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    Abstract     A multitude of environmental and subsoil conditions cause abiotic 
 constraints to the growth and productivity of legume food species. These stresses 
often occur simultaneously, leading to compounded effects of low and unreliable 
yields. Since legumes are a major food source, particularly in regions of major 
population growth, it is imperative that better tolerant and adapted varieties are 
developed. For this, transgenic approaches integrated within traditional breeding 
programs are proposed to offer substantial productivity gains through fast-tracking 
the development and deployment of well adapted and tolerant varieties to regions of 
greatest need. For this to occur, knowledge of the major tolerance genes and more 
importantly their regulators is required. Accordingly, recent functional genomics 
approaches have begun to shed light on the transcriptional, and hence regulatory 
and mechanistic controls governing tolerances to several of the major abiotic 
stresses, such as drought, temperature and salinity within temperate legume food 
species. Functional validation of these regulatory signals, their action on down-
stream genes and associated pathways is underway within several large interna-
tional programs. This chapter will review these advances in knowledge to date 
within the model and crop grain legume species, to identify and characterize the 
molecular targets for the future selection and breeding of sustainably tolerant crops. 
Specifi cally, this chapter aims to summarize progress towards identifying and 
understanding the functions of the WRKY transcription factors involved in instigat-
ing and regulating abiotic stress tolerance mechanisms and their potential for 
improving abiotic stress tolerance within temperate legume food species.  
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  Abbreviation 

   ABA    Abscisic acid   
  AFLP    Amplifi ed fragment length polymorphism   
  AP2/ERF    APETALA2/Ethylene-responsive factor   
  DREB    Dehydration-responsive element binding   
  IAA    Indole Acetic Acid   
  LAP    Legume anthocyanin production   
  MYB    Myeloblastosis   
  NCED    9-cis-epoxycarotenoid dioxygenase   
  PEG    Polyethylene glycol   
  TF    Transcription factor   
  TMV    Tobacco mosaic virus   
  WRKY    Tryptophan Arginine Lysine   

2.1           Regulation of Abiotic Stress and Tolerance 

 The primary causes of crop loss globally are the extremes of water availability 
(mainly drought), temperature (heat and cold) and soil toxicities and defi ciencies 
(mainly salinity). These limit the growth and development and agro-geographical 
distribution of crops worldwide, which causes signifi cant reduction in productivity. 
Plants respond to adverse environmental conditions through many physiological, 
biochemical and molecular changes, which enable plants to survive and reproduce 
(Mantri et al.  2010a ). These are governed by an array of genes encoding proteins 
with diverse functions. The ability of a plant to grow and survive under such condi-
tions is dependent on its ability to adapt growth and metabolic processes, governed 
through complex networks of molecular switches and regulators. This includes the 
ability to perceive the stress, respond to the stress through instigation of nearby and/
or systemic signals (signal transduction) and the expression of relevant tolerance 
genes and metabolites. Hence, abiotic stress tolerance traits are multigenic and quan-
titative in nature and diffi cult to manipulate or select for within the constraints of 
traditional breeding approaches. It would be unlikely that selection of a single or few 
functional genes would result in sustained tolerance since the impacts of abiotic 
stresses are varied and complex. In the case of salinity tolerance, effects caused by 
altered ionic strengths and osmotic pressures around membranes lead to potential ion 
compartmentation and/or exclusion and even changing hormone levels that stimulate 
cell division for avoidance through altered root physiology (Lv et al.  2012 ; Mantri 
et al.  2012 ). Therefore, selection or manipulation of the stress perceivers and gene 
pathway regulators is proposed to be a far more effi cient approach. In particular, the 
group of genes that encode regulatory proteins may be useful for the management of 
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crops under stress conditions (Cabello et al.  2014 ). This group includes protein 
kinases, enzymes involved in phospholipid metabolism, transcription factors and 
other signalling molecules. Understanding their function is critical for determining 
the possibilities to manipulate or select for improved stress tolerance. 

