
Chapter 7

The Riemann Integral

7.1 Discussion: How Should Integration
be Defined?

The Fundamental Theorem of Calculus is a statement about the inverse relation-
ship between differentiation and integration. It comes in two parts, depending
on whether we are differentiating an integral or integrating a derivative. Under
suitable hypotheses on the functions f and F , the Fundamental Theorem of
Calculus states that

(i)

∫ b

a

F ′(x) dx = F (b)− F (a) and

(ii) if G(x) =

∫ x

a

f(t) dt, then G′(x) = f(x).

Before we can undertake any type of rigorous investigation of these statements,

we need to settle on a definition for
∫ b

a f . Historically, the concept of integration
was defined as the inverse process of differentiation. In other words, the integral
of a function f was understood to be a function F that satisfied F ′ = f . Newton,
Leibniz, Fermat, and the other founders of calculus then went on to explore the
relationship between antiderivatives and the problem of computing areas. This
approach is ultimately unsatisfying from the point of view of analysis because it
results in a very limited number of functions that can be integrated. Recall that
every derivative satisfies the intermediate value property (Darboux’s Theorem,
Theorem 5.2.7). This means that any function with a jump discontinuity cannot
be a derivative. If we want to define integration via antidifferentiation, then we
must accept the consequence that a function as simple as
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x0=a x1 x2 x3 xn−1 xn=b

c1 c2 c3 cn

Figure 7.1: A Riemann Sum.

h(x) =

{
1 for 0 ≤ x < 1
2 for 1 ≤ x ≤ 2

is not integrable on the interval [0, 2].
A very interesting shift in emphasis occurred around 1850 in the work of

Cauchy, and soon after in the work of Bernhard Riemann. The idea was to
completely divorce integration from the derivative and instead use the notion
of “area under the curve” as a starting point for building a rigorous definition
of the integral. The reasons for this were complicated. As we have mentioned
earlier (Section 1.2), the concept of function was undergoing a transformation.
The traditional understanding of a function as a holistic formula such as f(x) =
x2 was being replaced with a more liberal interpretation, which included such
bizarre constructions as Dirichlet’s function discussed in Section 4.1. Serving as
a catalyst to this evolution was the budding theory of Fourier series (discussed
in Section 8.5), which required, among other things, the need to be able to
integrate these more unruly objects.

The Riemann integral, as it is called today, is the one usually discussed in
introductory calculus. Starting with a function f on [a, b], we partition the
domain into small subintervals. On each subinterval [xk−1, xk], we pick some
point ck ∈ [xk−1, xk] and use the y-value f(ck) as an approximation for f on
[xk−1, xk]. Graphically speaking, the result is a row of thin rectangles con-
structed to approximate the area between f and the x-axis. The area of each
rectangle is f(ck)(xk − xk−1), and so the total area of all of the rectangles is
given by the Riemann sum (Fig. 7.1)

n∑
k=1

f(ck)(xk − xk−1).

Note that “area” here comes with the understanding that areas below the x-axis
are assigned a negative value.
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What should be evident from the graph is that the accuracy of the Riemann-
sum approximation seems to improve as the rectangles get thinner. In some
sense, we take the limit of these approximating Riemann sums as the width of
the individual subintervals of the partitions tends to zero. This limit, if it exists,

is Riemann’s definition of
∫ b

a
f .

This brings us to a handful of questions. Creating a rigorous meaning for
the limit just referred to is not too difficult. What will be of most interest
to us—and was also to Riemann—is deciding what types of functions can be
integrated using this procedure. Specifically, what conditions on f guarantee
that this limit exists?

The theory of the Riemann integral turns on the observation that smaller
subintervals produce better approximations to the function f . On each subin-
terval [xk−1, xk], the function f is approximated by its value at some point
ck ∈ [xk−1, xk]. The quality of the approximation is directly related to the
difference

|f(x)− f(ck)|

as x ranges over the subinterval. Because the subintervals can be chosen to
have arbitrarily small width, this means that we want f(x) to be close to f(ck)
whenever x is close to ck. But this sounds like a discussion of continuity! We
will soon see that the continuity of f is intimately related to the existence of

the Riemann integral
∫ b

a f .

Is continuity sufficient to prove that the Riemann sums converge to a well-
defined limit? Is it necessary, or can the Riemann integral handle a discontin-
uous function such as h(x) mentioned earlier? Relying on the intuitive notion

of area, it would seem that
∫ 2

0 h = 3, but does the Riemann integral reach this
conclusion? If so, how discontinuous can a function be before it fails to be inte-
grable? Can the Riemann integral make sense out of something as pathological
as Dirichlet’s function on the interval [0, 1]?

A function such as

g(x) =

{
x2 sin( 1

x ) for x �= 0
0 for x = 0

raises another interesting question. Here is an example of a differentiable func-
tion, studied in Section 5.1, where the derivative g′(x) is not continuous. As we
explore the class of integrable functions, some attempt must be made to reunite
the integral with the derivative. Having defined integration independently of
differentiation, we would like to come back and investigate the conditions under
which equations (i) and (ii) from the Fundamental Theorem of Calculus stated
earlier hold. If we are making a wish list for the types of functions that we
want to be integrable, then in light of equation (i) it seems desirable to expect
this set to at least contain the set of derivatives. The fact that derivatives are
not always continuous is further motivation not to content ourselves with an
integral that cannot handle some discontinuities.
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7.2 The Definition of the Riemann Integral

Although it has the benefit of some polish due to Darboux, the development
of the integral presented in this chapter is closely related to the procedure just
discussed. In place of Riemann sums, we will construct upper sums and lower
sums (Fig. 7.2), and in place of a limit we will use a supremum and an infimum.

Throughout this section, it is assumed that we are working with a bounded
function f on a closed interval [a, b], meaning that there exists an M > 0 such
that |f(x)| ≤ M for all x ∈ [a, b].

Partitions, Upper Sums, and Lower Sums

Definition 7.2.1. A partition P of [a, b] is a finite set of points from [a, b] that
includes both a and b. The notational convention is to always list the points of
a partition P = {x0, x1, x2, . . . , xn} in increasing order; thus,

a = x0 < x1 < x2 < · · · < xn = b.

For each subinterval [xk−1, xk] of P , let

mk = inf{f(x) : x ∈ [xk−1, xk]} and Mk = sup{f(x) : x ∈ [xk−1, xk]}.

The lower sum of f with respect to P is given by

L(f, P ) =

n∑
k=1

mk(xk − xk−1).

Likewise, we define the upper sum of f with respect to P by

U(f, P ) =

n∑
k=1

Mk(xk − xk−1).

For a particular partition P , it is clear that U(f, P ) ≥ L(f, P ). The fact that this
same inequality holds if the upper and lower sums are computed with respect
to different partitions is the content of the next two lemmas.

Definition 7.2.2. A partition Q is a refinement of a partition P if Q contains
all of the points of P ; that is, if P ⊆ Q.

Lemma 7.2.3. If P ⊆ Q, then L(f, P ) ≤ L(f,Q), and U(f, P ) ≥ U(f,Q).

Proof. Consider what happens when we refine P by adding a single point z to
some subinterval [xk−1, xk] of P .
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a=x0 xk−1 xk b=xn

Figure 7.2: Upper and Lower Sums.

m′′
k

m′
k=mk

xk−1 z xk

Focusing on the lower sum for a moment, we have

mk(xk − xk−1) = mk(xk − z) +mk(z − xk−1)

≤ m′
k(xk − z) +m′′

k(z − xk−1),

where

m′
k = inf {f(x) : x ∈ [z, xk]} and m′′

k = inf {f(x) : x ∈ [xk−1, z]}

are each necessarily as large or larger than mk.

By induction, we have L(f, P ) ≤ L(f,Q), and an analogous argument holds
for the upper sums.

Lemma 7.2.4. If P1 and P2 are any two partitions of [a, b], then L(f, P1) ≤
U(f, P2).

Proof. Let Q = P1 ∪ P2 be the so-called common refinement of P1 and P2.
Because P1 ⊆ Q and P2 ⊆ Q, it follows that

L(f, P1) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P2).



