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Introduction

The fire resistance of structural elements is tradi-

tionally determined by standard fire endurance

tests. However, there is also a need to be able to

predict the response of structures of various

designs when exposed to alternative design fire

conditions. Accurate and robust analytical

methods are then needed. Such methods may

also be used for predicting standard tests of, for

example, structural elements that cannot be

tested due to their size or for extending test

results to modified structures.

It is necessary when using analytical methods,

as well as when interpreting test results and their

relations to real fires, to understand the funda-

mental physics governing the thermal behavior

of fire-exposed structures. The focus in this chap-

ter is to meet these needs. The content is based on

textbooks on heat transfer theory (e.g., Holman

[1] and others) and from various publications in

the field of fire safety engineering.

Analytical methods for the design of fire resis-

tance of structures have the following three main

components:

1. Determining the duration and level of thermal

fire exposure

2. Calculating the heat transfer and the internal

temperature distribution

3. Estimating the structural response and the

load-bearing capacity

The first step is in general very complex and

requires somewhat uncertain assumptions. Most

often the fire exposure is assumed according to

standardized time-temperature curves, as

specified in ISO 834, ASTM E119, or EN 1363-

1. Time-temperature developments determined

by fire models or measured at ad hoc tests are

seldom applied. The next step is very crucial as

the deterioration of material strength depends on

the temperature obtained. This chapter focuses

on this second step. More information on the first

and third steps of an analytical design procedure

is outlined elsewhere in this section of the

handbook.

The temperature calculation methods

presented here disregard in general any mechan-

ical failures that may occur that could alter the

thermal conditions. Protection systems may, for

example, fall off in case of fire exposure and

completely change the thermal conditions. Such

phenomena must be investigated by full-scale

tests and, therefore, new types of structural

systems must in general be tested in full scale

in standard furnace tests as a basis for type

approval and so on. Calculation methods can,

however, be used for generalizations or

extensions of test results to various dimensions

and configurations.

Heat Transfer to Structures

Heat is transferred from hot fire gases to

structures by convection and radiation. The
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contributions of these two modes of heat trans-

fer are in principal independent and must be

treated separately. The convective heat transfer

depends on the temperature difference between

the target surface and the surrounding gas and

the velocity of the gas masses in the vicinity of

the exposed surface, whereas the incident heat

radiation on a surface originates from

surrounding flames and gas masses as well as

other surrounding surfaces.

Thus, the total heat flux _q
00
tot to a surface is

_q
00
tot ¼ _q

00
rad þ _q

00
con ð34:1Þ

where _q
00
rad is the net radiation heat flux and _q

00
con is

the heat transfer to the surface by convection.

Details of these two contributions to follow.

Radiation

The net radiation heat flux _q
00
rad depends on the

incident radiation _q
00
inc, on the surface emissivity/

absorptivity, and on the fourth power of the

absolute temperature Ts of the targeted surface.

The heat exchange at a surface is illustrated in

Fig. 34.1.

Part of the incident radiation is absorbed and

the rest _q
00
re f is reflected. Then the surface emits

heat by radiation _q
00
emi depending on the emissiv-

ity and the surface absolute temperature to the

fourth power. Thus, the net radiative heat can be

written

_q
00
rad ¼ αs _q

00
inc � εsσT4

s ð34:2Þ

where αs and εs are the target surface absorptivity
and emissivity, respectively. In this presentation

the surface emissivity and absorptivity are

assumed equal according to the Kirchhoff’s iden-

tity. Thus,

_q
00
rad ¼ εs _q

00
inc � σT4

s

� �
ð34:3Þ

The incident radiation to a surface is emitted

by surrounding gas masses and in case of fire by

flames and smoke layers and/or by other

surfaces. It depends on the fourth power of the

absolute temperature. The emissivity and absorp-

tivity of gas masses and flames increase with

depth and become, therefore, in general more

important in large-scale fires than in, for exam-

ple, small-scale experiments. In real fires

surfaces are exposed to radiation from a large

number of sources (surfaces, flames, gas masses,

etc.) of different temperatures and emissivities.

The heat fluxes are then in general very compli-

cated to model. A simple summation of the main

contributions yields in general a good estimate;

that is,

_q
00
inc ¼

X
εiFiσT

4
i ð34:4Þ

where εi is the emissivity of the ith source, Fi and

Ti are the corresponding view factor (see Chap. 4,

“Radiation Heat Transfer,” of this handbook) and

temperature, respectively. Equation 34.4 may

then be inserted in Equation 34.3 to get

_q
00
rad ¼ εsσ

X
εiFiT

4
i � T4

s

� �
ð34:5Þ

or

_q
00
rad ¼ εsσ T4

r � T4
s

� � ð34:6Þ

where Tr is here termed the black body radiation

temperature or just the radiation temperature. Tr
is a weighted average identified as

T4
r�

X
εiFiT

4
i ð34:7Þ

The emissivities as used above are surface

properties, in principle independent of the fire

conditions.

Incident
heat flux

Reflected
heat flux

Net radiant heat flux

Surface-
emitted
heat flux

q �inc q �ref

q �rad

q �emi

Fig. 34.1 Heat transfer by radiation to a surface, which

depends on incident radiation, surface absolute tempera-

ture, and surface emissivity
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Convection

The heat transferred by convection from adjacent

gases to a surface varies a lot depending on

adjacent gas velocities and geometries

(Fig. 34.2).

In most cases it may be written as

_q
00
con ¼ h Tg � Ts

� �n ð34:8Þ

where h is the convective heat transfer coefficient
and Tg is the gas temperature adjacent to the

exposed surface. In cases of surfaces heated or

cooled by natural or free convection a value of

n greater than unity is motivated depending on

flow conditions [1].

In fires the heat transfer conditions by con-

vection may vary a lot and the parameters

h and n are very hard to determine accurately.

However, as radiation heat transfer dominates

and the convective conditions are not decisive

for the total heat transfer to fire exposed

structures, the exponent n is assumed equal to

unity for simplicity in most fire engineering

cases. Thus,

_q
00
con ¼ h Tg � Ts

� � ð34:9Þ

The convective heat transfer coefficient

h depends mainly on flow conditions in the vicin-

ity of the surface and not so much on the surface

or the material properties.

Total Heat Transfer and Adiabatic
Surface Temperature

The total heat transfer to a surface may now be

obtained by adding the contributions by radiation

and convection. Thus, by inserting Equations

34.6 and 34.9 into Equation 34.1, the total heat

flux to a surface becomes

_q
00
tot ¼ εsσ T4

r � T4
s

� �þ h Tg � Ts

� � ð34:10Þ

In most fire engineering design cases the radi-

ation temperature Tr and the gas temperature Tg
are assumed equal to a fire temperature Tf. Then

the total heat transfer may be calculated as

_q
00
tot ¼ εsσ T4

f � T4
s

� �
þ h T f � Ts

� � ð34:11Þ

or

_q
00
tot ¼ htot T f � Ts

� � ð34:12Þ

where the combined total heat transfer coeffi-

cient htot may be identified from Equations 34.11

and 34.12 as

H ¼ εsσ T2
f � T2

s

� �
T f þ Ts

� �þ h ð34:13Þ

Alternatively the two boundary temperatures

in Equation 34.10, Tr and Tg, may be combined to

one effective temperature TAST, the adiabatic

surface temperature. This temperature is defined

as the temperature of a surface of an ideally

perfectly insulating material, i.e. a surface

which cannot absorb any heat [2]. Thus, TAST is

defined by the surface heat balance equation

εsσ T4
r � T4

AST

� �þ h Tg � TAST

� � ¼ 0 ð34:14Þ

The value of TAST is always between Tr and Tg.
Then the total heat transfer may be written as

_q
00
tot ¼ εsσ T4

AST � T4
s

� �þ h TAST � Tsð Þ ð34:15Þ

The adiabatic surface temperature TAST can in

many cases be measured, and it may be used for

calculating heat transfer to fire-exposed surfaces

based on practical tests, as discussed later. It can

also be obtained from numerical CFD modeling

of fires using computer codes like FDS [2, 3].

