
Chapter 4

Functional Limits
and Continuity

4.1 Discussion: Examples of Dirichlet
and Thomae

Although it is a common practice in calculus courses to discuss continuity before
differentiation, historically mathematicians’ attention to the concept of continu-
ity came long after the derivative was in wide use. Pierre de Fermat (1601–1665)
was using tangent lines to solve optimization problems as early as 1629. On the
other hand, it was not until around 1820 that Cauchy, Bolzano, Weierstrass, and
others began to characterize continuity in terms more rigorous than prevailing
intuitive notions such as “unbroken curves” or “functions which have no jumps
or gaps.” The basic reason for this two-hundred year waiting period lies in
the fact that, for most of this time, the very notion of function did not really
permit discontinuities. Functions were entities such as polynomials, sines, and
cosines, always smooth and continuous over their relevant domains. The gradual
liberation of the term function to its modern understanding—a rule associat-
ing a unique output with a given input—was simultaneous with 19th century
investigations into the behavior of infinite series. Extensions of the power of
calculus were intimately tied to the ability to represent a function f(x) as a
limit of polynomials (called a power series) or as a limit of sums of sines and
cosines (called a trigonometric or Fourier series). A typical question for Cauchy
and his contemporaries was whether the continuity of the limiting polynomials
or trigonometric functions necessarily implied that the limit f would also be
continuous.

Sequences and series of functions are the topics of Chapter 6. What is
relevant at this moment is that we realize why the issue of finding a rigorous
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Figure 4.1: Dirichlet’s Function, g(x).

definition for continuity finally made its way to the fore. Any significant progress
on the question of whether the limit of continuous functions is continuous
(for Cauchy and for us) necessarily depends on a definition of continuity that
does not rely on imprecise notions such as “no holes” or “gaps.” With a math-
ematically unambiguous definition for the limit of a sequence in hand, we are
well on our way toward a rigorous understanding of continuity.

Given a function f with domain A ⊆ R, we want to define continuity at a
point c ∈ A to mean that if x ∈ A is chosen near c, then f(x) will be near f(c).
Symbolically, we will say f is continuous at c if

lim
x→c

f(x) = f(c).

The problem is that, at present, we only have a definition for the limit of a
sequence, and it is not entirely clear what is meant by limx→c f(x). The sub-
tleties that arise as we try to fashion such a definition are well-illustrated via a
family of examples, all based on an idea of the prominent German mathemati-
cian, Peter Lejeune Dirichlet. Dirichlet’s idea was to define a function g in a
piecewise manner based on whether or not the input variable x is rational or
irrational. Specifically, let

g(x) =

{
1 if x ∈ Q
0 if x /∈ Q.

The intricate way that Q and I fit inside of R makes an accurate graph of g
technically impossible to draw, but Figure 4.1 illustrates the basic idea.

Does it make sense to attach a value to the expression limx→1/2 g(x)? One
idea is to consider a sequence (xn) → 1/2. Using our notion of the limit of
a sequence, we might try to define limx→1/2 g(x) as simply the limit of the
sequence g(xn). But notice that this limit depends on how the sequence (xn) is
chosen. If each xn is rational, then

lim
n→∞ g(xn) = 1.

On the other hand, if xn is irrational for each n, then

lim
n→∞ g(xn) = 0.
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Figure 4.2: Modified Dirichlet Function, h(x).

This unacceptable situation demands that we work harder on our definition of
functional limits. Generally speaking, we want the value of limx→c g(x) to be
independent of how we approach c. In this particular case, the definition of a
functional limit that we agree on should lead to the conclusion that

lim
x→1/2

g(x) does not exist.

Postponing the search for formal definitions for the moment, we should
nonetheless realize that Dirichlet’s function is not continuous at c = 1/2. In fact,
the real significance of this function is that there is nothing unique about the
point c = 1/2. Because both Q and I (the set of irrationals) are dense in the
real line, it follows that for any z ∈ R we can find sequences (xn) ⊆ Q and
(yn) ⊆ I such that

limxn = lim yn = z.

(See Example 3.2.9 (iii).) Because

lim g(xn) �= lim g(yn),

the same line of reasoning reveals that g(x) is not continuous at z. In the jargon
of analysis, Dirichlet’s function is a nowhere-continuous function on R.

What happens if we adjust the definition of g(x) in the following way? Define
a new function h (Fig. 4.2) on R by setting

h(x) =

{
x if x ∈ Q
0 if x /∈ Q.

If we take c different from zero, then just as before we can construct sequences
(xn) → c of rationals and (yn) → c of irrationals so that

limh(xn) = c and lim h(yn) = 0.

Thus, h is not continuous at every point c �= 0.
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Figure 4.3: Thomae’s Function, t(x).

If c = 0, however, then these two limits are both equal to h(0) = 0. In fact,
it appears as though no matter how we construct a sequence (zn) converging to
zero, it will always be the case that limh(zn) = 0. This observation goes to the
heart of what we want functional limits to entail. To assert that

lim
x→c

h(x) = L

should imply that

h(zn) → L for all sequences (zn) → c.

For reasons not yet apparent, it is beneficial to fashion the definition for func-
tional limits in terms of neighborhoods constructed around c and L. We will
quickly see, however, that this topological formulation is equivalent to the
sequential characterization we have arrived at here.

To this point, we have been discussing continuity of a function at a particular
point in its domain. This is a significant departure from thinking of continuous
functions as curves that can be drawn without lifting the pen from the paper,
and it leads to some fascinating questions. In 1875, K.J. Thomae discovered the
function

t(x) =

⎧⎨
⎩

1 if x = 0
1/n if x = m/n ∈ Q\{0} is in lowest terms with n > 0
0 if x /∈ Q.

If c ∈ Q, then t(c) > 0. Because the set of irrationals is dense in R, we can find
a sequence (yn) in I converging to c. The result is that

lim t(yn) = 0 �= t(c),

and Thomae’s function (Fig. 4.3) fails to be continuous at any rational point.

The twist comes when we try this argument on some irrational point in the
domain such as c =

√
2. All irrational values get mapped to zero by t, so the

natural thing would be to consider a sequence (xn) of rational numbers that
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converges to
√
2. Now,

√
2 ≈ 1.414213 . . ., so a good start on a particular

sequence of rational approximations for
√
2 might be

(
1,

14

10
,
141

100
,
1414

1000
,
14142

10000
,
141421

100000
, . . .

)
.

But notice that the denominators of these fractions are getting larger. In this
case, the sequence t(xn) begins,

(
1,

1

5
,

1

100
,

1

500
,

1

5000
,

1

100000
, . . .

)

and is fast approaching 0 = t(
√
2). We will see that this always happens.

The closer a rational number is chosen to a fixed irrational number, the larger
its denominator must necessarily be. As a consequence, Thomae’s function has
the bizarre property of being continuous at every irrational point on R and
discontinuous at every rational point.

Is there an example of a function with the opposite property? In other words,
does there exist a function defined on all of R that is continuous on Q but fails
to be continuous on I? Can the set of discontinuities of a particular function be
arbitrary? If we are given some set A ⊆ R, is it always possible to find a function
that is continuous only on the set Ac? In each of the examples in this section, the
functions were defined to have erratic oscillations around points in the domain.
What conclusions can we draw if we restrict our attention to functions that
are somewhat less volatile? One such class is the set of so-called monotone
functions, which are either increasing or decreasing on a given domain. What
might we be able to say about the set of discontinuities of a monotone function
on R?

4.2 Functional Limits

Consider a function f : A → R. Recall that a limit point c of A is a point with
the property that every ε-neighborhood Vε(c) intersects A in some point other
than c. Equivalently, c is a limit point of A if and only if c = lim xn for some
sequence (xn) ⊆ A with xn �= c. It is important to remember that limit points
of A do not necessarily belong to the set A unless A is closed.

If c is a limit point of the domain of f , then, intuitively, the statement

lim
x→c

f(x) = L

is intended to convey that values of f(x) get arbitrarily close to L as x is chosen
closer and closer to c. The issue of what happens when x = c is irrelevant from
the point of view of functional limits. In fact, c need not even be in the domain
of f .

The structure of the definition of functional limits follows the “challenge–
response” pattern established in the definition for the limit of a sequence. Recall
that given a sequence (an), the assertion lim an = L implies that for every
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Figure 4.4: Definition of Functional Limit.

ε-neighborhood Vε(L) centered at L, there is a point in the sequence—call it
aN—after which all of the terms an fall in Vε(L). Each ε-neighborhood repre-
sents a particular challenge, and each N is the respective response. For func-
tional limit statements such as limx→c f(x) = L, the challenges are still made in
the form of an arbitrary ε-neighborhood around L, but the response this time
is a δ-neighborhood centered at c.

