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    Chapter 3   

 The APP Proteolytic System and Its Interactions 
with Dynamic Networks in Alzheimer’s Disease 

           Sally     Hunter     ,     Steven     Martin    , and     Carol     Brayne   

    Abstract 

   Diseases of aging are often complex and multifactorial, involving many genetic and life course modifi ers. 
Systems biology is becoming an essential tool to investigate disease initiation and disease progression. 
Alzheimer’s disease (AD) can be used as a case study to investigate the application of systems biology to 
complex disease. Here we describe approaches to capturing biological data, representing data in terms of 
networks and interpreting their meaning in relation to the human population. We highlight issues that 
remain to be addressed both in terms of modeling disease progression and in relating fi ndings to the cur-
rent understanding of human disease.  
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1      Introduction 

 Diseases of aging, such as cancer and neurodegeneration, are com-
plex and multifactorial, involving many genetic and life course 
modifi ers. As more evidence becomes available, many links between 
different diseases of aging are becoming apparent [ 1 ], such as the 
roles of cell cycle proteins in cancer and neurodegeneration [ 2 ] or 
the contributions of Alzheimer’s disease (AD) related and cardio-
vascular related genes in both normal aging and neurodegenera-
tion [ 3 ]. Systems biology, a fi eld that aims to integrate data from 
diverse biological areas, is becoming an essential tool to investigate 
processes relating to initiation and progression in complex disease. 
AD is the most common form of dementia associated with aging 
and is increasingly being accepted as a complex multifactorial neu-
rodegenerative syndrome. AD can be used as a case study to inves-
tigate the application of systems biology to complex molecular 
disease pathways and relate these to brain behavior and ultimately 
treatment strategies.  
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2    Overview of Alzheimer’s Disease (AD) 

 AD is characterized clinically by memory loss, cognitive impair-
ments and dementia [ 4 ,  5 ]. These symptoms lead to impairments 
in activities of daily living with the result that individuals with AD 
require an increasing degree of support and care as the disease 
progresses. Neuropathologically, the hallmarks of AD include 
intracellular neurofi brillary tangles (NFT) composed of paired 
helical fi laments of the microtubule associated protein tau, extra-
cellular senile plaques containing aggregated amyloid-beta-protein 
(Aβ) and neuritic plaques and dystrophic neurites that are tau reac-
tive and are also often associated with aggregated Aβ [ 6 ,  7 ]. 

 The importance of the amyloid precursor protein (APP) proteo-
lytic system to dementia initiation and progression in AD is high-
lighted by both neuropathological and genetic evidence. Various 
mutations within APP and the γ-secretase associated Presenilin 
(PS) genes, PS1 and PS2, are associated with early onset familial 
Alzheimer’s disease (FAD) [ 8 ]. The genetic data is further linked 
to disease progression by the deposition of the Aβ, a proteolytic 
fragment of APP, in neuritic and senile plaques. Additionally, the 
deposition of Aβ in the brain vasculature as congophilic amyloid 
angiopathy (CAA) is common in AD and may have independent 
effects on cognitive function [ 9 ,  10 ]. For late onset AD, account-
ing for >95 % of cases, the genetic contributions to disease are esti-
mated to be between 48 and 79 % [ 11 ,  12 ] and include contributions 
from genes such as ApoE [ 13 ], CLU and PICALM [ 14 ] and CR1 
[ 15 ] amongst others (reviewed in [ 16 ,  17 ]). Lifestyle modifi ers 
that may contribute to dementia risk include education [ 18 ], exer-
cise [ 19 ] and diet [ 20 ]. 

 The relationship between neuropathology and cognitive status 
is not straight forward [ 21 ]. While considered as neuropathologi-
cal hallmarks of AD, clinicopathological population studies show 
that the relationships between various neuropathologies, age and 
dementia status are complex [ 22 ] and that very few “pure” AD 
cases exist [ 23 ]. Population studies of the aging brain commonly 
fi nd the neuropathological hallmarks of AD in cognitively normal 
individuals, albeit generally at lower severities, and demented indi-
viduals may show little neuropathology [ 21 ,  22 ,  24 ]. This raises 
questions around how these neuropathologies, and the neuro-
chemistry associated with them, contribute to disease initiation 
and progression and how AD is defi ned both clinically and neuro-
pathologically. If the aim is to devise treatment strategies, where 
some medication may alleviate or prevent the clinical manifestation 
of dementia, then the relationships between the human genome, 
(the complete set of genetic material in a cell), the transcriptome, 
(the entire collection of gene transcripts both destined to be 
expressed as proteins and as regulatory elements), the proteome, 
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(the complete set of expressed proteins in a specifi c cell type), the 
interactome, (the complete set of molecular interactions in a cell), 
the functional brain connectome, (the complete set of neural and 
synaptic connections in the human), and the whole body within its 
ever-changing environment must be elucidated. Computational 
models can be a tool to investigate these relationships and how 
they change due to disease.  

3    Basic Background for Biomolecular Networks 

 Molecular pathways are dynamic functional systems involving mul-
tiple players often with complex regulatory systems involving both 
direct and indirect feedback loops. Flow of biological information 
through these pathways can be represented as computational net-
works based on molecular communication theories [ 25 ]. Within a 
cell as a whole, the probability that an interaction or biological 
reaction will occur between specifi c molecules and not others 
depends on many factors including, compartmentation, relative 
affi nity, concentration, half-life, protein modifi cations, the pres-
ence of co-factors, and the formation of biologically active protein 
complexes. 

  A cell is divided into compartments and forms organized structures 
that allow cellular processes to occur in a controlled way. Organelles, 
such as the nucleus, endoplasmic reticulum and mitochondria, iso-
late specifi c cellular processes within semi-permeable membranes 
that concentrate components of a particular cellular process and 
increase the chance that they will combine. Compartmentation 
also isolates reactions that would otherwise be deleterious for the 
whole cell, such as lysosomal reactions involved in the breakdown 
of proteins tagged for destruction. Within organelles, specifi c com-
partments can be defi ned by further interactions between factors, 
such as relatively rigid cholesterol-rich lipid raft areas within a more 
fl uid phospholipid membrane. In order to maintain cellular com-
partments, the cell must express all the various components in the 
correct place and at the appropriate time and this involves the com-
plex process of cellular traffi cking.  

  The relative affi nity of one protein for another contributes to the 
probability that they will react and this affi nity depends on shape 
and charge distribution which ultimately depend on the amino 
acid sequence and protein folding. Protein shape and charge distri-
bution are altered by the protein modifi cations described below 
and by many other factors including pH, metal ion binding and 
interactions with other cellular molecules.  

