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Introduction

Heat transfer is an area of thermal engineering

that focuses on the transport, exchange, and

redistribution of thermal energy. The three

modes or ways that heat can be transferred have

been termed conduction, convection, and radia-

tion. In this chapter, the basic physics associated

with conduction heat transfer will be presented,

and it will be shown through examples how the

tools and analysis typically used for conduction

problems can be applied to design and analysis

when fire occurs.

Conduction heat transfer only occurs in a

medium. This is a distinction between conduction

and radiation, which does not require a medium.

The medium or state of matter in which conduc-

tion takes place can be a gas, liquid, or solid. The

distinction between conduction and convection

heat transfer is associated with whether the

medium has some ordered flow or bulk motion.

Heat transfer, when there is a mass averaged

velocity, is termed convection. Heat transfer that

takes place in a stationary frame of reference is

called conduction. More details will be presented

on the mechanisms that allow heat transfer to

occur in a stationary medium as we proceed

through this discussion. Solutions will be

provided for selected configurations and

scenarios. The treatise of Carslaw and Jaeger [1]

covers most solutions for conduction phenomena.

Other useful texts that discuss conduction phe-

nomena are readily available [2, 3]. It is useful to

build up this discussion by first identifying where

conduction heat transfer ties into overall energy

conservation and energy transfer.

Energy Conservation

The fundamental laws that allow us to analyze

and predict fire phenomena are often termed

conservation laws. Conservation laws are essen-

tially balance equations that allow us to model

how variables that describe the physical world

dynamically evolve. In fire systems, we typically

model the physical world using mass conserva-

tion, momentum conservation, energy conserva-

tion, and chemical species conservation. For this

chapter, we are interested in describing how heat

is transferred in media that are not deforming

(i.e., are in rigid body motion with no unbalanced

forces) or reacting (fixed chemical species and

mass). We do assume, however, that the medium

can possibly have heat transferred to it either

through interactions with its surrounding or

through some other energy input into it. Also,

we assume that the medium may have different

amounts of thermal energy stored within it at

different locations. To more precisely describe

energy transfer processes, we rely on the first law

of thermodynamics. The energy conservation

principle is the basis for heat transfer.
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Thermodynamic Properties

The first law of thermodynamics is a statement of

energy conservation [4, 5]. It states that the

change in energy for an identifiable set of matter

can only result from heat transferred across the

material’s boundary or work done either by or on
the material. The thermodynamic property or

energy function that best describes the molecu-

lar, atomic, electronic, and nuclear energy of a

material is the internal energy. In terms of the

internal energy, U, the first law is

dU

dt
¼ _Qnet, in þ _Wnet, in

U is the internal energy, Q is heat added to the

system and W is work done on the system.

The total internal energy U is a system

integrated value that represents the total thermal

energy of the material system of interest. We can

describe the local internal energy in terms of amass

specific internal energy, u, that is simply the total

internal energy,U, for a region ofmatter divided by

the mass of that region. The internal energy, like

any other thermodynamic variable can be defined

in terms of other thermodynamic variables. There

is an approximation used in thermodynamics that

states that the internal energy for an incompressible

material can be specified in terms of the tempera-

ture. The thermodynamic property specific heat

capacity at constant volume, cv, relates

differential changes in the mass specific internal

energy to differential changes in temperature.

cv ¼ du

dT
and mcv dT ¼ dU

The mass is defined as the product of density and

volume. The control-mass statement of the first

law for a case with no net work done becomes:

ρVc
dT

dt
¼ _Qnet, in

This form of the first law neither provides infor-

mation about spatial variations in energy within

the medium nor describes how energy is trans-

ferred. Experience tells us that the heat transfer

into some identifiable mass element likely

depends on temperature differences. It will be

necessary to define the heat transfer rate in terms

of temperature differences. The empirical law

defining the heat transfer rate to a body immersed

in a fluid is called Newton’s law of cooling.

When Newton’s law of cooling is used, the heat

transfer rate to the body is _Qnet, in ¼ hA T � T1ð Þ
If we apply Newton’s law of cooling to the first

law, we arrive at a result called the lumped

thermal approximation in conduction analysis.

Lumped Thermal Analysis

Briefly, the lumped thermal approximation

allows one to model the overall transient thermal

response of a body at some initial temperature

subjected to either a change to the external fluid

temperature or as a result of some local heating

within the object. The validity of this approxima-

tion will be discussed in more detail in later

sections. For the purposes of this discussion, we

will say that the approximation is valid when the

time scales for internal energy transfer and

subsequent homogenization of the temperature

field within an object are much smaller than the

time scales for energy transfer from the surface

of the body to an external thermal reservoir. In

short, the lumped thermal approximation is rea-

sonable when temperature differences within a

body are relatively small when compared to tem-

perature differences between the surface of the

body and a characteristic temperature of the exte-

rior fluid. It can be shown that a nondimensional

heat transfer parameter called the Biot number

(Bi) which represents the ratio of the internal

conductive resistance to the external convective

resistance should be small for the lumped ther-

mal approximation to be valid. A mathematical

statement of the energy equation in the lumped

approximation is (Fig. 2.1):

dT

dt
¼ � hcA

ρVc
T � T1ð Þ

This first order ordinary differential equation

can be integrated and one form of the solution is:

T � Te

T0 � Te
¼ e� hcA=ρVcð Þt ¼ e�t=tc
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In the above, T0 is the initial temperature of the

body and Te is the external fluid temperature

surrounding the object. There is a characteristic

time in the problem defined as:

tc ¼ ρVc

hA

The characteristic time provides an estimate

of the time required for the nondimensional tem-

perature to relax to its steady value. This rela-

tively simple solution is useful in characterizing

a large number of important problems in fire

systems [6].

Example 1 The lumped thermal approximation

is frequently used to analyze the response of a

sprinkler head as it activates due to a change in

the environment temperature because of a fire. A

sprinkler head fuse can be modeled as a cylinder

of diameter 4 mm and length 12 mm. The density

can be approximated as being 1000 kg/m3. The

specific heat capacity is approximately 1 kJ/kgK.

The heat transfer coefficient of the smoke gases

is 20 W/m2K. If the smoke gases are 200 �C and

the fuse is initially at 20 �C, how long will it take

for the fuse to open if the activation temperature

is 80 �C?
The solution is arrived at from inverting:

T � Te

T0 � Te
¼ e� hcA=ρVcð Þt ¼ e�t=tc

tACT ¼ ρLc

hc
ln

T0 � Te

TACT � Te

For the values that we specified, we find that

the fuse opens in 243 s. Chapter 3, shows that the

heat transfer coefficient is proportional to the

fluid velocity h ¼ Cu1=2. This results in:

tACTu
1=2

ln
T0 � Te

TACT � Te

¼ ρLc

C
¼ RTI

This combination of parameters is the well

known response time index for sprinklers.

Fourier’s Law of Conduction

As previously noted, the lumped approximation

does not allow one to predict the spatial variation

of temperature within a body. In some sense, it

provides an average or lumped temperature

response. To be able to predict the spatial varia-

tion of temperature, it is necessary to introduce

another physical law that models how heat is

transported when temperatures differences exist

within a body. We expect heat to flow across a

body in proportion to the temperature difference

across the body, and perhaps inversely related to

the distance across the body. Fourier’s law states

that the heat flux is proportional to the tempera-

ture gradient (the spatial derivative of the tem-

perature). For a one dimensional homogeneous

and isotropic object this reduces to the simple

expression:

q} ¼ �k
dT

dx

We use the notation q00 to indicate a heat transfer

rate per unit area. The proportionality between

the heat flux and the spatial derivative of temper-

ature is the thermal conductivity.

Thermal Conductivity

For materials like air, water, glass, and copper,

the thermal conductivity is isotropic (i.e., does

not depend on orientation), but it has a tempera-

ture dependence. Under conditions in which the

overall thermal conductivity difference across

the body is small relative to the any particular

value of the thermal conductivity in the body, we

Fig. 2.1 Schematic showing convective flow over an

object that will be analyzed using a lumped thermal

approximation
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can consider k to be essentially a constant. In fire

applications, this is often not the case, but for the

sake of analysis we will often use this approxi-

mation when generating analytical solutions.

There are materials for which the thermal con-

ductivity depends both on the local temperature

and also on the orientation. In contrast to isotropic

materials for which there is no directional effect,

anisotropic materials have this directional depen-

dence. The most commonly encountered aniso-

tropic material in fire applications is wood. The

grain structure of wood is the source of the anisot-

ropy. Practically, we would find that for the same

temperature difference across a given thickness

of wood, the heat transfer rate depends on

whether this temperature difference is aligned

with the grains or aligned perpendicular to the

grains. Of course, as one heats wood, there are

also chemical changes to the wood. So, the ther-

mal conductivity depends on the temperature,

composition, and orientation. For a simple analy-

sis, the effects of decomposition are often

neglected for the initial ignition process.

