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    Chapter 18   
 Pulmonary Hypertension in Critically 
Ill Patients 

             Hooman     D.     Poor     ,     Corey     E.     Ventetuolo     , and     Todd     M.     Bull     

    Abstract     Pulmonary hypertension (PH) in critically ill patients requiring the 
 intensive care unit (ICU) is a complex and challenging disorder. Whether the eleva-
tions of pulmonary arterial pressures are acute or preexisting, signifi cant PH in the 
setting of acute illness can lead to rapid deterioration of right ventricular (RV) func-
tion, precipitating hemodynamic collapse and death. Outcomes of patients with PH 
who require the ICU are quite poor. In patients with underlying pulmonary arterial 
hypertension (PAH) or inoperable chronic thromboembolic PH (CTEPH) who are 
admitted to the ICU, mortality rates between 30 and 41 % have been reported. Given 
their fragile hemodynamic status, understanding the pathogenesis of RV failure sec-
ondary to PH is critical for RV rescue and successful treatment of these patients. In 
this chapter, we will discuss the pathophysiology of RV failure and management of 
PH and RV failure in the ICU.  

  Keywords     Pulmonary hypertension   •   Pulmonary arterial pressures   •   Right 
 ventricular (RV) function   •   Pulmonary arterial hypertension   •   RV dysfunction  

        Introduction 

    Pulmonary hypertension (PH) in critically ill patients requiring the intensive care 
unit (ICU) is a complex and challenging disorder. Whether the elevations of pulmo-
nary arterial pressures are acute or preexisting, signifi cant PH in the setting of acute 

        H.  D.   Poor ,  M.D.    
  Division of Pulmonary, Critical Care and Sleep ,  Mount Sinai Hospital ,   New York ,  NY ,  USA     

    C.  E.   Ventetuolo ,  M.D., M.S.    
  Division of Pulmonary, Sleep and Critical Care Medicine, Rhode Island Hospital , 
 Alpert Medical School of Brown University ,   Providence ,  RI ,  USA     

    T.  M.   Bull ,  M.D.      (*) 
  Division of Pulmonary Sciences and Critical Care Medicine and Cardiology , 
 The University of Colorado ,   Denver ,  CO ,  USA    

      12505 E. 16th Avenue, 3rd Floor ,  Aurora ,  CO   80045 ,  USA   
 e-mail: Todd.Bull@ucdenver.edu  

mailto:Todd.Bull@ucdenver.edu


414

illness can lead to rapid deterioration of right ventricular (RV) function, precipitat-
ing hemodynamic collapse and death. Outcomes of patients with PH who require 
the ICU are quite poor. In patients with underlying pulmonary arterial hypertension 
(PAH) or inoperable chronic thromboembolic PH (CTEPH) who are admitted to the 
ICU, mortality rates between 30 and 41 % have been reported [ 1 – 3 ]. Given their 
fragile hemodynamic status, understanding the pathogenesis of RV failure second-
ary to PH is critical for RV rescue and successful treatment of these patients. In this 
chapter, we will discuss the pathophysiology of RV failureand management of PH 
and RV failure in the ICU.  

    Normal Structure and Function of the RV 

 The RV should not be viewed as simply a smaller and weaker version of the left 
ventricle (LV). The two ventricles are embryologically, morphologically, and func-
tionally distinct [ 4 ,  5 ]. Although the RV contains helical fi bers, unlike the LV, it 
lacks circumferential constrictor fi bers and must therefore rely on longitudinal 
shortening. This results in a bellows-like contraction beginning near the apex of the 
heart and moving in a wave toward the outfl ow tract [ 6 ]. 

 The low pressure and high capacitance of the pulmonary vasculature give rise to 
pressure–volume relationships for the RV that differ markedly from the pressure–
volume relationships for the LV. Under normal loading conditions, the RV has only 
brief periods of isovolumic contraction and relaxation and has sustained ejection 
during pressure rise and fall. This circuit structure makes for a highly effi cient right 
heart pump. Myocardial energy expenditure in the RV is approximately one-fi fth that 
of the LV despite similar cardiac outputs (COs). This is due primarily to the much 
lower RV afterload. Increases in RV afterload signifi cantly change this dynamic and 
lead to the development of prolonged periods of isovolumic contraction and relax-
ation, ultimately resulting in a decline in RV performance [ 6 ,  7 ] (Fig.  18.1 ).  
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  Fig. 18.1    Right ventricular pressure–volume curve from normal subject ( a ) and from patient with 
increased right ventricular afterload ( b ). Adapted from Redington et al. [ 7 ]       
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 Coronary perfusion also differs between the two ventricles. Myocardial  perfusion 
in the LV occurs predominantly during diastole, when intra-myocardial tissue pres-
sure falls below aortic root pressure. Because RV intra-myocardial tissue pressure 
remains below aortic root pressure throughout the cardiac cycle under normal load-
ing conditions, the RV receives continuous coronary fl ow from the right coronary 
artery (RCA) [ 8 ,  9 ]. 

