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Abstract This article reviews some of the leading results obtained in solar dynamo physics
by using temporal oscillator models as a tool to interpret observational data and dynamo
model predictions. We discuss how solar observational data such as the sunspot number is
used to infer the leading quantities responsible for the solar variability during the last few
centuries. Moreover, we discuss the advantages and difficulties of using inversion methods
(or backward methods) over forward methods to interpret the solar dynamo data. We argue
that this approach could help us to have a better insight about the leading physical processes
responsible for solar dynamo, in a similar manner as helioseismology has helped to achieve
a better insight on the thermodynamic structure and flow dynamics in the Sun’s interior.
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1 Introduction

The number of dark spots in the Sun’s surface has been counted in a systematic way since
Rudolf Wolf introduced the concept, in the first half of the nineteenth century. More than
any other solar observable, the sunspot number is considered the strongest signature of the
22-year magnetic cycle. Moreover, since the sunspot number is the longest time series from
all solar observables (Owens 2013), it makes it the preferred proxy to study the variability
and irregularity of the solar magnetic cycle.

In the Sun’s interior the large scale magnetic field is generated by a magnetohydrody-
namic dynamo that converts part of the kinetic energy of the plasma motions into magnetic
energy. Polarity reversals occur every 11 years approximately, as it can be observed directly
in the Sun’s dipolar field, and taking a full 22-years to complete a magnetic cycle. In fact
during each magnetic cycle, the Sun experiences two periods of maximum magnetic activity,
during which magnetic flux tubes created in the tachocline layer, rise to the Sun’s surface
by the action of buoyancy, emerging as sunspots pairs (Parker 1955). The polarity switch is
also observed in the change of polarity alignment of these bipolar active regions.

Although we know that the solar dynamo resides within the convection zone, we still
don’t have a complete picture where all the physical mechanisms operate (Charbonneau
2013). There is a strong consensus that the physical mechanism behind the production of
the large scale toroidal field component, the so called Ω-effect, is located in the tachocline,
a shear layer created by differential rotation and located at the base of the convection zone.
The major source of uncertainty is the location of the α-effect, the physical mechanism re-
sponsible to convert toroidal into poloidal field and close the system. In truth, this effect
could be in fact a collection of several physical mechanisms that operate at different places
and with different efficiencies. Some examples are the Babcock-Leighton mechanism that
operates in the solar surface and converts the product of decaying active regions into poloidal
field, or the action of the turbulent magnetic helicity that takes place in the bulk of the con-
vection zone. One of the main questions that is still being debated is the quantification of
the importance and relative contribution of each component to the operation of the solar dy-
namo. Because different authors choose to give the leading role to one or another α source
term, there is vast number of dynamo models. Most of these are two dimensional mod-
els (usually referred as 2.5D because they include two spatial coordinates plus time) and
are constructed using the mean-field theory framework proposed by Steenbeck and Krause
(1966). Despite some short-comes, fruit of the approximations and formulation used, this
type of models running in the kinematic regime, i.e. with prescribed large scale flows, has
been very popular within the solar community because they can explain many of the ob-
servable features of the solar cycle. A detailed discussion on solar dynamo models, stellar
magnetism and corresponding references to the vast literature on this subject can be found
in the reviews by Charbonneau (2010) and Miesch and Toomre (2009).

Another way of tackling the solar dynamo problem is by producing 3D magnetohy-
drodynamic (MHD) simulations of the solar convection zone. These computer intensive
simulations solve the full set of the MHD equations (usually under the inelastic approx-
imation) and are fully dynamical in every resolved scale, i.e. they take into considera-
tion the interactions between flow and field and vice-versa—unlike the kinematic regime
usually used in mean field models, where only the flow influences the field. Recently
these simulations have started to show stable large scale dynamo behaviour and they are
starting to emerge as virtual laboratories for understanding in detail some of the mecha-
nisms behind the dynamo (Ghizaru et al. 2010; Brown et al. 2011; Käpylä et al. 2012;
Passos and Charbonneau 2014).
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On the other end of the modelling spectrum, we can find oscillator models, that use sim-
plified parameterizations of the main physical mechanisms that participate in the dynamo
process. Although in the Sun’s interior the magnetic field generated by the dynamo has a
very rich and complex structure, as a consequence of the structure of the magnetohydrody-
namic differential equations, some of its main properties can be understood by analyzing
low order differential equations obtained by simplification and truncation of their original
MHD counterparts. Then, several properties of the cycle that can be extracted by studying
these non-linear oscillator models, as is usually done in non-linear dynamics. These models
have a solid connection to dynamical systems and are, from the physics point of view the
most simple. This does not mean that they are the easiest to understand because the reduc-
tion in the number of dimensions can sometimes be difficult to interpret (viz. introduction
section of Wilmot-Smith et al. 2005). These low order dynamo models (LODM), as they
are some times called, allow for fast computation and long integration times (thousands of
years) when compared to their 2.5D and 3D counterparts. They can be thought as a first order
approximation to study the impact of certain physical mechanisms in the dynamo solution,
or some of the properties of the dynamo itself as a dynamical system.

The variability exhibited by the sunspot number time series, inspired researchers to
look for chaotic regimes in the equations that describe the dynamo. For a complete re-
view on this subject consult Spiegel (2009); Weiss (2010) and references therein. Some
of the first applications of LODM were done in this context (e.g. Ruzmaikin 1981; Weiss
and Cattaneo 1984; Tobias et al. 1995). These authors found solutions with cyclic be-
haviour and variable amplitude, including extended periods of low amplitude reminiscent
of the grand minima behaviour we see in the Sun. The downside of these initial works
was the fact that although the proposed model equations made sense from a mathemati-
cal point of view, the physics realism they attained was small. These low order models,
with higher or lower degrees of physical complexity, can be used in many areas and sev-
eral of their results have been validated by 2.5D spatially distributed mean field models,
which grants them a certain degree of robustness. This happens specially in LODM whose
formulation is directly derived from MHD or mean-field theory equations. Some exam-
ples of the results obtained with LODM that have been validated by more complex mean
field models are: the study of the parameter space, variability and transitions to chaos in
dynamo solutions (Beer et al. 1998; Wilmot-Smith et al. 2005; Charbonneau et al. 2005;
Hiremath 2006); the role of Lorentz force feedback on the meridional flow (Rempel 2006;
Passos et al. 2012); and the influence of stochastic fluctuations in the meridional circula-
tion and in the α-effect (Charbonneau and Dikpati 2000; Mininni et al. 2001; Mininni and
Gómez 2002; Lopes and Passos 2009). Some models even include time delays that embody
the spatial segregation and communication between the location of source layers of the α-
and Ω-effects. These have been applied to a more general stellar context by Wilmot-Smith
et al. (2006) and recently, Hazra et al. (2014); Passos et al. (2014) showed that one of this
type of time delay LODM that incorporates two different α source terms working in parallel,
can explain how the Sun can enter and exit in a self-consistently way from a grand mini-
mum episode. A couple of LODM even ventured in the “dangerous” field of predictions.
For example Hiremath (2008) combined his LODM with an autoregressive model in order
to forecast the amplitude of future solar cycles.

