
Chapter 6

Sequences and Series
of Functions

6.1 Discussion: The Power of Power Series

In 1689, Jakob Bernoulli published his Tractatus de seriebus infinitis summa-
rizing what was known about infinite series toward the end of the 17th century.
Full of clever calculations and conclusions, this publication was also notable for
one particular question that it didn’t answer; namely, what is the precise value
of the series ∞∑

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ · · · .

Bernoulli convincingly argued that
∑

1/n2 converged to something less than
2 (see Example 2.4.4) but he was unable to find an explicit expression for
the limit. Generally speaking, it is much harder to sum a series than it is to
determine whether or not it converges. In fact, being able to find the sum of a
convergent series is the exception rather than the rule. In this case, however, the
series

∑
1/n2 seemed so elementary; more elementary than, say,

∑∞
n=1 n

2/2n or∑∞
n=1 1/n(n+ 1), both of which Bernoulli was able to handle. “If anyone finds

and communicates to us that which has so far eluded our efforts,” Bernoulli
wrote, “great will be our gratitude.”1

Geometric series are the most prominent class of examples that can be readily
summed. In Example 2.7.5 we proved that

(1)
1

1− x
= 1 + x+ x2 + x3 + · · ·

1As quoted in [12], which contains a much more thorough account of this story.
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170 Chapter 6. Sequences and Series of Functions

for all |x| < 1. Thus, for example,
∑∞

n=0 1/2
n = 2 and

∑∞
n=0(−1/3)n = 3/4.

Geometric series were part of mathematical folklore long before Bernoulli; how-
ever, what was relatively novel in Bernoulli’s time was the idea of operating on
infinite series such as (1) with tools from the budding theory of calculus. For
instance, what happens if we take the derivative on each side of equation (1)?
The left side is easy enough—we just get 1/(1− x)2. But what about the right
side? Adopting a 17th century mindset, a natural way to proceed is to treat the
infinite series as a polynomial, albeit of infinite degree. Differentiation across
equation (1) in this fashion gives

(2)
1

(1− x)2
= 0 + 1 + 2x+ 3x2 + 4x3 + · · · .

Is this a valid formula, at least for values of x in (−1, 1)? Empirical evidence
suggests it is. Setting x = 1/2 we get

4 =
∞∑

n=1

n

2n−1
= 1 + 1 +

3

4
+

4

8
+

5

16
+ · · · ,

which feels plausible, and is in fact true. Although not Bernoulli’s requested
series, this does suggest a possible new line of attack.

Manipulations of this sort can be used to create a wide assortment of new
series representations for familiar functions. Substituting −x2 for x in (1) gives

(3)
1

1 + x2
= 1− x2 + x4 − x6 + x8 − · · · ,

for all x ∈ (−1, 1).
Once again closing our eyes to the potential danger of treating an infinite

series as though it were a polynomial, let’s see what happens when we take
antiderivatives. Using the fact that

(arctan(x))
′
=

1

1 + x2
and arctan(0) = 0,

equation (3) becomes

(4) arctan(x) = x− x3

3
+

x5

5
− x7

7
+ · · · .

Plugging x = 1 into equation (4) yields the striking relationship

(5)
π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .

The constant π, which arises from the geometry of circles, has somehow found its
way into an equation involving the reciprocals of the odd integers. Is this a valid
formula? Can we really treat the infinite series in (3) like a finite polynomial?
Even if the answer is yes there is still another mystery to solve in this example.
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Plugging x = 1 into equations (1), (2), or (3) yields mathematical gibberish, so
is it prudent to anticipate something meaningful arising from equation (4) at
this same value? Will any of these ideas get us closer to computing

∑∞
n=1 1/n

2?

As it turned out, Bernoulli’s plea for help was answered in an unexpected way
by Leonard Euler. At a young age, Euler was a student of Jakob Bernoulli’s
brother Johann, and the stellar pupil quickly rose to become the preeminent
mathematician of his age. Euler’s solution is impossible to anticipate. In 1735,
he announced that

1 +
1

4
+

1

9
+

1

16
+ · · · = π2

6
,

a provocative formula that, even more than equation (5), hints at deep con-
nections between geometry, number theory and analysis. Euler’s argument is
quite short, but it needs to be viewed in the context of the time in which it was
created. The “infinite polynomials” in this discussion are examples of power
series, and a major catalyst for the expanding power of calculus in the 17th and
18th centuries was a proliferation of techniques like the ones used to generate
formulas (2), (3), and (4). The machinations of both algebra and calculus are
relatively straightforward when restricted to the class of polynomials. So, if
in fact power series could be treated more or less like unending polynomials,
then there was a great incentive to try to find power series representations for
familiar functions like ex,

√
1 + x, or sin(x).

The appearance of arctan(x) in (4) is an encouraging sign that this might
indeed always be possible. One of Isaac Newton’s more significant achievements
was to produce a generalization of the binomial formula. If n ∈ N, then old-
fashioned finite algebra leads to the formula

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · ·+ xn.

Through a process of experimentation and intuition Newton realized that for
r /∈ N, the infinite series

(1 + x)r = 1 + rx +
r(r − 1)

2!
x2 +

r(r − 1)(r − 2)

3!
x3 + · · ·

was meaningful, at least for x ∈ (−1, 1). Setting r = −1, for example, yields

1

1 + x
= 1− x+ x2 − x3 + x4 − · · · ,

which is easily seen to be equivalent to equation (1). Setting r = 1/2 we get

√
1 + x = 1 +

1

2
x− 1

222!
x2 +

3

233!
x3 − 3 · 5

244!
x4 + · · · .
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One way to lend a little credence to this formula for
√
1 + x is to focus on the

first few terms and square the series:

(√
1 + x

)2
=

(
1 +

1

2
x− 1

8
x2 + · · ·

)(
1 +

1

2
x− 1

8
x2 + · · ·

)

= 1 +

(
1

2
+

1

2

)
x+

(
−1

8
+

1

4
− 1

8

)
x2 + · · ·

= 1 + x+ 0x2 + 0x3 + · · · .

Amid all of the unfounded assumptions we are making about infinity, calcula-
tions like this induce a feeling of optimism about the legitimacy of our search
for power series representations.

Newton’s binomial series is the starting point for a modern proof of Euler’s
famous sum, which is sketched out in detail in Section 8.3. Euler’s original
1735 argument, however, started from the power series representation for sin(x).
The formula

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

was known to Newton, Bernoulli, and Euler alike. In contrast to equation (1),
we will see that this formula is valid for all x ∈ R. Factoring out x and dividing
yields a power series with leading coefficient equal to 1:

(6)
sinx

x
= 1− x2

3!
+

x4

5!
− x6

7!
+ · · · .

Euler’s idea was to continue factoring the power series in (6), and his strategy
for doing this was very much in keeping with what we have seen so far—treat
the power series as though it were a polynomial and then extend the pattern to
infinity.

Factoring a polynomial of, say, degree three is straightforward if we know
its roots. If p(x) = 1 + ax+ bx2 + cx3 has roots r1, r2, and r3, then

p(x) =

(
1− x

r1

)(
1− x

r2

)(
1− x

r3

)
.

To see this just directly substitute to get p(0) = 1 and p(r1) = p(r2) = p(r3) = 0.

The roots of the power series in (6) are the nonzero roots of sinx, or x =
±π,±2π,±3π, and so on. All right then—relying on his fabled intuition, Euler
surmised that

(7)

1− x2

3!
+

x4

5!
− x6

7!
+ · · ·

=
(
1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)(
1− x

3π

)(
1 +

x

3π

)
. . .

=

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · · ,
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where in the last step adjacent pairs of factors have been multiplied together.
What happens if we continue to multiply out the factors on the right? Well,
the constant term comes out to be 1 which happily matches the constant term
on the left. The magic comes when we compare the x2 term on each side
of (7). Multiplying out the infinite number of factors on the right (using our
imagination as necessary) and collecting like powers of x, equation (7) becomes

1− x2

3!
+

x4

5!
− x6

7!
+ · · ·

= 1 +

(
− 1

π2
− 1

4π2
− 1

9π2
− · · ·

)
x2 +

(
1

4π4
+

1

9π4
+ · · ·

)
x4 + · · · .

Equating the coefficients of x2 on each side yields

− 1

3!
= − 1

π2
− 1

4π2
− 1

9π2
− · · · ,

which when we multiply by −π2 becomes

π2

6
= 1 +

1

4
+

1

9
+

1

16
+ · · · .

Numerical approximations of each side of this equation confirmed for Euler
that, despite the audacious leaps in his argument, he had landed on solid ground.
By our standards, this derivation falls well short of being a proper proof, and
we will have to tend to this in the upcoming chapters. The takeaway of this
discussion is that the hard work ahead is worth the effort. Infinite series repre-
sentations of functions are both useful and surprisingly elegant, and can lead to
remarkable conclusions when they are properly handled.

The evidence so far suggests power series are quite robust when treated as
if they were finite in nature. Term-by-term differentiation produced a valid
conclusion in equation (2), and taking antiderivatives fared similarly well in
(4). We will see that these manipulations are not always justified for infinite
series of more general types of functions. What is it about power series in
particular that makes them so impervious to the dangers of the infinite? Of
the many unanswered questions in this discussion, this last one is probably the
most central, and the most important to understanding series of functions in
general.

6.2 Uniform Convergence of a Sequence
of Functions

Adopting the same strategy we used in Chapter 2, we will initially concern
ourselves with the behavior and properties of converging sequences of func-
tions. Because convergence of infinite series is defined in terms of the associated
sequence of partial sums, the results from our study of sequences will be imme-
diately applicable to the questions we have raised about both power series and
more general infinite series of functions.
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Figure 6.1: f1, f5, f10, and f20 where fn = (x2 + nx)/n.

Pointwise Convergence

Definition 6.2.1. For each n ∈ N, let fn be a function defined on a set A ⊆ R.
The sequence (fn) of functions converges pointwise on A to a function f if, for
all x ∈ A, the sequence of real numbers fn(x) converges to f(x).

In this case, we write fn → f , lim fn = f , or limn→∞ fn(x) = f(x). This
last expression is helpful if there is any confusion as to whether x or n is the
limiting variable.

Example 6.2.2. (i) Consider

fn(x) = (x2 + nx)/n

on all of R. Graphs of f1, f5, f10, and f20 (Fig. 6.1) give an indication of
what is happening as n gets larger. Algebraically, we can compute

lim
n→∞ fn(x) = lim

n→∞
x2 + nx

n
= lim

n→∞
x2

n
+ x = x.

Thus, (fn) converges pointwise to f(x) = x on R.

(ii) Let gn(x) = xn on the set [0, 1], and consider what happens as n tends to
infinity (Fig. 6.2). If 0 ≤ x < 1, then we have seen that xn → 0. On the
other hand, if x = 1, then xn → 1. It follows that gn → g pointwise on
[0, 1], where

g(x) =

{
0 for 0 ≤ x < 1
1 for x = 1.