Again, Fourier’s law states that the heat flux

vector, q
!00

, is proportional to the temperature gra-

dient, where the proportionality constant is the

thermal conductivity, k. In general, k is a second

order tensor and has different values depending on

the face and orientation of a differential volume

[1–3]. For a general anisotropic material

q
!00 ¼ �

kxx kxy kxz
kyx kyy kyz
kzx kzy kzz

24 35∇T

This suggests that the component of the heat

flux vector in the x-direction depends on all

components of the temperature gradient.

qx ¼ � kxx
∂T
∂x

þ kxy
∂T
∂x

þ kxz
∂T
∂x

� �
For some materials that are frequently dealt with

in fire analyses, such as wood, there is some

simplification in the dependence of thermal con-

ductivity on orientation. Laminates like wood are

said to be orthotropic. For an orthotropic mate-

rial, the off-diagonal elements of the thermal

conductivity tensor are zero and the diagonal

elements are not equal to each other.

k ¼
kxx 0 0

0 kyy 0

0 0 kzz

24 35
For metals, many crystalline solids, many amor-

phous solids, liquids, and gases, the conduction

process is considered to take place in an isotropic

medium. For such materials, the thermal conduc-

tivity can vary spatially and with temperature,

but does not have an orientation effect.

k ¼ k T x; yð Þð Þ
1 0 0

0 1 0

0 0 1

24 35

Homogeneous Systems
Most obvious in gases, it is known that random

molecular motion transfers heat from hot

molecules to cooler ones. For solids other wave

like effects are important. There is a relatively

simple theory that describes the physics of ther-

mal conductivity. Conduction heat transfer can

be thought of in terms of a carrier particle with a

characteristic velocity and characteristic length

scale over which it acts. The development of this

perspective of thermal conductivity, based on the

properties of notional particles is described by

Kaviany [7, 8]. In some sense, this description is

a simple generalization of the kinetic theory

description of thermal conductivity for gases.

For gases, we understand that the kinetic theory

of gases describes how k varies in terms of a

characteristic gas velocity, u, the number density

of molecules, n, the mean free path, l, and the

molecular internal energy described by the

molecular mass and heat capacity (mc).

k ffi 1

3
mcvnul

In the following table adapted fromKaviany [7, 8],

the characteristic parameters for various types of

conduction systems are provided (Table 2.1).

Examples of Homogenous Materials

In fire analysis, most solid materials are

approximated as being homogeneous. Examples

of homogeneous systems in fire applications are
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simple polymeric materials, metals, and various

types of insulating materials (Fig. 2.2).

Composite Systems
Treatment of composite material thermal conduc-

tivity is somewhat more complicated than the

treatment for homogeneous materials. With

increased use of composite materials like polymer

impregnated concrete as structural components, it

is useful to discuss how to construct an effective

thermal conductivity for such materials. The key

to constructing an effective thermal conductivity

is to develop a meaningful way to average the

thermal properties for the system. A representa-

tive averaging volume is the term used to describe

the volume over which one can meaningfully

average the properties of the composite in order

to properly thermally characterize the material.

The simplest treatments of composite media ther-

mal conductivity use either series or parallel

resistance models. For a mixed medium that

is comprised of several different conducting

elements, the parallel approximation provides

an upper bound on an effective thermal conduc-

tivity, while the series approximation provides a

lower bound.

Examples of Composite Materials

Examples of composite materials include many

types of insulating materials in which at least two

types of materials are mixed in various mass

fractions. The mass or volume fractions of the

constituents can then be used along with their

individual conductivities to define an effective

conductivity for the system. Various mixing

rules have been developed for the effective ther-

mal conductivity. Gebhart [9] discusses a general

way of classifying the effective thermal conduc-

tivity of a binary system comprised of a matrix

material a and added material b as:

Table 2.1 Characteristic quantities used in microscale carrier model of conduction

Microscale carrier Fluid particle (random

motion)

Phonon (quantal lattice vibration) Electron

Regimes Dilute gases Acoustic phonon

and optical phonon

Free electrons and valence

electrons

Mean free path Interparticle spacing Lattice dimension Lattice dimension

Carrier concentration Fluid density Solid density Free electron density

Carrier speed Thermal speed Speed of sound Electron drift velocity

Fig. 2.2 Range of thermal

conductivities for different

materials (Adapted

from [2])
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ke
ka

¼ f
kb
ka
;Φb;

Li
L
;Bi

� �
:

Depending on the ratio of the thermal

conductivities, the ratios of the characteristic

lengths of the a and b segmentswithin themedium,

and the relative volumetric ratios, different

correlations exist for the effective conductivity.

Kaviany [7] presents a correlation for the

effective conductivity for random porous solids

(e.g., continuous solid and fluid phases) as might

occur for a wound insulation material,

kh i
k f

¼ ks
k f

� �0:280�0:757 log εð Þ�0:057 log ks=k fð Þ

which is valid for fluid porosity (volume frac-

tion) in the range of 0:2 < ε < 0:6.

Heat Equation Formulations

The heat equation is the name given to the differ-

ential equation that models heat conduction in

materials. The heat equation is most generally

developed in a three dimensional, unsteady

form. Depending on the scenario of interest, it

is not always necessary to solve the full formula-

tion of the heat equation. By formulating an

appropriate reduced form of the heat equation,

one can generally compute an accurate represen-

tation of the temperature profile and heat flux

distribution in the material. In the following

sections, several reduced model forms for the

heat equation will be discussed.

Steady One Dimensional Models

Under conditions in which there is a primary heat

transfer direction, it is appropriate to formulate a

one-dimensional form of the heat equation. Fur-

ther, when the time scale for changes in boundary

conditions and sources are large relative to the

time scale over which the thermal system

equilibrates, the analysis can be treated as being

steady. A discussion of how to define the time to

equilibrate in conduction systems will follow in a

later section.

To develop the one dimensional conduction

model, we consider an elemental volume, ΔV,
located between spatial locations x and x + Δx
for a heat transfer process that is in steady state.

We can apply the first law of thermodynamics to

the elemental volume and consider a case in

which there is no internal generation (Fig. 2.3).

x x+Δx
Q

dT

dx
d dT

kA
dx dx

= = Constant

= 0

�

Q = q″A = −kA�

Q�

Application of Fourier’s law leads to an

energy equation specified in terms of temperature

gradients defined within the solid. The solution

can be found by simple integration.

If the thermal conductivity, k, is nearly con-

stant over the temperature range of interest to the

problem, then we see that a very simple relation-

ship holds between the temperature difference

across the solid, the thermal conductivity, and

the thickness of the solid. It is apparent that an

analogy holds between this form and Ohm’s
law, where the heat transfer rate is identified

as a current, the temperature difference, ΔT
is identified as a potential change, and L/kA is

identified as a generalized resistance.

Cylindrical Shells
This same type of analysis can be formulated for

cylindrical shells. The difference in the analysis

is that the cylindrical shell has variable surface

area (Fig. 2.4).

Applying Fourier’s law over concentric cylin-

drical elements yields

_Q ¼ Aq ¼ 2πrL �k
dT

dr

� �

x x + Δx

x
Q�

x+Δx
Q�

Fig. 2.3 Schematic of

differential volume in

which steady one

dimensional heat equation

is developed

30 O.A. Ezekoye



Similar to the development for the planar slab

geometry, an effective resistance can be defined

for the cylindrical system. Integrating the equa-

tion twice yields:

_Q ¼ 2πkL T1 � T2ð Þ
ln r2=r1ð Þ

We can extract a resistance from this expression

to be:

R ¼ ln r2=r1ð Þ
2πkL

Fin Approximation
The fin approximation refers to one dimensional

conduction analysis where heat transfer has a

predominant direction, there is no transverse tem-

perature gradient, and the heat transfer in the

transverse direction is simply defined through

Newton’s law of cooling. The simplest example

of use of the fin approximation is in the develop-

ment of the pin fin model. A pin fin is slender rod

of length L and diameter D with convective heat

transfer taking place over most of the rod’s

surface. At least one end of the rod is assumed

to be fixed at a temperature different from the

environmental fluid temperature. For one dimen-

sional heat transfer to be valid, the length of the

fin divided by the diameter should be large and a

Biot number Bi ¼ hD/k for the fin should be

small. In a fire scenario, a fully exposed beam

might be modeled as being a fin [10]. Develop-

ment of the pin fin equation begins with a power

balance on a differential section of the fin, as

shown below (Fig. 2.5).