220 Chapter 7. The Riemann Integral

Integrability

Intuitively, it helps to visualize a particular upper sum as an overestimate for the
value of the integral and a lower sum as an underestimate. As the partitions get
more refined, the upper sums get potentially smaller while the lower sums get
potentially larger. A function is integrable if the upper and lower sums “meet”
at some common value in the middle.

Rather than taking a limit of these sums, we will instead make use of the
Axiom of Completeness and consider the infimum of the upper sums and the
supremum of the lower sums.

Definition 7.2.5. Let P be the collection of all possible partitions of the
interval [a, b]. The upper integral of f is defined to be

U(f) = inf{U(f, P ) : P ∈ P}.
In a similar way, define the lower integral of f by

L(f) = sup{L(f, P ) : P ∈ P}.
The following fact is not surprising.

Lemma 7.2.6. For any bounded function f on [a, b], it is always the case that
U(f) ≥ L(f).

Proof. Exercise 7.2.1.

Definition 7.2.7 (Riemann Integrability). A bounded function f defined
on the interval [a, b] is Riemann-integrable if U(f) = L(f). In this case, we

define
∫ b

a f or
∫ b

a f(x) dx to be this common value; namely,

∫ b

a

f = U(f) = L(f).

The modifier “Riemann” in front of “integrable” accurately suggests that
there are other ways to define the integral. In fact, our work in this chapter will
expose the need for a different approach, one of which is discussed in Section 8.1.
In this chapter, the Riemann integral is the only method under consideration,
so it will usually be convenient to drop the modifier “Riemann” and simply refer
to a function as being “integrable.”

Criteria for Integrability

To summarize the situation thus far, it is always the case for a bounded function
f on [a, b] that

sup{L(f, P ) : P ∈ P} = L(f) ≤ U(f) = inf{U(f, P ) : P ∈ P}.
The function f is integrable if the inequality is an equality. The major thrust
of our investigation of the integral is to describe, as best we can, the class
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of integrable functions. The preceding inequality reveals that integrability is
really equivalent to the existence of partitions whose upper and lower sums are
arbitrarily close together.

Theorem 7.2.8 (Integrability Criterion). A bounded function f is inte-
grable on [a, b] if and only if, for every ε > 0, there exists a partition Pε of [a, b]
such that

U(f, Pε)− L(f, Pε) < ε.

Proof. Let ε > 0. If such a partition Pε exists, then

U(f)− L(f) ≤ U(f, Pε)− L(f, Pε) < ε.

Because ε is arbitrary, it must be that U(f) = L(f), so f is integrable. (To be
absolutely precise here, we could throw in a reference to Theorem 1.2.6.)

The proof of the converse statement is a familiar triangle inequality argument
with parentheses in place of absolute value bars because, in each case, we know
which quantity is larger. Because U(f) is the greatest lower bound of the upper
sums, we know that, given some ε > 0, there must exist a partition P1 such that

U(f, P1) < U(f) +
ε

2
.

Likewise, there exists a partition P2 satisfying

L(f, P2) > L(f)− ε

2
.

Now, let Pε = P1 ∪ P2 be the common refinement. Keeping in mind that the
integrability of f means U(f) = L(f), we can write

U(f, Pε)− L(f, Pε) ≤ U(f, P1)− L(f, P2)

<
(
U(f) +

ε

2

)
−
(
L(f)− ε

2

)

=
ε

2
+

ε

2
= ε.

In the discussion at the beginning of this chapter, it became clear that inte-
grability is closely tied to the concept of continuity. To make this observation
more precise, let P = {x0, x1, x2, . . . , xn} be an arbitrary partition of [a, b], and
define Δxk = xk − xk−1. Then,

U(f, P )− L(f, P ) =

n∑
k=1

(Mk −mk)Δxk,

whereMk andmk are the supremum and infimum of the function on the interval
[xk−1, xk], respectively. Our ability to control the size of U(f, P )−L(f, P ) hinges
on the differences Mk−mk, which we can interpret as the variation in the range
of the function over the interval [xk−1, xk]. Restricting the variation of f over
arbitrarily small intervals in [a, b] is precisely what it means to say that f is
uniformly continuous on this set.
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Theorem 7.2.9. If f is continuous on [a, b], then it is integrable.

Proof. Because f is continuous on a compact set, it must be bounded. It is also
uniformly continuous for the same reason. This means that, given ε > 0, there
exists a δ > 0 so that |x− y| < δ guarantees

|f(x)− f(y)| < ε

b− a
.

Now, let P be a partition of [a, b] where Δxk = xk − xk−1 is less than δ for
every subinterval of P .

Mk=f(zk)

mk=f(yk)

xk−1 zk yk xk︸ ︷︷ ︸
xk−xk−1<δ

Given a particular subinterval [xk−1, xk] of P , we know from the Extreme
Value Theorem (Theorem 4.4.2) that the supremum Mk = f(zk) for some zk ∈
[xk−1, xk]. In addition, the infimum mk is attained at some point yk also in the
interval [xk−1, xk]. But this means |zk − yk| < δ, so

Mk −mk = f(zk)− f(yk) <
ε

b− a
.

Finally,

U(f, P )− L(f, P ) =

n∑
k=1

(Mk −mk)Δxk <
ε

b− a

n∑
k=1

Δxk = ε,

and f is integrable by the criterion given in Theorem 7.2.8.

Exercises

Exercise 7.2.1. Let f be a bounded function on [a, b], and let P be an arbitrary
partition of [a, b]. First, explain why U(f) ≥ L(f, P ). Now, prove Lemma 7.2.6.

Exercise 7.2.2. Consider f(x) = 1/x over the interval [1, 4]. Let P be the
partition consisting of the points {1, 3/2, 2, 4}.
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(a) Compute L(f, P ), U(f, P ), and U(f, P )− L(f, P ).

(b) What happens to the value of U(f, P )−L(f, P ) when we add the point 3
to the partition?

(c) Find a partition P ′ of [1, 4] for which U(f, P ′)− L(f, P ′) < 2/5.

Exercise 7.2.3 (Sequential Criterion for Integrability). (a) Prove that
a bounded function f is integrable on [a, b] if and only if there exists a
sequence of partitions (Pn)

∞
n=1 satisfying

lim
n→∞ [U(f, Pn)− L(f, Pn)] = 0,

and in this case
∫ b

a
f = limn→∞ U(f, Pn) = limn→∞ L(f, Pn).

(b) For each n, let Pn be the partition of [0, 1] into n equal subintervals. Find
formulas for U(f, Pn) and L(f, Pn) if f(x) = x. The formula 1 + 2 + 3 +
· · ·+ n = n(n+ 1)/2 will be useful.

(c) Use the sequential criterion for integrability from (a) to show directly that

f(x) = x is integrable on [0, 1] and compute
∫ 1

0
f .

Exercise 7.2.4. Let g be bounded on [a, b] and assume there exists a partition
P with L(g, P ) = U(g, P ). Describe g. Is it integrable? If so, what is the value

of
∫ b

a
g?

Exercise 7.2.5. Assume that, for each n, fn is an integrable function on [a, b].
If (fn) → f uniformly on [a, b], prove that f is also integrable on this set. (We
will see that this conclusion does not necessarily follow if the convergence is
pointwise.)

Exercise 7.2.6. A tagged partition (P, {ck}) is one where in addition to a
partition P we choose a sampling point ck in each of the subintervals [xk−1, xk].
The corresponding Riemann sum,

R(f, P ) =
n∑

k=1

f(ck)Δxk,

is discussed in Section 7.1, where the following definition is alluded to.
Riemann’s Original Definition of the Integral: A bounded function f is

integrable on [a, b] with
∫ b

a
f = A if for all ε > 0 there exists a δ > 0 such that

for any tagged partition (P, {ck}) satisfying Δxk < δ for all k, it follows that

|R(f, P )−A| < ε.

Show that if f satisfies Riemann’s definition above, then f is integrable in the
sense of Definition 7.2.7. (The full equivalence of these two characterizations of
integrability is proved in Section 8.1.)