(iii) Consider hn(x) = x1+ 1
2n−1 on the set [−1, 1] (Fig. 6.3). For a fixed x ∈

[−1, 1] we have

lim
n→∞ hn(x) = x lim

n→∞ x
1

2n−1 = |x|.
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1

Figure 6.2: g(x) = limn→∞ xn is not continuous on [0, 1].

1

Figure 6.3: hn → |x| on [−1, 1]; limit is not differentiable.

Examples 6.2.2 (ii) and (iii) are our first indication that there is some difficult
work ahead of us. The central theme of this chapter is analyzing which prop-
erties the limit function inherits from the approximating sequence. In Example
6.2.2 (iii) we have a sequence of differentiable functions converging pointwise to
a limit that is not differentiable at the origin. In Example 6.2.2 (ii), we see an
even more fundamental problem of a sequence of continuous functions converg-
ing to a limit that is not continuous.

Continuity of the Limit Function

With Example 6.2.2 (ii) firmly in mind, we begin this discussion with a doomed
attempt to prove that the pointwise limit of continuous functions is continuous.
Upon discovering the problem in the argument, we will be in a better position
to understand the need for a stronger notion of convergence for sequences of
functions.
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Assume (fn) is a sequence of continuous functions on a set A ⊆ R, and
assume (fn) converges pointwise to a limit f . To argue that f is continuous, fix
a point c ∈ A, and let ε > 0. We need to find a δ > 0 such that

|x− c| < δ implies |f(x)− f(c)| < ε.

By the triangle inequality,

|f(x)− f(c)| = |f(x) − fn(x) + fn(x)− fn(c) + fn(c)− f(c)|
≤ |f(x) − fn(x)| + |fn(x)− fn(c)|+ |fn(c)− f(c)|.

Our first, optimistic impression is that each term in the sum on the right-hand
side can be made small—the first and third by the fact that fn → f , and the
middle term by the continuity of fn. In order to use the continuity of fn, we
must first establish which particular fn we are talking about. Because c ∈ A is
fixed, choose N ∈ N so that

|fN (c)− f(c)| < ε

3
.

Now that N is chosen, the continuity of fN implies that there exists a δ > 0
such that

|fN (x)− fN (c)| < ε

3

for all x satisfying |x− c| < δ.
But here is the problem. We also need

|fN (x)− f(x)| < ε

3
for all x satisfying |x− c| < δ.

The values of x depend on δ, which depends on the choice ofN . Thus, we cannot
go back and simply choose a different N . More to the point, the variable x is
not fixed the way c is in this discussion but represents any point in the interval
(c−δ, c+δ). Pointwise convergence implies that we can make |fn(x)−f(x)| < ε/3
for large enough values of n, but the value of n depends on the point x. It is
possible that different values for x will result in the need for different—larger—
choices for n. This phenomenon is apparent in Example 6.2.2 (ii). To achieve
the inequality

|gn(1/2)− g(1/2)| < 1

3
,

we need n ≥ 2, whereas

|gn(9/10)− g(9/10)| < 1

3

is true only after n ≥ 11.

Uniform Convergence

To resolve this dilemma, we define a new, stronger notion of convergence of
functions.
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Definition 6.2.3 (Uniform Convergence). Let (fn) be a sequence of func-
tions defined on a set A ⊆ R. Then, (fn) converges uniformly on A to a limit
function f defined on A if, for every ε > 0, there exists an N ∈ N such that
|fn(x)− f(x)| < ε whenever n ≥ N and x ∈ A.

To emphasize the difference between uniform convergence and pointwise con-
vergence, we restate Definition 6.2.1, being more explicit about the relationship
between ε,N , and x. In particular, notice where the domain point x is refer-
enced in each definition and consequently how the choice of N then does or does
not depend on this value.

Definition 6.2.1B. Let (fn) be a sequence of functions defined on a set A ⊆ R.
Then, (fn) converges pointwise on A to a limit f defined on A if, for every
ε > 0 and x ∈ A, there exists an N ∈ N (perhaps dependent on x) such that
|fn(x)− f(x)| < ε whenever n ≥ N .

The use of the adverb uniformly here should be reminiscent of its use in
the phrase “uniformly continuous” from Chapter 4. In both cases, the term
“uniformly” is employed to express the fact that the response (δ or N) to a
prescribed ε can be chosen to work simultaneously for all values of x in the
relevant domain.

Example 6.2.4. (i) Let

gn(x) =
1

n(1 + x2)
.

For any fixed x ∈ R, we can see that lim gn(x) = 0 so that g(x) = 0 is the
pointwise limit of the sequence (gn) on R. Is this convergence uniform?
The observation that 1/(1 + x2) ≤ 1 for all x ∈ R implies that

|gn(x)− g(x)| =
∣∣∣∣

1

n(1 + x2)
− 0

∣∣∣∣ ≤
1

n
.

Thus, given ε > 0, we can choose N > 1/ε (which does not depend on x),
and it follows that

n ≥ N implies |gn(x)− g(x)| < ε

for all x ∈ R. By Definition 6.2.3, gn → 0 uniformly on R.

(ii) Look back at Example 6.2.2 (i), where we saw that fn(x) = (x2 + nx)/n
converges pointwise on R to f(x) = x. On R, the convergence is not
uniform. To see this write

|fn(x)− f(x)| =
∣∣∣∣
x2 + nx

n
− x

∣∣∣∣ =
x2

n
,

and notice that in order to force |fn(x) − f(x)| < ε, we are going to have
to choose

N >
x2

ε
.
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Although this is possible to do for each x ∈ R, there is no way to choose
a single value of N that will work for all values of x at the same time.

On the other hand, we can show that fn → f uniformly on the set [−b, b].
By restricting our attention to a bounded interval, we may now assert that

x2

n
≤ b2

n
.

Given ε > 0, then, we can choose

N >
b2

ε

independently of x ∈ [−b, b].

Graphically speaking, the uniform convergence of fn to a limit f on a set
A can be visualized by constructing a band of radius ±ε around the limit func-
tion f . If fn → f uniformly, then there exists a point in the sequence after which
each fn is completely contained in this ε-strip (Fig. 6.4). This image should be
compared with the graphs in Figures 6.1–6.2 from Example 6.2.2 and the one
in Figure 6.5.

Cauchy Criterion

Recall that the Cauchy Criterion for convergent sequences of real numbers was
an equivalent characterization of convergence which, unlike the definition, did
not make explicit mention of the limit. The usefulness of the Cauchy Criterion
suggests the need for an analogous characterization of uniformly convergent
sequences of functions. As with all statements about uniformity, pay special
attention to the relationship between the response variable (N ∈ N) and the
domain variable (x ∈ A).

Theorem 6.2.5 (Cauchy Criterion for Uniform Convergence). A se-
quence of functions (fn) defined on a set A ⊆ R converges uniformly on A if
and only if for every ε > 0 there exists an N ∈ N such that |fn(x)− fm(x)| < ε
whenever m,n ≥ N and x ∈ A.

Proof. Exercise 6.2.5.

Continuity Revisited

The stronger assumption of uniform convergence is precisely what is required to
remove the flaws from our attempted proof that the limit of continuous functions
is continuous.

Theorem 6.2.6 (Continuous Limit Theorem). Let (fn) be a sequence of
functions defined on A ⊆ R that converges uniformly on A to a function f . If
each fn is continuous at c ∈ A, then f is continuous at c.
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A

fn,n≥N
f+ε

f

f−ε

Figure 6.4: fn → f uniformly on A.

A

g1

g2g3g4

g+ε

g
g−ε

Figure 6.5: gn → g pointwise, but not uniformly.

Proof. Fix c ∈ A and let ε > 0. Choose N so that

|fN (x) − f(x)| < ε

3

for all x ∈ A. Because fN is continuous, there exists a δ > 0 for which

|fN (x)− fN (c)| < ε

3

is true whenever |x− c| < δ. But this implies

|f(x) − f(c)| = |f(x)− fN(x) + fN(x) − fN(c) + fN (c)− f(c)|
≤ |f(x)− fN(x)| + |fN(x) − fN(c)|+ |fN(c)− f(c)|
<

ε

3
+

ε

3
+

ε

3
= ε.

Thus, f is continuous at c ∈ A.
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Exercises

Exercise 6.2.1. Let

fn(x) =
nx

1 + nx2
.

(a) Find the pointwise limit of (fn) for all x ∈ (0,∞).

(b) Is the convergence uniform on (0,∞)?

(c) Is the convergence uniform on (0, 1)?

(d) Is the convergence uniform on (1,∞)?

Exercise 6.2.2. (a) Define a sequence of functions on R by

fn(x) =

{
1 if x = 1, 12 ,

1
3 , . . . ,

1
n

0 otherwise

and let f be the pointwise limit of fn.

Is each fn continuous at zero? Does fn → f uniformly on R? Is f
continuous at zero?

(b) Repeat this exercise using the sequence of functions

gn(x) =

{
x if x = 1, 12 ,

1
3 , . . . ,

1
n

0 otherwise.

(c) Repeat the exercise once more with the sequence

hn(x) =

⎧
⎨

⎩

1 if x = 1
n

x if x = 1, 12 ,
1
3 , . . . ,

1
n−1

0 otherwise.

In each case, explain how the results are consistent with the content of
the Continuous Limit Theorem (Theorem 6.2.6).

Exercise 6.2.3. For each n ∈ N and x ∈ [0,∞), let

gn(x) =
x

1 + xn
and hn(x) =

{
1 if x ≥ 1/n
nx if 0 ≤ x < 1/n.

Answer the following questions for the sequences (gn) and (hn):

(a) Find the pointwise limit on [0,∞).

(b) Explain how we know that the convergence cannot be uniform on [0,∞).

(c) Choose a smaller set over which the convergence is uniform and supply an
argument to show that this is indeed the case.



6.2. Uniform Convergence of a Sequence of Functions 181

Exercise 6.2.4. Review Exercise 5.2.8 which includes the definition for a
uniformly differentiable function. Use the results discussed in Section 6.2 to
show that if f is uniformly differentiable, then f ′ is continuous.

Exercise 6.2.5. Using the Cauchy Criterion for convergent sequences of real
numbers (Theorem 2.6.4), supply a proof for Theorem 6.2.5. (First, define a
candidate for f(x), and then argue that fn → f uniformly.)

Exercise 6.2.6. Assume fn → f on a set A. Theorem 6.2.6 is an example
of a typical type of question which asks whether a trait possessed by each fn
is inherited by the limit function. Provide an example to show that all of
the following propositions are false if the convergence is only assumed to be
pointwise on A. Then go back and decide which are true under the stronger
hypothesis of uniform convergence.

(a) If each fn is uniformly continuous, then f is uniformly continuous.

(b) If each fn is bounded, then f is bounded.

(c) If each fn has a finite number of discontinuities, then f has a finite number
of discontinuities.

(d) If each fn has fewer than M discontinuities (where M ∈ N is fixed), then
f has fewer than M discontinuities.

(e) If each fn has at most a countable number of discontinuities, then f has
at most a countable number of discontinuities.

Exercise 6.2.7. Let f be uniformly continuous on all of R, and define a seq-
uence of functions by fn(x) = f(x+ 1

n ). Show that fn → f uniformly. Give an
example to show that this proposition fails if f is only assumed to be continuous
and not uniformly continuous on R.