 Last, the RV and LV cannot be viewed as isolated chambers because they 
share the same visceral cavity (the pericardium), common myofi bers, and the 
 interventricular septum. As a result of this ventricular interdependence and the con-
tractile relationships noted above, RV systolic function depends signifi cantly on the 
LV and changes in the condition of one ventricle can signifi cantly impact the func-
tion of the other. Importantly, since both ventricles share myofi bers in the septum, 
LV systolic function augments RV pressure generation and RV systolic perfor-
mance [ 10 ,  11 ]. With these normal anatomical and physiologic characteristics in 
mind, the pathophysiologic derangements that occur in the ICU setting may be 
better understood.  

    Pathophysiology of RV Failure 

 Right ventricular failure can be defi ned as low CO and systemic hypoperfusion 
despite high RV fi lling pressures [ 12 ]. Because the RV is very sensitive to increases 
in afterload, rapid elevations in RV afterload decrease RV ejection fraction and 
induce RV dilatation [ 13 ]. In contrast, when RV afterload rises more gradually, 
adaptive RV myocardial hypertrophy may occur, reducing wall stress to maintain 
adequate stroke volume [ 14 – 18 ]. In the acute setting, a pressure-overloaded RV 
dilates and RV end-diastolic volumes and pressures rise, increasing RV wall stress 
and placing the RV on the descending portion of the Frank-Starling curve [ 19 ]. The 
Laplace relation, which states that wall stress is inversely proportional to the thick-
ness of the wall, helps explain why the thinner RV free wall experiences a greater 
rise in wall tension with incremental elevations in RV pressure compared with the 
thicker LV free wall [ 8 ]. 

 Higher wall stress in the RV increases myocardial oxygen demand and oxygen 
consumption [ 20 ,  21 ]. As RV wall tension increases, RCA blood fl ow, normally 
continuous during both systole and diastole, occurs only during diastole, causing a 
further decrease in oxygen delivery to the RV [ 9 ,  22 ]. The combination of increased 
myocardial oxygen demand and decreased oxygen supply leads to RV ischemia and 
decreased RV contractility [ 20 ,  23 ]. Right ventricular function is further compro-
mised when the tricuspid valve annulus widens in the setting of RV dilatation, with 
failure of the tricuspid valve leafl ets to coapt properly and worsening tricuspid 
regurgitation [ 24 ]. These changes result in a perpetuating cycle of increasing wall 
stress, worsening ischemia, tricuspid regurgitation, and unfavorable loading condi-
tions that ultimately lead to RV failure [ 25 ] (Fig.  18.2 ).  
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 Because the RV and LV share the space provided by the pericardium, increases 
in RV size are at the expense of LV volume. With RV dilatation, the interventricular 
septum undergoes leftward displacement, impinging upon the LV cavity. The sep-
tum’s encroachment on the LV impairs LV fi lling, and the distortion in LV geometry 
causes a decline in LV systolic performance [ 26 – 30 ]. In addition, the LV is only 
able to pump the stroke volume received from the right heart, which steadily declines 
in the failing RV. The resultant decrease in LV stroke volume and CO leads to a fall 
in RCA blood fl ow and an exacerbation of RV ischemia, fueling the RV failure cas-
cade (Fig.  18.2 ). 

 Acute RV failure from rapid increases in RV afterload can occur in the setting of 
massive pulmonary embolism (PE). In patients without prior cardiopulmonary dis-
ease, good correlation has been observed between hemodynamics and the degree of 
angiographic obstruction from PE [ 31 – 33 ]. Mean pulmonary artery (PA) pressures 
of greater than 20 mmHg occur when there is greater than 25–30 % obstruction of 
the pulmonary vascular bed. When more than 50 % of the pulmonary vascular bed 
is occluded acutely, patients with are unable to generate mean PA pressures of greater 
than 40 mmHg, presumably the maximum pressure a normal RV can generate. Thus, 
when pulmonary vascular obstruction exceeds 50 %, the inability of the RV to gen-
erate higher pressures leads to a decrease in CO and the initiation of the RV failure 
cascade [ 31 ,  34 ]. Mean PA pressures of greater than 40 mmHg suggest that the RV 
has hypertrophied from chronic increases in afterload such as those caused by under-
lying cardiopulmonary disease [ 17 ]. Patients with poor cardiopulmonary status, 
manifest a greater deterioration in hemodynamics with a lesser degree of pulmonary 
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  Fig. 18.2    Pathogenesis of right ventricular failure secondary to increased right ventricular after-
load.  RV  right ventricle,  LV  left ventricle,  RCA  right coronary artery       
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vascular obstruction [ 35 ]. In patients with PAH, venous stasis, a sedentary lifestyle, 
dilated right heart chambers, and sluggish pulmonary blood fl ow together increase 
the risk for intrapulmonary thrombosis and thromboembolism. 