Tg

Ts

Fig. 34.2 Gas velocity profile, with the heat transfer by

convection depending on the temperature difference

between the adjacent gases and the target surface and on

the gas velocity
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Heat Transfer to Fire-Exposed
Structures

Based on Equations 34.11 and 34.12 the heat

transfer to a fire-exposed surface can be calcu-

lated for given fire and surface temperatures Tf
and Ts. The emissivity εs is a surface property,

which can be assumed to equal 0.8 for most

building materials except for shiny steel where

a lower value may be assumed. The convection

coefficient h is not decisive for the temperature

development near a fire-exposed surface of a

structure as the radiative heat transfer dominates

at high temperatures. In Eurocode 1 [4] a value of

25 W/m2 K is recommended at fire-exposed

surfaces. The temperature on the nonexposed

side of a separating structure will, on the other

hand, depend very much on the heat transfer

conditions including the convection coefficient.

In Eurocode 1 in this case a convective heat

transfer coefficient value of 4 W/m2 K is

recommended.

In many cases, however, a fire-exposed sur-

face will get temperatures very close to the fire

temperature (i.e., Tf � Ts). This approximation

applies for insulation materials with a low den-

sity and a low thermal conductivity. It may

facilitate calculations considerably and is here

applied on calculating temperature in insulated

steel structures (as discussed later). Even a

normal weight concrete surface will get a tem-

perature of 90 % of the fire temperature after

30 min (as shown in Fig. 34.19, later in the

chapter).

The heat transfer conditions may be very deci-

sive for the temperature development in a fire-

exposed bare steel structure (see discussion on

unprotected steel structures later in the chapter).

They are also very important for the temperature

development on the back side of a fire-separating

element. This is in particular the case for light

weight structures where the thermal insulation

properties are decisive rather than the thermal

inertia.

Calculating Heat Transfer Using Plate
Thermometer Temperatures

So-called plate thermometers are used to monitor

the temperature in fire resistance furnaces

according to the international standard ISO

834 and the European standard EN 1363-1. A

plate thermometer (PT) consisting of an Inconel

(trade name for a nickel-based superalloy) plate

insulated on its back side is shown in Fig. 34.3. A

thermocouple fixed to the plate registers its tem-

perature. Figure 34.4 shows plate thermometers

Shielded
thermocouple

Protection tube

10 mm
insulation

Thermocouple
hot junction

0.7 mm stainless steel

Fig. 34.3 The plate

thermometer according to

ISO 834 and EN 1363-1 is

made of a shielded

thermocouple welded to the

center of a 0.7-mm-thick

Inconel plate, which is

insulated on its back side.

The exposed front face is

100 mm by 100 mm
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being mounted at a steel girder with the insulated

back side facing the specimen. The front side of

the plate thermometer is exposed to approxi-

mately the same heating, including radiation

conditions, as the specimen. The exposed surface

of the plate thermometer is relatively large and,

therefore, its sensitivity to convective heat trans-

fer is about the same as that of the specimen

surface. The steel plate is thin, only 0.7 mm,

and thus responds quickly to temperature

changes. As a matter of fact the plate thermome-

ter in a standard fire resistance test measures

approximately the temperature of an adiabatic

surface (i.e., the temperature of an ideally perfect

insulator exposed to the same heating conditions

as the specimen surface, as discussed earlier).

The plate thermometer was introduced mainly

to harmonize fire endurance tests (see Wickström

and Hermodsson [5]), but the measured

temperatures are also well suited as input for

calculating heat transfer by radiation and convec-

tion to fire-exposed surfaces.

As any surface, the plate thermometer surface

exchanges heat by radiation and convection. The

sum of these equals the transient heat for raising

the temperature of the Inconel plate and the

backing insulation. Because the plate is thin and

does not lose much heat on its back side, this sum

is small and can be neglected except for the very

first few minutes of a standard test. Thus, the heat

balance of the plate can be written as

εPT _q
00
inc � σT4

PT

� �
þ hPT Tg � TPT

� � ¼ 0

ð34:16Þ
or

εPTσ T4
r � T4

PT

� �þ hPT Tg � TPT

� � ¼ 0 ð34:17Þ

The index PT refers to plate thermometer.

This means the plate thermometer yields the

adiabatic temperature of the specimen for a

given surface emissivity and a given convective

heat transfer coefficient.

Fig. 34.4 Plate thermometers being mounted around a

steel girder for measuring local thermal exposures. Note

that the plate thermometers are mounted so that the front

sides of the steel plates are exposed to roughly the same

incident radiation as the girder and the back sides are

insulated
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An approximate alternative expression of the

net heat transfer _q
00
tot to a specimen surface can

now be obtained in terms of one effective tem-

perature only by deducting Equation 34.17 from

Equation 34.10:

_q
00
tot ¼ εsσ T4

PT � T4
s

� �þ h TPT � Tsð Þ ð34:18Þ

In other words the adiabatic surface tempera-

ture is approximated by the plate thermometer

temperature. This rewriting of Equation 34.10

facilitates the calculations in many cases. The

error Δ _q
00

introduced can be quantified by a

simple algebraic analysis as

Δ _q
00 ¼ εs � εPTð Þσ T4

r � T4
PT

� �
þ hs � hPTð Þ Tg � TPT

� � ð34:19Þ

Thus, the error is small when the surface

emissivity of the plate thermometer and the spec-

imen are nearly the same and when the convec-

tive heat transfer coefficients are nearly the same.

Therefore, the surfaces of the plate thermometers

are blasted and heat-treated before being used to

get an emissivity of about 0.8. It also has a

relatively large surface, 100 mm by 100 mm, to

obtain a convection heat transfer coefficient sim-

ilar to a specimen. Because TPT always has a

value between Tr and Tg, the error vanishes

when these two temperatures are close.

Modeling of Heat Conduction
in Materials

Heat Conduction in Solid Materials

Heat or energy is conducted in solid materials

due to temperature gradients. In one dimension

in the x-direction the rate of heat transfer or heat

flux is expressed according to Fourier’s law as

_q
00
x ¼ �k

∂T
∂x

ð34:20Þ

where k is the thermal conductivity.

In fire problems the most usual objective is to

determine the temperature distribution in a

structure resulting from conditions imposed on

its boundaries. Because these conditions vary

with time, the temperature field will be transient

or unsteady. It is then governed by the heat

diffusion equation, which in one dimension is

expressed as

∂
∂x

k
∂T
∂x

� �
¼ ρc

∂T
∂t

ð34:21Þ

where ρ is density, c is specific heat of the

material.

If the conductivity k is constant, Equa-

tion 34.21 may be written as

∂T2

∂2x
¼ 1

α
∂T
∂t

ð34:22Þ

where α is the thermal diffusivity defined as

α ¼ k/ρc.
At the boundaries Fourier’s law applies and

may be expressed as

_q
00
x 0ð Þ ¼ �k

∂T
∂x

����
x¼0

ð34:23Þ

Three types of boundary conditions may

occur.

1. Given surface temperature: T(0,t) ¼ Ts

2. Given surface heat flux: -k∂T∂x
��
x¼0

¼ _q
00
s

3. Given convection and radiation conditions, for

example:�k∂T∂x
��
x¼0

¼ h T f � Ts

� �þ εσ T4
f � T4

s

� �
All the specified boundary conditions, Ts, qs,

and Tf, may vary with time. A special type of heat

flux boundary condition is the adiabatic or per-

fectly insulated surface where qs is equal to zero.
The heat diffusion equation can be solved

analytically only in some uncomplicated cases

(see Chap. 2, “Conduction of Heat in Solids,”

of this book). Numerical methods are usually

needed as boundary conditions in general are

nonlinear and material properties vary with tem-

perature. There are mainly two types of numeri-

cal methods, finite difference and finite element

methods, depending on how the geometry is

approximated and how the temperature field is
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expressed by a limited number of discrete

temperatures. The finite element method is

described briefly later for the one-

dimensional case.