 There has been a recent fl urry of publications demonstrating the isolation and char-
acterization of abiotic stress-responsive genes and their potential transcriptional control-
lers from temperate legumes using several methods. This has included partial elucidation 
of the transcriptional responses and controls to drought, salinity and cold in chickpea 
using microarrays (Mantri et al.  2007 ,  2010b ) and most recently the more in-depth iden-
tifi cation of cold stress tolerance genes and transcription factors in chickpea using 
cDNA-AFLP (Dinari et al.  2013 ). There exists tremendous opportunity to employ the 
high throughput and next-generation sequencing technologies to start to characterize the 
key functional roles of many genes and gene regulators that have been identifi ed. 

2.1.1     Transcription Factors 

 Among the regulatory proteins, transcription factors (TFs) play a major role in defen-
sive gene expression involved in tolerance mechanisms (Puranik et al.  2012 ). TFs 
contain key proteins that interact with  cis -acting elements within the stress- responsive 
gene promoters and enhancer sequences to regulate through activation or repression 
of downstream gene networks. Hence, TFs are the subject of many  studies aimed at 
determining how they may best be manipulated to change the regulation of the whole 
suit of genes under their control through up- or  downregulation (Liu et al.  2013 ). 

 TFs are grouped into large gene families related to their characteristic DNA- binding 
domains (DBDs), such as AP2/ERF, B3, NAC, SBP and WRKY. They are also charac-
terized based on their role in responding to a particular stimulus/stimuli and controlling 
physiological and metabolic responses involved in adaptive plant growth and develop-
ment. Members of a family may respond uniquely to different stress stimuli (Yamasaki 
et al.  2013 ). TFs that control the complex signals for fl owering in pea that are associ-
ated with the FT locus have recently been well characterized (Hecht et al.  2011 ). 

 TF expression has been characterized in several legume and non-legume species 
using large-scale quantitative reverse transcription-PCR (Czechowski et al.  2004 ; 
Caldana et al.  2007 ; Kakar et al.  2008 ; Libault et al.  2009 ). Using this information, 
several attempts have been made to quantify TF gene expression in different plant 
parts to assess for tissue specifi city related to function (Gruber et al.  2009 ; Libault 
et al.  2009 ). Additionally, the availability of whole genome sequences has paved the 
way for elucidating the complex network of gene expressions and regulations in 
response to abiotic stresses. Sequences are available for  Medicago truncatula  
(  http://www.plantgdb.org/MtGDB/    ),  Lotus japonicus  (  http://www.plantgdb.org/
LjGDB/    ),  Glycine max  (  http://www.plantgdb.org/GmGDB/    ) and  Cicer arietinum  
(Varshney et al.  2013 ; Jain et al.  2013 ). 

 The model legume  M. trucatula  was originally used to undercover abiotic stress- 
specifi c TFs and their functions. For example,  WXP1 , an  AP2 / EREBP  TF was found to 
enhance drought tolerance in transgenic plants by increasing cuticular wax and thereby 
improving the water retaining capacity (Zhang et al.  2005 ). The same gene and a closely 
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related paralog ( WXP2 ) also enhanced drought tolerance in transgenic  Arabidopsis  
plants, as well as enhanced freezing tolerance in the  WXP1  overexpressing lines (Zhang 
et al.  2007 ). Further,  MtHAP2 - 1  was shown to be a key transcriptional regulator of 
symbiotic nodule development regulated by microRNA169 (Combier et al.  2006 ). 

 A  Legume Anthocyanin Production 1  ( LAP1 ) gene that serves as an  MYB  TF was 
identifi ed and constitutively expressed in transgenic alfalfa.  LAP1  induced massive 
accumulation of anthocyanin pigments comprising multiple glycosidic conjugates 
of cyanidin. Constitutive expression of  LAP1  induced many genes involved in 
anthocyanin biosynthesis including glucosyltransferase  UGT78G1 , that when 
expressed transgenically resulted in increased anthocyanin accumulation when 
plants were exposed to abiotic stress (Peel et al.  2009 ). 