 RV failure can also occur in the absence of increased afterload, as seen in RV 
infarction. RV infarction results in both decreased RV systolic performance from 
profound depression of RV free wall contraction as well as RV diastolic dysfunction 
from ischemia [ 36 ,  37 ]. The culprit vessel for RV infarction is usually the RCA and 
signifi cant RV infarction nearly always occurs in the setting of acute transmural 
inferior-posterior LV infarction [ 38 ]. When the RCA lesion is proximal to the right 
atrial (RA) branches, RA ischemia can impair RA function, further worsening right- 
sided hemodynamics [ 30 ,  36 ,  39 ]. With RV dilatation and decreased RV output, an 
RV failure cascade similar to that described above can occur. In the absence of 
preexisting pulmonary vascular disease or signifi cant LV dysfunction, RV systolic 
and PA pressures do not rise. As LV septal contraction augments RV systolic pres-
sure, concomitant LV infarction, particularly if the septum is involved, may result in 
further hemodynamic compromise [ 36 ,  40 ]. The short-term prognosis of patients 
with RV infarction is poor, owing to a higher incidence of cardiogenic shock, ven-
tricular arrhythmias, and high-grade atrioventricular block. The increase in short- 
term mortality appears to be related to the actual presence of RV infarction and not 
total myocardial infarct size [ 41 – 46 ]. On the other hand, for patients who survive 
the acute period, the long-term prognosis is quite favorable even without successful 
coronary intervention, as RV function is able to return to near normal both at rest 
and with exercise [ 47 ,  48 ]. This dramatic improvement in RV function in the absence 
of reperfusion in survivors may be due to transient RV ischemia and myocardial 
stunning in the acute period, not true RV infarction [ 49 – 51 ]. The RV is less suscep-
tible to true infarction for several reasons. First, its smaller mass and lower afterload 
result in lesser oxygen demand; Second, it receives coronary perfusion continuously 
throughout both diastole and systole; Finally, it has more extensive collateral fl ow 
from the left to the right coronary arteries. In fact, chronic RV failure attributable 
solely to RV infarction is a very rare occurrence [ 9 ,  51 – 53 ].  

    Triggers for RV Failure 

 A patient with preexisting pulmonary vascular and RV dysfunction can deteriorate 
rapidly when challenged by various insults. The prompt identifi cation of contribut-
ing or inciting factors is therefore critical in the successful management of these 
patients [ 19 ]. A broad differential diagnosis should be considered because clinical 
worsening in these patients may be due to a variety of multisystem derangements 
and etiologies. 

 A rigorous search for potential sources of infection should be conducted when 
patients with PH become acutely ill. In a patient with chronic RV dysfunction and 
venous congestion, reduced bowel perfusion can impair the function of the intesti-
nal barrier, leading to translocation of bacteria and/or release of endotoxin [ 54 ]. 
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Patients with chronic PAH who have indwelling central venous catheters for the 
administration of vasoactive therapies are at increased risk for developing catheter- 
related skin and soft tissue infections as well as bacteremia [ 19 ]. Chronic PAH 
therapies, specifi cally prostacyclins, may also have immunosuppressive effects 
[ 55 – 58 ]. Pneumonia is particularly problematic in patients with pulmonary vascular 
disease because the resultant shunt with hypoxia can lead to vasoconstriction and 
further elevation in pulmonary vascular resistance (PVR). 

 The hemodynamic perturbations in sepsis can cause profound deterioration in 
patients with severe PH and RV failure. The increase in capillary leak and venous 
capacitance observed in sepsis results in decreased venous return and lower RV fi ll-
ing pressures, a condition poorly tolerated by a failing RV. The failing RV relies 
heavily on elevated end diastolic pressures to maintain cardiac output and is sensi-
tive to abrupt changes in loading conditions [ 59 ]. Systemic hypotension from 
sepsis- induced peripheral vasodilation can result in decreased RCA blood fl ow, 
exacerbating RV ischemia and compromising RV function. Even in the absence of 
preexisting pulmonary vascular disease, sepsis has been shown to cause RV myo-
cardial dysfunction directly through cytokine-mediated myocardial depression, as 
well as indirectly via hypoxic pulmonary vasoconstriction from associated lung 
injury [ 60 – 63 ]. As discussed later in the text, the addition of vasopressors and ino-
tropes are fraught with their own diffi culties in this hemodynamically fragile patient 
population. Irrespective of the site of infection, the development of sepsis can be 
devastating and must be managed aggressively, as described below. For these rea-
sons, when infection is suspected, clinicians should have a low threshold to promptly 
administer antibiotics. 

 Acute respiratory distress syndrome (ARDS) can lead to the development of RV 
dysfunction, primarily via increases in RV afterload [ 64 – 70 ]. A variety of factors 
contribute to pulmonary vascular dysfunction in ARDS, namely, pulmonary vaso-
constriction from hypercapnia and hypoxia, and increased intra-thoracic pressures 
secondary to mechanical ventilation and high positive end-expiratory pressures 
[ 70 ,  71 ]. Thrombosis also contributes to the increased RV afterload as postmortem 
studies have demonstrated thromboemboli in 95 % of patients with ARDS [ 65 ,  72 ]. 
A sub-study from a large clinical trial of ARDS found that 73 % of patients with 
ARDS had pulmonary vascular dysfunction, as evidenced by an increase in the 
transpulmonary gradient (TPG) and pulmonary vascular resistance index. The 
presence of pulmonary vascular dysfunction was independently associated with 
increased mortality in a dose-dependent fashion, such that increasing TPG was 
associated with higher mortality [ 64 ]. Although the mortality rates of patients with 
chronic PH who develop ARDS have not been well studied, it seems likely that PH 
patients may be particularly susceptible to poor outcomes in the setting of ARDS. 