Exercise 6.2.8. Let (gn) be a sequence of continuous functions that converges
uniformly to g on a compact set K. If g(x) 	= 0 on K, show (1/gn) converges
uniformly on K to 1/g.

Exercise 6.2.9. Assume (fn) and (gn) are uniformly convergent sequences of
functions.

(a) Show that (fn + gn) is a uniformly convergent sequence of functions.

(b) Give an example to show that the product (fngn) may not converge uni-
formly.

(c) Prove that if there exists an M > 0 such that |fn| ≤ M and |gn| ≤ M for
all n ∈ N, then (fngn) does converge uniformly.

Exercise 6.2.10. This exercise and the next explore partial converses of the
Continuous Limit Theorem (Theorem 6.2.6). Assume fn → f pointwise on [a, b]
and the limit function f is continuous on [a, b]. If each fn is increasing (but not
necessarily continuous), show fn → f uniformly.
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Exercise 6.2.11 (Dini’s Theorem). Assume fn → f pointwise on a compact
set K and assume that for each x ∈ K the sequence fn(x) is increasing. Follow
these steps to show that if fn and f are continuous on K, then the convergence
is uniform.

(a) Set gn = f − fn and translate the preceding hypothesis into statements
about the sequence (gn).

(b) Let ε > 0 be arbitrary, and define Kn = {x ∈ K : gn(x) ≥ ε}. Argue that
K1 ⊇ K2 ⊇ K3 ⊇ · · · , and use this observation to finish the argument.

Exercise 6.2.12 (Cantor Function). Review the construction of the Cantor
set C ⊆ [0, 1] from Section 3.1. This exercise makes use of results and notation
from this discussion.

(a) Define f0(x) = x for all x ∈ [0, 1]. Now, let

f1(x) =

⎧
⎨

⎩

(3/2)x for 0 ≤ x ≤ 1/3
1/2 for 1/3 < x < 2/3
(3/2)x− 1/2 for 2/3 ≤ x ≤ 1.

Sketch f0 and f1 over [0, 1] and observe that f1 is continuous, increasing,
and constant on the middle third (1/3, 2/3) = [0, 1]\C1.

(b) Construct f2 by imitating this process of flattening out the middle third
of each nonconstant segment of f1. Specifically, let

f2(x) =

⎧
⎨

⎩

(1/2)f1(3x) for 0 ≤ x ≤ 1/3
f1(x) for 1/3 < x < 2/3
(1/2)f1(3x− 2) + 1/2 for 2/3 ≤ x ≤ 1.

If we continue this process, show that the resulting sequence (fn) converges
uniformly on [0, 1].

(c) Let f = lim fn. Prove that f is a continuous, increasing function on [0, 1]
with f(0) = 0 and f(1) = 1 that satisfies f ′(x) = 0 for all x in the open
set [0, 1]\C. Recall that the “length” of the Cantor set C is 0. Somehow,
f manages to increase from 0 to 1 while remaining constant on a set of
“length 1.”

Exercise 6.2.13. Recall that the Bolzano–Weierstrass Theorem (Theorem
2.5.5) states that every bounded sequence of real numbers has a convergent
subsequence. An analogous statement for bounded sequences of functions is not
true in general, but under stronger hypotheses several different conclusions are
possible. One avenue is to assume the common domain for all of the functions
in the sequence is countable. (Another is explored in the next two exercises.)

Let A = {x1, x2, x3, . . .} be a countable set. For each n ∈ N, let fn be
defined on A and assume there exists an M > 0 such that |fn(x)| ≤ M for all
n ∈ N and x ∈ A. Follow these steps to show that there exists a subsequence
of (fn) that converges pointwise on A.



6.2. Uniform Convergence of a Sequence of Functions 183

(a) Why does the sequence of real numbers fn(x1) necessarily contain a con-
vergent subsequence (fnk

)? To indicate that the subsequence of functions
(fnk

) is generated by considering the values of the functions at x1, we will
use the notation fnk

= f1,k.

(b) Now, explain why the sequence f1,k(x2) contains a convergent subsequence.

(c) Carefully construct a nested family of subsequences (fm,k), and show how
this can be used to produce a single subsequence of (fn) that converges
at every point of A.

Exercise 6.2.14. A sequence of functions (fn) defined on a set E ⊆ R is called
equicontinuous if for every ε > 0 there exists a δ > 0 such that |fn(x)−fn(y)| < ε
for all n ∈ N and |x− y| < δ in E.

(a) What is the difference between saying that a sequence of functions (fn) is
equicontinuous and just asserting that each fn in the sequence is individ-
ually uniformly continuous?

(b) Give a qualitative explanation for why the sequence gn(x) = xn is not
equicontinuous on [0, 1]. Is each gn uniformly continuous on [0, 1]?

Exercise 6.2.15 (Arzela–Ascoli Theorem). For each n ∈ N, let fn be a
function defined on [0, 1]. If (fn) is bounded on [0, 1]—that is, there exists an
M > 0 such that |fn(x)| ≤ M for all n ∈ N and x ∈ [0, 1]—and if the collection
of functions (fn) is equicontinuous (Exercise 6.2.14), follow these steps to show
that (fn) contains a uniformly convergent subsequence.

(a) Use Exercise 6.2.13 to produce a subsequence (fnk
) that converges at every

rational point in [0, 1]. To simplify the notation, set gk = fnk
. It remains

to show that (gk) converges uniformly on all of [0, 1].

(b) Let ε > 0. By equicontinuity, there exists a δ > 0 such that

|gk(x)− gk(y)| < ε

3

for all |x − y| < δ and k ∈ N. Using this δ, let r1, r2, . . . , rm be a
finite collection of rational points with the property that the union of
the neighborhoods Vδ(ri) contains [0,1].

Explain why there must exist an N ∈ N such that

|gs(ri)− gt(ri)| < ε

3

for all s, t ≥ N and ri in the finite subset of [0, 1] just described. Why
does having the set {r1, r2, . . . , rm} be finite matter?

(c) Finish the argument by showing that, for an arbitrary x ∈ [0, 1],

|gs(x)− gt(x)| < ε

for all s, t ≥ N .
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6.3 Uniform Convergence and Differentiation

Example 6.2.2 (iii) imposes some significant restrictions on what we might hope
to be true regarding differentiation and uniform convergence. If hn → h uni-
formly and each hn is differentiable, we should not anticipate that h′

n → h′

because in this example h′(x) does not even exist at x = 0. There are also
examples (see Exercise 6.3.4) where fn → f uniformly with (fn) and f all
differentiable, but the sequence (f ′

n) diverges at every point of the domain.
The key assumption necessary to be able to prove any facts about the

derivative of the limit function is that the sequence of derivatives be uniformly
convergent. This may sound as though we are assuming what it is we would
like to prove, and there is some validity to this complaint. The more hypotheses
a proposition has, the more difficult it is to apply. The content of the next
theorem is that if we are given a pointwise convergent sequence of differentiable
functions, and if we know that the sequence of derivatives converges uniformly
to something, then the limit of the derivatives is indeed the derivative of the
limit.

Theorem 6.3.1 (Differentiable Limit Theorem). Let fn → f pointwise
on the closed interval [a, b], and assume that each fn is differentiable. If (f ′

n)
converges uniformly on [a, b] to a function g, then the function f is differentiable
and f ′ = g.

Proof. Fix c ∈ [a, b] and let ε > 0. We want to argue that f ′(c) exists and equals
g(c). Because f ′ is defined by the limit

f ′(c) = lim
x→c

f(x) − f(c)

x− c
,

our task is to produce a δ > 0 so that

∣∣∣∣
f(x)− f(c)

x− c
− g(c)

∣∣∣∣ < ε

whenever 0 < |x− c| < δ.

To motivate the strategy of the proof, observe that for all x 	= c and all
n ∈ N, the triangle inequality implies

∣∣∣∣
f(x)− f(c)

x− c
− g(c)

∣∣∣∣ ≤
∣∣∣∣
f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣

+

∣∣∣∣
fn(x)− fn(c)

x− c
− f ′

n(c)

∣∣∣∣+ |f ′
n(c)− g(c)| .

Our intent is to first find an fn that forces the first and third terms on the
right-hand side to be less than ε/3. Once we establish which fn we want, we
can then use the differentiability of fn to produce a δ that makes the middle
term less than ε/3 for all x satisfying 0 < |x− c| < δ.
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Let’s start by choosing an N1 such that

(1) |f ′
m(c)− g(c)| < ε

3

for all m ≥ N1. We now invoke the uniform convergence of (f ′
n) to assert (via

Theorem 6.2.5) that there exists an N2 such that m,n ≥ N2 implies

|f ′
m(x) − f ′

n(x)| <
ε

3
for all x ∈ [a, b].

Set N = max{N1, N2}.
The function fN is differentiable at c, and so there exists a δ > 0 for which

(2)

∣∣∣∣
fN (x)− fN (c)

x− c
− f ′

N (c)

∣∣∣∣ <
ε

3

whenever 0 < |x− c| < δ. This is our sought after δ, but it takes some effort to
show that it has the desired property.

Fix an x satisfying 0 < |x − c| < δ, let m ≥ N , and apply the Mean Value
Theorem to fm − fN on the interval [c, x], (If x < c the argument is the same.)
By MVT, there exists an α ∈ (c, x) such that

f ′
m(α)− f ′

N (α) =
(fm(x) − fN (x))− (fm(c)− fN (c))

x− c
.

Recall that our choice of N implies

|f ′
m(α)− f ′

N (α)| < ε

3
,

and so it follows that
∣∣∣∣
fm(x)− fm(c)

x− c
− fN (x)− fN (c)

x− c

∣∣∣∣ <
ε

3
.

Because fm → f we can take the limit asm → ∞, and the Order Limit Theorem
(Theorem 2.3.4) asserts that

(3)

∣∣∣∣
f(x)− f(c)

x− c
− fN(x) − fN (c)

x− c

∣∣∣∣ ≤
ε

3
.

Finally, the inequalities in (1), (2), and (3), together imply that for x satisfying
0 < |x− c| < δ,

∣∣∣∣
f(x)− f(c)

x− c
− g(c)

∣∣∣∣ ≤
∣∣∣∣
f(x)− f(c)

x− c
− fN (x)− fN (c)

x− c

∣∣∣∣

+

∣∣∣∣
fN(x) − fN (c)

x− c
− f ′

N(c)

∣∣∣∣ + |f ′
N(c)− g(c)|

<
ε

3
+

ε

3
+

ε

3
= ε.
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The hypothesis in the Differentiable Limit Theorem is unnecessarily strong.
We actually do not need to assume that fn(x) → f(x) at each point in the
domain because the assumption that the sequence of derivatives (f ′

n) converges
uniformly is nearly strong enough to prove that (fn) converges, uniformly in
fact. Two functions with the same derivative may differ by a constant, so we
must assume that there is at least one point x0 where fn(x0) → f(x0).

Theorem 6.3.2. Let (fn) be a sequence of differentiable functions defined on
the closed interval [a, b], and assume (f ′

n) converges uniformly on [a, b]. If there
exists a point x0 ∈ [a, b] where fn(x0) is convergent, then (fn) converges uni-
formly on [a, b].