 In another study, a  M. truncatula  16,000+ gene microarray was used to identify 
84 TF sequences differentially expressed in the root apex in response to salt stress. 
Analysis of salt-stress regulation in root apexes versus whole roots showed that sev-
eral TF genes have more than 30-fold expression differences including specifi c mem-
bers of  AP2 / EREBP ,  HD - ZIP  and  MYB  TF families. Several salt-induced TF genes 
also respond to other abiotic stresses such as osmotic stress, cold and heat, suggest-
ing that they participate in general stress response pathways (Gruber et al.  2009 ). 

 Despite the historical lag in availability of genomic information for the food 
legumes, the recent development of online transcriptomic databases for model 
legumes and reference species holds great promise to aid with TF identifi cation and 
functional assignment in these orphan species. In particular, “LegumeIP” is a freely 
available tool (plantgrn.noble. org/LegumeIP) that contains large-scale gene expres-
sion data from  L. japonicas  and  M. truncatula  microarrays, as well as RNA-
Seq- based gene expression data from  G. max  and time-course expression data from 
nodule, fl ower, root and leaf tissues (Li et al.  2012 ). The ability to perform system-
atic synteny analyses and construct gene family phylogenies across these species 
and  A. thaliana  will better enable the accurate classifi cation of TF family members 
from the legumes once the sequences become available. 

 The following summarizes the current status of knowledge regarding TF charac-
terization in some important food legumes.  

2.1.2     Soybean 

 The availability of the soybean genome sequence has allowed large-scale identifi ca-
tion and annotation of regulatory TFs for functional studies. This has enabled cap-
turing of stress-responsive TFs and their regulatory networks and identifi cation of 
the full complement of TF encoding genes (Mochida et al.  2009 ). A total of 5,035 
TF models have been found within the soybean genome and grouped into 61 fami-
lies. The relevant annotations of soybean TF genes can be accessed via the soybean 
TF database (soybeantfdb.psc.riken.jp). 

 In functional studies, overexpression of the  GmHSFA1  TF gene conferred tolerance 
to heat stress (Zhu et al.  2006 ). Further, 131  bZIP  genes were identifi ed from soybean 
and their response to abscisic acid (ABA), drought, salt and cold was analysed. From 
these, Soybean  GmbZIP44 ,  GmbZIP62  and  GmbZIP78  functioned as negative regulators 
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of ABA signalling and conferred salt and freezing tolerance in transgenic  Arabidopsis  
(Liao et al.  2008 ). Recently, a novel bZIP transcription  factor gene,  GmbZIP1  was 
shown to enhance multiple abiotic stress tolerances (Gao et al.  2011 ). 

 Members of the ethylene response factor ( ERF ) TF family regulate gene expres-
sion in response to biotic and abiotic stresses. In soybean, 98 unigenes that con-
tained a complete  AP2 / ERF  domain were identifi ed and their phylogeny, gene 
structures, and putatively conserved motifs in soybean  ERF  proteins were analysed 
and compared with those of  Arabidopsis  and rice. Expression analysis showed that 
nine unigenes belonging to six  ERF  family subgroups were induced by both biotic/
abiotic stresses and hormone treatment, suggesting that they were involved in cross-
talk between biotic and abiotic stress-responsive signalling pathways. Overexpression 
of two full-length genes from two different subgroups enhanced the tolerances to 
drought, salt stresses, and/or pathogen infection (Zhang et al.  2008 ). 

