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    Chapter 17   
 Investigative Therapies in Pulmonary 
Arterial Hypertension 

             Karen     A.     Fagan     

    Abstract     Pulmonary arterial hypertension (PAH) remains a serious, life  threatening 
disease of unclear etiology. Despite the rapid development of numerous drugs to 
treat the disease, no cure is presently available. New treatments for PAH that are 
able to reverse the abnormal pulmonary vascular remodeling that is responsible for 
much of this disease are badly needed. To accomplish this goal, novel therapies that 
target many of the dysfunctional pathways that have been identifi ed in PAH will 
need to be developed. This chapter reviews many of the known alterations in gene 
expressions, vasoconstriction, infl ammation, metabolism, and cellular proliferation 
that have been identifi ed in the pathogenesis of PAH. Potential pharmacologic tar-
gets arising from these abnormalities are reviewed along with data, where available, 
from animal studies and small clinical trials that have attempted to treat pulmonary 
vascular disease through manipulation of these pathways.  
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   5HT    Serotonin   
  ACE    Angiotensinogen-converting enzyme   
  ALK-1    Activin like kinase 1   
  AT III    Angiotensin III   
  AT-1    Angiotensinogen receptor-1   
  AT-2    Angiotensinogen receptor-2   
  BMPR2    Bone morphogenetic protein receptor 2   
  CML    Chronic myelogenous leukemia   
  COPD    Chronic obstructive lung disease   
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  DCA    Dichloroacetate   
  DHEA    Dehydroepiandrosterone   
  EIF2AK4    Eukaryotic translation initiation factor 2 alpha kinase 4   
  eNOS    Endothelial nitric oxide synthase   
  EPCs    Endothelial progenitor cells   
  HDAC    Histone deacetylase   
  HIF1α    Hypoxia inducible factor 1α   
  IL-1    Interleukin-1   
  IL-13    Interleukin-13   
  IL-6    Interleukin-6   
  KCNK3    Potassium channel subfamily K member 3   
  Kv    Voltage-gated potassium channels   
  miRNA    MicroRNA   
  MSC    Mesenchymal stems cells   
  NFAT-1    Nuclear factor of activated T-cells 1   
  NO    Nitric oxide   
  PAH    Pulmonary arterial hypertension   
  PASMC    Pulmonary artery smooth muscle cells   
  PDGF    Platelet-derived growth factor   
  PGI2    Prostacyclin   
  PH    Pulmonary hypertension   
  PPAR γ/β    Peroxisome proliferator-activated receptors γ/β   
  RAAS    Renin–angiotensin–aldosterone system   
  RV    Right ventricle   
  SERCA 2a    Sarcoendoplasmic reticulum calcium transport ATPase 2a   
  siRNA    Small interfering RNA   
  SOD2    Superoxide dismutase 2   
  TGF β    Transforming growth factor β   
  TKI    Tyrosine kinase inhibitor   
  TRPC    Transient receptor potential channels   
  TXA2    Thromboxane   
  VEGF    Vascular endothelial growth factor receptor   
  VEGFr    Vascular endothelial growth factor receptor   
  VIP    Vasoactive intestinal peptide   

          Introduction 

 Despite the availability of multiple therapies specifi cally approved by regulatory 
agencies for the treatment of pulmonary arterial hypertension (PAH), the diagnosis 
remains indicative of a progressive, life-limiting process resulting in substantial 
morbidity and mortality. Identifi cation of treatments aimed to normalize life expec-
tancy in these patients is a signifi cant priority and to date no single therapy for PAH 
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can achieve this goal. This is not at all surprising given the multifactorial nature of 
the pathogenesis of PAH and the clinical heterogeneity of patients classifi ed as 
World Health Organization Group 1 PAH. Future effective treatments for PAH may 
ultimately rely on identifi cation and development of multi-targeted strategies that 
go well beyond our current therapeutic targets. It is impossible to summarize all the 
potential therapies that are being evaluated for PAH. Focusing on important patho-
logic processes in PAH and investigative therapies related therein may provide an 
important approach to identify integrative, complementary, pluripotent therapies for 
future consideration [ 1 ].  

    Potential Therapeutic Targets for PAH 

 The pathophysiology of PAH is complex with many potential targets that have been 
identifi ed through various studies including genomic approaches, clinical investiga-
tions, and preclinical animal studies. There are equally numerous ways to catego-
rize these targets. For purposes of this review, selected targets for future treatments 
will be considered. Additionally, most current and future treatments are aimed at 
reversing the abnormal structure and function of the pulmonary circulation. 
Enhancing right ventricle (RV) function is also an important consideration in 
improving patient functional status and outcome.  