In this article we show how can one of these LODM be used as a tool to study the prop-
erties of the solar magnetic cycle. For this purpose we use the international sunspot number
time series during the past 23 solar magnetic cycles. Nevertheless, the main focus of this
work is to present a strategy inspired by helioseismology, were an inversion methodology
is used to infer variations of some of the LODM parameters over time. Since these param-
eters are related to the physical mechanisms that regulate the solar dynamo, this should in
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principle, allow for a first order reconstruction of the main dynamo parameters over the last
centuries. In a similar manner to helioseismology, the comparison between model solutions
and data can be done by means of a forward method in which solar observational data is
directly compared with the theoretical predictions, or by means of a backward method in
which the data is used to infer the behaviour of leading physical quantities of the theoreti-
cal model. Naturally, it is necessary to develop an inversion technique or methodology that
allows to reconstruct the quantities that have changed during the evolution of solar dynamo.
This type of studies is well suited to explore several aspects of the solar and stellar dynamo
theory. This can be done by: (i) building a tool to study the dynamo regimes operating in
stars; (ii) establishing an inversion methodology to infer the leading quantities responsible
for the dynamics and variability of the solar cycle over time; (iii) comparing the dynamo
numerical simulations with the observational data; (iv) use this tool as a toy model to test
global properties of the solar dynamo.

Here we particularly focus in discussing the three last items of this list, with special
attention on the development of an inversion method applied here to the sunspot number
time series. This is used to infer some of the dynamics of the solar dynamo back-in-time. In
principle this should allow us to determine the variation profiles of the quantities that drive
the evolution of the magnetic cycle during the last few centuries.

In Sect. 2, we present a non-linear oscillator derived from the equations of a solar dynamo
that is best suited to represent the sunspot number. In Sect. 3, we discuss how the non-linear
oscillator analogue can be used to invert some of the leading quantities related with solar
dynamo. In Sect. 4 is discussed how solar observational data is use to infer properties of the
solar magnetic cycle. In Sect. 5 we present a discussion about how the low order dynamo
model can be used to test the basic properties of modern axisymmetric models and numerical
simulations, as well to infer some leading properties of such dynamo models. In Sect. 6, we
discuss the outlook for the Sun and other stars.

2 A LODM for the Evolution of the Large Scale Magnetic Field

The basic equations describing the dynamo action in the interior of a star are obtained from
the magnetic-hydrodynamic induction, and the Navier-Stokes equations augmented by a
Lorentz force (Moffatt 1978). Under the usual kinematic approximation the dynamo prob-
lem consists in finding a flow field with a velocity U that has the necessary properties capable
of maintaining the magnetic field, B against Ohmic dissipation (Charbonneau 2010).

For a star like the Sun such dynamo models should be able to reproduce well-known
observational features such as: cyclic magnetic polarity reversals with a period of 22 years,
equatorward migration of B during the cycle (dynamo wave), the π/2 phase lag between
poloidal and toroidal components of B, the antisymmetric parity across the equator, pre-
dominantly negative/positive magnetic helicity in the Northern/Southern hemisphere, as
well as many of the empirical correlations found in the sunspot records, like the Waldmeier
Rule—anti-correlation between cycle duration and amplitude; the Gnevyshev-Ohl Rule—
alternation of higher-than-average and lower-than-average cycle amplitude and Grand Min-
ima episodes (like the Maunder Minimum)—epochs of very low surface magnetic activity
that span over several cycles. Given the amount of complex features that a solar dynamo
model has to reproduce, the task at hand is far from simple.

The vast majority of dynamo models currently proposed to explain the evolution of
the solar magnetic cycle (kinematic mean-field models) became very popular with the
advance of helioseismology inversions and the inclusion of the differential rotation pro-
file. In the kinematic regime approximation, the flow field U is prescribed and only the
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magnetic induction equation is used to determine the evolution of B. Generally, the large
scale magnetic field, the one responsible for most of the features observed in the Sun
is modelled as the interaction of field and flow where two source terms (Ω and α) nat-
urally emerge from mean-field theory (e.g., Moffatt 1978; Krause and Raedler 1980;
Cardoso and Lopes 2012). From the mean-field electrodynamics, the induction equation
reads

∂B
∂t

= ∇ × (U × B + αB − η∇ × B), (1)

where U is the large-scale mean flow, and η is the total magnetic diffusivity (including the
turbulent diffusivity and the molecular diffusivity). Currently, as inferred from helioseismol-
ogy, U can be interpreted as a large-scale flow with at least two major flow components, the
differential rotation throughout the solar interior, and the meridional circulation in the upper
layers of the solar convection (Howe 2009).

Given all the points above, and based on their popularity among the community, we start
our study by considering a reference model based in the kinematic mean-field flux transport
framework. Although the results obtained here are based on this specific type of model, most
of the analysis method used, as well the conclusions reached, can easily be extended to other
models. As usual, under the simplification of axi-symmetry the large-scale magnetic field
B can be conveniently expressed as the sum of toroidal and poloidal components, that in
spherical polar coordinates (r, θ,φ) can be written as

B(r, θ, t) = ∇ × (
Ap(r, θ, t)eφ

) + Bφ(r, θ, t)eφ. (2)

Similarly, the large-scale flow field U as probed by helioseismology can be expressed as
the sum of an axisymmetric azimuthal (differential rotation) and poloidal (meridional flow)
components:

U(r, θ) = up(r, θ) + r̃Ω(r, θ)eφ (3)

where r̃ = r sin θ , Ω in the angular velocity and up is the velocity of the meridional flow.
Accordingly, such decomposition of B (that satisfy the induction equation (1)) and U leads
to the following set of equations:

∂Ap

∂t
= η

(∇2 − r̃−2
)
Ap − r̃−1up · ∇(r̃Ap) + αBφ (4)

∂Bφ

∂t
= η

(∇2 − r̃−2
)
Bφ − r̃up · ∇(

r̃−1Bφ

) + r̃
[∇ × (Apeφ)

] · ∇Ω − Γ (Bφ)Bφ (5)

where η is the magnetic diffusivity and α is the source term of Ap (the mechanism to convert
toroidal to poloidal field). Moreover, following the suggestions of Pontieri et al. (2003) we
also considered that the toroidal field can be removed from the layers where it is produced
by magnetic buoyancy and obeying Γ ∼ γB2

φ/8πρ, where γ is a constant related to the
removal rate and ρ is the plasma density.