Definition 4.2.1 (Functional Limit). Let f : A → R, and let c be a limit
point of the domain A. We say that limx→c f(x) = L provided that, for all
ε > 0, there exists a δ > 0 such that whenever 0 < |x − c| < δ (and x ∈ A) it
follows that |f(x)− L| < ε.

This is often referred to as the “ε–δ version” of the definition for functional
limits. Recall that the statement

|f(x)− L| < ε is equivalent to f(x) ∈ Vε(L).

Likewise, the statement

|x− c| < δ is satisfied if and only if x ∈ Vδ(c).

The additional restriction 0 < |x− c| is just an economical way of saying x �= c.
Recasting Definition 4.2.1 in terms of neighborhoods—just as we did for the
definition of convergence of a sequence in Section 2.2—amounts to little more
than a change of notation, but it does help emphasize the geometrical nature of
what is happening (Fig. 4.4).

Definition 4.2.1B (Functional Limit: Topological Version). Let c be a
limit point of the domain of f : A → R. We say limx→c f(x) = L provided
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that, for every ε-neighborhood Vε(L) of L, there exists a δ-neighborhood Vδ(c)
around c with the property that for all x ∈ Vδ(c) different from c (with x ∈ A)
it follows that f(x) ∈ Vε(L).

The parenthetical reminder “(x ∈ A)” present in both versions of the def-
inition is included to ensure that x is an allowable input for the function in
question. When no confusion is likely, we may omit this reminder with the
understanding that the appearance of f(x) carries with it the implicit assump-
tion that x is in the domain of f . On a related note, there is no reason to discuss
functional limits at isolated points of the domain. Thus, functional limits will
only be considered as x tends toward a limit point of the function’s domain.

Example 4.2.2. (i) To familiarize ourselves with Definition 4.2.1, let’s prove
that if f(x) = 3x+ 1, then

lim
x→2

f(x) = 7.

Let ε > 0. Definition 4.2.1 requires that we produce a δ > 0 so that
0 < |x− 2| < δ leads to the conclusion |f(x)− 7| < ε. Notice that

|f(x)− 7| = |(3x+ 1)− 7| = |3x− 6| = 3|x− 2|.

Thus, if we choose δ = ε/3, then 0 < |x − 2| < δ implies |f(x) − 7| <
3 (ε/3) = ε.

(ii) Let’s show

lim
x→2

g(x) = 4,

where g(x) = x2. Given an arbitrary ε > 0, our goal this time is to make
|g(x) − 4| < ε by restricting |x − 2| to be smaller than some carefully
chosen δ. As in the previous problem, a little algebra reveals

|g(x)− 4| = |x2 − 4| = |x+ 2||x− 2|.

We can make |x− 2| as small as we like, but we need an upper bound on
|x+2| in order to know how small to choose δ. The presence of the variable
x causes some initial confusion, but keep in mind that we are discussing
the limit as x approaches 2. If we agree that our δ-neighborhood around
c = 2 must have radius no bigger than δ = 1, then we get the upper bound
|x+ 2| ≤ |3 + 2| = 5 for all x ∈ Vδ(c).

Now, choose δ = min{1, ε/5}. If 0 < |x− 2| < δ, then it follows that

|x2 − 4| = |x+ 2||x− 2| < (5)
ε

5
= ε,

and the limit is proved.
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Sequential Criterion for Functional Limits

We worked very hard in Chapter 2 to derive an impressive list of proper-
ties enjoyed by sequential limits. In particular, the Algebraic Limit Theorem
(Theorem 2.3.3) and the Order Limit Theorem (Theorem 2.3.4) proved invalu-
able in a large number of the arguments that followed. Not surprisingly, we
are going to need analogous statements for functional limits. Although it is not
difficult to generate independent proofs for these statements, all of them will
follow quite naturally from their sequential analogs once we derive the sequen-
tial criterion for functional limits motivated in the opening discussion of this
chapter.

Theorem 4.2.3 (Sequential Criterion for Functional Limits). Given a
function f : A → R and a limit point c of A, the following two statements are
equivalent:

(i) lim
x→c

f(x) = L.

(ii) For all sequences (xn) ⊆ A satisfying xn �= c and (xn) → c, it follows that
f(xn) → L.

Proof. (⇒) Let’s first assume that limx→c f(x) = L. To prove (ii), we consider
an arbitrary sequence (xn), which converges to c and satisfies xn �= c. Our goal
is to show that the image sequence f(xn) converges to L. This is most easily
seen using the topological formulation of the definition.

Let ε > 0. Because we are assuming (i), Definition 4.2.1B implies that
there exists Vδ(c) with the property that all x ∈ Vδ(c) different from c satisfy
f(x) ∈ Vε(L). All we need to do then is argue that our particular sequence (xn)
is eventually in Vδ(c). But we are assuming that (xn) → c. This implies that
there exists a point xN after which xn ∈ Vδ(c). It follows that n ≥ N implies
f(xn) ∈ Vε(L), as desired.

(⇐) For this implication we give a contrapositive proof, which is essentially
a proof by contradiction. Thus, we assume that statement (ii) is true, and
carefully negate statement (i). To say that

lim
x→c

f(x) �= L

means that there exists at least one particular ε0 > 0 for which no δ is a suitable
response. In other words, no matter what δ > 0 we try, there will always be at
least one point

x ∈ Vδ(c) with x �= c for which f(x) /∈ Vε0(L).

Now consider δn = 1/n. From the preceding discussion, it follows that for each
n ∈ N we may pick an xn ∈ Vδn(c) with xn �= c and f(xn) /∈ Vε0(L). But now
notice that the result of this is a sequence (xn) → c with xn �= c, where the
image sequence f(xn) certainly does not converge to L.

Because this contradicts (ii), which we are assuming is true for this argument,
we may conclude that (i) must also hold.
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Theorem 4.2.3 has several useful corollaries. In addition to the previously
advertised benefit of granting us some short proofs of statements about how
functional limits interact with algebraic combinations of functions, we also get
an economical way of establishing that certain limits do not exist.

Corollary 4.2.4 (Algebraic Limit Theorem for Functional Limits). Let
f and g be functions defined on a domain A ⊆ R, and assume limx→c f(x) = L
and limx→c g(x) = M for some limit point c of A. Then,

(i) lim
x→c

kf(x) = kL for all k ∈ R,

(ii) lim
x→c

[f(x) + g(x)] = L+M ,

(iii) lim
x→c

[f(x)g(x)] = LM , and

(iv) lim
x→c

f(x)/g(x) = L/M , provided M �= 0.

Proof. These follow from Theorem 4.2.3 and the Algebraic Limit Theorem for
sequences. The details are requested in Exercise 4.2.1.

Corollary 4.2.5 (Divergence Criterion for Functional Limits). Let f be
a function defined on A, and let c be a limit point of A. If there exist two
sequences (xn) and (yn) in A with xn �= c and yn �= c and

lim xn = lim yn = c but lim f(xn) �= lim f(yn),

then we can conclude that the functional limit limx→c f(x) does not exist.

Example 4.2.6. Assuming the familiar properties of the sine function, let’s
show that limx→0 sin(1/x) does not exist (Fig. 4.5).

If xn = 1/2nπ and yn = 1/(2nπ + π/2), then lim(xn) = lim(yn) = 0.
However, sin(1/xn) = 0 for all n ∈ N while sin(1/yn) = 1. Thus,

lim sin(1/xn) �= lim sin(1/yn),

so by Corollary 4.2.5, limx→0 sin(1/x) does not exist.

Figure 4.5: The function sin(1/x) near zero.



120 Chapter 4. Functional Limits and Continuity

Exercises

Exercise 4.2.1. (a) Supply the details for how Corollary 4.2.4 part (ii) follows
from the Sequential Criterion for Functional Limits in Theorem 4.2.3 and
the Algebraic Limit Theorem for sequences proved in Chapter 2.

(b) Now, write another proof of Corollary 4.2.4 part (ii) directly from Defini-
tion 4.2.1 without using the sequential criterion in Theorem 4.2.3.

(c) Repeat (a) and (b) for Corollary 4.2.4 part (iii).

Exercise 4.2.2. For each stated limit, find the largest possible δ-neighborhood
that is a proper response to the given ε challenge.

(a) limx→3(5x− 6) = 9, where ε = 1.

(b) limx→4
√
x = 2, where ε = 1.