    Genetic and Epigenetic Targets 

 Identifi cation of bone morphogenetic protein receptor 2 (BMPR2) mutations as a 
cause of familial PAH in 2000 heralded over 14 years of research devoted to under-
standing how the wide variety of mutations cause PAH. Haploinsuffi ciency, domi-
nant negative effects, and abnormal signaling through downstream pathways have 
all been associated with PAH. Because of these variable effects of the BMPR2 
mutation, the approach to restoring normal gene expression and function of BMPR2 
is daunting. What is clear is that developing ways to increase expression of the nor-
mal BMPR2 allele may result in substantial benefi t. Gene therapy via adenoviral 
gene transfer in animal studies has demonstrated benefi t of increasing expression of 
the normal BMPR2 [ 2 ]. However, gene therapy in humans with PAH is signifi cantly 
in the future. Alternative strategies, aimed at increasing BMPR2 expression and 
activity, have led to several new lines of clinical investigation. Recently, FK506 
(tacrolimus) has been identifi ed as a potential potent inducer of BMPR2 activity. Its 
effect on BMPR2 is only partially explained by inhibition of calcineurin and nuclear 
factor of activated T-cells 1 (NFAT-1) signaling. Tacrolimus was also able to improve 
endothelial cell function in cells derived from PAH patients as well as decrease 
pulmonary hypertension (PH) in hypoxic mice with BMPR2 haploinsuffi ciency and 
rats with monocrotaline and vascular endothelial growth factor receptor (VEGFr)/
hypoxia-induced PAH [ 3 ]. 
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 Other targets aimed to increase BMPR2 expression and activity by acting as 
molecular chaperones and increasing transcription have been proposed. Ataluren 
increases ribosomal transcription of genes with stop codon mutations [ 4 ] and has 
been tested in several genetic diseases with mixed results. Ongoing trials in patients 
with cystic fi brosis are taking place now [ 5 ] and may point to a possible option in 
PAH patients with specifi c BMPR2 mutations in the future. Some mutations of 
BMPR2 are associated with protein folding abnormalities that do not allow BMPR2 
traffi cking out of the endoplasmic reticulum and several different chaperones to 
move the mis-folded protein to the cell surface have been studied [ 6 ]. 

 While mutations in BMPR2 are most commonly associated with PAH, other 
genes such as activin-like kinase 1 (ALK-1), endoglin, potassium channel subfam-
ily K member 3 (KCNK3), eukaryotic translation initiation factor 2 alpha kinase 4 
(EIF2AK4), and voltage-gated potassium channels (Kv’s) that are mutated or 
abnormally expressed in PAH may also benefi t from the approaches above. 
Additionally, abnormal activity of BMPR2 signaling may also alter the expression 
of endogenous regulators of the lung circulation. One such example is apelin, a 
peptide that is implicated in endothelial and smooth muscle proliferation and vaso-
dilation, which is reduced by mutations in BMPR2 that disrupt peroxisome 
proliferator- activated receptors γ/β (PPAR γ/β) signaling, thus providing some 
rationale for the therapeutic potential of PPAR agonists in PAH [ 7 – 9 ]. PPAR ago-
nists are also associated with attenuation of PH in animal models by modulating the 
levels of other vasoactive mediators such as endothelin-1 and VEGF [ 10 ]. 

 Other epigenetic changes are also found in PAH patients. One area of increasing 
interest is the role of micro RNAs (miRNAs) and small interfering RNAs (siRNAs) 
to regulate gene expression in PAH. Transfection of RNA containing vectors to 
enhance or inhibit gene expression has been proposed as potential future therapies 
as increasing evidence supports the role of miRNA and siRNA in PAH. A recent 
review highlighted many of the RNAs implicated in PAH with additional RNA tar-
gets reported every year [ 11 ]. 