3.1  Compartmenta-
tion

3.2  Relative Affi nity
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  The concentration of the active form of a protein depends on many 
factors including gene expression, protein synthesis, protein modi-
fi cation, traffi cking and storage mechanisms and protein degrada-
tion amongst others. Concentration is usually tightly regulated 
and over- or under- expression of active proteins can be disruptive 
to normal cellular processes.  

  The rate at which a protein is synthesized and degraded is its turn-
over and this is characterized by its half-life, i.e. the time it takes for 
half the amount of a particular protein to be degraded. The length 
of time a protein is active and available can contribute to the likeli-
hood that it will be involved in a cellular reaction. The concentra-
tion of a protein with a short half-life is more easily manipulated by 
the cell.  

  After translation, proteins are often processed and/or modifi ed 
before achieving an active form and more than 200 different 
types of modifi cation are known [ 26 ]. Modifi cations can be per-
manent or transient. Permanent modifi cations include proteo-
lytic processing, where an immature protein, such as immature 
PS, requires cleavage to attain its active form [ 27 ,  28 ]. Transient 
and reversible enzymatic modifi cations are fundamental to the 
regulation cellular processes and include (1) glycosylation, the 
addition of sugar groups, (2) phosphorylation and dephosphory-
lation, the addition and removal of phosphate groups and (3) 
acetylation and deacetylation, the addition or removal of acetyl 
groups. Phosphorylation and dephosphorylation in particular 
form a major mechanism by which cells can switch processes on 
or off or change the fl ow through a biochemical pathway. 
Additionally, proteins may be modifi ed non-enzymatically by 
metabolites, e.g. the modifi cation of various lysine residues by 
the glycolytic metabolite 1,3- bisphosphoglycerate [ 29 ].  

  Co factors are molecules or ions that are required for biological 
functions or reactions to occur. For many proteins, metal ions are 
central to their mechanism of action. For example, the  N -methyl 
 D -Aspartate (NMDA) glutamate receptor allows calcium ions into 
a neuron when both electrical and neurotransmitter signals are 
received. The Ca 2+  channel is normally blocked by Mg 2+ . This 
block is removed briefl y when a previous electrical signal changes 
the electrical potential of the membrane surrounding the NMDA 
glutamate receptor. If glutamate binds at this time, the calcium 
channel opens to allow Ca 2+  ions into the cell. With no change in 
electrical potential, glutamate binding cannot open the channel. In 
effect, Mg 2+  contributes mechanistically to the way the NMDA 
receptor senses coincidence in electric and neurotransmitter signals 
and this process contributes to one mechanism of synaptic  plasticity. 
Other examples of co-factors include small molecules such as 

3.3  Concentration

3.4  Half Life

3.5  Protein 
Modifi cations

3.6  Co-factors
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 vitamins which are often involved in enzyme reactions as part of 
the chemical process.  

  The formation of tightly associated proteins within large com-
plexes is often required for biological activity. An example of this is 
the endopeptidase γ secretase complex, discussed later, where at 
least four different proteins are required to form an active enzyme 
[ 30 ]. These include one of the presenilins, either PS1 (UniProt 
P49768) or PS2 (UniProt P49810), which forms the catalytic core 
and the proteins Pen-2 (UniProt Q9NZ42), nicastrin (UniProt 
Q92542) and APH-1 (UniProt Q96BI3) that may contribute to 
the activation of the protein complex and regulate how the com-
plex interacts with its various substrates [ 31 ].  

  In addition to processes regulated by the cell via gene and protein 
expression, features such as temperature, pH or redox state associ-
ated with the cellular environment may also affect the likelihood of 
a reaction, for example pH modulates Aβ aggregation [ 32 ,  33 ] and 
oxidative stress may increase Aβ production and also be increased 
by Aβ [ 34 ].  

  The properties of affi nity and concentration for active forms of a 
protein in relation to its biological outcomes can be illustrated by 
dose response curves (Fig.  1 ). Further, interactions such as enzyme 
reactions can be described by various kinetic constants such as the 
affi nity constant  K  (a) , the catalytic effi ciency  K  (cat) , maximal reaction 
velocity  V  (max)  and  K  m , an inverse measure of affi nity defi ned as the 
amount of substrate at half  V  max . These values are calculated from 
experimental data using equations such as the Michaelis-Menten 
equation [ 35 ] and associated variations. The basic biochemical 
properties should be captured in any mechanistic model of a 
molecular pathway. Some pathways will be more complex than 
others but most will feature these properties in regulatory mecha-
nisms. It must be remembered that molecules and signaling path-
ways in different cell types may be associated with different 
functions and these may also vary between species making a gener-
ally applicable model of any one molecular pathway impossible.    

4    Networks and Their Analysis as Tools to Investigate Complexity 
in Molecular Pathways 

 One approach to teasing apart the complexity of molecular path-
ways is to model molecular interactions as networks to describe 
and characterize the complex relationships and components within 
and between pathways. A molecular system can be represented as a 
graph in the form of a collection of nodes (objects) and edges 
(relationships). The functional relevance of nodes and edges can be 

3.7  Protein 
Complexes

3.8  Environmental 
Factors

3.9  Describing 
Protein Interactions
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described by assigning various attributes derived from the molecu-
lar system in question. 

 Nodes can be used to represent molecules and annotations can 
represent the various factors such as concentration, affi nity and 
compartmentation. Edges can be either directed, specifying a 
source (starting point) and a target (endpoint), or non-directed. 
Directed edges are suitable for representing fl ow while non- 
directed edges are used to represent mutual interactions. Mixed 
graphs contain both directed and undirected edges and have vari-
ous sets of relations. 

 A network of molecular relationships can be built in several 
ways. One way is to iteratively search literature databases using key-
words relevant to the system being investigated [ 36 ]. An iterative 
procedure can be used to develop the search strategy, with input 
from clinician advisors, neuropathologists, information specialists 
etc. A search of PubMed (28 August 2013) for the keywords sys-
tems biology AND Alzheimer disease retrieved 183 results and the 
increasing number of references over time indicates that the applica-
tion of systems biology to AD research is of increasing importance. 
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  Fig. 1    A generalized dose response curve. Where the concentration of an active 
protein is very low, the probability that it will interact with its target is also very 
low and any associated biological outcome will be minimal ( a ). As concentration 
increases towards a physiologically relevant range, the high affi nity biological 
outcome will also increase ( b ). At a certain point the system is maximally active 
and any further increase in protein concentration will not increase the high affi n-
ity biological outcome as other features of the system may be rate limiting and 
the biological outcome reaches a steady state ( c ). At increasing concentrations 
of the active protein, other pathways may become more relevant as the chances 
of lower affi nity reactions increase ( d ); other features of the lower affi nity sys-
tems may be rate limiting for the relevant biological outcomes which will reach 
a steady state. At very high concentrations, there are increased chances of aber-
rant or inappropriate reactions/interactions between the active protein and other 
pathways with which it would not normally associate ( e ), and these may not be 
rate limited       
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Not all of these references will be relevant and manual curation will 
be required. A search of PubMed (28 August 2013) using the MeSH 
terms (“Systems Biology”[Mesh]) AND “Alzheimer Disease”[Mesh] 
retrieved 24 results, with some relevant references missing. A com-
prehensive search of several bibliographic databases as well as hand 
searches of key journals would also need to be undertaken to ensure 
all literature would be identifi ed. All titles and abstracts should be 
screened by two independent reviewers and a third reviewer would 
resolve any disagreements about inclusion. This underlines the 
importance of a reliable and repeatable search strategy. 

