic dynamic games remains rudimentary. The resulting
explosion in dimensionality of the problem (officially requiring at least as many
dimensions as the number of players) places major constraints on what is tractable.
For these reasons, while realism demands analysis of several (typically at least a
half dozen) agents, we will restrict our attention to a duopoly.

There is a long literature on optimal economic behavior of a natural resource
monopolist extracting non-renewable resources dating back to [10]. We refer to
[4, 7] for modern textbook treatment of this field. Nevertheless, to our knowl-
edge, the first paper that rigorously treated a dynamic noncooperative model for
exhaustible resource extraction was published less than 5 years ago by Harris
et al. [9]. That work studied a deterministic Cournot market focusing on the impact
of exhaustibility and subsequent entry of “green” producers that always have infinite
reserves. Subsequently, [13] studied a related model that allowed for stochastic
evolution of reserves by considering exploration that can lead to discovery of new
reserves. This analysis was motivated by the oil market where E&P (exploration
and production) efforts total many billions of dollars a year. In that sense, while
oil is exhaustible, it is also replenishable since there is a difference between total
abstract reserves on Earth, and what is actually commercially “proven” and drives
production decisions. With exploration, players have two complementary choices
regarding running down existing reserves and expending effort in the hopes of
finding new reserves. In particular, players may never fully “leave” the game since
they can periodically resurrect themselves by ongoing discoveries.

In the present paper we further extend [13] to consider stochastic demand.
Because demand is a fundamental ingredient of both Cournot and Bertrand markets,
it ought to be modeled for any degree of realism. Empirically, commodity producers
have a major exposure to the business cycle both in terms of profit and E&P
activities. For instance, during the worldwide financial crisis of 2008–09, com-
modity demand (and subsequently prices) had a major downward leap, triggering
significant shrinkage of E&P expenditures by oil producers. This heightened link
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between demand and exploration motivates us to incorporate demand uncertainty
into the game model. We maintain the basic setting of [9] and [13] which
considers a heterogenous duopoly between an exhaustible old-school producer, and
an inexhaustible “green” producer. This model maintains some analytic tractability
and allows to explore the switch between energy production mixes within a game-
theoretic framework. A related concept would be to consider stochastic production
costs, or more precisely the relative costs of the two agents that drive the original
asymmetry in their profits. Indeed, commodity production frequently requires
massive other investments (e.g. labor, energy use, favorable government regulation)
whose cost may rise or fall over time. Therefore, stochastic costs could be a proxy
for shifting differences among the players. We also mention [12] for analysis of cost
asymmetries in Bertrand models and [14] for a survey of other stochastic models of
Cournot markets.

The rest of this paper is organized as follows. After a brief overview of the
model considered, Sect. 2 sets up the full mathematical model and derives the
HJB-I equations and their basic properties. Section 3 focuses on the impact of
stochastic demand compared to the earlier analysis in [13]. Section 4 mentions
related extensions or modifications of the basic dynamic Cournot duopoly. Finally,
Sect. 5 presents conclusions of our investigations.

1.1 Model Overview

Our model features two players: producer 1 that extracts a non-renewable resource
(oil) and has to worry about reserves; and producer 2 who extracts a renewable
resource (green energy) and therefore has infinite reserves. We also consider two
stochastic state variables: demand Dt and current reserves Xt of the exhaustible
player 1. Moreover, agents have a total of three controls, namely production rates
for producers 1 and 2, as well as exploration effort for producer 1.

The two producers compete through a Cournot framework, in which producers
choose quantities of energy to produce and receive profit based on a single market
price determined through aggregate supply. Costs of the exhaustible player are
driven solely by the costly (convex) exploration efforts; her production costs are
taken to be zero. On the contrary, the green producer has a positive marginal cost of
production but inexhaustible resources so his additional shadow marginal costs are
zero. These production costs of player 2 are a proxy for the amount of competition.
They also reflect the present reality of non-renewable energy production as being
the cheaper incumbent against the new renewable entrants. The Cournot framework
is used because at the macro level, energy is perfectly substitutable and so the two
producers’ products are in direct competition.

Our aim is to study this duopoly of the exhaustible resources producer with
a green producer in terms of dynamic Nash equilibria. The model is cast in
continuous-time so as to allow use of the well-understood Hamilton-Jacobi-
Bellman-Isaacs (HJB-I) methodology that reduces computational analysis to study
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of coupled systems of differential equations. In order to simplify the mathematics
as much as possible while maintaining dynamic effects, we keep the dynamics of
.Dt/ and .Xt/ stylized. To this end, reserves .Xt/ follow piecewise deterministic
trajectories, smoothly decreasing due to production and experiencing constant-size
jumps upon new reserves discovery. These upward jumps of fixed size ı mimic
discrete discoveries of new oil fields or new oil recovery technologies that take
place abruptly. Such “Poissonian” dynamics date back to work of Arrow and Chang
[1] and are arguably more fidel to realistic reserves evolution. The demand level .Dt/

is modeled as Dt D D.Mt/ where Mt is a finite-state Markov chain; this is meant
to evoke the popular regime-switching models that are frequently used in financial
mathematics to model the business cycle fluctuations. In the context of single-agent
optimization, a related model of resource extraction (with an exogenous discovery
process) within a random environment was studied in [6].

The main setting just takes Dt to have two possible levels L;H. The demand level
modulates the common price obtained by the producers for a fixed supply level. In
a toy setting this occurs linearly. Both state variables are modeled by stationary
processes, leading to an infinite-horizon discounted game. With the Markovian
dynamics, this allows to reduce equilibrium behavior to Markov feedback (closed-
loop) strategies. A drawback is that agents are infinitely long-lived (i.e. never leave
or enter the game) and no off-equilibrium behavior is modeled.

The combination of the above choices, in particular lack of any diffusive
stochastic factors, keeps the overall state-space as simple as possible and makes
the HJB-I equations first-order only, removing many of the analytical difficulties
arising in second-order equations (for example [9] found that these equations
can sometimes be hyperbolic rather than parabolic, causing unstable analytic
and numeric behavior). Moreover, since only a single agent has reserves, there
is just one continuous state-variable, effectively allowing us to deal only with
ordinary differential equations, rather than pde’s. We however stress that exploration
necessarily introduces additional subtleties; in our model it brings in a non-local
term that requires careful treatment even at the implementation level.

2 Model

Two players (named 1 and 2) produce perfectly substitutable goods at rates q1,
q2. They sell into the same market which features the inverse demand curve p 7!
D.p/. The clearing market price p is determined from the global supply-demand
equilibrium,

p D D�1
 X

`

q`
!
:
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In the simplest case of a linear demand curve, we have that p D ND � q1 � q2 where
ND is the maximum (finite) choke price under zero supply. Players interact with each
other through this price mechanism that is driven by aggregate supply (and affects
players’ profits) leading to a noncooperative game.

In the present paper we consider the situation of stochastic demand, whereby
market demand exhibits exogenous fluctuations over time. All variables are there-
after continuously indexed by t 2 RC. We model stochastic demand by making ND
non-constant, modulated by an exogenous factor .Mt/, namely

pt � p.q1; q2;Mt/ D Mt � q1 � q2: (1)

We assume that .Mt/ is a finite-state stationary Markov chain with state space E
and generator � � .�ij/. Thus, a larger value of Mt means stronger demand and
therefore a higher price pt for the same level of supply. For illustrative purposes
we shall focus on the case where .Mt/ is a two-state Markov chain with state space
fD0;D1g � fL;Hg, where 0 < L � H. In that case we label the time-homogeneous
switching rates between the two regimes of .Mt/ as �01 and �10 respectively.

Player 1 extracts a non-renewable resource that may become exhausted. His
reserves at time t are denoted by Xt � 0. Reserves decrease through production
but can be replenished via exploration. Without any reserves, the player may not
produce but may continue to search for replenishments. Denote by at � 0 the
exploration effort at time t, and let .Nt/ be a point process for counting discoveries
of new resources. Then .Nt/ has controlled intensity �at, i.e.

P.�nC1 > �n C t/ D exp

�
�
Z t

0

�asC�n ds

�
;

where �n’s are the arrival times of .Nt/. The unit amount of new discovery is a fixed
ı > 0 (see Remark 3 for discussion of making discovery amounts random). Overall,
the reserve process .Xt/ of producer 1 follows

dXt D �q1t 1fXt>0gdt C ıdNt;

where q1t is the production rate. Exploration is costly and generates costs at rate
C.at/ per unit time. The cost function C is convex with C.0/ D 0, a typical example
(see [13]) is

C.a/ D 1

ˇ
aˇ C �a; ˇ > 1; � � 0: (2)

Producer 2 always has infinite resources, but faces positive fixed production costs
c � 0. The parameter c is a proxy for the amount of competition between the
producers; large c makes Producer 2 uncompetitive. It is possible for the controls
to be zero in which case there is no production (reserves remain constant) or no
exploration (i.e. discovery rate is zero).
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Players aim to maximize their total discounted profit, which is equal to the
instantaneous revenue pt � qt, minus the production and exploration costs, integrated
and discounted (using continuous discount rate r > 0) on the infinite time horizon.

To analyze the game equilibria we use the notion of Markov Nash equilibria.
Thus, player strategies are assumed to be in closed-loop feedback form,
q`t D q`.Xt;Mt/, ` D 1; 2 and at D a.Xt;Mt/. Given an equilibrium
.q`;�.Xt;Mt/; a�.Xt;Mt// we denote the corresponding game functions of producer
1 by vL.x/ and vH.x/; and the game functions of producer 2 by gL.x/ and gH.x/.
Here the subscript indicates the initial value M0 2 fL;Hg of the Markov chain.
These game values are the discounted cumulative expected profits starting with
X0 D x;M0 D i,

vi.x/ D E

�Z 1

0

e�rt
�
q1;�t p.q1;�t ; q2;�t ;Mt/ � C.a�

t /
�

dt

ˇ̌
ˇ̌X0 D x;M0 D i

�
I

gi.x/ D E

�Z 1

0

e�rtq2;�t

�
p.q1;�t ; q2;�t ;Mt/ � c

�
dt

ˇ̌
ˇ̌X0 D x;M0 D i

�
;

and must satisfy the Nash optimality conditions

vi.x/ D sup
q1;a

E

�Z 1

0

e�rt
�
q1t p.q1t ; q

2;�
t ;Mt/ � C.at/

�
1fXt>0g dt

ˇ̌
ˇ̌X0 D x;M0 D i

�

(3)

gi.x/ D sup
q2

E

�Z 1

0

e�rtq2t
�
p.q1;�t ; q2t ;Mt/ � c

�
dt

ˇ̌
ˇ̌X0 D x;M0 D i

�
; i D L;H:

Thus, given the other player’s equilibrium strategy, each player chooses optimal
strategies for her own production (and exploration). To analyze (3), we employ
the Hamilton-Jacobi-Bellman-Isaacs framework that aims to express game values
through a system of coupled differential equations. Define�f .x/ WD f .xCı/� f .x/.
We also index a generic regime by i D 1; 2 and the other regime by j. Assuming the
functional forms of demand and exploration costs in (1)–(2), the HJB-I ODEs of vL,
vH and gL, gH are

sup
q1i

h
q1i .x/

�
Di � q1i .x/ � q2;�i .x/

�
� v0

i.x/q
1
i .x/

i
C sup

ai

Œai��vi.x/ � C.ai/�

C �ij.vj.x/ � vi.x// � rvi.x/ D 0; (4)

sup
q2i

h
q2i .x/

�
Di � q1;�i .x/ � q2i .x/ � c

�i
� g0

i.x/q
1;�
i .x/C a�

i .x/��gi.x/

C �ij.gj.x/ � gi.x// � rgi.x/ D 0: (5)
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Upon exhaustion of reserves Xt D 0, player 1 can no longer produce, yielding a
temporary monopoly for player 2. However, player 1 remains in the game and may
continue to explore for reserves (financing exploration by borrowing against future
earnings). Fix X0 D 0 and denote by � � �1 the time of the first discovery of new
reserves (so that Xt D 0 on Œ0; �/ and X� D ı) and by � the first transition time of
the Markov chain .Mt/. Then by conditioning on � and � we have

vi.0/ D sup
ai�0

E

(
1f�<�g

�
e�r�vj.0/ �

Z �

0

e�rtC.ai/ dt

�

C 1f���g
�

e�r�vi.ı/ �
Z �

0

e�rtC.ai/ dt

� ˇ̌
ˇ X0 D x;M0 D i

)
_ 0: (6)

By stationarity of .Mt/ it follows that the optimal exploration rate ai is constant until
� ^ � and hence � ^ � � Exp.�a C �ij/ has an exponential distribution. Using the
fact that P.� < �/ D �ai

�aiC�iNi
then leads to

vi.0/ D sup
ai�0

vj.0/�ij C vi.ı/�ai � C.ai/

r C �ij C �ai
_ 0; (7)

yielding an implicit condition linking vi.0/; vi.ı/ and vj.0/.
Optimizing for the production rates q` which must be non-negative in (4)–(5)

yields that the candidate equilibrium strategies are given by

8̂
<̂
ˆ̂:

q1;�i .x/ D 1

2
max

�
Di � q2;�i .x/ � v0

i.x/; 0
�
;

q2;�i .x/ D 1

2
max

�
Di � q1;�i .x/ � c; 0

�
:

(8)

For simpler notation, we write zC � max.z; 0/. Figure 1 illustrates how (8) is used
to determine the equilibrium given a fixed value of say v0

H.x/. Assuming (2), the
candidate optimal exploration rate is similarly

a�
i .x/ D Œ.��vi.x/ � �/C���1; � D ˇ

ˇ � 1 : (9)

Equation (9) holds also for x D 0 since the exhaustibility constraint does not apply
to exploration.

We observe that (4) yields two coupled equations for vL.x/ and vH.x/ which
are however autonomous from gi.x/. This is due to the state variable .Xt/ being
completely controlled by player 1. The system (4) features only a first-order
differential of vi.x/ due to the continuous decrease in .Xt/; it also has two non-
local effects, the term �vi.x/ arising from jumps induced by exploration successes,
and the term vj.x/ � vi.x/ due to the regime-shifts in .Mt/. Therefore, overall (4) is
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Nash equilibrium ((q1)∗, (q2)∗)

(H − c )+1
2 (H − v H )+

1
2 (H − c )+

(H − v H )+

Fig. 1 Nash equilibrium of the Cournot duopoly in high-demand regime. The two piecewise linear
curves show optimal production rates of player 1 and player 2 given v0

H.x/ and the production rate
of the other player (e.g. q1;�.xI q2.x/; v0

H.x//) as defined in (8). Equilibrium is achieved when the
curves cross

a system of first-order nonlinear (forward)-delay ODEs in x. Respectively, (5) leads
to a first order linear delay-ODE for gL.x/ and gH.x/ in terms of vL.x/ and vH.x/.
However, as already written in (8), all the equilibrium production and exploration
strategies depend only on vi.x/, and so we will not deal much with the gi equations,
focusing mostly on (4).