Exercise 7.2.7. Let f : [a, b] → R be increasing on the set [a, b] (i.e., f(x) ≤
f(y) whenever x < y). Show that f is integrable on [a, b].
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7.3 Integrating Functions with Discontinuities

The fact that continuous functions are integrable is not so much a fortunate
discovery as it is evidence for a well-designed integral. Riemann’s integral is a
modification of Cauchy’s definition of the integral, and Cauchy’s definition was
crafted specifically to work on continuous functions. The interesting issue is
discovering just how dependent the Riemann integral is on the continuity of the
integrand.

Example 7.3.1. Consider the function

f(x) =

{
1 for x �= 1
0 for x = 1

on the interval [0, 2]. If P is any partition of [0, 2], a quick calculation reveals
that U(f, P ) = 2. The lower sum L(f, P ) will be less than 2 because any
subinterval of P that contains x = 1 will contribute zero to the value of the
lower sum. The way to show that f is integrable is to construct a partition that
minimizes the effect of the discontinuity by embedding x = 1 into a very small
subinterval.

Let ε > 0, and consider the partition Pε = {0, 1− ε/3, 1 + ε/3, 2}. Then,
L(f, Pε) = 1

(
1− ε

3

)
+ 0(ε) + 1

(
1− ε

3

)

= 2− 2

3
ε.

Because U(f, Pε) = 2, we have

U(f, Pε)− L(f, Pε) =
2

3
ε < ε.

We can now use Theorem 7.2.8 to conclude that f is integrable.

Although the function in Example 7.3.1 is extremely simple, the method
used to show it is integrable is really the same one used to prove that any
bounded function with a single discontinuity is integrable. The notation in the
following proof is more cumbersome, but the essence of the argument is that the
misbehavior of the function at its discontinuity is isolated inside a particularly
small subinterval of the partition.

Theorem 7.3.2. If f : [a, b] → R is bounded, and f is integrable on [c, b] for all
c ∈ (a, b), then f is integrable on [a, b]. An analogous result holds at the other
endpoint.

Proof. Let ε > 0. As usual, our task is to produce a partition P such that
U(f, P )− L(f, P ) < ε. For any partition, we can always write

U(f, P )− L(f, P ) =
n∑

k=1

(Mk −mk)Δxk

= (M1 −m1)(x1 − a) +

n∑
k=2

(Mk −mk)Δxk,
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so the first step is to choose x1 close enough to a so that

(M1 −m1)(x1 − a) <
ε

2
.

This is not too difficult. Because f is bounded, we know there exists M > 0
satisfying |f(x)| ≤ M for all x ∈ [a, b]. Noting that M1 −m1 ≤ 2M , let’s pick
x1 so that

x1 − a <
ε

4M
.

Now, by hypothesis, f is integrable on [x1, b], so there exists a partition P1 of
[x1, b] for which

U(f, P1)− L(f, P1) <
ε

2
.

Finally, we let P = {a} ∪ P1 be a partition of [a, b], from which it follows
that

U(f, P )− L(f, P ) ≤ (2M)(x1 − a) + (U(f, P1)− L(f, P1))

<
ε

2
+

ε

2
= ε.

Theorem 7.3.2 enables us to prove that a bounded function on a closed
interval with a single discontinuity at an endpoint is still integrable. In the
next section, we will prove that integrability on the intervals [a, b] and [b, d]
is equivalent to integrability on [a, d]. This property, together with an induc-
tion argument, leads to the conclusion that any function with a finite number
of discontinuities is still integrable. What if the number of discontinuities is
infinite?

Example 7.3.3. Recall Dirichlet’s function

g(x) =

{
1 for x rational
0 for x irrational

from Section 4.1. If P is some partition of [0, 1], then the density of the rationals
in R implies that every subinterval of P will contain a point where g(x) = 1. It
follows that U(g, P ) = 1. On the other hand, L(g, P ) = 0 because the irrationals
are also dense in R. Because this is the case for every partition P , we see that
the upper integral U(f) = 1 and the lower integral L(f) = 0. The two are not
equal, so we conclude that Dirichlet’s function is not integrable.

How discontinuous can a function be before it fails to be integrable? Before
jumping to the hasty (and incorrect) conclusion that the Riemann integral fails
for functions with more than a finite number of discontinuities, we should realize
that Dirichlet’s function is discontinuous at every point in [0, 1]. It would be
useful to investigate a function where the discontinuities are infinite in number
but do not necessarily make up all of [0, 1]. Thomae’s function, also defined
in Section 4.1, is one such example. The discontinuous points of this function
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are precisely the rational numbers in [0, 1]. In the exercises to follow we will
see that Thomae’s function is Riemann-integrable, raising the bar for allowable
discontinuous points to include potentially infinite sets.

The conclusion of this story is contained in the doctoral dissertation of Henri
Lebesgue, who presented his work in 1901. Lebesgue’s elegant criterion for
Riemann integrability is explored in great detail in Section 7.6. For the moment,
though, we will take a short detour from questions of integrability and construct
a proof of the celebrated Fundamental Theorem of Calculus.

Exercises

Exercise 7.3.1. Consider the function

h(x) =

{
1 for 0 ≤ x < 1
2 for x = 1

over the interval [0, 1].

(a) Show that L(f, P ) = 1 for every partition P of [0, 1].

(b) Construct a partition P for which U(f, P ) < 1 + 1/10.

(c) Given ε > 0, construct a partition Pε for which U(f, Pε) < 1 + ε.

Exercise 7.3.2. Recall that Thomae’s function

t(x) =

⎧⎨
⎩

1 if x = 0
1/n if x = m/n ∈ Q\{0} is in lowest terms with n > 0
0 if x /∈ Q

has a countable set of discontinuities occurring at precisely every rational num-

ber. Follow these steps to prove t(x) is integrable on [0, 1] with
∫ 1

0
t = 0.

(a) First argue that L(t, P ) = 0 for any partition P of [0, 1].

(b) Let ε > 0, and consider the set of points Dε/2 = {x ∈ [0, 1] : t(x) ≥ ε/2}.
How big is Dε/2?

(c) To complete the argument, explain how to construct a partition Pε of [0, 1]
so that U(t, Pε) < ε.

Exercise 7.3.3. Let

f(x) =

{
1 if x = 1/n for some n ∈ N
0 otherwise.

Show that f is integrable on [0, 1] and compute
∫ 1

0 f .

Exercise 7.3.4. Let f and g be functions defined on (possibly different) closed
intervals, and assume the range of f is contained in the domain of g so that the
composition g ◦ f is properly defined.
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(a) Show, by example, that it is not the case that if f and g are integrable,
then g ◦ f is integrable.

Now decide on the validity of each of the following conjectures, supplying
a proof or counterexample as appropriate.

(b) If f is increasing and g is integrable, then g ◦ f is integrable.

(c) If f is integrable and g is increasing, then g ◦ f is integrable.

Exercise 7.3.5. Provide an example or give a reason why the request is im-
possible.

(a) A sequence (fn) → f pointwise, where each fn has at most a finite number
of discontinuities but f is not integrable.

(b) A sequence (gn) → g uniformly where each gn has at most a finite number
of discontinuities and g is not integrable.

(c) A sequence (hn) → h uniformly where each hn is not integrable but h is
integrable.

Exercise 7.3.6. Let {r1, r2, r3, . . .} be an enumeration of all the rationals in
[0, 1], and define

gn(x) =

{
1 if x = rn
0 otherwise.

(a) Is G(x) =
∑∞

n=1 gn(x) integrable on [0, 1]?

(b) Is F (x) =
∑∞

n=1 gn(x)/n integrable on [0, 1]?

Exercise 7.3.7. Assume f : [a, b] → R is integrable.

(a) Show that if g satisfies g(x) = f(x) for all but a finite number of points
in [a, b], then g is integrable as well.

(b) Find an example to show that g may fail to be integrable if it differs from
f at a countable number of points.

Exercise 7.3.8. As in Exercise 7.3.6, let {r1, r2, r3, . . .} be an enumeration of
the rationals in [0, 1], but this time define

hn(x) =

{
1 if rn < x ≤ 1
0 if 0 ≤ x ≤ rn.