 Atrial tachyarrhythmias may contribute to hemodynamic compromise in criti-
cally ill patients with pulmonary vascular disease. In a cohort of 231 patients with 
PAH or inoperable CTEPH, the annual incidence of new-onset supraventricular 
tachycardia was 2.8 %, most commonly due to atrial fi brillation or atrial fl utter [ 73 ]. 
Because patients with PH may already have impaired LV fi lling, these tachyar-
rhythmias are poorly tolerated and can lead to clinical decompensation. In addition, 
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the loss of atrial contractions may be deleterious in the setting of a noncompliant 
RV [ 25 ,  74 ]. The maintenance or restoration of sinus rhythm may be helpful in the 
management strategy discussed below, although data supporting this approach are 
lacking. 

 Other factors that may contribute to RV failure in the setting of PH include ane-
mia, hypoxemia, hypercapnia, acidosis, PE, and metabolic abnormalities [ 24 ]. 
Iatrogenic causes include the abrupt withdrawal of pulmonary vasodilators leading 
to rebound PH, the administration of medications with negative inotropic properties 
such as β-blockers and certain calcium channel blockers, and the use of positive 
pressure ventilation, especially with high mean airway pressures and volumes [ 19 ]. 
In a study of 46 patients with PAH or inoperable CTEPH admitted to the ICU, 19 
patients had an identifi able trigger for RV decompensation, of which 11 had infec-
tion, 3 had unplanned modifi cation or withdrawal of pulmonary vasodilator therapy, 
1 had unplanned withdrawal of diuretics, 3 had cardiac arrhythmias, and 1 had 
unplanned pregnancy [ 1 ].  

    Monitoring in the ICU 

 Close monitoring of patients with PH and RV failure is critical and may incorporate 
a mix of noninvasive and invasive modalities. The use of cardiac biomarkers may 
help in risk assessment because natriuretic peptides are secreted in the setting of 
right atrial and RV myocardial stretching and cardiac troponin is released during 
myocardial necrosis from RV ischemia [ 75 ]. Elevations in troponin and natriuretic 
peptides are associated with worse outcomes in chronic PH and acute pulmonary 
embolism [ 21 ,  75 – 82 ]. In a prospective cohort study examining 46 patients with 
PAH or inoperable CTEPH high brain natriuretic peptide levels on admission to the 
ICU were associated with increased mortality, although no statistical link was found 
between troponin levels and survival [ 1 ]. 

 Echocardiography is a noninvasive modality that plays a central role in the man-
agement of patients with PH by providing information about RV function and geom-
etry. In addition, it can help elucidate possible precipitating factors of RV failure, 
including LV dysfunction and valvular disease. Common echocardiographic signs 
of RV failure include RV dilatation with associated loss of its typical triangular 
shape and paradoxical motion of the interventricular septum during systole [ 83 ]. In 
chronic PAH, echocardiographic predictors of poor outcomes include RA enlarge-
ment, pericardial effusion, low tricuspid annular plane systolic excursion, and septal 
displacement, although their ability to discriminate between patients who do well 
and those who deteriorate in the acute care setting remains unclear [ 84 – 86 ]. 

 The presence of a large pericardial effusion in critically ill patients with pulmo-
nary vascular disease and/or RV failure can be alarming, particularly in the setting 
of decreased cardiac output or hypotension. The question of “silent tamponade” 
often arises because elevated RVEDP may prevent the normal echocardiographic 
fi ndings of RV collapse during inspiration. However, drainage of pericardial 
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 effusions in PAH patients traditionally has not been advised due to high reported 
mortality rates following pericardiocentesis or the placement of a pericardial win-
dow [ 87 ]. Acute RV decompensation following removal of pericardial fl uid likely 
occurs because of a sudden increase in RV transmural pressure. Under normal con-
ditions the RV is well suited to accommodate this relative increase in RV fi lling 
pressure, but in the acutely or chronically overloaded RV, fi lling pressures have 
often reached extremely high levels and any further increase may result in a fall in 
RV contractility. In fact, pericardial effusion in chronic RV failure is often caused 
by high RVEDP that impedes drainage of pericardial fl uid [ 87 ]. Gradual removal of 
fl uid may obviate this concern. A more recent single center experience with pericar-
diocentesis in PAH found low procedural mortality, suggesting that in highly expe-
rienced hands there may be a role for this procedure if tamponade is suspected [ 88 ]. 
However, extreme caution is advised. 

 For patients with PH presenting in shock, it is imperative to obtain adequate 
central venous access and to perform frequent and blood pressure monitoring. 
Pulmonary artery catheterization (PAC) may help to differentia maldistributive 
from cardiogenic shock as well as guide ICU therapy. For example, the measure-
ment of PA oxygen saturation, a marker of the adequacy of oxygen delivery for the 
body’s oxygen demand, may determine the need for inotropes [ 83 ]. 

 The use of PAC in critically ill patients without PH has declined over time 
because multiple studies have shown that outcomes are not improved with its use 
[ 89 – 92 ]. However, no studies have been carried out in the acute setting for the “pul-
monary vascular” population and obtaining and following pulmonary hemodynam-
ics may be important during acute illness for certain PH patients [ 90 ]. As the RV is 
usually severely dilated in advanced PAH, it is advisable to use fl uoroscopy to guide 
the PA catheter into place in order to avoid excessive ectopy and arrhythmias. It is 
important to note that the PA diastolic pressure cannot be substituted for the pulmo-
nary capillary wedge pressure in patients with PAH due to the presence of a signifi -
cant TPG. An accurate pulmonary capillary wedge pressure can be diffi cult to 
obtain in patients with PAH but is a critical value and requires due diligence, as the 
approach to management differs markedly in PAH as compared to pulmonary 
venous hypertension.  