Measurement of Thermal Properties

There are a number of techniques to measure

thermal properties, each of them suitable for a

limited range of materials, depending on thermal

properties and temperature level (e.g., see Flynn

[6]). However, only a few of the measuring

techniques can be used at high temperature levels

relevant for fire conditions. They can be divided

into steady-state and transient techniques.

The steady-state techniques perform the

measurements when the material is in complete

equilibrium. Disadvantages of these techniques

are that it generally takes a long time to reach the

required equilibrium and that at low temperature

the measurements are influenced by moisture

migration. For moist materials like concrete, it

is therefore often preferable to determine the

apparent conductivity or thermal diffusivity

with transient techniques. These techniques per-

form the measurements during a process of small

temperature changes and can be made relatively

quickly.

The guarded hot plate is the most common

steady-state method for building materials with

a relatively low thermal conductivity [7]. It is

quite reliable at moderate temperatures up to

about 400 �C.
Because transient thermal processes dominate

in fire safety engineering, the thermal diffusivity,

a measure of the speed at which temperature is

propagating into a material, is the most interest-

ing parameter. It is naturally best measured with

transient methods. One of the most interesting

techniques is the transient plane source method

(TPS). In this method a membrane, TPS sensor,

is located between two specimen halves and acts

as a heater as well as a temperature detector

(Fig. 34.5). By using this technique, thermal dif-

fusivity, thermal conductivity, and volumetric

specific heat can be obtained simultaneously for

a variety of materials like metals, concrete, min-

eral wool, and even liquids and films [8].

Finite Element Calculations
of Temperature in Fire-Exposed
Structures

When calculating temperature in fire-exposed

structures nonlinearities must in most cases be

considered. The boundary conditions are nonlin-

ear varying dramatically with temperature as

shown above, and also the thermal properties of

most materials vary significantly within the wide

temperature span that must be considered in fire

safety engineering problems. Therefore, numeri-

cal methods must be employed. The most general

Fig. 34.5 The TPS sensor placed between two pieces of a concrete specimen
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and powerful codes today are based on the

so-called finite element method (FEM).

Basic Equations Derived
for One-Dimensional Case

The basic equations that follow are derived for a

simple one-dimensional case as an illustration.

The same type of equation may be derived for

two and three dimensions.

Figure 34.6 shows a wall that has been divided

into a number of one-dimensional elements. The

temperature between the nodes is assumed to

vary linearly along the length.

In any element, interior or at the surface, with

length L, conductivity k, and a section area

A (Fig. 34.7), the heat flow at the nodes can

then be calculated as

q1 ¼ �kA=L* T1 � T2ð Þ
and

q2 ¼ �kA=L* �T1 þ T2ð Þ
or in matrix format as

qe ¼ k
e
T
e ð34:24Þ

where qe is the element node heat flow vector, k
e

is the element heat conduction matrix, and T
e
is

the element node temperature vector. The ele-

ment heat conduction matrix may then be

identified as

k
e ¼ k e

1,1 k e
1,2

k e
2,1 k e

2,2

( )
¼ kA=Lð Þ 1 �1

�1 1

	 


ð34:25Þ
and the element nodal temperature and heat flow

vectors

as T
e ¼ T1

T2

n o
and Q

e ¼ Q1

Q2

n o
respectively.

In a similar way an element heat capacity

matrix can be defined by lumping the heat capac-

ity of the element in the nodes. Thus, an element

heat capacity matrix may be obtained as

ce ¼ ALcp

2

1 0

0 1

	 

ð34:26Þ

When several elements are combined, the

global thermal conductivity matrix K can be

assembled. In the very simple case of three

one-dimensional elements the global heat con-

duction matrix becomes

i – 1 i + 1i

Fig. 34.6 A wall divided

into one-dimensional

elements

k, cρ

L, A

1 2

T1 q1 T2 q2

Fig. 34.7 A one-dimensional element with local element

node numbers 1 and 2, length L, and a section area A. The
element is given a thermal conductivity k, a specific heat
capacity c, and a density ρ
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K ¼

k11,1 k11,2 0 0

k12,1 k12,2 þ k21,1
� �

k21,2 0

0 k22,1 k22,2 þ k31,1
� �

k31,2

0 0 k32,1 k32,2

8>>>><
>>>>:

9>>>>=
>>>>;

ð34:27Þ

where the superscripts 1–3 denote element num-

bers. The global heat capacity matrix C may be

assembled in a similar way as the global con-

ductivity matrix. Notice that both the thermal

conductivity and the heat capacity matrices are

symmetric and dominated by their diagonal

elements, and that the global heat capacity

matrix assembled from element matrices

according to Equation 34.26 will have nonzero

elements only in the diagonal. This will have a

decisive influence on how the global algebraic

heat balance equation can be solved as shown

below.

In global form the heat balance equation may

now be written as

C _T þ K T ¼ Q ð34:28Þ

where _T is the time derivative of the node

temperatures. Each row in this equation system

represents the heat balance of a node. For each

equation or each node either the temperature or

the heat flow given in the corresponding rows in

the vectors T and Q, respectively, is known. In

principle three options are possible for each

equation/row:

1. The node temperature Ti is prescribed.

2. The node heat flow Qi is prescribed.

3. The node heat flow Qi can be calculated as a

function of a given gas temperature and the

surface temperature.

In the first case the corresponding equation

vanishes as the unknown quantity is prescribed.

The most common case for internal nodes is the

second case (i.e., the external flow is zero).

A typical boundary condition when calculat-

ing temperature in fire-exposed structures is

according to the third option. Based on, for

example, Equation 34.11, the external heat flow

to the ith node becomes

Qi ¼ Ai εσ T4
f � T4

i

� �
þ h T f � Ti

� �n o
ð34:29Þ

where Ai is the section area of the ith node. The

differential equation given in Equation 34.28 can

be solved numerically by approximating the time

derivative as

_T ¼
T

jþ1 � T
j

� �
Δt

ð34:30Þ

where T
j
is the node temperature vector at time

step j andΔt is a chosen time increment. Now the

heat balance equation in matrix format (Equa-

tion 34.28) can be written as

C T
jþ1 � T

j
� �

=Δtþ K T ¼ Q ð34:31Þ

In this differential equation the temperature

vector is known at time increment j. The new

temperature vector at time j + 1 is obtained

either explicitly based on the conditions at time

step j as

T
jþ1 ¼ C

�1
Q

j � K T
j

� �
Δtþ T

j ð34:32Þ

or implicitly as

T
jþ1 ¼ C=Δtþ K

� ��1
Q

j þ CT
j
=Δt

� �
ð34:33Þ

Combinations of the solution schemes

according to Equations 34.32 and 34.33 are also

possible. All such schemes require the solution of

an equation system containing as many

unknowns as there are unknown node

temperatures. Most finite element computer

codes use such types of implicit solution

schemes. They are numerically more stable than

the explicit techniques (i.e., longer time

increments may be used).

The explicit solution according to Equa-

tion 34.32 may be very simple when the heat

capacity matrix C is diagonal (i.e., it contains

only nonzero elements in the diagonal as shown

for a one-dimensional element in Equa-

tion 34.26). The solution of the equation system
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then becomes trivial because each nodal temper-

ature can be obtained directly/explicitly one at a

time. This solution scheme is numerically stable

only when the time increment Δt is less than a

critical value proportional to the heat capacity

over the thermal conductivity of the material

times the square of an element length dimension

Δx (see Equation 34.34). This requirement

applies to all the equations of the entire system.