Show H(x) =
∑∞

n=1 hn(x)/2
n is integrable on [0, 1] even though it has discon-

tinuities at every rational point.
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Exercise 7.3.9 (Content Zero). A set A ⊆ [a, b] has content zero if for every
ε > 0 there exists a finite collection of open intervals {O1, O2, . . . , ON} that
contain A in their union and whose lengths sum to ε or less. Using |On| to refer
to the length of each interval, we have

A ⊆
N⋃

n=1

On and

N∑
n=1

|On| ≤ ε.

(a) Let f be bounded on [a, b]. Show that if the set of discontinuous points of
f has content zero, then f is integrable.

(b) Show that any finite set has content zero.

(c) Content zero sets do not have to be finite. They do not have to be count-
able. Show that the Cantor set C defined in Section 3.1 has content zero.

(d) Prove that

h(x) =

{
1 if x ∈ C
0 if x /∈ C.

is integrable, and find the value of the integral.

7.4 Properties of the Integral

Before embarking on the proof of the Fundamental Theorem of Calculus, we
need to verify what are probably some very familiar properties of the integral.
The discussion in the previous section has already made use of the following
fact.

Theorem 7.4.1. Assume f : [a, b] → R is bounded, and let c ∈ (a, b). Then,
f is integrable on [a, b] if and only if f is integrable on [a, c] and [c, b]. In this
case, we have ∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Proof. If f is integrable on [a, b], then for ε > 0 there exists a partition P such
that U(f, P ) − L(f, P ) < ε. Because refining a partition can only potentially
bring the upper and lower sums closer together, we can simply add c to P if
it is not already there. Then, let P1 = P ∩ [a, c] be a partition of [a, c], and
P2 = P ∩ [c, b] be a partition of [c, b]. It follows that

U(f, P1)− L(f, P1) < ε and U(f, P2)− L(f, P2) < ε,

implying that f is integrable on [a, c] and [c, b].
Conversely, if we are given that f is integrable on the two smaller intervals

[a, c] and [c, b], then given an ε > 0 we can produce partitions P1 and P2 of [a, c]
and [c, b], respectively, such that

U(f, P1)− L(f, P1) <
ε

2
and U(f, P2)− L(f, P2) <

ε

2
.
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Letting P = P1 ∪ P2 produces a partition of [a, b] for which

U(f, P )− L(f, P ) < ε.

Thus, f is integrable on [a, b].
Continuing to let P = P1 ∪ P2 as earlier, we have

∫ b

a

f ≤ U(f, P ) < L(f, P ) + ε

= L(f, P1) + L(f, P2) + ε

≤
∫ c

a

f +

∫ b

c

f + ε,

which implies
∫ b

a f ≤ ∫ c

a f +
∫ b

c f . To get the other inequality, observe that

∫ c

a

f +

∫ b

c

f ≤ U(f, P1) + U(f, P2)

< L(f, P1) + L(f, P2) + ε

= L(f, P ) + ε

≤
∫ b

a

f + ε.

Because ε > 0 is arbitrary, we must have
∫ c

a
f +

∫ b

c
f ≤ ∫ b

a
f , so

∫ c

a

f +

∫ b

c

f =

∫ b

a

f,

as desired.

The proof of Theorem 7.4.1 demonstrates some of the standard techniques
involved for proving facts about the Riemann integral. The next result catalogs
the remainder of the basic properties of the integral that we will need in our
upcoming arguments.

Theorem 7.4.2. Assume f and g are integrable functions on the interval [a, b].

(i) The function f + g is integrable on [a, b] with
∫ b

a (f + g) =
∫ b

a f +
∫ b

a g.

(ii) For k ∈ R, the function kf is integrable with
∫ b

a kf = k
∫ b

a f.

(iii) If m ≤ f(x) ≤ M on [a, b], then m(b− a) ≤ ∫ b

a
f ≤ M(b− a).

(iv) If f(x) ≤ g(x) on [a, b], then
∫ b

a
f ≤ ∫ b

a
g.

(v) The function |f | is integrable and | ∫ b

a f | ≤ ∫ b

a |f |.
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Proof. Properties (i) and (ii) are reminiscent of the Algebraic Limit Theorem
and its many descendants (Theorems 2.3.3, 2.7.1, 4.2.4, and 5.2.4). In fact,
there is a way to use the Algebraic Limit Theorem for this argument as well.
An immediate corollary to Theorem 7.2.8 is that a function f is integrable on
[a, b] if and only if there exists a sequence of partitions (Pn) satisfying

(1) lim
n→∞ [U(f, Pn)− L(f, Pn)] = 0,

and in this case
∫ b

a f = limU(f, Pn) = limL(f, Pn). (A proof for this was
requested as Exercise 7.2.3.)

To prove (ii) for the case k ≥ 0, first verify that for any partition P we have

U(kf, P ) = kU(f, P ) and L(kf, P ) = kL(f, P ).

Exercise 1.3.5 is used here. Because f is integrable, there exist partitions (Pn)
satisfying (1). Turning our attention to the function (kf), we see that

lim
n→∞ [U(kf, Pn)− L(kf, Pn)] = lim

n→∞ k [U(f, Pn)− L(f, Pn)] = 0,

and the formula in (ii) follows. The case where k < 0 is similar except that we
have

U(kf, Pn) = kL(f, Pn) and L(kf, Pn) = kU(f, Pn).

A proof for (i) can be constructed using similar methods and is requested in
Exercise 7.4.5.

To prove (iii), observe that

U(f, P ) ≥
∫ b

a

f ≥ L(f, P )

for any partition P . Statement (iii) follows if we take P to be the trivial partition
consisting of only the endpoints a and b.

For (iv), let h = g − f and use (i), (ii), and (iii).

Because −|f(x)| ≤ f(x) ≤ |f(x)| on [a, b], statement (v) will follow from (iv)
provided that we can show that |f | is actually integrable. The proof of this fact
is outlined in Exercise 7.4.1.

To this point, the quantity
∫ b

a
f is only defined in the case where a < b.

Definition 7.4.3. If f is integrable on the interval [a, b], define

∫ a

b

f = −
∫ b

a

f.

Also, for c ∈ [a, b] define ∫ c

c

f = 0.
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Definition 7.4.3 is a natural convention to simplify the algebra of integrals.
If f is an integrable function on some interval I, then it is straightforward to
verify that the equation ∫ b

a

f =

∫ c

a

f +

∫ b

c

f

from Theorem 7.4.1 remains valid for any three points a, b, and c chosen in any
order from I.

Uniform Convergence and Integration

If (fn) is a sequence of integrable functions on [a, b], and if fn → f , then we are
inevitably going to want to know whether

(2)

∫ b

a

fn →
∫ b

a

f.

This is an archetypical instance of one of the major themes of analysis: When
does a mathematical manipulation such as integration respect the limiting pro-
cess?

If the convergence is pointwise, then any number of things can go wrong. It
is possible for each fn to be integrable but for the limit f not to be integrable
(Exercise 7.3.5). Even if the limit function f is integrable, equation (2) may fail
to hold. As an example of this, let

fn(x) =

{
n if 0 < x < 1/n
0 if x = 0 or x ≥ 1/n.

Each fn has two discontinuities on [0, 1] and so is integrable with
∫ 1

0
fn = 1.

For each x ∈ [0, 1], we have lim fn(x) = 0 so that fn → 0 pointwise on [0, 1].
But now observe that the limit function f = 0 certainly integrates to 0, and

0 �= lim
n→∞

∫ 1

0

fn.

As a final remark on what can go wrong in (2), we should point out that it is

possible to modify this example to produce a situation where lim
∫ 1

0 fn does not
even exist.

One way to resolve all of these problems is to add the assumption of uniform
convergence.

Theorem 7.4.4 (Integrable Limit Theorem). Assume that fn → f uni-
formly on [a, b] and that each fn is integrable. Then, f is integrable and

lim
n→∞

∫ b

a

fn =

∫ b

a

f.
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Proof. The proof that f is integrable was requested as Exercise 7.2.5. The
properties of the integral listed in Theorem 7.4.2 allow us to assert that for
any fn, ∣∣∣∣∣

∫ b

a

fn −
∫ b

a

f

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

(fn − f)

∣∣∣∣∣ ≤
∫ b

a

|fn − f |.

