
Chapter 3

Basic Topology of R

3.1 Discussion: The Cantor Set

What follows is a fascinating mathematical construction, due to Georg Cantor,
which is extremely useful for extending the horizons of our intuition about the
nature of subsets of the real line. Cantor’s name has already appeared in the
first chapter in our discussion of uncountable sets. Indeed, Cantor’s proof that
R is uncountable occupies another spot on the short list of the most significant
contributions toward understanding the mathematical infinite. In the words of
the mathematician David Hilbert, “No one shall expel us from the paradise that
Cantor has created for us.”

Let C0 be the closed interval [0, 1], and define C1 to be the set that results
when the open middle third is removed; that is,

C1 = C0\
(
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)
=

[
0,

1

3

]
∪
[
2

3
, 1

]
.

Now, construct C2 in a similar way by removing the open middle third of each
of the two components of C1:

C2 =

([
0,

1

9

]
∪
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9
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])
∪
([
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]
∪
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])
.

If we continue this process inductively, then for each n = 0, 1, 2, . . . we get a set
Cn consisting of 2n closed intervals each having length 1/3n. Finally, we define
the Cantor set C (Fig. 3.1) to be the intersection

C =
∞⋂
n=0

Cn.
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Figure 3.1: Defining the Cantor set; C =
⋂∞

n=0 Cn.

It may be useful to understand C as the remainder of the interval [0, 1] after
the iterative process of removing open middle thirds is taken to infinity:

C = [0, 1]\
[(
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)
∪
(
1

9
,
2

9

)
∪
(
7

9
,
8

9

)
∪ · · ·

]
.

There is some initial doubt whether anything remains at all, but notice that
because we are always removing open middle thirds, then for every n ∈ N,
0 ∈ Cn and hence 0 ∈ C. The same argument shows 1 ∈ C. In fact, if y is the
endpoint of some closed interval of some particular set Cn, then it is also an
endpoint of one of the intervals of Cn+1. Because, at each stage, endpoints are
never removed, it follows that y ∈ Cn for all n. Thus, C at least contains the
endpoints of all of the intervals that make up each of the sets Cn.

Is there anything else? Is C countable? Does C contain any intervals? Any
irrational numbers? These are difficult questions at the moment. All of the
endpoints mentioned earlier are rational numbers (they have the form m/3n),
which means that if it is true that C consists of only these endpoints, then C
would be a subset of Q and hence countable. We shall see about this. There is
some strong evidence that not much is left in C if we consider the total length of
the intervals removed. To form C1, an open interval of length 1/3 was taken out.
In the second step, we removed two intervals of length 1/9, and to construct
Cn we removed 2n−1 middle thirds of length 1/3n. There is some logic, then,
to defining the “length” of C to be 1 minus the total

1

3
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)
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)
+ · · ·+ 2n−1

(
1

3n

)
+ · · · =

1
3

1− 2
3

= 1.

The Cantor set has zero length.
To this point, the information we have collected suggests a mental picture

of C as a relatively small, thin set. For these reasons, the set C is often referred
to as Cantor “dust.” But there are some strong counterarguments that imply
a very different picture. First, C is actually uncountable, with cardinality equal
to the cardinality of R. One slightly intuitive but convincing way to see this is
to create a 1–1 correspondence between C and sequences of the form (an)

∞
n=1,

where an = 0 or 1. For each c ∈ C, set a1 = 0 if c falls in the left-hand component
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Figure 3.2: Magnifying sets by a factor of 3.

of C1 and set a1 = 1 if c falls in the right-hand component. Having established
where in C1 the point c is located, there are now two possible components of
C2 that might contain c. This time, we set a2 = 0 or 1 depending on whether c
falls in the left or right half of these two components of C2. Continuing in this
way, we come to see that every element c ∈ C yields a sequence (a1, a2, a3, . . .)
of zeros and ones that acts as a set of directions for how to locate c within C.
Likewise, every such sequence corresponds to a point in the Cantor set. Because
the set of sequences of zeros and ones is uncountable (Exercise 1.6.4), we must
conclude that C is uncountable as well.

What does this imply? In the first place, because the endpoints of the
approximating sets Cn form a countable set, we are forced to accept the fact
that not only are there other points in C but there are uncountably many of
them. From the point of view of cardinality, C is quite large—as large as R,
in fact. This should be contrasted with the fact that from the point of view of
length, C measures the same size as a single point. We conclude this discussion
with a demonstration that from the point of view of dimension, C strangely
falls somewhere in between.

There is a sensible agreement that a point has dimension zero, a line segment
has dimension one, a square has dimension two, and a cube has dimension three.
Without attempting a formal definition of dimension (of which there are several),
we can nevertheless get a sense of how one might be defined by observing how
the dimension affects the result of magnifying each particular set by a factor
of 3 (Fig. 3.2). (The reason for the choice of 3 will become clear when we turn
our attention back to the Cantor set). A single point undergoes no change
at all, whereas a line segment triples in length. For the square, magnifying
each length by a factor of 3 results in a larger square that contains 9 copies
of the original square. Finally, the magnified cube yields a cube that contains
27 copies of the original cube within its volume. Notice that, in each case, to
compute the “size” of the new set, the dimension appears as the exponent of
the magnification factor.
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dim ×3 new copies
point 0 →
segment 1 →
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cube 3 →
C x →

1 = 30

3 = 31

9 = 32
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2 = 3x

Figure 3.3: Dimension of C; 2 = 3x ⇒ x = log 2/ log 3.

Now, apply this transformation to the Cantor set. The set C0 = [0, 1]
becomes the interval [0, 3]. Deleting the middle third leaves [0, 1]∪ [2, 3], which
is where we started in the original construction except that we now stand to
produce an additional copy of C in the interval [2, 3]. Magnifying the Cantor set
by a factor of 3 yields two copies of the original set. Thus, if x is the dimension
of C, then x should satisfy 2 = 3x, or x = log 2/ log 3 ≈ .631 (Fig. 3.3).

The notion of a noninteger or fractional dimension is the impetus behind
the term “fractal,” coined in 1975 by Benoit Mandlebrot to describe a class
of sets whose intricate structures have much in common with the Cantor set.
Cantor’s construction, however, is over a hundred years old and for us represents
an invaluable testing ground for the upcoming theorems and conjectures about
the often elusive nature of subsets of the real line.

3.2 Open and Closed Sets

Given a ∈ R and ε > 0, recall that the ε-neighborhood of a is the set

Vε(a) = {x ∈ R : |x− a| < ε}.
In other words, Vε(a) is the open interval (a − ε, a + ε), centered at a with
radius ε.

Definition 3.2.1. A set O ⊆ R is open if for all points a ∈ O there exists an
ε-neighborhood Vε(a) ⊆ O.