If violated in any of the equations (i.e., at any

point of the finite element model), the incremen-

tal solution equation will turn unstable.

Δtcr � c p

k
Δxð Þ2 ð34:34Þ

A similar condition applies to boundaries of type

3 (e.g., according to Equation 34.29).

This means that short time increments are

needed for materials with a low density and a

high conductivity and when small elements are

used. For information on critical time

increments, see Sterner and Wickström [9].

In practice, when calculating temperature in

fire-exposed structures, numerical stability is

only a problem when modeling sections of thin

metal sheets with high thermal conductivity.

Then according to Equation 34.34, very short

time increments are required. The problem may,

however, be avoided by prescribing that nodes

close to each other shall have the same tempera-

ture. This technique has been applied in the code

TASEF [9]. In this code a technique is also

developed in which the critical time increment

is estimated and thereby acceptable time

increments can be calculated automatically at

each time step.

Available Computer Codes
for Temperature Calculations

Several computer codes are commercially avail-

able for calculating temperature in fire-exposed

structures. In general modern codes are based on

the finite element method. Some are specifically

developed and optimized for calculating temper-

ature in fire-exposed structures whereas others

are more general-purpose codes.

TASEF [10, 11] and SAFIR [12] are examples

of programs that have been developed for fire

safety problems. They both for temperature-

dependent material properties and boundary

conditions. TASEF employs a forward difference

solving technique, which makes it particularly

suitable for problems in which latent heat due

to, for example, evaporation of water must be

considered. It yields in most cases very short

computing times, in particular for problems

with a large number of nodes. Both TASEF and

SAFIR have provisions for modeling heat trans-

fer by convection and radiation in internal voids.

TASEF can be obtained from TASEF Ltd., UK

and SAFIR from the University of Liège,

Belgium.

There are many very advanced general-

purpose finite element computer codes commer-

cially available such as ABAQUS [13],

ANSYS [14], ADINA [15], HEATING [See

www.oecd-nea.org/tools/abstract/detail/psr-0199/

] and Comsol [16]. The main advantage of using

such codes is that they can be used in combination

with structural codes and that they come

with advanced graphical user interfaces and

postprocessors.

Accuracy of Finite Element Computer
Codes

At the least the following three steps must be con-

sidered when estimating the accuracy of computer

codes for numerical temperature calculations:

1. Validity of calculation model

2. Accuracy of material properties

3. Accuracy and reliability of the numerical

algorithms of the computer code

The first point is, of course, important. For

example, the effects of spalling or water migra-

tion cannot be accurately predicted with a code

based on just heat transfer according to the

Fourier heat transfer equation.

The second point is also crucial. Errors in

material property input will be transmitted into

output errors. Methods for measuring material

properties at high temperature were briefly

discussed earlier.
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Finally, the numerical verification of the

computer code itself is also important. By def-

inition, verification is the process of determin-

ing that a model implementation accurately

represents the developer’s conceptual descrip-

tion of the model and the solution to the model

[17]. If correctly used, most codes yield results

with acceptable accuracy. A scheme to follow

including a number of reference cases of vari-

ous levels of complexity have recently been

presented in an SFPE standard [Standard on

calculation methods to predict the thermal per-

formance of structural and fire resistive

assemblies, please ask Chris Jelenewicz for

advice on the status of the standard] partly

based on cases earlier suggested by Wickström

and Pålsson [18] and Wickström [19]. It is

mainly developed for finite element codes but

it may also be used for codes based on finite

difference principles. The first reference exam-

ple is a linear problem that can be solved

analytically. When increasing the number of

elements the results should converge to one

correct value. Codes yielding results that con-

verge smoothly when increasing the number of

elements are generally deemed reliable for the

type of problems considered. The scheme

suggested employs problems that are relevant

for fire safety engineering, including effects of

conductivity varying with temperature, latent

heat, radiant heat transfer boundary conditions,

and combinations of materials, concrete, steel,

and mineral wool. For the development of the

SFPE standard the computer codes ABAQUS

and TASEF were used to obtain solutions

which were deemed reliable as these codes

use different solutions algorithms.

Calculation of Temperature in Steel
Structures

Metals in general conduct heat very well. The

thermal conductivity of steel is on the order of

30 times higher than the corresponding value for

concrete and 100–1000 times higher than that of

insulation products. Therefore, the temperature

field in a steel section may in many fire engineer-

ing cases be assumed uniform. In particular the

temperature across the thickness of a steel sheet

will be uniform, whereas the temperature in the

plane of the sheet may vary considerably,

depending on boundary conditions. The methods

presented in Chap. 53, “Analytical Methods for

Determining Fire Resistance of Steel Members,”

assume uniform steel section temperatures. Then

zero- or one-dimensional calculation techniques

may often be used. For more general two- and

three-dimensional cases, numerical computer

codes are needed.

Thermal Properties of Steel

The thermal conductivity of carbon steel as a func-

tion of steel temperature according to Eurocode

3 [20], is shown in Fig. 34.8. It can also be obtained

from Table 34.1.

The specific heat capacity is in most cases

more important than the conductivity. In many

cases it is accurate enough and convenient to

assume a constant specific heat capacity. How-

ever, for more accurate calculations the

variations with temperature as shown in

Fig. 34.9 [20] or given in Table 34.2 are

recommended in Eurocode 3 [20]. This specific

heat capacity varying with temperature yields in

general lower calculated temperatures than when

a constant value of 500 J/(kg K) is assumed.

Insulated Steel Structures

In particular in the case of insulated steel

sections the steel temperature over a section

may be assumed uniform. Then the surface heat

transfer resistance 1/htot is in most cases negligi-

ble in comparison with the heat resistance (i.e.,

the thickness over the conductivity of the insula-

tion di/ki). htot is the combined heat transfer coef-

ficient due to radiation and convection as given

in Equation 34.13. The fire-exposed surface tem-

perature is then approximately the same as the
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fire temperature, and the heat transfer to the steel

may under steady-state conditions be

approximated as

qtot ¼ As ki=dið Þ T f � Ts

� � ð34:35Þ

where As is the fire-exposed area, and Tf and Ts
are the fire and steel temperatures, respectively.

If the heat capacity of the insulation is negligible

in comparison to that of the steel, transient steel

temperature can be obtained from the heat bal-

ance equation

As ki=dið Þ T f � Ts

� � ¼ csρsVs ∂Ts=∂tð Þ ð34:36Þ

where cs and ρs are the specific heat capacity and

density, respectively, of steel and Vs is the vol-

ume per unit length of the considered steel sec-

tion. In case of heavy insulations when the heat

capacity of the insulation cannot be neglected,

see the following section on heavily insulated

steel structures.

A very simple solution can be obtained if a

constant fire temperature rise and constant mate-

rial properties are assumed; that is,

Ts � T0ð Þ ¼ T f � T0

� �
1� e� t=τð Þ
h i

ð34:37Þ

where the characteristic response time or time

constant τ of the section is identified as

τ ¼ csρsVs=As ki=dið Þ ¼ di=kið Þ csρsð Þ= As=Vsð Þ
ð34:38Þ

The relation As/Vs is denoted the section factor

or the shape factor that has the dimension one

over length. Instructions on how to obtain this

factor for various configurations are given in

Table 34.3.