 DNA modifi cations such as increased methylation lead to changes in expression 
of the gene. An example is the methylation of superoxide dismutase 2 (SOD2) by 
methyltransferases resulting in decreased SOD expression, changes in redox state 
and increased expression of pro-proliferative signals such as hypoxia inducible fac-
tor 1α (HIF1α) [ 12 ,  13 ]. Modifi cation of histones by acetylation in PAH has also 
been proposed as an important epigenetic phenomenon. Inhibition of de-acetylation 
by inhibitors of histone deacetylase (HDAC) causes changes in gene expression that 
result in inactivation of some genes and activation of others. In PAH, studies in 
pulmonary artery smooth muscle cells (PASMCs) and several animal models of PH 
have demonstrated a decrease in PASMC proliferation and infl ammation associated 
with targeted inhibitors of HDAC [ 14 ]. Inhibitors of HDAC have also been used in 
studies looking at RV function in models of PAH with mixed results. In left ven-
tricular hypertrophy, inhibitors of HDAC were benefi cial, whereas in studies of dif-
ferent models of PAH and with different HDAC inhibitors, effects on the RV were 
benefi cial (in compensated RV hypertrophy and monocrotaline-induced PH) but 
were associated with RV failure in others [ 15 ,  16 ]. 
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 Manipulating the expression of genes implicated in PAH is a promising area of 
active investigation. Hopefully, restoration of more normal gene expression and 
ultimately more normal cell signaling will restore normal pulmonary vascular and 
RV function and improve the life expectancy in PAH patients.  

    Vasoconstriction and Vasoactive Targets 

 Enhanced pulmonary vasoconstrictive responses to a wide variety of stimuli have 
been identifi ed in PAH. Indeed, all currently available PAH treatments directly tar-
get vasoconstrictive pathways. 

 Vasoconstriction of vascular smooth muscle requires an infl ux of calcium in 
order to activate the contractile machinery. Calcium can be released from intracel-
lular stores or imported from the extracellular environment. Transient receptor 
potential channels (TRPC) regulate the release of calcium from intracellular stores. 
Increased activity of TRPC 6 has been identifi ed in PAH patients and is associated 
with a single-nucleotide polymorphism [ 17 ]. Increased expression of TRPC 6 was 
also associated with enhanced proliferation of PASMCs [ 18 ]. Loss of TRPC 4 chan-
nel activity in rats is associated with improved survival in models of PAH [ 19 ]. The 
sarcoendoplasmic reticulum calcium transport ATPase 2a (SERCA 2a), a channel 
that regulates release of calcium from the sarcoplasmic reticulum, has also been 
implicated in PAH [ 20 ]. Modulating the infl ux of calcium has been a target of PAH 
therapies by directly inhibiting the entry of calcium through T- or L-type channels 
using calcium channel blockers. However, the clinical effectiveness of these alone 
has been modest at best and more selective regulators of calcium entry such as the 
channels above may provide important treatment targets [ 21 ]. 

 Calcium infl ux occurs when the smooth muscle cell is depolarized. In PAH, sev-
eral voltage-gated potassium channels (Kv) have been implicated. Down regulation 
of several potassium channels, most notable Kv1.2 and 1.5 are associated with 
membrane depolarization and calcium infl ux. Maneuvers that increase Kv expres-
sion and function (by gene transfer, dichloroacetate, etc.) reduce experimental PH 
by causing cellular hyperpolarization [ 22 ]. Recently, the KCNK3 gene that encodes 
potassium channel subfamily number 3 has been identifi ed as a cause of heritable 
PAH in several families. Mutations in this channel lead to a channelopathy charac-
terized by loss of potassium channel function and hyperpolarization of smooth 
muscle cells [ 23 ]. This fi nding defi nitively links abnormal potassium channel func-
tion to PAH and restoring normal channel function is a viable strategy for future 
consideration. 

 Vasoconstriction can also be achieved by a variety of vasoactive molecules that 
interact with cell surface receptors and cause vasoconstriction through a variety of 
intracellular signaling processes. Current treatments including endothelin-1 recep-
tor blockade or increasing levels of prostacyclin-generated cAMP and nitric oxide- 
generated cGMP \take advantage of this strategy to lessen or enhance downstream 
signals respectively. There are many other molecules that modulate  vasoconstriction 
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including vasoactive intestinal peptide (VIP), thromboxane (TXA2), angiotensin III 
(AT III), apelin, serotonin (5HT), etc. all of which may cause pulmonary vasocon-
striction through several different pathways. VIP inhibits vasoconstriction and also 
acts to vasodilate the circulation. Decreased VIP expression results in worse PH in 
animal models, and treatment with exogenous VIP attenuates this effect [ 24 ]. 
However, despite positive results from early clinical trials, VIP administration in 
PAH patients did not result in measureable improvements [ 25 ]. 5HT has long been 
associated with PAH and interference with the serotonin transporter has been dem-
onstrated to decrease PH in animal models [ 26 ]. Terguride, is a 5HT transporter 
inhibitor, that was not found to be effective in the treatment of PAH in a preliminary 
phase IIa study [ 27 ], but continues to be investigated in combination with other 
drugs. Apelin, as described above is decreased in PAH due to mutations in BMPR2. 
It has many effects on the pulmonary circulation and dilates the lung circulation of 
animals with PH possibly through its effects on altering expression of endothelial 
nitric oxide synthase (eNOS) to increase nitric oxide (NO) production. Apelin 
administration has been associated with decreased PH in animal models [ 28 ]. 

