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Introduction

Microorganisms constitute rich sources of diverse biologically active metabolites. 
These metabolites have already found a broad spectrum of applications, for 
instance as antiparasitics, antibiotics, anticancer agents, immunosuppressants 
as well as agrochemicals [1]. A wide range of niches on Earth are occupied by 
microorganisms, ranging from deep rock sediments and marine environments to 
deserts, alpine, Arctic, and Antarctic regions, and even to thermal vents [1]. In terms 
of microbial diversity, soil is a remarkable site, which contains a hitherto largely 
unexplored microbiota. For instance, in as small as 1 g of soil, several thousands 
of bacterial species exist, the majority of which are uncultivable under standard 
microbiological conditions [2]. In parallel to prokaryotes, there is a substantial 
number of eukaryotic microorganisms hosted by soil, which contribute to the 
microbial biomass [3]. In the light of the enormous diversity of microorganisms 
in soil, only a handful of bacterial (less than 1 %) and fungal species (less than 
5 %) are known at present. Hence, millions of microbial species out there need to 
be unearthed [4]. Isolation and in vitro growth of most prokaryotic and eukaryotic 
microorganisms is, however, difficult or impossible due to their general lack of 
cultivability. To address this obstacle, new experimental approaches, such as 
metagenomics, have been used to assess the true functional diversity and activities 
of microorganisms in soil. In the next sections, we will explore how the power of 
molecular tools can be harnessed to explore the wealth of genetic and functional 
information that exists right underfoot.
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Natural Product Exploration Using Metagenomics  
and Other “Omics” Tools

Natural environments, such as soil, are a great reservoir of genes involved in differ-
ent biosynthetic pathways that are difficult to explore using cultivation techniques. 
This reservoir of genes can be unlocked using metagenomics; i.e., the study of the 
collective genomes of the microbial community. Metagenomics offers very power-
ful strategies that allow us to unearth both the functional potential and taxonomic 
diversity of microorganisms at the community level [5, 6]. This approach has al-
ready yielded a wealth of novel data. However, there are pitfalls in the approach, as 
will be discussed in the following section.

Analysis of Function of Soil—Amplicon Sequencing and 
Metagenomics

The function of soil can be studied using either a gene-centered or a genome-cen-
tered approach. In the former approach, the polymerase chain reaction (PCR) is 
used to amplify single target genes and the amplification products (amplicons) are 
used for sequencing to analyze the occurrence of the different orthologs of that gene 
in the whole community. In the second approach, random  metagenomic sequencing 
is used in which total microbial community DNA is isolated from a soil sample and 
shotgun sequenced, resulting in an outline of all genes that are present in the com-
munity [7]. Next to these direct approaches, the DNA extracted from the sample 
can also be used to generate metagenomic DNA libraries, which are subsequently 
screened for function (Fig. 5.1).

The latter two approaches result in a wealth of information that is stored in the 
genomes of microorganisms, which occupy various niches in the soil environment 
[8]. The metagenomic libraries have potential applications in both applied and basic 
research. Several studies over the years have used metagenomics for purposes such 
as bioprospection for novel amylases [9], beta-agarases, cellulases and lipases [10]. 
Moreover, Schirmer et al. [11], Courtois et al. [12] and Gillespie et al. [13] reported 
on new polyketide synthase genes and their expressed compounds and two colored 
triaryl cation antibiotics. Other studies revealed information about important physi-
ological processes of microorganisms after extensive sequencing of metagenomic 
libraries [14–16]. All these studies focused on prokaryotic microorganisms, thus 
excluding eukaryotic microorganisms, which was possibly due to their relative 
scarcity or because of their physical discrimination through filtration or centrifu-
gation on density gradients before DNA extraction [3]. Eukaryotic metagenomics 
has faced certain constraints over the years, such as the giant genome sizes of most 
eukarya compared to the smaller bacterial genomes. (Micro)eukaryote genomes 
range from 13.8 Mbp for the yeast Schizosaccharomyces pombe [17] to 69 Mbp for 
the ciliate Paramecium tetraurelia [18]. The large sizes compromise seizing––to a 
sufficient extent––the eukaryotic microbial community gene content. Moreover, the 
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detection of the expression of eukaryotic protein-encoding genes is impeded by the 
existence of introns and the absence of a conserved motif in promoter sequences [3].

Construction and Screening of Metagenomic Libraries

Metagenomic libraries are most often constructed inside cloning vectors that are 
replicated in the common host Escherichia coli. Different cloning vectors can host 
DNA fragments ranging from up to 30 to 300 kb in size [19–23], which allows a 
wealth of possibilities in the cloning step. Single-gene traits can be picked up in 

Fig. 5.1   A schematic workflow of ‘omics’ tools for screening of natural products
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small-insert (up to several kb) vectors, whereas traits that are encoded by larger 
stretches of DNA (gene clusters) require larger insert vectors (see later). Gene clus-
ters that encode natural products are mainly in the 30–300 kb range, which would 
allow cloning of whole intact gene clusters inside a single large-insert vector clone 
[24]. Recently, expression of whole gene clusters in suitable host organisms has 
been achieved, allowing biosynthesis of the natural product in question [25–27]. If 
gene clusters spread over multiple clones represent a target pathway, recombino-
genic cloning could be used to streamline the whole metabolic pathway, as has been 
reported for heterologous expression of the tubulysin gene cluster [28].