For a fire temperature Tf arbitrarily varying

with time or when the material properties vary

with temperature, the steel temperature may be

obtained (e.g., from the numerical scheme

derived from Equation 34.36) as

ΔTs=Δt ¼ T i
f � T i

s

� �
=τ ð34:39Þ

whereΔTs equals Tiþ1
s � T i

s

� �
andΔt are the steel

temperature rise and the time increment, respec-

tively. The superscripts i and i + 1 denote the

numerical order of the time increments. When

the thermal properties vary with temperature, the

time constant τ as defined by Equation 34.38

needs to be updated at each time increment. A

forward difference solution scheme can be

obtained as

Table 34.1 Thermal conductivity of carbon steel as a

function of the temperature [20]

Temperature (�C) Conductivity (W/m K)

20 < Tst < 800 54 � 3.33 � 10�2 Tst
800 < Tst < 1200 27.3
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Tiþ1
s ¼ Δt=τ � T i

f þ 1� Δt=τð Þ � T i
s ð34:40Þ

This forward difference scheme is, however,

numerically stable only if

Δt � τ ¼ di=kið Þ csρsð Þ= As=Vsð Þ ð34:41Þ
This condition must be fulfilled at each time

increment. In practice time increments Δt longer
than 10 % of that critical value should not be used

to ensure accurate results.

Heavily Insulated Steel Structures

The heat capacity of the insulation normally has

an insignificant influence on the steel temperature

rise rate. However, it will considerably reduce the

steel temperature rise of sections protected with

relatively heavy insulation. A simple approxima-

tive approach is then to lump a third of the heat

capacity of the insulation to the steel [22–24].

Equation 34.39 may then be modified as

ΔTs=Δt ¼ T i
f � T i

s

� �
= τ 1þ μ=3ð Þ½ 	þ

exp μ=10ð Þ � 1½ 	ΔT f =Δt
ð34:42Þ

where μ is the relation between the heat capacity

of the insulation and the steel,

μ ¼ Aidiρicið Þ= Vsρscsð Þ ð34:43Þ
and where ρi and ci are the density and the spe-

cific heat capacity of the insulation, respectively.

When the material properties vary with tempera-

ture, they may be updated at each time incre-

ment. The latter term of Equation 34.42

represents a time delay due to the heat capacity

of the insulation. ΔTf is the fire temperature rise

between two time increments. Notice that when

the heat capacity of the insulation is much

smaller than that of the steel, μ vanishes and

Equation 34.42 becomes identical to

Equation 34.39.
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Fig. 34.9 Specific heat of

steel as a function of the

temperature [20]

Table 34.2 Specific heat capacity of carbon steel as a function of the temperature [21]

Temperature (�C) Specific heat capacity (J/[kg K])

20 < Tst < 600 425 + 7.73 � 10�1 Tst � 1.69 � 10�3 Tst
2 + 2.22 � 10�6 Tst

3

600 < Tst < 735 666 + 13,002/(738 � Tst)

735 < Tst < 900 545 + 17,820/(Tst � 731)

900 < Tst < 1200 650
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Equation 34.42 has been adopted by Eurocode

3 [20]. The steel temperature can then be

obtained, for example, by a forward difference

scheme derived from Equation 34.42 as

Tiþ1
s ¼ T i

s þ Δt T i
f � T i

s

� �
= τ 1þ μ=3ð Þ½ 	�

exp μ=10ð Þ � 1½ 	ΔT f

ð34:44Þ
As an illustration of the importance of consid-

ering the heat capacity of the insulation, a simple

example of a steel section is analyzed consider-

ing the relative heat capacity μ of the insulation

and for comparison neglecting it (i.e., μ ¼ 0). A

section factor Ai /Vs � As /Vs ¼ 500 m�1 and an

insulation thickness di ¼ 0.05 m, a conductivity

ki ¼ 0.2 W/m K, and a specific heat capacity

ci ¼ 800 Ws/kg are assumed. Calculated steel

temperature developments applying Equa-

tion 34.44 considering and not considering the

heat capacity of the insulation (μ ¼ 0) are shown

in Fig. 34.10. For comparison, temperature rises

obtained by accurate finite element calculations

are shown as well. Notice how well the

temperatures calculated by FEM match the

temperatures obtained using the scheme

according to Equation 34.44 considering the

heat capacity of the insulation. On the other

hand, the calculated temperature becomes much

higher if the heat capacity of the insulation is not

considered. In this case the predicted time to

reach a steel temperature of 500 �C is on the

Table 34.3 Section factor As/Vs for steel members insulated by fire protection material [20]

Sketch Description Section factor (As/Vs)

Contour encasement of uniform thickness Steel perimeter

Steel cross-sectional area

Hollow encasement of uniform thicknessa 2(b + h)

Steel cross-sectional area

Contour encasement of uniform thickness,

exposed to fire on three sides

Steel perimeter – b

Steel cross-sectional area

Hollow encasement of uniform thickness,

exposed to fire on three sidesa
2h + b

Steel cross-sectional area

aThe clearance dimensions c1 and c2 should not normally exceed h/4
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order of a quarter of an hour shorter when the

heat capacity is not considered. Notice also that

Equation 34.44 predicts a negative temperature

change for the first 5–10 min, which of course is

a numerical error embedded in the equation.

Insulated Steel Structures Exposed to

Parametric Fires

Eurocode 3 [20] (EN1991-2-1) has introduced

the concept of parametric fires as a convenient

way of expressing a set of postflashover design

fires. The fire temperature Tf is then expressed as

(see Eurocode 1 [4])

T f ¼ 20þ 1325
�
1� 0:324e�0:2t*�

0:204e�1:7t* � 0:472e�19t*
� ð34:45Þ

where the modified or scaled time is expressed as

t* ¼ Γt ð34:46Þ
and where Γ is a function of the compartment

properties (i.e., sizes of openings and thermal

properties of enclosure surfaces). A Γ-value
approximately equal to unity yields the ISO

834 standard fire, whereas Γ less than unity

yields a more slowly growing fire and Γ greater

than unity a faster growing fire. The fire duration

depends on the fuel density in the fire compart-

ment (see Eurocode 3 [20]). Below it is

demonstrated how these types of design fires

can facilitate the calculation and the presentation

of temperature in fire-exposed insulated steel

sections. The concept of parametric fires can

also be used for concrete structures using the

technique outlined later in this chapter.

When using parametric design fires, the

temperature of insulated steel sections can, of

course, be obtained by numerical calculations

according to Equation 34.40. Then nonlinear

phenomena such as temperature-dependent

material properties may be considered. However,

if the thermal properties are assumed constant

and the fire temperature is expressed by expo-

nential terms as in Equation 34.45, then the steel

temperature rise as a function of time can be

obtained by integration as a closed-form analytic

expression [25].

For convenience Equation 34.45 is first writ-

ten in the form

Ts ¼ 20þ
X3

i¼0

Biexp �βit*ð Þ ð34:47Þ

where the constants Bi and βi are given in

Table 34.4.

Then the steel temperature can be obtained as

a function of the modified fire duration t* and

the modified time constant τ* of the steel

section as

Ts � 20 ¼
X3

i¼0

Bi

1� βiτ*
exp �βit*ð Þ � exp �t*=τ*ð Þ½ 	

ð34:48Þ
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Fig. 34.10 Comparison of

calculated steel

temperature rise of an

insulated steel section

when exposed to a standard

ISO 834 fire exposure,

considering and neglecting

the heat capacity of the

insulation, respectively

Table 34.4 Constants in the analytical expression of the

parametric fire curve

i 0 1 2 3

Bi (
�C) 1325 �430 �270 �625

βi (h�1) 0 �0.2 �1.7 �19
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where

τ* ¼ Γτ ð34:49Þ
The insulated steel section time constant τ is

given in Equation 34.38. The relation between

the temperature rise as a function of modified

time as expressed in Equation 34.48 is also

given in the diagram shown in Fig. 34.11 for

various modified time constants τ*. The diagram
in Fig. 34.11 is particularly easy to use for ISO

834 standard fire exposures when Γ by definition

is equal to unity.