 Several TF genes from the  DREB  (dehydration-responsive element binding) gene 
subfamily of the  AP2 / EREBP  family have also been identifi ed and  characterized in 
soybean. For example, the overexpression of  GmDREB2  activated expression of 
downstream genes in transgenic  Arabidopsis . This resulted in enhanced tolerance to 
drought and high-salt stresses but did not cause growth retardation (Chen et al.  2007 ). 
In addition, constitutive expression of  GmDREB3  in transgenic  Arabidopsis  caused 
growth retardation, whereas its expression under control of the stress- inducible 
 Rd29A  promoter minimized negative effects on plant growth under normal growth 
conditions. This indicated that a combination of the  Rd29A  promoter and  GmDREB3  
might be useful for improving tolerance to environmental stresses (Chen et al.  2009 ). 

 A new member of the soybean  AP2 / ERF  TF family,  GmERF3 , was also analysed 
for biotic and abiotic stress tolerance. Ectopic expression of the  GmERF3  gene in 
transgenic tobacco plants induced the expression of some  PR  genes and enhanced 
resistance against infection by  Ralstonia solanacearum ,  Alternaria alternata  and 
tobacco mosaic virus (TMV), and gave tolerance to high salinity and dehydration 
stresses. This suggested that  GmERF3  might play dual roles in the responses to 
biotic and abiotic stresses (Zhang et al.  2009a ). 

 NAC TFs play important roles in plant growth, development and stress responses. 
In soybean,  GmNAC11  acts as a transcriptional activator, whereas  GmNAC20  func-
tions as a mild repressor. Overexpression of  GmNAC20  enhanced salt and freezing 
tolerance in transgenic  Arabidopsis  plants whilst  GmNAC11  overexpression only 
improved salt tolerance (Hao et al.  2011 ). In another recent study,  GmNAC5  was 
induced by mechanical wounding, high salinity, and cold treatments but was not 
induced by ABA (Jin et al.  2013 ). 

 Trihelix TFs condition light-regulated responses and other developmental pro-
cesses involved in abiotic stress signalling. Two trihelix TF genes,  GmGT - 2A  and 
 GmGT - 2B , from soybean conferred stress tolerance through regulation of common 
and specifi c sets of genes (Xie et al.  2009 ). Lastly, the role of soybean  MYB  TFs in 
response to abiotic stresses has also been evaluated. Three  GmMYB  genes 
( GmMYB76 ,  GmMYB92  and  GmMYB177 ) whose expression changed in response 
to ABA, salt, drought and/or cold stress were chosen for functional analysis from 
about 156 soybean  GmMYB  genes. The transgenic  Arabidopsis  plants overexpress-
ing  GmMYB76  or  GmMYB177  showed better performance than the  GmMYB92 - 
transgenic  plants in response to salt and freezing tolerance (Liao et al.  2008 ).  
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2.1.3     Chickpea 

 A chickpea NAC gene  CarNAC5  was found to be expressed in many chickpea tis-
sues including seedling leaves, stems, roots, fl owers, seeds and pods, but mostly 
accumulated in fl owers. The  CarNAC5  was strongly expressed during seed matura-
tion, in germinating seeds, and strongly induced by drought, heat, wounding, sali-
cylic acid (SA) and indole-3-acetic acid (IAA) treatments (Peng et al.  2009a ). 
Subsequently, among other NAC TFs,  CarNAC3 , was also shown to be signifi cantly 
induced by drought stress, ABA, ethephon and IAA (Peng et al.  2009b ) and the 
expression of  CarNAC1  was strongly induced by drought, salt, cold, wounding, 
H 2 O 2 , ethephon, salicylic acid, indole-3-acetic acid and gibberellin (Peng et al. 
 2010 ). From the members of  ERF / AP2  proteins that play a crucial role in growth 
and stress response, expression of  CAP2  from chickpea enhanced growth and toler-
ance to dehydration and salt stress in transgenic tobacco (Shukla et al.  2006 ).  