2.1 A van der Pol-Duffing Oscillator for the Solar Cycle

As the Sun’s magnetic field changes sign from one solar cycle to the next it is a plausible idea
to attribute alternating signs in odd/even cycles also to other solar activity indicators such
as the sunspot number (SSN). The resulting time series displays cyclic variations around
zero in the manner of an oscillator. This suggests an oscillator as the simplest mathematical
model of the observed SSN series. As, however, the profile of sunspot cycles is known to be
markedly asymmetric (a steep rise in 3–4 years from minimum to maximum, followed by a
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more gradual decline to minimum in ∼ 7 years), a simple linear oscillator would be clearly
a very poor representation of the sunspot cycle. A damped linear oscillator

ẍ = −ω2x − μẋ (6)

will, on the other hand, naturally result on asymmetric profiles similar to what is observed.
The obvious problem that the oscillation will ultimately decay due to the damping could be
remedied somewhat artificially by applying a periodic forcing or by reinitializing the model
at each minimum. A much more natural way to counteract the damping, however, is the
introduction of non-linearities into the equation—indeed, such non-linearities are naturally
expected to be present in any physical system, see below. As long as the non-linearity is
relatively weak, the parameters ω2 and μ can be expanded into Taylor series according to x.
Due to the requirement of symmetry (i.e. the behaviour of the oscillators should be invariant
to a sign change in x) only terms of even degree will arise in the Taylor series. To leading
order, then, we can substitute

ω2 → ω2 − λx2 μ → μ
(
ξx2 − 1

)
(7)

into (6) resulting in

ẍ = −ω2x − μ
(
ξx2 − 1

)
ẋ + λx3 (8)

In the particular case when λ = 0 (i.e. the non-linearity affects the damping only) and the
other parameters are positive, the system described by (8) is known as a van der Pol oscilla-
tor. The alternative case when non-linearity affects the directional force/frequency only, i.e.
ξ = 0, μ < 0 and λ �= 0, in turn, represents a Duffing oscillator. Due to their simplicity and
universal nature these two systems are among those most extensively studied in non-linear
dynamics. It is straightforward to see that the oscillator is non-decaying, i.e. the origin is
repeller, whenever μ > 0 (negative damping) in the case of a van der Pol oscillator and/or
ω2 > 0 and λ > 0 in a Duffing oscillator. When a non-linearity is present in both parameters
(i.e. λ and ξ are both non-zero) a combined van der Pol-Duffing oscillator results.

The van der Pol–Duffing oscillator, however, is more than just a good heuristic model of
the solar cycle. In fact, an oscillator equation of this general form can be derived by a trun-
cation of the dynamo equations. As noted before, we are especially interested in capturing
the temporal dynamics associated with the large scale magnetic field. In order to construct
a low order model aimed at capturing this dynamics, we follow the procedures described in
Passos and Lopes (2008b, 2011).

It has been suggested by Mininni et al. (2000, 2001) and Pontieri et al. (2003) that a
dimensional truncation of the dynamo equations (4) and (5) is an effective method to reduce
the system’s dimensions and capture phenomena just on that scale. Following that ansatz,
gradient and Laplacian operators are approximated by a typical length scale of the system l0
(e.g. convection zone length or width of the tachocline), leading to ∇ ∼ l−1

o and ∇2 ∼ l−2
o .

Analogously this can be interpreted as a collapse of all spatial dimensions, leaving only the
temporal behaviour. In terms of dynamical systems, we are projecting a higher dimensional
space into a single temporal plane. After grouping terms in Bφ and Ap (now functions only
dependent of the time) we get

dBφ

dt
= c1Bφ + c2Ap − c3B

3
φ (9)

dAp

dt
= c1Ap + α Bφ (10)

where we have defined the structural coefficients, cn, as
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Fig. 1 Left panel represents the time evolution of Bφ(t) obtained from equation (14) with parameters
c1 = 0.08, c2 = −0.09, c3 = 0.001, α0 = 1. In the right we have a (Bφ,dBφ/dt ) phase space represen-
tation of the solution. The blue arrows indicate the direction of increasing time and the red dot the initial
value used. Also indicated in this panel are the regions corresponding to the maxima and minima of the
cycle. Adapted from Passos and Lopes (2011)

c1 = η

(
1

l2
0

− 1

r̄2

)
− vp

l0
(11)

c2 = r̄Ω

l2
0

(12)

c3 = γ

8πρ
(13)

We now concentrate in creating an expression for the time evolution of Bφ since it is the
field component directly associated with the productions of sunspots. We derive expression
(9) in order to the time, and substitute (10) in it to take away the Ap dependence yield-
ing

d2Bφ

dt2
+ ω2Bφ + μ

(
3ξB2

φ − 1
)∂Bφ

∂t
− λB3

φ = 0, (14)

where ω2 = c2
1 − c2α, μ = 2c1, ξ = c3/2c1 and λ = c1c3 are model parameters that depend

directly on the structural coefficients. The name used to describe cn comes from the fact
that these coefficients contain all the background physical structure (rotation, meridional
circulation, diffusivity, etc.) in which the magnetic field evolves.

This oscillator (14) is a van der Pol-Duffing oscillator and it appears associated with
many types of physical phenomena that imply auto-regulated systems. This equation is a
quite general result which B should satisfy. In this case, unlike in the classical van der Pol-
Duffing oscillator, the parameters are interconnected by a set of relations that link the present
oscillation model with the original set of dynamo equations (4)–(5). This interdependency
between parameters will eventually constrain the solution’s space. As in the classical case,
ω controls the frequency of the oscillations or the period of the solar magnetic cycle, μ

controls the asymmetry (or non-linearity) between the rising and falling parts of the cycle
and ξ affects directly the amplitude. The λ parameter, related to buoyancy loss mechanism
sets the overall amplitude peak amplitude of the solution. Figure 1 shows the solution of
(14) in a time vs. amplitude diagram (left) and in a {Bφ,dBφ/dt} phase space. From this
figure we find that this dynamo solution, under suitable parametrization (viz. next section)
is a self-regulated system that rapidly relaxes to a stable 22-year oscillation. In the phase
space the solution tend to a limit cycle or attractor. A complete (clockwise) turn in the phase
space corresponds to a complete solar magnetic cycle.
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Fig. 2 Bottom panel: a 600 year long time series resulting from a stochastically perturbed van der Pol oscil-
lator stochastically perturbed in one of its parameters (non-linearity ξ(t)). SSN values were defined as x2(t).
The noise applied (piecewise constant in this case) is shown in the top panel