(c) limx→π[[x]] = 3, where ε = 1. (The function [[x]] returns the greatest
integer less than or equal to x.)

(d) limx→π[[x]] = 3, where ε = .01.

Exercise 4.2.3. Review the definition of Thomae’s function t(x) from
Section 4.1.

(a) Construct three different sequences (xn), (yn), and (zn), each of which
converges to 1 without using the number 1 as a term in the sequence.

(b) Now, compute lim t(xn), lim t(yn), and lim t(zn).

(c) Make an educated conjecture for limx→1 t(x), and use Definition 4.2.1B to
verify the claim. (Given ε > 0, consider the set of points {x ∈ R : t(x) ≥ ε}.
Argue that all the points in this set are isolated.)

Exercise 4.2.4. Consider the reasonable but erroneous claim that

lim
x→10

1/[[x]] = 1/10.

(a) Find the largest δ that represents a proper response to the challenge of
ε = 1/2.

(b) Find the largest δ that represents a proper response to ε = 1/50.

(c) Find the largest ε challenge for which there is no suitable δ response
possible.
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Exercise 4.2.5. Use Definition 4.2.1 to supply a proper proof for the following
limit statements.

(a) limx→2(3x+ 4) = 10.

(b) limx→0 x
3 = 0.

(c) limx→2(x
2 + x− 1) = 5.

(d) limx→3 1/x = 1/3.

Exercise 4.2.6. Decide if the following claims are true or false, and give short
justifications for each conclusion.

(a) If a particular δ has been constructed as a suitable response to a particular
ε challenge, then any smaller positive δ will also suffice.

(b) If limx→a f(x) = L and a happens to be in the domain of f , then L = f(a).

(c) If limx→a f(x) = L, then limx→a 3[f(x)− 2]2 = 3(L− 2)2.

(d) If limx→a f(x) = 0, then limx→a f(x)g(x) = 0 for any function g (with
domain equal to the domain of f .)

Exercise 4.2.7. Let g : A → R and assume that f is a bounded function on A
in the sense that there exists M > 0 satisfying |f(x)| ≤ M for all x ∈ A.

Show that if limx→c g(x) = 0, then limx→c g(x)f(x) = 0 as well.

Exercise 4.2.8. Compute each limit or state that it does not exist. Use the
tools developed in this section to justify each conclusion.

(a) limx→2
|x−2|
x−2

(b) limx→7/4
|x−2|
x−2

(c) limx→0(−1)[[1/x]]

(d) limx→0
3
√
x(−1)[[1/x]]

Exercise 4.2.9 (Infinite Limits). The statement limx→0 1/x
2 = ∞ certainly

makes intuitive sense. To construct a rigorous definition in the challenge–
response style of Definition 4.2.1 for an infinite limit statement of this form,
we replace the (arbitrarily small) ε > 0 challenge with an (arbitrarily large)
M > 0 challenge:

Definition: limx→c f(x) = ∞ means that for all M > 0 we can find a δ > 0
such that whenever 0 < |x− c| < δ, it follows that f(x) > M .

(a) Show limx→0 1/x
2 = ∞ in the sense described in the previous definition.

(b) Now, construct a definition for the statement limx→∞ f(x) = L. Show
limx→∞ 1/x = 0.
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(c) What would a rigorous definition for limx→∞ f(x) = ∞ look like? Give
an example of such a limit.

Exercise 4.2.10 (Right and Left Limits). Introductory calculus courses
typically refer to the right-hand limit of a function as the limit obtained by
“letting x approach a from the right-hand side.”

(a) Give a proper definition in the style of Definition 4.2.1 for the right-hand
and left-hand limit statements:

lim
x→a+

f(x) = L and lim
x→a−

f(x) = M.

(b) Prove that limx→a f(x) = L if and only if both the right and left-hand
limits equal L.

Exercise 4.2.11 (Squeeze Theorem). Let f, g, and h satisfy f(x) ≤ g(x) ≤
h(x) for all x in some common domain A. If limx→c f(x) = L and limx→c h(x) =
L at some limit point c of A, show limx→c g(x) = L as well.

4.3 Continuous Functions

We now come to a significant milestone in our progress toward a rigorous theory
of real-valued functions—a proper definition of the seminal concept of continuity
that avoids any intuitive appeals to “unbroken curves” or functions without
“jumps” or “holes.”

Definition 4.3.1 (Continuity). A function f : A → R is continuous at a
point c ∈ A if, for all ε > 0, there exists a δ > 0 such that whenever |x− c| < δ
(and x ∈ A) it follows that |f(x)− f(c)| < ε.

If f is continuous at every point in the domain A, then we say that f is
continuous on A.

The definition of continuity looks much like the definition for functional
limits, with a few subtle differences. The most important is that we require the
point c to be in the domain of f . The value f(c) then becomes the value of
limx→c f(x). With this observation in mind, it is tempting to shorten Defini-
tion 4.3.1 to say that f is continuous at c ∈ A if

lim
x→c

f(x) = f(c).

This is fine as long as c is a limit point of A. If c is an isolated point of A,
then limx→c f(x) isn’t defined but Definition 4.3.1 can still be applied. An un-
remarkable but noteworthy consequence of this definition is that functions are
continuous at isolated points of their domains (Exercise 4.3.5).

We saw in the previous section that, in addition to the standard ε–δ definition,
functional limits have a useful formulation in terms of sequences. The same is
true of continuity. The next theorem summarizes these various equivalent ways
to characterize the continuity of a function at a given point.
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Theorem 4.3.2 (Characterizations of Continuity). Let f : A → R, and let
c ∈ A. The function f is continuous at c if and only if any one of the following
three conditions is met:

(i) For all ε > 0, there exists a δ > 0 such that |x−c| < δ (and x ∈ A) implies
|f(x)− f(c)| < ε;

(ii) For all Vε(f(c)), there exists a Vδ(c) with the property that x ∈ Vδ(c) (and
x ∈ A) implies f(x) ∈ Vε(f(c));

(iii) For all (xn) → c (with xn ∈ A), it follows that f(xn) → f(c).

If c is a limit point of A, then the above conditions are equivalent to

(iv) lim
x→c

f(x) = f(c).

Proof. Statement (i) is just Definition 4.3.1, and statement (ii) is the standard
rewording of (i) using topological neighborhoods in place of the absolute value
notation. Statement (iii) is equivalent to (i) via an argument nearly identical to
that of Theorem 4.2.3, with some slight modifications for when xn = c. Finally,
statement (iv) is seen to be equivalent to (i) by considering Definition 4.2.1 and
observing that the case x = c (which is excluded in the definition of functional
limits) leads to the requirement f(c) ∈ Vε(f(c)), which is trivially true.

The length of this list is somewhat deceiving. Statements (i), (ii), and (iv)
are closely related and essentially remind us that functional limits have an ε–δ
formulation as well as a topological description. Statement (iii), however, is
qualitatively different from the others. As a general rule, the sequential char-
acterization of continuity is typically the most useful for demonstrating that a
function is not continuous at some point.

Corollary 4.3.3 (Criterion for Discontinuity). Let f : A → R, and let
c ∈ A be a limit point of A. If there exists a sequence (xn) ⊆ A where (xn) → c
but such that f(xn) does not converge to f(c), we may conclude that f is not
continuous at c.

The sequential characterization of continuity is also important for the other
reasons that it was important for functional limits. In particular, it allows
us to bring our catalog of results about the behavior of sequences to bear on
the study of continuous functions. The next theorem should be compared to
Corollary 4.2.3 as well as to Theorem 2.3.3.

Theorem 4.3.4 (Algebraic Continuity Theorem). Assume f : A → R and
g : A → R are continuous at a point c ∈ A. Then,

(i) kf(x) is continuous at c for all k ∈ R;

(ii) f(x) + g(x) is continuous at c;

(iii) f(x)g(x) is continuous at c; and

(iv) f(x)/g(x) is continuous at c, provided the quotient is defined.
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Figure 4.6: The function x sin(1/x) near zero.

Proof. All of these statements can be quickly derived from Corollary 4.2.4 and
Theorem 4.3.2.

These results provide us with the tools we need to firm up our arguments
in the opening section of this chapter about the behavior of Dirichlet’s function
and Thomae’s function. The details are requested in Exercise 4.3.7. Here are
some more examples of arguments for and against continuity of some familiar
functions.

Example 4.3.5. All polynomials are continuous on R. In fact, rational func-
tions (i.e., quotients of polynomials) are continuous wherever they are defined.