2.1.4     Peanut 

 In peanut, six  ERF  TF genes designated as  AhERF1 – 6  were cloned and their expres-
sion patterns were analysed under cold, salt and drought stress. Of these, the expres-
sion of  AhERF4  and  AhERF6  was rapidly and substantially enhanced under abiotic 
stress. Whereas  AhERF3  was downregulated in leaves under salt stress and  AhERF2  
was downregulated in leaves under drought stress. Interestingly, the expression of 
 AhERF3  and  AhERF5  exhibited contrary expression patterns in peanut leaves and 
roots upon PEG treatment. These results suggested that different  ERF  TFs might 
have different functions in abiotic stress acclimation in peanut (Chen et al.  2012a ). 

 Previously, a drought-induced NAC gene,  AhNAC2 , was isolated from peanut and 
transgenic  Arabidopsis  overexpressing  AhNAC2  was hypersensitive to ABA in root 
growth, seed germination and stomatal closure compared to the wild-type plants. 
The transgenic lines exhibited enhanced tolerance to drought and salinity stress, and 
the expression levels of 12 stress-related genes in the  AhNAC2  transformed plants 
were higher than the wild type (Liu et al.  2011 ). Finally, the oxidative cleavage of 
 cis -epoxycarotenoids catalysed by  9 - cis - epoxycarotenoid dioxygenase  ( NCED ) is 
considered to be the rate-limiting step in ABA biosynthesis. The constitutive expres-
sion of peanut  AhNCED1  gene in wild-type  Arabidopsis  resulted in increased ABA 
accumulation in transgenic plants in response to drought stress (Wan and Li  2006 ).  

2.1.5     Cowpea 

 In cowpea, a stress-inducible gene for NCED,  VuNCED1 , involved in ABA biosyn-
thesis under water stress was identifi ed from drought-tolerant cowpea (Luchi et al. 
 2000 ). In a bid to generate genomic resources in cowpea, sequencing and analysis 
of the gene-rich, hypomethylated portion of the cowpea genome identifi ed over 
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250,000 gene-specifi c sequence reads (GSRs) with an average length of 610 bp 
(Timko et al.  2008 ). A total of 62 out of the 64 well-characterized plant TF gene 
families were represented in the cowpea GSRs, which may provide a resource for 
functional markers linked to abiotic stress tolerance traits in cowpea. Recently, a 
comparative genomics approach was used to identify 18 conserved  V. unguiculata  
miRNAs belonging to 16 distinct miRNA families. Using these potential miRNA 
sequences 15 potential target genes were predicted and all of them were identifi ed 
as transcription factors (Paul et al.  2011 ).   

2.2      Phaseolus  

 A root-specifi c  bZIP  TF was shown to be responsive to water defi cit stress in tepary 
bean ( Phaseolus acutifolius ) and common bean ( P. vulgaris ) (Rodriguez-Uribe and 
O’Connell  2006 ). Meanwhile, a  NAC  family TF member  AtNAP  important for leaf 
senescence was characterized in  Arabidopsis  (Guo and Gan  2006 ). In this study, an 
orthologous  NAC  TF from  P. vulgaris , PvNAP, was identifi ed that shared the same 
leaf senescence-specifi c expression pattern as  AtNAP. P. vulgaris  leaves at fi ve dis-
tinct developmental stages, were analysed and the  PvNAP  transcript was detected in 
senescing leaves only. In addition, AtNAP homologues in  P. vulgaris  were able to 
restore the  Arabidopsis AtNAP  null mutant to wild type (Guo and Gan  2006 ). 
Recently, analysis of genes in response to dehydration stress in  P. vulgaris  identifi ed 
 CA1  with sequence similarity to the  ERF  family  AP2 / EREBP  and was tenfold 
induced by drought stress (Kavar et al.  2008 ).  