2.2 A Semi-classical Analysis Method Using a Non-linear Oscillator

In order to estimate values for the coefficients in (14), Mininni et al. (2000) and Passos
and Lopes (2008b) fitted this oscillator model either to a long period of the solar activity
(several solar cycles) or to each magnetic cycle individually. We shall return to this point in
subsequent sections. A more general approach to the problem of finding the parameter com-
binations with which the classical van der Pol-Duffing oscillator returns solar-like solutions
was taken by Nagy and Petrovay (2013). The authors mapped the parameter space of the
oscillator by adding stochastic noise to its parameters using different methods. The objec-
tive was to constrain the parameter regime where this non-linear model shows the observed
attributes of the sunspot cycle, the most important requirement being the presence of the
Waldmeier effect (Waldmeier 1935) according to the definition of Cameron and Schüssler
(2008).

Noise was introduced either as an Ornstein–Uhlenbeck process (Gillespie 1996) or as a
piecewise constant function keeping a constant value for the interval of the correlation time.
The effect of this noise was assumed to be either additive or multiplicative. The amplitudes
and correlation times of the noise defined the phase space. The attributes of the oscillator
model were first examined in the case of the van der Pol oscillator (no Duffing cubic term)
with perturbation either in the non-linearity parameter, ξ or the damping parameter, μ, as
shown in the equations below:

ẍ = −ω2
0x − μ(t)

[
ξ0x

2 − 1
]
ẋ (15)

ẍ = −ω2
0x − μ0

[
ξ(t)x2 − 1

]
ẋ. (16)

The constant parameters, ω0, μ0 and ξ0 used were taken from the fitted values listed
by Mininni et al. (2000). Note that in this simple case, variations in these parameters were
assumed to be independent from each other, whereas in reality they are interrelated (cf. (14)).
The results show that the model presents solar-like solutions when a multiplicative noise is
applied to the non-linearity parameter, as in (16). An example of a time series produced by
this type of oscillator is shown in Fig. 2.
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Fig. 3 Bottom panel: a 600 year long time series resulting from a van der Pol–Duffing oscillator stochas-
tically perturbed in two of its parameters, ξ and μ. SSN values were here defined as x3/2(t), following
Bracewell (1988). The noise applied is shown in the top and middle panels. The Duffing parameter was here
given a constant value λ0 = 5 × 10−5

As a next step towards a fully general study, let us consider the case where both ξ and
μ are simultaneously perturbed and the Duffing term −λx3 is also kept in the oscillator
equation (8). Noise is applied to μ but it also affects ξ as the values of ξ and μ are assumed
to be related as

ξ(t) = Cξ

μ(t)
and λ(t) = Cλ

μ(t)

2
, (17)

(Passos and Lopes 2008b); here, Cξ and Cλ are constants.
A mapping of the parameter space shows that in this case solar-like solutions are more

readily reproduced compared to the case when only one parameter was assumed to vary (see
Fig. 3). This finding is in line with the information derived from the LODM developed in
the previous section. An ongoing study shows that the corresponding time dependence in
the Duffing parameter, as predicted by the LODM, has a significant effect on the character
of the solution.

We note that additive noise was first applied to one parameter (ξ ) of a van der Pol oscilla-
tor by Mininni et al. (2000, 2001) but the focus of that work was on reproducing cycle to cy-
cle fluctuations, without considering the Waldmeier effect. This model was further analysed
by Pontieri et al. (2003) (and references therein) who studied the behavior of the Hurst ex-
ponent of this system and concluded that this type of fluctuations implies that the stochastic
process which underlies the solar cycle is not simply Brownian. This means that long-range
time correlations could probably exist, opening the way to the possibility of forecasts on
time scales comparable to the cycle period. An attempt to introduce the effects of such non-
Gaussian noise statistics into the LODM was made by Vecchio and Carbone (2008) who
suggest that this may contribute to cyclic variations of solar activity on time scales shorter
than 11 years.

3 Coupling a LODM with Observational Data—Inversions

In the previous example a perturbation method was studied in order to find solar like solu-
tions for this non-linear oscillator. Another way of thinking is to pair the oscillator directly
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Fig. 4 Black dashed line represents the built proxy for the toroidal field. Bφ is obtained by calculating√
SSN, changing the sign of alternate cycles (represented in gray), and smoothing it down using an FFT low

pass filter of 6 months. The vertical thin dotted lines represent solar cycle minima

to some solar observable and try to constraint its parameters. As mentioned in the intro-
duction we choose the international sunspot number, SSN and we use it to build a proxy of
the toroidal magnetic component. Since the SSN is usually taken to be proportional to the
toroidal field magnetic energy that erupts at the solar surface (∝ B2

φ) (Tobias et al. 1995),
this makes it ideal for compare with solutions of the LODM. Taking this in consideration,
Mininni et al. (2000); Passos and Lopes (2008b) have built a toroidal field proxy based on
the sunspot number by following the procedure proposed by Polygiannakis and Moussas
(1996), i.e. Bφ ≈ ±√

SSN. Details about the construction of the toroidal proxy (see Fig. 4)
can be found in Mininni et al. (2001); Passos and Lopes (2008b) and Passos (2012).

3.1 The Averaged Behaviour of the Solar Dynamo Attractor

The solution obtained for (14) presented in Fig. 1 shows that the solar cycle is a self-
regulated system that tends to a stable solution defined by an attractor (limit cycle). If we
allow for the different physical processes responsible for the solar dynamo and embedded in
the structural coefficients ((11), (12) and (13)), i.e. the differential rotation, the meridional
circulation flow, the α mechanism, and the magnetic diffusion, to change slowly from cycle
to cycle then we start to observe deviations from the equilibrium state. If deviations from
this sort of dynamical balance occur, such that if one of these processes changes due to an
external cause, the other mechanisms also change to compensate this variation and ensure
that the solar cycle finds a new equilibrium.

To test this idea of an equilibrium limit cycle, we fit the LODM parameters to the
{Bφ,dBφ/dt} phase space of the built toroidal proxy (see Fig. 5).

If one of the parameter’s variation is very large the system can be dramatically affected,
leading to a quite distinct evolution path like the ones found during the solar grand minima.
We will develop this subject in a subsequent section.