    Management 

 General management goals for patients with PH and RV failure include optimiza-
tion of RV preload, maintenance of adequate mean systemic arterial pressure, 
enhancement of RV contractility, and reduction of RV afterload, while treating any 
potentially reversible causes for the acute decompensation [ 90 ]. Unfortunately, PH 
in the ICU setting has not been robustly studied, and consensus guidelines are lack-
ing. Management strategies therefore rely heavily on the guidance of experienced 
PH specialists. 
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    Volume Management 

 Optimizing preload in patients with RV failure is complex because both  hypovolemia 
and hypervolemia can have detrimental effects on CO. In most but not all cases of 
RV failure, the dilated and stretched RV is operating on the fl at portion of the Frank-
Starling curve. Volume expansion in this scenario often does not augment CO and 
can instead exacerbate RV dilatation, increase RV wall tension, worsen tricuspid 
regurgitation, and displace the inter-ventricular septum toward the LV. These 
adverse effects on RV function and LV fi lling contribute to reducing CO and wors-
ening clinical status. The goal, therefore, should be to maintain a negative fl uid 
balance with the use of diuretics and, if necessary, hemofi ltration, to decrease the 
volume load on the distended and failing RV without compromising preload. 
Adjustments in the rate and amount of volume removal should be made according 
to hemodynamic response [ 12 ,  93 – 97 ]. In the case of clear intravascular volume 
depletion, a conservative strategy of holding diuretics, encouraging oral hydration 
(if applicable), or judiciously using small fl uid boluses is preferred.  

    Vasopressors 

 Mean systemic arterial pressure must be maintained to minimize RV ischemia. 
Increased RV wall stress leads to RCA hypoperfusion as PVR approaches SVR or 
as SVR falls in mixed shock states (i.e., vasodilatory shock with concomitant RV 
failure). If PVR exceeds SVR, RCA perfusion will occur only during diastole, exac-
erbating RV ischemia. With the use of vasopressors, SVR can be increased, leading 
to augmentation of mean systemic arterial pressure, lowering of the PVR/SVR 
ratio, and, ultimately, improvement in RV myocardial perfusion [ 9 ,  90 ,  98 ]. In addi-
tion, the use of vasopressors increases LV afterload, helping to normalize distorted 
LV geometry from a leftward-bowed septum [ 25 ]. In choosing a vasopressor agent, 
it is important to be aware of each drug’s effect on PVR because increases in PVR 
may contribute to clinical decompensation. 

 Norepinephrine causes vasoconstriction through the α 1  receptor and has limited 
inotropic properties from β 1  receptor stimulation [ 99 ]. It has been shown to improve 
RV performance and PA/RV coupling in animal models of acute PH and RV dys-
function by way of β 1  effects on contractility [ 20 ,  100 ,  101 ]. In a study of ten patients 
with septic shock, PH, and RV dysfunction, norepinephrine increased SVR and 
improved the RV oxygen supply/demand ratio but also caused an increase in PVR 
and failed to improve RV ejection fraction [ 102 ]. Evidence for the use of norepi-
nephrine in critically ill patients with PH comes from a large randomized trial of 
ICU patients with shock, in which norepinephrine use, as compared to dopamine 
use, was associated with decreased mortality at 28 days in the prespecifi ed subgroup 
of patients with cardiogenic shock and with a decreased rate of arrhythmias in all 
patients [ 103 ]. 
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 Phenylephrine, an α 1  receptor agonist with no β 1  receptor activity, improves RCA 
perfusion in RV failure, but this benefi t is offset by its elevation of PVR and lack of 
β 1 -mediated enhancement of contractility [ 98 ,  100 ,  104 ]. In addition, refl ex brady-
cardia secondary to phenylephrine may have detrimental effects in the setting of RV 
failure [ 105 ]. 

 Epinephrine, a potent α and β receptor agonist that causes vasoconstriction and 
increased inotropy, increased CO without altering the PVR/SVR ratio in hypoxic 
newborn piglets [ 106 ]. A small study in patients with RV dysfunction from severe 
septic shock showed that epinephrine increased RV contractility [ 107 ]. The use of 
epinephrine has not been well studied in patients with PH, however. For these rea-
sons, norepinephrine is a more favorable choice for patients with PH in the ICU than 
either phenylephrine or epinephrine. 

 Vasopressin causes vasoconstriction by acting upon V1 receptors on vascular 
smooth muscle cells and also increases vascular responsiveness to catecholamines 
[ 99 ]. Low doses of vasopressin cause pulmonary vasodilation through endothelium- 
mediated nitric oxide (NO) production in animals, although high doses cause vaso-
constriction through an endothelium-independent mechanism [ 108 ]. Vasopressin’s 
effect on the pulmonary vasculature has been inconsistent in human studies [ 105 ]. 
At higher infusion rates, vasopressin may have direct myocardial depressive effects 
and causes coronary vasoconstriction [ 109 ,  110 ]. Although low-dose (i.e., 0.01–
0.03 U min −1 ) vasopressin may be effective in managing patients with RV failure, 
higher doses should be used with caution.  