Example 3.2.2. (i) Perhaps the simplest example of an open set is R itself.
Given an arbitrary element a ∈ R, we are free to pick any ε-neighborhood
we like and it will always be true that Vε(a) ⊆ R. It is also the case that
the logical structure of Definition 3.2.1 requires us to classify the empty
set ∅ as an open subset of the real line.

(ii) For a more useful collection of examples, consider the open interval

(c, d) = {x ∈ R : c < x < d}.
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To see that (c, d) is open in the sense just defined, let x ∈ (c, d) be arbi-
trary. If we take ε = min{x− c, d− x}, then it follows that Vε(x) ⊆ (c, d).
It is important to see where this argument breaks down if the interval
includes either one of its endpoints.

The union of open intervals is another example of an open set. This obser-
vation leads to the next result.

Theorem 3.2.3. (i) The union of an arbitrary collection of open sets is open.

(ii) The intersection of a finite collection of open sets is open.

Proof. To prove (i), we let {Oλ : λ ∈ Λ} be a collection of open sets and let
O =

⋃
λ∈Λ Oλ. Let a be an arbitrary element of O. In order to show that O is

open, Definition 3.2.1 insists that we produce an ε-neighborhood of a completely
contained in O. But a ∈ O implies that a is an element of at least one particular
Oλ′ . Because we are assuming Oλ′ is open, we can use Definition 3.2.1 to assert
that there exists Vε(a) ⊆ Oλ′ . The fact that Oλ′ ⊆ O allows us to conclude that
Vε(a) ⊆ O. This completes the proof of (i).

For (ii), let {O1, O2, . . . , ON} be a finite collection of open sets. Now, if

a ∈ ⋂N
k=1 Ok, then a is an element of each of the open sets. By the definition of

an open set, we know that, for each 1 ≤ k ≤ N , there exists Vεk(a) ⊆ Ok. We
are in search of a single ε-neighborhood of a that is contained in every Ok, so
the trick is to take the smallest one. Letting ε = min{ε1, ε2, . . . , εN}, it follows
that Vε(a) ⊆ Vεk(a) for all k, and hence Vε(a) ⊆

⋂N
k=1 Ok, as desired.

Closed Sets

Definition 3.2.4. A point x is a limit point of a set A if every ε-neighborhood
Vε(x) of x intersects the set A at some point other than x.

Limit points are also often referred to as “cluster points” or “accumulation
points,” but the phrase “x is a limit point of A” has the advantage of explicitly
reminding us that x is quite literally the limit of a sequence in A.

Theorem 3.2.5. A point x is a limit point of a set A if and only if x = lim an
for some sequence (an) contained in A satisfying an 	= x for all n ∈ N.

Proof. (⇒) Assume x is a limit point of A. In order to produce a sequence
(an) converging to x, we are going to consider the particular ε-neighborhoods
obtained using ε = 1/n. By Definition 3.2.4, every neighborhood of x intersects
A in some point other than x. This means that, for each n ∈ N, we are justified
in picking a point

an ∈ V1/n(x) ∩ A

with the stipulation that an 	= x. It should not be too difficult to see why
(an) → x. Given an arbitrary ε > 0, choose N such that 1/N < ε. It follows
that |an − x| < ε for all n ≥ N .
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(⇐) For the reverse implication we assume lim an = x where an ∈ A but an 	=
x, and let Vε(x) be an arbitrary ε-neighborhood. The definition of convergence
assures us that there exists a term aN in the sequence satisfying aN ∈ Vε(x),
and the proof is complete.

The restriction that an 	= x in Theorem 3.2.5 deserves a comment. Given
a point a ∈ A, it is always the case that a is the limit of a sequence in A if
we are allowed to consider the constant sequence (a, a, a, . . . ). There will be
occasions where we will want to avoid this somewhat uninteresting situation, so
it is important to have a vocabulary that can distinguish limit points of a set
from isolated points.

Definition 3.2.6. A point a ∈ A is an isolated point of A if it is not a limit
point of A.

As a word of caution, we need to be a little careful about how we understand
the relationship between these concepts. Whereas an isolated point is always
an element of the relevant set A, it is quite possible for a limit point of A not
to belong to A. As an example, consider the endpoint of an open interval. This
situation is the subject of the next important definition.

Definition 3.2.7. A set F ⊆ R is closed if it contains its limit points.

The adjective “closed” appears in several other mathematical contexts and
is usually employed to mean that an operation on the elements of a given set
does not take us out of the set. In linear algebra, for example, a vector space
is a set that is “closed” under addition and scalar multiplication. In analysis,
the operation we are concerned with is the limiting operation. Topologically
speaking, a closed set is one where convergent sequences within the set have
limits that are also in the set.

Theorem 3.2.8. A set F ⊆ R is closed if and only if every Cauchy sequence
contained in F has a limit that is also an element of F .

Proof. Exercise 3.2.5.

Example 3.2.9. (i) Consider

A =

{
1

n
: n ∈ N

}
.

Let’s show that each point of A is isolated. Given 1/n ∈ A, choose
ε = 1/n− 1/(n+ 1). Then,

Vε(1/n) ∩ A =

{
1

n

}
.

It follows from Definition 3.2.4 that 1/n is not a limit point and so is
isolated. Although all of the points of A are isolated, the set does have
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one limit point, namely 0. This is because every neighborhood centered
at zero, no matter how small, is going to contain points of A. Because
0 /∈ A, A is not closed. The set F = A ∪ {0} is an example of a closed
set and is called the closure of A. (The closure of a set is discussed in a
moment.)

(ii) Let’s prove that a closed interval

[c, d] = {x ∈ R : c ≤ x ≤ d}
is a closed set using Definition 3.2.7. If x is a limit point of [c, d], then by
Theorem 3.2.5 there exists (xn) ⊆ [c, d] with (xn) → x. We need to prove
that x ∈ [c, d].

The key to this argument is contained in the Order Limit Theorem
(Theorem 2.3.4), which summarizes the relationship between inequalities
and the limiting process. Because c ≤ xn ≤ d, it follows from Theorem
2.3.4 (iii) that c ≤ x ≤ d as well. Thus, [c, d] is closed.

(iii) Consider the set Q ⊆ R of rational numbers. An extremely important
property of Q is that its set of limit points is actually all of R. To see
why this is so, recall Theorem 1.4.3 from Chapter 1, which is referred to
as the density property of Q in R.

Let y ∈ R be arbitrary, and consider any neighborhood Vε(y) = (y − ε,
y + ε). Theorem 1.4.3 allows us to conclude that there exists a rational
number r 	= y that falls in this neighborhood. Thus, y is a limit point
of Q.

The density property of Q can now be reformulated in the following way.

Theorem 3.2.10 (Density of Q in R). For every y ∈ R, there exists a
sequence of rational numbers that converges to y.

Proof. Combine the preceding discussion with Theorem 3.2.5.