As an example, consider a steel section with a

section factor Ast/Vst ¼ 200 m�1 insulated with a

25-mm-thick protection board with a constant

thermal conductivity of 0.1 W/(m K). The steel

density and specific heat capacity are 7800 kg/m3

and 500 J/(kg K), respectively. The section time

constant may then be obtained from Equa-

tion 34.38 as τ ¼ 4875 s or 1.35 h. Then if the

section is exposed to standard fire (Γ ¼ 1), a

temperature rise of 418 �C may be obtained

from Equation 34.48 or from Fig. 34.11. If the

same section is exposed to a more slowly grow-

ing fire with Γ ¼ 0.5, then τ* ¼ Γτ ¼ 0.68 h

and the temperature rise after 1 h may be found

for a modified time of t* ¼ Γt ¼ 0.5 h to be

363 �C. On the other hand, if the section is

exposed to a fast-growing fire with Γ ¼ 3.0,

then τ* ¼ (3.0) · (1.35) ¼ 4.05 h and t* ¼
(3.0) · (1.0) ¼ 3.0 h, and the steel temperature

rise can be obtained from Equation 34.47 or from

Fig. 34.11 as 505 �C. Notice that the maximum

steel temperature for a given fire exposure time

increases considerably with an increasing

Γ-factor. It must, however, also be kept in mind

that the fire duration for a given fuel load is

proportional to the inverse of the opening factor

included in the Γ-factor. For more information

see, for example, Eurocode 1 [4].
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Fig. 34.11 Temperature of various insulated steel

sections exposed to parametric fires in the heating phase

as a function of modified time t*. The thermal properties

of the steel sections are expressed in modified time

constants τ* [25]
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Unprotected Steel Structures

The temperature of unprotected steel structures

is numerically more difficult to calculate as the

highly nonlinear heat transfer is decisive for the

temperature development of the steel. The total

heat transfer qtot may be obtained from Equa-

tion 34.11 or Equation 34.12. Then the steel

temperature can be obtained from the differen-

tial heat balance equation in a similar way as

for insulated steel sections (see also

Equation 34.36).

htot T f � Ts

� � ¼ csρs Vs=Asð Þ ∂Ts=∂tð Þ ð34:50Þ

where the total heat transfer coefficient htot may

be obtained from Equation 34.13. This equation

can be solved numerically with a forward differ-

ence scheme in a similar way as for insulated

sections as

Tiþ1
s ¼ Δt=τð ÞT i

f þ 1� Δt=τð ÞT i
s ð34:51Þ

where the characteristic response time τ of the

steel section in this case is defined as

τ ¼ csρsVs=Ashtot ¼ csρsð Þ= htot As=Vsð Þ½ 	
ð34:52Þ

Notice that the thermal properties of the steel

may vary with temperature, and in particular

the total heat transfer coefficient htot will increase

substantially with the temperature level. It

would, therefore, be misleading to call τ a time

constant in this case.

The stability criterion for the explicit numeri-

cal scheme according to Equation 34.51 may

then be expressed as

Δt � τ ¼ csρsð Þ= htot As=Vsð Þ½ 	 ð34:53Þ

Thus, the critical time increment decreases con-

siderably as htot increases with time and increas-

ing temperature levels.

Principles for calculating the section factors

for various types of configurations of unprotected

steel can be found in Table 34.5 [20].

Shadow Effects

When an open section such as an I-section is

exposed to fire, the heat transfer by radiation

will be partly shadowed (Fig. 34.12). That

means the section will only receive as much

heat from the fire as if it had the same circumfer-

ence as a boxed section. Therefore, it is appropri-

ate to replace the area per unit length As with the

so-called boxed area A□ in Equations 34.50 and

34.52 as the radiation heat transfer mode

dominates at elevated temperature. The boxed

area A□ is typically for an I-section 30 % less

than the corresponding area As, which means a

proportional increase of the section response time

τ. Alternatively, a section with a 40 % higher

section factor would yield the same temperature

if the concept of shadow effects is applied. This

means that by considering the shadow effects in

the calculations many more open steel sections

can be accepted without thermal protection.

The principal of shadow effects is particularly

important for bare, unprotected steel sections,

although the concept can be applied to other

types of structures as well.

Example of Steel Temperatures
Calculated Using Finite Element Codes

The preceding steel temperature calculations

assume uniform steel temperatures in the section

analyzed as a crude approximation. It leads

indeed in general to solutions on the safe side

(i.e., the temperatures are overestimated and

often overdesigned, leading to unnecessary

costs). For more precise analyses numerical

calculations are needed employing, for example,

finite element computer codes. An example is

given below.

An encased I-section beam is carrying a con-

crete slab. It is exposed to standard fire

conditions according ISO 834 (Fig. 34.13). Heat

transfer conditions according to Equation 34.11

are assumed with ε ¼ 0.8 and h ¼ 25 W/m2 K.

The thermal properties of steel and concrete are
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Table 34.5 Section factor As/Vs for unprotected steel members [20]

Open section exposed to fire on all sides: Tube exposed to fire on all sides:

Open section exposed to fire on three sides: Hollow section (or welded box section of uniform thickness)

exposed to fire on all sides:

I-section flange exposed to fire on three sides: Welded box section exposed to fire on all sides:

(continued)
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Table 34.5 (continued)

Angle exposed to fire on all sides: I-section with box reinforcement, exposed to fire on all sides:

Flat bar exposed to fire on all sides: Flat bar exposed to fire on three sides:

AAs

I-section exposed to fire from 
four sides. The surfaces 
between the flanges will be  
partly shadowed.

The boxed area of the 
I-section, A  ,  will have a 
shorter periphery than the 
original section. 

a bFig. 34.12 Illustration of

the shadow effect. The

boxed value area per unit

length A□ of a steel section

represents the area exposed

to heating conditions from

the fire
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as given in Eurocodes 2 and 3, respectively,

shown above and below. The encasement boards

are assumed to have a thermal conductivity (k) of
0.2 W/m K and a volumetric specific heat capac-

ity (cρ) of 40 kJ/m3. The finite element

discretization model is shown in Fig. 34.14.

Heat transfer inside the void is assumed to be

by radiation only with an internal surface emis-

sivity of 0.8.

The calculated temperature histories in the

steel flanges are shown in Fig. 34.15. For compar-

ison the temperature calculated assuming uniform

temperature is also included. Notice that the tem-

perature difference between the minimum and

maximum steel temperatures are on the order of

130 �C due to uneven heating and steel mass

distribution and in particular due to the cooling

of the top flange by the concrete slab. A simple

approximate calculation can be obtained assuming

a uniform steel section temperature, according to

the discussion on insulated steel structures, with

the section factor calculated as shown in

Table 34.3. A time constant τ equal to 6460 s or

1.8 h can then be calculated (Equation 34.38) and

a uniform steel temperature after 2 h of about

635 �C can be obtained from Fig. 34.10. Notice

that this temperature is considerably higher than

the average temperature obtained with the much

more accurate finite element model.

Calculation of Temperature
in Concrete Structures

Reinforced concrete structures are sensitive to

fire exposure for mainly two reasons. They may

spall due to combinations of internal water pres-

sure and high thermal stresses, and they may

gradually lose their load-bearing capacity when

the reinforcement bars get hot, reaching temper-

ature levels above 400 �C. Prestressed steel may

even lose strength below that level. In addition

the concrete loses both strength and stiffness at

elevated temperature. When occurring, spalling

usually starts within 30 min of severe fire expo-

sure. Because the spalling phenomenon is very

complex and cannot be predicted with simple

mathematical temperature models, it will not be

further discussed here. Thus, the procedures

presented below presume that no spalling occurs

that could considerably influence the temperature

development.