    Inotropes 

 Dopamine activates dopaminergic receptors at doses less than 5 μg kg −1  min −1 , β 1  
receptors at doses between 5 and 10 μg kg −1  min −1 , and α 1  receptors at doses greater 
than 10 μg kg −1  min −1 , although actual plasma dopamine levels for a given infusion 
rate may vary unpredictably in critically ill patients [ 99 ,  111 ]. In a large animal 
model of hypoxia-induced PH, dopamine did not increase PVR at doses up to 
10 μg kg −1  min −1  [ 112 ]. In fact, in patients with PH secondary to left heart disease, 
dopamine in doses ranging from 2 to 16 μg kg −1  min −1  increased CO and heart rate 
but did not signifi cantly change PVR [ 113 ]. Similarly, in a small study of patients 
with PH and septic shock, dopamine improved CO without increasing PVR but 
failed to improve RV ejection fraction [ 102 ]. As discussed above, although the rou-
tine use of dopamine in the critical care setting is not supported by current data, in 
low doses it may be a reasonable option in patients with PH and RV failure. 
Aggravation of tachycardia can be a limitation. 

 Dobutamine has inotropic effects through β 1  receptor stimulation and a variable 
degree of vasodilatory effects through the β 2  receptor [ 99 ]. In an animal model of 
PH, dobutamine at doses of 5–10 μg kg −1  min −1  restored CO and arterial pressure 
without affecting PA resistance or elastance, improving PA/RV coupling [ 20 ]. Doses 
up to 10 μg kg −1  min −1  in patients with left heart failure result in improved  myocardial 
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contractility, reduced PVR and SVR, and less tachycardia when  compared with 
dopamine [ 114 ]. Dobutamine has been shown to improve hemodynamics in patients 
with PH at liver transplantation and after severe RV infarction [ 97 ,  115 ]. However, 
it has signifi cant β 2 -mediated systemic vasodilatory properties and thus, it is impor-
tant to avoid high doses, anticipate possible systemic hypotension, and be prepared 
to add systemic vasopressors if systemic hypotension occurs [ 90 ]. 

 Milrinone, a selective phosphodiesterase-3 inhibitor, that acts via delaying 
metabolism of intracellular cAMP has positive inotropic effects and direct-acting 
vasodilatory properties on the pulmonary circulation [ 99 ]. In animal models of both 
acute and chronic PH, milrinone improved RV function and decreased PVR [ 116 , 
 117 ]. In patients with pulmonary vascular dysfunction in the setting of LV failure, 
post-ventricular assist, or cardiac transplantation, milrinone has been shown to 
reduce pulmonary pressures and improve RV function and is often the agent of 
choice in these settings [ 118 – 120 ]. Systemic hypotension often limits the use of 
milrinone in the treatment of patients with PAH and hemodynamic instability, but it 
may be effective in patients with PH associated with LV dysfunction. Dopamine, 
dobutamine, and milrinone therapies are all capable of inducing cardiac tachyar-
rhythmias that are poorly tolerated in patients with PH and may be a limiting factor 
in their use in some patients. A few case series suggest that inhaled milrinone may 
be useful in PH because it minimizes systemic hypotension by delivering the drug 
directly to the pulmonary vasculature [ 121 – 124 ]. 

 Levosimendan, a novel drug that enhances myocardial contractility by sensitiz-
ing troponin C to calcium while also acting as a pulmonary vasodilator, is a promis-
ing agent for patients with PH and RV failure but has not yet been thoroughly 
investigated in this patient population [ 125 – 129 ]. Irrespective of the specifi c agent, 
inotropes should generally be considered when there is evidence of inadequate oxy-
gen delivery and/or in the case of volume overload not successfully managed with 
diuretics alone. It is especially important to avoid “supra-normalization” of oxygen 
delivery in these patients because this strategy not only is associated with worse 
outcomes in the general ICU population but may also increase PA pressures and 
worsen cardiac function in patients with pulmonary vascular disease [ 130 ,  131 ].  

    Pulmonary Vasodilators 

 Because increased RV afterload plays a central role in RV failure associated with 
PH, the use of pulmonary vasodilators to unload the RV is critical. The ability of 
even a severely dilated and overloaded RV to return to normal size and function is 
illustrated by the restoration of RV function after pulmonary thromboendarterec-
tomy for CTEPH and lung transplantation in patients with PH [ 132 – 134 ]. 

 Inhaled NO is a potent pulmonary vasodilator with minimal systemic vasodila-
tory effects because it is rapidly inactivated by hemoglobin within the pulmonary 
capillaries. Because of its short half-life, continuous administration through a face 
mask, a nasal cannula, or, a ventilator circuit is required [ 135 ]. In patients with 
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chronic PAH, NO reduces PVR and improves CO without a drop in SVR 
[ 136 – 138 ]. In 26 patients admitted to the ICU with acute RV failure, NO adminis-
tration resulted in a greater than 20 % increase in CO and/or decrease in PVR in half 
of the patients [ 139 ]. With prolonged use at high concentrations, methemoglobin-
emia may develop, necessitating periodic surveillance of methemoglobin levels and 
routine assessment for cyanosis [ 140 ]. Nitrogen dioxide (NO 2 ) will accumulate 
when NO is delivered with high FiO 2  and needs to be monitored continuously in the 
ventilator circuit. Care must be taken in the discontinuation of NO because abrupt 
withdrawal has been associated with rebound PH and hemodynamic collapse [ 141 –
 143 ]. After prolonged use, complete discontinuation of even low-dose inhaled NO 
may necessitate bridging therapy with another targeted pulmonary vasodilator. 