Let ε > 0 be arbitrary. Because fn → f uniformly, there exists an N such that

|fn(x) − f(x)| < ε/(b− a) for all n ≥ N and x ∈ [a, b].

Thus, for n ≥ N we see that

∣∣∣∣∣
∫ b

a

fn −
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|fn − f |

≤
∫ b

a

ε

b− a
= ε,

and the result follows.

Exercises

Exercise 7.4.1. Let f be a bounded function on a set A, and set

M = sup{f(x) : x ∈ A}, m = inf{f(x) : x ∈ A},

M ′ = sup{|f(x)| : x ∈ A}, and m′ = inf{|f(x)| : x ∈ A}.
(a) Show that M −m ≥ M ′ −m′.

(b) Show that if f is integrable on the interval [a, b], then |f | is also integrable
on this interval.

(c) Provide the details for the argument that in this case we have | ∫ b

a
f | ≤∫ b

a |f |.
Exercise 7.4.2. (a) Let g(x) = x3, and classify each of the following as pos-

itive, negative, or zero.

(i)

∫ −1

0

g +

∫ 1

0

g (ii)

∫ 0

1

g +

∫ 1

0

g (iii)

∫ −2

1

g +

∫ 1

0

g.

(b) Show that if b ≤ a ≤ c and f is integrable on the interval [b, c], then it is

still the case that
∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

Exercise 7.4.3. Decide which of the following conjectures is true and supply
a short proof. For those that are not true, give a counterexample.

(a) If |f | is integrable on [a, b], then f is also integrable on this set.
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(b) Assume g is integrable and g(x) ≥ 0 on [a, b]. If g(x) > 0 for an infinite

number of points x ∈ [a, b], then
∫ b

a
g > 0.

(c) If g is continuous on [a, b] and g(x) ≥ 0 with g(y0) > 0 for at least one

point y0 ∈ [a, b], then
∫ b

a
g > 0.

Exercise 7.4.4. Show that if f(x) > 0 for all x ∈ [a, b] and f is integrable,

then
∫ b

a
f > 0.

Exercise 7.4.5. Let f and g be integrable functions on [a, b].

(a) Show that if P is any partition of [a, b], then

U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Provide a specific example where the inequality is strict. What does the
corresponding inequality for lower sums look like?

(b) Review the proof of Theorem 7.4.2 (ii), and provide an argument for part
(i) of this theorem.

Exercise 7.4.6. Although not part of Theorem 7.4.2, it is true that the product
of integrable functions is integrable. Provide the details for each step in the
following proof of this fact:

(a) If f satisfies |f(x)| ≤ M on [a, b], show

|(f(x))2 − (f(y))2| ≤ 2M |f(x)− f(y)|.

(b) Prove that if f is integrable on [a, b], then so is f2.

(c) Now show that if f and g are integrable, then fg is integrable. (Consider
(f + g)2.)

Exercise 7.4.7. Review the discussion immediately preceding Theorem 7.4.4.

(a) Produce an example of a sequence fn → 0 pointwise on [0, 1] where

limn→∞
∫ 1

0
fn does not exist.

(b) Produce an example of a sequence gn with
∫ 1

0
gn → 0 but gn(x) does not

converge to zero for any x ∈ [0, 1]. To make it more interesting, let’s insist
that gn(x) ≥ 0 for all x and n.

Exercise 7.4.8. For each n ∈ N, let

hn(x) =

{
1/2n if 1/2n < x ≤ 1
0 if 0 ≤ x ≤ 1/2n

,

and set H(x) =
∑∞

n=1 hn(x). Show H is integrable and compute
∫ 1

0 H .
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Exercise 7.4.9. Let gn and g be uniformly bounded on [0, 1], meaning that
there exists a single M > 0 satisfying |g(x)| ≤ M and |gn(x)| ≤ M for all n ∈ N
and x ∈ [0, 1]. Assume gn → g pointwise on [0, 1] and uniformly on any set of
the form [0, α], where 0 < α < 1.

If all the functions are integrable, show that limn→∞
∫ 1

0 gn =
∫ 1

0 g.

Exercise 7.4.10. Assume g is integrable on [0, 1] and continuous at 0. Show

lim
n→∞

∫ 1

0

g(xn)dx = g(0).

Exercise 7.4.11. Review the original definition of integrability in Section 7.2,
and in particular the definition of the upper integral U(f). One reasonable sug-
gestion might be to bypass the complications introduced in Definition 7.2.7 and
simply define the integral to be the value of U(f). Then every bounded function
is integrable! Although tempting, proceeding in this way has some significant
drawbacks. Show by example that several of the properties in Theorem 7.4.2 no
longer hold if we replace our current definition of integrability with the proposal

that
∫ b

a
f = U(f) for every bounded function f .

7.5 The Fundamental Theorem of Calculus

The derivative and the integral have been independently defined, each in its own
rigorous mathematical terms. The definition of the derivative is motivated by
the problem of finding slopes of tangent lines and is given in terms of functional
limits of difference quotients. The definition of the integral grows out of the
desire to calculate areas under nonconstant functions and is given in terms of
supremums and infimums of finite sums. The Fundamental Theorem of Calculus
reveals the remarkable inverse relationship between the two processes.

The result is stated in two parts. The first is a computational statement
that describes how an antiderivative can be used to evaluate an integral over
a particular interval. The second statement is more theoretical in nature, ex-
pressing the fact that every continuous function is the derivative of its indefinite
integral.

Theorem 7.5.1 (Fundamental Theorem of Calculus). (i) If f : [a, b] →
R is integrable, and F : [a, b] → R satisfies F ′(x) = f(x) for all x ∈ [a, b],
then ∫ b

a

f = F (b)− F (a).

(ii) Let g : [a, b] → R be integrable, and for x ∈ [a, b], define

G(x) =

∫ x

a

g.

Then G is continuous on [a, b]. If g is continuous at some point c ∈ [a, b],
then G is differentiable at c and G′(c) = g(c).
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Proof. (i) Let P be a partition of [a, b] and apply the Mean Value Theorem to
F on a typical subinterval [xk−1, xk] of P . This yields a point tk ∈ (xk−1, xk)
where

F (xk)− F (xk−1) = F ′(tk)(xk − xk−1)

= f(tk)(xk − xk−1).

Now, consider the upper and lower sums U(f, P ) and L(f, P ). Because mk ≤
f(tk) ≤ Mk (where mk is the infimum on [xk−1, xk] and Mk is the supremum),
it follows that

L(f, P ) ≤
n∑

k=1

[F (xk)− F (xk−1)] ≤ U(f, P ).

But notice that the sum in the middle telescopes so that

n∑
k=1

[F (xk)− F (xk−1)] = F (b)− F (a),

which is independent of the partition P . Thus we have

L(f) ≤ F (b)− F (a) ≤ U(f).

Because L(f) = U(f) =
∫ b

a
f , we conclude that

∫ b

a
f = F (b)− F (a).

(ii) To prove the second statement, take x > y in [a, b] and observe that

|G(x) −G(y)| =
∣∣∣∣
∫ x

a

g −
∫ y

a

g

∣∣∣∣ =

∣∣∣∣
∫ x

y

g

∣∣∣∣
≤

∫ x

y

|g|

≤ M(x− y),

where M > 0 is a bound on |g|. This shows that G is Lipschitz and so is
uniformly continuous on [a, b] (Exercise 4.4.9).

Now, let’s assume that g is continuous at c ∈ [a, b]. In order to show that
G′(c) = g(c), we rewrite the limit for G′(c) as

lim
x→c

G(x)−G(c)

x− c
= lim

x→c

1

x− c

(∫ x

a

g(t) dt−
∫ c

a

g(t) dt

)

= lim
x→c

1

x− c

(∫ x

c

g(t) dt

)
.

We would like to show that this limit equals g(c). Thus, given an ε > 0, we
must produce a δ > 0 such that if |x− c| < δ, then

(1)

∣∣∣∣ 1

x− c

(∫ x

c

g(t) dt

)
− g(c)

∣∣∣∣ < ε.
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The assumption of continuity of g gives us control over the difference |g(t)−g(c)|.
In particular, we know that there exists a δ > 0 such that

|t− c| < δ implies |g(t)− g(c)| < ε.