2.1 Game Stages

The maximizers in (4)–(5) intuitively determine the equilibrium strategies of the
players. Several different equilibrium types are possible due to the constraints q1 �
0, q2 � 0 and a � 0 that can be binding. These situations can be seen through the
piecewise nature of (4)–(5) that arises from the max.�; 0/ terms. They can also be
imagined through Fig. 1: if the two piecewise linear curves for q1;�i ; q2;�i do not cross
in the interior then we have a boundary solution on one of the axes.

For each L;H, and c fixed, the strategies of the two players depend on the shadow
reserves cost v0

i.x/; i D L;H, which determines the type of equilibrium at Xt D x.
Depending on the shadow costs, the alternative game types are:

Type I: Interior solution where both players are active: q1 > 0; q2 > 0. This case
arises when v0

i.x/ satisfies 2c � Di < v
0
i.x/ <

cCDi
2

.
Type M1: The exhaustible player 1 has a monopoly because q2 D 0. This occurs

when v0
i.x/ � 2c � Di.
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Type M2: The green player 2 has a monopoly while q1 D 0. This occurs when
v0

i.x/ � cCDi
2

.

In each case we further can have either ai.x/ > 0, or ai.x/ D 0 (no exploration,
i.e. “saturation” of reserves) depending on the positivity of the term �vi.x/ � �

in (9).
In the interior game Type I, we have

q1i D 1

3
.Di C c � 2v0

i.x// q2i D 1

3
.Di C v0

i.x/ � 2c/; x > 0; (10)

and the ODE of vi reduces to

v0
i.x/ D Di C c

2
�3
2

�
.�10 C r/vi.x/ � �ijvj.x/ � 1

�
..��vi.x/ � �/C/�

� 1
2

: (11)

In Type M1 equilibrium, exhaustible producer 1 monopolizes the market,

q1i D 1

2

�
Di � v0

i.x/
�
; q2i D 0; (12)

and the ODE of vi is given by the monopoly equation

1

2
.Di � v0

i.x//
2 C 1

�
..��vi.x/ � �/C/� C �ij.vj.x/ � vi.x// � rvi.x/ D 0: (13)

In Type M2 equilibrium, the green producer 2 monopolizes the market, q1i D 0,
giving q2i D 1

2
.Di � c/, and vi.x/ is determined through the nonlinear equation

1

�
..��vi.x/ � �/C/� C �ijvj.x/ � .r C �ij/vi.x/ D 0: (14)

Intuitively, vi.x/ is concave, so that x 7! v0
i.x/ is decreasing. Thus, Type M2

equilibrium arises for small x (when the shadow cost of exhaustibility is very
large, driving player 1 to sit out); Type I equilibrium arises for moderate x and
Type M1 equilibrium arises for large x where the shadow cost is negligible. From
the conditions for each equilibrium, it is clear that larger Player 2 costs c make
Type M1 game more likely, i.e. increase the region where the exhaustible player
is a monopolist. We also note that in high demand regime, exhaustible resources
production is always positive for any x > 0 since player 1 cannot expect higher
profit by holding on to reserves. Therefore Type M2 equilibrium may only arise for
small x and Mt D L.

Combining (11)–(14), the HJB ODEs of vi.x/ can be written as the single
piecewise-defined equation
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"
2

3

�
Di C c

2
� v0

i.x/

�C
� 1

6

�
2c � Di � v0

i.x/
�C
#2

C 1

�

	
.��vi.x/ � �/C
�

C �ijvj.x/ � .�ij C r/vi.x/ D 0; i; j D L;H: (15)

For the remainder of the paper we assume existence-uniqueness of a solution to (15).
As explained below, numerically we in fact solve an approximation to (15) that is
guaranteed to be well-posed, so the above issue is of theoretic concern only.

Remark 1. Within a single-agent optimization setting, [6] showed the well-
posedness of the system (11) and associated implicit boundary condition (7). In
particular, using the functional equations methods of [15], Deshmukh and Pliska [6]
prove that (11) has a unique bounded differentiable solution and the optimal controls
are indeed (10). They moreover show that vi is strictly concave, i.e. marginal cost
of reserves is decreasing in x. However, these analytic tools become unavailable in
the presence of free boundaries that arise due to game effects such as blockading
or production shut-down (i.e. other equilibria types beyond Type I). In particular,
the interaction of the non-local term �vi.x/ with the piecewise-defined functional
form of v0

i.x/ in (15) (and the additional coupling among vi.x/ and vj.x/) poses a
major challenge. Additionally, the possibility that both terms involving v0

i.x/ are
zeroed-out, which happens under Type M2 game, means that in the latter region
vL.x/ satisfies an algebraic relation with vH.x/ (rather than an ODE), i.e. there is
possibly an algebraic free-boundary embedded in (15). Due to these difficulties, we
are not able to analytically establish smoothness of (15) in the duopoly model.

2.2 Numerical Scheme

Due to the challenge of implicit boundary condition and the presence of a “forward”
delay term on the semi-infinite domain RC, numerically solving the system (4)
(or (15)) is nontrivial. We note that the equations have a non-local term and several
free boundaries indicated by the critical values of x that trigger the .�/C terms to
be zero. In particular, there is xstart

i which separates Type M2 and Type I equilibria;
xblock

i that separates Type I and Type M1 equilibria; and xsat
i that separates regions

where ai.x/ > 0 and ai.x/ D 0. The meaning of these quantities is the production
start level (below xstart

i production is shut-down); the blockading level (above xblock
i

player 2 is blockaded) and the reserves saturation level (above xsat
i no exploration

takes place).
To solve the HJB-I ODE system we use the iterative scheme in [13] that

originates in the ideas of Davis [5]. Let v.0/L .x/ and v.0/H .x/ be the game values
corresponding to the case where resources are completely non-replenishable, so
that no new resource discoveries are possible. Similarly to (15) (and removing the
exploration-related term), we have that
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"
2

3

�
Di C c

2
� .v.0/i /0.x/

�C
� 1

6

�
2c � Di � .v.0/i /0.x/

�C
#2

C �ijv
.0/
j .x/ � .�ij C r/v.0/i .x/ D 0; i; j D L;H; (16)

with boundary conditions v.0/L .0/ D v
.0/
H .0/ D 0, since starting with no reserves

(x D 0) and no possibility of discoveries, player 1 will never have any revenue. We
then define inductively for n � 1 the functions v.n/i via

"
2

3

�
Di C c

2
� .v.n/i /0.x/

�C
� 1

6

�
2c � Di � .v.n/i /0.x/

�C
#2

C 1

�

��
�.v

.n�1/
i .x C ı/ � v.n/i .x// � �

�C�� C �ijv
.n/
j .x/ � .�ij C r/v.n/i .x/ D 0;

(17)

with boundary conditions

v
.n/
i .0/ D sup

ai�0
v
.n/
j .0/�ij C v

.n�1/
j .ı/�ai � C.ai/

r C �ij C �ai
; i; j D L;H: (18)

Note that (17)–(18) partially uncouple the original equations by making the non-
local term a source term instead. Therefore, (17)–(18) are now a standard system of
nonlinear first order ODE with an implicit boundary condition at x D 0 and hence
well-posed. We start the computation with no discovery case n D 0 by solving the
system (16). For n � 1, we solve the system (17) by using the data from the .n�1/-st
iteration for the forward delay term in the n-th iteration. In numerical computation,
at each x > 0 we start with assuming v0

i.x/ satisfy any one of the three equilibrium
types and then solve for vi.x/ and v0

i.x/. If the computed v0
i.x/ is consistent with

the assumed range of values, the assumption and the results are correct, otherwise
we switch to another assumption to compute vi.x/ and v0

i.x/. To handle Type M2

equilibrium whereby the terms in (17) involving .v.n/i .x//0 are zero, we formally

differentiate (14) to obtain an expression for .v.n/L /0.x/ in terms of .v.n/H /0.x/ and

.v
.n�1/
L /0.x C ı/.

Remark 2. Equation (17) is an implicit quadratic in v0. To use a time-stepping ODE
solver then requires inverting this to directly express v0.x/ in terms of .x; v.x//. Due
to the special form above, one obtains v0.x/ D p

F.x; v.x// where only the positive
square root is relevant since v.x/ must be increasing. Standard tools such as Runge-
Kutta methods can be applied to solve the ODEs. We used the Matlab fourth-order
ODE solver ode45 in our numerical experiments.

Informally, v.n/ represents the game value assuming a horizon of �n, where �n is
the time of n-th resource discovery. Thus, v.n/ is an upper bound for equilibrium
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profit from time period Œ0; �n�. Because total discounted profits are uniformly
bounded by maxq r�1p�q, it follows that the absolute error jv.n/i .x/�vi.x/j is bounded
by CEŒe�r�n �. In turn, using the fact that exploration rates are uniformly bounded (in
particular a�

i .x/ � a�
H.0/8x) we have by a simple coupling argument that �n > en

(in the sense of first-order stochastic dominance) where en � Gamma.n; �a�
H.0//,

so that EŒe�r�n � D O.Cn/ for some constant C < 1. It follows that vn ! v

exponentially fast. Practically, we have observed convergence after 10–20 iterations
in all examples presented.

Remark 3. The size ı of each new discovery can be random in general. Namely,
we may model discovery amounts via a stochastic sequence ın, n D 1; 2; : : :,
where each ın is identically distributed with some distribution Fı.�/ and independent
of everything else in the model (in particular of other ın’s and of past controls).
Introducing Fı entails replacing vi.x C ı/ in the HJB-I equations (4)–(5) and
boundary condition (7) with IıŒvi�.x/ WD R1

0
vi.x C u/Fı.du/. Similarly, one would

apply this integral operator Iı to v.n�1/ in (17)–(18), which is straightforward to
handle numerically.

2.3 Illustration

Figure 2 illustrates the obtained solution of (4)–(5). We show the game values,
production rates and exploration rates for two different values of player 2 costs c
so as to illustrate the basic impact of competition. Smaller c makes player 2 more
competitive, while larger c gives extra preference to player 1. As expected, vi.x/ are
concave increasing; q1i .x/ are also concave increasing; q2i .x/ are convex decreasing,
and ai.x/ is convex decreasing (note that in general the control mappings will not
be differentiable in x across the free boundaries so the above characterization is
heuristic). Note that the impact of c is ambiguous. While lower c raises competition,
it may also spur higher exploration efforts since the marginal cost of reserves
could rise. Hence c 7! ai.xI c/ may be non-monotone. In contrast, competition
unambiguously lowers production rates q1i .x/ of the exhaustible player and her game
value vi.x/.

In the far-field limit x ! 1, dependence on reserves vanishes and all quantities
have a limit that can be directly computed via a one-stage static game. In particular,
we have

lim
x!1 vL.x/ D 1

r

.�10 C r/
�

LCc
2

� 1
6
.2c � L/C

�2 C �01
�

HCc
2

� 1
6
.2c � H/C

�2
r C �01 C �10

I

lim
x!1 vH.x/ D 1

r

�10
�

LCc
2

� 1
6
.2c � L/C

�2 C .�01 C r/
�

HCc
2

� 1
6
.2c � H/C

�2
r C �01 C �10

:

Similarly, the limiting values of the controls admit explicit solutions, including
limx!1 ai.x/ D 0.
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Fig. 2 Duopoly axis game solutions for two different levels of production cost c: solid curves
are for c D 0:3; dashed for c D 0:4. Top left panel: Game functions vi.x/; gi.x/. Bottom left
panel: Production rates q`i .x/, ` D 1; 2. Bottom right panel: Exploration efforts ai.x/ of exhaustible
producer 1. We take linear inverse demand with L D 0:75;H D 1, and switching rates �01 D
1
3
; �10 D 1

5
. Exploration costs are C.a/ D 0:1a C a2=2

3 Effects of Stochastic Demand on Production
and Exploration

Stochastic demand is one of the key features of our model which is determined
by two characteristics: the demand levels Di and stationary distribution .�L; �H/

of the demand regimes that is driven by the switching rates �ij. We analyze the
effects of changes in these parameters on the equilibrium strategies of production
and exploration.

The regime-switching stochastic demand is meant to mimic the macroeconomic
business cycle. When the macroeconomy is running low, the demand for energy is
low; when the macroeconomy is running high, the demand for energy is high and
therefore the price function moves up to the high regime. In general, higher demand
(or better opportunities for profit), lead to higher value for the producer and induce
both higher production and higher exploration. This is because the marginal value
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of reserves rises, stimulating both short-term production and longer-term extraction.
This basic feature is present in all single-parameter comparative statics we tried,
such as unilaterally changing the rates �01; �10 or increasing/decreasing the levels of
market demand L;H. Similarly, due to the intuitive ordering of the two regimes, we
expect that changing the regime to high while keeping all other parameters constant
should also increase expected profit, increase production and increase exploration.
Indeed, by a coupling argument it is easy to show that vH.x/ > vL.x/. The argument
regarding q1H.x/ > q1L.x/ is more intricate. Indeed, while production rates are tied to
shadow costs of reserves and v0

H.x/ > v0
L.x/, one must also establish that v0

H.x/ �
v0

L.x/ <
H�L
2

under Type I equilibrium (cf. (10)) and v0
H.x/ � v0

L.x/ < H � L under
Type M1 equilibrium. Numerical experiments suggest that x 7! v0

H.x/ � v0
L.x/ is

decreasing and clearly limx!1 v0
H.x/ D limx!1 v0

L.x/ D 0. Thus, the upper bounds
above are only relevant for small x. In the case of full monopoly (i.e. c > H),
whence only Type M1 occurs, one can indeed show that v0

H.0/ � v0
L.0/ � H � L,

but the situation when all three equilibria are present for different x remains open.
Nevertheless, based on numerical evidence we make the following conjecture.

Conjecture 1. Suppose that the state space of .Mt/ is E D fL;Hg and c < H. Then
for all x,

0 � v0
H.x/ � v0

L.x/ � H � L

2
: (19)

Corollary 1. Suppose Conjecture 1 holds. Then for all x � 0, 0 � q1H.x/� q1L.x/ �
H�L
2

and aH.x/ > aL.x/.