One dimensional analysis (radially lumped) is

valid when d/L<<1 and Bi<<1.

The power balance on the differential element

coupled with performing a limiting process as Δx
approaches zero results in the pin fin equation

shown below.

kAc
d2T

dx2
� hcP T � T1ð Þ ¼ 0

This second order ordinary differential equation

requires two boundary conditions (BCs). The

base temperature is often specified as known

(i.e., T(x ¼ 0)). Typical BCs at x ¼ L are:

(a) Known tip temperature or Dirichlet condition

(e.g., T(L) ¼ 20 �C)
(b) Known tip heat flux or Neumann condition

(e.g., q00(x ¼ L) ¼ 0)

(c) Convection tip or Robin’s condition (e.g.,

�kdTdx
��
x¼L

¼ h T x ¼ Lð Þ � T1ð Þ
Solutions and examples of use of the fin

approximation will be provided in a later section.

It is, however, useful to discuss one limiting case

solution for the pin fin. A pin fin is said to be

semi-infinite if the effect of the imposed temper-

ature at the fin base does not affect the tempera-

ture distribution over the entire length of the fin.

Fig. 2.4 Schematic of cylindrical shell in which one

dimensional, steady cylindrical formulation of heat equa-

tion is developed

Fig. 2.5 Development of pin fin equation for cylindrical rod
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Simple 1D Composite Systems
The simplest composite systems can be thought

of in two limiting cases. One might imagine

configurations with two different conductors

either in a series or in a parallel configuration.

For the simpler case, in which the conductors are

in series, it is useful to discuss the nature of the

interface between the two conductors. The

idealized interface between surfaces is considered

to be perfect contact in which the interface

temperatures are the same on both surfaces. In

contrast, an imperfect contact is said to have a

contact resistance and there is a temperature dis-

continuity at the interface between the two

surfaces (Fig. 2.6). In the equation shown below

hi is known as the interface conductance with the

same units as the heat transfer coefficient (W/m2K)

�kA
dT

dx

����
u

¼ hi Tu � Tsð Þ ¼ �kB
dT

dx

����
s

Example 2 A composite wall for a furnace is

made of two materials, an insulating material

with thermal conductivity kA and an exterior

skin with thermal conductivity kB. Within the

furnace there is an internal heat transfer coeffi-

cient hc,i and internal temperature Ti. Outside of

this wall there is a heat transfer coefficient hc,o

and external temperature To. We can calculate

the total heat flux (heat transfer rate per unit area)

and also the intermediate temperatures (e.g., the

interface temperature between the two materials)

using a simple resistance analogy (Fig. 2.7).

By identifying a simple conductive resistance

for the slabs we see that the heat transfer rate can

be specified as

_Q ¼ Ti � T1

1=hc, iA
¼ T1 � T2

LA=kAA
¼ T2 � T3

LB=kBA
¼ T3 � T0

1=hC,oA

The heat transfer rate can be thought of as being

proportional to a potential difference (i.e., the

A
q’’ dT

Q = hi A(Tu − Ts)

u sdx

dT

dx
− kA − kB

B

kA>kB

=

Fig. 2.6 Comparison of

perfect and imperfect

thermal contact showing

contact resistance

temperature jump for

imperfect contact

hc,i , Ti

Ti T1 T2

kA kB

T3 To

hc,o , To

1/hc,i A 1/hc,oALA/kAA LB/kBA

Fig. 2.7 Circuit analogy

for conduction in two slabs
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temperature drop) and inversely proportional to a

resistance. We can use:

_QRi ¼ ΔTi

_Q
X

Ri ¼
X

ΔTi

The sum of the individual potential drops equals

the total potential difference across the system.

Dividing by the sum of the resistances, we get:

_Q ¼ Ti � ToX
Ri

which on a per unit area basis becomes

q
00 ¼ Ti � ToX

R
00
i

For a case with Ti ¼ 1000 �C, To ¼ 300 �C,
hci ¼ 30 W/(m2K), hco ¼ 10 W/(m2K), LA ¼
2 cm, LB ¼ 0.2 cm, kA ¼ 1 W/(mK), kB ¼
20 W/(mK) we find that the equivalent resistance

R
00
EQ ¼

X
R

00
i ¼ 0:153

Km2

W

The heat flux is q
00 ¼ 1000�300

0:153 ¼ 4:56kW=m2.

Check the magnitudes of all the resistance

elements. If any of these is particularly small

compared to the others, we can sometimes

neglect that effect in our analysis.

Steady-Multidimensional Models

For problems in which the heat transfer processes

internally equilibrate on time scales that are

shorter than the times over which external time

dependent processes and/or thermal forcing

occur, the problem can be formulated as being

steady. There are conditions in which there is not

a dominant or preferred direction for heat flow

for which a one dimensional formulation is inap-

propriate. For such problems a multidimensional

model is required. The governing equation in this

formulation is simply:

∇2T ¼ _Q
000
v

.
k

Where _Q
000
v is a volumetric source term.

Problems can be set up in Cartesian or cylindrical

or spherical coordinate systems depending on the

particular type of problem of interest.

Boundary Condition Approximations
and Assumptions
Boundary conditions are one of the three types

that were previously identified in the fin discus-

sion: prescribed temperature also known as

Dirichlet conditions, prescribed flux also known

as Neumann conditions, or mixed flux and tem-

perature also known as Robins conditions. For

Neumann type conditions, a so-called compati-

bility condition must hold for a steady formula-

tion to be valid. In practice, this means that the

next heat flux into the object must be zero to

ensure that a steady solution exists. The three

boundary conditions are stated mathematically

below.

Tjx¼L ¼ Ts

�k
∂T
∂x

����
x¼L

¼ qs

�k
∂T
∂x

����
x¼L

¼ hc Tjx¼L � Te

� �

Transient One Dimensional Models

For formulations in which transient effects must

be included, there are conditions in which there is

a predominant heat transfer direction. When

there is a preferred direction for heat flow, the

thermal forcing can either be from one of the

boundaries or from an internal source. For most

fire problems, the forcing will occur from a

boundary or face. While all physical problems

have some finite characteristic length, we will

discuss an approximation that specifies the extent

of the domain to be semi-infinite.

Thermally Thick and Thin Approximations
We can summarize studies of one dimensional

unsteady conduction using a map of solution

approximations in a Fourier number (Fo) and

Biot number (Bi) space. The Fourier number
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physically represents the thermal penetration

thickness, δ, divided by the geometric dimension

of the system, L.

Fo ¼ αt

L2
¼ δ

L

� �2

As previously noted, the Biot number can be

interpreted as a ratio of the conductive resistance

to the convective resistance or as the ratio of the

temperature differences in the solid to the driving

convective temperature difference. Recall that a

lumped thermal approximation is valid when

Bi<<1.

The Biot number defined in terms of the true

length scale of the object can be considered to be

the global Biot number for the scenario. A local

Biot number can be constructed using the ther-

mal diffusion length as the characteristic length.

In the following equation, it can be shown that

the local Biot number is specified as the product

of the global Biot number and the square root of

the Fourier number [11].

Bi ¼ hR

k
¼ hδ

k

R

δ
¼ hδ

k
Fo�1=2

hδ

k
¼ Bi Fo1=2 ¼ Tw � To

T1 � Tw

This local Biot number can then be interpreted as

an estimate of the temperature difference between

the wall and interior temperatures relative to

difference between the wall and fluid reservoir

temperatures. Because it is a local Biot number

and defined in terms of the thermal penetration

depth, it also provides insight into what might be

considered to be a semi-infinite domain. For small

Fourier numbers, the thermal diffusion distance δ
is smaller than the global or geometric length of

the object. The map below can be used to charac-

terize the various domains for which different

types of approximations are valid. The diagonal

line in the upper left hand quadrant represents the

demarcation between a convective boundary con-

dition and fixed surface temperature on a semi-

infinite body (Fig. 2.8).

Transient Multidimensional Models

For transient multidimensional cases, we rely on

the full solution of the heat equation. For simple

geometries, we can use analytical methods to

construct the solutions. With increased geomet-

rical complexity, computational methods are

required. In later sections, both analytical and

computational techniques for solving these

problems will be detailed.

ρc
∂T
∂t

¼ ∂
∂x

k
∂T
∂x

� �
þ ∂
∂y

k
∂T
∂y

� �
þ ∂
∂z

k
∂T
∂z

� �
þ _Q

000
v

Analytical Solutions and Examples

Despite the increased accessibility and power of

computing devices, analytical models continue

to be important in analyzing and characterizing

conduction phenomena in fire systems. Analyti-

cal solutions are essential in the verification of

computational models and are often used to pro-

vide back-of-the-envelope engineering guidance.