The same argument can also be used to show that every real number is the
limit of a sequence of irrational numbers. Although interesting, part of the
allure of the rational numbers is that, in addition to being dense in R, they are
countable. As we will see, this tangible aspect of Q makes it an extremely useful
set, both for proving theorems and for producing interesting counterexamples.

Closure

Definition 3.2.11. Given a set A ⊆ R, let L be the set of all limit points of
A. The closure of A is defined to be A = A ∪ L.

In Example 3.2.9 (i), we saw that if A = {1/n : n ∈ N}, then the closure
of A is A = A ∪ {0}. Example 3.2.9 (iii) verifies that Q = R. If A is an open
interval (a, b), then A = [a, b]. If A is a closed interval, then A = A. It is not
for lack of imagination that in each of these examples A is always a closed set.
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Theorem 3.2.12. For any A ⊆ R, the closure A is a closed set and is the
smallest closed set containing A.

Proof. If L is the set of limit points of A, then it is immediately clear that A
contains the limit points of A. There is still something more to prove, however,
because taking the union of L with A could potentially produce some new limit
points of A. In Exercise 3.2.7, we outline the argument that this does not
happen.

Now, any closed set containing A must contain L as well. This shows that
A = A ∪ L is the smallest closed set containing A.

Complements

The mathematical notions of open and closed are not antonyms the way they are
in standard English. If a set is not open, that does not imply it must be closed.
Many sets such as the half-open interval (c, d] = {x ∈ R : c < x ≤ d} are neither
open nor closed. The sets R and ∅ are both simultaneously open and closed
although, thankfully, these are the only ones with this disorienting property
(Exercise 3.2.13). There is, however, an important relationship between open
and closed sets. Recall that the complement of a set A ⊆ R is defined to be
the set

Ac = {x ∈ R : x /∈ A}.

Theorem 3.2.13. A set O is open if and only if Oc is closed. Likewise, a set
F is closed if and only if F c is open.

Proof. Given an open set O ⊆ R, let’s first prove that Oc is a closed set. To
prove Oc is closed, we need to show that it contains all of its limit points. If
x is a limit point of Oc, then every neighborhood of x contains some point of
Oc. But that is enough to conclude that x cannot be in the open set O because
x ∈ O would imply that there exists a neighborhood Vε(x) ⊆ O. Thus, x ∈ Oc,
as desired.

For the converse statement, we assume Oc is closed and argue that O is open.
Thus, given an arbitrary point x ∈ O, we must produce an ε-neighborhood
Vε(x) ⊆ O. Because Oc is closed, we can be sure that x is not a limit point of
Oc. Looking at the definition of limit point, we see that this implies that there
must be some neighborhood Vε(x) of x that does not intersect the set Oc. But
this means Vε(x) ⊆ O, which is precisely what we needed to show.

The second statement in Theorem 3.2.13 follows quickly from the first using
the observation that (Ec)c = E for any set E ⊆ R.

The last theorem of this section should be compared to Theorem 3.2.3.

Theorem 3.2.14. (i) The union of a finite collection of closed sets is closed.

(ii) The intersection of an arbitrary collection of closed sets is closed.



3.2. Open and Closed Sets 93

Proof. De Morgan’s Laws state that for any collection of sets {Eλ : λ ∈ Λ} it is
true that (⋃

λ∈Λ

Eλ

)c

=
⋂
λ∈Λ

Ec
λ and

(⋂
λ∈Λ

Eλ

)c

=
⋃
λ∈Λ

Ec
λ.

The result follows directly from these statements and Theorem 3.2.3. The
details are requested in Exercise 3.2.9.

Exercises

Exercise 3.2.1. (a) Where in the proof of Theorem 3.2.3 part (ii) does the
assumption that the collection of open sets be finite get used?

(b) Give an example of a countable collection of open sets {O1, O2, O3, . . .}
whose intersection

⋂∞
n=1 On is closed, not empty and not all of R.

Exercise 3.2.2. Let

A =

{
(−1)n +

2

n
: n = 1, 2, 3, . . .

}
and B = {x ∈ Q : 0 < x < 1} .

Answer the following questions for each set:

(a) What are the limit points?

(b) Is the set open? Closed?

(c) Does the set contain any isolated points?

(d) Find the closure of the set.

Exercise 3.2.3. Decide whether the following sets are open, closed, or neither.
If a set is not open, find a point in the set for which there is no ε-neighborhood
contained in the set. If a set is not closed, find a limit point that is not contained
in the set.

(a) Q.

(b) N.

(c) {x ∈ R : x 	= 0}.
(d) {1 + 1/4 + 1/9 + · · ·+ 1/n2 : n ∈ N}.
(e) {1 + 1/2 + 1/3 + · · ·+ 1/n : n ∈ N}.
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Exercise 3.2.4. Let A be nonempty and bounded above so that s = supA
exists.

(a) Show that s ∈ A.

(b) Can an open set contain its supremum?

Exercise 3.2.5. Prove Theorem 3.2.8.

Exercise 3.2.6. Decide whether the following statements are true or false.
Provide counterexamples for those that are false, and supply proofs for those
that are true.

(a) An open set that contains every rational number must necessarily be all
of R.

(b) The Nested Interval Property remains true if the term “closed interval” is
replaced by “closed set.”

(c) Every nonempty open set contains a rational number.

(d) Every bounded infinite closed set contains a rational number.

(e) The Cantor set is closed.

Exercise 3.2.7. Given A ⊆ R, let L be the set of all limit points of A.

(a) Show that the set L is closed.

(b) Argue that if x is a limit point of A∪L, then x is a limit point of A. Use
this observation to furnish a proof for Theorem 3.2.12.

Exercise 3.2.8. Assume A is an open set and B is a closed set. Determine if
the following sets are definitely open, definitely closed, both, or neither.

(a) A ∪B

(b) A\B = {x ∈ A : x /∈ B}
(c) (Ac ∪B)c

(d) (A ∩B) ∪ (Ac ∩B)

(e) A
c ∩ Ac

Exercise 3.2.9 (De Morgan’s Laws). A proof for De Morgan’s Laws in the
case of two sets is outlined in Exercise 1.2.5. The general argument is similar.



3.2. Open and Closed Sets 95

(a) Given a collection of sets {Eλ : λ ∈ Λ}, show that

(⋃
λ∈Λ

Eλ

)c

=
⋂
λ∈Λ

Ec
λ and

(⋂
λ∈Λ

Eλ

)c

=
⋃
λ∈Λ

Ec
λ.

(b) Now, provide the details for the proof of Theorem 3.2.14.

Exercise 3.2.10. Only one of the following three descriptions can be realized.
Provide an example that illustrates the viable description, and explain why the
other two cannot exist.

(i) A countable set contained in [0, 1] with no limit points.

(ii) A countable set contained in [0, 1] with no isolated points.