Proof. Substituting the conjectured relationship of v0
L and v0

H into the equations for
q1i .x/ in (10)–(12) gives the stated inequalities. Similarly, we have

�vL.x/ D vL.x C ı/ � vL.x/ D
Z ı

0

v0
L.x C u/du

�
Z ı

0

v0
H.x C u/du D vH.x C ı/ � vH.x/ D �vH.x/;

and therefore a�
L.x/ D Œ.��vL.x/ � �/C���1 � Œ.��vL.x/ � �/C���1 D a�

H.x/:

The Corollary can be observed in the panels of Fig. 2 showing impact of demand
regimes on equilibrium q1.x/ and a.x/. We have observed Conjecture 1 holding
in all parameter settings we tried; but in general it is known that comparison
of stochastic regimes is extremely difficult (see an extended discussion on this
issue in [6]). Finally, we note that Conjecture 1 only covers two regimes and the
situation where .Mt/ modulates p.qt/ only. See Sect. 4.1 for counterexamples in
more general situations.
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3.1 Limiting Cases

The stationary distribution of the Markov chain .Mt/ driving demand regimes is

�L D �10

�01 C �10
; �H D �01

�01 C �10
: (20)

The game value functions vL, vH of producer 1 under stochastic demand are
bounded above by the value function under the high regime demand Dt � H,
which we denote by QuH . They are also bounded below by the value function under
the deterministic low-regime demand Dt � L, which we denote by QuL. As a
result, vL, vH are “averages” of QuL and QuH . The following two Lemmas clarify this
interpretation by considering the extreme cases.

Lemma 1. We have lim�01!C1 vL.x/ D lim�01!C1 vH.x/ D QuH, the game value
of the model with fixed demand Dt � H.

Proof. See the Appendix.

Lemma 2. Let �01 D c01
�
; �10 D c10

�
. As � ! 0, the game value functions vL.x/ and

vH.x/ both converge to Nv.x/, which is determined by the following delay ODE

�L

"
2

3

�
L C c

2
� Nv0.x/

�C
� 1

6

�
2c � L � Nv0.x/

�C
#2

C �H

"
2

3

�
H C c

2
� Nv0.x/

�C
� 1

6

�
2c � H � Nv0.x/

�C
#2

C 1

�
Œ.�� Nv.x/ � �/C�� � r Nv.x/ D 0; x > 0 (21)

with boundary condition

Nv.0/ D �Na.0/ Nv.ı/ � C.Na.0//
r C �Na.0/ ; Na.0/ D Œ.�� Nv.0/ � �/C���1; (22)

where �i are given in (20).

Proof. See the Appendix.

Equation (21) can have as many as 5 free boundaries due to the multiple
piecewise defined terms .�/C. While we have the basic ordering .L C c/=2 <

.H C c/=2 and 2c � H < 2c � L, the relationship between say .H C c/=2 and
2c � H depends on c. Therefore, the order of all the potential solution pieces in
terms of x is parameter dependent. Moreover, while Nv.x/ is expected to be concave
the nonlocal term � Nv.x/ does not allow to guarantee this and therefore the a priori
ordering of the pieces cannot be fully determined. Compared to the basic (15), (21)



386 M. Ludkovski and X. Yang

is of the form .A1 � v0/2 C .A2 � v0/2 D rv so solving the quadratic for v0 it is
possible to obtain multiple positive roots. Determining the correct root is then done
by enforcing the C1 continuity of v0, i.e. making sure that x 7! v0.x/ is continuous
(and decreasing).

Lemma 2 illustrates what happens when the macroeconomic environment
becomes more volatile. The parameter � can be thought of as a proxy for volatility.
The lemma shows the homogenization arising as � ! 0. Indeed, increasing � can
be viewed as increase in market volatility. Figure 3 illustrates the behavior of the
value functions and controls in terms of �. The value and marginal value of reserves
decreases in high regime and increases in low regime. Therefore the production
rate increases in high regime and decreases in low regime, since holding reserves
becomes more valuable in high regime and less valuable in low regime. Similarly,
as � & 0, the exploration effort decreases in high regime due to decreased marginal
value of a new discovery and increases in low regime.

3.2 Production Shut-Down in Low-Demand Regime

Due to fluctuating profit levels across the macroeconomic regimes, there may arise
situations in which player 1 voluntarily shuts down production in the low demand
regime when reserves level x is small. We define xstart WD inffx > 0 W qL.x/ > 0g,
the critical reserves level below which production stops. Heuristically, below xstart

marginal value of reserves is so high relative to the low price offered that v0
L.x/ > L

leading to q1L.x/ D 0 in (8).
As mentioned before, such a shutdown (M2-equilibrium) can only happen in

the low regime and is driven by the expectation of collecting higher revenue
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Fig. 3 Left panel: convergence of the game functions vi.x/ ! Nv.x/ as �01; �10 ! 1 together.
Right panel: convergence of the exploration effort ai.x/ ! Na.x/:We take �01 D m=3; �10 D m=5,
with m D 0:1; 1 as well as the limiting solution defined in Lemma 2
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once demand reverts to the high regime. Typically, xstart is quite low, so M2-
equilibrium arises just before total exhaustion of reserves. There are two motivations
for production shut-down. The quantity effect reflects the extra profits available
under high demand. Thus, a sufficiently large difference in demand levels across
regimes is required for an M2 equilibrium to appear. The time effect reflects the
anticipated waiting time until high demand which is important due to the present
value discounting involved. Thus, for M2 equilibrium it is necessary that the holding
time in the low regime is sufficiently short relative to the discount rate r.

Figure 4 illustrates these phenomena. The left panel of Fig. 4 shows that xstart is
increasing in �01. This is the time effect: as �01 increases, the exhaustible producer
is anticipating imminent higher profits and is more willing to shut down production
to save reserves for that purpose. Asymptotically, as �01 ! 1, xstart converges to
Qxstart WD inffx > 0 W L� QvH.x/ > 0g, where QvH.x/ is the game function corresponding
to the constant-high-demand case, see Lemma 1. The middle panel of Fig. 4 shows
that when H is close to L there is no production shutdown, whereas as H increases,
xstart increases in H unboundedly. This is the quantity effect: larger H increases the
marginal value of reserves which makes the situation v0

L.x/ > L more likely.
Finally, the right panel of Fig. 4 shows xstart as a function of green production

cost c. We observe an ambiguous effect of competition on voluntary shutdown.
Because shutdown only happens with very low reserves, it takes place when the
green producer 2 is generally the “leader” of the market and hence the equilibrium
rates are very sensitive to the green leader’s costs. When c is very small, competition
lowers the value of reserves and makes the marginal value large. Therefore, xstart is
large when c is small. At moderate c, the competition is alleviated and the game
becomes in favor of the exhaustible producer 1, thus the exhaustible production
is expanded due to decreased marginal value of reserves. When c is close to L,
green production is very low or even blockaded in low regime, causing producer
1 to raise production under low demand, and eschew shutdown xstart D 0 . As c
increases beyond c > L, the exhaustible producer begins to lead the market under
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both regimes, and is driven by the quantity/time effects to shutdown production.
Thus, xstart increases in c when L < c < H. When c D H, the green producer 2 is
completely blockaded in both the low and high regimes, thus the model reduces to
exhaustible production monopoly. It also deserves our attention that in the setting
c � 0 that is most favorable to the green producer, xstart is significantly larger than
in a player 1 monopoly market (c D H). This is because competition encourages
producer 1 to conserve reserves in low regime, much more so than in the monopoly
setting.

4 Extensions

4.1 Multiple Regimes

We could similarly analyze the situation where the market demand switches among
n > 2 macroeconomic regimes such that the demand function is given by

pt D Mt � q1 � q2; Mt 2 fD1;D2; : : :;Dng; 0 < D1 < D2 < : : : < Dn:

Denote the generator of the Markov chain .Mt/ as

� D

0
BBB@

D1 D2 : : : Dn

D1 �Pj¤1 �1j �12 : : : �1n

D2 �21 �Pj¤2 �2j : : : �2n

:::
:::

:::
: : :

:::

Dn �n1 �n2 : : : �Pj¤n �nj

1
CCCA:

Then (4) is generalized to

sup
q1i

	
q1i .x/

�
Di � q1i .x/ � .q2i /�.x/

� � v0
i.x/q

1
i .x/


C sup
ai

Œai��vi.x/ � C.ai/�

C
X
j¤i

�ij
�
vj.x/ � vi.x/

� � rvi.x/ D 0; (23)

and similarly for gi.x/, and the boundary conditions are

vi.0/ D sup
ai�0

P
j¤i �ijvj.0/C vi.ı/�ai � C.ai/

r C �ai C˙j¤i�ij
; i D 1; 2; : : : ; n:

The candidate optimizers a�
i .x/; q

`;�
i .x/, i D L;H, ` D 1; 2, remain as in (8)–(9).

With multiple regimes, some of the intuitive comparative statics become unavail-
able. For example, Conjecture 1 states that with only two regimes the production
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Fig. 5 Duopoly with three demand regimes, D1 D L;D2 D M;D3 D H. Left panel: Game
functions vi.x/ and gi.x/, i D L;M;H of the two producers. Right panel: exploration efforts ai.x/,
i D L;M;H. We take L D 0:5;M D 1;H D 1:5 and �12 D 1

2
; �23 D 1

4
; �31 D 1 in (24)

rates (and hence the shadow marginal costs of reserves) appear to be always ordered.
Namely, production and exploration efforts are larger under higher demand. For a
generic chain .Mt/, such monotonicity no longer necessarily holds.

As explained, the game values can be thought of as “averages” of the corre-
sponding rewards under fixed demand regimes. The averaging is done in terms of
the expected discounted time spent in each regime given M0. With more than two
regimes, this averaging is non-trivial: even if M0 is high today, the future prospects
could be worse compared to a lower starting point. For instance, consider the case
where the market demand switches cyclically among three levels D1 < D2 < D3,
with a generator of the form

� D
0
@��12 �12 0

0 ��23 �23
�31 0 ��31

1
A : (24)

Thus, .Mt/ moves cyclically along D1 ! D2 ! D3 ! D1. If the proportion
of time spent in regime 2 is significantly longer than in regime 3 (namely �12 
�23  �31/, then regime 3 could be a worse starting point than regime 2. This
situation is illustrated in Fig. 5 that shows that vi.x/ are no longer monotone (and
neither are q1i .x/ or ai.x/) in i. Therefore, the original ordering of Di gets shuffled
due to the influence of the transition rates �ij.

A further generalization would be to consider continuous fluctuations of market
demand, for instance taking .Mt/ as an Itô diffusion modulating the price function.
Some of the standard choices could include a (Geometric) Brownian motion
factor to model for example the evolution of total economy GDP, or a stationary
Ornstein-Uhlenbeck factor to model the macroeconomic business cycle relative to
the long-run baseline. Such a model would require replacing the current HJB-I
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equations (4)–(5) by a partial differential equation since the new game values would
be a function v.x;m/ of both the reserves level x and the demand level M0 D m. If
Mt is a diffusion, this will lead to a parabolic HJB-I system. The present theory of
such systems, including smoothness of the game values, existence of equilibrium,
etc. is not well-developed. In our context some of the additional difficulties include
(i) non-standard implicit boundary conditions at x D 0; (ii) non-local terms arising
from discrete exploration discoveries; (iii) degeneracy in the x variable that has only
first-order dynamics (no volatility) and is fully endogenized by the player strategies.
Overcoming all these challenges (that extend beyond the analytic properties to
numerics and economic interpretation) is well beyond the scope of this paper.
Indeed, we believe that the extra realism gained from incorporating .Mt/ as a
continuous factor is not worth the additional model complexity. Our take is that all
models are stylized and are aiming at basic insights rather than complete practicality.

4.2 Stochastic Production Costs

One may use the stochastic factor to modulate other game parameters. For example,
the production costs of player 2 (the green producer) might be changing over time.
Such fluctuations could be due to varying technology costs; changing government
policies such as renewable energy subsidies; or non-constant financing costs. To
capture this setup we could then assume that c D c.Mt/ is modulated by the chain
.Mt/ whereas the demand is for simplicity now fixed at some ND.

The resulting game values would solve HJB-I equations essentially match-
ing (4)–(5), except that player 2 production costs ci D c.Di/ now differ across
regimes. Figure 6 illustrates the solution assuming a two-state .Mt/. The parameters
are similar to those in Fig. 2 allowing a degree of comparison. As before, green
production rises when costs are low (regime 1) and falls when costs become larger.
In particular, the game can switch between Type I and type M1 equilibria due to
regime change. Moreover, because exploration efforts of player 1 are not monotone
in c in the setup of Sect. 2, they are also non-monotone here, see right panel of Fig. 6.
Thus, for some reserve levels x, a drop in competitor’s production costs may induce
increased motivation to explore.

Remark 4. One could also imagine fluctuating production costs of player 1. In fact,
with linear inverse demand, one may interpret the choke level D in p D D � q1 � q2

as the net difference between demand level and production costs for the exhaustible
producer (recall that in Sect. 2 we took these fixed production costs to be zero for
convenience). Hence, the original model that takes D D D.Mt/ is equivalent to
assuming that c1 D c1.Mt/ with a baseline case c1.D1/ D 0.

One could also modulate other parts of the model, such as the exploration costs
C.aI Mt/ (indeed, there was plenty of evidence that E&P costs in the oil industry
rose sharply during the bull oil market of 2006–08 as increased demand spurred
all companies to replenish reserves). Another idea that was suggested in [6] is
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Fig. 6 Duopoly with regime-switching green production costs. Left panel: Game functions Lvi.x/
and Lgi.x/, i D 1; 2 of the two producers. Middle panel: Production rates q`i .x/ of the two producers
` D 1; 2. Right panel: Exploration efforts ai.x/ of the exhaustible producer. We take ND D 1; c1 D
0:4; c2 D 0:6, and switching rates �01 D 1

3
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5
. Exploration costs are C.a/ D 0:1a C a2=2

to modulate the discovery rate � (so as to capture for instance approach of the
global exhaustibility of the resource). In general, one could mix and match above
features, taking both c.Mt/ and D.Mt/ to be dependent on the macroeconomy. In
that situation, there is no longer a clear ordering of the regimes. For example, it
could be the case that in regime 1, demand is high but so is the competition with
green production; in regime 2 demand is lower but green producer is blockaded.
Our above investigations can serve as a guide to disentangle the opposite effects
that would then be induced on q`.x/ and a.x/.

4.3 More Players

Our main model featured two players. These are meant to be representative of the
exhaustible and renewable producers, for example oil and “green” energy industries
competing on the electricity market. By having only a single player with reserves,
our continuous state variable Xt is one-dimensional which greatly facilitates the
analysis. It would of course be more realistic to include multiple players with
reserves (e.g. different type of conventional fossil fuels). An immediate extension
would be to analyze the duopoly among two exhaustible producers. The difference
in their reserves X1t ;X

2
t would determine the asymmetry in the game and decide

who is the leader based on the respective shadow reserve costs. A version of such a
model without exploration or stochastic demand was treated in [9]. Given the major
challenges encountered there (in particular regularity issues for the game functions),
this is another extension that we are not able to fully address here.