To see why this is so, consider the identity function g(x) = x. Because
|g(x) − g(c)| = |x − c|, we can respond to a given ε > 0 by choosing δ = ε,
and it follows that g is continuous on all of R. It is even simpler to show that
a constant function f(x) = k, is continuous. (Letting δ = 1 regardless of the
value of ε does the trick.) Because an arbitrary polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

consists of sums and products of g(x) with different constant functions, we may
conclude from Theorem 4.3.4 that p(x) is continuous.

Likewise, Theorem 4.3.4 implies that quotients of polynomials are continuous
as long as the denominator is not zero.

Example 4.3.6. In Example 4.2.6, we saw that the oscillations of sin(1/x) are
so rapid near the origin that limx→0 sin(1/x) does not exist. Now, consider the
function

g(x) =

{
x sin(1/x) if x �= 0
0 if x = 0.

To investigate the continuity of g at c = 0 (Fig. 4.6), we can estimate

|g(x)− g(0)| = |x sin(1/x)− 0| ≤ |x|.



4.3. Continuous Functions 125

Given ε > 0, set δ = ε, so that whenever |x − 0| = |x| < δ it follows that
|g(x)− g(0)| < ε. Thus, g is continuous at the origin.

Example 4.3.7. Throughout the exercises we have been using the greatest
integer function h(x) = [[x]] which for each x ∈ R returns the largest integer
n ∈ Z satisfying n ≤ x. This familiar step function certainly has discontinuous
“jumps” at each integer value of its domain, but it is a useful exercise to try
and articulate this observation in the language of analysis.

Given m ∈ Z, define the sequence (xn) by xn = m − 1/n. It follows that
(xn) → m, but

h(xn) → (m− 1),

which does not equal m = h(m). By Corollary 4.3.3, we see that h fails to be
continuous at each m ∈ Z.

Now let’s see why h is continuous at a point c /∈ Z. Given ε > 0, we must find
a δ-neighborhood Vδ(c) such that x ∈ Vδ(c) implies h(x) ∈ Vε(h(c)). We know
that c ∈ R falls between consecutive integers n < c < n + 1 for some n ∈ Z.
If we take δ = min{c − n, (n + 1)− c}, then it follows from the definition of h
that h(x) = h(c) for all x ∈ Vδ(c). Thus, we certainly have

h(x) ∈ Vε(h(c))

whenever x ∈ Vδ(c).

This latter proof is quite different from the typical situation in that the value
of δ does not actually depend on the choice of ε. Usually, a smaller ε requires a
smaller δ in response, but here the same value of δ works no matter how small
ε is chosen.

Example 4.3.8. Consider f(x) =
√
x defined on A = {x ∈ R : x ≥ 0}.

Exercise 2.3.1 outlines a sequential proof that f is continuous on A. Here, we
give an ε–δ proof of the same fact.

Let ε > 0. We need to argue that |f(x) − f(c)| can be made less than ε for
all values of x in some δ neighborhood around c. If c = 0, this reduces to the
statement

√
x < ε, which happens as long as x < ε2. Thus, if we choose δ = ε2,

we see that |x− 0| < δ implies |f(x)− 0| < ε.

For a point c ∈ A different from zero, we need to estimate |√x−√
c|. This

time, write

|√x−√
c| = |√x−√

c|
(√

x+
√
c√

x+
√
c

)
=

|x− c|√
x+

√
c
≤ |x− c|√

c
.

In order to make this quantity less than ε, it suffices to pick δ = ε
√
c. Then,

|x− c| < δ implies

|√x−√
c| < ε

√
c√
c

= ε,

as desired.
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Although we have now shown that both polynomials and the square root
function are continuous, the Algebraic Continuity Theorem does not provide
the justification needed to conclude that a function such as h(x) =

√
3x2 + 5 is

continuous. For this, we must prove that compositions of continuous functions
are continuous.

Theorem 4.3.9 (Composition of Continuous Functions). Given f : A→R
and g : B → R, assume that the range f(A) = {f(x) : x ∈ A} is contained in
the domain B so that the composition g ◦ f(x) = g(f(x)) is defined on A.

If f is continuous at c ∈ A, and if g is continuous at f(c) ∈ B, then g ◦ f is
continuous at c.

Proof. Exercise 4.3.3.

Exercises

Exercise 4.3.1. Let g(x) = 3
√
x.

(a) Prove that g is continuous at c = 0.

(b) Prove that g is continuous at a point c �= 0. (The identity a3 − b3 =
(a− b)(a2 + ab+ b2) will be helpful.)

Exercise 4.3.2. To gain a deeper understanding of the relationship between
ε and δ in the definition of continuity, let’s explore some modest variations of
Definition 4.3.1. In all of these, let f be a function defined on all of R.

(a) Let’s say f is onetinuous at c if for all ε > 0 we can choose δ = 1 and it
follows that |f(x)− f(c)| < ε whenever |x− c| < δ. Find an example of a
function that is onetinuous on all of R.

(b) Let’s say f is equaltinuous at c if for all ε > 0 we can choose δ = ε and it
follows that |f(x)− f(c)| < ε whenever |x− c| < δ. Find an example of a
function that is equaltinuous on R that is nowhere onetinuous, or explain
why there is no such function.

(c) Let’s say f is lesstinuous at c if for all ε > 0 we can choose 0 < δ < ε and
it follows that |f(x)−f(c)| < ε whenever |x−c| < δ. Find an example of a
function that is lesstinuous on R that is nowhere equaltinuous, or explain
why there is no such function.

(d) Is every lesstinuous function continuous? Is every continuous function
lesstinuous? Explain.

Exercise 4.3.3. (a) Supply a proof for Theorem 4.3.9 using the ε–δ charac-
terization of continuity.

(b) Give another proof of this theorem using the sequential characterization
of continuity (from Theorem 4.3.2 (iii)).
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Exercise 4.3.4. Assume f and g are defined on all of R and that lim
x→p

f(x) = q

and lim
x→q

g(x) = r.

(a) Give an example to show that it may not be true that

lim
x→p

g(f(x)) = r.

(b) Show that the result in (a) does follow if we assume f and g are continuous.

(c) Does the result in (a) hold if we only assume f is continuous? How about
if we only assume that g is continuous?

Exercise 4.3.5. Show using Definition 4.3.1 that if c is an isolated point of
A ⊆ R, then f : A → R is continuous at c.

Exercise 4.3.6. Provide an example of each or explain why the request is
impossible.

(a) Two functions f and g, neither of which is continuous at 0 but such that
f(x)g(x) and f(x) + g(x) are continuous at 0.

(b) A function f(x) continuous at 0 and g(x) not continuous at 0 such that
f(x) + g(x) is continuous at 0.

(c) A function f(x) continuous at 0 and g(x) not continuous at 0 such that
f(x)g(x) is continuous at 0.

(d) A function f(x) not continuous at 0 such that f(x) + 1
f(x) is continuous

at 0.

(e) A function f(x) not continuous at 0 such that [f(x)]3 is continuous at 0.

Exercise 4.3.7. (a) Referring to the proper theorems, give a formal argu-
ment that Dirichlet’s function from Section 4.1 is nowhere-continuous
on R.

(b) Review the definition of Thomae’s function in Section 4.1 and demonstrate
that it fails to be continuous at every rational point.

(c) Use the characterization of continuity in Theorem 4.3.2 (iii) to show that
Thomae’s function is continuous at every irrational point in R. (Given
ε > 0, consider the set of points {x ∈ R : t(x) ≥ ε}.)

Exercise 4.3.8. Decide if the following claims are true or false, providing either
a short proof or counterexample to justify each conclusion. Assume throughout
that g is defined and continuous on all of R.

(a) If g(x) ≥ 0 for all x < 1, then g(1) ≥ 0 as well.

(b) If g(r) = 0 for all r ∈ Q, then g(x) = 0 for all x ∈ R.
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(c) If g(x0) > 0 for a single point x0 ∈ R, then g(x) is in fact strictly positive
for uncountably many points.

Exercise 4.3.9. Assume h : R → R is continuous on R and let K = {x :
h(x) = 0}. Show that K is a closed set.

Exercise 4.3.10. Observe that if a and b are real numbers, then

max{a, b} =
1

2
[(a+ b) + |a− b|].

(a) Show that if f1, f2, . . . , fn are continuous functions, then

g(x) = max{f1(x), f2(x), . . . , fn(x)}
is a continuous function.

(b) Let’s explore whether the result in (a) extends to the infinite case. For
each n ∈ N, define fn on R by

fn(x) =

{
1 if |x| ≥ 1/n
n|x| if |x| < 1/n.