In this section, solutions will be provided for

some of conduction formulations that have been

discussed.

Fig. 2.8 Map identifying different conduction solution

regimes as described by Biot and Fourier numbers

(Adapted from [12])
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Steady-One Dimensional Examples

Critical Thickness of Insulation
For the cylindrical system, we noted that the one

dimensional steady form of the heat equation is:

d

dr
rk

dT

dr

� �
¼ 0

Integrating twice, we derive the temperature

solution.

T1 � T

T1 � T2

¼ ln r=r1ð Þ
ln r2=r1ð Þ

The heat transfer rate is given by:

_Q ¼ 2πkL T1 � T2ð Þ
ln r2=r1ð Þ

A resistance can be defined as:

R ¼ ln r2=r1ð Þ
2πkL

Often in fire scenarios there is a desire to mini-

mize heat transfer to a pipe or rod from the high

temperature environment. Insulating the pipe or

rod is one approach to minimize the heat transfer

rate. The effect of insulating a pipe is explored in

this discussion. A schematic of the system is

shown below:

hc,i

hc,o and hr,o

kB
kA

Consider that an internal heat transfer coeffi-

cient exists because of the fluid flow within a

pipe. The pipe is made of material A and has a

thermal conductivity, kA. Insulation wrapped

around the pipe has thermal conductivity, kB.

The fluid flowing in the pipe is at a temperature

Ti. External to the insulated pipe is an environ-

ment at temperature To that interacts with

the insulated pipe through convection and

radiation. There is a convective heat transfer

coefficient hc,o and the radiative transfer process

is approximated using a radiation heat transfer

coefficient. We can define an overall conductance

for the system using the convective resistances

and also the conductive resistance that we just

developed for cylindrical systems.

_Q ¼ UA Ti � Toð Þ ¼ Ti � To

1=UA

The overall conductance is modeled as
1
UA ¼ 1

2πr1Lhc, i
þ ln r2=r1ð Þ

2πkAL
þ ln r3=r2ð Þ

2πkBL
þ 1

2πr3L hc,oþhr,oð Þ
where r1 is the inner radius of the pipe, r2 is the

outer radius of the pipe, and r3 is the outer radius

of the insulation. We can neglect the internal

convection resistance and the conduction resis-

tance of the pipe relative to the external convec-

tion resistance and the conduction resistance of

the insulation when:

hc,or3
hc, ir1

<< 1 and
hc,or3ln r2=r1ð Þ

kA

<<
hc,or3ln r3=r2ð Þ

kB

For such a case, we find that the heat transfer

rate is related to the driving temperature differ-

ence as:

_Q ¼ Ti � To

R
¼ Ti � To

ln ro=rið Þ=2πLk þ 1=2πLroho

While we might assume that the addition of an

insulating layer will always result in a decrease

in the heat transfer rate, we can easily see that the

denominator has a minimum value when there

has been addition of insulation. This minimum

value of resistance means that the heat transfer

rate increases with the addition of some insula-

tion. Taking the derivative of the denominator

and identifying the extremum shows that when

the insulating layer has a radius of

r0 ¼ rcr ¼ k

ho

the heat transfer has a maximum value.
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Example 3 An exposed water sprinkler line is

within a compartment on fire. The fire products

are at a temperature of 1000 �C. We can assume

that the heat transfer coefficient between the fire

products and the pipe is 30 W/(m2K). The pipe

has a diameter of 5 cm, a thickness of 5 mm, and

a thermal conductivity of 30 W/(mK). At one

section of the pipe, the water has a mean temper-

ature of 30 �C and an internal heat transfer coef-

ficient of 100 W/(m2K). We can calculate the

heat flux at this section of pipe using a thermal

resistance circuit.

ho, To
hi, Ti

q
00
i Ai ¼ Ti � Toð ÞAiX

R
00
i

¼ Ti � To

1
hiAi

þ
ln ro

ri

� �
2πkL þ 1

hoAo

Note that the radial location of the heat flux must

be specified as the heat flux is different at the

outer edge of the pipe from its value at the inner

edge. The total heat transfer rate is 2.7 kW/m of

pipe. The heat flux at the inner wall is 9.7 kW/m2.

For an insulator with thermal conductivity of

1 W/(mK) and the same external heat transfer

coefficient of 30 W/(m2K), the critical radius

rcr ¼ k
ho
is 0.03 m or 3 cm. Thus, adding 1 cm of

an insulator with a thermal conductivity of 1 W/

(mK) to the pipe increases the heat transfer rate.

We would have:

q
00
i Ai ¼ Ti � Toð ÞAiX

R
00
i

¼ Ti � To

1
hiAi

þ
ln

r p
ri

� �
2πkL þ

ln ro
r p

� �
2πkL þ 1

hoAo

The total heat transfer rate increases to

2.9 kW/m. As previously noted, while we

increased the conductive resistance by the insu-

lation, we decreased the external convective

resistance by increasing the area. The total resis-

tance has decreased from 0.354 Km/W to

0.33 Km/W. The choice of insulator matters.

The same thickness insulation, but with a thermal

conductivity of 0.1 W/(mK) increases the equiv-

alent resistance to 0.59 Km/W and decreases the

total heat transfer rate to 1.6 kW/m.

Fin Model of a Beam Extending Between
Two Walls
Frequently, engineers must evaluate the thermal

response of beams and columns that are affected

by high temperature gases associated with a fire

[10]. Imagine that two walls of a compartment

are at temperatures Tw and a high temperature

gas flows around a fully exposed beam. We can

evaluate the thermal response of the beam using

a fin model (Fig. 2.9).

Earlier, we derived the constant cross-

sectional area fin equation:

kAc
d2T

dx2
� hcP T � T1ð Þ ¼ 0

Solutions to this equation are either in terms of

exponential functions or hyperbolic sine and

cosine. It is convenient to define an excess tem-

perature in terms of the difference between the

fin temperature and the fluid temperature

(Fig. 2.10).

d2θ

dx2
� m2θ ¼ 0

θ ¼ T � T1
m2 ¼ hcP=kAc

x

2L

Fig. 2.9 Schematic of beam convectively heated

between two walls
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For this case in which the walls are at the same

temperature we arrive at a solution:

T ¼ T1 þ Tw � T1ð Þ cosh mxð Þ
cosh mLð Þ

If we had defined the origin for the x coordinate

as being one of the walls, and if the parameter

mL>>1, the exponential solution is appropriate

and decays to zero at large x values.

θ

θb
¼ e�mx

Example 4 An unprotected round steel bar

extends across two compartments. The bar has a

diameter of 5 cm. One compartment is fully

involved in fire with gas temperatures of 600 �C
around the bar. The heat transfer coefficient is

30 W/(m2K). The compartment temperature of

the room that the bar extends into is at 20 �C. For
convenience, we assume that the void space also

has a air temperature of 20 �C and that the heat

transfer coefficients are also 30 W/(m2K) in the

void space and in the nonfire compartment. We

can estimate the temperature of the bar within the

void space to see if it might pose an ignition

hazard using fin analysis.

For a sufficiently long bar we can use the

semi-infinite assumption which states that the

temperature distribution in the fin has an expo-

nential variation (Fig. 2.11).

θC xð Þ
θC,B

¼ T xþð Þ � TC,1
TI � TC,1

¼ e�mxþ and
θF xð Þ
θF,B

¼ T x�ð Þ � TF,1
TI � TF,1

¼ e�mxþ

At the interface of the fire flow and the cold flow,

the bar temperature is continuous and can be

specified to be an interface temperature TI.

Also, the heat flux is continuous at the interface.

Since the thermal conductivity does not change,

we simply write this as:

∂T
∂xþ

¼ � ∂T
∂x�

� TI � TC,1ð Þ hAP
kAc

� �1=2
¼ TI � TF,1ð Þ hFP

kAc

� �1=2
TI ¼ mFTF,1 þ mATC,1

mF þ mA

For a case in which the heat transfer coefficient is

the same on both sides of the interface, the inter-

face temperature is 310 �C and is a simple aver-

age of the fire side gas temperature and the cold

compartment air temperature. If the heat transfer

coefficients had been different, the interface tem-

perature is the weighted average of the two

temperatures as shown above.