 Once a collection of papers has been generated, there are vari-
ous ways to fi lter these results to obtain only those papers of inter-
est, involving either automated text search, human search of 
abstracts or both. Using this approach, networks can be built based 
on the information available, analyzed and then used to generate 
questions for further experimentation. 

 It must be remembered that any defi ned literature search, 
whilst being reproducible, may not retrieve all the papers of inter-
est and a manual search of paper references may be required until 
no more useful references are found. Specifi c molecules in older 
literature may not be named in a standard way and in one network 
construction study [ 37 ], two APP interacting proteins were 
excluded as they could not be identifi ed with certainty due to 
inconsistent naming. Additionally, only information that is pub-
lished is available, leading to an unquantifi able bias in network 
construction due to missing information and this has important 
consequences for the analysis and interpretation of any resultant 
molecular network. 

 Molecular interactions can also be extracted from databases 
such as those listed in Table  1 . While each database may be slightly 
different, there are now systematic ways to query such databases 
and extract relevant information in standard formats [ 38 ]. 
However, these databases are built from the existing literature and 
will therefore share the unquantifi able bias due to missing informa-
tion. Automated methods of text searching are often used in data-
base construction as they can be fast and repeatable. However, 
automation can lead to errors of misclassifi cation and manual cura-
tion is used in most databases to minimize this. Manual curation 
can also lead to errors which must be repaired when found.

   Most molecular databases are built using data from a variety of 
sources and are annotated with the experimental system from 
which the data were derived; this generally includes the species, 
whether in-vivo or in vitro and the exact method used, such as co- 
immunoprecipitation, various gene [ 39 ,  40 ] and protein [ 41 ,  42 ] 
expression systems or co-migration in sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE), all methods have 
strengths and weaknesses. 
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 The studies listed in Table  2  have approached map construc-
tion in different ways, using different combinations of protein- 
protein interaction (PPI) databases, with different literature 
searching protocols and different inclusion or exclusion criteria. 
The networks generated in these studies do not always correspond 
and different studies highlight different pathways or biological 
processes, e.g. Fe 2+  [ 43 ], apoptosis [ 44 ], or cardiovascular disease/
diabetes [ 3 ]. Each study has different starting points, inclusion/
exclusion criteria and network construction methods, so this lack 
of agreement is to be expected. It is diffi cult to assess the degree to 
which the various starting points, criteria and network construc-
tion methods bias results towards an outcome. For example, the 
study by Soler-Lopez et al. [ 45 ] may not represent the interactions 
of full length APP in the membrane adequately, as many of the 
extracellular matrix (ECM) proteins that might be expected to 
interact with APP are excluded due to diffi culties involved in 
expressing them in the experimental microarray used. This may 
shift the focus of their network more towards intracellular interac-
tions. Given the importance of the various interactions of APP 
with components of the ECM ( see  Fig.  2 ), any network excluding 
such proteins and proteoglycans could be seriously confounded 
and any fi ndings would have to be interpreted carefully. Additionally, 
the correspondence between gene expression as mRNA and viable 
functional proteins within a cell is not absolute, varying from 9 to 
87 % depending on which genes are investigated [ 46 ].

   Table 1  
  Examples of molecular pathway and interaction databases   

 Database  Database description  Reference/link 

 MINT  Experimentally verifi ed protein interactions; uses 
automated literature mining and expert curation 

   http://mint.bio.uniroma2.
it/mint/Welcome.do     

 IntAct  Molecular interactions derived from literature mining or 
from direct user submissions; expert curation 

   http://www.ebi.ac.uk/intact
/?conversationContext=1     

 DIP  Experimentally verifi ed protein interactions; data from a 
variety of sources including automated literature 
mining and expert curation 

   http://dip.doe-mbi.ucla.
edu/dip/Main.cgi     

 KEGG  A collection of databases covering various areas 
including ontology, genomics and molecular networks 

   http://www.genome.jp/
kegg/     

 HPRD  Database of human specifi c protein interactions, expert 
curation, no automation 

   http://www.hprd.org     

 BioGRID  Protein interactions from a number of species models, 
automatic literature mining and expert curation 

   http://thebiogrid.org/     

 STRING  Known and predicted direct and indirect protein 
interactions; uses automated literature mining and 
expert curation 

   http://string-db.org/     
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    Molecular networks built from PPI databases or literature 
searches do not explicitly take into account differences between 
cell types arising through the processes of differentiation during 
development which can lead to different susceptibilities of differ-
ent cell types to neuropathology, such as the well-recognized dif-
ference in susceptibility to tau reactive NFT pathology of Ca4, 
Ca3, Ca2 and Ca1 neurons in the hippocampus as refl ected in 
Braak Staging [ 47 ]; a widely accepted semi-quantitative measure 
of NFT pathology. Different cellular systems may have very differ-
ent functions depending on cell type: an example of this is the way 
many cell cycle proteins, involved in regulating cell proliferation, 
are involved in synaptic plasticity in non-proliferative neurons [ 2 ]. 
The differences between cell types potentially undermine many of 
the current network approaches, especially where different experi-
mental systems have been used to generate interaction data. Ideally 
there should be a database for each cell type, and for the brain this 
would need to include different neuron types as not all neurons 
necessarily share similar signaling and interaction pathways. 