In general, temperatures in fire-exposed

structures may be obtained from tabulated

values (see, e.g., Eurocode 2 [26]) or by more

or less advanced calculations. Below some sim-

ple calculation methods are given. For more

general situations, finite element calculations

are needed.

Concrete
160 mm

Insulation

Steel
flange

30 mm

11 mm

19 mm

300 mm

300 mm

Steel
web

Fig. 34.13 Encased

I-section steel (HE 300B)

beam carrying a concrete

slab. Slab thickness

160 mm, insulation

thickness 30 mm, steel

height and width 300 mm,

flange thickness 19 mm,

and web thickness 11 mm

34 Methods for Predicting Temperatures in Fire-Exposed Structures 1121



Thermal Properties of Concrete

The thermal conductivity of concrete decreases

in general with rising temperature. It depends on

concrete quality and type of ballast. For design

purposes curves as shown in Fig. 34.16 may be

used according to Eurocode 2 [26]. For more

accurate calculations with alternative concrete

qualities more precise material data may be

needed, as discussed earlier.

The specific heat of dry concrete does not vary

much with temperature. However, in reality con-

crete structures always contain more or less

physically bound water. This water will evapo-

rate at temperatures above 100 �C and constitute

a heat sink as the evaporation consumes a lot of

heat. Thus, the specific heat capacity for normal

weight concrete according to Eurocode 2 is as

shown in Fig. 34.17.

The emissivity of concrete surfaces may be

assumed to be 0.8 and the convective heat trans-

fer coefficient may, when simulating fully devel-

oped fires, be assumed equal to 25 W/m2 K. See,

for example, Eurocode 1 [4]. In general the

assumed values of these parameters have little

influence on calculated temperatures inside con-

crete structures.

Penetration Depth in Semi-Infinite
Structures

Concrete is a material with relatively high den-

sity and low conductivity. Therefore, it takes a

Fig. 34.14 Finite element discretization used to calcu-

late the temperature development of the steel beam shown

in Fig. 34.13 when exposed to a standard fire exposure

according to ISO 834
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long time for heat to penetrate into the structure

and raise its temperature, or in other words it

takes time before a temperature change at one

point is noticeable at another point. Thus, in

many cases a concrete structure may then be

assumed semi-infinite.

For the idealized case of a semi-infinite

body at a uniform initial temperature Ti where

the surface temperature momentarily is changed

to a constant level of Ts, the temperature rise

(T � Ti) inside the body at a depth x at a time

t may be written as a function of the normalized

group η ¼ x = 2
ffiffiffiffiffiffiffiffi
αtð Þp� 


where α is an assumed

constant thermal diffusivity as defined in Equa-

tion 34.22. The relative temperature rise may

then be written as

T � Tið Þ
Ts � Tið Þ ¼ erfc ηð Þ ¼ 1� er f ηð Þ ð34:54Þ

The Gauss complementary error function erfc is

shown in Fig. 34.18. Tabulated values of the

Gauss error function may be found in textbooks

such as Holman [1]. For values of η greater than a
value of 1.4 the relative rise is less than 5 %.

Thus, depending on accuracy, the temperature

penetration depth δ at a given time may be

estimated as

δ ¼ 2:8
ffiffiffiffi
αt

p ð34:55Þ
As an example, the temperature rise can be

estimated to penetrate only about 0.11 m into a

concrete structure after 1 h, assuming a
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conductivity of a 1 W/m K, a density of 2300 kg/

m3, and a specific heat capacity of 1000 J/(kg K).

Penetration depth can actually be applied to

steel as well. A temperature change at one point

of a steel member will not be noticeable beyond a

distance corresponding to the penetration depth.

Simple One-Dimensional Calculations

With the thermal properties of concrete as given

in the earlier discussion on measurement of ther-

mal properties, the temperature can be calculated

in structures exposed to fires. In general, numeri-

cal procedures such as finite element methods

need to be employed. Wickström [27–29] has,

however, shown, based on numerous finite

element calculations, that in one-dimensional

cases the temperature inside concrete structures

exposed to standard fire conditions according to

ISO 834 may be obtained from the diagrams

shown in Figs. 34.19 and 34.20. These diagrams

apply to normal weight concrete with thermal

properties, according to Eurocode 2 [26], as

shown in the earlier section on measurement of

thermal properties.

In Wickström [27–29] it is shown that the

same type of diagrams can be used more gener-

ally considering both various parametric fires and

various material properties. In these references

techniques are also presented on how

temperatures can be obtained in walls exposed

from two sides and in simple two-dimensional

cases by superpositioning based on the same
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simple one-dimensional approximations as

outlined below.

Thus, the diagram given in Fig. 34.19 shows

the ratio ηs between the concrete surface temper-

ature and the standard fire temperature, according

to ISO 834, (see Equation 34.63) as a function of

time.

ηs ¼
Ts

T f
ð34:56Þ

The coefficient ηs is in general a function of the

group time t over thermal inertia
ffiffiffiffiffiffiffiffiffiffiffi
kρcð Þp

of the

concrete. In Fig. 34.19 normal weight concrete

with thermal properties according to Eurocode

2 [26] is assumed.

Figure 34.20 shows in turn the ratio between

the internal temperature Tx at a depth x and the

surface temperature Ts. Thus,

ηx ¼
Tx

Tw
ð34:57Þ

The coefficient ηx is in principle a function of the
Fourier number (i.e., the thermal diffusivity k/

(cρ) of the concrete times the fire duration t over

the depth x squared). Results from computer

calculations are shown in Fig. 34.20. In these

calculations thermal properties of concrete with

a water content of 1.5 % are assumed according

to Eurocode 2. Both upper and lower limit values

of the conductivity (see Fig. 34.16) are included

in the finite element calculations as well as

depths of 25, 50, and 100 mm. A straight line is

drawn in the logarithmic-linear diagram, which

yields approximate temperatures slightly higher

than would be obtained with more accurate finite

element calculations.

The internal concrete temperature may now

be written as

Tx ¼ ηsηxT f ð34:58Þ
The graphs in Figs. 34.19 and 34.20 can be

approximated by simple expressions. Thus,

ηs ¼ 1� 0:062t�0:88
� � ð34:59Þ

and

ηx ¼ 0:16ln t=x2
� �� 0:70

� 
 ð34:60Þ

respectively, where t is time in hours and x is

distance in meters from the surface.

Then, in summary, for standard fire exposure

according to ISO 834 and normal weight con-

crete according to Eurocode 2 [26] (see earlier

section on thermal properties), a very simple

closed-form solution may be obtained for the
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lower limits of the conductivity as shown in Fig. 34.16
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temperature at arbitrary times and depths by

inserting Equations 34.59 and 34.63 in hours

34.60 into Equation 34.58:

Tx ¼ 1� 0:062t�0:88ð Þ�0:16 ln t=x2ð Þ
�0:70



345log 480tþ 1ð Þ ð34:61Þ

As an illustration, the temperature in a slab of

normal weight concrete is calculated at a depth of

4 cm when exposed to an ISO 834 standard fire

for 1 h. At first ηs is obtained from Fig. 34.19 to

be 0.94 for t ¼ 1 h. Then for t/x2 ¼ 1.0/

(0.04)2 ¼ 625 h/m2, Fig. 34.20 yields

ηx ¼ 0.33. As the standard time temperature

rise after 1 h is 925 �C, the concrete surface

temperature rise is obtained from Equation 34.56

as 0.94*925 ¼ 870 �C and Equation 34.61 yields

the temperature rise at a depth of 4 cm to be

Tx ¼ 0.94*0.33*925 �C ¼ 287 �C. A

corresponding accurate finite element calculation

yields a temperature rise of Tx ¼ 277 �C.