(iii) A set with an uncountable number of isolated points.

Exercise 3.2.11. (a) Prove that A ∪B = A ∪B.

(b) Does this result about closures extend to infinite unions of sets?

Exercise 3.2.12. Let A be an uncountable set and let B be the set of real
numbers that divides A into two uncountable sets; that is, s ∈ B if both {x :
x ∈ A and x < s} and {x : x ∈ A and x > s} are uncountable. Show B is
nonempty and open.

Exercise 3.2.13. Prove that the only sets that are both open and closed are
R and the empty set ∅.
Exercise 3.2.14. A dual notion to the closure of a set is the interior of a set.
The interior of E is denoted E◦ and is defined as

E◦ = {x ∈ E : there exists Vε(x) ⊆ E}.
Results about closures and interiors possess a useful symmetry.

(a) Show that E is closed if and only if E = E. Show that E is open if and
only if E◦ = E.

(b) Show that E
c
= (Ec)◦, and similarly that (E◦)c = Ec.

Exercise 3.2.15. A set A is called an Fσ set if it can be written as the countable
union of closed sets. A set B is called a Gδ set if it can be written as the
countable intersection of open sets.

(a) Show that a closed interval [a, b] is a Gδ set.

(b) Show that the half-open interval (a, b] is both a Gδ and an Fσ set.

(c) Show that Q is an Fσ set, and the set of irrationals I forms a Gδ set.
(We will see in Section 3.5 that Q is not a Gδ set, nor is I an Fσ set.)
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3.3 Compact Sets

The central challenge in analysis is to exploit the power of the mathematical
infinite—via limits, series, derivatives, integrals, etc.—without falling victim to
erroneous logic or faulty intuition. A major tool for maintaining a rigorous
footing in this endeavor is the concept of compact sets. In ways that will be-
come clear, especially in our upcoming study of continuous functions, employing
compact sets in a proof often has the effect of bringing a finite quality to the
argument, thereby making it much more tractable.

Definition 3.3.1 (Compactness). A set K ⊆ R is compact if every sequence
in K has a subsequence that converges to a limit that is also in K.

Example 3.3.2. The most basic example of a compact set is a closed interval.
To see this, notice that if (an) is contained in an interval [c, d], then the Bolzano–
Weierstrass Theorem guarantees that we can find a convergent subsequence
(ank

). Because a closed interval is a closed set (Example 3.2.9, (ii)), we know
that the limit of this subsequence is also in [c, d].

What are the properties of closed intervals that we used in the preceding
argument? The Bolzano–Weierstrass Theorem requires boundedness, and we
used the fact that closed sets contain their limit points. As we are about to
see, these two properties completely characterize compact sets in R. The term
“bounded” has thus far only been used to describe sequences (Definition 2.3.1),
but an analogous statement can easily be made about sets.

Definition 3.3.3. A set A ⊆ R is bounded if there exists M > 0 such that
|a| ≤ M for all a ∈ A.

Theorem 3.3.4 (Characterization of Compactness in R). A set K ⊆ R
is compact if and only if it is closed and bounded.

Proof. Let K be compact. We will first prove that K must be bounded, so
assume, for contradiction, that K is not a bounded set. The idea is to produce
a sequence in K that marches off to infinity in such a way that it cannot have a
convergent subsequence as the definition of compact requires. To do this, notice
that because K is not bounded there must exist an element x1 ∈ K satisfying
|x1| > 1. Likewise, there must exist x2 ∈ K with |x2| > 2, and in general, given
any n ∈ N, we can produce xn ∈ K such that |xn| > n.

Now, because K is assumed to be compact, (xn) should have a convergent
subsequence (xnk

). But the elements of the subsequence must satisfy |xnk
| >

nk, and consequently (xnk
) is unbounded. Because convergent sequences are

bounded (Theorem 2.3.2), we have a contradiction. Thus, K must at least be a
bounded set.

Next, we will show that K is also closed. To see that K contains its limit
points, we let x = limxn, where (xn) is contained in K and argue that x
must be in K as well. By Definition 3.3.1, the sequence (xn) has a convergent
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subsequence (xnk
), and by Theorem 2.5.2, we know (xnk

) converges to the same
limit x. Finally, Definition 3.3.1 requires that x ∈ K. This proves that K is
closed.

The proof of the converse statement is requested in Exercise 3.3.3.

There may be a temptation to consider closed intervals as being a kind of
standard archetype for compact sets, but this is misleading. The structure of
compact sets can be much more intricate and interesting. For instance, one
implication of Theorem 3.3.4 is that the Cantor set is compact. It is more
useful to think of compact sets as generalizations of closed intervals. Whenever
a fact involving closed intervals is true, it is often the case that the same result
holds when we replace “closed interval” with “compact set.” As an example,
let’s experiment with the Nested Interval Property proved in the first chapter.

Theorem 3.3.5 (Nested Compact Set Property). If

K1 ⊇ K2 ⊇ K3 ⊇ K4 ⊇ · · ·
is a nested sequence of nonempty compact sets, then the intersection

⋂∞
n=1 Kn

is not empty.

Proof. In order to take advantage of the compactness of each Kn, we are going
to produce a sequence that is eventually in each of these sets. Thus, for each
n ∈ N, pick a point xn ∈ Kn. Because the compact sets are nested, it follows
that the sequence (xn) is contained in K1. By Definition 3.3.1, (xn) has a
convergent subsequence (xnk

) whose limit x = limxnk
is an element of K1.

In fact, x is an element of every Kn for essentially the same reason. Given
a particular n0 ∈ N, the terms in the sequence (xn) are contained in Kn0 as
long as n ≥ n0. Ignoring the finite number of terms for which nk < n0, the
same subsequence (xnk

) is then also contained in Kn0 . The conclusion is that
x = limxnk

is an element of Kn0 . Because n0 was arbitrary, x ∈ ⋂∞
n=1 Kn and

the proof is complete.

Open Covers

Defining compactness for sets inR is reminiscent of the situation we encountered
with completeness in that there are a number of equivalent ways to describe this
phenomenon. We demonstrated the equivalence of two such characterizations
in Theorem 3.3.4. What this theorem implies is that we could have decided to
define compact sets to be sets that are closed and bounded, and then proved that
sequences contained in compact sets have convergent subsequences with limits
in the set. There are some larger issues involved in deciding what the definition
should be, but what is important at this moment is that we be versatile enough
to use whatever description of compactness is most appropriate for a given
situation.

Although Theorem 3.3.4 is sufficient for most of our purposes, there is a
third important characterization of compactness, equivalent to the two others,
which is described in terms of open covers and finite subcovers.
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Definition 3.3.6. Let A ⊆ R. An open cover for A is a (possibly infinite)
collection of open sets {Oλ : λ ∈ Λ} whose union contains the set A; that is,
A ⊆ ⋃

λ∈ΛOλ. Given an open cover for A, a finite subcover is a finite sub-
collection of open sets from the original open cover whose union still manages
to completely contain A.