To take advantage of this, we cleverly write the constant g(c) as

g(c) =
1

x− c

∫ x

c

g(c) dt

and combine the two terms in equation (1) into a single integral. Keeping in
mind that |x− c| ≥ |t− c|, we have that for all |x− c| < δ,

∣∣∣∣ 1

x− c

(∫ x

c

g(t) dt

)
− g(c)

∣∣∣∣ =

∣∣∣∣ 1

x− c

∫ x

c

(g(t)− g(c)) dt

∣∣∣∣
≤ 1

(x− c)

∫ x

c

|g(t)− g(c)| dt

<
1

(x− c)

∫ x

c

ε dt = ε.

Exercises

Exercise 7.5.1. (a) Let f(x) = |x| and define F (x) =
∫ x

−1
f . Find a piece-

wise algebraic formula for F (x) for all x. Where is F continuous? Where
is F differentiable? Where does F ′(x) = f(x)?

(b) Repeat part (a) for the function

f(x) =

{
1 if x < 0
2 if x ≥ 0.

Exercise 7.5.2. Decide whether each statement is true or false, providing a
short justification for each conclusion.

(a) If g = h′ for some h on [a, b], then g is continuous on [a, b].

(b) If g is continuous on [a, b], then g = h′ for some h on [a, b].

(c) If H(x) =
∫ x

a
h is differentiable at c ∈ [a, b], then h is continuous at c.

Exercise 7.5.3. The hypothesis in Theorem 7.5.1 (i) that F ′(x) = f(x) for all
x ∈ [a, b] is slightly stronger than it needs to be. Carefully read the proof and
state exactly what needs to be assumed with regard to the relationship between
f and F for the proof to be valid.

Exercise 7.5.4. Show that if f : [a, b] → R is continuous and
∫ x

a
f = 0 for all

x ∈ [a, b], then f(x) = 0 everywhere on [a, b]. Provide an example to show that
this conclusion does not follow if f is not continuous.
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Exercise 7.5.5. The Fundamental Theorem of Calculus can be used to supply
a shorter argument for Theorem 6.3.1 under the additional assumption that the
sequence of derivatives is continuous.

Assume fn → f pointwise and f ′
n → g uniformly on [a, b]. Assuming each

f ′
n is continuous, we can apply Theorem 7.5.1 (i) to get

∫ x

a

f ′
n = fn(x)− fn(a)

for all x ∈ [a, b]. Show that g(x) = f ′(x).

Exercise 7.5.6 (Integration-by-parts). (a) Assume h(x) and k(x) have
continuous derivatives on [a, b] and derive the familiar integration-by-parts
formula

∫ b

a

h(t)k′(t)dt = h(b)k(b)− h(a)k(a)−
∫ b

a

h′(t)k(t)dt .

(b) Explain how the result in Exercise 7.4.6 can be used to slightly weaken
the hypothesis in part (a).

Exercise 7.5.7. Use part (ii) of Theorem 7.5.1 to construct another proof of
part (i) of Theorem 7.5.1 under the stronger hypothesis that f is continuous.
(To get started, set G(x) =

∫ x

a f .)

Exercise 7.5.8 (Natural Logarithm and Euler’s Constant). Let

L(x) =

∫ x

1

1

t
dt,

where we consider only x > 0.

(a) What is L(1)? Explain why L is differentiable and find L′(x).

(b) Show that L(xy) = L(x)+L(y). (Think of y as a constant and differentiate
g(x) = L(xy).)

(c) Show L(x/y) = L(x)− L(y).

(d) Let

γn =

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
− L(n).

Prove that (γn) converges. The constant γ = lim γn is called Euler’s
constant.

(e) Show how consideration of the sequence γ2n − γn leads to the interesting
identity

L(2) = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · .
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Exercise 7.5.9. Given a function f on [a, b], define the total variation of f
to be

V f = sup

{
n∑

k=1

|f(xk)− f(xk−1)|
}
,

where the supremum is taken over all partitions P of [a, b].

(a) If f is continuously differentiable (f ′ exists as a continuous function), use

the Fundamental Theorem of Calculus to show V f ≤ ∫ b

a |f ′|.
(b) Use the Mean Value Theorem to establish the reverse inequality and con-

clude that V f =
∫ b

a
|f ′|.

Exercise 7.5.10 (Change-of-variable Formula). Let g : [a, b] → R be dif-
ferentiable and assume g′ is continuous. Let f : [c, d] → R be continuous, and
assume that the range of g is contained in [c, d] so that the composition f ◦ g is
properly defined.

(a) Why are we sure f is the derivative of some function? How about (f ◦g)g′?
(b) Prove the change-of-variable formula

∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(t)dt.

Exercise 7.5.11. Assume f is integrable on [a, b] and has a “jump discontinu-
ity” at c ∈ (a, b). This means that both one-sided limits exist as x approaches
c from the left and from the right, but that

lim
x→c−

f(x) �= lim
x→c+

f(x).

(This phenomenon is discussed in more detail in Section 4.6.)

(a) Show that, in this case, F (x) =
∫ x

a
f is not differentiable at x = c.

(b) The discussion in Section 5.5 mentions the existence of a continuous mono-
tone function that fails to be differentiable on a dense subset of R. Com-
bine the results of part (a) with Exercise 6.4.10 to show how to construct
such a function.

7.6 Lebesgue’s Criterion for Riemann

Integrability

We now return to our investigation of the relationship between continuity and
the Riemann integral. We have proved that continuous functions are integrable
and that the integral also exists for functions with only a finite number of discon-
tinuities. At the opposite end of the spectrum, we saw that Dirichlet’s function,
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which is discontinuous at every point on [0, 1], fails to be Riemann-integrable.
The next examples show that the set of discontinuities of an integrable func-
tion can be infinite and even uncountable. (These also appear as exercises in
Section 7.3.)

Riemann-integrable Functions with Infinite Discontinuities

Recall from Section 4.1 that Thomae’s function

t(x) =

⎧⎨
⎩

1 if x = 0
1/n if x = m/n ∈ Q\{0} is in lowest terms with n > 0
0 if x /∈ Q

is continuous on the set of irrationals and has discontinuities at every rational

point. Let’s prove that Thomae’s function is integrable on [0, 1] with
∫ 1

0
t = 0.

Let ε > 0. The strategy, as usual, is to construct a partition Pε of [0, 1] for
which U(t, Pε)− L(t, Pε) < ε.

Exercise 7.6.1. (a) First, argue that L(t, P ) = 0 for any partition P of [0, 1].

(b) Consider the set of points Dε/2 = {x : t(x) ≥ ε/2}. How big is Dε/2?

(c) To complete the argument, explain how to construct a partition Pε of [0, 1]
so that U(t, Pε) < ε.

We first met the Cantor set C in Section 3.1. We have since learned that C
is a compact, uncountable subset of the interval [0, 1].

Exercise 7.6.2. Define

h(x) =

{
1 if x ∈ C
0 if x /∈ C

.

(a) Show h has discontinuities at each point of C and is continuous at every
point of the complement of C. Thus, h is not continuous on an uncount-
ably infinite set.

(b) Now prove that h is integrable on [0, 1].

Sets of Measure Zero

Thomae’s function fails to be continuous at each rational number in [0, 1].
Although this set is infinite, we have seen that any infinite subset of Q is count-
able. Countably infinite sets are the smallest type of infinite set. The Cantor
set is uncountable, but it is also small in a sense that we are now ready to make
precise. In the introduction to Chapter 3, we presented an argument that the
Cantor set has zero “length.” The term “length” is awkward here because it
really should only be applied to intervals or finite unions of intervals, which the
Cantor set is not. There is a generalization of the concept of length to more
general sets called the measure of a set. Of interest to our discussion are subsets
that have measure zero.
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Definition 7.6.1. A set A ⊆ R has measure zero if, for all ε > 0, there exists a
countable collection of open intervals On with the property that A is contained
in the union of all of the intervals On and the sum of the lengths of all of the
intervals is less than or equal to ε. More precisely, if |On| refers to the length of
the interval On, then we have

A ⊆
∞⋃
n=1

On and

∞∑
n=1

|On| ≤ ε.