Proof. Exercise 6.3.7.

Combining the last two results produces a stronger version of Theorem 6.3.1.

Theorem 6.3.3. Let (fn) be a sequence of differentiable functions defined on
the closed interval [a, b], and assume (f ′

n) converges uniformly to a function g on
[a, b]. If there exists a point x0 ∈ [a, b] for which fn(x0) is convergent, then (fn)
converges uniformly. Moreover, the limit function f = lim fn is differentiable
and satisfies f ′ = g.

Exercises

Exercise 6.3.1. Consider the sequence of functions defined by

gn(x) =
xn

n
.

(a) Show (gn) converges uniformly on [0, 1] and find g = lim gn. Show that g
is differentiable and compute g′(x) for all x ∈ [0, 1].

(b) Now, show that (g′n) converges on [0, 1]. Is the convergence uniform? Set
h = lim g′n and compare h and g′. Are they the same?

Exercise 6.3.2. Consider the sequence of functions

hn(x) =

√
x2 +

1

n
.

(a) Compute the pointwise limit of (hn) and then prove that the convergence
is uniform on R.

(b) Note that each hn is differentiable. Show g(x) = limh′
n(x) exists for all

x, and explain how we can be certain that the convergence is not uniform
on any neighborhood of zero.

Exercise 6.3.3. Consider the sequence of functions

fn(x) =
x

1 + nx2
.
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(a) Find the points onR where each fn(x) attains its maximum and minimum
value. Use this to prove (fn) converges uniformly on R. What is the limit
function?

(b) Let f = lim fn. Compute f ′
n(x) and find all the values of x for which

f ′(x) = lim f ′
n(x).

Exercise 6.3.4. Let

hn(x) =
sin(nx)√

n
.

Show that hn → 0 uniformly on R but that the sequence of derivatives (h′
n)

diverges for every x ∈ R.

Exercise 6.3.5. Let

gn(x) =
nx+ x2

2n
,

and set g(x) = lim gn(x). Show that g is differentiable in two ways:

(a) Compute g(x) by algebraically taking the limit as n → ∞ and then
find g′(x).

(b) Compute g′n(x) for each n ∈ N and show that the sequence of derivatives
(g′n) converges uniformly on every interval [−M,M ]. Use Theorem 6.3.3
to conclude g′(x) = lim g′n(x).

(c) Repeat parts (a) and (b) for the sequence fn(x) = (nx2 + 1)/(2n+ x).

Exercise 6.3.6. Provide an example or explain why the request is impossible.
Let’s take the domain of the functions to be all of R.

(a) A sequence (fn) of nowhere differentiable functions with fn → f uniformly
and f everywhere differentiable.

(b) A sequence (fn) of differentiable functions such that (f ′
n) converges uni-

formly but the original sequence (fn) does not converge for any x ∈ R.

(c) A sequence (fn) of differentiable functions such that both (fn) and (f ′
n)

converge uniformly but f = lim fn is not differentiable at some point.

Exercise 6.3.7. Use the Mean Value Theorem to supply a proof for Theo-
rem 6.3.2. To get started, observe that the triangle inequality implies that, for
any x ∈ [a, b] and m,n ∈ N,

|fn(x) − fm(x)| ≤ |(fn(x) − fm(x)) − (fn(x0)− fm(x0))|+ |fn(x0)− fm(x0)|.
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6.4 Series of Functions

Definition 6.4.1. For each n ∈ N, let fn and f be functions defined on a set
A ⊆ R. The infinite series

∞∑

n=1

fn(x) = f1(x) + f2(x) + f3(x) + · · ·

converges pointwise on A to f(x) if the sequence sk(x) of partial sums defined by

sk(x) = f1(x) + f2(x) + · · ·+ fk(x)

converges pointwise to f(x). The series converges uniformly on A to f if the
sequence sk(x) converges uniformly on A to f(x).

In either case, we write f =
∑∞

n=1 fn or f(x) =
∑∞

n=1 fn(x), always being
explicit about the type of convergence involved.

If we have a series
∑∞

n=1 fn where the functions fn are continuous, then
the Algebraic Continuity Theorem (Theorem 4.3.4) guarantees that the partial
sums—because they are finite sums—will be continuous as well. A correspond-
ing observation is true if we are dealing with differentiable functions. As a
consequence, we can immediately translate the results for sequences in the pre-
vious sections into statements about the behavior of infinite series of functions.

Theorem 6.4.2 (Term-by-term Continuity Theorem). Let fn be continu-
ous functions defined on a set A ⊆ R, and assume

∑∞
n=1 fn converges uniformly

on A to a function f . Then, f is continuous on A.

Proof. Apply the Continuous Limit Theorem (Theorem 6.2.6) to the partial
sums sk = f1 + f2 + · · ·+ fk.

Theorem 6.4.3 (Term-by-term Differentiability Theorem). Let fn be
differentiable functions defined on an interval A, and assume

∑∞
n=1 f

′
n(x) con-

verges uniformly to a limit g(x) on A. If there exists a point x0 ∈ [a, b] where∑∞
n=1 fn(x0) converges, then the series

∑∞
n=1 fn(x) converges uniformly to a

differentiable function f(x) satisfying f ′(x) = g(x) on A. In other words,

f(x) =

∞∑

n=1

fn(x) and f ′(x) =
∞∑

n=1

f ′
n(x).

Proof. Apply the stronger form of the Differentiable Limit Theorem (Theorem
6.3.3) to the partial sums sk = f1 + f2 + · · ·+ fk. Observe that Theorem 5.2.4
implies that s′k = f ′

1 + f ′
2 + · · ·+ f ′

k.

In the vocabulary of infinite series, the Cauchy Criterion takes the following
form.
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Theorem 6.4.4 (Cauchy Criterion for Uniform Convergence of Series).
A series

∑∞
n=1 fn converges uniformly on A ⊆ R if and only if for every ε > 0

there exists an N ∈ N such that

|fm+1(x) + fm+2(x) + fm+3(x) + · · ·+ fn(x)| < ε

whenever n > m ≥ N and x ∈ A.

The benefits of uniform convergence over pointwise convergence suggest the
need for some ways of determining when a series converges uniformly. The fol-
lowing corollary to the Cauchy Criterion is the most common such tool. In
particular, it will be quite useful in our upcoming investigations of power series.

Corollary 6.4.5 (Weierstrass M-Test). For each n ∈ N, let fn be a function
defined on a set A ⊆ R, and let Mn > 0 be a real number satisfying

|fn(x)| ≤ Mn

for all x ∈ A. If
∑∞

n=1 Mn converges, then
∑∞

n=1 fn converges uniformly on A.

Proof. Exercise 6.4.1.

Exercises

Exercise 6.4.1. Supply the details for the proof of the Weierstrass M-Test
(Corollary 6.4.5).

Exercise 6.4.2. Decide whether each proposition is true or false, providing a
short justification or counterexample as appropriate.

(a) If
∑∞

n=1 gn converges uniformly, then (gn) converges uniformly to zero.

(b) If 0 ≤ fn(x) ≤ gn(x) and
∑∞

n=1 gn converges uniformly, then
∑∞

n=1 fn
converges uniformly.

(c) If
∑∞

n=1 fn converges uniformly on A, then there exist constants Mn such
that |fn(x)| ≤ Mn for all x ∈ A and

∑∞
n=1 Mn converges.

Exercise 6.4.3. (a) Show that

g(x) =

∞∑

n=0

cos(2nx)

2n

is continuous on all of R.

(b) The function g was cited in Section 5.4 as an example of a continuous
nowhere differentiable function. What happens if we try to use Theorem
6.4.3 to explore whether g is differentiable?
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Exercise 6.4.4. Define

g(x) =

∞∑

n=0

x2n

(1 + x2n)
.

Find the values of x where the series converges and show that we get a continuous
function on this set.

Exercise 6.4.5. (a) Prove that

h(x) =
∞∑

n=1

xn

n2
= x+

x2

4
+

x3

9
+

x4

16
+ · · ·

is continuous on [−1, 1].

(b) The series

f(x) =

∞∑

n=1

xn

n
= x+

x2

2
+

x3

3
+

x4

4
+ · · ·

converges for every x in the half-open interval [−1, 1) but does not converge
when x = 1. For a fixed x0 ∈ (−1, 1), explain how we can still use the
Weierstrass M-Test to prove that f is continuous at x0.

Exercise 6.4.6. Let

f(x) =
1

x
− 1

x+ 1
+

1

x+ 2
− 1

x+ 3
+

1

x+ 4
− · · · .

Show f is defined for all x > 0. Is f continuous on (0,∞)? How about
differentiable?

Exercise 6.4.7. Let

f(x) =

∞∑

k=1

sin(kx)

k3
.

(a) Show that f(x) is differentiable and that the derivative f ′(x) is continuous.

(b) Can we determine if f is twice-differentiable?

Exercise 6.4.8. Consider the function

f(x) =

∞∑

k=1

sin(x/k)

k
.

Where is f defined? Continuous? Differentiable? Twice-differentiable?

Exercise 6.4.9. Let

h(x) =

∞∑

n=1

1

x2 + n2
.
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(a) Show that h is a continuous function defined on all of R.

(b) Is h differentiable? If so, is the derivative function h′ continuous?

Exercise 6.4.10. Let {r1, r2, r3, . . .} be an enumeration of the set of rational
numbers. For each rn ∈ Q, define

un(x) =

{
1/2n for x > rn
0 for x ≤ rn.

Now, let h(x) =
∑∞

n=1 un(x). Prove that h is a monotone function defined on
all of R that is continuous at every irrational point.

6.5 Power Series

It is time to put some mathematical teeth into our understanding of functions
expressed in the form of a power series; that is, functions of the form

f(x) =

∞∑

n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · · .

The first order of business is to determine the points x ∈ R for which the
resulting series on the right-hand side converges. This set certainly contains
x = 0, and, as the next result demonstrates, it takes a very predictable form.

Theorem 6.5.1. If a power series
∑∞

n=0 anx
n converges at some point x0 ∈ R,

then it converges absolutely for any x satisfying |x| < |x0|.
Proof. If

∑∞
n=0 anx

n
0 converges, then the sequence of terms (anx

n
0 ) is bounded.

(In fact, it converges to 0.) Let M > 0 satisfy |anxn
0 | ≤ M for all n ∈ N. If

x ∈ R satisfies |x| < |x0|, then

|anxn| = |anxn
0 |
∣∣∣∣
x

x0

∣∣∣∣
n

≤ M

∣∣∣∣
x

x0

∣∣∣∣
n

.

But notice that ∞∑

n=0

M

∣∣∣∣
x

x0

∣∣∣∣
n

is a geometric series with ratio |x/x0| < 1 and so converges. By the Comparison
Test,

∑∞
n=0 anx

n converges absolutely.