Fire-Insulated Concrete Structures

In some applications, it may be advantageous to

insulate concrete structure surfaces to prevent

them from fast temperature rises. This insulation

may either be to avoid spalling or to give the

concrete-embedded reinforcement bars addi-

tional thermal protection (Fig. 34.21). Behind

the protection the temperature of the concrete

surface will not rise as quickly as when directly

exposed to fire. Some insulation materials

undergo chemical transformations requiring a

lot of heat (latent heat) to raise the temperature

whereas others work just as passive thermal

barriers. Only the latter type of insulation

systems is further discussed here and the formula

given below only applies to this type of inert

material.

The thermal efficiency of a protection layer is

sometimes expressed as the thickness of an addi-

tional concrete coverage that would yield the

same protection. Wickström and Hadziselimovic

[30] have shown that the same effect is approxi-

mately obtained when the thermal resistance of

the insulation is the same as that for the concrete

(i.e., di/ki ¼ dc/kc where d is thickness and

k conductivity, respectively, and the indices

i and c stand for insulation and concrete, respec-

tively). Thus, the equivalent concrete layer thick-

ness can be calculated as

dc ¼ kcdi=ki ð34:62Þ
which indicates that the influence of the specific

heat capacity and density of the protecting mate-

rial is negligible in the case of protecting con-

crete structures. The thermal inertia of the

concrete is totally dominating over the inertia of

the insulation.

As an example, a 10 mm board of vermiculite

with a thermal conductivity of 0.2 W/m K

corresponds to a concrete protection layer of

50 mm, assuming the concrete has a conductivity

 Concrete slab fire insulated from below Concrete cover providing similar thermal protection

a b

Fig. 34.21 Protection of a concrete structure layer with thickness di, which gives an equivalent thermal protection as a

concrete layer with thickness dc
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of 1.0 W/m K for the temperature interval con-

sidered. This could mean considerable savings in

both weight and space for a concrete structure.

Calculation of Temperature in Timber
Structures

Modeling the thermal behavior of wood is com-

plicated by phenomena such as moisture evapo-

ration and migration, and the formation of char

has a decisive influence on the temperature

development. Nevertheless, it has been shown

that general finite element codes such as

SAFIR, TASEF, and COMSOL can be used to

predict temperature in fire-exposed cross

sections of glued laminated beams [31] provided

apparent thermal material properties and appro-

priate boundary conditions are used. Other

specialized numerical codes for timber structures

have been developed by Fung [32] and

Gammon [33].

More commonly empirical rules are used to

estimate the penetration of the charring layer and

the loss of strength of timber structures (see, e.g.,

Eurocode 5 [34]).

Heat Transfer in Fire Resistance
Furnaces

Nominal time-temperature relations are clearly

defined in fire resistance test standards such as

ISO 834, EN 1363-1, and ASTM E119. How-

ever, furnaces have various characteristics

depending on the difference between the black

body radiation temperature Tr (Equation 34.7)

and the gas temperature Tg. In addition there is

a time delay of the temperature recording due to

the thermal inertia of the monitoring

thermocouples. Therefore, when theoretically

simulating fire resistance tests, it must be consid-

ered how the temperature has been measured in

the various standards.

Furnaces Controlled According to ISO
834 and EN 1363-1

In ISO 834 and EN 1363-1 the nominal furnace

temperature Tf is given as

T f ¼ 20þ 345log10 8tþ 1ð Þ ð34:63Þ
The furnace temperature shall be monitored with

plate thermometers (see ISO 834-1 and EN 1363-

1). The time delay or, in other words, the time

constant of the plate thermometers in a furnace

test is negligible, which is indicated in

Fig. 34.22, where the calculated temperature

response of a plate thermometer exposed to

uniform furnace temperature according to ISO

834 is shown. The heat transfer is then calculated

according to Equation 34.11 assuming the emis-

sivity ε and the convection heat transfer coeffi-

cient h equal to 0.9 and 25 W/m2 K, respectively.

Notice that the plate thermometer temperature

follows the nominal curve very closely except for

the first few minutes. Thus, the time delay of the

plate thermometer temperature recordings due to

inertia in a standard fire test may be neglected
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and the heat transfer to a specimen surface can

accurately be calculated according to

Equation 34.18.

Sometimes it is of interest to know the inci-

dent radiation level under a furnace test. This

level can be measured directly with heat flux

meters, but in the section below it is shown how

this radiation level may be obtained from plate

thermometer measurements.

The incident radiation heat flux qinc may be

obtained from Equation 34.16, and plate ther-

mometer temperature recordings given the gas

temperature Tg, the emissivity εPT, and the con-

vection heat transfer coefficient hPT of the plate

thermometer are known as

qinc ¼ σT4
PT � hPT Tg � TPT

� �
=εPT ð34:64Þ

The latter term in Equation 34.64 is relatively

small and may be treated as an error term. For

values of the emissivity εPT and the convection

heat transfer coefficient hPT equal to 0.8 and

25 W/m2 K, respectively, a temperature level of

1000 K and a gas temperature Tg deviating from

the plate thermometer temperature TPT by as

much as 50 K yields the latter term of Equa-

tion 34.64 to be less than 3 %. At higher temper-

ature levels and at minor deviations between gas

and radiation temperatures this error is much

smaller and probably seldom greater than must

be anticipated when measuring incident radiation

directly with heat flux meters.

Furnaces Controlled According to ASTM
E119

In the American test standard ASTM E119 the

nominal furnace temperature is specified

according to the time-temperature relation

given in Table 34.6.

The standard thermocouple for monitoring the

furnace temperature is, however, very thick and,

therefore, very slow. According to ASTM E119,

it shall have a time constant within the range of

from 5.0 to 7.2 min. To eliminate the effects of

the time delay the thermocouples may be

analyzed as bare steel sections. Thus, by

applying Equation 34.51, the effective fire

temperature Tf can be derived from the

corresponding thermocouple measurements

Ttc as

Tiþ1
f ¼ Tiþ1

tc þ τ=Δt Tiþ1
tc � T i

tc

� � ð34:65Þ

The furnace thermocouple time constant, as

referred to in the ASTM E119 standard, is rather

imprecisely specified as the heat transfer by radi-

ation that is nonlinear and increases by the tem-

perature level raised to the fourth power. More

realistic is to assume a time constant of 6 min

(in the middle of the range from 5.0 to 7.2 min) at

a furnace temperature level of perhaps 1000 K,

and then obtain the heat transfer to the thermo-

couple by calculating the heat transfer according

to Equation 34.11 assuming ε and h equal 0.9 and
50 W/m2 K, respectively. Then match a surface-

to-volume ratio obtained from Equations 34.52

and 34.13 to obtain the stipulated time constant.

(As a comparison, the corresponding time con-

stant for a plate thermometer at the same temper-

ature level is on the order of 15 s.)

Figure 34.23 shows the actual furnace temper-

ature rise in a furnace controlled ideally precisely

according to ASTM E119. Notice that the real or

effective furnace temperature is much higher

than indicated by the slowly responding ASTM

type of shielded thermocouples. It must, how-

ever, be noted that the above analysis assumes

that the furnace radiation and gas temperatures

are equal, which is seldom the case. The gas

temperature may be higher than the radiation

temperature and, therefore, the differences in

practice between the ASTM thermocouple and

the plate thermometer may be much less, as the

Table 34.6 Standard Fire Time-Temperature Relation

According to ASTM E119

Time

(min)

Temperature

rise (�C)
Time

(min)

Temperature

rise (�C)
0 0 90 986

5 556 120 1029

10 659 180 1090

15 718 240 1133

30 821 360 1193

60 925
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ASTM thermocouple is more sensitive to con-

vective heat transfer than the plate thermometer.

The general observation from this theoretical

analysis agrees with the test results reported by

Sultan [35]. The difference between the ASTM

type of thermocouples and the plate thermometer

is insignificant after 10 min.
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