Example 7.6.2. Consider a finite set A = {a1, a2, . . . , aN}. To show that A
has measure zero, let ε > 0 be arbitrary. For each 1 ≤ n ≤ N , construct the
interval

Gn =
(
an − ε

2N
, an +

ε

2N

)
.

Clearly, A is contained in the union of these intervals, and

N∑
n=1

|Gn| =
N∑

n=1

ε

N
= ε.

Exercise 7.6.3. Show that any countable set has measure zero.

Exercise 7.6.4. Prove that the Cantor set has measure zero.

Exercise 7.6.5. Show that if two sets A and B each have measure zero, then
A ∪ B has measure zero as well. In addition, discuss the proof of the stronger
statement that the countable union of sets of measure zero also has measure
zero. (This second statement is true, but a completely rigorous proof requires
a result about double summations discussed in Section 2.8.)

α-Continuity

Definition 7.6.3. Let f be defined on [a, b], and let α > 0. The function f is
α-continuous at x ∈ [a, b] if there exists δ > 0 such that for all y, z ∈ (x−δ, x+δ)
it follows that |f(y)− f(z)| < α.

Let f be a bounded function on [a, b]. For each α > 0, define Dα to be the
set of points in [a, b] where the function f fails to be α-continuous; that is,

(1) Dα = {x ∈ [a, b] : f is not α-continuous at x.}
The concept of α-continuity was previously introduced in Section 4.6. Several
of the ensuing exercises appeared as exercises in this section as well.

Exercise 7.6.6. If α < α′, show that Dα′ ⊆ Dα.

Now, let

(2) D = {x ∈ [a, b] : f is not continuous at x }.
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Exercise 7.6.7. (a) Let α > 0 be given. Show that if f is continuous at
x ∈ [a, b], then it is α-continuous at x as well. Explain how it follows that
Dα ⊆ D.

(b) Show that if f is not continuous at x, then f is not α-continuous for some
α > 0. Now, explain why this guarantees that

D =

∞⋃
n=1

Dαn where αn = 1/n.

Exercise 7.6.8. Prove that for a fixed α > 0, the set Dα is closed.

Just as with continuity, α-continuity is defined pointwise, and just as with
continuity, uniformity is going to play an important role.

For a fixed α > 0, a function f : A → R is uniformly α-continuous on A
if there exists a δ > 0 such that whenever x and y are points in A satisfying
|x − y| < δ, it follows that |f(x) − f(y)| < α. By imitating the proof of
Theorem 4.4.7, it is completely straightforward to show that if f is α-continuous
at every point on some compact set K, then f is uniformly α-continuous on K.

Compactness Revisited

Compactness of subsets of the real line can be described in three equivalent
ways. The following theorem appears toward the end of Section 3.3.

Theorem 7.6.4. Let K ⊆ R. The following three statements are all equivalent,
in the sense that if any one is true, then so are the two others.

(i) Every sequence contained in K has a convergent subsequence that con-
verges to a limit in K.

(ii) K is closed and bounded.

(iii) Given a collection of open intervals {Gλ : λ ∈ Λ} that covers K (that is,
K ⊆ ⋃

λ∈Λ Gλ) there exists a finite subcollection {Gλ1 , Gλ2 , Gλ3 , . . . , GλN }
of the original set that also covers K.

The equivalence of (i) and (ii) has been used throughout the core material
in the text. Characterization (iii) has been less central but is essential to the
upcoming argument. If the characterization of compactness in terms of open
covers is not familiar, take a moment to review the second half of Section 3.3
and complete the proof that (i) and (ii) imply (iii) outlined in Exercise 3.3.9.

Lebesgue’s Theorem

We are now prepared to completely categorize the collection of Riemann-
integrable functions in terms of continuity.
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Theorem 7.6.5 (Lebesgue’s Theorem). Let f be a bounded function defined
on the interval [a, b]. Then, f is Riemann-integrable if and only if the set of
points where f is not continuous has measure zero.

Proof. Let M > 0 satisfy |f(x)| ≤ M for all x ∈ [a, b], and let D and Dα be
defined as in the preceding equations (1) and (2). Let’s first assume that D has
measure zero and prove that our function is integrable.

(⇐) Let ε > 0 and set

α =
ε

2(b− a)
.

Exercise 7.6.9. Show that there exists a finite collection of disjoint open in-
tervals {G1, G2, . . . , GN} whose union contains Dα and that satisfies

N∑
n=1

|Gn| < ε

4M
.

Exercise 7.6.10. Let K be what remains of the interval [a, b] after the open

intervals Gn are all removed; that is, K = [a, b]\⋃N
n=1 Gn. Argue that f is

uniformly α-continuous on K.

Exercise 7.6.11. Finish the proof in this direction by explaining how to con-
struct a partition Pε of [a, b] such that U(f, Pε)−L(f, Pε) ≤ ε. It will be helpful
to break the sum

U(f, Pε)− L(f, Pε) =

n∑
k=1

(Mk −mk)Δxk

into two parts—one over those subintervals that contain points of Dα and the
other over subintervals that do not.

(⇒) For the other direction, assume f is Riemann-integrable. We must argue
that the set D of discontinuities of f has measure zero.

Let ε > 0 be arbitrary, and fix α > 0. Because f is Riemann-integrable,
there exists a partition Pε of [a, b] such that U(f, Pε)− L(f, Pε) < αε.

Exercise 7.6.12. (a) Prove that Dα has measure zero. Point out that it is
possible to choose a cover for Dα that consists of a finite number of open
intervals.

(b) Show how this implies that D has measure zero.

Our main agenda in the remainder of this section is to employ Lebesgue’s
Theorem in our pursuit of a non-integrable derivative, but this elegant result
has a number of other applications.

Exercise 7.6.13. (a) Show that if f and g are integrable on [a, b], then so is
the product fg. (This result was requested in Exercise 7.4.6, but notice
how much easier the argument is now.)
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(b) Show that if g is integrable on [a, b] and f is continuous on the range of
g, then the composition f ◦ g is integrable on [a, b].

If we instead assume that f is integrable and g is continuous, it actually
doesn’t follow that the composition f ◦ g is an integrable function. Producing a
counterexample, however, requires a few more ingredients.

A Nonintegrable Derivative

To this point, our one example of a nonintegrable function is Dirichlet’s nowhere-
continuous function. We close this section with another example that has special
significance. The content of the Fundamental Theorem of Calculus is that inte-
gration and differentiation are inverse processes of each other. If a function f is
differentiable on [a, b], then part (i) of the Fundamental Theorem tells us that

(3)

∫ b

a

f ′ = f(b)− f(a) ,

provided f ′ is integrable. But shouldn’t f ′ be integrable just by virtue of being
a derivative? A curious side-effect of staring at equation (3) for any length of
time is that it starts to feel as though every derivative should be integrable
because we have an obvious candidate for what the value of the integral ought
to be. Alas, for the Riemann integral at least, reality comes up short of our
expectations. What follows is the construction of a differentiable function f for

which equation (3) fails because
∫ b

a
f ′ does not exist.

We will once again be interested in the Cantor set

C =
∞⋂
n=0

Cn,

defined in Section 3.1. As an initial step, let’s create a function f(x) that is
differentiable on [0, 1] and whose derivative f ′(x) has discontinuities at every
point of C. The key ingredient for this construction is the function

g(x) =

{
x2 sin(1/x) if x > 0
0 if x ≤ 0.

Exercise 7.6.14. (a) Find g′(0).

(b) Use the standard rules of differentiation to compute g′(x) for x �= 0.

(c) Explain why, for every δ > 0, g′(x) attains every value between 1 and −1
as x ranges over the set (−δ, δ). Conclude that g′ is not continuous at
x = 0.

Now, we want to transport the behavior of g around zero to each of the end-
points of the closed intervals that make up the sets Cn used in the definition of
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1

Figure 7.3: A preliminary sketch of f1(x).

the Cantor set. The formulas are awkward but the basic idea is straightforward.
Start by setting

f0(x) = 0 on C0 = [0, 1].