Beyond two players, the theory of Cournot oligopolies is rudimentary. See [11]
for analysis of Bertrand oligopolies in deterministic markets (with no exploration
nor stochastic factor). Consideration of more than two non-symmetric players will



392 M. Ludkovski and X. Yang

necessarily be challenging due to the exploding dimensionality. Moreover, it raises
thorny questions regarding private and public information, namely whether all
players can be fully informed about all other players given the complexity of the
game. Since real life markets actually feature hundreds of agents, another useful
approximation would be to study an infinity of players using the framework of
mean field games [2]. Namely, one might consider the strategic interaction among
a continuum of exhaustible producers with exploration. Related models without
exploration were analyzed in the deterministic case by [8] and in the stochastic case
(where reserves Xt receive Brownian shocks) by [3].

5 Conclusion

We studied the effect of exploration and stochastic demand in dynamic Cournot
games. In the model of [13], players competed in a dynamic noncooperative game
as their reserves of an exhaustible resource depleted, simultaneously exploring
new reserves. The only stochastic aspect was (Poissonian) randomness in reserve
discoveries, making the overall game to be piecewise deterministic. The stochas-
tic demand in our research adds a further feature of fluctuating market prices,
introducing further dynamic aspects into the duopoly. We modelled this feature
through a regime-switching price (inverse demand) function, which represented a
random environment under which the producers make strategies of production and
exploration.

Stochastic demand creates the possibility of a new (dubbed Type M2) equilib-
rium whereby the exhaustible producer may opportunistically shutdown production
in hopes of higher profits in the future. This happens when reserves are low and
their shadow marginal cost is high enough. Additionally, the non-monotonic impact
of competition on exploration efforts already observed in [13] continues to occur in
our model and leads to interesting phenomena herein.

Acknowledgements We thank an anonymous referee for helpful questions and comments that
have improved our final version.

Appendix

Proof of Lemma 1

Proof. To derive the asymptotic game functions as �01 ! C1, we set �01 D 1
�
.

Without loss of generality, we assume that the asymptotic expansion of vM.x/ with
respect to � is

v�i D v0i C g.�/v1i C o.g.�//; i D L;H (25)

where g.�/ ! 0, as � ! 0.



Cournot Models Under Stochastic Demand 393

We substitute the vL and vH in the HJB ODEs with their asymptotic expansion to
obtain

"
2

3

�
L C c

2
� .v�L/0.x/

�C
� 1

6

�
2c � L � .v�L/0.x/

�C
#2

C 1

�
Œ.��v�L.x/ � �/C��

C 1

�

�
v0H.x/ � v0L.x/

�C 1

�

�
g.�/Œv1H.x/ � v1L.x/�C o.g.�//

� � rv�L.x/ D 0;

(26)

"
2

3

�
H C c

2
� .v�H/0.x/

�C
� 1

6

�
2c � H � .v�H/0.x/

�C
#2

C 1

�
Œ.��v�H.x/��/C��

C �10
�
v0L.x/ � v0H.x/

�C g.�/�10.v
1
L.x/ � v1H.x// � rv�H.x/C o.g.�// D 0:

(27)

We must have that lim�!0 v
�
L D lim�!0 v

�
L, i.e. v0L D v0H DW Qv, otherwise the term

��1.v0H � v0L/ will explode as � ! 0. Making that simplification, multiplying (26)
by ��10 and adding (27) we obtain

0 D ��10

"
2

3

�
L C c

2
� .v�L/0.x/

�C
� 1

6

�
2c � L � .v�L/0.x/

�C
#2

C
"
2

3

�
H C c

2
� .v�H/0.x/

�C
� 1

6

�
2c � H � .v�H/0.x/

�C
#2

C ��10

�
Œ.��v�L.x/ � �/C�� C 1

�
Œ.��v�H.x/ � �/C�� � r

�
�10�v

�
L.x/C v�H.x/

�
:

(28)

One can now take � ! 0which reduces to a regular perturbation of the following
ODE for Qv.x/ (note that the first term involving L vanishes):

"
2

3

�
H C c

2
� . QvH/

0.x/
�C

� 1

6

�
2c � H � . QvH/

0.x/
�C
#2

C 1

�
Œ.�� QvH.x/ � �/C�� � r QvH.x/ D 0;

which matches the solution of an exploration duopoly game studied in [13] with
linear inverse demand pt D H � q1t � q2t .
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For the boundary conditions, we re-write (6) as

�
v�H.0/ � v�L.0/

� �1
�

�
C v�L.ı/�a�L.0/ � C.a�L.0// � �

r C �a�L.0/
�
v�L.0/ D 0;

(29)�
v�L.0/ � v�H.0/

�
�10 C v�H.ı/�a�H.0/ � C.a�H.0// � �

r C �a�H.0/
�
v�H.0/ D 0:

(30)

We multiply (29) by ��10 and add to (30) to obtain

��10
	
v�L.ı/�a�L.0/ � C.a�L.0// � �

r C �a�L.0/
�
v�L.0/



C 	

v�H.ı/�a�H.0/ � C.a�H.0// � �
r C �a�H.0/

�
v�H.0/


 D 0: (31)

Letting � ! 0 removes the first terms and we are left with

Qv.ı/�Qa.0/ � C.Qa.0// � .r C �Qa.0// Qv.0/ D 0;

which is equivalent to

Qv.0/ D Qv.ı/�Qa.0/ � C.Qa.0//
.r C �Qa.0// D sup

a

Qv.ı/�a � C.a/

.r C �a/
; (32)

again matching the corresponding boundary condition in the deterministic demand
setting.

Proof of Lemma 2

Proof. We set �01 D bL
�
; �10 D bH

�
, where bL; bH are some constants, and � > 0 can

be arbitrarily small. The stationary distribution � given by �L D �10
�01C�10 D bH

bLCbH
,

�H D bL
bLCbH

is unchanged as � ! 0.
We consider the asymptotic expansions of vM in terms of �:

v�i D v0i C f .�/v1i C o. f .�//; i D L;H; (33)

where f .�/ ! 0, as � ! 0. Substituting (33) into (15) yields

"
2

3

�
L C c

2
� .v�L/0.x/

�C
� 1

6

�
2c � L � .v�L/0.x/

�C
#2

C 1

�
Œ.��v�L.x/ � �/C��

C bL

�

�
v0H.x/C f .�/v1H.x/ � v0L.x/ � f .�/v1L.x/

� � rv�L.x/C o. f .�// D 0I
(34)



Cournot Models Under Stochastic Demand 395

"
2

3

�
H C c

2
� .v�H/0.x/

�C
� 1

6

�
2c � H � .v�H/0.x/

�C
#2

C 1

�
Œ.��v�H.x/ � �/C��

C bH

�

�
v0L.x/C f .�/v1L.x/ � v0H.x/ � f .�/v1H.x/

� � rv�H.x/C o. f .�// D 0:

(35)

We must have that lim�!0 v
�
L D lim�!0 v

�
L, i.e. v0L D v0H D Nv, otherwise the

terms bL
�

�
v�H � v�L

�
and bH

�

�
v�L � v�H

�
above would explode as � ! 0. Indeed, it is

clear that jvL.x/ � vH.x/j ! 0 as � ! 0 due to the fast switching of the regimes,
making the initial macroeconomic conditions irrelevant.

Canceling the terms v0L � v0H � 0 in (34)–(35), multiplying (34) by bH=.bL C
bH/, (35) by bL=.bL C bH/, and adding them up we obtain

0 D �L

"
2

3

�
L C c

2
� .v�L/0.x/

�C
� 1

6

�
2c � L � .v�L/0.x/

�C
#2

C �H

"
2

3

�
H C c

2
� .v�H/0.x/

�C
� 1

6

�
2c � H � .v�H/0.x/

�C
#2

C �L

�
Œ.��v�L.x/ � �/C�� C �H

�
Œ.��v�H.x/ � �/C��

� r
�
�Lv

�
L.x/C �Hv

�
H.x/

�C o. f .�//:

Note that all the terms involving ��1 have cancelled out. Once again plugging in (33)
we can now take � ! 0 since this just amounts to a regular perturbation; the result
is precisely (21).

For the boundary conditions, we re-write the original

v�i .0/ D v�j .0/.
bi
�
/C v�i .ı/�a�i .0/ � C.a�i .0//

r C bi
�

C �a�i .0/
; i; j D L;H

as

�
v�H.0/ � v�L.0/

� �bL

�

�
C v�L.ı/�a�L.0/ � C.a�L.0// � �

r C �a�L.0/
�
v�L.0/ D 0;

(36)

�
v�L.0/ � v�H.0/

� �bH

�

�
C v�H.ı/�a�H.0/ � C.a�H.0// � �

r C �a�H.0/
�
v�H.0/ D 0:

(37)
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Once again multiplying (36) by bH=.bL C bH/ and (37) by bL=.bL C bH/, and
summing produces

�Lv
�
L.ı/�a�L.0/C �Hv

�
H.ı/�a�H.0/ � �LC.a�L.0// � �HC.a�H.0//

� �L
�
r C �a�L.0/

�
v�L.0/ � �H

�
r C �a�H.0/

�
v�H.0/ D 0: (38)

As � ! 0, a�M.0/ D Œ.��v�M.0/ � �/C���1 ! Œ.�� Nv.0/ � �/C���1 D Na.0/; and
we find Nv.ı/�Na.0/ � C.Na.0// � .r C �Na.0// Nv.0/ D 0, which is equivalent to (22).
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Variable Costs in Dynamic Cournot
Energy Markets

Anirudh Dasarathy and Ronnie Sircar

Abstract We study a game-theoretic model for energy markets. Our framework is
an N-player stochastic dynamic Cournot game where one producer has a reserve (or
stock) that depletes over time, while the others can produce indefinitely with no such
quantity restriction. We think of the first player as producing energy from a fossil
fuel such as oil, which is an exhaustible resource, while the others are producing
from renewables. All players have costs of production that evolve over time, and
the exhaustible player can choose to invest in R&D (research and development,
including exploration) which may yield increases in stock probabilistically over
time. The assumption that the players have heterogeneous and time-varying costs
requires a reexamination and extension of previous literature which has typically
considered homogeneous costs. We also study how this model may be applied
to energy policy, comparing when it is optimal to consider taxing oil producers,
opposed to subsidizing green energy, as a matter of public policy.

1 Introduction

The motivation behind the work presented in this paper is to present a model for
energy markets which may be considered as oligopolies, where a small number of
different producers compete against each other to maximize profits. The initial work
in the economics literature on oligopolistic competition was by Cournot [2] in 1838,
who introduced the idea of competition through production output. This work was
re-envisioned by Bertrand [1] in 1883, who framed competitions in terms of prices.
More recently, however, energy markets have been modeled through dynamic, as
opposed to the static games that Cournot and Bertrand considered. For more modern
interpretations of oligopolistic competition, we recommend Friedman [4], Vives
[10], or for dynamic models, Dockner et al. [3].
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Additionally, energy markets often have two distinct types of players: some, like
oil, depend on a fixed reserve, while others, like renewable players such as wind
and solar, have effectively infinite or inexhaustible resources. Study of the impact of
exhaustibility of resources was initiated by Hotelling [6], within a monopoly. In [5],
energy production is modeled as a dynamic Cournot game, where certain players
depend on stock remaining to produce, while others have a higher extraction cost
but can produce indefinitely.

Previous work to model the behavior we consider in energy market production
has made certain assumptions that we relax here. For example, [8] assumes that
there is no R&D or exploration, while [9] assumes that the only cost oil producers
incur are their research costs. We expand such work in two ways. First, we relax
the assumption that the oil producer has zero cost of extraction. Then we allow for
evolving costs of energy production: costs over time are realistically not constant. In
particular, as stock begins to run out, costs for oil producers often increase (deeper
drilling, more expensive extraction technology required), whereas costs for green
energy often decrease due to external investment and financing that leads to more
efficient technology. For instance “the price of solar panels has fallen more than 75
percent just since 2008” [7].

The outline of this paper is as follows. In Sect. 2, we analytically solve a special
case of constant costs, which requires no numerical calculations. We define the
notion of “blockading” and find the Markov perfect equilibrium for the case where
all costs are positive, yet constant. In Sect. 3, we provide a partially analytical
solution for the case without exploration. Then, in Sect. 4, we solve the full model
which incorporates exploration. This extends the stochastic model in [9] to allow for
varying costs. Finally, in Sect. 5, we demonstrate how our model may be applied to
the setting of energy policy. We provide two examples, the latter of which compares
taxing finite resource producers and subsidizing green energy. We then conclude
and suggest methods by which this work may be extended.

2 Dynamic Game Model with Constant Costs

We begin with the case of constant production costs and no exploration where we
can establish analytical results.

2.1 Preliminary Notation

We consider an N-player oligopoly game that models energy markets. The first
k < N of the energy players have exhaustible stocks (or reserves) fx1.t/; : : : ; xk.t/g.
They are active whenever their stock xi.t/ > 0 and are “eliminated” or exit
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production when their reserve xi.t/ hits 0. The remaining players can be considered
“renewable,” and have infinite (or inexhaustible) reserves. Each of the N players has
a marginal cost function si that is associated with the ith player (so it costs the ith
player si units of money to produce one unit of output), and they compete through
Cournot (quantity-setting) competition. We will see that all players will participate
provided that their cost is low enough compared to the other active players.

The case where k D N � 2 (that is, there are only exhaustible players who
compete against each other), both with zero extraction costs for all time, was
examined in [5], and involved the analysis of a coupled system of nonlinear partial
differential equations (PDEs) which are typically difficult to solve even numerically.
We will thus consider the case where k D 1, so there is only one exhaustible player.
Since the motivation behind this paper is to provide a framework within which
energy policy comparisons can be made, we will constrain ourselves to this case.

Notationally, when we consider an N-player game, we will let player 0 be the
exhaustible player. Given the evident link to energy markets, we will interchange-
ably refer to player 0 as the “exhaustible” player, the “stock” player, and the “oil”
player. Then, players 1; : : : ;N � 1 shall be our renewable players. Since there is
only one exhaustible player in our consideration, we denote by x.t/ D x0.t/, the
remaining stock of player 0. We let the costs also vary in the amount x.t/ remaining:
si.x/. In general, costs evolve as stock begins to run out and this generalization
allows us to encapsulate the meaning of such changes. Further, to have a meaningful
model that can be applied to policy, we must be able to capture evolving costs, as
most elements of energy policy affect the perceived price of various players in the
market. The case where s0.x/ D 0 and si.x/ D si, that is, the oil player has zero
extraction costs and the renewable players have constant cost has been evaluated
analytically in [8].