2.3     WRKY TFs and Their Roles in Abiotic Stress Tolerance 

 The WRKY (W=Tryptophan, R=Arginine, K=Lysine, Y=Tyrosine) family are one 
of the largest TF families and regulate many plant processes (Ulker and Somssich 
 2004 ; Zhang and Wang  2005 ). Members can either activate or repress multiple 
downstream gene networks along with MAP kinases, MAP kinase kinases, 14-3-3 
proteins, calmodulin, histone deacetylases and other protein partners. WRKY TFs 
possess a DNA-binding domain of 60 amino acids with an evolutionary conserved 
WRKYGQK signature at the N terminal and a C terminal that contains a zinc fi nger 
motif (Eulgem et al.  2000 ). WRKY proteins have DNA-binding activity at a specifi c 
W BOX motif (C/T)TGAC(T/C) in their promoter region (Eulgem et al.  2000 ). 
Other sequences adjacent to the WRKY domain also assist in DNA-binding activity 
(Luise et al.  2013 ; Ciolkowski et al.  2008 ). 

 Structural classifi cation of the WRKY family is based on confi guration of the 
zinc fi nger motif, the number of WRKY domains and the size of the intron (Zhang 
and Wang  2005 ). The family is classifi ed into three main groups 1, 2 and 3, which 
are further divided into subgroups 2a+2b, 2c, 2d and 2e (Eulgem et al.  2000 ; 
Zhang and Wang  2005 ) (Table  2.1 ). The family originated two billion years ago 
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and has subsequently increased in frequency and distribution throughout the plant 
kingdom (Ulker and Somssich  2004 ), playing roles in stress signalling and defence 
(Eulgem and Somssich  2007 ; Lai et al.  2008 ; Chavan and Kamble  2013 ; Chen 
et al.  2012a ; Madrid et al.  2010 ). Involvement in plant biotic signalling has been 
extensively studied, however, much less is known about their involvement in abi-
otic stress tolerances. A summary of this knowledge, with a specifi c focus on each 
stress and application of knowledge to improving legume food  species follows.

2.3.1       Drought 

 In  A. thaliana , the AtWRKY33 TF interacts with the W BOX of the drought 
 resistance gene  CesA8  to regulate its transcription (Wang et al.  2013 ). This was 
similar to expression of the rice OsWRKY45 TF in response to dehydration (Qiu 
and Yu  2009 ) and induction of PtrWRKY1 from  Poncirus trifoliata  and CgWRKY1 
from  Citrus grandis  in response to drought (Şahin-Çevik and Moore  2013 ). 

 Of the soybean WRKY TFs, expression of GmWRKYs 13, 17 and 27 occurred 
in the early response to drought and those numbered 21, 41, 54 and 62 were induced 
under prolonged drought conditions (Zhou et al.  2008 ). Subsequently, in a wild 
 soybean ( Glycine soja ), GsWRKY20 was highly induced under drought, salt 
and cold treatments in leaf and root tissues of transgenic  Arabidopsis  and showed 
increased drought tolerance by subsequent reduction in number of stomata and 
water loss (Luo et al.  2013 ). In  Medicago truncatula , the genome-wide analyses of 
MtWRKY showed that 19 MtWRKYs belong to group 1 and 49 MtWRKYs were 
recognized in a bigger WRKY group 2. Only 12 MtWRKYs were identifi ed in-
group 3 (Song and Zhibiao  2014 ). The functional validation and possible roles in 
defence activation of MtWRKYs has not yet been achieved.   

2.4     Salinity 

 In  A. thaliana , AtWRKY25 and AtWRKY33 were upregulated quickly in leaf and 
root tissues (Jiang and Deyholos  2009 ) and AtWRKY8 was highly expressed in root 
tissues under salinity (Hu et al.  2013 ). Similarly, the transient high expression of 
soybean GmWRKY6, 13, 17, 27 and 41 was reported under salinity stress (Zhou 
et al.  2008 ). It was recorded that soybean WRKYs increased salt tolerance through 
regulating the salinity stress-related transcriptional factors DREB2A and STZ/
Zat10 genes (Zhou et al.  2008 ). 