Now explicitly compute h(x) = sup{f1(x), f2(x), f3(x), . . .}.
Exercise 4.3.11 (Contraction Mapping Theorem). Let f be a function
defined on all of R, and assume there is a constant c such that 0 < c < 1 and

|f(x)− f(y)| ≤ c|x− y|
for all x, y ∈ R.

(a) Show that f is continuous on R.

(b) Pick some point y1 ∈ R and construct the sequence

(y1, f(y1), f(f(y1)), . . .).

In general, if yn+1 = f(yn), show that the resulting sequence (yn) is a
Cauchy sequence. Hence we may let y = lim yn.

(c) Prove that y is a fixed point of f (i.e., f(y) = y) and that it is unique in
this regard.

(d) Finally, prove that if x is any arbitrary point in R, then the sequence
(x, f(x), f(f(x)), . . .) converges to y defined in (b).

Exercise 4.3.12. Let F ⊆ R be a nonempty closed set and define g(x) =
inf{|x − a| : a ∈ F}. Show that g is continuous on all of R and g(x) �= 0 for
all x /∈ F .

Exercise 4.3.13. Let f be a function defined on all of R that satisfies the
additive condition f(x+ y) = f(x) + f(y) for all x, y ∈ R.
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(a) Show that f(0) = 0 and that f(−x) = −f(x) for all x ∈ R.

(b) Let k = f(1). Show that f(n) = kn for all n ∈ N, and then prove that
f(z) = kz for all z ∈ Z. Now, prove that f(r) = kr for any rational
number r.

(c) Show that if f is continuous at x = 0, then f is continuous at every point
in R and conclude that f(x) = kx for all x ∈ R. Thus, any additive
function that is continuous at x = 0 must necessarily be a linear function
through the origin.

Exercise 4.3.14. (a) Let F be a closed set. Construct a function f : R → R
such that the set of points where f fails to be continuous is precisely F .
(The concept of the interior of a set, discussed in Exercise 3.2.14, may be
useful.)

(b) Now consider an open set O. Construct a function g : R → R whose set
of discontinuous points is precisely O. (For this problem, the function in
Exercise 4.3.12 may be useful.)

4.4 Continuous Functions on Compact Sets

Given a function f : A → R and a subset B ⊆ A, the notation f(B) refers to
the range of f over the set B; that is,

f(B) = {f(x) : x ∈ B}.
The adjectives open, closed, bounded, compact, perfect, and connected are

all used to describe subsets of the real line. An interesting question is to sort
out which, if any, of these properties are preserved when a particular set B is
mapped to f(B) via a continuous function. For instance, if B is open and f
is continuous, is f(B) necessarily open? The answer to this question is no. If
f(x) = x2 and B is the open interval (−1, 1), then f(B) is the interval [0, 1),
which is not open.

The corresponding conjecture for closed sets also turns out to be false, al-
though constructing a counterexample requires a little more thought. Consider
the function

g(x) =
1

1 + x2

and the closed set B = [0,∞) = {x : x ≥ 0}. Because g(B) = (0, 1] is not
closed, we must conclude that continuous functions do not, in general, map
closed sets to closed sets. Notice, however, that our particular counterexample
required using an unbounded closed set B. This is not incidental. Sets that are
closed and bounded—that is, compact sets—always get mapped to closed and
bounded subsets by continuous functions.

Theorem 4.4.1 (Preservation of Compact Sets). Let f : A → R be con-
tinuous on A. If K ⊆ A is compact, then f(K) is compact as well.
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Proof. Let (yn) be an arbitrary sequence contained in the range set f(K).
To prove this result, we must find a subsequence (ynk

), which converges to
a limit also in f(K). The strategy is to take advantage of the assumption that
the domain set K is compact by translating the sequence (yn)—which is in the
range of f—back to a sequence in the domain K.

To assert that (yn) ⊆ f(K) means that, for each n ∈ N, we can find (at least
one) xn ∈ K with f(xn) = yn. This yields a sequence (xn) ⊆ K. Because K is
compact, there exists a convergent subsequence (xnk

) whose limit x = limxnk

is also in K. Finally, we make use of the fact that f is assumed to be continuous
on A and so is continuous at x in particular. Given that (xnk

) → x, we conclude
that (ynk

) → f(x). Because x ∈ K, we have that f(x) ∈ f(K), and hence f(K)
is compact.

An extremely important corollary is obtained by combining this result with
the observation that compact sets are bounded and contain their supremums
and infimums.

Theorem 4.4.2 (Extreme Value Theorem). If f : K → R is continuous on
a compact set K ⊆ R, then f attains a maximum and minimum value. In other
words, there exist x0, x1 ∈ K such that f(x0) ≤ f(x) ≤ f(x1) for all x ∈ K.

Proof. Because f(K) is compact, we can set α = sup f(K) and know α ∈ f(K)
(Exercise 3.3.1). It follows that there exist x1 ∈ K with α = f(x1). The
argument for the minimum value is similar.

Uniform Continuity

Although we have proved that polynomials are always continuous on R, there
is an important lesson to be learned by constructing direct proofs that the
functions f(x) = 3x + 1 and g(x) = x2 (previously studied in Example 4.2.2)
are everywhere continuous.

Example 4.4.3. (i) To show directly that f(x) = 3x + 1 is continuous at
an arbitrary point c ∈ R, we must argue that |f(x) − f(c)| can be made
arbitrarily small for values of x near c. Now,

|f(x)− f(c)| = |(3x+ 1)− (3c+ 1)| = 3|x− c|,
so, given ε > 0, we choose δ = ε/3. Then, |x− c| < δ implies

|f(x) − f(c)| = 3|x− c| < 3
( ε
3

)
= ε.

Of particular importance for this discussion is the fact that the choice of
δ is the same regardless of which point c ∈ R we are considering.

(ii) Let’s contrast this with what happens when we prove g(x) = x2 is contin-
uous on R. Given c ∈ R, we have

|g(x)− g(c)| = |x2 − c2| = |x− c||x+ c|.
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As discussed in Example 4.2.2, we need an upper bound on |x+ c|, which
is obtained by insisting that our choice of δ not exceed 1. This guarantees
that all values of x under consideration will necessarily fall in the interval
(c− 1, c+ 1). It follows that

|x+ c| ≤ |x|+ |c| ≤ (|c|+ 1) + |c| = 2|c|+ 1.

Now, let ε > 0. If we choose δ = min{1, ε/(2|c| + 1)}, then |x − c| < δ
implies

|f(x)− f(c)| = |x− c||x+ c| <
(

ε

2|c|+ 1

)
(2|c|+ 1) = ε.

Now, there is nothing deficient about this argument, but it is important
to notice that, in the second proof, the algorithm for choosing the response δ
depends on the value of c. The statement

δ =
ε

2|c|+ 1

means that larger values of c are going to require smaller values of δ, a fact
that should be evident from a consideration of the graph of g(x) = x2 (Fig. 4.7).
Given, say, ε = 1, a response of δ = 1/3 is sufficient for c = 1 because 2/3 <
x < 4/3 certainly implies 0 < x2 < 2. However, if c = 10, then the steepness
of the graph of g(x) means that a much smaller δ is required—δ = 1/21 by our
rule—to force 99 < x2 < 101.

The next definition is meant to distinguish between these two examples.

�

�

�

�

�

�

Vε(f(c1))

{

Vε(f(c2))

{

Vε(f(c3))

{

c1

Vδ1
(c1)

c2

Vδ2
(c2)

c3

Vδ3
(c3)

Figure 4.7: g(x) = x2
; A larger c requires a smaller δ.
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Definition 4.4.4 (Uniform Continuity). A function f : A → R is uniformly
continuous on A if for every ε > 0 there exists a δ > 0 such that for all x, y ∈ A,
|x− y| < δ implies |f(x)− f(y)| < ε.

Recall that to say that “f is continuous on A” means that f is continuous at
each individual point c ∈ A. In other words, given ε > 0 and c ∈ A, we can find
a δ > 0 perhaps depending on c such that if |x− c| < δ, then |f(x)− f(c)| < ε.
Uniform continuity is a strictly stronger property. The key distinction between
asserting that f is “uniformly continuous on A” versus simply “continuous on A”
is that, given an ε > 0, a single δ > 0 can be chosen that works simultaneously
for all points c in A. To say that a function is not uniformly continuous on a set
A, then, does not necessarily mean it is not continuous at some point. Rather, it
means that there is some ε0 > 0 for which no single δ > 0 is a suitable response
for all c ∈ A.