   Table 2  
  Protein–Protein interaction (PPI) network studies (adapted from [ 36 ])   

 Reference  Selection criteria  Exclusion criteria  Main focus 

 [ 37 ]  Evidence of 
direct PPI 
from literature 
searches 

 Non-protein molecules and 
metals, poorly 
characterized proteins, 
specifi c peptides are 
included as parent genes 

 Direct PPI involving APP and associated 
fragments by domain with reference to 
APP770 isoform; molecular networks 
with reference to biological processes 

 [ 45 ]  Genes in close 
proximity 
with 12 “seed” 
genes 
previously 
associated 
with AD 

 Proteins without open 
reading frames, highly 
glycosylated proteins, 
transcription factors, 
extracellular proteins, 
proteins with several 
transmembrane regions 

 Identifi cation of genes in AD with 
reference to direct PPI and biological 
processes 

 [ 3 ]  Co-expressed 
genes that 
differ between 
controls 
and AD 

 Probe-sets not mapping to 
any gene or mapping to 
hypothetic proteins are 
removed 

 Variations in transcriptomes of AD similar 
to cardiovascular disease and diabetes. 

 Cis regulatory elements identifi ed in 
several diseases known to co-occur 
with AD 

 [ 51 ]  Genes with 
variable 
expression 
between 
human and 
mouse datasets 

 Outlier removal, removed 
datasets with low 
interspecies expression 
and connectivity; top 
5,000H and 3,000 M 
connected genes 
included, rest removed to 
reduce noise 

 Mouse and human networks are similar—
expression levels more preserved than 
connectivity, species differences in gene 
co-expression in astroglia and microglia 
but not neurons, human specifi c role 
of PSEN1 in myelination and evidence 
of species differences in glial cells 
linked to neuroinfl ammation 
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 A major problem with all molecular map type networks is their 
inability to include dynamic information relating to the way molec-
ular networks are regulated in living systems. Transient protein 
modifi cations, such as phosphorylation, regulate molecular inter-
actions and are central to cellular function are not easily captured, 
for example, differential phosphorylation of the tyrosine (tyr) resi-
dues Tyr 682  and/or Threonine Thr 668  of the APP 695  cytoplasmic 
domain regulates many interactions with small binding proteins 

  Fig. 2    A simplifi ed view of selected interactions of the APP proteolytic system (adapted from [ 36 ]) Nodes 
 represent molecules or molecular assemblies and interactions between them as arrows. Some complex inter-
actions have been collapsed into general processes shown in grey. Multiple sequence variants and conforma-
tions of APP and Aβ have been collapsed into a single node for each. Aβ, amyloid beta protein; ADAM, a 
disintegrin and metalloproteinase domain-containing protein; AICD, APP intracellular domain; APP, amyloid 
precursor protein; BACE, beta-site amyloid precursor protein cleaving enzyme; CD74, HLA class II histocom-
patibility antigen gamma chain; CTF, carboxy- terminal fragment; ECM, extracellular matrix; Fe65, Amyloid 
beta A4 precursor protein-binding family B member 1; LTP, long-term potentiation; PKA, protein kinase A; PKC, 
protein kinase C; sAPP, secreted amyloid precursor protein; Tip60, Histone acetyltransferase KAT5. With per-
mission from BioMed Central (part of Springer Science + Business Media) under the Open Access License 
Agreement (http://www.biomedcentral.com/about/license)       
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and kinases [ 48 ]. Other dynamic processes that may not be fully 
represented include transient changes in gene expression via epi-
genetic mechanisms, changes in protein expression via RNA inter-
ference, responses to environmental perturbations such as infection 
and activity lead changes, such as the up-regulation of synaptic 
proteins in response to synaptic activity. 

 Inter-species differences in the way cellular signaling systems 
are organized, especially in the brain, are well recognized [ 49 ,  50 ] 
and this should be taken into account when designing animal dis-
ease models and building networks. Miller et al. [ 51 ] confi rm this 
in the comparison between human and mouse networks, revealing 
an additional function of PS in oligodendrocytes and myelination 
in humans that is not seen in the mouse. Given the association of 
PS mutations in FAD, this difference is likely to impact on the suit-
ability of the mouse as a model for AD. 

 The development of animal models that represent AD disease 
processes in humans is crucial in the search for effective therapeutic 
interventions. Early transgenic mouse models did not completely 
replicate the neuropathology associated with human disease [ 52 ] 
nor the more fundamental aspects of Aβ biochemistry in humans 
[ 50 ]. Attempts to fully represent AD in humans are on-going with 
the development of new animal models that can be used to inves-
tigate the links between various features of AD. Using multiply 
transgenic animal models allows the investigation of molecular 
interactions and signaling pathways involved in different aspects of 
the disease in a way not possible in humans. For example, the 
TgF344-AD rat [ 53 ] displays oligomeric Aβ species and plaque 
pathology, tau pathology, behavioral change and neuronal loss, 
combinations not always present together in other animal models, 
and this model can be used to study the connections between Aβ 
and tau pathologies. Different animal models may be used to high-
light different aspects of human disease, such as the association 
between Aβ and cholesterol metabolism in the triple transgenic 
mouse model over-expressing the sterol regulatory  element- binding 
protein-2 [ 54 ] or the relationship between age and cognitive 
decline in the senescence-accelerated mouse [ 55 ]. 

 The success of all animal models depends on being comparable 
to disease presentation in humans, and this is where the main prob-
lems lie. The characteristics of AD in humans are constantly being 
updated as new disease processes and pathologies are found. 
Disease processes, such as hippocampal sclerosis [ 7 ], or other 
pathologies such as the Tar-DNA binding protein of 43 kDa 
(TDP-43) [ 56 ] may independently contribute to cognitive status 
and are yet to be fully characterized in the human population. 
Population studies highlight the existence of multiple pathologies 
including contributions from the vascular system in the develop-
ment of Alzheimer- like dementia in the aging population, with 
relatively few cases of “pure” AD [ 23 ,  57 ]. Additionally, the 
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 relationship between age, neuropathology and disease is not 
straight- forward, with many pathologies showing an age related 
distribution [ 22 ]. 

 Fresh human brain tissue that may be of use in functional stud-
ies is extremely rare and to a great extent, interaction databases rely 
on various animal, cell culture and in vitro based models, all of 
which have yet to be fully characterized with respect to the normal 
human system. If only animal or cell based systems are used as 
experimental models, functions that are human specifi c could be 
misrepresented or missed completely. The full range of pathologies 
associated with age and AD in humans still remains to be replicated 
in any animal model.  

5    APP: A Dynamic and Complex Proteolytic System 

 A review of the complexity of the APP proteolytic system has been 
described [ 36 ]. In summary, APP is a member of a wider family of 
similar proteins that also includes the APP like proteins (APLP)1 
and APLP2 that have signifi cant functional redundancy [ 58 ] com-
plicating investigations. It is expressed in various isoforms due to 
mRNA splicing, with APP 695  being expressed predominantly in the 
brain and linked to amyloid deposition. It is a type I, single pass 
transmembrane protein with diverse functions including associa-
tions with cell differentiation [ 59 ], neurite outgrowth [ 60 ,  61 ], 
cell adhesion [ 62 ], synapse formation, maintenance and plasticity 
[ 62 ,  63 ] and many cell signaling pathways [ 36 ,  64 ,  65 ] including 
apoptosis [ 66 ]. APP is post-translationally glycosylated [ 67 ] and 
phosphorylated [ 48 ] at various residues and these modifi cations 
may contribute to the regulation of the various APP functions and 
proteolytic pathways. 