 Prostacyclins, including epoprostenol, treprostinil, and iloprost, are potent, 
short-acting agents that cause pulmonary vasodilation and inhibit platelet aggrega-
tion. In chronic PAH, these medications improve exercise capacity, hemodynamics, 
and, in the case of continuous infusion epoprostenol, survival [ 144 – 149 ]. In the 
critical care setting, prostacyclins have been mainly studied in patients with PH 
after cardiac surgery or transplantation, where they have been shown to reduce 
PVR and improve RV function [ 150 – 156 ]. The use of intravenous prostacyclins 
and up- titration of their dose in the ICU is usually limited by systemic hypotension 
and other systemic adverse effects including nausea, fl ushing, headache, and diar-
rhea [ 55 ]. Prostacyclins should be avoided in patients with signifi cant left heart 
dysfunction and elevated pulmonary venous pressures because their use in this set-
ting can generate further increases in left-sided fi lling pressures, leading to the 
development of pulmonary edema, pleural effusions and/or the deterioration of LV 
function [ 157 ]. 

 Importantly, vasodilation of the pulmonary vasculature by systemic prostacyclin 
or prostacyclin analogues is nonselective and can exacerbate ventilation-perfusion 
mismatch, leading to worsened gas exchange and hypoxemia. These effects may be 
particularly problematic in patients with intrinsic lung disease and hypoxic PH. This 
phenomenon maybe circumvented with the use of inhaled preparations whereby 
pulmonary blood fl ow to well-ventilated regions in the lung is increased, thereby 
decreasing intra pulmonary shunt [ 158 ]. The inhaled prostacyclins iloprost and 
treprostinil are approved for outpatient use with specifi c devices (the I-neb Adaptive 
Aerosol Delivery device and the Optineb-ir, respectively). Iloprost is increasingly 
being used “off-label” in the postoperative and ICU setting with an ultrasonic nebu-
lizer, although dosing and drug absorption are not standardized. Drug delivery and 
pharmacokinetics using alternative systems (i.e., conventional nebulizers and venti-
lator circuits) have also not been studied. Finally, abrupt discontinuation of prosta-
cyclin infusions in chronically treated patients should be avoided because this may 
precipitate severe rebound PAH and even death [ 159 ]. Patients with PAH on chronic 
prostacyclin therapies who develop vasodilatory or mixed shock may require dose 
reductions during their acute illness, so as to not exacerbate systemic hypotension 
and/or create (relative) high-output failure, but this should be done under the guid-
ance of a PH specialist. 
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 The endothelin receptor antagonists and phosphodiesterase-5 (PDE5) inhibitors 
are proven oral medications for the management of chronic PAH, but they have not 
been investigated in critically ill patients with RV failure [ 160 – 163 ]. An intravenous 
formulation of the PDE5 inhibitor sildenafi l has recently become available and may 
prove useful in the acute setting, although future studies in this patient population 
are needed [ 164 ]. By increasing downstream cyclic guanosine monophosphate sig-
naling, PDE5 inhibitors reduce PVR and may also augment RV function by exerting 
a milrinone-like effect through inhibition of phosphodiesterase-3 [ 165 – 168 ]. With a 
rapid onset of action and a relatively prolonged half-life of 3–4 h, intravenous silde-
nafi l must be used cautiously in critically ill patients to avoid systemic hypotension 
and exacerbation of ventilation-perfusion mismatch [ 164 ,  169 ]. Anecdotally, intra-
venous dosing should be approximately one third to one half that of the anticipated 
oral sildenafi l dose.  

    Supportive Care 

 Maintaining peripheral oxygen saturations greater than 90 % in PAH; this is criti-
cally important in the acute setting, to prevent or reverse any contributing hypoxic 
pulmonary vasoconstriction [ 170 ]. Oxygen inhalation has been shown to reduce 
PVR and improve CO in patients with PH [ 171 ,  172 ]. Hypercapnia and acidemia 
worsen hypoxic pulmonary vasoconstriction and RV contractility and should be 
avoided [ 173 ,  174 ]. Although no studies have been performed to determine the opti-
mal hemoglobin level for patients with PH and RV failure, many experts recom-
mend maintaining a hemoglobin level of greater than 10 g dL −1  to optimize 
oxygen-carrying capacity and minimize RV ischemia [ 25 ]. Volume status should be 
monitored carefully and diuretics adjusted appropriately with transfusion. As men-
tioned previously, patients with PH and RV failure are intolerant of electrolyte dis-
turbances, metabolic derangements, and vagal stimuli, and care must be taken to 
normalize these imbalances if present.  