Flame Temperature Thermocouple
Measurement
Consider a thermocouple that is modeled as a rod

of diameter D, thermal conductivity k, and length

L with half of the thermocouple length in air and

the other half inserted into a pool fire flame. It is

useful to determine if there is a conduction error

in the thermocouple. There are several possible

fin models that can be used to illustrate this

effect. Here, we take an idealized scenario in

which the thermocouple wire is modeled as

being a fin with insulated ends in the hot fluid

and also in the cold fluid. In reality, there is a

convective end condition in the hot region (i.e., at

the thermocouple junction) and the termination

point in the cold region is often very far away

hF, TF

x−

x+

hC, TC

Fig. 2.11 Schematic diagram of a bar extending between

two domains with different temperatures and different

heat transfer coefficientsx L−L 

T(x)

Fig. 2.10 Temperature profiles for suspended beam

example showing effect of the gas to wall temperature

difference on the temperature profile
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from the point where the thermocouple is

inserted into the flame. The question posed here

is whether the temperature at the end placed into

the hot fluid (i.e., the flame) reaches the hot fluid

temperature (in which case, the thermocouple is

measuring the correct temperature) or whether

the conduction losses to the cold side are

affecting the measurement. The insulated end

solution for a rod of diameter D, thermal conduc-

tivity k, and length L suspended between two

fluids/flows is

θA
θA0

¼ TA � TA1
TA0 � TA1

¼ cosh mA LA � xAð Þ½ �
cosh mALAð Þ

If the fin is not semi-infinite (i.e., mL is not large

relative to unity), we need to use the full solution

to get the interface temperature. The interface

temperature (Fig. 2.12) is

TA0 ¼ TA1mAtanh mALAð Þ þ TB1mBtanh mBLBð Þ
mAtanh mALAð Þ þ mBtanh mBLBð Þ½ �

As we saw earlier, if the heat transfer coefficient

is the same on the hot and cold sides, we get an

interface temperature that is the simple mean

value of the hot and cold temperatures. The

error in the measured end temperature

TA Lð Þ � TA1
TA1

¼ 1

2

TB1
TA1

� 1

� �
1

cosh mALAð Þ
� �

For a case with an air temperature of 300 K and a

flame temperature of 2000 K, if the thermocou-

ple has a diameter of 2 mm, a heat transfer

coefficient of 30 W/m2K, thermal conductivity

of 60 W/(mK), and a length of 6 cm equally split

between the hot and cold fluids, we find that the

interface temperature is 1150 K and that the tip

temperature is 1751 K. This represents an

approximately 12 % error in the predicted

freestream temperature.

Steady Multidimensional Example

There are many heat transfer systems for which

there is a need to generate multidimensional

solutions. Often it is appropriate to model a

two dimensional temperature variation for

geometries in which two characteristic lengths

are of comparable magnitude and the third char-

acteristic length is significantly longer. For such

geometries, if one is interested in specifying the

temperature variation at a cross-section of the

geometry at lengths far from the boundaries of

the long direction, a two dimensional approxima-

tion often proves to be valid. In this section, we

discuss the separation of variables approach to

solving such problems.

Separation of Variables Applied to Two
Dimensional Fin

Example 5 A very long rectangular bar has three

sides maintained at temperature 20 �C and one

side at temperature 120 �C (Fig. 2.13). Because

the bar is very long, we can neglect the axial heat

transfer problem and focus our attention on the

heat transfer processes at some intermediate slice

Fig. 2.12 Fin suspended

across free surface in fluids

with different temperatures

and heat transfer

coefficients
∂2T ∂2T

∂x2 ∂y2
+ = 0

To

ToTo

Ts

Fig. 2.13 Plate in which Laplace equation is to be solved

to determine 2D temperature profile
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within the bar. We are simplifying this three

dimensional problem into a two dimensional

problem. Further, we can define a new tempera-

ture, sometimes called the excess temperature,

defined as the temperature subtracting off some

reference value. For this problem, it is conve-

nient to think of the 20 �C temperature as a

reference value.

We define an excess temperature to be

θ x; yð Þ ¼ T x; yð Þ � 20. In terms of the excess

temperature, we have the following boundary

conditions:

x ¼ 0, 0 < y < b; θ ¼ 0

y ¼ 0, 0 < x < a; θ ¼ 0

x ¼ a, 0 < y < b; θ ¼ 0

y ¼ b, 0 < x < a; θ ¼ 100

We use a standard technique for the solution of

finite domain partial differential equations called

separation of variables to solve for the tempera-

ture distribution in the plate section. Separation

of variables relies on expanding the dependent

function θ(x,y) in terms of an appropriate set of

basis functions. For this Cartesian coordinates

example, the basis functions turn out to be sine

and cosine functions. The members of the family

of functions that constitute the set of basis

functions are said to be orthogonal to each other

in a weighted integral sense. There is a deep

relationship between the process in separation

of variables and the theory of Fourier series as

well as many computational techniques for solv-

ing differential equations. One simple starting

point for separation of variables solution is to

assume a solution form of

θ x; yð Þ ¼ X xð ÞY yð Þ
Upon substituting this solution form into the

partial differential equation, one obtains two

separable ordinary differential equations: �1
X
d2X
dx2

¼ 1
Y
d2Y
dy2 ¼ λ2

The solution of the X(x) equation yields the

trigonometric functions, while the solution of the

Y(y) equation yields hyperbolic trigonometric

functions sinh and cosh. Substitution of this

form of solution into the PDE results in unique

choices for the parameters λ and also presents an

opportunity to define the so-called Fourier

coefficients for the problem (Fig. 2.14).

θ x; yð Þ ¼ 100
X1
n¼1

2 1� �1ð Þn½ �
nπ sinh nπb=að Þ

� sin
nπx

a
sinh

nπy

a
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Transient Lumped Examples with Time
Dependent Forcing

Often the transient response of a thermal system

must be evaluated. The lumped thermal approxi-

mation is valid when the internal conduction

resistance is small relative to the external con-

vective resistance.

Internal conduction resistance

External convection resistance
ffi L=ksA

1=hcA
¼ hcL

ks

Imagine a cold spherical heat sensor emersed in

an initially cold gas for which the gas tempera-

ture is a linearly increasing function of time. It is

useful to understand how the heat sensor’s tem-

perature will vary with time. Assume that

Bi ¼ 0.1 and Fo ~ 10. T(r,t ¼ 0) ¼ To.

The model used to characterize the tempera-

ture variation of the sphere is the same lumped

thermal model previously discussed. The differ-

ence is that because the reservoir temperature is

time varying, the temperature solution is no lon-

ger a simple exponential function (Fig. 2.15).

ρVc
dT

dt
¼ �hcA T � T1ð Þ

dT

dt
¼ � hcA

ρVc
T � T1ð Þ

with T1 tð Þ ¼ To þ at

The solution (Fig. 2.16) with θ tð Þ ¼ T � To is

θ tð Þ ¼ aτ exp
�t

τ

� �
� 1

h i
þ at

¼ a t� τ 1� exp
�t

τ

� �� �h i
We see in Fig. 2.16 that there is a time lag

between the increasing temperature of the fluid

and the increasing temperature of the detector.

Additionally, we see that the detector tempera-

ture at any given time is always lower than the

fluid temperature.

Laplace Transform Methods
The Laplace transform is one of several integral

transform methods that can be used in conduction

analysis [12]. For time dependent functions, the

Laplace transform maps the time dependent

derivative terms into algebraic terms that are

parameterized by a new independent variable. For

an ordinary differential equation (e.g., a thermally

lumped system analysis), application of the

Laplace transform yields an algebraic equation

that can be solved for the transformed dependent

variable. The time dependent form is retrieved

using an inversion integral called the Bromwich

integral. In the equation below, the Laplace trans-

form integral operator is applied to a general tem-

perature function that depends on time and spatial

location. The definition of the Laplace transform is

shown below.

L Tð Þ ¼ T̂ x; sð Þ ¼
ð1
0

T x; tð Þe�stdt

Fig. 2.15 Schematic showing convective flow over an

object that will be analyzed using a lumped thermal

approximation

Fig. 2.16 Solution for lumped approximation problem in

which fluid temperature is a linearly increasing function

of time
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An example of the use of the Laplace transform

is provided below. Consider the lumped analysis

system that we have been using

dT

dt
¼ � hcA

ρVc
T � T1ð Þ

Straightforward application of the transform

yields:

sT̂ sð Þ � T 0ð Þ ¼ � hcA

ρVc
T̂ sð Þ � T1

s

� �
Because the initial condition shows up in this

transformation, it is often convenient to use

superposition to force the initial condition to be

zero. For such a case we have,

sθ̂ sð Þ ¼ � hcA

ρVc
θ̂ sð Þ � θ1

s

� �
Solving for the transformed temperature variable

yields:

θ̂ sð Þ ¼ θ1
τcs sþ τ�1

c

� �
Using any one of a number of inversion tables or

online calculators, we retrieve the inverse of this

function.