The main implication of Theorem 6.5.1 is that the set of points for which a
given power series converges must necessarily be {0}, R, or a bounded interval
centered around x = 0. Because of the strict inequality in Theorem 6.5.1, there
is some ambiguity about the endpoints of the interval, and it is possible that
the set of convergent points may be of the form (−R,R), [−R,R), (−R,R], or
[−R,R].
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The value of R is referred to as the radius of convergence of a power series,
and it is customary to assign R the value 0 or ∞ to represent the set {0}
or R, respectively. Some of the standard devices for computing the radius of
convergence for a power series are explored in the exercises. Of more interest
to us here is the investigation of the properties of functions defined in this way.
Are they continuous? Are they differentiable? If so, can we differentiate the
series term-by-term? What happens at the endpoints?

Establishing Uniform Convergence

The positive answers to the preceding questions, and the usefulness of power
series in general, are largely due to the fact that they converge uniformly on
compact sets contained in their domain of convergent points. As we are about to
see, a complete proof of this fact requires a fairly delicate argument attributed
to the Norwegian mathematician Niels Henrik Abel. A significant amount of
progress, however, can be made with the Weierstrass M-Test (Corollary 6.4.5).

Theorem 6.5.2. If a power series
∑∞

n=0 anx
n converges absolutely at a point

x0, then it converges uniformly on the closed interval [−c, c], where c = |x0|.
Proof. This proof requires a straightforward application of the Weierstrass
M-Test. The details are requested in Exercise 6.5.3.

For many applications, Theorem 6.5.2 is good enough. For instance, be-
cause any x ∈ (−R,R) is contained in the interior of a closed interval [−c, c] ⊆
(−R,R), it now follows that a power series that converges on an open interval
is necessarily continuous on this interval.

But what happens if we know that a series converges at an endpoint of
its interval of convergence? Does the good behavior of the series on (−R,R)
necessarily extend to the endpoint x = R? If the convergence of the series at
x = R is absolute convergence, then we can again rely on Theorem 6.5.2 to
conclude that the series converges uniformly on the set [−R,R]. The remaining
interesting open question is what happens if a series converges conditionally
at a point x = R. We may still use Theorem 6.5.1 to conclude that we have
pointwise convergence on the interval (−R,R], but more work is needed to
establish uniform convergence on compact sets containing x = R.

Abel’s Theorem

We should remark that if the power series g(x) =
∑∞

n=0 anx
n converges con-

ditionally at x = R, then it is possible for it to diverge when x = −R. The
series ∞∑

n=1

(−1)nxn

n

with R = 1 is an example. To keep our attention fixed on the convergent
endpoint, we will prove uniform convergence on the set [0, R].
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The first step in the argument is an estimate that should be compared to
Abel’s Test for convergence of series, developed back in Chapter 2 (Exercise
2.7.13).

Lemma 6.5.3 (Abel’s Lemma). Let bn satisfy b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0, and
let

∑∞
n=1 an be a series for which the partial sums are bounded. In other words,

assume there exists A > 0 such that

|a1 + a2 + · · ·+ an| ≤ A

for all n ∈ N . Then, for all n ∈ N,

|a1b1 + a2b2 + a3b3 + · · ·+ anbn| ≤ Ab1.

Proof. Let sn = a1 + a2 + · · · + an. Using the summation-by-parts formula
derived in Exercise 2.7.12, we can write

∣∣∣∣∣

n∑

k=1

akbk

∣∣∣∣∣ =

∣∣∣∣∣snbn+1 +
n∑

k=1

sk(bk − bk+1)

∣∣∣∣∣

≤ Abn+1 +

n∑

k=1

A(bk − bk+1)

= Abn+1 + (Ab1 −Abn+1) = Ab1.

It is worth observing that if A were an upper bound on the partial sums
of

∑ |an| (note the absolute value bars), then the proof of Lemma 6.5.3 would
be a simple exercise in the triangle inequality. The point of the matter is that
because we are only assuming conditional convergence, the triangle inequality
is not going to be of any use in proving Abel’s Theorem, but we are now in
possession of an inequality that we can use in its place.

Theorem 6.5.4 (Abel’s Theorem). Let g(x) =
∑∞

n=0 anx
n be a power series

that converges at the point x = R > 0. Then the series converges uniformly on
the interval [0, R]. A similar result holds if the series converges at x = −R.

Proof. To set the stage for an application of Lemma 6.5.3, we first write

g(x) =

∞∑

n=0

anx
n =

∞∑

n=0

(anR
n)

( x

R

)n

.

Let ε > 0. By the Cauchy Criterion for Uniform Convergence of Series (Theorem
6.4.4), we will be done if we can produce an N such that n > m ≥ N implies

(1)

∣∣∣∣(am+1R
m+1)

( x

R

)m+1

+ (am+2R
m+2)

( x

R

)m+2

+ · · ·

+(anR
n)

( x

R

)n∣∣∣ < ε.
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Because we are assuming that
∑∞

n=0 anR
n converges, the Cauchy Criterion for

convergent series of real numbers guarantees that there exists an N such that

|am+1R
m+1 + am+2R

m+2 + · · ·+ anR
n| < ε

2

whenever n > m ≥ N . But now, for any fixed m ∈ N, we can apply Abel’s
Lemma (Lemma 6.5.3) to the sequences obtained by omitting the first m terms.
Using ε/2 as a bound on the partial sums of

∑∞
j=1 am+jR

m+j and observing that

(x/R)m+j is monotone decreasing, an application of Abel’s Lemma to equation
(1) yields

∣∣∣∣(am+1R
m+1)

( x

R

)m+1

+ (am+2R
m+2)

( x

R

)m+2

+ · · ·

+ (anR
n)

( x

R

)n∣∣∣ ≤ ε

2

( x

R

)m+1

< ε.

The Success of Power Series

An economical way to summarize the conclusions of Theorem 6.5.2 and Abel’s
Theorem is with the following statement.

Theorem 6.5.5. If a power series converges pointwise on the set A ⊆ R, then
it converges uniformly on any compact set K ⊆ A.

Proof. A compact set contains both a maximum x1 and a minimum x0, which by
hypothesis must be in A. Abel’s Theorem implies the series converges uniformly
on the interval [x0, x1] and thus also on K.

This fact leads to the desirable conclusion that a power series is continuous
at every point at which it converges. To make an argument for differentia-
bility, we would like to appeal to Theorem 6.4.3; however, this result has a
slightly more involved set of hypotheses. In order to conclude that a power
series

∑∞
n=0 anx

n is differentiable, and that term-by-term differentiation is al-
lowed, we need to know beforehand that the differentiated series

∑∞
n=1 nanx

n−1

converges uniformly.

Theorem 6.5.6. If
∑∞

n=0 anx
n converges for all x ∈ (−R,R), then the differ-

entiated series
∑∞

n=1 nanx
n−1 converges at each x ∈ (−R,R) as well. Conse-

quently, the convergence is uniform on compact sets contained in (−R,R).

Proof. Exercise 6.5.5.

We should point out that it is possible for a series to converge at an end-
point x = R but for the differentiated series to diverge at this point. The
series

∑∞
n=1 x

n/n has this property when x = −1. On the other hand, if the
differentiated series does converge at the point x = R, then Abel’s Theorem
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applies and the convergence of the differentiated series is uniform on compact
sets that contain R.

With all the pieces in place, we summarize the impressive conclusions of this
section.

Theorem 6.5.7. Assume

f(x) =

∞∑

n=0

anx
n

converges on an interval A ⊆ R. The function f is continuous on A and
differentiable on any open interval (−R,R) ⊆ A. The derivative is given by

f ′(x) =
∞∑

n=1

nanx
n−1.

Moreover, f is infinitely differentiable on (−R,R), and the successive derivatives
can be obtained via term-by-term differentiation of the appropriate series.

Proof. The details for why f is continuous have been discussed. Theorem 6.5.6
justifies the application of the Term-by-termDifferentiability Theorem (Theorem
6.4.3), which verifies the formula for f ′.

A differentiated power series is a power series in its own right, and Theorem
6.5.6 implies that, although the series may no longer converge at a particular
endpoint, the radius of convergence does not change. By induction, then, power
series are differentiable an infinite number of times.

Exercises

Exercise 6.5.1. Consider the function g defined by the power series

g(x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · · .

(a) Is g defined on (−1, 1)? Is it continuous on this set? Is g defined on
(−1, 1]? Is it continuous on this set? What happens on [−1, 1]? Can
the power series for g(x) possibly converge for any other points |x| > 1?
Explain.

(b) For what values of x is g′(x) defined? Find a formula for g′.

Exercise 6.5.2. Find suitable coefficients (an) so that the resulting power series∑
anx

n has the given properties, or explain why such a request is impossible.

(a) Converges for every value of x ∈ R.

(b) Diverges for every value of x ∈ R.

(c) Converges absolutely for all x ∈ [−1, 1] and diverges off of this set.
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(d) Converges conditionally at x = −1 and converges absolutely at x = 1.

(e) Converges conditionally at both x = −1 and x = 1.

Exercise 6.5.3. Use the Weierstrass M-Test to prove Theorem 6.5.2.

Exercise 6.5.4 (Term-by-term Antidifferentiation). Assume f(x) =∑∞
n=0 anx

n converges on (−R,R).

(a) Show

F (x) =

∞∑

n=0

an
n+ 1

xn+1

is defined on (−R,R) and satisfies F ′(x) = f(x).

(b) Antiderivatives are not unique. If g is an arbitrary function satisfying
g′(x) = f(x) on (−R,R), find a power series representation for g.

Exercise 6.5.5. (a) If s satisfies 0 < s < 1, show nsn−1 is bounded for
all n ≥ 1.

(b) Given an arbitrary x ∈ (−R,R), pick t to satisfy |x| < t < R. Use this
start to construct a proof for Theorem 6.5.6.

Exercise 6.5.6. Previous work on geometric series (Example 2.7.5) justifies
the formula

1

1− x
= 1 + x+ x2 + x3 + x4 + · · · , for all |x| < 1.

Use the results about power series proved in this section to find values for∑∞
n=1 n/2

n and
∑∞

n=1 n
2/2n. The discussion in Section 6.1 may be helpful.

Exercise 6.5.7. Let
∑

anx
n be a power series with an 	= 0, and assume

L = lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣

exists.

(a) Show that if L 	= 0, then the series converges for all x in (−1/L, 1/L).
(The advice in Exercise 2.7.9 may be helpful.)

(b) Show that if L = 0, then the series converges for all x ∈ R.

(c) Show that (a) and (b) continue to hold if L is replaced by the limit

L′ = lim
n→∞ sn where sn = sup

{∣∣∣∣
ak+1

ak

∣∣∣∣ : k ≥ n

}
.

(General properties of the limit superior are discussed in Exercise 2.4.7.)
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Exercise 6.5.8. (a) Show that power series representations are unique. If
we have ∞∑

n=0

anx
n =

∞∑

n=0

bnx
n

for all x in an interval (−R,R), prove that an = bn for all n = 0, 1, 2, . . . .

(b) Let f(x) =
∑∞

n=0 anx
n converge on (−R,R), and assume f ′(x) = f(x)

for all x ∈ (−R,R) and f(0) = 1. Deduce the values of an.