2.4.1     Temperature 

 In  A. thaliana , the viability of mature pollen increased with the induction of 
AtWRKY34 after cold treatment and pollen sensitivity towards cold stress was 
reduced after overexpression of AtWRKY34 in wild-type lines (Zou et al.  2010 ). 
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Meanwhile, AtWRKY25 was highly expressed under continuous high temperature 
stress (Li et al.  2009 ), and using mutant studies Li et al. ( 2010 ) showed that 
AtWRKY39 expression under thermal stress enhanced expression of heat respon-
sive and the salicylic acid-inducible pathogenic-related protein PR1 gene for 
improved heat tolerance. Additionally, highlighting the very unique functional 
nature of individual WRKY family members, expression of AtWRKY26 increased 
and AtWRKY33 decreased under thermal stress (Li et al.  2011 ). Meanwhile, in the 
food legumes, the soybean GmWRKY1, 5, 15, 21, 30, GmWRKY43, GmWRKY48 
and GmWRKY62 were upregulated under low temperatures (Zhou et al.  2008 ). 

 The functional biology and temperature activation of  Arabidopsis  WRKY TF 
(AtWRKY25, AtWRKY26 and AtWRKY33) indicated that in temperature 
stress, heat stress-related genes like Hsps, MBF1c and Zat10 are activated which 
further increased heat tolerance of the plant (Li et al.  2011 ). The AtWRKY25, 26 
and 33 all belong to group 1 of the WRKY family (Eulgem et al.  2000 ; Zhang 
and Wang  2005 ).   

2.5     Progress Towards Establishing Tolerance-Related 
Function of Candidate Transcription Factors 

 A diversity of functional genomics approaches have been employed to better char-
acterize and validate the actions of TFs involved in particular abiotic stress tolerance 
responses. In  Arabidopsis , the WRKY25 and 33 genes were found via microarray 
analysis to aid in NaCl tolerance, the function of these genes and an upstream-induc-
ible region were validated through transgenic overexpression and found to be stimu-
lated with ABA (Jiang and Deyholos  2009 ). In the legume model species  Medicago 
truncatula , the functional response levels of over 1,000 TF transcripts were estab-
lished using a 384-well plate qRT-PCR pipeline to produce a useful resource that has 
subsequently been used to study the function of TFs under several abiotic stress 
stimuli (Kakar et al.  2008 ). More recently, DeepSuperSAGE followed by RT-qPCR 
was used to identify and validate the functional responses of several transcription 
signals involved in the early perception of water deprivation in dehydrated soybean 
roots, including members of the WRKY and NAC families (Ribamar et al.  2013 ). In 
chickpea, TFs that lie within microsatellite loci have been used to genome map with, 
to determine those that may be functionally important (Kujur et al.  2013 ). This is a 
smart approach to hone in on a subset of TFs directly related to the functional con-
trol of a particular trait of interest, including abiotic stress tolerance in crop plants.  

2.6     Concluding Remarks 

 Apart from a limited number of studies and mostly in the model legume species, to 
date there is very little knowledge of the functional role of TFs in abiotic stress 
responses and regulation in food legumes. Much investigation, using forward and 
reverse genetics techniques is required to address specifi c research questions to 
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uncover the key transcriptional drivers and their regulators. Comprehensive pro-
gram aimed at the elucidation of the genetic controls governing abiotic stress toler-
ances and the subsequent incorporation of these genes and mechanisms through 
transgenics into elite breeding lines and subsequently cultivars are beginning to 
emerge, for example, the chickpea program at ICRISAT. This includes research 
towards developing cultivars tolerant to drought, salinity and low temperatures. 
Genes already under investigation for transfer include those encoding for enzymes 
required for the biosynthesis of osmoprotectants, modifying membrane lipids, LEA 
proteins and detoxifi cation enzymes, microRNAs (Mantri et al.  2013 ). However, 
more programs are predicted for the near future to address other mandate legume 
crops and to uncover stress-inducible transcription factors that may be used for 
tolerance induction and selection following functional validation.     
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