θ tð Þ ¼ θ1 1� exp
�t

τc

� �� �
The result above is equivalent to the result shown

earlier. The power of the Laplace transform

method is that it can be applied to arbitrarily

complex differential equations. The challenge

of the method has typically been generating the

inverse transform. With increasing accessibility

of symbolic mathematical software tools, with

some freely available online such as Wolfram

Alpha, this particular challenge is no longer

quite as severe.

Duhamel Integral Methods
The Duhamel integral is a method for generating

a solution for an arbitrarily complex time depen-

dent forcing of a conduction system using the

solution for a step change. A simple case to

present the ideas of this concept is the problem

in which there is a step change in the external

temperature of a reservoir in contact with a

lumped thermal system. We know the solution

from earlier sections.

dT

dt
¼ � hcA

ρVc
T � T1ð Þ

Graphically, a series of external temperature step

changes can be looked at as follows:

To

T1

T2

If we focus on the initial step change, this is

no different from the original problem that we

considered. The offset in time can be addressed

using an offset in time. Simply by creating a new

time variable, e.g., s ¼ t�t1, we create an offset

time variable. To explore what is meant by a step

change in the external temperature, we formally

formulate the mathematical equation using the

Heaviside step function.

dT

dt
¼ � hcA

ρVc
T � T0 � T1 � T0ð ÞHs t� t1ð Þð

� T2 � T1ð ÞHs t� t2ð ÞÞ
If we now define a relative temperature T�T0,

we arrive at the equation

dθ

dt
¼ � hcA

ρVc
θ � Δθ1Hs t� t1ð Þ � Δθ2Hs t� t2ð Þð Þ

To solve this equation, it is convenient to

define a series of linear transformations and

use superposition to solve this individual

equations.
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θ ¼ Fþ G

dF

dt
þ dG

dt
¼ � hcA

ρVc
Fþ G� Δθ1Hs t� t1ð Þð

�Δθ2Hs t� t2ð ÞÞ
dF

dt
¼ � hcA

ρVc
F� Δθ1Hs t� t1ð Þð Þ

dG

dt
¼ � hcA

ρVc
G� Δθ2Hs t� t2ð Þð Þ

Because θ(0) ¼ 0, we can enforce that both F

and G are also equal to zero and have solutions of

form:

F tð Þ ¼ Δθ1 1� e� t�t1ð Þ=tc
� �

The solution for the excess temperature is then:

θ tð Þ ¼ Δθ1 1� e� t�t1ð Þ=tc
� �

þ Δθ2 1� e� t�t2ð Þ=tc
� �

For a series of step changes, we can generalize

this superposition of solutions to generate:

θ tð Þ ¼
XΔθi

Δτi
1� e� t�τið Þ=tc
� �

Δτi

¼
ðt
0

dθ

dτ
1� e� t�τð Þ=tc
� �

dτ

We immediately see that for the case in which

the freestream temperature is changing as a linear

function of time T1 tð Þ ¼ To þ at
We get

θ tð Þ ¼
ðt
0

a 1� e� t�τð Þ=tc
� �

dτ

¼ at� ae�t=tc tc et=tc � 1
� �

¼ at� atc 1� e�t=tc
� � ¼ a t� tc 1� e�t=tc

� �	 

which is the same result that we arrived at using a

much simpler analysis in an earlier section. The

power of the Duhamel formulation is evident in

problems like the semi-infinite slab problem for

which the solution is expressed in terms of the

error function. One interesting application of the

Duhamelmethod that wewill use in the section on

inverse analysis is the determination of the heat

flux from a temperature measurement. The gener-

alization of the Duhamel form states that the time

dependent variation of temperature can be defined

in terms of an integral of the product of the step

response solution, which is time dependent, and

the time derivative of the unsteady effect.

Transient Semi-infinite (Thermally
Thick) One-Dimensional Examples

For thermally thick problems in which the ther-

mal penetration wave never reaches the back

side, analytical solutions are available for a

range of boundary conditions. These solutions

are generally specified in terms of tabulated

functions [13]. Useful approximate solutions

can also be developed for these problems using

integral approximations and the scaling

properties of diffusive transport (Fig. 2.17).

For the thermally thick conduction problem,

the solution is often described as being for a

semi-infinite domain (Fo<<1). Using either a

Laplace transform solution approach or any num-

ber of other approaches, one can arrive at the

temperature variation for a constant surface tem-

perature boundary condition.

θ ¼ T � T0

Ts � T0

¼ 1� 2

π1=2

ð η
0

e�u2du

¼ erfc
x

4αtð Þ1=2
 !

We see that the solution is defined using the

complementary error function (erfc). The surface

heat flux variation with time is:

qs ¼ �k Ts � T0ð Þ � 2

π1=2
e�η2 1

4αtð Þ1=2
" #

η¼0

¼ k Ts � T0ð Þ
παtð Þ1=2

Interestingly, an approximation for the heat flux

that depends on the thermal penetration depth

does a reasonable job of predicting the overall

trends.
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qs ffi
k Ts � T0ð Þ

δ tð Þ ¼ k Ts � T0ð Þffiffiffiffi
αt

p

In the approximation, we have used the sing the

simplified scaling law δ � ffiffiffiffi
αt

p
A similar approximation can be used for the

constant surface heat flux boundary condition.

We recognize that the approximate variation is

as follows:

Ts ¼ T0 þ qs
ffiffiffiffi
αt

p
k

¼ T0 þ qs
ffiffi
t

pffiffiffiffiffiffiffi
kρc

p

The surface temperature has t1/2 dependence

which we can compare to exact analytical result

T x; tð Þ¼ T0 þ qs
k

4αt

π

� �1=2

e�x2=4αt � x erfc
x

4αtð Þ1=2
" #

which at

x ¼ 0 is Ts ¼ T0 þ qs
k

4αt

π

� �1=2
" #

The Newton’s law of cooling convective bound-

ary condition case is analytically quite challeng-

ing, but can be reduced to a very simple form

using the type of scaling previously described

(Fig. 2.18).

We note that the internal heat flux can be

approximated using a diffusion model and must

be balanced by the Newton’s law of cooling

convection term.

qs ffi
k Ts tð Þ � T0ð Þ

δ
¼ h Te � Tsð Þ

In solving for the wall temperature we arrive at:

Ts tð Þ � T0

Te � T0ð Þ ¼
h
ffiffiffi
αt

p
k

1þ h
ffiffiffi
αt

p
k

� �
At long time, we get constant surface tempera-

ture. We can compare this to the exact solution

(Fig. 2.19):

Fig. 2.17 Governing equation for semi-infinite model of conduction in a slab and associated temperature profiles
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Ts � T0

Te � T0

¼ 1� e hc=kð Þ2αterfc
hc
k

αtð Þ1=2
� 


Transient Multidimensional Examples

Multidimensional transient problems represent a

class of problems that pose sufficient analytical

complexity that we often revert to computational

solutions for these systems. For some simple

geometries, however, there are tabulated results

that are useful for determining the overall

thermal behavior of such systems. The starting

point for constructing such solutions is a one

dimensional transient problem. As an example,

for the slab/wall geometry for which there is

convective heating on two sides, there is a sepa-

ration of variables series solution for the prob-

lem. For relatively long times as is defined by the

Fourier number (Fo>1), the series solution

converges with a small number of terms. Physi-

cally, the temperature profile (i.e., the solution)

becomes smoother with increasing time. Because

so few terms are required to represent the tem-

perature field evolution, it is possible to define

the solution in terms of a simple product of a time

dependent function and a spatially varying func-

tion (Fig. 2.20). The governing equation, initial

condition and boundary conditions for the one

dimensional problem are:

∂T
∂t

¼ α
∂2T

∂x2

t ¼ 0 : T ¼ T0

x ¼ 0 :
∂T
∂x

¼ 0

x ¼ L : � k
∂T
∂x

¼ h T � T1ð Þ

Fig. 2.20 Schematic of one dimensional conduction in a

slab with convective boundary conditions

0 2 4
0

0.5

1

x

f(x)

g(x)

Fig. 2.19 Comparison of approximate and exact solution

of semi-infinite model of conduction in a slab with con-

vective boundary conditions

Fig. 2.18 Schematic of semi-infinite model of conduc-

tion in a slab with convective boundary conditions

44 O.A. Ezekoye



The solution of the one dimensional problem is:

T � T1
T0 � T1

¼ θ

θ0
¼
X1
n¼0

� sin λnLð Þ
λnLþ sin λnLð Þ cos λnLð Þ

� e�λn
2αt cos λnxð Þ

The eigenvalues of the problem can be written as:

λnL ¼ Bi cot λnLð Þ. Also, the argument of

the exponential function can be written as:λ2nαt ¼
λnLð Þ2 αt

L2

� �
¼ λnLð Þ2 Fo. This suggests that the

solution is defined by the following parameters:

Bi, Fo,
x

L

For long enough times, the one term expansion

generates [2]:

T � T1
T0 � T1

¼ θ

θ0
¼ θ

θCL
� θCL

θ0

¼ C Bið Þ f tð Þg xð Þ

The centerline temperature varies only with time,

while the temperature at any location normalized

by the centerline temperature is essentially a

function of the spatial location.