3.2 Matching of Solutions to Observable Characteristics of the Solar Cycle

Solutions with fluctuation similar to those we see on the solar cycle are easily set by vari-
ations in the μ parameter (and the physical processes associated with it). By definition the
structural coefficient that regulates this parameter (c1) also has an important role in the other
parameters (ω, ξ and λ). In the LODM equation (14) the μ and μξ quantities regulate the
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Fig. 5 Phase-space diagram for
the toroidal proxy Bφ(t): The
crosses correspond to local area
averaged values found by
dividing the data into 32
temporal intervals. The red
dashed curve is a fit to the
crosses. The continuous black
curves correspond to a fit to all
data points (not grouped in
intervals). For the red curve we
have that μ = 0.1645,
ω = 0.3523, ξ = 0.0147 and
λ = 0.0005. Figure adapted
from Passos and Lopes (2008a)

strength and the non-linearity of the damping. Moreover, an occasional variation on μ, like
a perturbation on the meridional flow amplitude, vp (see structural coefficient (11)) will af-
fect all sets of parameters leading to the solar dynamo (14) to find a new equilibrium, which
will translate into the solar magnetic cycle observable like the sunspots number, showing an
irregular behaviour.

The well-known relation discover by Max Waldmeier (Wolf and Brunner 1935), that
the time that the sunspot number takes to rise from minimum to maximum is inversely
proportional to the cycle amplitude in naturally captured by the LODM assuming discrete
variations in μ. Notice that the Waldmeier effect occurs as a consequence of the limit cycle
becoming increasingly sharp as μ increases, i.e., the sunspot number amplitude increases as
the cycle’s rising times gets shorter.

4 How to Infer Properties of the Solar Magnetic Cycle

From the physical point of view, based on observations, we know that in the Sun some
of the physical background structures that are taken as constant in our standard dynamo
solution aren’t so. In order to test that specific changes of the background state lead to the
observed changes in the amplitude of the solar cycle, the following strategy was devised. At
a first approximation we assume that the structural coefficients can change only discretely
in time, more specifically from cycle to cycle while the magnetic field is allowed to evolve
continuously. The idea is that changing coefficients will generate theoretical solutions with
different amplitudes, periods and eigen-shapes at different times and by comparing these
different solution pieces with the observed variations in the solar magnetic field, we are able
to infer information about the physical mechanisms associated with the coefficients.

To do this we compare our theoretical solution with a proxy built from the International
monthly averaged SSN since 1750 to the present. As mentioned before we assume that Bφ ∝√

SSN. The proxy data is separated into individual cycles and fitted using (14), considering
that the buoyancy properties of the system are immutable, i.e. c3 is constant throughout the
time series. This means that when we fit the LODM to solar cycle N , we will retrieve the set
of cnN coefficients that best describe that cycle. This allows to probe how these coefficients
vary from cycle to cycle and consequently how the physical mechanisms associated with
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Fig. 6 (A) Theoretical solution (red) obtained by fitting it the proxy at each individual cycle. (B) Direct
comparison of the model behavior (red) and observed solar cycle amplitude (black). In panel (B) we just plot
the squared of panel (B) and this also amplifies the differences between both curves. Adapted from Passos
(2012)

them evolve in time (Lopes and Passos 2009; Passos 2012). Equation (14) is afterwards
solved by changing the parameters to their fit value, at every solar minimum using a stepwise
function (similar to that presented in Fig. 7 for c1). Figures 7 and 6 highlight this procedure.
The fact that such a simplified dynamo model can get this degree of resemblance with the
observed data just by controlling one or two parameters is an indication that it captures the
most important physical processes occurring in the Sun.

4.1 Meridional Circulation Reconstruction

The simple procedure previously described allows to reconstruct the behavior of solar pa-
rameters back in time. Using an improved fitting methodology, Passos (2012) obtained with
this model the reconstruction of the variation levels of the solar meridional circulation for ev-
ery solar (sunspot) cycle over the last 250 years. One must notice that in this specific LODM
the amplitude of the cycle depends directly on the amplitude of the meridional flow during
the previous cycle. It is completely possible to imagine that other models that consider a
different theoretical setup might return a different behaviour.

Looking at (11), we can see that the coefficient c1 depends on two physical parameters,
the magnetic diffusivity, η, and the amplitude of the meridional circulation, vp . The magnetic
diffusivity of the system is a property tightly connected with turbulent convection and is
generally believed to change only in time scales of the order of stellar evolution. This leaves
variations in vp as the only plausible explanation for the variation observed from cycle to
cycle. Therefore, by looking at the evolution of c1 we can effectively assume that we are
looking at the variation in the strength of meridional circulation. The results obtained are
presented in Fig. 7.
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Fig. 7 Reconstruction of the meridional circulation profile represented by c1 (black line) compared to
smoothed the sunspot number (gray). Adapted from Passos (2012)

Fig. 8 Comparison between the observed solar cycle amplitude (top), a sunspot reconstruction using the
Surya Dynamo Code (middle) and the LODM results (bottom). In these simulations were only considered
variations in the meridional flow amplitude every 2 sunspot cycles (1 magnetic cycle). Adapted from Passos
and Lopes (2008b); Lopes and Passos (2009) and Passos (2010)

Although this result is in itself interesting, a more important concept came from
this study. When Passos and Lopes (2008b) presented their results for the first time,
they introduced the idea that coherent long term variations (of the order of the cycle
period) in the strength of the meridional circulation could provide an explanation for
the variability observed in the solar cycle (see Fig. 8). This result was also a posteri-
ori numerically validated using a 2.5D flux transport model (Lopes and Passos 2009;
Karak 2010). Only a couple of years later, Hathaway and Rightmire (2010) presented merid-
ional circulation measurements spanning over the last solar cycle. Their measurements
confirmed that the amplitude of this plasma flow changes considerably from cycle to cy-
cle.

Recently two other groups have tested this idea with their 2.5D dynamo models find-
ing additional features based in this effect, cf. Karak (2010), Karak and Choudhuri (2011)
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Fig. 9 Top panel represents the sunspot measurements where the Maunder Minimum period is highlighted
by the red arrow. In the bottom we show the response of the LODM (magnetic energy in arbitrary units) to
a decrease in the strength of the meridional flow exemplified by the green dashed line. Adapted from Passos
and Lopes (2011)

and Nandy et al. (2011). For example it was found that the instant at which the change
in the meridional flow takes place, has an influence in the duration of the following so-
lar cycle. This was used as an explanation for the abnormally long duration of the last
minimum. Just for reference, the numbering of solar cycles only started after 1750 with
solar cycle 1 beginning in 1755. At this moment we are in the rising phase of solar cy-
cle 24.