Example 3.3.7. Consider the open interval (0, 1). For each point x ∈ (0, 1),
let Ox be the open interval (x/2, 1). Taken together, the infinite collection
{Ox : x ∈ (0, 1)} forms an open cover for the open interval (0, 1). Notice,
however, that it is impossible to find a finite subcover. Given any proposed
finite subcollection

{Ox1 , Ox2 , . . . , Oxn},
set x′ = min{x1, x2, . . . , xn} and observe that any real number y satisfying
0 < y ≤ x′/2 is not contained in the union

⋃n
i=1 Oxi .

( )

0 1
x2
2

x1
2 x1x2

Ox1︷ ︸︸ ︷

︸ ︷︷ ︸
Ox2

• • • •

Now, consider a similar cover for the closed interval [0, 1]. For x ∈ (0, 1),
the sets Ox = (x/2, 1) do a fine job covering (0, 1), but in order to have an open
cover of the closed interval [0, 1], we must also cover the endpoints. To remedy
this, we could fix ε > 0, and let O0 = (−ε, ε) and O1 = (1− ε, 1 + ε). Then, the
collection

{O0, O1, Ox : x ∈ (0, 1)}
is an open cover for [0, 1]. But this time, notice there is a finite subcover.
Because of the addition of the set O0, we can choose x′ so that x′/2 < ε. It
follows that {O0, Ox′ , O1} is a finite subcover for the closed interval [0, 1].

Theorem 3.3.8 (Heine–Borel Theorem). Let K be a subset of R. All of
the following statements are equivalent in the sense that any one of them implies
the two others:

(i) K is compact.

(ii) K is closed and bounded.

(iii) Every open cover for K has a finite subcover.

Proof. The equivalence of (i) and (ii) is the content of Theorem 3.3.4. What
remains is to show that (iii) is equivalent to (i) and (ii). Let’s first assume (iii),
and prove that it implies (ii) (and thus (i) as well).
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To show that K is bounded, we construct an open cover for K by defining
Ox to be an open interval of radius 1 around each point x ∈ K. In the language
of neighborhoods, Ox = V1(x). The open cover {Ox : x ∈ K} then must have
a finite subcover {Ox1 , Ox2 , . . . , Oxn}. Because K is contained in a finite union
of bounded sets, K must itself be bounded.

The proof that K is closed is more delicate, and we argue it by contradiction.
Let (yn) be a Cauchy sequence contained in K with lim yn = y. To show that
K is closed, we must demonstrate that y ∈ K, so assume for contradiction that
this is not the case. If y /∈ K, then every x ∈ K is some positive distance away
from y. We now construct an open cover by taking Ox to be an interval of radius
|x−y|/2 around each point x in K. Because we are assuming (iii), the resulting
open cover {Ox : x ∈ K} must have a finite subcover {Ox1 , Ox2 , . . . , Oxn}. The
contradiction arises when we realize that, in the spirit of Example 3.3.7, this
finite subcover cannot contain all of the elements of the sequence (yn). To make
this explicit, set

ε0 = min

{ |xi − y|
2

: 1 ≤ i ≤ n

}
.

Because (yn) → y, we can certainly find a term yN satisfying |yN −y| < ε0. But
such a yN must necessarily be excluded from each Oxi , meaning that

yN /∈
n⋃

i=1

Oxi .

Thus our supposed subcover does not actually cover all ofK. This contradiction
implies that y ∈ K, and hence K is closed and bounded.

The proof that (ii) implies (iii) is outlined in Exercise 3.3.9. To be historically
accurate, it is this particular implication that is most appropriately referred to
as the Heine–Borel Theorem.

Exercises

Exercise 3.3.1. Show that if K is compact and nonempty, then supK and
infK both exist and are elements of K.

Exercise 3.3.2. Decide which of the following sets are compact. For those that
are not compact, show how Definition 3.3.1 breaks down. In other words, give
an example of a sequence contained in the given set that does not possess a
subsequence converging to a limit in the set.

(a) N.

(b) Q ∩ [0, 1].

(c) The Cantor set.

(d) {1 + 1/22 + 1/32 + · · ·+ 1/n2 : n ∈ N}.
(e) {1, 1/2, 2/3, 3/4, 4/5, . . .}.



100 Chapter 3. Basic Topology of R

Exercise 3.3.3. Prove the converse of Theorem 3.3.4 by showing that if a set
K ⊆ R is closed and bounded, then it is compact.

Exercise 3.3.4. Assume K is compact and F is closed. Decide if the following
sets are definitely compact, definitely closed, both, or neither.

(a) K ∩ F

(b) F c ∪Kc

(c) K\F = {x ∈ K : x /∈ F}
(d) K ∩ F c

Exercise 3.3.5. Decide whether the following propositions are true or false.
If the claim is valid, supply a short proof, and if the claim is false, provide a
counterexample.

(a) The arbitrary intersection of compact sets is compact.

(b) The arbitrary union of compact sets is compact.

(c) Let A be arbitrary, and let K be compact. Then, the intersection A ∩K
is compact.

(d) If F1 ⊇ F2 ⊇ F3 ⊇ F4 ⊇ · · · is a nested sequence of nonempty closed sets,
then the intersection

⋂∞
n=1 Fn 	= ∅.

Exercise 3.3.6. This exercise is meant to illustrate the point made in the
opening paragraph to Section 3.3. Verify that the following three statements
are true if every blank is filled in with the word “finite.” Which are true if every
blank is filled in with the word “compact”? Which are true if every blank is
filled in with the word “closed”?

(a) Every set has a maximum.

(b) If A and B are , then A+B = {a+ b : a ∈ A, b ∈ B} is also .

(c) If {An : n ∈ N} is a collection of sets with the property that
every finite subcollection has a nonempty intersection, then

⋂∞
n=1 An is

nonempty as well.

Exercise 3.3.7. As some more evidence of the surprising nature of the Cantor
set, follow these steps to show that the sum C +C = {x+ y : x, y ∈ C} is equal
to the closed interval [0, 2]. (Keep in mind that C has zero length and contains
no intervals.)

Because C ⊆ [0, 1], C + C ⊆ [0, 2], so we only need to prove the reverse
inclusion [0, 2] ⊆ {x + y : x, y ∈ C}. Thus, given s ∈ [0, 2], we must find two
elements x, y ∈ C satisfying x+ y = s.

(a) Show that there exist x1, y1 ∈ C1 for which x1 + y1 = s. Show in general
that, for an arbitrary n ∈ N, we can always find xn, yn ∈ Cn for which
xn + yn = s.
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(b) Keeping in mind that the sequences (xn) and (yn) do not necessarily
converge, show how they can nevertheless be used to produce the desired
x and y in C satisfying x+ y = s.