    Mechanical Ventilation 

 Endotracheal intubation of patients with PH and RV failure should be avoided 
when at all possible. If intubation is necessary, etomidate is generally the preferred 
induction sedative because it has minimal effects on SVR, PVR, and cardiac con-
tractility. Propofol should be avoided given its propensity to cause systemic hypo-
tension. Systemic vasopressors should be readily available or started preemptively 
to maintain SVR and counteract peri-intubation hypotension, which, if occurs in a 
patient with severe PH and RV failure, can be catastrophic and result in cardiac 
arrest [ 175 ,  176 ]. 
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 Because elevated intrathoracic pressures decrease RV and LV preload and 
increase PVR, ventilator strategies that use high infl ation lung volumes and pres-
sures should be avoided to prevent these detrimental effects [ 90 ,  177 ]. High positive 
end-expiratory pressures may, in theory, increase pulmonary vascular resistance and 
should be avoided, as should atelectasis or reduced lung volumes. In general, venti-
lation strategies should aim to keep lung volumes close to Functional Residual 
Capacity (FRC) while maintaining adequate oxygenation and ventilation while 
avoiding high peak inspiratory or end expiratory pressures.  

    Mechanical Support 

 When conventional support for the RV is ineffective in severe cases of PH and RV 
failure, mechanical support, including RV-assist devices and venoarterial extracor-
poreal membrane oxygenation (VA-ECMO), may be considered. The use of intra- 
aortic balloon counterpulsation in isolated RV failure has been reported, and 
improves CO by augmenting coronary blood fl ow [ 178 ,  179 ]. Although RV-assist 
devices are effective in primary RV dysfunction or RV failure secondary to LV fail-
ure, thus far, they have not been shown to be successful in patients with signifi cantly 
elevated PVR. In this setting, the increase in pulmonary blood fl ow, particularly if 
pulsatile, gives rise to markedly elevated pulmonary vascular pressures, which can 
damage the pulmonary microcirculation and lead to intraparenchymal pulmonary 
hemorrhage, hemoptysis, and death [ 180 ,  181 ]. 

 VA-ECMO has been used successfully in patients with massive PE, in patients 
with PH and RV failure as a bridge to lung transplantation, and in patients with 
CTEPH as a bridge to or for complications arising after pulmonary thromboendar-
terectomy [ 182 – 189 ]. By unloading the RV and providing additional blood fl ow to 
the systemic circulation, VA-ECMO improves the hemodynamics of patients with 
PH and RV failure. In addition, it can help reverse hypoxic pulmonary vasocon-
striction by performing gas exchange and has been successfully used in awake, 
spontaneously breathing patients (a number of whom had PAH) as a bridge to lung 
transplantation [ 190 ]. VA-ECMO is not without potentially serious complications, 
however, and may include bleeding, infection, thromboembolism, and neurologic 
sequelae [ 180 ]. More recently, pumpless lung-assist devices have been developed 
and used in patients with PAH as a bridge to lung transplantation, connecting the 
PA to the left atrium with a low-resistance membrane oxygenator. With the blood 
fl ow through the circuit powered by the patient’s own RV, these devices unload the 
RV and enhance LV fi lling in a manner similar to balloon atrioseptostomy; how-
ever, in contrast to septostomy, these devices improve instead of impair gas 
exchange [ 191 ,  192 ].  
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    Cardiopulmonary Resuscitation 

 Cardiopulmonary resuscitation (CPR) in patients with PH and RV failure is largely 
unsuccessful. In a retrospective, multicenter study, 132 patients with PAH had cir-
culatory arrest and implementation of CPR, of which only 8 patients (6 %) survived 
for more than 90 days. In addition, seven of these eight surviving patients had cor-
rectable causes of their cardiopulmonary arrest, including vasovagal reactions, digi-
talis toxicity, and pericardial tamponade [ 193 ]. One explanation for the lack of 
effi cacy of CPR in this patient population is that high PVR makes it unlikely that 
chest compressions will achieve adequate pulmonary blood fl ow and LV fi lling. In 
addition, the use of epinephrine during CPR causes even further increases in PVR 
[ 194 ]. In light of the poor outcomes of CPR in patients with severe PH and RV fail-
ure, having timely discussions about the possibility of “Do Not Resuscitate” orders 
with these patients and their families is crucial, particularly in patients in whom a 
reversible cause for decompensation cannot be determined.   

    Conclusion 

 Patients with PH and RV failure who require ICU admission are at signifi cant risk 
for worsening morbidity and mortality. In the setting of PH, RV failure can be trig-
gered by various factors, giving rise to a vicious cycle of worsening RV function, 
profound shock, and death. Given their tenuous hemodynamics, these patients must 
be monitored closely with indicators of end-organ perfusion, cardiac biomarkers, 
echocardiography, and, in select situations, PAC. Management goals include opti-
mizing RV preload with diuretics or hemofi ltration, maintaining mean systemic 
arterial pressure with systemic vasopressors, augmenting RV contractility with ino-
tropes, decreasing RV afterload with selective pulmonary vasodilators, and revers-
ing any identifi able inciting factors. In severe cases, VA-ECMO or other forms of 
mechanical support may be considered. Although there have been marked advances 
in therapeutic strategies for PAH over the last several decades, acute care of patients 
with pulmonary vascular and RV dysfunction remains largely unstudied and guided 
by clinical expertise. 
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