It can be easily shown that the temperature

within a block can be found as the product of the

temperatures found from three separate one

dimensional solutions (Fig. 2.21):

θ t; x; y; xð Þ ¼ P x; tð ÞP y; tð ÞP z; tð Þ

Overview of Computational Issues
in Conduction

For complex geometries or for problems with

nonlinear effects andmultiple physical processes,

analytical solutions are usually not easily found.

For the majority of practical heat transfer pro-

cesses in fire, a fire engineer will resort to the

use of computational tools to characterize the

system. Olenick and Carpenter [14] summarize

the key features of a number of computational

tools available for simulating thermal response

associated with fire endurance testing. These

tools use a variety of numerical discretization

techniques. In the following section, we discuss

the types of computational techniques most often

used for fire problems and present simple

examples for some of these cases to help clarify

what underlying steps are taken in some of the

tools and codes described in [14]. Useful refer-

ence texts for numerical solution of the differen-

tial equations associatedwith conduction are Shih

[15] and Ferziger [16].

To start, we define a very simple conduction/

diffusion problem with a source (S).

Γ
d2ϕ

dx2
þ S ¼ 0

The analytical solution can be easily found by

integrating this equation twice. For the case of a

constant source we get:

ϕ ¼ C2 þ C1x� S

2Γ
x2

Consider the case with boundary conditions:

dϕ

dx

����
x¼0

¼ 0 and ϕ Lð Þ ¼ 0

C1 is zero by the adiabatic condition, andC2 ¼ S
2Γ

such that;

ϕ ¼ S

2Γ
L� x2
� �

We will compare this solution to those generated

by the numerical solutions.

h,T∞

h,T∞

Fig. 2.21 Schematic diagram of cube with external con-

vective heating
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Finite Difference Approximations

The finite difference technique is used to solve

differential equations by expanding the depen-

dent variable, at specified positions in the

computational space into a Taylor series, appro-

priately adding and subtracting terms from other

series terms together to generate approximations

for the derivative terms in the underlying differ-

ential equation. As an example, the dependent

variable is expanded below in a Taylor expansion

at locations 1 and 3 (Fig. 2.22).

ϕ1 ¼ ϕ2 �
∂ϕ
∂x

����
2

Δxþ 1

2

∂2ϕ

∂x2

����
2

Δx2 þ O Δx3
� �

ϕ3 ¼ ϕ2 þ
∂ϕ
∂x

����
2

Δxþ 1

2

∂2ϕ

∂x2

����
2

Δx2 þ O Δx3
� �

By subtracting the two series from each other, we

arrive at one representation for the derivatives at

location 2.

∂ϕ
∂x

����
2

¼ ϕ3 � ϕ1

2Δx
þ O Δx2

� �
∂2ϕ

∂x2

����
2

¼ ϕ3 � 2ϕ2 þ ϕ1

Δx2
þ O Δx2

� �
Substituting the approximations into the original

differential equation then provides an algebraic

rule by which to evaluate the values of the depen-

dent variable at the prespecified (grid) points.

Γ
∂2ϕ

∂x2

����
2

¼ Γ
ϕ3 � 2ϕ2 þ ϕ1

Δx2

� �
And the source term can be approximated as

S2 ¼ S ϕ2ð Þ
We see that the final form of the algebraic

system of equations is

Γ
ϕ3 � 2ϕ2 þ ϕ1

Δx2

� �
¼ �S ϕ2ð Þ

Symbolically, we can arrange the system of alge-

braic equations into a form shown below.

ai�1ϕi�1 � aiϕi þ aiþ1ϕiþ1 ¼ b

ai�1 ¼ Γ
Δx

, aiþ1 ¼ Γ
Δx

, ai ¼ �2Γ
Δx

, b ¼ �S Δx

For the case in which Γ ¼ 0:2, 0 < x < L,

and S ¼ 4

We will use N ¼ 5 grid points,

Δx ¼ 0:25L for L ¼ 1

ai�1 ¼ 1, aiþ1 ¼ 1, ai ¼ �2, b ¼ 1

�2 2

1 �2 1

1 �2 1

1 �2 1

1

266664
377775

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

266664
377775

¼

�1

�1

�1

�1

0

266664
377775 withsolution

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

266664
377775 ¼

8

7:5
6

3:5
0

266664
377775

Which is exactly the same as the answer

provided by the exact solution.

Finite Volume Approximation

An alternative way of generating algebraic

equations representing the differential equation

is the finite volume technique. The finite volume

technique is closely related to Galerkin finite

element techniques. Both are members of a fam-

ily of solution techniques called method of

weighted residuals. For both types of solution

techniques, an integrated form of the underlying

differential equation is used to develop the alge-

braic equations. In both types of techniques, one

weights the equation before integrating. Because

the weight in the control volume method is just

equal to unity, the process to developing the

algebraic equations has a simple physical inter-

pretation. The finite volume technique is some-

times called the control volume technique or the

subdomain method [17] (Fig. 2.23).Fig. 2.22 Schematic of finite difference stencil
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Consider the diffusion equation in conserva-

tive form.

d

dx
Γ
dϕ

dx

� �
þ S ¼ 0

The equation is integrated over the control

volumeðe
w

d

dx
Γ
dϕ

dx

� �
þ S dx ¼ 0 to become

Γ
dϕ

dx

� �
e

� Γ
dϕ

dx

� �
w

þ
ðe
w

S dx ¼ 0

A linear profile assumption is made between cell

centroids for ϕ. Assume S varies linearly over the

control volume

Γe ϕE � ϕPð Þ
Δxe

� Γw ϕP � ϕWð Þ
Δxw

þ S Δx ¼ 0

Collecting terms and casting into an algebraic

equation yields:

aEϕE þ aPϕP þ aWϕW ¼ b

aE ¼ Γe

Δxe
, aW ¼ Γw

Δxw
, aP ¼ �2Γw

Δxw
, b ¼ �S Δx

Again, for the case in which Γ ¼ 0:25, 0 < x

< L, and S ¼ 4

We will use N ¼ 5 grid points,

Δx ¼ 0:25L for L ¼ 1

ai�1 ¼ 1, aiþ1 ¼ 1, ai ¼ �2, b ¼ 1

�2 2

1 �2 1

1 �2 1

1 �2 1

1

266664
377775

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

266664
377775 ¼

�1

�1

�1

�1

0

266664
377775

This system of linear equations, written in matrix

form has a banded structure and can be solved

using a number of linear algebraic solution

strategies. For tridiagonal matrices, an efficient

algorithm exists (Thomas algorithm) for solving

the system [18]. The solution is:

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

266664
377775 ¼

8

7:5
6

3:5
0

266664
377775

The solution is exactly the same as the answer

provided by the exact solution.

Finite Element Approximations

This discussion is on Galerkin finite element

techniques which are a subclass of the method

of weighted residuals (MWR) [15,

17]. The method explicitly identifies an approxi-

mate solution to the governing equation, for

which the approximate solution is generated

from a broader class of functions than the true

solution resides in. There is an approximation, eϕ,
to ϕ that produces a residual in the solution of the

diffusion equation when the approximation is

used.

Γ
d2eϕ
dx2

þ S ¼ R

In MWR, the weighted average of the residual is

zero, rather than the residual. The weight func-

tion is called W(x).ð
domain

R xð ÞW xð Þdx ¼ 0

The approximating function is assumed to be

expandable in a set of linearly independent

“basis functions” Nj(x).

Fig. 2.23 Schematic of finite volume cells
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eϕ ¼
X

ϕ jN j xð Þ

In Galerkin FEM the weight function is specified

to be the same as the basis function.

Wj(x) ¼ Nj(x).ð
domain

R xð ÞW xð Þdx ¼ 0

Effectively, we are forcing the residual to be

orthogonal to the basis functions. Properties of

the basis function in terms of ease of evaluation,

accuracy etc. suggest the use of polynomials.

An example of basis functions is shown below

(Fig. 2.24).

The weighted residual becomes:ð b
a

Γ
d2eϕ
dx2

þ S

 !
N j xð Þdx ¼ 0

While ϕ should be twice differentiable, the

“weak form” allows a wider class of functions

to be used. We integrate by parts. We get an

equation in terms of integrals of basis functions

and coefficients of the unknown function at nodal

points.