Exercise 3.3.8. Let K and L be nonempty compact sets, and define

d = inf{|x− y| : x ∈ K and y ∈ L}.
This turns out to be a reasonable definition for the distance between K and L.

(a) If K and L are disjoint, show d > 0 and that d = |x0−y0| for some x0 ∈ K
and y0 ∈ L.

(b) Show that it’s possible to have d = 0 if we assume only that the disjoint
sets K and L are closed.

Exercise 3.3.9. Follow these steps to prove the final implication in Theo-
rem 3.3.8.

Assume K satisfies (i) and (ii), and let {Oλ : λ ∈ Λ} be an open cover for
K. For contradiction, let’s assume that no finite subcover exists. Let I0 be a
closed interval containing K.

(a) Show that there exists a nested sequence of closed intervals I0 ⊇ I1 ⊇ I2 ⊇
· · · with the property that, for each n, In ∩K cannot be finitely covered
and lim |In| = 0.

(b) Argue that there exists an x ∈ K such that x ∈ In for all n.

(c) Because x ∈ K, there must exist an open set Oλ0 from the original collec-
tion that contains x as an element. Explain how this leads to the desired
contradiction.

Exercise 3.3.10. Here is an alternate proof to the one given in Exercise 3.3.9
for the final implication in the Heine–Borel Theorem.

Consider the special case where K is a closed interval. Let {Oλ : λ ∈ Λ} be
an open cover for [a, b] and define S to be the set of all x ∈ [a, b] such that [a, x]
has a finite subcover from {Oλ : λ ∈ Λ}.
(a) Argue that S is nonempty and bounded, and thus s = supS exists.

(b) Now show s = b, which implies [a, b] has a finite subcover.

(c) Finally, prove the theorem for an arbitrary closed and bounded set K.

Exercise 3.3.11. Consider each of the sets listed in Exercise 3.3.2. For each
one that is not compact, find an open cover for which there is no finite subcover.

Exercise 3.3.12. Using the concept of open covers (and explicitly avoiding
the Bolzano–Weierstrass Theorem), prove that every bounded infinite set has a
limit point.

Exercise 3.3.13. Let’s call a set clompact if it has the property that every
closed cover (i.e., a cover consisting of closed sets) admits a finite subcover.
Describe all of the clompact subsets of R.
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3.4 Perfect Sets and Connected Sets

One of the underlying goals of topology is to strip away all of the extraneous
information that comes with our intuitive picture of the real numbers and isolate
just those properties that are responsible for the phenomenon we are studying.
For example, we were quick to observe that any closed interval is a compact
set. The content of Theorem 3.3.4, however, is that the compactness of a closed
interval has nothing to do with the fact that the set is an interval but is a
consequence of the set being bounded and closed. In Chapter 1, we argued that
the set of real numbers between 0 and 1 is an uncountable set. This turns out to
be the case for any nonempty closed set that does not contain isolated points.

Perfect Sets

Definition 3.4.1. A set P ⊆ R is perfect if it is closed and contains no isolated
points.

Closed intervals (other than the singleton sets [a, a]) serve as the most
obvious class of perfect sets, but there are more interesting examples.

Example 3.4.2 (Cantor Set). It is not too hard to see that the Cantor set is
perfect. In Section 3.1, we defined the Cantor set as the intersection

C =

∞⋂
n=0

Cn,

where each Cn is a finite union of closed intervals. By Theorem 3.2.14, each Cn

is closed, and by the same theorem, C is closed as well. It remains to show that
no point in C is isolated.

Let x ∈ C be arbitrary. To convince ourselves that x is not isolated, we must
construct a sequence (xn) of points in C, different from x, that converges to x.
From our earlier discussion, we know that C at least contains the endpoints of
the intervals that make up each Cn. In Exercise 3.4.3, we sketch the argument
that these are all that is needed to construct (xn).

One argument for the uncountability of the Cantor set was presented in
Section 3.1. Another, perhaps more satisfying, argument for the same conclusion
can be obtained from the next theorem.

Theorem 3.4.3. A nonempty perfect set is uncountable.

Proof. If P is perfect and nonempty, then it must be infinite because otherwise
it would consist only of isolated points. Let’s assume, for contradiction, that P
is countable. Thus, we can write

P = {x1, x2, x3, . . .},
where every element of P appears on this list. The idea is to construct a
sequence of nested compact sets Kn, all contained in P , with the property that
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x1 /∈ K2, x2 /∈ K3, x3 /∈ K4, . . . . Some care must be taken to ensure that each
Kn is nonempty, for then we can use Theorem 3.3.5 to produce an

x ∈
∞⋂

n=1

Kn ⊆ P

that cannot be on the list {x1, x2, x3, . . .}.
Let I1 be a closed interval that contains x1 in its interior (i.e., x1 is not an

endpoint of I1). Now, x1 is not isolated, so there exists some other point y2 ∈ P
that is also in the interior of I1. Construct a closed interval I2, centered on y2,
so that I2 ⊆ I1 but x1 /∈ I2. More explicitly, if I1 = [a, b], let

ε = min{y2 − a, b− y2, |x1 − y2|}.

Then, the interval I2 = [y2 − ε/2, y2 + ε/2] has the desired properties.

[ ]
•
x1

[ ]•
y2

I1︷ ︸︸ ︷

︸ ︷︷ ︸
I2

This process can be continued. Because y2 ∈ P is not isolated, there must exist
another point y3 ∈ P in the interior of I2, and we may insist that y3 	= x2.
Now, construct I3 centered on y3 and small enough so that x2 /∈ I3 and I3 ⊆ I2.
Observe that I3 ∩ P 	= ∅ because this intersection contains at least y3.

If we carry out this construction inductively, the result is a sequence of closed
intervals In satisfying

(i) In+1 ⊆ In,

(ii) xn 	∈ In+1, and

(iii) In ∩ P 	= ∅.
To finish the proof, we let Kn = In ∩ P. For each n ∈ N, we have that Kn is
closed because it is the intersection of closed sets, and bounded because it is
contained in the bounded set In. Hence, Kn is compact. By construction, Kn

is not empty and Kn+1 ⊆ Kn. Thus, we can employ the Nested Compact Set
Property (Theorem 3.3.5) to conclude that the intersection

∞⋂
n=1

Kn 	= ∅.

But eachKn is a subset of P , and the fact that xn 	∈ In+1 leads to the conclusion
that

⋂∞
n=1 Kn = ∅, which is the sought-after contradiction.
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Connected Sets

Although the two open intervals (1, 2) and (2, 5) have the limit point x = 2 in
common, there is still some space between them in the sense that no limit point
of one of these intervals is actually contained in the other. Said another way,
the closure of (1, 2) (see Definition 3.2.11) is disjoint from (2, 5), and the closure
of (2, 5) does not intersect (1, 2). Notice that this same observation cannot be
made about (1, 2] and (2, 5), even though these latter sets are disjoint.