 Full length APP has a large N-terminal domain that interacts 
with various components of the ECM including heparin and other 
proteoglycans [ 68 ,  69 ], other proteins such as reelin [ 70 ], DAB1 
[ 71 ] and also forms homodimers regulated by heparin and Zn 2+  
[ 72 ]. The transmembrane region has been implicated in the pro-
cess of homodimerization and also interacts with various proteins 
including Notch [ 73 ]. The C-terminal domain of full length APP 
also interacts functionally with a variety of proteins including FE65 
[ 74 ], the low density lipoprotein receptor protein (LRP) [ 75 ,  76 ], 
a variety of small binding proteins [ 48 ,  77 ] and several kinases [ 48 , 
 78 ,  79 ] that phosphorylate the residues Y 682  of the binding and 
signaling sequence GY 682 ENPTY and T 668  of APP 695  [ 48 ,  79 ,  80 ]. 
Phosphorylation regulates the interaction of the C-terminal 
domain with other proteins [ 48 ,  77 ], may modulate proteolytic 
processing [ 80 ] and allows cross talk between diverse cellular 
 systems [ 48 ]. 
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 Full length APP can remain at the cell surface, be recycled via 
endocytosis or proteolytically processed and has a high turnover, 
with a half-life ranging from 30 min [ 76 ,  81 – 83 ] to 4 h [ 84 – 86 ]. 
Unprocessed APP is degraded or recycled via the endosomal or 
lysosomal pathways and may be recycled back to the membrane 
and processed within ~30 min [ 82 ], with perhaps one third to one 
half being processed via the cleavage pathways as measured by 
secreted sAPPα/β [ 82 ]. APP is proteolytically processed to more 
than 40 fragments [ 87 ]. There are two main cleavage pathways, 
α- and β- pathways that then converge on a shared γ-cleavage, 
summarized in Fig.  2 . These cleavages have been well reviewed 
[ 88 ,  89 ]. Additional cleavage pathways (not shown in Fig.  2 ) 
include caspase cleavages producing an alternative C-terminal 
cytoplasmic fragment C31 that is associated with apoptosis [ 90 , 
 91 ] and the alternative cleavages by β-site APP cleaving enzyme 
(BACE)1, 11 residues within the Aβ sequence [ 88 ,  92 ] leaving a 
membrane bound fragment C88 and BACE2 at the θ-cleavage site 
between the phenylalanine residues, F 615  and F 616  of APP 695  down-
stream of both the Aβ and P3 cleavage sites, producing a mem-
brane bound fragment C80 [ 93 ]. 

  α-cleavage occurs between residues Lys 612  and Leu 613  within the 
Aβ sequence of APP 695 , releasing the N-terminal sAPPα and leav-
ing a membrane bound C83 C-terminal fragment [ 88 ]. α-secretase 
activity has been observed by several membrane-anchored zinc- 
dependent metalloproteinase enzymes including A Disintegrin 
and Metalloproteinase (ADAM)9, ADAM10, ADAM17 [ 94 – 96 ] 
and possibly the matrix metalloproteinase (MMP)9 [ 97 ]. 
α-cleavage is both constitutive and regulated, with the various 
ADAMs responding in different ways depending on many factors 
[ 95 ,  98 ]. In addition to APP, α-secretases also cleave alternative 
substrates such as Notch [ 99 ], pro-TNF-α and the epidermal 
growth factor receptor [ 100 ] which may lead to competition 
between different pathways with consequences for many cellular 
processes including development, synaptic plasticity and the cell 
cycle and cancer [ 96 ,  100 ,  101 ]. How the balance between these 
alternative pathways is regulated is not known. 

 The soluble N-terminal fragment released by α-cleavage, 
sAPPα, retains two heparin binding sites and has been shown to 
bind heparin as a dimer [ 102 ]. The ability of sAPPα to disrupt APP 
dimerization at the cell surface may contribute to its neuroprotec-
tive actions [ 103 – 105 ] and may partly explain why sAPPα is ~100× 
more neuroprotective against excytotoxicity, glucose deprivation 
and the addition of Aβ in hippocampal cultures than sAPPβ, which 
lacks the second C-terminal heparin binding site [ 104 ]. Additionally, 
neuroprotective actions of sAPPα may be mediated by its antago-
nism of stress signaling by the JNK stress signaling pathway [ 106 ]. 
Dementia status has been associated with both reduced sAPPα 

5.1   α Cleavage
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 levels in human CSF [ 107 ] and an increased half-life of sAPPα [ 86 ] 
in transgenic mice, however, as yet, there has been no systematic 
study of the α-pathway proteolytic fragments in the human 
population.  

  β cleavage occurs between residues Met 596  and Asp 597  of APP 695  
within the second heparin binding site, releasing the N-terminal 
sAPPβ from the membrane bound C99 C-terminal fragment [ 88 , 
 92 ]. Two membrane bound aspartyl proteases are associated with 
β-cleavage, BACE 1 and to a lesser extent, BACE2 [ 88 ,  92 ]. 
Additionally, Cathepsins D and B have shown β-cleavage activity to 
release Aβ [ 108 ]. BACE1 and BACE2 are differentially regulated 
and have different functions [ 109 ]. In addition to APP, BACE1 
may also cleave alternative substrates including APLP1 and APLP2 
[ 110 ] and P-selectin glycoprotein ligand-1 [ 111 ]. Heparin and 
heparin sulfates may be involved in regulating APP cleavage by 
BACE1 [ 112 ]. In addition to interactions with sAPPα and APP, 
the large soluble sAPPβ fragment may be associated with apoptotic 
signaling and axonal degeneration via the death receptor DR6 and 
caspase6 [ 113 ], though the interactions of sAPPβ are not fully 
characterized and require further detailed investigation.  

  Cleavage of APP by the γ-secretase complex occurs within the 
membrane to release the variable length 38–46 residue Aβ peptide 
following β-cleavage, the variable length 21–29 residue P3 (Aβ17-X) 
fragment following α-cleavage, with both pathways releasing the 
APP intracellular domain, (AICD) [ 8 ,  88 ,  114 ,  115 ]. There is some 
uncertainty as to how γ-cleavage occurs; γ-secretase cleavage may 
occur via successive ζ and ε cleavages producing progressively 
shorter Aβ fragments [ 116 – 118 ], though there may also be distinct 
cleavage mechanisms that may be separately modulated [ 119 ]. 