Exercise 6.5.9. Review the definitions and results from Section 2.8 concerning
products of series and Cauchy products in particular. At the end of Section 2.9,
we mentioned the following result: If both

∑
an and

∑
bn converge conditionally

to A and B respectively, then it is possible for the Cauchy product,

∑
dn where dn = a0bn + a1bn−1 + · · ·+ anb0,

to diverge. However, if
∑

dn does converge, then it must converge to AB. To
prove this, set

f(x) =
∑

anx
n, g(x) =

∑
bnx

n, and h(x) =
∑

dnx
n.

Use Abel’s Theorem and the result in Exercise 2.8.7 to establish this result.

Exercise 6.5.10. Let g(x) =
∑∞

n=0 bnx
n converge on (−R,R), and assume

(xn) → 0 with xn 	= 0. If g(xn) = 0 for all n ∈ N, show that g(x) must be
identically zero on all of (−R,R).

Exercise 6.5.11. A series
∑∞

n=0 an is said to be Abel-summable to L if the
power series

f(x) =

∞∑

n=0

anx
n

converges for all x ∈ [0, 1) and L = limx→1− f(x).

(a) Show that any series that converges to a limit L is also Abel-summable
to L.

(b) Show that
∑∞

n=0(−1)n is Abel-summable and find the sum.

6.6 Taylor Series

Our study of power series has led to some enthusiastic conclusions about the
nature of functions of the form

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · · .

Despite their infinite character, power series can be manipulated more or less as
though they are polynomials. On its interval of convergence, a power series is
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continuous and infinitely differentiable, and successive derivatives or antideriva-
tives can be computed by performing the desired operation on each individual
term in the series—just as it is done for polynomials.

In Section 6.1 we informally encountered the powerful idea that familiar func-
tions such as arctan(x) and

√
1 + x can be represented as power series. This is a

game changing revelation. If a function can be represented as a power series, and
a power series can be treated like a polynomial, then vast new possibilities are
suddenly available for the kinds of calculations that can be undertaken. Given
this state of affairs, it is natural to wonder whether all of the well-behaved—
i.e., infinitely differentiable—functions of calculus might have representations as
power series.

In the examples and exercises in this section, we will assume the familiar
properties of the trigonometric, inverse trigonometric, exponential, and loga-
rithmic functions. Rigorously defining these functions is an important exercise
in analysis. In fact, one of the most common methods for providing proper def-
initions is through power series, a point of view that is explored in Section 8.4.
The point of this discussion, however, is to come at this question from the other
direction. Assuming we are in possession of an infinitely differentiable function
such as sin(x), can we find suitable coefficients an so that

sin(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · ·

for at least some nonzero values of x?

Manipulating Series

In Section 6.1 we generated several new series representations starting from the
formula

(1)
1

1− x
= 1 + x+ x2 + x3 + x4 + · · · , for all |x| < 1

proved in Example 2.7.5. At the time, we were not concerned with supply-
ing rigorous proofs, but we have since done the bulk of the work necessary to
confidently assert that the manipulations in Section 6.1 are perfectly valid.

Example 6.6.1. Theorem 6.5.7 applied to equation (1) gives

1

(1 − x)2
= 1 + 2x+ 3x2 + 4x3 + 5x4 + · · · , for all |x| < 1.

What about the series we generated for arctan(x)? The substitution of −x2 for
x in (1) doesn’t cause any problem:

1

1 + x2
= 1− x2 + x4 − x6 + x8 − · · · , for all |x| < 1.
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The content of Exercise 6.5.4 is that we can take the term-by-term antideriva-
tive of this series and arrive at an antiderivative for 1/(1 + x2). Noting that
arctan(0) = 0, it follows that

(2) arctan(x) = x− 1

3
x3 +

1

5
x5 − 1

7
x7 + · · · ,

for all x ∈ (−1, 1). In fact, this formula is also valid for x = ±1. (Exercise 6.6.1.)
Similar methods can be used to find series representations for functions such as
log(1 + x) and x/(1 + x2)2.

Taylor’s Formula for the Coefficients

Manipulating old series to produce new ones was a well-honed craft in the
17th and 18th centuries, but there also emerged a formula for producing the
coefficients from “scratch”—a recipe for generating a power series representation
using only the function in question and its derivatives. The technique is named
after the mathematician Brook Taylor (1685–1731) who published it in 1715,
although it was certainly known previous to this date.

Given an infinitely differentiable function f defined on some interval centered
at zero, the idea is to assume that f has a power series expansion and deduce
what the coefficients must be.

Theorem 6.6.2 (Taylor’s Formula). Let

(3) f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + · · ·

be defined on some nontrivial interval centered at zero. Then,

an =
f (n)(0)

n!
.

Proof. Exercise 6.6.3

Let’s use Taylor’s formula to produce the so-called Taylor series for sin(x).
For the constant term we get a0 = sin(0) = 0. Then, a1 = cos(0) = 1, a2 =
− sin(0)/2! = 0, and a3 = − cos(0)/3! = −1/3!. Continuing on, we are led to
the series

x− x3

3!
+

x5

5!
− x7

7!
+ · · · .

So can we say that this series equals sin(x)? Well, we need to be very clear about
what we have proved to this point. To derive Taylor’s formula, we assumed that
f actually had a power series representation. The conclusion is that if f can be
expressed in the form

f(x) =

∞∑

n=0

anx
n,
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then it must be that

an =
f (n)(0)

n!
.

But what about the converse question? Assume f is infinitely differentiable
in a neighborhood of zero. If we let

an =
f (n)(0)

n!
,

does the resulting series
∞∑

n=0

anx
n

converge to f(x) on some nontrivial set of points? Does it converge at all? If
it does converge, we know that the limit function is an infinitely differentiable
function whose derivatives at zero are exactly the same as the derivatives of f .
Is it possible for this limit to be different from f? In other words, might the
Taylor series of a function converge to the wrong thing?

Let

SN (x) = a0 + a1x+ a2x
2 + · · ·+ aNxN .

The polynomial SN(x) is a partial sum of the Taylor series expansion for the
function f(x). Thus, we are interested in whether or not

lim
N→∞

SN (x) = f(x)

for some values of x besides zero.

Lagrange’s Remainder Theorem

A powerful tool for analyzing this question was provided by Joseph Louis La-
grange (1736–1813). The idea is to consider the difference

EN (x) = f(x)− SN (x),

which represents the error between f and the partial sum SN .

Theorem 6.6.3 (Lagrange’s Remainder Theorem). Let f be differentiable
N + 1 times on (−R,R), define an = f (n)(0)/n! for n = 0, 1, . . . , N , and let

SN (x) = a0 + a1x+ a2x
2 + · · ·+ aNxN .

Given x 	= 0 in (−R,R), there exists a point c satisfying |c| < |x| where the
error function EN (x) = f(x)− SN (x) satisfies

EN (x) =
f (N+1)(c)

(N + 1)!
xN+1.
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Before embarking on a proof, let’s examine the significance of this result.
Proving SN (x) → f(x) is equivalent to showing EN (x) → 0. There are three
components to the expression for EN (x). In the denominator, we have (N+1)!,
which helps to make EN small as N tends to infinity. In the numerator, we
have xN+1, which potentially grows depending on the size of x. Thus, we should
expect that a Taylor series is less likely to converge the farther x is chosen from
the origin. Finally, we have f (N+1)(c), which is a bit of a mystery. For functions
with straightforward derivatives, this term can often be handled using a suitable
upper bound.

Example 6.6.4. Consider the Taylor series for sin(x) generated earlier. How
well does

S5(x) = x− 1

3!
x3 +

1

5!
x5

approximate sin(x) on the interval [−2, 2]? Lagrange’s Remainder Theorem
asserts that the difference between these two functions is

E5(x) = sin(x)− S5(x) =
− sin(c)

6!
x6

for some c in the interval (−|x|, |x|). Not knowing the value of c, we can still be
quite certain that | sin(c)| ≤ 1. Because x ∈ [−2, 2], we have

|E5(x)| ≤ 26

6!
≈ .089.

To prove that SN(x) converges uniformly to sin(x) on [−2, 2], we observe
that the f (N+1)(c) term in the Lagrange formula will never exceed 1 in absolute
value. Thus,

|EN (x)| =
∣∣∣∣
f (N+1)(c)

(N + 1)!
xN+1

∣∣∣∣ ≤
1

(N + 1)!
2N+1

for x ∈ [−2, 2]. Because factorials grow significantly faster than exponentials, it
follows that EN (x) → 0 uniformly on [−2, 2].

Replacing the constant 2 with an arbitrary constant R has no effect on the
validity of the argument, and so the Taylor series converges uniformly to sin(x)
on every interval of the form [−R,R].

Proof of Lagrange’s Remainder Theorem: The Taylor coefficients are chosen
so that the function f and the polynomial SN have the same derivatives at
zero, at least up through the Nth derivative, after which SN becomes the zero

function. In other words, f (n)(0) = S
(n)
N (0) for all 0 ≤ n ≤ N , which implies

the error function EN (x) = f(x)− SN(x) satisfies

E
(n)
N (0) = 0 for all n = 0, 1, 2, . . . , N .

The key ingredient in this argument is the Generalized Mean Value Theorem
(Theorem 5.3.5) from Chapter 5. To simplify notation, let’s assume x > 0 and
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apply the Generalized Mean Value Theorem to the functions EN (x) and xN+1

on the interval [0, x]. Thus, there exists a point x1 ∈ (0, x) such that

EN (x)

xN+1
=

E′
N (x1)

(N + 1)xN
1

.

Now apply the Generalized Mean Value Theorem to the functions E′
N (x) and

(N + 1)xN on the interval [0, x1] to get that there exists a point x2 ∈ (0, x1)
where

EN (x)

xN+1
=

E′
N (x1)

(N + 1)xN
1

=
E′′

N (x2)

(N + 1)NxN−1
2

.

Continuing in this manner we find

EN (x)

xN+1
=

E
(N+1)
N (xN+1)

(N + 1)!

where xN+1 ∈ (0, xN ) ⊆ · · · ⊆ (0, x). Now set c = xN+1. Because S
(N+1)
N (x) =

0, we have E
(N+1)
N (x) = f (N+1)(x) and it follows that

EN (x) =
f (N+1)(c)

(N + 1)!
xN+1

as desired.

Taylor Series Centered at a 	= 0.

Throughout this chapter we have focused our attention on series expansions
centered at zero, but there is nothing special about zero other than notational
simplicity. If f is defined in some neighborhood of a ∈ R and infinitely differ-
entiable at a, then the Taylor series expansion around a takes the form

∞∑

n=0

cn(x − a)n where cn =
f (n)(a)

n!
.

Setting EN (x) = f(x)−SN (x) as usual, Lagrange’s Remainder Theorem in this
case says that there exists a value c between a and x where

EN (x) =
f (N+1)(c)

(N + 1)!
(x− a)N+1.

In Exercise 6.6.9, we derive an alternate remainder formula due to Cauchy that
requires these more general expansions for its derivation.
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A Counterexample

Lagrange’s Remainder Theorem is extremely useful for determining how well the
partial sums of the Taylor series approximate the original function, but it leaves
unresolved the central question of whether or not the Taylor series necessarily
converges to the function that generated it. The appearance of f (N+1)(c) in the
error formula makes any general statement impossible. The Cauchy form of the
remainder just mentioned provides another way to represent the error between
the partial sum SN (x) and the function f(x), and there are others still, but
none lend themselves to a proof that SN → f . This is because no such proof
exists! Let

g(x) =

{
e−1/x2

for x 	= 0,
0 for x = 0.