4.2 Explaining Solar Grand Minima

4.2.1 Variations in the Meridional Flow

Solar grand minima correspond to extended periods (a few decades) where very low or
no solar activity occurs. During theses periods no sunspots (or very few) are observed in
the solar photosphere and it is believed that other solar phenomena also exhibit low levels of
activity. The most famous grand minimum that has been registered is the Maunder Minimum
which occurred between the years of 1645 and 1715 (Eddy 1976).

A possible explanation for the origin of these quiescent episodes was put forward by Pas-
sos and Lopes (2011). Using a LODM, they showed that a steep decrease in the meridional
flow amplitude can lead to grand minima episodes like the Maunder minimum (see Figs. 9
and 10). This effect presents the same visual characteristics as the observed data, namely a
rapid decrease of magnetic intensity and a gradual recovery into normal activity (see Fig. 9)
after the meridional circulation amplitude returns to its normal values. A similar result was
later obtained by Karak (2010), again using a more complex 2.5D numerical flux transport
model. Nevertheless the reasons that could lead to a decrease of the meridional flow ampli-
tude were not explored. This served as a motivation to study the behavior of this LODM in
the non-kinematic regime, explained in Sect. 5.2.
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Fig. 10 The phase-space
diagram for B(t) corresponds to
the value obtained from the
sunspot number temporal series
as in Fig. 9. Adapted from Passos
and Lopes (2011) and Passos
(2010)

4.2.2 Fluctuations in the α Effect

Some examples mentioned in the introduction, hint that fluctuations in the α mechanism
can also trigger grand minima. We focus on a specific example now, the LODM developed
by Hazra et al. (2014). In this work the authors used a time-delay LODM similar to that
presented in Wilmot-Smith et al. (2006) but expanded with the addition of a second α effect.
This model incorporates two of these mechanisms, one that mimics the surface Babcock-
Leighton mechanism (BL), and another one analogous to the classical mean-field (MF) α-
effect that operates in the bulk of the convection zone. This set up captures the idea that the
BL mechanism should only act on strong magnetic fields that reach the surface, and that
weak magnetic fields that diffuse through the convection zone should feel the influence of
the MF α. The authors subject these two effects to different levels of fluctuations and find
that in certain parameter regimes, the solution of the system shows the same characteristics
as a grand minimum. These results were also validated by implementing a similar set up
into a 2.5D mean-field flux transport dynamo model (Passos et al. 2014). Again this shows
the usefulness of low order models to probe ideas before their implementation into more
complex models.

4.3 Solar Cycle Predictability

For the near future, perhaps one of most interesting applications of this LODM is its use in
the predictability of future solar cycles amplitudes. The first step towards this objective is
presented in Passos (2012). The authors studied the correlations between the LODM fitted
structural coefficients and cycle’s characteristics (amplitude, period and rising time). They
found very useful relationships between these quantities measured for cycle N and the am-
plitude of cycle N + 1. These relationships were put to the test by predicting the amplitude
of current solar cycle 24 (see Fig. 11).

5 LODM as Probe of Numerical Dynamo Models

In recent years there have been strong developments of different types of dynamo models
to compute the evolution of the solar magnetic activity and to explore some of the causes

549 Reprinted from the journal



I. Lopes et al.

Fig. 11 Observed values (white squares) and predicted values black circles with gray error bars for the cycle
amplitude. The red circle is the predicted amplitude for solar cycle 24 based on this methodology. Adapted
from Passos (2012)

of magnetic variability. Two classes of models have been quite successful, the kinematic
dynamo models and, more recently, the global magnetohydrodynamical models. Both types
of dynamo models have a quite distinct approach to the dynamo theory, the first one resolves
the induction magnetic equation for a prescribed velocity field (which is consistent with
helioseismology), and the second one obtains global magnetohydrodynamical simulations
of the solar convection zone. Many of these models are able to reproduce some of the many
observational features of the solar magnetic cycle. Nevertheless, it remains quite a difficult
task to successfully identify which are the leading physical processes in current dynamo
models that actually drive the dynamo in the solar interior. The usual method to test these
dynamo models is to compare their theoretical predictions with the different sets of data,
including the sunspot numbers, however, in many cases the conclusions obtained are very
limited, as different physical mechanisms lead to very identical predictions. This problem
also arises in the comparison between different dynamo models, including different types of
numerical simulations.

A possible solution to this problem is to use inverted quantities (obtained form obser-
vational data) to test the quality of the different solar dynamo model, rather than making
direct comparison of data. For those of you familiarized with helioseismology, there is a
good analogue: it is the equivalent to compare the inverted sound speed profile (obtained
from observational data) with the sound speed profile predicted by solar models (backward
approach), rather than compare predicted frequencies with observational frequencies (for-
ward approach). The former method to test physical models is more insightful than the latter
one. At the present level of our understanding of the solar dynamo theory, as a community
we could gain a more profound understanding of the mechanisms behind the solar magnetic
variability, if we start developing some backward methods to analyse solar observational
data and test dynamo models.

5.1 Using a LODM in the Kinematic Regime

Using the meridional velocity inverted from the sunspot number time series (cf. Fig. 7),
Lopes and Passos (2009) showed that most of the long term variability of the sunspot number
could be explained as being driven by the meridional velocity decadal variations, assuming
that the evolution of the solar magnetic field is well described by an axisymmetric kinematic
dynamo model.
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Fig. 12 The phase-space diagram for B(t) of a kinematic dynamo model (using the Surya’s kinematic
model): (A) a standard kinematic dynamo model (vp is constant); (B) a variable kinematic dynamo model in
which the vp for each magnetic cycle corresponds to the value obtained from the sunspot number temporal
series. Both simulations correspond to 130-year time series. The small variability present in the left panel is
due to the stabilization of the numerical solution. Figure adapted from Lopes and Passos (2009)

Figure 8 shows a reconstructed sunspot times series that has been obtained using the
meridional velocity vp inverted from the sunspot observational time series, and Fig. 12
shows the phase space of a standard axisymmetric kinematic dynamo model (with the same
vp for all cycles) (e.g., Choudhuri et al. 1995) and a solar dynamo model where the vp

changes from cycle to cycle as inverted from the sunspot times series (Lopes and Passos
2009). It is quite encouraging to find that such class of dynamo models for which the vp

changes overtime successfully reproduced the main features found in the observational data.
Moreover, in their article Lopes and Passos (2009) tested two different methods of im-

plementing the velocity variation for each magnetic cycle, namely, by considering that am-
plitude variations in vp that take place at sunspot minima or at sunspot maxima. All the time
series show a few characteristics that are consistent with the observed sunspot records. In
particular, all the simulations show the existence of low amplitudes on the sunspot number
time series between 1800 and 1840 and between 1870 and 1900. The simulation that best
reproduces the solar data corresponds to the model SSNrec[3] (see Fig. 8), in which was
implemented a smoothed vp variation profile between consecutive cycles and taking place
at the solar maximum. This clearly highlights the potential of such methodology.