Definition 3.4.4. Two nonempty sets A,B ⊆ R are separated if A ∩ B and
A ∩ B are both empty. A set E ⊆ R is disconnected if it can be written as
E = A ∪B, where A and B are nonempty separated sets.

A set that is not disconnected is called a connected set.

Example 3.4.5. (i) If we let A = (1, 2) and B = (2, 5), then it is not difficult
to verify that E = (1, 2) ∪ (2, 5) is disconnected. Notice that the sets
C = (1, 2] and D = (2, 5) are not separated because C ∩ D = {2} is
not empty. This should be comforting. The union C ∪D is equal to the
interval (1, 5), which better not qualify as a disconnected set. We will
prove in a moment that every interval is a connected subset of R and vice
versa.

(ii) Let’s show that the set of rational numbers is disconnected. If we let

A = Q ∩ (−∞,
√
2) and B = Q ∩ (

√
2,∞),

then we certainly have Q = A ∪ B. The fact that A ⊆ (−∞,
√
2) implies

(by the Order Limit Theorem) that any limit point of A will necessarily
fall in (−∞,

√
2]. Because this is disjoint from B, we get A ∩ B = ∅.

We can similarly show that A ∩ B = ∅, which implies that A and B are
separated.

The definition of connected is stated as the negation of disconnected, but a
little care with the logical negation of the quantifiers in Definition 3.4.4 results
in a positive characterization of connectedness. Essentially, a set E is connected
if, no matter how it is partitioned into two nonempty disjoint sets, it is always
possible to show that at least one of the sets contains a limit point of the other.

Theorem 3.4.6. A set E ⊆ R is connected if and only if, for all nonempty
disjoint sets A and B satisfying E = A ∪ B, there always exists a convergent
sequence (xn) → x with (xn) contained in one of A or B, and x an element of
the other.

Proof. Exercise 3.4.6.

The concept of connectedness is more relevant when working with subsets
of the plane and other higher-dimensional spaces. This is because, in R, the
connected sets coincide precisely with the collection of intervals (with the un-
derstanding that unbounded intervals such as (−∞, 3) and [0,∞) are included).
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Theorem 3.4.7. A set E ⊆ R is connected if and only if whenever a < c < b
with a, b ∈ E, it follows that c ∈ E as well.

Proof. Assume E is connected, and let a, b ∈ E and a < c < b. Set

A = (−∞, c) ∩ E and B = (c,∞) ∩ E.

Because a ∈ A and b ∈ B, neither set is empty and, just as in Example 3.4.5
(ii), neither set contains a limit point of the other. If E = A∪B, then we would
have that E is disconnected, which it is not. It must then be that A ∪ B is
missing some element of E, and c is the only possibility. Thus, c ∈ E.

Conversely, assume that E is an interval in the sense that whenever a, b ∈ E
satisfy a < c < b for some c, then c ∈ E. Our intent is to use the characterization
of connected sets in Theorem 3.4.6, so let E = A ∪ B, where A and B are
nonempty and disjoint. We need to show that one of these sets contains a limit
point of the other. Pick a0 ∈ A and b0 ∈ B, and, for the sake of the argument,
assume a0 < b0. Because E is itself an interval, the interval I0 = [a0, b0] is
contained in E. Now, bisect I0 into two equal halves. The midpoint of I0 must
either be in A or B, and so choose I1 = [a1, b1] to be the half that allows us to
have a1 ∈ A and b1 ∈ B. Continuing this process yields a sequence of nested
intervals In = [an, bn], where an ∈ A, bn ∈ B, and the length (bn − an) → 0.
The remainder of this argument should feel familiar. By the Nested Interval
Property, there exists an

x ∈
∞⋂
n=0

In,

and it is straightforward to show that the sequences of endpoints each satisfy
lim an = x and lim bn = x. But now x ∈ E must belong to either A or B, thus
making it a limit point of the other. This completes the argument.

Exercises

Exercise 3.4.1. If P is a perfect set and K is compact, is the intersection P ∩K
always compact? Always perfect?

Exercise 3.4.2. Does there exist a perfect set consisting of only rational num-
bers?

Exercise 3.4.3. Review the portion of the proof given in Example 3.4.2 and
follow these steps to complete the argument.

(a) Because x ∈ C1, argue that there exists an x1 ∈ C ∩ C1 with x1 	= x
satisfying |x− x1| ≤ 1/3.

(b) Finish the proof by showing that for each n ∈ N, there exists xn ∈ C∩Cn,
different from x, satisfying |x− xn| ≤ 1/3n.

Exercise 3.4.4. Repeat the Cantor construction from Section 3.1 starting with
the interval [0, 1]. This time, however, remove the open middle fourth from each
component.
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(a) Is the resulting set compact? Perfect?

(b) Using the algorithms from Section 3.1, compute the length and dimension
of this Cantor-like set.

Exercise 3.4.5. Let A and B be nonempty subsets of R. Show that if there
exist disjoint open sets U and V with A ⊆ U and B ⊆ V , then A and B are
separated.

Exercise 3.4.6. Prove Theorem 3.4.6.

Exercise 3.4.7. A set E is totally disconnected if, given any two distinct points
x, y ∈ E, there exist separated sets A and B with x ∈ A, y ∈ B, and E = A∪B.

(a) Show that Q is totally disconnected.

(b) Is the set of irrational numbers totally disconnected?

Exercise 3.4.8. Follow these steps to show that the Cantor set is totally dis-
connected in the sense described in Exercise 3.4.7.

Let C =
⋂∞

n=0 Cn, as defined in Section 3.1.

(a) Given x, y ∈ C, with x < y, set ε = y − x. For each n = 0, 1, 2, . . ., the
set Cn consists of a finite number of closed intervals. Explain why there
must exist an N large enough so that it is impossible for x and y both to
belong to the same closed interval of CN .

(b) Show that C is totally disconnected.

Exercise 3.4.9. Let {r1, r2, r3, . . .} be an enumeration of the rational numbers,
and for each n ∈ N set εn = 1/2n. Define O =

⋃∞
n=1 Vεn(rn), and let F = Oc.

(a) Argue that F is a closed, nonempty set consisting only of irrational
numbers.

(b) Does F contain any nonempty open intervals? Is F totally disconnected?
(See Exercise 3.4.7 for the definition.)

(c) Is it possible to know whether F is perfect? If not, can we modify this
construction to produce a nonempty perfect set of irrational numbers?