Computing the Taylor coefficients for this function, it’s clear that a0 = g(0) = 0.
To compute a1 we write

a1 = g′(0) = lim
x→0

g(x)− g(0)

x− 0
= lim

x→0

e−1/x2

x
= lim

x→0

1/x

e1/x2

where both numerator and denominator tend to ∞ as x approaches zero. App-
lying the ∞/∞ version of L’Hospital’s Rule (Theorem 5.3.8) we see

a1 = lim
x→0

−1/x2

e1/x2(−2/x3)
= lim

x→0

x

2e1/x2 = 0.

This tells us that g is flat at the origin. In Exercise 6.6.6, we outline the rest of
the proof showing that g(n)(0) = 0 for all n ∈ N; in other words, g is extremely
flat at the origin.

The implications of this example are highly significant. The function g is
infinitely differentiable, and every one of its Taylor coefficients is equal to zero.
By default, then, its Taylor series converges uniformly on all of R to the zero
function. But other than at x = 0, g(x) is never equal to zero. The Taylor series
for g(x) converges, but it does not converge to g(x) except at the center point
x = 0. The unmistakable conclusion is that not every infinitely differentiable
function can be represented by its Taylor series.

Exercises

Exercise 6.6.1. The derivation in Example 6.6.1 shows the Taylor series for
arctan(x) is valid for all x ∈ (−1, 1). Notice, however, that the series also
converges when x = 1. Assuming that arctan(x) is continuous, explain why the
value of the series at x = 1 must necessarily be arctan(1). What interesting
identity do we get in this case?

Exercise 6.6.2. Starting from one of the previously generated series in this
section, use manipulations similar to those in Example 6.6.1 to find Taylor
series representations for each of the following functions. For precisely what
values of x is each series representation valid?
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(a) x cos(x2)

(b) x/(1 + 4x2)2

(c) log(1 + x2)

Exercise 6.6.3. Derive the formula for the Taylor coefficients given in
Theorem 6.6.2.

Exercise 6.6.4. Explain how Lagrange’s Remainder Theorem can be modified
to prove

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · = log(2).

Exercise 6.6.5. (a) Generate the Taylor coefficients for the exponential func-
tion f(x) = ex, and then prove that the corresponding Taylor series con-
verges uniformly to ex on any interval of the form [−R,R].

(b) Verify the formula f ′(x) = ex.

(c) Use a substitution to generate the series for e−x, and then informally
calculate ex · e−x by multiplying together the two series and collecting
common powers of x.

Exercise 6.6.6. Review the proof that g′(0) = 0 for the function

g(x) =

{
e−1/x2

for x 	= 0,
0 for x = 0.

introduced at the end of this section.

(a) Compute g′(x) for x 	= 0. Then use the definition of the derivative to find
g′′(0).

(b) Compute g′′(x) and g′′′(x) for x 	= 0. Use these observations and in-
vent whatever notation is needed to give a general description for the nth
derivative g(n)(x) at points different from zero.

(c) Construct a general argument for why g(n)(0) = 0 for all n ∈ N.

Exercise 6.6.7. Find an example of each of the following or explain why no
such function exists.

(a) An infinitely differentiable function g(x) on all of R with a Taylor series
that converges to g(x) only for x ∈ (−1, 1).

(b) An infinitely differentiable function h(x) with the same Taylor series as
sin(x) but such that h(x) 	= sin(x) for all x 	= 0.

(c) An infinitely differentiable function f(x) on all of R with a Taylor series
that converges to f(x) if and only if x ≤ 0.



6.7. The Weierstrass Approximation Theorem 205

Exercise 6.6.8. Here is a weaker form of Lagrange’s Remainder Theorem whose
proof is arguably more illuminating than the one for the stronger result.

(a) First establish a lemma: If g and h are differentiable on [0, x] with g(0) =
h(0) and g′(t) ≤ h′(t) for all t ∈ [0, x], then g(t) ≤ h(t) for all t ∈ [0, x].

(b) Let f , SN , and EN be as Theorem 6.6.3, and take 0 < x < R. If
|f (N+1)(t)| ≤ M for all t ∈ [0, x], show

|EN (x)| ≤ MxN+1

(N + 1)!
.

Exercise 6.6.9 (Cauchy’s Remainder Theorem). Let f be differentiable
N +1 times on (−R,R). For each a ∈ (−R,R), let SN (x, a) be the partial sum
of the Taylor series for f centered at a; in other words, define

SN (x, a) =
N∑

n=0

cn(x − a)n where cn =
f (n)(a)

n!
.

Let EN (x, a) = f(x)−SN (x, a). Now fix x 	= 0 in (−R,R) and consider EN (x, a)
as a function of a.

(a) Find EN (x, x).

(b) Explain why EN (x, a) is differentiable with respect to a, and show

E′
N (x, a) =

−f (N+1)(a)

N !
(x− a)N .

(c) Show

EN (x) = EN (x, 0) =
f (N+1)(c)

N !
(x − c)Nx

for some c between 0 and x. This is Cauchy’s form of the remainder for
Taylor series centered at the origin.

Exercise 6.6.10. Consider f(x) = 1/
√
1− x.

(a) Generate the Taylor series for f centered at zero, and use Lagrange’s
Remainder Theorem to show the series converges to f on [0, 1/2]. (The
case x < 1/2 is more straightforward while x = 1/2 requires some extra
care.) What happens when we attempt this with x > 1/2?

(b) Use Cauchy’s Remainder Theorem proved in Exercise 6.6.9 to show the
series representation for f holds on [0, 1).

6.7 The Weierstrass Approximation Theorem

Karl Weierstrass’s name is attached to a number of significant results discussed
already. The Bolzano-Weierstrass Theorem was fundamental to understanding
the relationship between convergence, completeness, and compactness worked
out in the early chapters. In this chapter, the Weierstrass M-Test emerged
as the primary tool for demonstrating uniform convergence of infinite series.
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As discussed in Section 5.4, Weierstrass was also responsible for one of the
earliest examples of a continuous, nowhere differentiable function, making this
discovery in 1872.

In 1885, Weierstrass proved a result that served as an interesting counter-
point to his nowhere differentiable function. This theorem, which also bears his
name, would become the catalyst for a new branch of analysis called approxi-
mation theory.

Theorem 6.7.1 (Weierstrass Approximation Theorem). Let f : [a, b] →
R be continuous. Given ε > 0, there exists a polynomial p(x) satisfying

|f(x)− p(x)| < ε

for all x ∈ [a, b].

A restatement of the Weierstrass Approximation Theorem (WAT) without
all the symbols is that every continuous function on a closed interval can be
uniformly approximated by a polynomial.

Exercise 6.7.1. Assuming WAT, show that if f is continuous on [a, b], then
there exists a sequence (pn) of polynomials such that pn → f uniformly on [a, b].

Our work in the previous section provides a nice starting point for under-
standing what WAT is saying. Given a function such as sin(x), we saw in
Example 6.6.4 that the resulting Taylor series converges uniformly on compact
sets back to sin(x). Because the partial sums of a Taylor series are polynomials,
this example constitutes a proof of WAT in the very special case of f(x) = sin(x).
It should be clear, however, that Taylor series won’t work in general. To con-
struct a Taylor series, we need f to be an infinitely differentiable function (and
even then the Taylor series might fail to approximate f), while WAT requires
only that f be continuous.

So should we be surprised that such a theorem is true? This is hard to say.
On a purely intuitive level, if we consider a smooth curve like f(x) =

√
1− x on

[−1, 1], then it doesn’t take too much imagination to believe that a polynomial
might exist that tracks closely with

√
1− x as x moves over the domain. But

one of the lessons of Section 5.4 is that a continuous function does not have to
be smooth. Although it is not Weierstrass’s original example, a careful look at
the nowhere differentiable function shown in Figure 5.7 makes the point just as
well. Despite the unimaginably jagged nature of the graph, according to WAT,
it is still possible to find a polynomial that uniformly approximates this unruly
function to any prescribed degree of accuracy.

Interpolation

Weierstrass’s theorem deals with approximating polynomials, but a good way to
get a feel for the content of this result is to temporarily replace the polynomials
in WAT with the collection of all continuous, piecewise-linear functions.
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1

(0,1)

(1, 0)

Figure 6.6: Polygonal approximation of f(x) =
√
1− x.

Definition 6.7.2. A continuous function φ : [a, b] → R is polygonal if there is
a partition

a = x0 < x1 < x2 < · · · < xn = b

of [a, b] such that φ is linear on each subinterval [xi−1, xi], where i = 1, . . . n.

The term “interpolation” refers to the process of finding a function whose
graph passes through a given set of points. If, for example, we take the points

(0, 1),

(
1

4
,

√
3

2

)
,

(
3

4
,
1

2

)
, (1, 0)

then there is an obvious polygonal function that interpolates these points: it
is just the function we get by connecting the points with line segments. Now
these four points all lie on the graph of f(x) =

√
1− x, and notice that the

resulting polygonal interpolation does a reasonable job of imitating the graph
of f (Fig. 6.6). This is not an accident.

Theorem 6.7.3. Let f : [a, b] → R be continuous. Given ε > 0, there exists a
polygonal function φ satisfying

|f(x)− φ(x)| < ε

for all x ∈ [a, b].

Exercise 6.7.2. Prove Theorem 6.7.3.

Notice how similar Theorem 6.7.3 is to WAT, the only difference being that
we have substituted a polygonal function in place of the polynomial.

The strategy for the proof of Theorem 6.7.3 is to first choose an appropriate
numbers of points on the graph of f , and then show that the resulting polygonal
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interpolation of these points does the trick. It’s not unreasonable to suspect
that a similar strategy might lead to a proof of the Weierstrass Approximation
Theorem. Can we prove WAT by constructing a polynomial interpolation of
points on the graph of f? Well, no as it turns out, but this is not so easy to see.

Exercise 6.7.3. (a) Find the second degree polynomial p(x) = q0+q1x+q2x
2

that interpolates the three points (−1, 1), (0, 0), and (1, 1) on the graph of
g(x) = |x|. Sketch g(x) and p(x) over [−1, 1] on the same set of axes.

(b) Find the fourth degree polynomial that interpolates g(x) = |x| at the
points x = −1,−1/2, 0, 1/2, and 1. Add a sketch of this polynomial to
the graph from (a).

The previous exercise may still give the impression that a polynomial inter-
polation approach is going to lead to a proof of WAT, but that isn’t the case.
Continuing on with larger and larger numbers of equally spaced points yields
high degree polynomials that oscillate very rapidly and actually do a poor job of
approximating g between the interpolating points. In fact, it turns out that the
resulting sequence of polynomials only converges to g(x) when x = −1, 0, or 1.