As assumed there, we will have a representative market for the energy that is
produced by these players. In particular, we assume that the utility function repre-
sented by market demand makes no differentiation between the energy produced by
all N players; that is, the individual consumer cares only about prices and quantities
produced, but not the actual source fuel (or technology) itself. We can, in general,
assume that the market demand function follows a constant prudence price curve;
that is, if we let Q denote the total market output, then the inverse demand curve is

P.Q/ D

8̂
<
:̂
1 � Q1�


1 � 
 if 
 ¤ 1

� log Q if 
 D 1;

(1)

where we restrict 0 � Q � 1. Here, we will consider the case where 
 D 0, so the
inverse market demand curve reduces to P.Q/ D 1 � Q.

We first review the static (one-period) Cournot game with constant costs.
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2.2 Static Game

In the static (or one-period or stage) Cournot game with N players who have constant
costs s0; : : : ; sN�1, each player i chooses a production quantity qi � 0 to maximize
revenue, that is price minus cost multiplied by quantity produced:

�.qi; q�i/ D qi

0
@1 � qi �

N�1X
jD0;j¤i

qj � si

1
A ;

where q�i D .q0; � � � ; qi�1; qiC1; � � � ; qN�1/. Here there is no distinction between
player 0 and the others as there is no dynamic component whereby things change
over time.

We say that .q�
0 ; � � � ; q�

N�1/ is a Nash equilibrium if �.q�
i ; q

��i/ � �.qi; q��i/ for
any qi � 0 and all i D 0; 1; � � � ;N � 1. That is q�

i maximizes revenue for player i
when all the other players play their Nash equilibrium strategies. For this problem,
the Nash equilibrium is as follows.

Proposition 1. In an N-player static game with constant costs 0 � s0 < s1 < � � � <
sN�1 < 1, we let

Pi D 1

i C 1

0
@1C

i�1X
jD0

sj

1
A ; i D 1; : : : ;N;

and NP D minfPi j i D 1; : : : ;Ng. The number of active players is given by

n D minfi j Pi D NP; i D 1; : : : ;Ng:
Then players f0; : : : ; n � 1g are active, and players fn; : : : ;N � 1g do not produce.
The unique Nash equilibrium is given by

q�
i D 1

n C 1

0
@1 � nsi C

n�1X
jD0Ij¤i

sj

1
A ; i 2 f0; : : : ; n � 1g;

and q�
i D 0 for i 2 fn; : : : ;N � 1g.

Proof. See [5, Proposition 2.9].

Remark. We chose to have the costs to be strictly increasing; if costs of players are
allowed to be the same, then the blockading points for the dynamic game (defined in
Sect. 2.3) might coincide. For purposes of consistency, we use the same assumption
here. The result in Proposition 1 would hold even if the sequence of costs is only
weakly increasing and the calculations presented in Sect. 2.3 and beyond can be
reproduced for weakly increasing costs. For simplicity and to highlight the focus of
our results, we use a strictly increasing costs assumption.
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When the oil producer is inactive (as will occur in the dynamic game when his
reserves are exhausted) and only players 1 � i � N � 1 are in the market, the static
game Nash equilibrium is

q�
i D

(
1

nC1
�
1 � nsi CPn

jD1Ij¤i sj

�
; i 2 f1; : : : ; ng

0 i 2 fn C 1; : : : ;N � 1g;
(2)

where n D minfi j Pi D NP; i D 1; : : : ;N � 1g and

Pi D 1

i C 1

0
@1C

iX
jD1

sj

1
A ; i D 1; : : : ;N�1; NP D minfPi j i D 1; : : : ;N�1g:

(3)
We denote by S.k/ D Pk

iD1 si, the cumulative cost of the first k renewable players,
and we also define


i D 1C S.i�1/

i
; i 2 2; : : : ;N; (4)

with 
1 D 1. Further, we make the following assumption.

Assumption 1. We assume that sN�1 < 
N�1.

Remark. This assumption is necessary to guarantee that when the oil producer is
not present, the costs of the renewable producers are low enough that all participate
in equilibrium. This follows from the fact that Pi�1 D 
i, where Pi is given in (3).
Then a calculation shows that


N < 
N�1 ” sN�1 < 
N�1;

and so under Assumption 1, PN�1 < PN�2. Therefore NP D PN�1 and n D N � 1.

We also have:

Lemma 1. Under Assumption 1, we have that sj < 
j for all j 2 1; : : : ;N � 1.

Proof. For player N � 2:

sN�2 � 
N�2 D .N � 1/sN�2 � .1C S.N�2//
N � 2 D N � 1

N � 2.sN�2 � 
N�1/

� N � 1
N � 2.sN�1 � 
N�1/ < 0;

where in the second to last step, we used sj < sjC1 for all j 2 f1; : : : ;N � 2g. The
implication sj < 
j can be shown inductively from here.
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Lemma 2. When si is increasing in i and Assumption 1 holds, we have that 
i is
decreasing in i.

Proof. This follows from


i � 
i�1 D 1C S.i�1/

i
� 1C S.i�2/

i � 1 D isi�1 � S.i�1/ � 1
i.i � 1/ < 0;

since

si�1 < 
i�1 H) si�1 <
1C S.i�1/

i
H) isi�1 < 1C S.i�1/:

Next, we introduce the dynamic N player Cournot game, where player 0 is our
“oil” producer with exhaustible resources, and the remaining players 1; : : : ;N � 1

are renewable energy producers.

2.3 Dynamic Game

Energy is produced from different sources by players 0; : : : ;N � 1, who have
constant costs of production .s0; : : : ; sN�1/. The case where s0 D 0 has been solved
analytically in [8]. The general case where s0 is allowed to be a constant that is in
Œ0; 1/ can also be solved completely analytically and will be presented below. We
will study the game when costs vary as time goes on and oil runs out in Sect. 3.

Player 0 is our oil producer who plays when his stock x.t/ > 0 and has an
extraction cost s0 > 0. The stock x.t/ evolves according to the flow equation

dx.t/

dt
D �q0.x.t//1fx.t/>0g;

where q0 is the extraction strategy of player 0, and his initial reserve is x.0/. Players
i D 1; : : : ;N � 1 are renewable producers and have a fixed marginal cost of
production si > 0. We order the players such that s1 � s2 � � � � � sN�1 and
further require that Assumption 1 holds. They produce energy at the rates qi.

Each player has an infinite time horizon objective value function that is deter-
mined by future profits discounted at rate r > 0. In particular, the Nash equilibrium
.q�
0 .�/; q�

1 .�/; : : : ; q�
N�1.�// are given by the arguments of the following suprema:

v.x/ D sup
q0

Z �

0

e�rtq0.x.t//

0
@1 � q0.x.t// �

N�1X
jD1

q�
j .x.t// � s0

1
A dt (5)
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wi.x/ D sup
qi

Z �

0

e�rtqi.x.t//

0
@1 � q�

0 .x.t// �
N�1X

jD1;j¤i

q�
j .x.t// � qi.x.t// � si

1
A dt

C 1

r
e�r�Gi; (6)

where i D 1; � � � ;N � 1. Here � is the exhaustion time � D infft j x.t/ D 0g, and Gi

is the equilibrium profit of player i in the static game with only players 1; : : : ;N � 1
(who all participate under Assumption 1):

Gi D q�
i

0
@1 �

N�1X
jD1

q�
j � si

1
A D

�
1

N
.1 � Nsi C S.N�1//

�2
;

where we have used (2) for q�
i with n D N � 1. The admissible Markov strategies

qi.x/ are such that qi � 0 and the qi.x/ are Lipschitz continuous.

2.4 Blockading of Renewable Producers

Under some conditions, some subset of the players are blockaded from production
because their costs are too high to generate a profit given the competition from
players with lower costs. In the context of the renewable players i 2 f1; : : : ;N � 1g,
this will be denoted by a point xi

b such that

xi
b D inffx > 0 W q�

i .x/ D 0g:

That is, for all points x < xi
b, player i produces and participates in the game, but for

x � xi
b, the supply of cheap oil makes the market energy price too low for him to

participate. We define this to be the blockading point for player i. In the case where
qi

�.x/ > 0 for all x, we set xi
b D 1. In such an instance, we say that player i is

never blockaded. We also identify xN
b D 0 and x0b D 1.

Additionally, unlike the s0 D 0 case, since s0 is now positive, there is also the
chance that the oil player may be blocked from playing if his extraction cost s0 is
too high compared to the renewable players. In other words, it may be possible that
the oil player is inactive even if x.t/ > 0. We will defer this case to Sect. 2.5. The
intuition behind the case where s0 is sufficiently low so that the oil player plays
whenever he has remaining stock is presented in [8] and reproduced in Fig. 1, where
the blocking times ti

b are defined by x.ti
b/ D xi

b.
In the region x 2 Œxn

b; x
n�1
b /, there are n � N active players including the oil

player. Shifting the variable x, we write v.xn
b C x/ D v.n/.x/ for x 2 .0; xn�1

b � xn
b/.

A straightforward extension of [8, Proposition 5.3] to incorporate the cost s0 shows
that v.n/ solves the Hamilton-Jacobi-Bellman (HJB) equation
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rv.n/ D 1

.n C 1/2

0
@1 � n.v.n/

0 C s0/C
n�1X
jD1

sj

1
A
2

; n D 1; : : : ;N: (7)

These are solved with the boundary conditions v.N/ D 0 and v.n/.0/ D v.nC1/.xn
b �

xnC1
b / for continuity of the value function v.x/. The equilibrium strategies in the

region x 2 Œxn
b; x

n�1
b / are given by the formula in Proposition 1 with the replacement

s0 7! s0 C v.n/
0
.x � xn

b/:

q�
0 .x/ D 1

n C 1

0
@1 � n.s0 C v.n/

0

.x � xn
b//C

n�1X
jD1

sj;

1
A (8)

q�
i .x/ D 1

n C 1

0
@1 � nsi C .s0 C v.n/

0

.x � xn
b//C

n�1X
jD1Ij¤i

sj

1
A ; (9)

for i D 1; : : : ; n � 1.
Further, since at any given point x, q�

j .x/ > q�
jC1.x/ (that is, higher cost renewable

players produce less), and since costs are constant in x, we have that xj
b > xjC1

b ; so, it
takes more oil to run out before player j enters compared to player jC1, as indicated
in Fig. 1. To solve (7) analytically, the following Lemma shall be useful:

Lemma 3. The solution to the ODE

.˛ � v0/2 D �v; (10)

where v0 D v.0/ � 0 and ˛; � > 0 is

v.x/ D ˛2

�
.1C W .�.x///2 ;

where W .�/ is the Lambert-W function, satisfying Z D W .Z/ eW.Z/ restricted to

Z � �e�1. Further, �.x/ D ˇeˇe��x=.2˛/ and ˇ D �1C �v0

˛
.

···
0

Reserves
All Active

xb
N–1

tb
N–1 tb

N–2

xb
N–2 xb

2

tb
2 tb

1

xb
1

Duopoly Oil Monopoly

# Active N N − 1 N − 2 3 2 1

···
0

Time

Fig. 1 Blockading intuition
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Proof. The result follows by direct evaluation, which is explained in detail in [8].

Writing (7) in the form (10), we see that ˛ D 1 � ns0 C S.n�1/

n C 1
> 0 by

Assumption 1. Consequently, the closed form solution to (7) is

v.n/.x/ D 1

r

�
1 � ns0 C S.n�1/

n C 1

�2
.1C W .�.x///2; (11)

where �.x/ D ˇeˇe��x=.2˛/ with ˇ D �1 C �v.n/.0/

˛
and � D r . Taking the

derivative, we have

v.n/
0

.x/ D �1
n

W .�.x// .1 � ns0 C S.n�1// D �W .�.x// .
n � s0/; (12)

where 
n was defined in (4). Assumption 1 and Lemma 1 guarantee that v.n/
0
.x/ > 0.

We define:

O
n D 1C S.n�1/ � ns0
n

D 
n � s0 (13)

for n D 2; : : : ;N. When O
n < 0 for all n, the oil producer does not play in our game,
and we have a perpetually repeated static game with N � 1 players, meaning v and
wi (i D 1; : : : ;N � 1) are given by (5)–(6) with � D 0.

It is straightforward to show from the concavity of v.x/ that whenever the stock
for the oil producer is greater than the blockading point xn

b, player n produces
nothing. The blockading point is thus a threshold, below which the player enters
the market, and above which, the player does not enter the market.

2.5 Blockading of the Oil Producer

When we allow s0 to be greater than zero, we cannot assume as in [8] that the oil
producer will always participate should x.t/ > 0. Indeed, should s0 be sufficiently
high, it is possible that the oil producer does not play because his extraction cost is
too high.

Heuristically, we can view the “cost” for the oil producer as s0 C v0.x/ at any
given stock x.t/ (the sum of extraction and shadow costs). This is bounded below
by s0, so if s0 is sufficiently high, it may be too expensive for him to produce and he
may be forced to exit the market. This shall be referred to as blockading of the oil
player.

We define a blockading point for our oil producer as the point

x�
b D supfx > 0 W q�

0 .x/ D 0g:
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For all x > x�
b , the oil producer will produce, whereas for all x < x�

b , the oil producer
does not participate. If there is no such x > 0 such that q�

0 .x/ D 0, then we say the
oil producer is never blockaded and let x�

b D 0.
We will first demonstrate that provided that the oil producer always plays when

x.t/ > 0 provided s0 is small enough.

Proposition 2. If s0 < 
n for all n 2 f2; : : : ;Ng, then the oil producer is never
blockaded.

By Lemma 2, this condition is equivalent to s0 < 
N , as 
n is decreasing in n.

Proof. In the interval Œ0; xN�1
b /, the candidate value function is v.x/ D v.N/.x/

which solves the ODE (7) with boundary condition v.N/.0/ D 0, and the
corresponding equilibrium oil production is

q�
0 .x/ D N

N C 1

�

N � .s0 C v.N/

0

.x//
�
;

following from formula (8). Then q�
0 .x/ � 0 as long as v.N/

0
.x/ � 
N �s0, where the

bound is positive by hypothesis. It follows from the ODE (7) that v.N/
0
.0/ D 
N �s0,

and it is easily verified from the formula (11) for v.N/ that v.N/.x/ is strictly concave
and so v.N/

0
.x/ � 
N � s0 for all x 2 Œ0; xN�1

b /. Therefore the candidate solution
in which player 0 is not blockaded hold in the first interval as the unique Markov
perfect equilibrium. A similar argument hold in the other intervals (in which the
shadow cost v0 of the oil producer is even lower).