 Activation of Rho kinase in PAH leads to sustained contraction in PASMCs 
through “Ca sensitization” of the contractile apparatus, namely increased levels of 
phosphorylated myosin light chain [ 29 ,  30 ]. Inhibitors of Rho kinase, both direct 
and indirect, result in substantial reversal of vasoconstriction and vascular remodel-
ing in several animal models of PH [ 31 – 36 ]. Several small scale human clinical 
trials of acute administration of the direct Rho kinase inhibitor fasudil in PAH 
patients demonstrated acute pulmonary vasodilatory effects [ 37 – 40 ]. Long-term 
clinical trials of direct Rho kinase inhibitors have not yet been carried out. Indirect 
inhibitors of Rho kinase, such as dehydroepiandrosterone (DHEA), are attractive 
candidate drugs that have been associated with attenuation and reversal of PH in 
animal models [ 41 ] and improved exercise capacity in patients with chronic obstruc-
tive lung disease (COPD) associated PH [ 42 ]. 

 Identifi cation, testing and production of specifi c inhibitors of the above men-
tioned agents (many of which are implicated in PAH), are daunting. A strategy that 
identifi es important intracellular signaling hubs common to several important play-
ers in the pathogenesis of PAH may prove more effective than targeting pathways 
individually.  

    Infl ammation and Infl ammatory Mediator Targets 

 Infl ammation that sets in motion a series of events that promote vascular dysfunc-
tion and remodeling has long been hypothesized to be an important contributor to 
the development of PAH [ 43 ]. The association of PAH with autoimmune and infl am-
matory diseases is a signifi cant part of this hypothesis. However, immunosuppres-
sive therapies have had limited effectiveness in the treatment of PAH. The 
pro-infl ammatory cytokines, interleukin-1 (IL-1) and -6 (IL-6), are increased in 
PAH patients and inhibition of these is associated with decreased PH in animal 
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models. IL-13 and signaling via transforming growth factor β (TGF β) is  additionally 
associated with schistosomiasis-related PAH [ 44 ]. Several animal studies and case 
reports have found that inhibition of IL-6 is associated with decreased PH [ 45 ]. The 
anti-IL-6 monoclonal antibody has been associated with decreased pulmonary vas-
cular disease in a patient with PAH associated with connective tissue disease and 
may represent a future therapeutic option for some PAH patients [ 46 ]. Cell-mediated 
immune functions have also been implicated in PAH and may represent important 
therapeutic targets. Patients with human HIV and athymic rats are more susceptible 
to PH suggesting an important role of T-cells and chronic infl ammation in PAH [ 47 , 
 48 ]. Given the relationship to autoimmune diseases, B-cell activation may play a 
role in PAH suggesting the potential option for anti-B-lymphocyte antigen CD20 
treatment in the future. Several case reports suggest that rituximab may be helpful 
in patients with PAH associated with connective tissue disease [ 49 ,  50 ].  

    Vascular Cell Proliferation and Vessel Remodeling Targets 

 Excessive proliferation of cells in the walls of the pulmonary arteries and formation 
of the plexiform lesion is a hallmark of severe PAH. Events leading to the alteration 
of the normal vascular structure likely are multifactorial involving biochemical and 
mechanical forces that promote cell proliferation and angiogenesis. Many mole-
cules known to be important in PAH such as NO, 5HT, TXB2, Rho kinase, and 
prostacyclin (PGI2). have direct effects on vascular tone, but also contribute to the 
proliferative phenotype. Thus, manipulation of these agents may help to decrease 
or reverse pulmonary vascular remodeling in addition to decreasing pulmonary 
vascular tone. 