To define f1 on [0, 1], first assign

f1(x) = 0 for all x ∈ C1 =

[
0,

1

3

]
∪
[
2

3
, 1

]
.

In the remaining open middle third, put translated “copies” of g oscillating
toward the two endpoints (Fig. 7.3). In terms of a formula, we have

f1(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ∈ [0, 1/3]
g(x− 1/3) if x is just to the right of 1/3
g(−x+ 2/3) if x is just to the left of 2/3
0 if x ∈ [2/3, 1] .

Finally, we splice the two oscillating pieces of f1 together in a way that makes
f1 differentiable and such that

|f1(x)| ≤ (x− 1/3)2 and |f1(x)| ≤ (−x+ 2/3)2.

This splicing is no great feat, and we will skip the details so as to keep our
attention focused on the two endpoints 1/3 and 2/3. These are the points
where f ′

1(x) fails to be continuous.
To define f2(x), we start with f1(x) and do the same trick as before, this

time in the two open intervals (1/9, 2/9) and (7/9, 8/9). The result (Fig. 7.4)
is a differentiable function that is zero on C2 and has a derivative that is not
continuous on the set {

1

9
,
2

9
,
1

3
,
2

3
,
7

9
,
8

9

}
.

Continuing in this fashion yields a sequence of functions f0, f1, f2, . . . defined
on [0, 1].
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1

Figure 7.4: A graph of f2(x).

Exercise 7.6.15. (a) If c ∈ C, what is limn→∞ fn(c)?

(b) Why does limn→∞ fn(x) exist for x /∈ C?

Now, set
f(x) = lim

n→∞ fn(x).

Exercise 7.6.16. (a) Explain why f ′(x) exists for all x /∈ C.

(b) If c ∈ C, argue that |f(x)| ≤ (x − c)2 for all x ∈ [0, 1]. Show how this
implies f ′(c) = 0.

(c) Give a careful argument for why f ′(x) fails to be continuous on C. Re-
member that C contains many points besides the endpoints of the intervals
that make up C1, C2, C3, . . . .

Let’s take inventory of the situation. Our goal is to create a nonintegrable
derivative. Our function f(x) is differentiable, and f ′ fails to be continuous on
C. We are not quite done.

Exercise 7.6.17. Why is f ′(x) Riemann-integrable on [0, 1]?

The reason the Cantor set has measure zero is that, at each stage, 2n−1 open
intervals of length 1/3n are removed from Cn−1. The resulting sum

∞∑
n=1

2n−1

(
1

3n

)

converges to one, which means that the approximating sets C1, C2, C3, . . . have
total lengths tending to zero. Instead of removing open intervals of length 1/3n

at each stage, let’s see what happens when we remove intervals of length 1/3n+1.

Exercise 7.6.18. Show that, under these circumstances, the sum of the lengths
of the intervals making up each Cn no longer tends to zero as n → ∞. What is
this limit?
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1

Figure 7.5: A differentiable function with a non-integrable
derivative.

If we again take the intersection
⋂∞

n=0 Cn, the result is a Cantor-type set with
the same topological properties—it is closed, compact, perfect, and contains
no intervals. But a consequence of the previous exercise is that it no longer
has measure zero. This is just what we need to define our desired function.
By repeating the preceding construction of f(x) on this new Cantor-type set
of strictly positive measure, we get a differentiable function whose derivative
has too many points of discontinuity (Fig. 7.5). By Lebesgue’s Theorem, this
derivative cannot be integrated using the Riemann integral.

Exercise 7.6.19. As a final gesture, provide the example advertised in Exer-
cise 7.6.13 of an integrable function f and a continuous function g where the
composition f ◦ g is properly defined but not integrable. Exercise 4.3.12 may
be useful.

7.7 Epilogue

Riemann’s definition of the integral was a modification of Cauchy’s integral,
which was originally designed for the purpose of integrating continuous func-
tions. In this goal, the Riemann integral was a complete success. For continuous
functions at least, the process of integration now stood on its own rigorous foot-
ing, defined independently of differentiation. As analysis progressed, however,
the dependence of integrability on continuity became problematic. The last
example of Section 7.6 highlights one type of weakness: not every derivative
can be integrated. Another limitation of the Riemann integral arises in asso-
ciation with limits of sequences of functions. To get a sense of this, let’s once
again consider Dirichlet’s function g(x) introduced in Section 4.1. Recall that
g(x) = 1 whenever x is rational, and g(x) = 0 at every irrational point. Focusing
on the interval [0, 1] for a moment, let

{r1, r2, r3, r4 . . .}
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be an enumeration of the countable number of rational points in this interval.
Now, let g1(x) = 1 if x = r1 and define g1(x) = 0 otherwise. Next, define
g2(x) = 1 if x is either r1 or r2, and let g2(x) = 0 at all other points. In general,
for each n ∈ N, define

gn(x) =

{
1 if x ∈ {r1, r2, . . . , rn}
0 otherwise.

Notice that each gn has only a finite number of discontinuities and so is Riemann-

integrable with
∫ 1

0 gn = 0. But we also have gn → g pointwise on the
interval [0, 1]. The problem arises when we remember that Dirichlet’s nowhere-
continuous function is not Riemann-integrable. Thus, the equation

(1) lim
n→∞

∫ 1

0

gn =

∫ 1

0

g

fails to hold, not because the values on each side of the equal sign are different
but because the value on the right-hand side does not exist. The content of The-
orem 7.4.4 is that this equation does hold whenever we have gn → g uniformly.
This is a reasonable way to resolve the situation, but it is a bit unsatisfying
because the deficiency in this case is not entirely with the type of convergence
but lies in the strength of the Riemann integral. If we could make sense of the
right-hand side via some other definition of integration, then maybe equation
(1) would actually be true.

Such a definition was introduced by Henri Lebesque in 1901. Generally
speaking, Lebesgue’s integral is constructed using a generalization of length
called the measure of a set. In the previous section, we studied sets of measure
zero. In particular, we showed that the rational numbers in [0,1] (because they
are countable) have measure zero. The irrational numbers in [0,1] have measure
one. This should not be too surprising because we now have that the measures
of these two disjoint sets add up to the length of the interval [0, 1]. Rather
than chopping up the x-axis to approximate the area under the curve, Lebesgue
suggested partitioning the y-axis. In the case of Dirichlet’s function g, there
are only two range values—zero and one. The integral, according to Lebesgue,
could be defined via

∫ 1

0

g = 1 · [measure of set where g = 1] + 0 · [measure of set where g = 0]

= 1 · 0 + 0 · 1 = 0.

With this interpretation of
∫ 1

0 g, equation (1) is now valid!
The Lebesgue integral is presently the standard integral in advanced math-

ematics. The theory is taught to all graduate students, as well as to many
undergraduates, and it is the integral used in most research papers where inte-
gration is required. The Lebesgue integral generalizes the Riemann integral in
the sense that any function that is Riemann-integrable is Lebesgue-integrable
and integrates to the same value. The real strength of the Lebesgue integral
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is that the class of integrable functions is much larger. Most importantly, this
class includes the limits of different types of Cauchy sequences of integrable
functions. This leads to a group of extremely important convergence theorems
related to equation (1) with hypotheses much weaker than the uniform conver-
gence assumed in Theorem 7.4.4.

Despite its prevalence, the Lebesgue integral does have a few drawbacks.
There are functions whose improper Riemann integrals exist but that are not
Lebesgue-integrable. Another disappointment arises from the relationship be-
tween integration and differentiation. Even with the Lebesgue integral, it is still
not possible to prove ∫ b

a

f ′ = f(b)− f(a)

without some additional assumptions on f . Around 1960, a new integral was
proposed that can integrate a larger class of functions than either the Riemann
integral or the Lebesgue integral and suffers from neither of the preceding
weaknesses. Remarkably, this integral is actually a return to Riemann’s orig-
inal technique for defining integration, with some small modifications in how
we describe the “fineness” of the partitions. An introduction to the generalized
Riemann integral is the topic of Section 8.1.
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