This is consistent for the s0 D 0 limiting case, since then it is always true that
s0 � 
N and thus there are no blockading points for player 0. In this case, we can
evaluate the blockading points explicitly. We first define

ın D .n C 1/sn � .1C s0 C S.n�1//:

Then, the following proposition holds:

Proposition 3. Provided that s0 < 
N, the blockading point for the kth player is
finite if ık > 0. Let i D minfk W ık > 0g, or the lowest cost player who is blockaded
at some point. Players fi; : : : ;N � 1g are blockaded to the right of their blockading
points which are determined recursively by the equations:

xN�1
b D 1

�N

�
�1C ıN�1

O
N
� log

�
ıN�1

O
N

��
(14)

xn�1
b D xn

b C 1

�n

�
log

�
ın

ın�1

�
� .n C 1/.sn � sn�1/

O
n

�
; (15)
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where, for n 2 fi; : : : ;N � 2g,

�n D 2r

O
n

�
1

2
C 1

2n

�2
;

and O
n was defined in (13).

Proof. To find xN�1
b , we look for a solution of q�

N�1.xN�1
b / D 0, and thus, from (9),

we require that

v.N/
0

.xN�1
b / D NsN�1 � .1C s0 C S.N�2// D ıN�1:

Since, from (11), v.N/
0 D � O
NW .�.x//, we have that

W
�
�.xN�1

b /
� D �ıN�1

O
N
:

This equation only has a positive solution for xN�1
b for ıN�1 > 0, which is given

by (14). The recursion formula (15) follows from shifting the axes left by xN�1
b

and proceeding with similar analysis to that for the s0 D 0 case in the proofs of
Propositions 5.2 and 5.3 in [8].

The following proposition solves the case where s0 � 
N :

Proposition 4. If s0 � 
N, then the Markov perfect equilibrium is that the oil
producer does not play and the renewables play an N � 1 player Cournot game
as given by (2) with n D N � 1:

q�
i .x.t// D 1

N

�
1 � Nsi C S.N�1/� ; i D 1; : : : ;N � 1: (16)

Proof. In the candidate N � 1 player equilibrium (16), the total output is

Q D
N�1X
iD1

q�
i D 1 � 
N ;

and so the market price is P D 1 � Q D 
N . Since s0 � 
N , player 0 will not
enter the market and his best response is q�

0 D 0. Therefore (16) gives the Nash
equilibrium in this case.

Finally, in Fig. 2, we plot v.x/ for two constant costs: s0 D 0:2 and s0 D 0:4. For
the lower cost, note that the value function is strictly higher, as expected, because
profits are greater. On the right, however, we note that the oil producer lasts longer
in time t with a higher cost than with a lower cost. The additional cost produces an
amplified incentive to save until tomorrow and hence the oil producer lasts longer.
This is reflected in the market price as well, as there is a greater market price with a
higher cost, but the jump in market price is not as significant when oil runs out. In
other words, the higher fixed cost of extraction results in price stability over time at
the cost of higher market prices even when the oil player produces.
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Fig. 2 Constant cost dynamic game based on analytical solution for s0 D 0:2 and s0 D 0:4 for
s1 D 0:51; s2 D 0:52; : : : ; s9 D 0:59. Notationally, Qren D P9

iD1 qi (total renewable production).
In this case 
N D 0:595, and so, as s0 < 0:595, the oil producer always produces

3 Varying Costs

Now that we have considered the one subcase in which we can derive a fully
analytical Markov strategy, we consider the general case, where costs vary for each
of the players. We associate to each player i in our N player game a cost function
si.x/, where x is the remaining stock of player 0, the only exhaustible player. To
understand how this generalizes the earlier result, we first consider a base case,
where s1; : : : ; sN�1 are constant.

In this section, we do not yet allow discovery of new reserves. Since disabling
discovery of new reserves enables us to have partially analytical solutions, we
present these calculations here and resort to a numerical approach to the full
discovery problem in Sect. 4.

3.1 Holding Renewable Costs Constant

The array of costs for this base case is such that si.x/ D si 2 Œ0; 1� for each i 2
f1; : : : ;N � 1g, while s0.x/ is a decreasing function. The following assumptions are
made:

Assumption 2. We retain the assumption that si < 
i for the renewable players
i D 1; : : : ;N � 1. This implies that should the oil producer exit, the appropriate
Cournot solution among the renewable players, given in formula (2), entails that all
players are active.
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Assumption 3. We assume that the cost function of the oil producer s0.x/ 2 C1 and
s0
0.x/ < 0, so cost increases as remaining reserves are depleted. This assumption

can be justified, as oil producers typically delay extraction from their most expensive
ores, so as reserves begin to run out, costs are increased.

When there are n � 1 active renewable players, and hence n total players, should the
oil producer play, the Hamilton-Jacobi equation for his value function v.x/ is

rv D 1

.n C 1/2

�
1 � n.v0.x/C s0.x//C S.n�1/�2 ; x 2 Œxn

b; x
n�1
b /; (17)

analogous to (7) with the constant s0 replaced by s0.x/. The oil producer’s strategy is

q�
0 .x/D 1

.n C 1/

�
1 � n.v0.x/C s0.x//C S.n�1/� D n

.n C 1/

�

n � .v0.x/C s0.x//

�
;

(18)

where 
n was defined in (4). We will also see that, while the effective cost for the
oil player is always decreasing in x, even when Assumption 3 does not hold, the
shadow cost v0.x/may be increasing or decreasing in x, depending on the properties
of s0.x/.

Proposition 5. The sum v0.x/ C s0.x/ is strictly decreasing, but v0.x/ is not
necessarily decreasing. In particular, if we define

T.x; n/ D � .n C 1/2rv0.x/
2nq�

0 .x/
;

then if js0
0.x/j � jT.x; n/j, when there are n players total including the oil producer,

then v.x/ is convex (v0.x/ increasing), while js0
0.x/j � jT.x; n/j implies that v.x/ is

concave, with v0.x/ decreasing.

Proof. The result follows immediately from taking the derivative of Eq. (17) with
respect to x:

v00.x/C s0
0.x/ D �T.x; n/;

so if js0
0.x/j � jT.x; n/j, then v00.x/ > 0 and hence v0.x/ is increasing, and similarly

for the other case.

Note that q�
0 .x/ is increasing in x since the effective cost v0.x/ C s0.x/ is

decreasing; further, as x ! 0, q�
0 .x/ ! 0, but v0 is bounded above (v0.0/C s0.0/ D


N). Assuming that s0.x/ is bounded above as well, then in a neighborhood around
0, v.x/ is concave. If s0.x/ decreases sufficiently quickly in some neighborhood of a
point x > 0, then v.x/ becomes convex. Figure 3 illustrates with two different cost
functions s0.x/.
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Fig. 3 Compares value functions as well as quantity and price evolution over time for 9 renewable
players with costs 0.51, : : : , 0.59, while we adjust the cost of extraction for the oil producer from
s0.x/ D :2e�:1x (solid) to s0.x/ D :2e�:1x C :2 (dashed)

We now let x�
b D supfx > 0 W q�

0 .x/ D 0g. Then, it is evident that since v0.x/C
s0.x/ is decreasing that for all x > x�

b , the oil producer participates and for all
x < x�

b , the oil producer does not participate. In the region the oil producer does
not participate, the assumption sn < 
n for renewable players implies the quantities
and market price is determined by an N � 1 player Cournot static game among the
renewable players. The following establishes that the condition upon which the oil
producer plays is solely dependent on extracting costs and not remaining stock:

Proposition 6. The blockading point x�
b for player 0 is given by

x�
b D supfx > 0 W q�

0 .x/ D 0g D inffx > 0 W s0.x/ � 
Ng:

Proof. Let I D inffx > 0 W s0.x/ � 
Ng. It suffices to show that when x < I, the
oil producer does not play and when x > I, the oil producer does. When x < I,
we have that s0.x/ > 
N ; assume the oil producer plays. Prior to this assumption,
the equilibrium in this region would have been an N � 1 player Markov game, so
for the assumption to hold, the quantity produced in an N player game once the oil
producer enters should be positive. That is, from (18) with n D N, this requires
v0.x/C s0.x/ < 
N , but this forces v0 < 0, a contradiction. So, the oil producer does
not play on x < I.

Similarly, the oil producer must play when x > I. Assume he doesn’t; then it
must not be profitable for him to play. Hence, if q0 > 0 when x > I, the oil player
plays. This is evident, since if x > I, s0.x/ � 
N , so v0.I/ � 0 and the Hamilton-
Jacobi equation is well-defined and evolves to give positive q0 and hence positive
profit. Since s.x/ is decreasing and continuous, the result follows. �
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Remark. The first point coming from the left at which s.x/ D 
N (and also the
only point since s.x/ is decreasing) is the threshold point at which the oil producer
enters. The mechanism here is not that the oil producer’s shadow cost is too high.
Rather, the oil producer’s cost of extraction becomes too prohibitive in comparison
to the other alternatives. To the left of this point, since the assumption sn < 
n

for the renewable players binds, only the renewable players remain and they play
indefinitely in a static game. To the right of this point, blockading for the renewable
players once again can occur; that is, there may be associated threshold values for
each of the renewable players to the left of which they do play and to the right
of which they do not. In particular, the following proposition highlights when the
renewable players are blockaded.

3.2 Numerical Examples with Renewable Costs Held Constant

Figures 3 and 4 depict numerically evaluated solutions for the case of decreasing
s0.x/. In particular, in Fig. 3, we note that if s0

0.x/ < s0.x/ for all x, then the
v.x/ that corresponds to s0

0.x/ is less than or equal to than the v.x/ for s0.x/. In
particular, we note that similar to earlier, increasing s0.x/ by a fixed cost leads to the
oil player staying in for a longer period of time. In Fig. 3, the vertical dotted lines
correspond to blockading points xi

b for the oil producers for s0.x/ D :2e�:1x. That
is, to the left of these lines, additional players enter since the reserves have depleted

Fig. 4 Demonstrates evolution of game when s0.x/ is high enough for small enough x so that the
oil player is effectively blockaded for low x. Notationally, Qren D P9

iD1 qi. Also demonstrates
case where Lipschitz constant of s0.x/ is so large to cause concavity of v.x/ on certain regions of
x. The dotted vertical line reflects blockading of the 9th renewable player
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sufficiently. When we increase s0.x/, the blockading points are shifted to the left,
since the relative cost of oil is higher, so the threshold for the renewables entering is
lower. Hence, when simulating such a game over time, the renewable players come
in earlier.

Figure 4 depicts the case where for some x < x�, we have that s0.x/ > 
N .
In particular, note that until x D 11:6, the oil producer does not produce. This is
reflected in the graph on the left. At the time when the oil producer leaves, there are
still reserves left that have yet to be drilled (specifically, 11:6 units). Further, Fig. 4
depicts a situation that is consistent with that explained in Proposition 8. That is,
s0
0.x/ is greater than the threshold value T.x; n/ for a subset of x 2 Œ0; 50�, resulting

in a shift from concavity to convexity. This is due to the high Lipschitz constant that
bounds the value of s0

0.x/ from the above and continuity, which ensures concavity
in a neighborhood where the derivative is maximized.

3.3 Varying Renewable Costs: Analytic Results

The above problem can be solved partially analytically for N players, all of whom
have varying costs that obey the following assumption:

Assumption 4. In an N player game, let player 0 be the exhaustible player and
players 1; : : : ;N � 1 be renewable players. Let si.x/ be the cost of player i. We
assume that s0

0.x/ < 0 and s0
i.x/ > 0 for all i 2 f1; : : : ;N � 1g.

This assumption is justified because, as oil tends to deplete, governments tend
to subsidize green energy, thus reducing costs for the renewable players as x
approaches 0.

The following assumption is made so that players are not forced out of the
game due solely to their absolute extraction cost, but rather only choose not to play
because of relative extraction cost:

Assumption 5. For all i 2 f0; 1; : : : ;N � 1g, we require si.x/ 2 Œ0; 1� for all x � 0.

We now let N D 2 for a couple of reasons: first, the structure of the game is
not substantively different with N > 2, and second, N D 2 simplifies numerical
computation significantly.

Proposition 7. We define


1.x/ D 1C s1.x/

2
:

The dominant strategy for the oil producer is not to produce when s0.x/ > 
1.x/.

Proof. Assume that the oil producer will want to produce; then there must be some
neighborhood around the point x by continuity of s0.x/ and s1.x/ such that both
players will participate with positive quantities. However, in such a case,
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q�
0 .x/ D 1

3

�
1 � 2v0 � 2s0.x/C s1.x/

�
> 0;

implying that v0 < 
1.x/� s1.x/ < 0, a contradiction to the obvious fact that giving
a player extra resources does not make him worse off.

Remark. When s1.x/ is held constant, then 
1.x/ is also constant, so this result is
identical with that of the fixed cost case discussed previously.

In particular, since s1.x/ is decreasing, so must 
1.x/. However, at the same time,
s0.x/ is decreasing, leading to the following corollary:

Corollary 1. It cannot be the case that at some point x1, the oil producer produces,
but for some x2 > x1 the oil producer does not produce.

Thus, we define the point

x�
b D inffx > 0 W q�

0 .x/ � 0g:

For all points x < x�
b , the oil producer will not produce. In particular, it is easy to

see that

supfx > 0 W q�
0 .x/ D 0g D inffx > 0 W q�

0 .x/ � 0g:

Proposition 8. If there exists a point x such that s0.x/ < 
1.x/, then the oil
producer will participate.

Proof. Assume for sake of contradiction that the oil player does not play. Then,
should he play, the cost must be too high. In other words, v0.x/ C s0.x/ > 
1.x/
must hold, requiring v0.x/ > 
1.x/ � s0.x/ > 0, so the value function is increasing
at the point x. However, then, there must be a neighborhood to the left of x on
which the value function is also rising; since the value function measures objective
utility, the player must produce nonzero quantity. If the player were to produce zero
quantity, then his utility could not increase. Thus, there must be a neighborhood to
the left of x on which the oil player produces. However, Corollary 1 then implies
that at x, the oil player must participate, contradicting the assumption.

It thus follows immediately that there are three cases for the form of s0.x/

CI: It could be that s0.0/ < 
1.0/, which implies that s0.x/ < 
1.x/ for all x, in
which case the oil producer always plays.

CII: It could be that s0.x/ � 
1.x/ for all x, in which case the oil producer never
plays.