 There are a number of alternative γ-secretase substrates, e.g. 
APLP1, APLP2, Notch, cadherins, LRP [ 120 ,  121 ], and syndecan-
 1 [ 114 ,  122 ]. In addition to γ-secretase dependent functions, some 
PS functions are independent of γ-secretase, so that in effect, 
γ-secretase may compete for presenilins with other γ-secretase inde-
pendent PS functions including cell adhesion, traffi cking of various 
proteins [ 123 ], and Ca 2+  homeostasis [ 114 ]. How the γ-secretase is 
regulated between the different substrates is not fully understood 
but may involve other binding proteins such as numb [ 65 ] and 
Rac1 [ 124 ], regulation of PS traffi cking, including a possible recip-
rocal interaction with APP [ 125 ] and localization of PS within 
 specifi c organelles and cellular membrane compartments [ 126 ]. 

 Aβ is produced in a range of sequence lengths [ 87 ] and can 
form monomers, dimers, oligomers and fi brils [ 8 ] which have been 
diffi cult to study due to their dynamic instability [ 127 ]. At physi-
ological concentrations Aβ is associated with numerous normal 

5.2   β Cleavage

5.3   γ Cleavage
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 cellular functions [ 128 ] and in AD progression has multiple 
interactions that have been described as either neuroprotective or 
neurotoxic [ 36 ]. It is deposited in the brain in various pathologi-
cal forms including CAA, diffuse and cored senile plaques and is 
often associated with neuritic plaques. Different sequence lengths 
have different propensities to aggregate [ 32 ,  129 ] and aggrega-
tion is also affected by amino acid substitution in mutant forms 
[ 130 ,  131 ] and various factors such as proximity to membranes 
[ 132 ], and pH or metal ion availability [ 133 ]. Different sequence 
lengths and different aggregation states can have different func-
tional roles [ 36 ], making investigations into the exact roles of Aβ 
in the brain diffi cult. These associations may be better approached 
experimentally as a matrix, where the various sequence lengths, 
aggregation states and mutant forms should be assessed for each 
interaction. 

 While it is likely that P3 is produced in alternative sequence 
lengths following γ cleavage, very little evidence can be found in 
the literature for the contributions of P3 to disease progression. 
There is currently little interest in characterizing the contributions 
of P3 to normal brain function or AD, even though P3 is known 
to aggregate [ 134 – 136 ], has been associated with in cotton wool 
type amyloid plaques [ 137 ] enhances the aggregation of Aβ1-40 
[ 138 ] and may have a signaling role in apoptosis via caspase acti-
vation [ 139 ]. 

 Regulation of expression and proteolysis of APP involves mul-
tiple factors, some of which are summarized in Fig.  2  (adapted 
from [ 36 ]). How signals from these multiple factors in various 
cellular locations are integrated to produce a specifi c outcome in 
any one cell is not known. Regulation of APP proteolysis, from 
both outside and within the APP proteolytic system, can be in 
response to a wide variety of cellular signals and various modula-
tors including glycosylation, phosphorylation, dimerization, asso-
ciations with heparin glycoproteins and other binding proteins. 
Feedback routes can be simple and short range such as the promo-
tion of APP expression associated with fi brillar Aβ and prion pro-
tein [ 140 ]. Indirect and complex feedback routes also exist, such 
as the effects of heparin on regulating β-cleavage with low concen-
tration promoting and high concentration inhibiting the activa-
tion of BACE1 [ 141 ] and the effects of Aβ on heparin. Aβ interacts 
with heparins in the ECM and at high levels may prevent the 
catabolism of proteoglycans and promote amyloid formation 
[ 142 ]. Reciprocally heparins modulate many of the interactions 
involving Aβ such as enhancing both nucleation and elongation 
processes in the aggregation of Aβ [ 143 ], limiting the neurotoxic 
and pro- infl ammatory activity of Aβ in a dose dependent manner 
[ 144 ] and contributing to the uptake of Aβ by a pathway shared 
with ApoE [ 145 ].   
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6    Modeling the APP Proteolytic System. Practical Considerations 

 As a summary of interactions, maps, such as Fig.  2 , can highlight 
particular areas that may be of interest such as hubs or regulatory 
interactions that may be open to modifi cation by medications, or 
may highlight areas where data are missing, leading to further 
research. While molecular networks involving APP can be con-
structed, how these relate to the actual network of molecular inter-
actions in any one human cell type at any one stage of development 
cannot yet be fully assessed. As reviewed above, different criteria 
and network construction methods can generate different net-
works, each with strengths, weaknesses and different behaviors in 
analysis. The impact of missing data, such as interactions that have 
not yet been identifi ed, is diffi cult to assess. For the APP network, 
the contributions of alternative proteolytic fragments, such as 
sAPPα, sAPPβ, P3 and the various longer Aβ fragments, e.g. Aβ43, 
Aβ45, Aβ46 and Aβ48, in various states of aggregation have yet to 
be fully described. It is still unclear which Aβ sequence or aggrega-
tion state is linked to disease progression [ 146 ]. These alternative 
fragments may yet provide further interactions that have the poten-
tial to affect network behavior as a whole, as suggested by the pre-
disposition to form Aβ42 from γ cleavage due to the accumulation 
of γ secretase substrates, C99 and longer Aβ fragments [ 147 ]. 

 There are great diffi culties in representing an iterative and 
dynamic proteolytic system, such as APP, as a static network map 
of connections. One of the fi rst questions raised is what exactly 
does a static network represent? If a network represents interac-
tions, and these interactions change with protein modifi cations 
such as phosphorylation, is it best to represent each functional pro-
tein version as a separate node? Should the alternative isoforms of 
APP be included and if so, should they have separate nodes? How 
do we best represent Aβ with around 40 possible sequence lengths 
[ 87 ] and various states of aggregation [ 32 ,  146 ]? In Fig.  2 , Aβ has 
been collapsed into a single node for clarity. How would over 40 
nodes in this space with potentially different connections affect 
computational and analytical methods? Given the different confor-
mations [ 148 ] and functional actions [ 149 – 151 ] of Aβ(1–40) and 
Aβ(1–42), a single node for these peptides cannot fully represent 
the APP functional network. 