 More direct approaches to address vascular remodeling target specifi c growth 
factor pathways and the extracellular matrix. Several important growth factors 
have been implicated in PAH. Platelet derived growth factor (PDGF) has been 
implicated in the proliferation of pulmonary vascular cells. Imatinib, a tyrosine 
kinase inhibitor (TKI) that inhibits the PDGF receptor, has been the most widely 
studied tyrosine kinase inhibitor in PAH. Imatinib was originally developed to 
inhibit the pro- oncogenic tyrosine kinase Bcr-abl in chronic myelogenous leuke-
mia (CML). Given its ability to inhibit PDGF receptor and proto-oncogene c-Kit, 
imatinib was proposed as a potential regulator of PAH-related vascular prolifera-
tion [ 51 ,  52 ]. Despite initial excitement in animal models, case reports and small 
clinical trials [ 53 ,  54 ], imatinib failed to achieve regulatory approval after a large-
scale clinical trial identifi ed important concerns regarding the risk to benefi t ratio 
of the treatment [ 55 ]. Other TKIs that target PDGF have also had some encourag-
ing preclinical success, but may have limited clinical usefulness owing to other less 
benefi cial effects. For example, dasitinib, a TKI with broader inhibitory properties 
than imatinib, also approved for treatment of CML, has been associated with the 
development of PAH [ 56 ]. 
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 Other potential targets are TKIs targeting epidermal growth factor receptor 
 (erlotinib, gefi tinib) and multi-kinase inhibitors (sorafenib, sunitinib), but as was 
seen with imatinib, signifi cant limitations to their use lie in unacceptable adverse 
events and side effects and limited effi cacy in animal models [ 57 ,  58 ]. Given these 
contradictory clinical effects and substantial adverse events, the future of TKIs in 
PAH is uncertain [ 59 ]. 

 Modulation of extracellular matrix in PAH may also be a potential target for 
future treatments. Increased activity of elastases located in the pulmonary vascular 
wall allows for degradation of the extracellular matrix and, by inducing expression 
of other molecules such as tenacin and fi bronectin, promotes cell proliferation and 
vascular remodeling [ 60 ]. Elafi n, an inhibitor of serine protease, decreases and 
reverses severe PH in animal models [ 61 ,  62 ] and will likely undergo clinical testing 
in the near future.  

    Metabolic Targets 

 Derangements in the energy metabolism of pulmonary artery cells in PAH are being 
characterized. Examination of the RV and lungs of patients and animals with experi-
mentally induced PH demonstrate a wide array of changes in expression of genes 
engaged in metabolic processes [ 63 ,  64 ]. Several mitochondrial abnormalities have 
been found in pulmonary vascular cells and the RV that lead to anaerobic metabo-
lism (glycolysis) instead of aerobic metabolism through activation of pyruvate dehy-
drogenase kinase. This glycolytic state then leads to decreased intracellular reactive 
oxygen species generation, increased HIF1α expression and activity, and ultimately 
activation of vasoconstrictive and proliferative signaling by decreasing Kv channel 
expression and activity [ 65 ]. Dichloroacetate (DCA), an inhibitor of mitochondrial 
pyruvate dehydrogenase has demonstrated reversal or reduction of PH in animal 
models [ 66 – 69 ] and is undergoing clinical testing in PAH patients. Oxidation of 
fatty acids also contributes to this glycolytic shift, and several inhibitors of fatty acid 
oxidation, trimetazidine and ranolazine, have demonstrated potential effi cacy in ani-
mal models of PAH by reversing the shift toward glycolysis [ 70 ,  71 ] Ranolazine is 
currently being evaluated in PAH patients at a single clinical center.  

    Neurohormonal Targets 

 Much of the morbidity and mortality of PAH patients lies in the adaptation and 
function of the RV to the increased demands of downstream resistance. Clearly, 
developing effective treatments to decrease the resistance due to vasoconstriction 
and remodeling is the ultimate RV “specifi c” treatment. Short of this, improving 
adaptation of the RV is an important therapeutic consideration. Many of the pro-
posed PAH treatments above additionally involve adaptations that are seen in the 
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RV as well as pulmonary vasculature. Recently, attention to the neurohormonal 
 activation in PAH patients has received increasing attention. The sympathetic ner-
vous system and renin–angiotensin–aldosterone system (RAAS) are activated in 
PAH [ 72 ] and represent potential targets for treatment. 