3.5 Baire’s Theorem

The nature of the real line can be deceptively elusive. The closer we look, the
more intricate and enigmatic R becomes, and the more we are reminded to pro-
ceed carefully (i.e., axiomatically) with all of our conclusions about properties
of subsets of R. The structure of open sets is fairly straightforward. Every open
set is either a finite or countable union of open intervals. Standing in opposition
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to this tidy description of all open sets is the Cantor set. The Cantor set is a
closed, uncountable set that contains no intervals of any kind. Thus, no such
characterization of closed sets should be anticipated.

Recall that the arbitrary union of open sets is always an open set. Likewise,
the arbitrary intersection of closed sets is closed. By taking unions of closed sets
or intersections of open sets, however, it is possible to obtain a new selection of
subsets of R.

Definition 3.5.1. A set A ⊆ R is called an Fσ set if it can be written as the
countable union of closed sets. A set B ⊆ R is called a Gδ set if it can be
written as the countable intersection of open sets.

Exercise 3.5.1. Argue that a set A is a Gδ set if and only if its complement is
an Fσ set.

Exercise 3.5.2. Replace each with the word finite or countable,
depending on which is more appropriate.

(a) The union of Fσ sets is an Fσ set.

(b) The intersection of Fσ sets is an Fσ set.

(c) The union of Gδ sets is a Gδ set.

(d) The intersection of Gδ sets is a Gδ set.

Exercise 3.5.3. (This exercise has already appeared as Exercise 3.2.15.)

(a) Show that a closed interval [a, b] is a Gδ set.

(b) Show that the half-open interval (a, b] is both a Gδ and an Fσ set.

(c) Show that Q is an Fσ set, and the set of irrationals I forms a Gδ set.

It is not readily obvious that the class Fσ does not include every subset of
R, but we are now ready to argue that I is not an Fσ set (and consequently
Q is not a Gδ set). This will follow from a theorem due to René Louis Baire
(1874–1932).

Recall that a set G ⊆ R is dense in R if, given any two real numbers a < b,
it is possible to find a point x ∈ G with a < x < b.

Theorem 3.5.2. If {G1, G2, G3, . . .} is a countable collection of dense, open
sets, then the intersection

⋂∞
n=1 Gn is not empty.

Proof. Before embarking on the proof, notice that we have seen a conclusion
like this before. Theorem 3.3.5 asserts that a nested sequence of compact sets
has a nontrivial intersection. In this theorem, we are dealing with dense, open
sets, but as it turns out, we are going to use Theorem 3.3.5—and actually, just
the Nested Interval Property—as the crucial step in the argument.

Exercise 3.5.4. Starting with n = 1, inductively construct a nested sequence
of closed intervals I1 ⊇ I2 ⊇ I3 ⊇ · · · satisfying In ⊆ Gn. Give special attention
to the issue of the endpoints of each In. Show how this leads to a proof of the
theorem.



108 Chapter 3. Basic Topology of R

Exercise 3.5.5. Show that it is impossible to write

R =

∞⋃
n=1

Fn,

where for each n ∈ N, Fn is a closed set containing no nonempty open intervals.

Exercise 3.5.6. Show how the previous exercise implies that the set I of
irrationals cannot be an Fσ set, and Q cannot be a Gδ set.

Exercise 3.5.7. Using Exercise 3.5.6 and versions of the statements in
Exercise 3.5.2, construct a set that is neither in Fσ nor in Gδ.

Nowhere-Dense Sets

We have encountered several equivalent ways to assert that a particular set G
is dense in R. In Section 3.2, we observed that G is dense in R if and only if
every point of R is a limit point of G. Because the closure of any set is obtained
by taking the union of the set and its limit points, we have that

G is dense in R if and only if G = R.

The set Q is dense in R; the set Z is clearly not. In fact, in the jargon of
analysis, Z is nowhere-dense in R.

Definition 3.5.3. A set E is nowhere-dense if E contains no nonempty open
intervals.

Exercise 3.5.8. Show that a set E is nowhere-dense in R if and only if the
complement of E is dense in R.

Exercise 3.5.9. Decide whether the following sets are dense in R, nowhere-
dense in R, or somewhere in between.

(a) A = Q ∩ [0, 5].

(b) B = {1/n : n ∈ N}.
(c) the set of irrationals.

(d) the Cantor set.

We can now restate Theorem 3.5.2 in a slightly more general form.

Theorem 3.5.4 (Baire’s Theorem). The set of real numbers R cannot be
written as the countable union of nowhere-dense sets.

Proof. For contradiction, assume that E1, E2, E3, . . . are each nowhere-dense
and satisfy R =

⋃∞
n=1 En.

Exercise 3.5.10. Finish the proof by finding a contradiction to the results in
this section.
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Baire’s Theorem is yet another statement about the size of R. We have
already encountered several ways to describe the sizes of infinite sets. In terms
of cardinality, countable sets are relatively small whereas uncountable sets are
large. We also briefly discussed the concept of “length,” or “measure,” in
Section 3.1. Baire’s Theorem offers a third perspective. From this point of
view, nowhere-dense sets are considered to be “thin” sets. Any set that is the
countable union—i.e., a not very large union—of these small sets is called a
“meager” set or a set of “first category.” A set that is not of first category is of
“second category.” Intuitively, sets of the second category are the “fat” subsets.
The Baire Category Theorem, as it is often called, states that R is of second
category.

There is a significance to the Baire Category Theorem that is difficult to
appreciate at the moment because we are only seeing a special case of this result.
The real numbers are an example of a complete metric space. Metric spaces are
discussed in some detail in Section 8.2, but here is the basic idea. Given a set
of mathematical objects such as real numbers, points in the plane or continuous
functions defined on [0,1], a “metric” is a rule that assigns a “distance” between
two elements in the set. In R, we have been using |x−y| as the distance between
the real numbers x and y. The point is that if we can create a satisfactory notion
of “distance” on these other spaces (we will need the triangle inequality to hold,
for instance), then the concepts of convergence, Cauchy sequences, and open
sets, for example, can be naturally transferred over. A complete metric space is
any set with a suitably defined metric in which Cauchy sequences have limits.
We have spent a good deal of time discussing the fact that R is a complete
metric space whereas Q is not.

The Baire Category Theorem in its more general form states that any com-
plete metric space must be too large to be the countable union of nowhere-dense
subsets. One particularly interesting example of a complete metric space is the
set of continuous functions defined on the interval [0, 1]. (The distance between
two functions f and g in this space is defined to be sup |f(x) − g(x)|, where
x ∈ [0, 1].) Now, in this space we will see that the collection of continuous func-
tions that are differentiable at even one point can be written as the countable
union of nowhere-dense sets. Thus, a fascinating consequence of Baire’s Theo-
rem in this setting is that most continuous functions do not have derivatives at
any point. Chapter 5 concludes with a construction of one such function. This
odd situation mirrors the roles of Q and I as subsets of R. Just as the familiar
rational numbers constitute a minute proportion of the real line, the differen-
tiable functions of calculus are exceedingly atypical of continuous functions in
general.
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