Approximating the Absolute Value Function

Having reached a temporary dead end, we need to back up a bit and take a
different turn. Let’s return to Theorem 6.7.3 which asserts that every continuous
function can be uniformly approximated by a polygonal function. This should
feel like a promising first step toward a proof of WAT and indeed it is. If we can
find a way to approximate an arbitrary polygonal function with polynomials,
then a triangle inequality argument would finish the proof.

Before we get too excited about this line of attack, keep in mind that the
absolute value function from Exercise 6.7.3 is an example of a polygonal function
and we are currently unsure how to produce polynomials to approximate it.
What has changed, however, is our motivation for doing so. A moment’s thought
reveals that handling the absolute value function might be the key to solving
the whole problem. Why is this? Every polygonal function is made up of
line segments that meet at corners. If we can find polynomials that uniformly
approximate g(x) = |x| with its right angled corner at the origin, then with a
little cleverness we ought to be able to handle more general polygonal functions
and prove WAT using Theorem 6.7.3.

Cauchy’s Remainder Formula for Taylor Series

One elegant way to show g(x) = |x| is the uniform limit of polynomials is via
Taylor series, which is a bit surprising given that |x| is not differentiable. The
trick, as we will see, is to start by computing the Taylor series for the infinitely
differentiable function

√
1− x.
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Exercise 6.7.4. Show that f(x) =
√
1− x has Taylor series coefficients an

where a0 = 1 and

an =
−1 · 3 · 5 · · · (2n− 3)

2 · 4 · 6 · · · 2n
for n ≥ 1.

Our goal is to show

(1)
√
1− x =

∞∑

n=0

anx
n

for all x ∈ [−1, 1] by showing that the error function

EN (x) =
√
1− x−

N∑

n=0

anx
n

tends to 0 as N → ∞. To this point, Lagrange’s Remainder Theorem has been
the featured tool for jobs like this, but it comes up short in this case. To see
exactly why, fix x ∈ (0, 1]. Then Theorem 6.6.3 asserts that there exists a
c ∈ (0, x) (dependent on N) such that

EN (x) =
f (N+1)(c)

(N + 1)!
xN+1

=
1

(N + 1)!

(−1 · 3 · 5 · · · (2N − 1)

2N+1(1− c)N+1/2

)
xN+1

=

(−1 · 3 · 5 · · · (2N − 1)

2 · 4 · 6 · · · (2N + 2)

)(
x

1− c

)N+1/2

x1/2 .

The problem is that x/(1 − c) is largest when c = x, and (x/(1 − x))N+1/2

goes exponentially to infinity when x is bigger than 1/2. This doesn’t mean
our Taylor series is only valid on [0, 1/2]; it just means we are using the wrong
remainder formula.

Exercise 6.7.5. (a) Follow the advice in Exercise 6.6.9 to prove the Cauchy
form of the remainder:

EN (x) =
f (N+1)(c)

N !
(x− c)Nx

for some c between 0 and x.

(b) Use this result to prove equation (1) is valid for all x ∈ (−1, 1).

Although Cauchy’s Remainder Theorem doesn’t tell us so, equation (1) is
also valid at x = ±1.
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Exercise 6.7.6. (a) Let

cn =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n
for n ≥ 1. Show cn < 2√

2n+1
.

(b) Use (a) to show that
∑∞

n=0 an converges (absolutely, in fact) where an is
the sequence of Taylor coefficients generated in Exercise 6.7.4.

(c) Carefully explain how this verifies that equation (1) holds for all x ∈
[−1, 1].

Recall that our goal is to find polynomials that uniformly approximate the
absolute value function on an interval containing the non-differentiable point at
the origin. Our Taylor series for

√
1− x provides a clever shortcut for handling

this task.

Exercise 6.7.7. (a) Use the fact that |a| =
√
a2 to prove that, given ε > 0,

there exists a polynomial q(x) satisfying

||x| − q(x)| < ε

for all x ∈ [−1, 1].

(b) Generalize this conclusion to an arbitrary interval [a, b].

Proving WAT

Earlier we suggested that proving WAT for the special case of the absolute value
function was the key to the whole proof. Now it is time to fill in the details.

Exercise 6.7.8. (a) Fix a ∈ [−1, 1] and sketch

ha(x) =
1

2
(|x− a|+ (x− a))

over [−1, 1]. Note that ha is polygonal and satisfies ha(x) = 0 for all
x ∈ [−1, a].

(b) Explain why we know ha(x) can be uniformly approximated with a poly-
nomial on [−1, 1].

(c) Let φ be a polygonal function that is linear on each subinterval of the
partition

−1 = a0 < a1 < a2 < · · · < an = 1 .

Show there exist constants b0, b1, . . . , bn−1 so that

φ(x) = φ(−1) + b0ha0(x) + b1ha1(x) + · · ·+ bn−1han−1(x)

for all x ∈ [−1, 1].
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(d) Complete the proof of WAT for the interval [−1, 1], and then generalize
to an arbitrary interval [a, b].

Exercise 6.7.9. (a) Find a counterexample which shows that WAT is not
true if we replace the closed interval [a, b] with the open interval (a, b).

(b) What happens if we replace [a, b] with the closed set [a,∞). Does the
theorem still hold?

Exercise 6.7.10. Is there a countable subset of polynomials C with the prop-
erty that every continuous function on [a, b] can be uniformly approximated by
polynomials from C?
Exercise 6.7.11. Assume that f has a continuous derivative on [a, b]. Show
that there exists a polynomial p(x) such that

|f(x)− p(x)| < ε and |f ′(x) − p′(x)| < ε

for all x ∈ [a, b].

6.8 Epilogue

The argument sketched out here for the Weierstrass Approximation Theorem
is due to Henri Lebesque, who published his proof in 1898. Its greatest virtue
is its relative simplicity. Starting from a single special case—the absolute value
function—we managed to bootstrap our way up to an arbitrary continuous
function. A downside of this approach is that by the time we reach the case of
a general continuous function, there is no practical way to explicitly write down
a formula for the polynomial that approximates it.

There are a number of other proofs for WAT that don’t have this drawback.
A particularly popular one was provided by Sergei Bernstein. Bernstein employs
a family of polynomials—now called Bernstein polynomials—that have become
important in their own right. Weierstrass’s original approach was also quite
elegant. His proof has much in common with the proof of Fejér’s Theorem in
Section 8.5 on Fourier series. Not coincidentally, it is possible to derive yet
another proof of WAT as a corollary to Fejér’s Theorem. (See Exercise 8.5.11.)

The Weierstrass Approximation Theorem is set on a closed interval [a, b].
Exercise 6.7.9 is included to emphasize the importance of the closed and bounded
nature of the domain, but it should not be too surprising that the theorem will
remain true if we replace [a, b] with an arbitrary compact set. What about
replacing the set of polynomials? Are there other collections of relatively simple
continuous functions that can be used to approximate an arbitrary continuous
function? Sure there are. In Theorem 6.7.3 we saw that polygonal functions have
this property, and there are other examples as well. In the late 1930s, Marshall
Stone proved a far-reaching generalization of the Weierstrass Approximation
Theorem. Stone’s version of WAT starts with an arbitrary compact set K and
a collection C of continuous functions on K with the following three properties:
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(i) the constant function k(x) = 1 is in C,
(ii) if p, q ∈ C and c ∈ R then p+ q, pq, and cp are all in C,
(iii) if x 	= y in K, then there exists p ∈ C with p(x) 	= p(y).

Under these conditions, Stone showed that any continuous function on K could
be uniformly approximated by functions in C. This result, referred to as the
Stone–Weierstrass Theorem, has a slightly more involved proof that tracks very
closely with Lebesgue’s proof of WAT outlined in the previous section. In par-
ticular, both arguments depend fundamentally on being able to approximate
the absolute value function with polynomials.

A collection of functions that possesses property (ii) of the Stone–Weierstrass
Theorem is called an algebra. An algebra that possesses property (iii) is said to
separate points. Having the constant function k(x) = 1 in the algebra ensures
we don’t have some x0 ∈ K where p(x0) = 0 for all functions in our algebra.
(Why would this be problematic?) It is straightforward to check that the set of
polynomials as well as the set of polygonal functions form algebras that separate
points, and so both WAT and Theorem 6.7.3 become special cases of Stone’s
general result. For a new example, consider the collection of polynomials with
only even powers on the interval [0, 1]. The Stone–Weierstrass Theorem tells
us that this subset of polynomials can still uniformly approximate an arbitrary
continuous function, although if we were to switch our domain to [−1, 1] then
this algebra would no longer separate points. As a final example, consider the
set

C = {a0 + a1 cos(x) + · · ·+ an cos(nx) : a0, a1, . . . , an ∈ R}.
In Section 8.5 we take up the theory of Fourier series which explores when a
function has a representation as an infinite series of trigonometric functions. As
a precursor to that conversation, notice that the Stone–Weierstrass Theorem
tells us at the outset that at least every continuous function on [0, π] is the
uniform limit of functions from C.

The story from Section 6.6 surrounding Taylor series expansions also deserves
a final word. The ingenuity with which Euler and others found and exploited
power series representations for the cast of familiar functions from calculus und-
erstandably led to speculation that every function could be represented in such
a fashion. (The term “function” at this time implicitly referred to functions that
were infinitely differentiable.) This point of view effectively ended with Cauchy’s
discovery in 1821 of the counterexample presented at the end of Section 6.6.
So under what conditions does the Taylor series necessarily converge to the
generating function? Lagrange’s Remainder Theorem states that the difference
between the Taylor polynomial SN (x) and the function f(x) is given by

EN (x) =
f (N+1)(c)

(N + 1)!
xN+1.
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The (N + 1)! term in the denominator grows more rapidly than the xN+1 term
in the numerator. Thus, if we knew for instance that

|f (N+1)(c)| ≤ M

for all c ∈ (−R,R) and N ∈ N, we could be sure that EN (x) → 0 and hence
that SN (x) → f(x). This is the case for sin(x), cos(x), and ex, whose derivatives
do not grow at all as N → ∞. It is also possible to formulate weaker conditions
on the rate of growth of f (N+1) that guarantee convergence.

It is not altogether clear whether Cauchy’s counterexample should come as
a surprise. The fact that every previous search for a Taylor series ended in
success certainly gives the impression that a power series representation is an
intrinsic property of infinitely differentiable functions. But notice what we are
saying here. A Taylor series for a function f is constructed from the values
of f and its derivatives at the origin. If the Taylor series converges to f on
some interval (−R,R), then the behavior of f near zero completely determines
its behavior at every point in (−R,R). One implication of this would be that
if two functions with Taylor series agree on some small neighborhood (−ε, ε),
then these two functions would have to be the same everywhere. When it is
put this way, we probably should not expect a Taylor series to always converge
back to the function from which it was derived. As we have seen, this is not
the case for real-valued functions. What is fascinating, however, is that results
of this nature do hold for functions of a complex variable. The definition of the
derivative looks symbolically the same when the real numbers are replaced by
complex numbers, but the implications are profoundly different. In this setting,
a function that is differentiable at every point in some open disc must necessarily
be infinitely differentiable on this set. This supplies the ingredients to construct
the Taylor series that in every instance converges uniformly on compact sets to
the function that generated it.
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