Theorem 4.4.5 (Sequential Criterion for Absence of Uniform Conti-
nuity). A function f : A → R fails to be uniformly continuous on A if and
only if there exists a particular ε0 > 0 and two sequences (xn) and (yn) in A
satisfying

|xn − yn| → 0 but |f(xn)− f(yn)| ≥ ε0.

Proof. The negation of Definition 4.4.4 states that f is not uniformly continuous
on A if and only if there exists ε0 > 0 such that for all δ > 0 we can find two
points x and y satisfying |x − y| < δ but with |f(x) − f(y)| ≥ ε0. Thus, if
we set δ1 = 1, then there exist two points x1 and y1 where |x1 − y1| < 1 but
|f(x1)− f(y1)| ≥ ε0.

In a similar way, if we set δn = 1/n where n ∈ N, it follows that there
exist points xn and yn with |xn − yn| < 1/n but where |f(xn) − f(yn)| ≥ ε0.
The resulting sequences (xn) and (yn) satisfy the requirements described in the
theorem.

Conversely, if ε0, (xn) and (yn) exist as described, it is straightforward to
see that no δ > 0 is a suitable response for ε0.

Example 4.4.6. The function h(x) = sin(1/x) (Fig. 4.5) is continuous at every
point in the open interval (0, 1) but is not uniformly continuous on this interval.
The problem arises near zero, where the increasingly rapid oscillations take
domain values that are quite close together to range values a distance 2 apart.
To illustrate Theorem 4.4.5, take ε0 = 2 and set

xn =
1

π/2 + 2nπ
and yn =

1

3π/2 + 2nπ
.

Because each of these sequences tends to zero, we have |xn − yn| → 0, and a
short calculation reveals |h(xn)− h(yn)| = 2 for all n ∈ N.

Whereas continuity is defined at a single point, uniform continuity is always
discussed in reference to a particular domain. In Example 4.4.3, we were not
able to prove that g(x) = x2 is uniformly continuous on R because larger
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values of x require smaller and smaller values of δ. (As another illustration
of Theorem 4.4.5, take xn = n and yn = n + 1/n.) It is true, however, that
g(x) is uniformly continuous on the bounded set [−10, 10]. Returning to the
argument set forth in Example 4.4.3 (ii), notice that if we restrict our attention
to the domain [−10, 10], then |x+ y| ≤ 20 for all x and y. Given ε > 0, we can
now choose δ = ε/20, and verify that if x, y ∈ [−10, 10] satisfy |x− y| < δ, then

|f(x)− f(y)| = |x2 − y2| = |x− y||x+ y| <
( ε

20

)
20 = ε.

In fact, it is not difficult to see how to modify this argument to show that g(x)
is uniformly continuous on any bounded set A in R.

Now, Example 4.4.6 is included to keep us from jumping to the erroneous
conclusion that functions that are continuous on bounded domains are neces-
sarily uniformly continuous. A general result does follow, however, if we assume
that the domain is compact.

Theorem 4.4.7 (Uniform Continuity on Compact Sets). A function that
is continuous on a compact set K is uniformly continuous on K.

Proof. Assume f : K → R is continuous at every point of a compact setK ⊆ R.
To prove that f is uniformly continuous on K we argue by contradiction.

By the criterion in Theorem 4.4.5, if f is not uniformly continuous on K,
then there exist two sequences (xn) and (yn) in K such that

lim |xn − yn| = 0 while |f(xn)− f(yn)| ≥ ε0

for some particular ε0 > 0. Because K is compact, the sequence (xn) has a
convergent subsequence (xnk

) with x = limxnk
also in K.

We could use the compactness of K again to produce a convergent subse-
quence of (yn), but notice what happens when we consider the particular sub-
sequence (ynk

) consisting of those terms in (yn) that correspond to the terms
in the convergent subsequence (xnk

). By the Algebraic Limit Theorem,

lim(ynk
) = lim((ynk

− xnk
) + xnk

) = 0 + x.

The conclusion is that both (xnk
) and (ynk

) converge to x ∈ K. Because f is
assumed to be continuous at x, we have lim f(xnk

) = f(x) and lim f(ynk
) =

f(x), which implies

lim(f(xnk
)− f(ynk

)) = 0.

A contradiction arises when we recall that (xn) and (yn) were chosen to satisfy

|f(xn)− f(yn)| ≥ ε0

for all n ∈ N. We conclude, then, that f is indeed uniformly continuous on K.
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Exercises

Exercise 4.4.1. (a) Show that f(x) = x3 is continuous on all of R.

(b) Argue, using Theorem 4.4.5, that f is not uniformly continuous on R.

(c) Show that f is uniformly continuous on any bounded subset of R.

Exercise 4.4.2. (a) Is f(x) = 1/x uniformly continuous on (0, 1)?

(b) Is g(x) =
√
x2 + 1 uniformly continuous on (0, 1)?

(c) Is h(x) = x sin(1/x) uniformly continuous on (0, 1)?

Exercise 4.4.3. Show that f(x) = 1/x2 is uniformly continuous on the set
[1,∞) but not on the set (0, 1].

Exercise 4.4.4. Decide whether each of the following statements is true or
false, justifying each conclusion.

(a) If f is continuous on [a, b] with f(x) > 0 for all a ≤ x ≤ b, then 1/f is
bounded on [a, b] (meaning 1/f has bounded range).

(b) If f is uniformly continuous on a bounded set A, then f(A) is bounded.

(c) If f is defined on R and f(K) is compact whenever K is compact, then f
is continuous on R.

Exercise 4.4.5. Assume that g is defined on an open interval (a, c) and it is
known to be uniformly continuous on (a, b] and [b, c), where a < b < c. Prove
that g is uniformly continuous on (a, c).

Exercise 4.4.6. Give an example of each of the following, or state that such a
request is impossible. For any that are impossible, supply a short explanation
for why this is the case.

(a) A continuous function f : (0, 1) → R and a Cauchy sequence (xn) such
that f(xn) is not a Cauchy sequence;

(b) A uniformly continuous function f : (0, 1) → R and a Cauchy sequence
(xn) such that f(xn) is not a Cauchy sequence;

(c) A continuous function f : [0,∞) → R and a Cauchy sequence (xn) such
that f(xn) is not a Cauchy sequence;

Exercise 4.4.7. Prove that f(x) =
√
x is uniformly continuous on [0,∞).

Exercise 4.4.8. Give an example of each of the following, or provide a short
argument for why the request is impossible.

(a) A continuous function defined on [0, 1] with range (0, 1).

(b) A continuous function defined on (0, 1) with range [0, 1].
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(c) A continuous function defined on (0, 1] with range (0, 1).

Exercise 4.4.9 (Lipschitz Functions). A function f : A → R is called
Lipschitz if there exists a bound M > 0 such that

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ M

for all x �= y ∈ A. Geometrically speaking, a function f is Lipschitz if there is a
uniform bound on the magnitude of the slopes of lines drawn through any two
points on the graph of f .

(a) Show that if f : A → R is Lipschitz, then it is uniformly continuous on A.

(b) Is the converse statement true? Are all uniformly continuous functions
necessarily Lipschitz?

Exercise 4.4.10. Assume that f and g are uniformly continuous functions
defined on a common domain A. Which of the following combinations are
necessarily uniformly continuous on A:

f(x) + g(x), f(x)g(x),
f(x)

g(x)
, f(g(x)) ?

(Assume that the quotient and the composition are properly defined and thus
at least continuous.)

Exercise 4.4.11 (Topological Characterization of Continuity). Let g be
defined on all of R. If B is a subset of R, define the set g−1(B) by

g−1(B) = {x ∈ R : g(x) ∈ B}.

Show that g is continuous if and only if g−1(O) is open whenever O ⊆ R is an
open set.

Exercise 4.4.12. Review Exercise 4.4.11, and then determine which of the
following statements is true about a continuous function defined on R:

(a) f−1(B) is finite whenever B is finite.

(b) f−1(K) is compact whenever K is compact.

(c) f−1(A) is bounded whenever A is bounded.

(d) f−1(F ) is closed whenever F is closed.

Exercise 4.4.13 (Continuous Extension Theorem). (a) Show that a
uniformly continuous function preserves Cauchy sequences; that is, if
f : A → R is uniformly continuous and (xn) ⊆ A is a Cauchy sequence,
then show f(xn) is a Cauchy sequence.
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(b) Let g be a continuous function on the open interval (a, b). Prove that
g is uniformly continuous on (a, b) if and only if it is possible to define
values g(a) and g(b) at the endpoints so that the extended function g is
continuous on [a, b]. (In the forward direction, first produce candidates
for g(a) and g(b), and then show the extended g is continuous.)