Here, we discuss the same methodology as the one used in the previous section, but in-
stead of applying it to observational sunspot number records, it is used to reconstruct the
sunspot time series. The results obtained clearly show that the present kinematic dynamo
models can reproduce in some detail the observed variability of the solar magnetic cycle.
The fact that for one of the sunspot models—model SSNrec[3], it presents a strong level
of correlation with the observational time series, lead us to believe that the main idea be-
hind this backward approach is correct and it is very likely that the inverted vp variation
is probably very close to the vp variation that happens in the real Sun. Clearly, under the
assumed theoretical framework the meridional circulation is the leading quantity responsi-
ble for the magnetic variability found in the sunspot number time series and current solar
dynamo models are able to reproduce such variability to a certain degree.

5.2 Using a LODM in the Non-kinematic Regime

So far, the vast majority of the LODM applications presented here followed the traditional
assumption that the solar dynamo can be correctly modeled in the kinematic regime, where
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only the plasma flows influence the production of magnetic field, and not the other way
around. This kinematic approximation is used in the vast majority of the present 2.5D spa-
tially resolved dynamo models.

In the last couple of years though, evidence started to appear supporting the claim that
this kinematic regime might be overlooking important physical mechanisms for the evolu-
tion of the dynamo. The idea that the meridional flow strength can change over time and
affect the solar cycle amplitude coupled with the measurements of Hathaway and Rightmire
(2010) and Basu and Antia (2010) indicate that the observed variation in this flow is highly
correlated with the levels of magnetic activity. This leads to the fundamental question: “Is
the flow driving the field or is the field driving the flow?”.

The first clues are starting to appear from 3D MHD simulations of solar convection.
The recent analysis of the output of one of the large-eddy global MHD simulations of the
solar convection zone done by Passos et al. (2012) shows interesting clues. These simu-
lations solve the full set of MHD equations in the inelastic regime, in a broad, thermally-
forced stratified plasma spherical shell mimicking the SCZ and are fully dynamical on all
spatiotemporally-resolved scales. This means that a two way interaction between field and
flow is always present during the simulation. The analysis shows that the interaction between
the toroidal magnetic field and the meridional flow in the base of the convection zone indi-
cates that the magnetic field is indeed acting on the equatorward deep section of this flow,
accelerating it. This observed relationship runs contrary to the usually assumed kinematic
approximation.

In order to check if this non-kinematic regime has any impact in the long term dynamics
of the solar dynamo, Passos et al. (2012) implemented a term that accounts for the Lorentz
force feedback in a LODM similar to the one presented here. This allows to fully isolate the
global aspects of the dynamical interactions between the meridional flow and magnetic field
in a simplified way.

They assumed that the large-scale meridional circulation, vp , is divided into a “kine-
matic” constant part, v0 (due to angular momentum distribution) and a time dependent part,
v(t), that encompasses the Lorentz feedback of the magnetic field. Therefore they redefine
vp as vp(t) = v0 + v(t) where the time dependent part evolves according to

dv(t)

dt
= a BφAp − b v(t). (18)

The first term is a magnetic non-linearity representing the Lorentz force and the sec-
ond is a “Newtonian drag” that mimics the natural resistance of the flow to an outside
kinematic perturbation. Under these conditions the Lorentz force associated with the cyclic
large-scale magnetic field acts as a perturbation on the otherwise dominant kinematic merid-
ional flow. This idea was not new and it was used before in the context of magnetically-
mediated variations of differential rotation in mean-field dynamo models (Tobias 1996;
Moss and Brooke 2000; Bushby 2006). The modified LODM equation they end up defining
are

dBφ

dt
=

(
c1 − vp(t)

�0

)
Bφ + c2Ap − c3B

3
φ, (19)

dAp

dt
=

(
c1 − vp(t)

�0

)
Ap + αBφ, (20)

where c1, is defined as c1 = η

�2
0

− η

R2	
and takes the role of magnetic diffusivity, while the

other coefficients remain the same.
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Fig. 13 Bifurcation maps for maximum amplitude of the toroidal field (equivalent to solar cycle maximum)
obtained by varying b between 10−4 and 1 for different a and v0. (A) Single period regime, v0 = −0.1,
a = 0.01; (B) appearance of period doubling, v0 = −0.1, a = 0.1 and (C) shows signatures of chaotic regimes
with multiple attractors and windows, obtained with v0 = −0.13, a = 0.05. Adapted from Passos et al. (2012)

While the values used for the structural coefficients, are mean values extracted from the
works presented in the previous in sections, the parameters associated with the meridional
flow evolution, a, b and v0 deserved now the attention. These parameters have an important
role in the evolution of the solution space. The behavior observed in the solutions range
from fixed-amplitude oscillations closely resembling kinematic solutions, multiperiodic so-
lutions, and even chaotic solutions. This is easier to visualize in Fig. 13 where are presented
analogs of classical bifurcation diagrams by plotting successive peak values of cycle am-
plitudes, for solutions with fixed (a, v0) combinations but spanning through values of b.
Transitions to chaos through bifurcations are also observed when holding b fixed and vary-
ing a instead.

The authors expanded the methodology used and applied stochastic fluctuations to pa-
rameter a, the one that controls the influence of the Lorentz force. As a result, and depending
on the range of fluctuations, they observed that the short term stochastic kicks in the Lorentz
force amplitude create long term modulations in the amplitude of the cycles (hundreds of
years) and even episodes where the field decays to near zero values, analog to the previously
mentioned grand minima. The duration and frequency of these long quiescent phases, where
the magnetic field decays to very low values, is determined by the level of fluctuations of
a and the value of b. The stronger this drag term b is, the shorter the minima are and the
higher the level of fluctuation of a, the more common these intermittency episodes become.
Figure 14 shows a section of a solution that spanned for 40000 years and that presents all
the behaviors described before.

In this specific example they used 100 % fluctuation in a and maintaining all the other
parameters constant. In the parameter space used to produce this figure, the solution without
stochastic forcing is well behaved in the sense that it presents a single period regime. There-
fore, the fluctuations observed in this solution are a direct consequence of the stochastic
forcing of the Lorentz force and not from a chaotic regime of the solution’s space.

To understand how the grand minima episodes arise they resort to visualizing one of these
episodes with phase space diagrams of {Bφ,Ap, vp}. This allows to see how these quantities
vary in relation to each other and try to understand the chain of events that trigger a grand
minimum.