 If the aim is to understand the role of PS in AD, perhaps with a 
view to developing treatment strategies that modulate its probabil-
ity to react between its various substrates, then a network of its 
interactions could be constructed and this could be the basis for a 
dynamic computational model. This dynamic model would need to 
include calculations of a protein’s probability of reaction, where the 
basic molecular features described previously, (concentration, half-
life etc.), could be represented as values in a computational matrix. 
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This approach could be developed iteratively and different versions 
of a network could be compared in terms of fl ow through the net-
work. Experimental data relating to basic biomolecular properties 
that are relevant to modeling the probability that a reaction will 
occur can be extracted from the literature, including  V  max ,  K  m , and 
 K  (cat) . However, characterizing enzyme reactions in order to model 
the probability of reaction is not an easy task as demonstrated in the 
following example. 

 Recent studies [ 118 ,  147 ,  152 ,  153 ] have looked at γ secretase 
enzyme kinetics for a variety of PS mutations, substrates and prod-
ucts. Different experimental models have been used and different 
features of the system have been reported in different formats. 
Table  3  gives values for  K  m , and  V  max  for human synthetic wild-type 
PS1 and its interaction with various substrates extracted from the 
associated references.

   Values for  K  m  have been given in μM or nM and values for maxi-
mum reaction rate have been given as  V  max  (pM/min or nM/h) or 
maximal activity (pM/10 6  cells). While manual extraction from the 
literature could easily convert μM to nM or nM/h to pM/min, 
automated text based searches could introduce error due to units 
reported. It is not possible to convert pM/10 6  cells into nM/h or 
pM/min, making comparisons between these studies diffi cult. The 
degree to which the experimental system used affects the values 
gained is diffi cult to assess, mouse embryonic fi broblast (MEF) 
derived membrane cell free assays, Hek293 or HeLa cell based sys-
tems are likely to have very different environments and each system 
will have experimental advantages and disadvantages. None of these 
systems accurately represent aging in the human brain. Indeed, 
which values of  K  m  and  V  max  in Table  3  would be most representative 

    Table 3  
  Kinetic values for human synthetic wild-type PS1. N/A, not available   

 Reaction   K  m    V  max   Cell/model system  Ref 

 APP C99 → Aβ 
and AICD 

 0.40 ± 0.05 μM 
(C99) 

 175.6 ± 8.4 pM/min 
(AICD) 

 Mouse embryonic fi broblasts 
(MEF) derived membrane 
cell free assay system 

 [ 152 ] 

 Notch 
(S3) → NICD 

 1.08 ± 0.17 μM  95.7 ± 7.5 pM/min 
(NICD) 

 APP 
C99 → AICD 

 874 ± 252 nM 
(AICD) 

 15 ± 1.82 nM/h 
(AICD) 

 MEF derived membrane cell 
free assay system 

 [ 147 ] 

 APP C99 → Aβ  N/A  Maximal activity: 
217 ± 110 
pM/106 cells (Aβ) 

 HeLa cells transfected with 
APP WTC99 cDNA 
construct 

 [ 153 ] 

 Aβ42 → Aβ38  370 ± 40 nM  N/A  Hek293 cells transfected 
with wild type PS1 

 [ 118 ] 
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of the situation in any human neuron? Standard reporting formats 
for proteomic data exist [ 154 ,  155 ] and are annotated by experi-
mental system used to derive the information such as species used, 
etc. so that data from different studies can be integrated but it is 
diffi cult to choose those values that may best represent the human 
system as it has not yet been fully characterized. 

 Attempts to dynamically model the human cognitive system are 
on-going with a diversity of approaches. For example, Kasabov 
et al. [ 156 ,  157 ] have combined gene and protein expression net-
works with a probabilistic spiking neural network and compared 
this to real human electroencephalograms [ 158 ] and used this to 
investigate pathways involved in AD [ 157 ]. In these models, 
dynamic behavior is captured in the network output, represented as 
spiking neurons, which can be controlled by networks representing 
gene and protein expression data. These gene and protein networks 
are in turn re-modeled iteratively by the spiking neural network. 
While a computational model of the AD process would be very use-
ful to investigate how the system might be perturbed by changes to 
gene and protein expression, their current usefulness is open to 
question. Connectionist network models contain unquantifi able 
modules, as the weights of connections between the nodes in a net-
work are stochastically modifi ed during the training process. The 
relationships between the nodes and weighted connections with 
any feature of the human system are not certain: the nodes do not 
necessarily represent real human neurons and the connections do 
not necessarily represent connections between neurons. Populations 
of trained networks will consist of individual network models, each 
of which will have different connection weights. The diffi culty here 
is in relating the distributions of the weights in any network to the 
living human system: the extraction of potentially useful informa-
tion from the structure of the network is problematic.  

7    Applying Systems Biology Approaches in Other Areas 

  Various computational methods such as principle component anal-
ysis [ 159 ,  160 ], linear regression methods [ 161 ,  162 ], machine 
learning methods [ 163 – 165 ] and random forests [ 166 ] are being 
used to investigate automated pattern recognition in magnetic 
resonance imaging (MRI) image analysis [ 161 ] or various imaging 
methods coupled with multiple biomarker analysis [ 160 ,  163 ,  165 , 
 166 ] with some success in separating normal aging from mild cog-
nitive impairment (MCI) and AD. Although the use of new com-
putational methods for multiple markers for AD increases the 
specifi city and sensitivity in categorizing normal aging, MCI or 
AD, there is still no combination of markers that can identify those 
with MCI that may convert to dementia and AD with certainty 
and this is an urgent requirement.  

7.1  Pattern 
Recognition 
and the Early 
Diagnosis of AD
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  Beyond mapping gene and protein expression or interaction net-
works, the effects of the human connectome on dementia risk is 
another complex area that presents huge challenges. The human 
connectome project [ 167 ] aims to map the human connectome at 
the macroscopic scale, (~1 mm 3 ) using a variety of neuroimaging 
methods. This project aims to create a map of healthy human con-
nectivity. There is great inter-individual heterogeneity, both in the 
vascular system, that may affect certain imaging methods and in 
cortical folding, so any resultant map can only be an idealized ref-
erence map. Further, how this connectivity changes with progres-
sion in dementia may also be highly heterogeneous between 
individuals and this has yet to be fully investigated.   

8    Relating the Systems Biology of APP to Normal Cognition and Disease 
Progression in AD 

 For any neuron, signals received via synapses must be integrated 
into dynamic responses of the cell as a whole and this requires sig-
naling between any specifi c synapse on a dendrite and its nucleus, 
possibly located some distance from the synapse. Changes to gene 
and protein expression in response to synaptic signaling must be 
transmitted back to the synapse via protein traffi cking so that 
receptors and signaling molecules are in the correct cellular posi-
tions. There may be different signals arriving via different path-
ways, both electrical and metabolic, and these must be integrated 
into a coherent neuronal response. There is a temporal coherence, 
where everything must be in the right place at the right time, as the 
synaptic response builds on the previous state of the synapse. These 
synapses are further organized within a neural network  connectome 
of different cell types and different functional brain areas from 
which cognition and human behavior arise that may include inputs 
from the whole body as it interacts with its environment. Figure  3  
illustrates the interdependence of the areas involved in normal 
brain function, where gene expression may be modifi ed by behav-
ior which in turn may change protein expression and interaction 
leading to further changes in behavior as the whole system 
 iteratively and stochastically changes over time. Attempts to isolate 
any specifi c area, such as protein expression, can be undermined by 
this interdependence and contributions to cognitive processes may 
be misrepresented, simply due to the assumptions of independence 
in experimental design.  