Exercise 4.4.14. Construct an alternate proof of Theorem 4.4.7 using the
open cover characterization of compactness from the Heine–Borel Theorem
(Theorem 3.3.8 (iii)).

4.5 The Intermediate Value Theorem

The Intermediate Value Theorem (IVT) is the name given to the very intuitive
observation that a continuous function f on a closed interval [a, b] attains every
value that falls between the range values f(a) and f(b) (Fig. 4.8).

Here is this observation in the language of analysis.

Theorem 4.5.1 (Intermediate Value Theorem). Let f : [a, b] → R be
continuous. If L is a real number satisfying f(a) < L < f(b) or f(a) > L >
f(b), then there exists a point c ∈ (a, b) where f(c) = L.

This theorem was freely used by mathematicians of the 18th century (includ-
ing Euler and Gauss) without any consideration of its validity. In fact, the first
analytical proof was not offered until 1817 by Bolzano in a paper that also con-
tains the first appearance of a somewhat modern definition of continuity. This
emphasizes the significance of this result. As discussed in Section 4.1, Bolzano
and his contemporaries had arrived at a point in the evolution of mathematics
where it was becoming increasingly important to firm up the foundations of the
subject. Doing so, however, was not simply a matter of going back and sup-
plying the missing proofs. The real battle lay in first obtaining a thorough and
mutually agreed-upon understanding of the relevant concepts. The importance
of the Intermediate Value Theorem for us is similar in that our understanding
of continuity and the nature of the real line is now mature enough for a proof to
be possible. Indeed, there are several satisfying arguments for this simple result,
each one isolating, in a slightly different way, the interplay between continuity
and completeness.

Preservation of Connected Sets

The most potentially useful way to understand the Intermediate Value Theorem
(IVT) is as a special case of the fact that continuous functions map connected
sets to connected sets. In Theorem 4.4.1, we saw that if f is a continuous
function on a compact set K, then the range set f(K) is also compact. The
analogous observation holds for connected sets.

Theorem 4.5.2 (Preservation of Connected Sets). Let f : G → R be
continuous. If E ⊆ G is connected, then f(E) is connected as well.
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a c b

f(a)

L

f(b)

Figure 4.8: Intermediate Value Theorem.

Proof. Intending to use the characterization of connected sets in Theorem 3.4.6,
let f(E) = A ∪ B where A and B are disjoint and nonempty. Our goal is to
produce a sequence contained in one of these sets that converges to a limit in
the other.

Let

C = {x ∈ E : f(x) ∈ A} and D = {x ∈ E : f(x) ∈ B}.

The sets C and D are called the preimages of A and B, respectively. Using the
properties of A and B, it is straightforward to check that C and D are nonempty
and disjoint and satisfy E = C ∪ D. Now, we are assuming E is a connected
set, so by Theorem 3.4.6, there exists a sequence (xn) contained in one of C or
D with x = lim xn contained in the other. Finally, because f is continuous at x,
we get f(x) = lim f(xn). Thus, it follows that f(xn) is a convergent sequence
contained in either A or B while the limit f(x) is an element of the other. With
another nod to Theorem 3.4.6, the proof is complete.

In R, a set is connected if and only if it is a (possibly unbounded) interval.
This fact, together with Theorem 4.5.2, leads to a short proof of the Interme-
diate Value Theorem (Exercise 4.5.1). We should point out that the proof of
Theorem 4.5.2 does not make use of the equivalence between connected sets and
intervals in R but relies only on the general definitions. The previous comment
that this is the most useful way to approach IVT stems from the fact that,
although it is not discussed here, the definitions of continuity and connected-
ness can be easily adapted to higher-dimensional settings. Theorem 4.5.2, then,
remains a valid conclusion in higher dimensions, whereas the Intermediate Value
Theorem is essentially a one-dimensional result.
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Completeness

A typical way the Intermediate Value Theorem is applied is to prove the exis-
tence of roots. Given f(x) = x2 − 2, for instance, we see that f(1) = −1 and
f(2) = 2. Therefore, there exists a point c ∈ (1, 2) where f(c) = 0.

In this case, we can easily compute c =
√
2, meaning that we really did not

need IVT to show that f has a root. We spent a good deal of time in Chapter 1
proving that

√
2 exists, which was only possible once we insisted on the Axiom of

Completeness as part of our assumptions about the real numbers. The fact that
the Intermediate Value Theorem has just asserted that

√
2 exists suggests that

another way to understand this result is in terms of the relationship between
the continuity of f and the completeness of R.

The Axiom of Completeness (AoC) from the first chapter states that
“Nonempty sets that are bounded above have least upper bounds.” Later, we
saw that the Nested Interval Property (NIP) is an equivalent way to assert that
the real numbers have no “gaps.” Either of these characterizations of complete-
ness can be used as the cornerstone for an alternate proof of Theorem 4.5.1.

Proof. I. (First approach using AoC.) To simplify matters a bit, let’s consider
the special case where f is a continuous function satisfying f(a) < 0 < f(b) and
show that f(c) = 0 for some c ∈ (a, b). First let

K = {x ∈ [a, b] : f(x) ≤ 0}.

•
a

K

b

f(a)

f(b)

�

c=supK

�
��

�
���

Notice that K is bounded above by b, and a ∈ K so K is not empty. Thus we
may appeal to the Axiom of Completeness to assert that c = supK exists.

There are three cases to consider:

f(c) > 0, f(c) < 0, and f(c) = 0.

The fact that c is the least upper bound of K can be used to rule out the first
two cases, resulting in the desired conclusion that f(c) = 0. The details are
requested in Exercise 4.5.5(a).

II. (Second approach using NIP.) Again, consider the special case where
L = 0 and f(a) < 0 < f(b). Let I0 = [a, b], and consider the midpoint

z = (a+ b)/2.
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If f(z) ≥ 0, then set a1 = a and b1 = z. If f(z) < 0, then set a1 = z and b1 = b.
In either case, the interval I1 = [a1, b1] has the property that f is negative at
the left endpoint and nonnegative at the right.

•

a z b

f(z)>0

I0

I1

I2

This procedure can be inductively repeated, setting the stage for an applica-
tion of the Nested Interval Property. The remainder of the argument is left as
Exercise 4.5.5(b).

The Intermediate Value Property

Does the Intermediate Value Theorem have a converse?

Definition 4.5.3. A function f has the intermediate value property on an
interval [a, b] if for all x < y in [a, b] and all L between f(x) and f(y), it is
always possible to find a point c ∈ (x, y) where f(c) = L.

Another way to summarize the Intermediate Value Theorem is to say that
every continuous function on [a, b] has the intermediate value property. There
is an understandable temptation to suspect that any function that has the in-
termediate value property must necessarily be continuous, but that is not the
case. We have seen that

g(x) =

{
sin(1/x) if x �= 0
0 if x = 0

is not continuous at zero (Example 4.2.6), but it does have the intermediate
value property on [0, 1].

The intermediate value property does imply continuity if we insist that our
function is monotone (Exercise 4.5.3).

Exercises

Exercise 4.5.1. Show how the Intermediate Value Theorem follows as a corol-
lary to Theorem 4.5.2.

Exercise 4.5.2. Provide an example of each of the following, or explain why
the request is impossible
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(a) A continuous function defined on an open interval with range equal to a
closed interval.

(b) A continuous function defined on a closed interval with range equal to an
open interval.

(c) A continuous function defined on an open interval with range equal to an
unbounded closed set different from R.

(d) A continuous function defined on all of R with range equal to Q.

Exercise 4.5.3. A function f is increasing on A if f(x) ≤ f(y) for all x < y
in A. Show that if f is increasing on [a, b] and satisfies the intermediate value
property (Definition 4.5.3), then f is continuous on [a, b].

Exercise 4.5.4. Let g be continuous on an interval A and let F be the set of
points where g fails to be one-to-one; that is,

F = {x ∈ A : f(x) = f(y) for some y �= x and y ∈ A}.

Show F is either empty or uncountable.

Exercise 4.5.5. (a) Finish the proof of the Intermediate Value Theorem
using the Axiom of Completeness started previously.

(b) Finish the proof of the Intermediate Value Theorem using the Nested
Interval Property started previously.

Exercise 4.5.6. Let f : [0, 1] → R be continuous with f(0) = f(1).

(a) Show that there must exist x, y ∈ [0, 1] satisfying |x − y| = 1/2 and
f(x) = f(y).