The standard solution for the LODM without stochastic forcing, i.e. with a fixed at the
mean value of the random number distribution used, is the limit cycle attractor, i.e., a closed
trajectory in the {Bφ,Ap} phase space. This curve is represented as a black dashed trajec-
tory in the panels of Fig. 15. The gray points in this figure are the stochastic forced solution
values sampled at 1 year interval. These points scatter around the attractor representing the
variations in amplitude of the solution. Occasionally the trajectories defined by these points
collapse to the center of the phase space (the point {0,0, v0} is also another natural attractor
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Fig. 14 Simulation result fluctuating a ∈ [0.01,0.03], b = 0.05 and v0 = −0.11. All other model parameters
are the same as in the reference solution. Panel (A) shows a section of the simulation where the long term
modulation can be seen. In black is B2

φ(t), red A2
p(t) and blue a scaled version of the meridional flow, in

this case 5vp(t). In panel (B) the same quantities but this time zooming in into a grand minimum (off phase)
period. Adapted from Passos et al. (2012)

Fig. 15 Phase spaces of the
solution with stochastic
fluctuations. The gray dots
represent 1 year intervals
between t = 35000 and
t = 40000. The colored line
shows the trajectory of a grand
minima (starting from purple,
t = 27300 and ending in red,
t = 27400. The black dashed line
represents the unperturbed
solution with a = 0.02. Adapted
from Passos et al. (2012)
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of the system) indicating a decrease in amplitude of the cycle, i.e. a grand minimum. The
colored trajectory evolving in time from purple to red represents one of those grand mini-
mum. This happens when the solution is at a critical distance from the limit cycle attractor
and gets a random kick further away from it. This kick makes the field grow rapidly. In turn,
since the amplitude of the field grows fast, the Lorentz force will induce a similar growth
in v(t) eventually making vp change sign. When this occurs, vp behaves as a sink term
quenching the field growth very efficiently. This behavior is seen in the two bottom panels
of Fig. 15 where vp decays to its imposed “kinematic” value v0 after the fields decay. After
this collapse of vp to v0 it starts behaving has a source term again and the cyclic activity
proceeds.

One clear advantage of low order models emerges from this example. Currently 3D MHD
simulations of solar convection spanning a thousand years take a couple of months to run in
high efficiency computational clusters or in supercomputers. Longer simulations are at the
moment prohibitive not only for the amount of time they take but also for the huge amount
of data they generate. Statistical studies on grand minima originated by the kind of magnetic
back-reaction described here, require long integration times where many thousands of cycles
need to be simulated. The LODM calculations can be done in a few minutes or hours in any
current desktop.

The grand minima mechanism presented in this section is now being studied by looking
at the data available from 3D simulations. Some effects are easier to find when you know
what to look for.

6 Outlook for the Sun and Stars

So far we have shown that low order dynamo models (for which the approximation must
be carefully chosen to keep the relevant physics within) could lead the way to explore some
features of the solar magnetic activity including the long-term variability. The study of the
phase diagram {Bφ(r), Ḃφ(t)} clearly shows that on a scale of a few centuries the solar
magnetic cycle shows evidence for a van der Pool attractor—put in evidence by the mean
solar magnetic cycle, although on a time-scale of a few solar magnetic cycles the phase
space trajectory changes dramatically. In some cases the trajectory collapses completely
for several magnetic cycles as in the periods of grand minima. This gives us an indication
about the existence of a well defined self regulated system under all this observed magnetic
variability, for which we still need to identify the leading physical mechanisms driving the
solar dynamo to extreme activity scenarios like periods of grand minima. Actually, the fact
that a well-defined averaged van der Pool limit curve exists for all the sunspot records,
can be used to test different solar dynamo models, including numerical simulations, against
observational data or between different dynamo models.

Moreover, the fact that such well-defined attractor exists in the phase space, and several
dynamo models are able to qualitatively reproduce the solar variability (as observed in the
phase space {Bφ(r), Ḃφ(t)} gives us hope that in the near future we will be able to make
quite reliable short term predictions of the solar magnetic cycle variability, at least within
certain time intervals of solar magnetic activity. A significant contribution can be done by the
utilization of more accurate sunspot time series in which many of the historical inaccuracies
were corrected (Lefevre and Clette 2014).

In the future, similar inversion techniques could be developed, namely to study the pos-
sible asymmetry between the North and South Hemispheres using the sunspot areas, either
by treating each of the sunspot areas as two distinct times series or by attempting two-
dimension inversions of sunspot butterfly diagrams. In the former case, recently Lopes et
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Fig. 16 Magnetic activity
signature expressed by the
variation of the intensity of the
Ca II emission line (S-index) for
two solar like stars. Adapted
from Baliunas et al. (1995)

al. (2014) have analysed these long-term sunspot areas time series and found that turbulent
convection and solar granulation are responsible by the stochastic nature of the sunspot area
variations. In the last case, we could learn about the evolution of the solar magnetic cycle
in the tachocline during the last two and a half centuries. Moreover, most of the inversion
methods used for the sunspot number can be easily extended to other solar magnetic cycles
proxies such as TSI, Hα and Magnetograms.

The oscillator models, as a first order dynamo model are particularly suitable to study the
magnetic activity in other stars. A good proxy of magnetic activity in stars in the chromo-
spheric variations of Ca II H and K emission lines. Baliunas et al. (1995) have found many
F2 and M2 stars which seem to have cyclic magnetic cycle activity, as observed in the Sun
(cf. Fig. 16). In some of these stars the observational time series covers several cycles of
activity. In particular, it will be interesting to identify how the dynamo operating in these
stars differs from the solar case.

More recently, the CoROT and Kepler space missions have observed photometric
variability associated with solar-like activity in a very large number of main sequence
and sub-giant stars. While the time coverage is too short to derive cycle periods for
stars very close to the Sun, the overall level of activity and its dependence on vari-
ous stellar parameters can be studied on a large statistical sample (Basri et al. 2010;
McQuillan et al. 2012). Nevertheless, with so many stars with quite distinct masses and ra-
dius, it is reasonable to expect that we will find quite different type of dynamos and regimes
of stellar magnetic cycle. Actually, we think it is likely to find a magnetic diversity identical
to the one found in the acoustic oscillation spectra measured for the more than 500 sun-like
stars already discovered (Chaplin et al. 2014), some of which have already shown evidence
of a magnetic cycle activity. García et al. (2010) have obtained a proxy of the starspots num-
ber for the star HD49933 from amplitudes and frequencies of the acoustic modes of vibra-
tion. As in the non-linear oscillator models the activity level is determined by the structural
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parameters which in turn depends on the dynamo model. These studies potentially offer a
simple theoretical scheme against which to test the observational findings.
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