 In order to understand this coherent system, research has nec-
essarily had to break it into smaller parts giving rise to discrete 
research fi elds investigating all the areas involved from genomes 
and proteomes to interactomes and connectomes. Traditionally, 
the reductionist approach aims to characterize individual pathways 
by introducing changes that are meant to impact on specifi c 

7.2  The Human 
Connectome Project
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 components in potentially well understood ways. This can lead to 
a limited view of complex processes, for example, the amyloid cas-
cade hypothesis suggests that Aβ, in some form, is the sole cause of 
AD and that therefore removal of Aβ should modify the disease 
course. This can be understood in terms of a more linear infection 
type model. However, treatments based on this model have been 
unsuccessful in clinical trials so far and have failed to change the 

  Fig. 3    The interdependence between ‘omics research areas. General discrete 
research areas discussed in the text appear as nodes, selected feedback and 
feed forward relationships are shown as  arrows        
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course of the disease [ 168 ], questioning its validity. Population 
studies highlight complexity in the presentation of AD, bringing 
wider research areas such as aging, diet, exercise, education, the 
vascular system and other biochemical pathways into consider-
ation. Few complex biological mechanisms can be reduced to sim-
ple in vitro, cell based or animal based experimental models [ 50 ] 
and poorly characterized or unsuitable experimental systems may 
lead to erroneous interpretations. 

 In contrast to reductionist approaches, in which molecular sys-
tems may be treated as isolated and independent mechanisms, 
 systems biology aims to integrate evidence from diverse areas into 
a representation of living processes as a whole. Even simple molec-
ular systems present enormous challenges in terms of modeling 
 biological outcomes as theories of molecular communication, i.e. 
how biological information is transmitted through a molecular 
network, are still being developed [ 25 ] and any computational rep-
resentations of biological processes are necessarily limited to the 
data we currently have. In complex maps of protein interactions, 
many pathways are possible and whether any specifi c interactions 
are central, peripheral or involved in only subtypes of disease pro-
gression cannot yet be fully assessed. 

 Integrating networks constructed at the level of gene expres-
sion, with networks constructed at the levels of protein expression, 
protein interaction and cellular behavior is currently diffi cult as 
there isn’t correspondence between them. As reviewed above, not 
all genes expressed as mRNA transcripts become functional pro-
teins and not all functional proteins necessarily interact due to 
dynamic regulation. Additionally, while the human connectome is 
being mapped at ever increasing resolution [ 167 ], how informa-
tion is represented and stored across the human brain as a dynamic 
neural system of synaptic connections and how this changes with 
disease progression is not known. 

 Given that there is no qualitative marker for AD, diagnosis has 
relied on various clinical [ 4 ,  5 ] and neuropathological [ 6 ,  7 ] crite-
ria that are quantitative and involve the application of thresholds: 
no single measure yet defi nes AD. Further, biomarkers used in the 
diagnosis of clinical disease remain to be standardized and harmo-
nized [ 169 ]. Aβ fragments, commonly employed as biomarkers of 
disease, may have both protective and aberrant behaviors associ-
ated with disease and multiple disease pathways may exist. 
Additionally, no Aβ fragment has been identifi ed as the “neuro-
toxic” disease related species [ 146 ]. How can poorly defi ned neu-
rodegenerative diseases be diagnosed at an early stage when 
treatment strategies could have the best chance of preserving cogni-
tive functions? This has consequences for how we understand AD, 
whether it is a single process that will respond to a single intervention 
strategy or whether AD is a syndrome, requiring multiple different 
interventions depending on disease types, yet to be characterized. 
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This is of great importance to the design of experimental 
 investigations and clinical trials. Selection of participants and con-
trols relies on how we understand the disease process and how any 
disease process is refl ected in clinical markers. How do we know 
that in any given clinical trial, the subjects selected represent 
homogenous disease or non-disease groups? There may be other 
disease processes, such as hippocampal sclerosis [ 7 ] and other 
pathologies such as TDP-43 [ 56 ] that may contribute to disease 
pathways and are yet to be fully characterized. Additionally, indi-
viduals may vary in the degree to which cognitive reserve and com-
pensation to neuronal injury may limit the impact of pathological 
changes that occur during aging to better preserve cognitive func-
tions [ 170 ]. 

 In terms of health care planning, given the lack of progress 
towards a reliable dementia treatment strategy, in the immediate 
future perhaps dementia prevention and dementia care are areas 
where progress can best be made. The association of education 
[ 18 ], exercise [ 19 ] and diet [ 20 ] throughout life with a lower 
dementia risk in old age suggests that Public Health strategies 
devised to promote these activities would be worthwhile. Without 
a cure or ameliorating treatment, we need to be able to care for 
dementia sufferers in the most appropriate and effi cient manner to 
maintain an individual’s independence and quality of life for as 
long as possible. 

 While applying the systems biology approach to represent com-
plex dynamic proteolytic systems such as APP may not yet be 
entirely feasible, useful perspectives can still be generated. For APP, 
the complexity of its interactions and regulatory features suggest 
that multiple initiation and progression pathways are possible: the 
analysis of networks to highlight those disease pathways that may be 
most likely to occur in humans presents major challenges. Capturing 
this complexity in any network model and being able to relate net-
work behavior to real human brains is the ultimate goal. Whether it 
will ever be possible to build a dynamic model of the AD disease 
processes at all levels of consideration (genome, proteome, interac-
tome, connectome and whole body) is not clear. There is no best 
way to build a network and all networks constructed so far are 
incomplete. Additionally, both AD and normal aging in humans 
have yet to be fully characterized. How this missing data impacts on 
the reliable prediction of events from an incomplete network can-
not yet be known. However, this chapter suggests some initial steps 
and proposals on how we could build more sophisticated networks. 
The challenge to the AD biomedical research community is to itera-
tively integrate data generated via a variety of approaches, both 
reductionist and systems biology, and then to use any insights 
gained to integrate the information and design further experiments 
to generate new data. It is clear that no single approach, reduction-
ist or systems biology can tackle this problem alone.     
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