(b) Show that for each n ∈ N there exist xn, yn ∈ [0, 1] with |xn − yn| = 1/n
and f(xn) = f(yn).

(c) If h ∈ (0, 1/2) is not of the form 1/n, there does not necessarily exist
|x − y| = h satisfying f(x) = f(y). Provide an example that illustrates
this using h = 2/5.

Exercise 4.5.7. Let f be a continuous function on the closed interval [0, 1]
with range also contained in [0, 1]. Prove that f must have a fixed point; that
is, show f(x) = x for at least one value of x ∈ [0, 1].

Exercise 4.5.8 (Inverse functions). If a function f : A → R is one-to-one,
then we can define the inverse function f−1 on the range of f in the natural
way: f−1(y) = x where y = f(x).

Show that if f is continuous on an interval [a, b] and one-to-one, then f−1 is
also continuous.
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4.6 Sets of Discontinuity

Given a function f : R → R, define Df ⊆ R to be the set of points where
the function f fails to be continuous. In Section 4.1, we saw that Dirichlet’s
function g(x) had Dg = R. The modification h(x) of Dirichlet’s function had
Dh = R\{0}, zero being the only point of continuity. Finally, for Thomae’s
function t(x), we saw that Dt = Q.

Exercise 4.6.1. Using modifications of these functions, construct a function
f : R → R so that

(a) Df = Zc.

(b) Df = {x : 0 < x ≤ 1}.
Exercise 4.6.2. Given a countable set A = {a1, a2, a3, . . .}, define f(an) = 1/n
and f(x) = 0 for all x /∈ A. Find Df .

We concluded the introduction with a question about whether Df could take
the form of any arbitrary subset of the real line. As it turns out, this is not
the case. The set of discontinuities of a real-valued function on R has a specific
topological structure that is not possessed by every subset of R. Specifically,
Df , no matter how f is chosen, can always be written as the countable union
of closed sets. In the case where f is monotone, these closed sets can be taken
to be single points.

Monotone Functions

Classifying Df for an arbitrary f is somewhat involved, so it is interesting that
describing Df is fairly straightforward for the class of monotone functions.

Definition 4.6.1. A function f : A → R is increasing on A if f(x) ≤ f(y)
whenever x < y and decreasing if f(x) ≥ f(y) whenever x < y in A. A
monotone function is one that is either increasing or decreasing.

Continuity of f at a point c means that limx→c f(x) = f(c). One particular
way for a discontinuity to occur is if the limit from the right at c is different
from the limit from the left at c. As always with new terminology, we need to
be precise about what we mean by “from the left” and “from the right.”

Definition 4.6.2. Given a limit point c of a set A and a function f : A → R,
we write

lim
x→c+

f(x) = L

if for all ε > 0 there exists a δ > 0 such that |f(x)−L| < ε whenever 0 < x−c < δ.

Equivalently, in terms of sequences, limx→c+ f(x) = L if lim f(xn) = L for
all sequences (xn) satisfying xn > c and lim(xn) = c.
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Exercise 4.6.3. State a similar definition for the left-hand limit

lim
x→c−

f(x) = L.

Theorem 4.6.3. Given f : A → R and a limit point c of A, limx→c f(x) = L
if and only if

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.

Exercise 4.6.4. Supply a proof for this proposition.

Generally speaking, discontinuities can be divided into three categories:

(i) If limx→c f(x) exists but has a value different from f(c), the discontinuity
at c is called removable.

(ii) If limx→c+ f(x) �= limx→c− f(x), then f has a jump discontinuity at c.

(iii) If limx→c f(x) does not exist for some other reason, then the discontinuity
at c is called an essential discontinuity.

We are now equipped to characterize the set Df for an arbitrary monotone
function f .

Exercise 4.6.5. Prove that the only type of discontinuity a monotone function
can have is a jump discontinuity.

Exercise 4.6.6. Construct a bijection between the set of jump discontinuities
of a monotone function f and a subset of Q. Conclude that Df for a monotone
function f must either be finite or countable, but not uncountable.

Df for an Arbitrary Function

Recall that the intersection of an infinite collection of closed sets is closed, but
for unions we must restrict ourselves to finite collections of closed sets in order
to ensure the union is closed. For open sets the situation is reversed. The
arbitrary union of open sets is open, but only finite intersections of open sets
are necessarily open.

Definition 4.6.4. A set that can be written as the countable union of closed
sets is in the class Fσ. (This definition also appeared in Section 3.5.)

In Section 4.1 we constructed functions where the set of discontinuity was R
(Dirichlet’s function), R\{0} (modified Dirichlet function), and Q (Thomae’s
function).

Exercise 4.6.7. (a) Show that in each of the above cases we get an Fσ set
as the set where the function is discontinuous.

(b) Show that the two sets of discontinuity in Exercise 4.6.1 are Fσ sets.
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The upcoming argument depends on a concept called α-continuity.

Definition 4.6.5. Let f be defined on R, and let α > 0. The function f is
α-continuous at x ∈ R if there exists a δ > 0 such that for all y, z ∈ (x−δ, x+δ)
it follows that |f(y)− f(z)| < α.

The most important thing to note about this definition is that there is no
“for all” in front of the α > 0. As we will investigate, adding this quantifier
would make this definition equivalent to our definition of continuity. In a sense,
α-continuity is a measure of the variation of the function in the neighborhood
of a particular point. A function is α-continuous at a point c if there is some
interval centered at c in which the variation of the function never exceeds the
value α > 0.

Given a function f on R, define Dα
f to be the set of points where the function

f fails to be α-continuous. In other words,

Dα
f = {x ∈ R : f is not α-continuous at x}.

Exercise 4.6.8. Prove that, for a fixed α > 0, the set Dα
f is closed.

The stage is set. It is time to characterize the set of discontinuity for an
arbitrary function f on R.

Theorem 4.6.6. Let f : R → R be an arbitrary function. Then, Df is an Fσ

set.

Proof. Recall that

Df = {x ∈ R : f is not continuous at x}.

Exercise 4.6.9. If α < α′, show that Dα′
f ⊆ Dα

f .

Exercise 4.6.10. Let α > 0 be given. Show that if f is continuous at x, then
it is α-continuous at x as well. Explain how it follows that Dα

f ⊆ Df .

Exercise 4.6.11. Show that if f is not continuous at x, then f is not
α-continuous for some α > 0. Now explain why this guarantees that

Df =

∞⋃
n=1

Dαn

f ,

where αn = 1/n.

Because each Dαn

f is closed, the proof is complete.
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4.7 Epilogue

Theorem 4.6.6 is only interesting if we can demonstrate that not every subset
of R is in an Fσ set. This takes some effort and was included as an exercise in
Section 3.5 on the Baire Category Theorem. Baire’s Theorem states that if R is
written as the countable union of closed sets, then at least one of these sets must
contain a nonempty open interval. Now Q is the countable union of singleton
points, and we can view each point as a closed set that obviously contains no
intervals. If the set of irrationals I were a countable union of closed sets, it would
have to be that none of these closed sets contained any open intervals or else they
would then contain some rational numbers. But this leads to a contradiction
to Baire’s Theorem. Thus, I is not the countable union of closed sets, and
consequently it is not an Fσ set. We may therefore conclude that there is no
function f that is continuous at every rational point and discontinuous at every
irrational point. This should be compared with Thomae’s function discussed
earlier.

The converse question is interesting as well. Given an arbitrary Fσ set, W.H.
Young showed in 1903 that it is always possible to construct a function that has
discontinuities precisely on this set. Exercise 4.3.14 gives some clues for how
to do this in the simpler case of an arbitrary closed set, and Exercise 4.6.2
handles the case of an arbitrary countable set. Combining the techniques in
these two exercises with the Dirichlet-type definitions we have seen leads to a
proof of Young’s result. (Try it!) A function demonstrating the converse for the
monotone case described in Exercise 4.6.6 is also not too difficult to describe.
Let

D = {x1, x2, x3, x4, . . .}
be an arbitrary countable set of real numbers. In order to construct a monotone
function that has discontinuities precisely on D, we first consider a particular
xn ∈ D and define the step function

un(x) =

{
1/2n for x > xn

0 for x ≤ xn.

Observing that each un(x) is monotone and everywhere continuous except for
a single discontinuity at xn, we now set

f(x) =

∞∑
n=1

un(x).

The convergence of the series
∑

1/2n guarantees that our function f is defined
on all of R, and intuition certainly suggests that f is monotone with jump
discontinuities precisely on D. Providing a rigorous proof for this conclusion is
one of the many pleasures that awaits in Chapter 6, where we take up the study
of infinite series of functions.
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