Aϕ jþ1 þ Bϕ j þ Cϕ j�1 þ D j ¼ 0

Inverse Conduction Heat Transfer
Approximations and Examples

Inverse analysis refers to a variety of approaches

used to determine model parameters, boundary

conditions, initial conditions, etc. The use of the

term inverse relates to the idea that the analysis

inverts the normal rules of causality in order to

find an answer that best agrees with observations.

In conduction problems, typical examples of use

of inverse analysis are determining the heat flux

on a slab given a limited number of interior

temperature measurement or identifying material

properties that allow a model to best match

measured temperature data. There are many

approaches to generating an inverse solution,

and some of these techniques are essentially

optimization methods. One might summarize

optimization based analysis as the search for

parameters that when used in a forward formula-

tion of the problem of interest generate solutions

whose deviation from experimental data is

quantified., There are, however, specialized

techniques that have been developed for inverse

analysis that have not been specifically devel-

oped from an optimization perspective. These

techniques generally require that the problem be

formulated in an inverse sense. For problems

formulated in an inverse sense, there ultimately

becomes an ill posed mathematical problem. Ill

posed problems [19] are those for which the

solution is not unique or does not smoothly

change relative to small changes in an input

parameter. For such problems, there is a need to

regularize the underlying system of equations.

If one considers the simple diffusion equation

that has been presented in earlier sections and

considers the need to specify the source in the

medium given some number of temperature

Fig. 2.24 Triangular basis functions and schematic of overlapping functions
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measurements in the slab, the process to deter-

mine the source is an inverse analysis. An impor-

tant fundamental consideration in inverse

analysis is the notion that experimental noise

exists in the measured data and that such noise

corrupts the inversion process.

Given the ODE, we can formulate an integral

equation for the temperatures using a delta func-

tion source [19, 20]. This is simply a Greens’
function solution for the problem. In a forward

analysis, we would simply integrate the source

distribution in such a way as to generate a tem-

perature at every point given the source distribu-

tion. The inversion requires an estimate of the

source, given some measurements of tempera-

ture. Further, it is assumed that the temperature

data are noisy. We see that for each temperature

measurement, there is a corresponding quadra-

ture rule that maps the integral equation to an

algebraic equation. We see that this process

results in a matrix equation in which the source

description explicitly shows up as an unknown.

Using typical linear algebra techniques, we find

that the results for the source are quite noisy and

not representative of the input source that was

used to drive the forward solution. Note that for

this exercise, synthetic measured data are sam-

pled from the forward solution.

The Greens’ function solution is constructed

using a delta function source:

Γ
d2ϕ

dx2
¼ �S

000
xð Þ which for the Green’s function is

Γ
S

00
o

d2G

dx2
¼ �δ x� x0ð Þ

Integrating the delta function yields:

G ¼ axþ b x < x0

Γ
dG

dx

����x0þε

x0�ε

¼ S
00
oHs x� x0ð Þ

G ¼ Axþ B x > x0

For a case in which ϕ is zero at �L and L, we get

the Green’s function solutions to be:

G x; x0ð Þ ¼ �S
00
oL

2Γ
1� x0=Lð Þ 1þ x=Lð Þ x < x0

G x; x0ð Þ ¼ �S
00
oL

2Γ
1þ x0=Lð Þ 1� x=Lð Þ x > x0

The final solution for the dependent variable is

ϕ x0ð Þ ¼ L

2Γ
1� x0=Lð Þ

ðx0
�L

1þ x=Lð ÞS00
oS

0
xð Þdx

þ L

2Γ
1þ x0=Lð Þ

ð L
x0

1� x=Lð ÞS00
oS

0
xð Þdx

For the case of a constant source we can show

that we retrieve the exact solution. For an inverse

formulation, we can imagine that several experi-

mental values of ϕ are assumed to be available

through measurements. The linear algebraic sys-

tem is then:

ϕ
!

xið Þ ¼ L

2Γ
1� xi=Lð Þ

X1þ xiþLð Þ=Δx

j¼1

1þ x j=L
� �

S
000
x j

� �
Δxþ L

2Γ
1þ xi=Lð Þ

XN
j¼1þ xiþLð Þ=Δx

1� x j=L
� �

S
000
x j

� �
Δx

x j ¼ �Lþ 2L

N � 1
j� 1ð Þ

ϕ
!
i ¼ Ai, j S

!
j
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We see that the m�n matrix operator Ai,j is

not square when there are a limited number

(m) of measurements ϕ
!
i that require many more

evaluations (n) of the source term. To overcome

the sensitivity to the data noise and the limited

number of available measurements, regulariza-

tion methods are used to generate smooth

approximations to inversely formulated

problems. Examples of regularization methods

include truncated singular value decomposition

(TSVD), Tikhonov regularization, and conjugate

gradient based approaches. More details can be

found in Hansen [19] and Press et al. [18], on

details of these methods. When applied to the

example problem, TSVD regularization allows

us to easily invert for the source profile.

For the case in which Γ ¼ 0:25,

�L < x < L, and S ¼ 4, we assume that

measurements are made at x ¼ (�.67 L,

�0.33 L, 0.33 L, 0.67 L). We will use N ¼ 7

grid points to evaluate the integral in the Greens

function solution. This results in a grid spacing of

Δx ¼ 0:33L. For this problem we add random

noise to the measured ϕ
!
i values to simulate

measurement error.

The matrix operations are then

0 0:37 0:296 0:222 0:148 0:074 0

0 0:296 0:593 0:444 296 0:148 0

0 0:148 0:296 0:444 0:593 0:296 0

0 0:074 0:148 0:222 0:296 0:37 0

2664
3775

S1
S2
⋮
S6
S7

266664
377775 ¼

4:94
7:13
7:61
4:47

2664
3775

The singular value decomposition of the matrix

A results in A ¼ UΣVT . The matrix Σ is a diago-

nal matrix with the singular values ordered from

largest to smallest as the diagonal elements. The

number of singular values provides an indication

of the number of independent equations in the

system of equations. Also the ratio of the largest

singular value to the smallest singular value,

called the condition number of the matrix,

reflects how singular the matrix is and how

much amplification of error might be associated

with small perturbations propagated through the

inversion. For this problem, the singular value

decomposition is:

�0:357 0:5 �0:61 �0:5

�0:61 0:5 0:357 0:5

�0:61 �0:5 0:357 �0:5

�0:357 �0:5 �0:61 0:5

0BBB@
1CCCA

1:358 0 0 0

0 0:444 0 0

0 0 0:178 0

0 0 0 0:148

0BBB@
1CCCA

0 0 0 0

�0:317 0:5 �0:632 �0:5

�0:516 0:5 0:258 0:5

�0:516 0 0:258 0

�0:516 �0:5 0:258 �0:5

�0:317 �0:5 �0:632 0:5

0 0 0 0

0BBBBBBBBBBB@

1CCCCCCCCCCCA

The system of equations is inverted using the

numerically accurate inversion (SVD pseudo-

inverse) and also using a so-called truncated

SVD (TSVD) pseudo-inverse. In the TSVD inver-

sion, the smallest singular value (0.148) is not used

in the inversion. The inversion is given by
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S
!
¼
Xk
i¼1

u
!
i � ϕ

!

σi
v
!
i

In this expression the u
!
i and v

!
i are the column

vectors of the U and V matrices in the SVD

decomposition. The summation is over the total

number of retained singular values. Figure 2.25

shows a comparison of the SVD and TSVD

inversions of the noisy measurements. We see

that there is considerably more variation and devi-

ation from the exact source values for the SVD

inversion relative to the TSVD inversion. The

process of truncating the representation of the A

matrix acts to smooth or regularize the solution.

This problem is only one example of the many

types of techniques that can be applied in inverse

heat transfer analysis. Many other types of inver-

sion processes might be used for fire problems.

There are many examples of time dependent

inversion, as might be done to determine a sur-

face heat flux when measuring internal

temperatures that present many different solution

approaches for inversion [21, 22]. An interesting

analogy exists between the steady example using

TSVD based inversion and some types of tempo-

rally evolving inverse problems. For linear time

dependent problems, analytical solution forms

exist for time dependent heating using the

Duhamel integral formulation. A simple example

from Beck et al. [21] shows the process for deter-

mining the heat flux when a single temperature

measurement is made using a modification of the

Duhamel integral. The Duhamel integral repre-

sentation looks very much like the Greens func-

tion formulation that was detailed. In both cases,

one is solving a Fredholm integral equation for

some underlying system forcing.
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