 Sympathetic tone is increased in patients with PAH and adrenergic receptor 
expression is also reported as increased in the RV of patients with PAH right ven-
tricles [ 73 ,  74 ]. Activation of this system was considered adaptive to sustain cardiac 
output by increasing contractility, heart rate, and systemic blood pressure, and thus, 
manipulation of adrenergic receptors was considered unsafe in PAH patients. 
However, sympathetic activation has been associated with increased mortality in 
PAH patients [ 75 ] which has led to a number of studies of selective β-receptor 
blockade in PAH. In several preclinical models of PAH, the α1/β1/β2-adrenergic 
receptor antagonist carvedilol and β1-selective receptor antagonist bisoprolol are 
associated with improved RV function [ 76 – 78 ]. A retrospective review of PAH 
patients revealed no difference in clinical outcomes in patients who received 
β-blockers compared to those who did not [ 79 ,  80 ] suggesting that the safety of 
β-blockade in PAH patients should be reconsidered [ 72 ]. 

 Activation of RAAS is also found in patients with PAH [ 72 ,  81 ]. Several case 
series of patients with PAH hinted at effi cacy of angiotensinogen converting enzyme 
(ACE) inhibition [ 82 ], but concerns regarding the potential for hypotension limited 
further investigations. More recently, approaches aimed at selective targeting of the 
angiotensin (AT) pathway have identifi ed the potential therapeutic value of target-
ing AT receptor-1 (AT1) (using the AT-1 antagonist losartan) while keeping ACE 
and AT-2 function (both with purported vasodilatory effects) and signaling intact 
[ 81 ]. Additional support of this approach is demonstrated by the use of ACE-2 ago-
nists to decrease pulmonary artery pressure and RV hypertrophy and dysfunction in 
animal models of PAH [ 83 – 85 ]. 

 Aldosterone antagonism is a mainstay of left ventricular failure treatment [ 86 ], 
but its role in RV failure is less well understood. However, increased levels of aldo-
sterone are found in PAH patients [ 87 ] and treatment with aldosterone antagonists 
is included in several recent treatment guidelines. Evidence for this recommenda-
tion is increasingly apparent as demonstrated in recent studies that identifi ed that 
upregulation of aldosterone is associated with increased ET-1 and decreased NO 
availability which is reversed by aldosterone antagonists in animal models of PAH 
[ 88 ,  89 ]. Review of the ARIES data of the selective ET-1, a receptor antagonist 
ambrisentan in PAH, suggests a complimentary benefi t when combined with the 
aldosterone antagonist spironolactone [ 90 ].  

    Lung Cell-Targeted and Cell-Based Therapeutic Targets 

 Therapies designed to repair and remodel the pulmonary arteries in PAH may be 
best approached using strategies to deliver pharmacologic agents and genes directly 
to the abnormal lung circulation or to repopulate the pulmonary vasculature with 

17 Investigative Therapies in Pulmonary Arterial Hypertension



406

cells that have normal phenotypes and behaviors. Targeting molecules to the lung 
circulation can be achieved by a number of mechanisms including the use of chap-
erones, exploiting lung-specifi c cell surface receptors, targeting lung-specifi c gene 
expression and identifi cation of lung-specifi c signaling pathways. Numerous exam-
ples of this strategy are being investigated including use of specifi c lung endothelial 
cell surface receptors, peptides that chaperone molecules to abnormal pulmonary 
endothelium, and RNAs that target lung-specifi c gene expression. By using lung- 
targeted approaches, the limitations of systemic delivery of therapeutics and poten-
tial systemic side effects may be limited [ 91 ]. 

 Cell-based strategies to deliver molecules to the lung circulation or act as thera-
peutics directly are an attractive approach in PAH. Repair and reversal of vascular 
changes in PAH through delivery of pluripotent mesenchymal stems cells (MSCs) 
or endothelial progenitor cells (EPCs) that repopulate the vessel wall and poten-
tially carry genes to promote repair is one potential approach [ 92 ,  93 ]. In PAH 
patients, alterations in the numbers of circulating EPCs have been observed [ 94 ]. 
EPCs alone or carrying specifi c genes, such as eNOS, have prevented and reversed 
PAH in several animal models of PAH [ 95 ]. Autologous EPCs in a small trial of 
PAH patients resulted in improvement in exercise capacity and hemodynamics [ 96 ]. 
A trial of autologous EPCs overexpressing eNOS in PAH patients is underway.  

    Summary 

 Identifi cation of new treatments that will normalize life expectancy for patient with 
PAH will certainly be a complex and challenging endeavor is likely to involve the 
targeting of multiple pathways. It is unlikely, that any single agent exists that is 
capable of completely reversing or preventing disease progression in PAH, but care-
ful assessment of the molecular underpinnings of PAH, followed by the rational 
development of complementary multi-targeted approaches, may represent the best 
hope for the future.     
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