CIII: It could be that s0.0/ � 
1.0/, but there is some later x0 > 0 such
that s0.x0/ < 
1.x0/. By continuity, it is evident that the point x�

b can be
expressed as

x�
b D inffs0.x/ < 
1.x/g:
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In the third case we were examining, continuity and closure of Œ0; x0� requires
that x�

b 2 Œ0; x0�. In particular, continuity of s0.x/ and s0.x/ decreasing implies that
in this case, x�

b is the unique point that satisfies s0.x�
b / D 
1.x�

b /.
The following Proposition then establishes the Markov perfect equilibrium:

Proposition 9. The Markov perfect equilibrium for the game is that for all points
x < x�

b , the renewable player is the only player and the strategies are

.q�
0 ; q

�
1 / D

�
0;
1 � s0.x/

2

�
:

For all x > x�
b ,

.q�
0 ; q

�
1 / D �

1 � 2v0.x/ � 2s0.x/C s1.x/; 1 � 2s1.x/C v0.x/C s0.x/
�
:

Proof. Should we show that this holds for Case III, we can merely take the limits
x�

b ! 0 for Case I and x�
b ! 1 for Case II, so proving that this is the relevant

equilibrium for Case III suffices. Assume for contradiction that this is not a Markov
equilibrium. Then, either there is some strategy q0 such that profit is larger for the
oil player holding q�

1 constant (Case A), or there is some strategy q1 such that profit
is larger for the renewable player holding q�

0 constant (Case B). Assume Case A
holds; then, Proposition 8 implies optimality of q�

0 . Assume Case B holds; then,
when x < x�

b , the renewable player has a monopoly on the market, which implies q�
1

is optimal. For x > x�
b , the optimal Cournot equilibrium is described by q�

1 and hence
is already optimal. Thus, the assumption fails to hold and we have a contradiction,
implying the result.

3.4 Varying Costs: Numerical Calculations

We now investigate the problem numerically. We first consider a simple case, shown
in Fig. 5; the oil producer shall have an exponentially decreasing cost in stock, that
is s0.x/ D :6e�x and player 1, our renewable player, shall have an exponentially
increasing cost in stock, that is, s1.x/ D :6.1 � e�x/. The left plot suggests a result
that follows directly from the analytical propositions above. That is, for sufficiently
low stock, that is for all stock x < x�, where x� satisfies s0.x�/ D 
1.x�/, the
oil producer has a cost too high for him to ever produce. For all x > x�, his cost
is lower than the necessary threshold. This is reflected in the value functions v.x/
which satisfy v.x/ D 0 for all x 2 Œ0; x��.

Although not explicitly depicted, for large reserves of oil, the renewable players’
cost increases to the point where he must drop out, leading to an oil monopoly for
sufficiently large x. In particular, we note that the total quantity produced is not
smooth at these two points. This is as expected; if we let x0 be the point at which the
oil player has a monopoly for all x > x0, the intervals Œ0; x��, .x�; x0/, and .x0;1/

correspond to fundamentally different games.
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Fig. 5 The “low” cost corresponds to s0.x/ D :6e�:1x and s1.x/ D :6.1� e�:1x/, while the “high”
cost case corresponds to s0.x/ D :6e�:1x C :1 and s1.x/ D :6.1� e�:1x/

Fig. 6 The “low” cost corresponds to s0.x/ D :6e�:1x and s1.x/ D :6.1� e�:1x/, while the “high”
cost case corresponds to s0.x/ D :8e�:1x and s1.x/ D :6.1� e�:1x/

Finally, Fig. 6 plots two value functions; this time, we once again fix s1.x/ D
:6.1� e�:1x/. However, the low s0.x/ case corresponds to s0.x/ D :6e�:1x, while the
high s0.x/ case corresponds to s0.x/ D :8e:1x. While the right plot exhibits similar
features to those discussed earlier, the left plot is of particular interest. If we denote
vL.x/ to correspond to the low cost case and vH.x/ to correspond to the high cost,
we note that as x ! 1, kvH.x/ � vL.x/k ! 0. This is a consequence of the lower
and higher costs both converging to 0, which reduces the difference in oil value
over time. This suggests that as stock is increased to arbitrarily large amounts, the
differences in discounted profits for the oil producer becomes negligible as long as
the costs over time converge to the same value.
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4 Resource Discovery

We now allow that the oil producer may invest in research and development,
choosing to invest in exploration that yields a possibility of discovering new
reserves. In particular, the oil producer may, at any given point, explore with
intensity a at a cost C.a/. We choose C.a/ to be increasing in a. As intensity
increases, the probability of finding additional reserves also increases. In particular,
we let reserves at any time t evolve according to

dXt D �q0.Xt/1fXt>0g dt C ı dNt:

Here, Nt is a point process with intensity �at, where � is determined exogenously.
The probability of increasing one’s reserves by a fixed quantity ı at a given time t is
thus �atdt. This is the situation considered in [9] for constant costs.

4.1 Two Players

We first consider a scenario similar to above where there are two players, an
oil player (denoted player 0) and a renewable player (denoted player 1). The oil
producer’s strategy will depend on his stock at any given time and produces at
q0.Xt/, where q0 is part of a Markov strategy with player 1.

We let both players have a cost of extraction s0.x/ and s1.x/, where s0
0.x/ < 0.

This reflects that as oil runs out, the oil producer’s cost of extraction also goes
up. Meanwhile, we let s0

1.x/ > 0, since as x decreases, investment and the like in
renewable resources increasing.

We then can write the value functions for both players, where .q�
0 ; q

�
1 / is a

Markov equilibrium:

v.x/ D sup
q0;a

E

�Z 1

0

e�rt
�
q0.Xt/.1 � q0.Xt/ � q�

1 .Xt/ � s0.Xt// � C.at/
�

dt
ˇ̌
X0 D x

�

w.x/ D sup
q1

E

�Z 1

0

e�rtq1.Xt/.1 � q�
0 .Xt/ � q1.Xt/ � s1.Xt//1fXt>0gdt

C
Z 1

0

e�rt 1

4
.1 � s1.Xt//

21fXtD0gdt
ˇ̌
X0 D x

�
:

As earlier, we will note that v0.x/ will be the only value function necessary for
a description of the strategies. From just the value functions, we may note that
the oil player has to optimize over two variables, q0 and a. In other words, in
certain intervals it may be optimal for player 1 to defer production by investing
in exploration (R&D) while at other times, he may choose to not invest in R&D
at all.
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The corresponding Hamilton-Jacobi equation for the oil producer is

rv.x/ D sup
q0;a

	
.1 � q0 � q�

1 /q0 � q0.v
0.x/C s0.x// � C.a/C a��v.x/



:

Here, we have that C.a/ is the cost of exploring with intensity a and�v.x/ is a jump
term defined by

�v.x/ D v.x C ı/ � v.x/:
Since q1 and a are additively separable, we can simplify the above Hamilton-Jacobi
equation to

rv.x/ D sup
q0

˚
.1 � q0 � q�

1 /q0 � q0.v
0.x/C s0.x//

�C sup
a

f�C.a/C a��v.x/g :

In particular, the optimum exploration intensity at any given x is given by

a� D argsup
a�0

�C.a/C a��v.x/;

the Legendre transform of the exploration cost function evaluated at ��v.x/.
As is done in [9], we will take the cost of exploration to be

C.a/ D 1

ˇ
aˇ C �a; (19)

with ˇ > 1 and � � 0. We define a saturation point xsat to be the point where the oil
producer stops exploring. In particular,

xsat D inffa�.x/ D 0 W x > 0g:
Since we require C.a/ to be increasing in a, it is evident from � > 0 and �v.x/ > 0
(v.x/ non-decreasing is immediate as additional reserves cannot make one worse
off), we have that for all x > xsat, a�.x/ D 0 and for all x < xsat, a�.x/ > 0. It is
immediately seen that

a�.x/ D Œmax.��v.x/ � �; 0/���1 ; where � D ˇ

ˇ � 1 : (20)

4.1.1 Structure of Solution

In particular, there are three possibilities. In regions where s0.x/ >
1C s1.x/

2
, the oil

producer is blockaded and does not produce. On this interval, the above Hamilton-
Jacobi equation reduces to

v.x/ D �C.a�/C a���v.x/:
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When both the oil and renewable players produce, then the Hamilton-Jacobi
equation reduces to

rv D 1

9

�
1 � 2s0.x/ � 2v0.x/C s1.x/

�2 C 1

�
Œmax.��v.x/ � �; 0/�� :

If the renewable player is blockaded, in the sense that there exists a finite x1b such
that

x1b D inffq�
1 .x/ D 0 W x > 0g;

then for all x � x1b, the Hamilton-Jacobi equation is

rv D 1

4
.1 � s0.x/ � v0.x//2 C 1

�
Œmax.��v.x/ � �; 0/�� :

The case where s0.x/ D 0 has been asymptotically evaluated when � < � for small
� in [9].

Finally, to compute the boundary condition, we note that at x D 0, the oil
producer cannot produce; that is, we have q0.0/ D 0. This implies that

v.0/ D sup
a�0

E

�
e�rTv.ı/ �

Z T

0

e�rtC.a/dt

�
;

where T is the time until when the next discovery is made.

In the case where s0.x/ >
1C s1.x/

2
for some x, we let

x� D sup


x W s0.x/ >

1C s1.x/

2

�
:

If no such x� exists (that is s0.x/ < .1C s1.x//=2 for all x 2 RC), we let x� ! 0. In
particular, the constraint

v.x�/ D sup
a�0

E

�
e�rTv.x� C ı/ �

Z T

0

e�rtC.a/dt

�

must also hold. The above thus implies that

v.0/ D sup
a�0

�av.ı/ � C.a/
�a C r

: (21)
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4.1.2 Numerical Discretization

As explained in [9], we can reduce the above to an iterative ODE that can be solved
with Runge-Kutta methods by defining v0.x/ D v.x/, which is the no-exploration
case solved in Sect. 3.3. For all n � 1, we recursively define

rvn D .qn
0.x//

2 C 1

�

�
max.�.vn�1.x C ı/ � vn.x// � �; 0/��

qn
0 D

8̂
<̂
ˆ̂:

1
2
.1 � s0.x/ � v0.x// if x � x1b
1
3
.1 � 2s0.x/ � 2v0.x/C s1.x// if x 2 .x�; x1b/
0 if x 2 Œ0; x��

vn.0/ D sup
a�0

�avn�1.ı/ � C.a/
�a C r

:

vn.x 2 .0; x�// D sup
a�0

�avn�1.x C ı/ � C.a/
�a C r

;

where C.a/ is defined in (19). The above can then be solved using standard Runge-
Kutta methods. In particular, it is shown in [9] that for a monopoly with zero costs,
the above iterative scheme does converge uniformly to the value function with
exploration.

4.2 Numerical Solution for Two Players

A numerical solution for the case where s0.x/ D :15e�:05x and s1.x/ D :15.1 �
e�:1x/ C 0:5 is evaluated graphically using the iterative approach above in Figs. 7
and 8. We note in particular that as x ! 1, kv.x/ � v0.x/k < � for � ! 0. This
follows from v0.x/ ! 0 as x ! 1 for all iterations n; hence, we also have from
the Mean Value Theorem that �v.x/ ! 0 as x ! 1, and � > 0 forces a�.x/ to
be realized at 0 as x ! 1. Applying this limit to the Hamilton-Jacobi equation, we
see that as x ! 1, we recover the original equation for the non-exploration case,
implying that kv.x/ � v0.x/k ! 0 as x ! 1. Further, we can see that for all x,
v.x/ � v0.x/. This follows immediately from a revealed preference argument, since
when we allow exploration, the oil producer can never be strictly worse off, as he
can always choose to never explore.

From Fig. 8, we have that for all x < xsat, the oil producer (player 0), does
indeed explore and has a value a�.x/ > 0. We also have analytically that a�.x/ is
strictly decreasing in x. This follows from Fig. 7 which indicates that v.x/ is concave
everywhere. This is a result of our chosen cost function which has a low enough
Lipschitz constant to obey the condition outlined in Proposition 8. Hence, �v.x/
is decreasing in x so a�.x/ must also be strictly decreasing. Since the process that
governs evolution of reserves ıdNt has increased probability of identifying with ı
as x ! 1, we can see that there are more “jumps” or discoveries as x decreases.
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Fig. 7 Oil producer has cost function s0.x/ D :15e�0:05x and the renewable player has cost
function s1.x/ D :15.1� e�:1x/C 0:5

Fig. 8 Simulation vs. time of an exhaustible resource producer (player 0) and renewable producer
(player 1) with costs s0 D :15e�:05x and s1.x/ D :15.1� e�:1x/C 0:5

Intuitively, as oil runs out, the oil producer needs to amp up discovery in order
to stay in the game and is thus willing to pay additional cost, since the opportunity
cost of not exploring is to leave the game. In the right panel of Fig. 8, we can also
see such jumps. In particular, in the beginning, the oil producer does fairly well, and
for each discovery, the oil producer does produce additional quantities; even though
the cost for the renewable player approaches a cost significantly higher than that of
the oil producer (0:5 for player 1 vs. :15 for player 0), the renewable producer does
indeed outproduce when the oil effectively runs out. Finally, we can note a trend of
total quantity q0 C q1 decreasing in x, which corresponds to a higher market price
over time.
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Fig. 9 Simulation vs. time with increased relative cost for player 0 (exhaustible producer). In
particular, we now let s0.x/ D :25e�:05x and s1.x/ D :15.1� e�:1x/C :35

If we now increase the relative cost of s0.x/ by both increasing s0.x/ and by
decreasing s1.x/, we obtain the simulation presented in Fig. 9. We can note a
few differences. First, xb ! 1, so the renewable producer is never blockaded.
Further, the saturation point xsat is now strictly lower. That is, the oil producer stops
researching for new reserves at a lower threshold. This is a mathematical triviality
from the expression for a�.x/; as we increase the relative cost of s0.x/, the value
function v.x/ is decreased since profits are lower. This in turn causes �v.x/ to go
down since the marginal utility of an additional ı amount of oil at any given x is also
lower. Hence, the threshold for which the cost becomes too prohibitive to research
is also lower.

In particular, a�.x/ is also strictly lower in this case due to an argument similar to
that in the previous paragraph. This means the probability of successful discovery
of reserves is also lower. Hence, there is a dual effect to increasing relative cost.
Not only does the oil producer produce less and hence have less discounted profit
overall, but he also spares less for researching, which harms him when x ! 0.

Finally, we can note that in the long term, the market price is quite similar since
the total quantity produced, plotted in the right panel of Fig. 9 is about the same as
before. However, now, the green producer almost always overtakes the red producer
because the probability of discovery is now lower.

4.3 N-player Case

Finally, we consider a multi-player oligopoly differential game with exploration.
Consider an N player game where player 0 is an exhaustible producer, whom we
will term the “oil” producer, while players 1; : : : ;N � 1 are renewable players with
fixed costs s1; : : : ; sN�1. For simplicity, we set each of these costs to be constant
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for all x. Further, let the “oil” producer have a decreasing cost of extraction s0.x/
such that s0

0.x/ < 0. Unlike previously, we now allow the oil producer to invest in
R&D which may result in discovery of new oil sources. Borrowing notation from
previously, we let

S.N�1/ D
N�1X
iD1

si; and 
N D 1C S.N�1/

N
:

Letting .q0; : : : ; qN�1/ be the Markov strategies of production given any remaining
stock x 2 RC, the reserves evolve according to

dXt D �q0.Xt/1fXt>0g dt C ıdNt:

Now, there are N players, but player 0 has a cost of extraction s0.x/ which
depends on the amount of stock left. Denoting the cost of exploration with intensity
a as C.a/, the appropriate value function for the oil producer is, given that we denote
.q�
0 ; : : : ; q

�
N�1/ as a Markov perfect equilibrium,

v.x/ D sup
q0;a

E

"Z 1

0

e�rt

 
q0.Xt/

 
1 � q0.Xt/ �

N�1X
iD1

q�
i .Xt/ � s0.Xt/

!
� C.at/

!
dt

#
;

where X0 D x.
As throughout the other games that we have considered, the value functions for

the other players are not needed for analysis of blockading and saturation points.
However, for completeness, we have that

wi.x/ D sup
qi

E

2
4
Z 1

0

e�rtqi.Xt/

0
@1 � q�

0 .Xt/ �
N�1X

jD1;j¤i

q�
j .Xt/ � qi.Xt/ � si

1
A1fXt>0gdt

C
Z 1

0

e�rt 1

.N C 1/2

 
1 � .N C 1/si C

N�1X
iD1

si

!2
1fXtD0g dt

ˇ̌
X0 D x

3
5 ;

for i 2 f1; : : : ;N � 1g.
The corresponding Hamilton-Jacobi equation is

rv.x/ D sup
q0

( 
1 � q0 �

N�1X
iD1

q�
i

!
q0 � q0v

0.x/
)

C sup
a

f�C.a/C a��v.x/g :

It is easy to verify that assuming the same cost function for exploration, the
expression for a�.x/ is given by (20) as before, with the difference being internalized
in the jump term�v.x/. Further, we can note that the boundary condition (21) from
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before also holds. However, now that s0.x/ is decreasing, we have that for all x such
that s0.x/ > 
N , the oil producer does not play and the appropriate Hamilton-Jacobi
equation in that instance is simply

rv.x/ D 1

�
Œmax.��v.x/ � �; 0/�� :

As we did in Sect. 4.1.2, we recast the problem into a set of iterative ODEs which
uniformly converge to v.x/. In particular, letting v0.x/ be the solution where � D 0

(the no-exploration case), which was analyzed in Sect. 3.3, we define

rvn D .qn
0.x//

2 C 1

�

�
max

�
�.vn�1.x C ı/ � vn.x// � �; 0���

qn
0.x/ D

8̂
<̂
ˆ̂:

1

R C 2

 
1 � s0.x/ � v0.x/C

RX
iD1

si

!
if s0.x/ < 
N

0 if s0.x/ � 
N

vn.0/ D sup
a�0

�avn�1.ı/ � C.a/
�a C r

vn.x 2 .0; x�// D sup
a�0

�avn�1.x C ı/ � C.a/
�a C r

Here, x� is the value of x such that x� D inffx 2 RC W s.x/ < 
Ng and R is the
number of renewable players who play at x. We can determine R by assuming that
all players play, and then checking the quantity produced by the highest cost player.
We denote

qn D 1

n C 2

�
1 � .n C 2/sn C s0.x/C v0.x/C S.n/

�

R D minfn W qn < 0I n 2 f1; : : : ;N � 1gg:

4.4 N-player Simulations

We numerically evaluate the game using the expressions above. We choose s0.x/ D
:2e�x and s1; : : : ; s9 to be 0:51; 0:52; : : : ; 0:59 and depict the appropriate results in
Figs. 10 and 11. In particular, we note that once again v.x/ > v0.x/ for all x, as
expected. We note that as x increases, the market price decreases, since a low cost
option (oil) is available. When comparing the blockading points (denoted by vertical
bars) to the case where � D 0 (no exploration), the blockading points are to the right.
This follows intuitively, since when the oil producer can explore, he is better off and
hence is capable of driving the other players out faster. Mathematically, the shadow



424 A. Dasarathy and R. Sircar

Fig. 10 We let N D 10 and initially start off with 9 renewable players and one exhaustible player.
In particular, s0.x/ D :2e�x and s1; : : : ; s9 to be 0:51; : : : ; 0:59 respectively. The vertical dotted
lines in the right figure denote blockading points for each of the renewable players

Fig. 11 We simulate the game over time t 2 Œ0; 50� for the same structure as described previously
in Fig. 10

cost v0 is lower in x with exploration, so at any given x, the oil producer can produce
at a lower effective cost when exploration is an option, driving the blockading points
to the right for the renewables.

In Fig. 11, we simulate the game over time. We note that in this case, xsat is
higher than the initial quantity of reserves, so the oil producer always puts in a
finite amount of exploration effort, a�. Overall production goes down over time,
reflecting increased market price over time. Further, as the oil producer runs out,
the renewables produce more, but each discovery marks a resurgence of oil into the
market while the renewables temporarily cut back production.
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Further, if we increase s0.x/, then xsat is decreased. That is, when s0.x/ increases,
the value function v.x/ is lower everywhere than before because profits are lower.
In particular, �v.x/ is also lower since over the interval .x; x C ı/, the oil producer
is not as well off with a higher cost of extraction, leading to lower discounted profits
and in turn a lower value for �v.x/. Since a�.x/ is proportional to �v.x/ when
a�.x/ > 0 and since the threshold value xsat is also dependent on the magnitude of
�v.x/, an increased s0.x/ marks a lower xsat.

Intuitively, increasing s0.x/ means that there is a relative disincentive to explore,
since even if exploration is successful, the marginal benefits are not as great
because profit margins are lower. This suggests that in terms of policy implications,
increasing s0.x/ must be offset by a decrease in �, which is reflective of the cost of
exploration.

5 Application to Energy Policy

The above calculations demonstrate that the model that we have set forth is directly
applicable to energy policy. We consider two such examples below.

5.1 Taxing Oil Production but Subsidizing Research

We now apply the above stochastic differential game models to energy policy. As
alluded to throughout this paper, energy markets are similar to oligopoly models
with varying costs and exploration. For simplicity, we will consider the two player
model most recently explored whose costs both vary in time. We consolidate all
finite stock based suppliers into one player (player 0) and all renewable players into
a second (player 1).

In Fig. 12, we model a policy option of taxing oil production but subsidizing their
exploration costs. That is, we lower C.a/ but increase s0.x/. Such a policy has the
potential of being revenue neutral and we lower � significantly to model this. We
note as a result that the oil producer is active on average for a longer time, since
a�.x/ is greater for all x in this situation. This follows immediately from C.a/ being
lower. Further, we note that xsat is much higher. Specifically, xsat increases from 7:65

to xsat D 21:25. In addition, since the oil producer has a lower cost of exploration,
he stays in for a longer period of time, leading to a lower market cost.

However, such policy is limited at best since this model assumes that the prob-
ability of finding additional reserves is independent of the amount of discoveries
already made, when in reality, such probability is not independent. As we find
additional reserves, the marginal probability of finding another one is lower in the
number of discoveries. However, it is of particular interest to note that lowering �
may have short term benefits in terms of price stability but has long term harms
in that the total number of possible reserves is exhausted at a faster rate even if
corrective action is taken in terms of increasing s0.x/.



426 A. Dasarathy and R. Sircar

Fig. 12 We now increase s0.x/ to s0.x/ D :5e�x but we lower � ! 0:01 from � D 0:1. This
models taxing production but incentivizing R&D

5.2 Taxing Oil vs. Subsidizing Green Energy

We will now compare the policy options of taxing our oil player and subsidizing our
green player. These are both policy options that are currently on the table and have
been implemented to some extent. However, to truly compare welfare overall, we
must also consider the third player, the consumer, who drives the inverse demand
function that we have assumed throughout. Assuming that demand is positive for
both goods (as reflected in our function), we can apply the Gorman Aggregation
Theorem to note that there exists an aggregate utility function that consolidates
the preferences of the representative household. In particular, the appropriate utility
function for our inverse demand function can be verified to be

u.Q;m; x/ D Q.x/

�
1 � Q.x/

2

�
C m.x/;

where Q.x/ D q0.x/C q1.x/, the total quantity produced when x stock is remaining,
and m.x/ is the total money the consumer has at time x. In particular, the consumer
will seek to maximize the time discounted integral of utility:

sup
Q.x.t//

E

�Z 1

0

�
e�
tQ.x.t//

�
1 � Q.x.t//

2

�
C m.x.t//

�
dt

�
;

where the evolution of stock is given by

dXt D �q0.Xt/1fXt>0g dt C ı dNt;

and 
 is the discounting factor of our consumer.
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We will consider three states of the world. Notationally, we denote the set of costs
and utilities by the array .si

0; s
i
1; u

i.Qi;mi; x//. Here, si
0 refers to the cost function for

the oil producer in state i and si
1 is the cost function for the renewable player in

state i. Additionally, ui.Qi;mi; x/ refers to the utility of the representative consumer
in state i, with Qi the total production and mi the amount of disposable money.
Finally, we will let qi

0 and qi
1 be the quantities produced by the oil and renewable

players respectively in state i.
State 1 will be our control case. For our numerical simulations, we will let

s10.x/ D :3e�:05x and s11.x/ D :6.1 � e�:1x/. The appropriate utility function in
this case is simply u1.Q1;m1; x/. State 2 will be the case where we impose a
tax on the oil producer. This is not to be conflated with a Pigouvian tax, which
is typically introduced to correct externalities. The utility function u.�/ does not
contain any direct disutility from consuming oil and the inverse demand function
has no differentiation from energy derived from oil or renewable sources. Hence,
this is merely a tax on finite resources, aimed at prolonging the time duration for
which the oil producer will play and also inducing further smoothing over time of oil
production. For numerical purposes, we will introduce a 33 % tax, so s20 D :4e�:05x,
s11.x/ D :6.1 � e�:1x/ and u2.Q2;m2; x/ D u1.Q2;m2; x/ C :1e�:1xq20. We assume
that the “government,” or agent taxing the oil producer redistributes 100 % of the
tax revenue to the consumer.

Finally, State 3 will be the case where subsidize green energy. We assume a 33 %
subsidy for sake of consistency, so s30.x/ D s10.x/ D :3e�:05x, s31.x/ D s11.x/� :2.1�
e�:1x/ D :4.1 � e�:1x/, and u3.Q3;m3; x/ D u1.Q3;m3; x/ � :2e�:1xq31.

We define the aggregate welfare W.x/ to be W.x/ D u.Q;m; x/C˘0.x/C˘1.x/,
where ˘i.x/ is the profit of the ith firm at any point x in stock. We note that
if at any given point x, if for two states i and j, Wi.x/ > Wj.x/, then, state i is
potentially Pareto improving over state j and hence preferable. In particular, since
aggregate welfare is higher, it is possible to make every player better off up to some
redistribution of profits.

In Fig. 13, the top left panel plots oil profits over remaining stock. The control is
clearly the best case scenario for the oil producer, as either taxing the oil player or
subsidizing green energy raises the relative cost of oil, lowering profits. In particular,
for low oil reserves, taxing oil is worse for oil profits than subsidizing green, but
the reverse is true for high reserve levels. The top right panel measures renewable
profits; as expected, the renewable producer is best off when his cost is subsidized
and does marginally better when oil is taxed, as doing so reduces the relative cost of
green energy.

Of particular interest is the bottom left panel of Fig. 13, which measures
consumer utility over remaining stock. The consumer is best off by subsidizing
green energy at high reserve levels and at such high reserve levels, taxing oil worsens
the consumer’s situation. However, as oil begins to run out, the utility derived from
subsidizing green energy begins to diminish. The bottom right panel accounts for
exploration efforts. In particular, at high oil reserves, taxing oil incentivizes the oil



428 A. Dasarathy and R. Sircar

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25
Oil profits

Stock remaining

P
ro

fi
ts

Control
Taxing oil
Subsidizing green

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25
Renewable profits

Stock remaining

P
ro

fi
ts

Control
Taxing Oil
Subsidizing green

0 10 20 30 40 50
0.58

0.59

0.6

0.61

0.62

0.63

0.64
Consumer utility

Stock remaining

P
ro

fi
ts

Control
Taxing Oil
Subsidizing green

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Exploration efforts

Stock remaining

E
xp

lo
ra

ti
on

 e
ff
or

t

Control
Taxing Oil
Subsidizing green

Fig. 13 Top left: plots oil (player 0’s) profits over remaining stock. Top right: computes renewable
energy (player 1’s) profits for remaining stock Xt. Bottom left: plots consumer utility over Xt.
Bottom right: plots exploration intensity a� over Xt for all three policy options

player to conduct more research, but as oil begins to run out, the additional taxation
reduces the discounted profits for the oil player should he discover, lowering
discovery efforts.

Figure 14 consolidates the above welfare analysis, accounting for the welfare of
both players and the representative consumer. For high oil reserves, the best policy
seems to be to do nothing, but as oil begins to run out, subsidizing green energy is
an effective policy, and as oil continues to deplete, taxation of oil might result in a
marginal increase in aggregate utility.

Finally, since the utility function that corresponds to the inverse demand function
does not factor beneficial macroeconomic effects such as price stability, we compare
these in Fig. 15, which depicts evolution of production levels. The left panel suggests
that taxing oil reduces oil production a bit, more so than subsidizing oil for low
reserve levels, though subsidizing oil reduces oil production when reserves are large.
However, subsidizing oil is far better at stimulating green energy for all energy
reserves. The right panel demonstrates that subsidizing green energy also results
in greatest price stability, while there is not as significant of a difference between
taxing oil and the control.
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Fig. 14 Considers the aggregate welfare index W for three policy options: doing nothing (control),
taxing oil, and subsidizing green energy
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Fig. 15 Evolution of market price and quantities produced by both players as a function of stock

6 Conclusion

We developed a mathematical model for oligopoly markets with exhaustible
resources, evolving extraction costs, and discovery. For the case where all costs
are constant and where one player plays when his resource stock is non-negative
and all others are renewable players, we presented a completely analytical solution,
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extending the work presented in [8]. We then presented partially analytical results
with numerical solutions for the subcases where costs evolve over time but discovery
is disabled, and finally when discovery of new reserves is permitted.

We next demonstrated how this model can be applied to energy policy. Of
particular interest is our comparison of taxing oil and subsidizing green energy, two
leading policy options that are currently being considered. We compared the two in
terms of aggregate welfare, which measures whether a policy option is potentially
Pareto improving. We found that for high reserve levels, taxation of exhaustible
players should be done only to correct for environmental externalities, and that
subsidizing green energy later in our game, when x.t/ decreases beyond a threshold
value, is potentially Pareto improving.

Future work may be considered in two directions. First, additional work may be
done to solve this problem in general for a constant prudence demand curve, as in
Eq. (1), which may alter the results slightly. We feel, however, that this should not
significantly alter the policy implications that are demonstrated in Sect. 5. Secondly,
as evidenced by the two examples in Sect. 5, this model itself may be applied to
derive further policy implications.
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