A prerequisite for the construction of a metagenomic library is the selection of 
an appropriate vector, into which sheared and fragmented DNA isolated from an 
environmental sample can be inserted. For many gene clusters, vectors that can 
accommodate inserts up to 40 kb, such as fosmids [22] and cosmids [20], could be 
used. However, as discussed above, some gene clusters have sizes well above 40 kb. 
This has motivated researchers to use vectors that can harbor up to 300 kb frag-
ments [19], such as P1-derived vectors [21] and bacterial artificial chromosomes 
(BACs) [23]. Consequently, an appropriate host organism should host vectors that 
carry random fragments of particular sizes. This results in a plethora of clones that 
are then screened to assess if DNA fragments of interest are successfully expressed 
or are detectable by genetic screens. Those screens that pinpoint interesting DNA 
fragments are often subjected to sequencing, resulting in information that is useful 
to mine the gene clusters of interest. This strategy has been used in a number of 
recent studies, i.e., to identify siderophore biosynthetic genes [26], to detect second-
ary metabolites from soil bacteria [29], and to discover novel natural products [30].

Shotgun Metagenomics or Direct Sequencing

The current affordability of next-generation sequencing (NGS) tools has revolu-
tionized the direct shotgun metagenomics of the microbiota from environmental 
habitats. In this approach, microbial community DNA isolated from environmental 
samples is directly sequenced without first constructing clone libraries. Shotgun 
metagenomics has been applied in various studies to discover enzymes responsible 
for the biodegradation of lignocellulosic matter from sources such as cow rumen 
[31] and compost [32]. Furthermore, recent studies featured shotgun metagenomics 
and metagenomic library construction, exploring the microbiomes of the marine 
tunicate Lissoclinum patella as well as of coral reefs [33–35]. Other studies used 
pyrosequencing to investigate the marine sponge Arenosclera brasiliensis micro-
biome [36], and the Ecteinascidia turbinata tunicate metagenome [37]. The latter 
study identified a biosynthetic gene cluster encoding the chemotherapeutic natural 
product denoted ‘ET-743’. However, there are potential constraints related to the 
data generated, as processing the data and extracting relevant information about the 
biosynthetic gene clusters of natural products is a daunting task. In particular, the 
massive data that we generate nowadays pose problems for downstream analyses 
such as cleaning up, binning and subsequent sequence-based and statistical analy-
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ses. Computer power is increasingly limiting and so is bioinformatics. Clearly, one 
needs advanced (better) bioinformatics tools and pipelines to pave the way for im-
provement in the analysis of the data generated by shotgun metagenomics.

Metatranscriptomics

Metagenomics studies do not address questions regarding the expression state of 
genes, hampering conclusions about the functional role of particular genes in the 
environment under study. Therefore, new technology-coined metatranscriptomics 
strategies have come into being. Metatranscriptomics analyzes the collective set 
of messenger RNAs that are present in an environmental sample, in an all-at-once 
manner. However, RNA extracted from the natural microbiota is often dominated 
by ribosomal RNA (rRNA). Hence, in the early studies messenger RNA (mRNA) 
has been enriched by rRNA depletion (for bacteria) or poly-A tailed mRNA enrich-
ment (for eukaryotes) to allow the investigation of overall gene expression profiles 
in the environments under study [3, 38]. Later on, massive parallel (pyro)sequenc-
ing, following a reverse transcription step, was adopted to analyze bacterial and 
archaeal mRNA from environmental (marine) samples, giving a much larger scale 
as compared to the previous studies. In one study, an in vitro amplification step was 
included to keep sample size small and preparation fast [39]. In another study in 
soil, the total RNA was analyzed all at once. This allowed the assessment of the lim-
itations of earlier approaches (linking phylogeny to function) by the simultaneous 
determination of soil microbial community structure (rRNA) and function (mRNA) 
through metatranscriptomics [40]. However, the amount of mRNA that could be 
analyzed in the study was disappointingly low, and so the analysis of in situ gene 
expression was limited. On the other hand, in spite of the technical difficulties, anal-
yses based on metatranscriptomics are very useful, as they provide clues concerning 
the in situ gene expression and point us to conditions under which key genes (e.g., 
those involved in the production of natural compounds) are expressed.

The Rhizosphere: A Potential Hotspot for Natural Products

The biologically active region in the immediate vicinity of plant roots, which is 
inhabited by soil microorganisms (in particular bacteria and fungi), is termed the 
rhizosphere [41–43]. The rhizosphere is under the direct influence of plant roots and 
their exuded products, such as secreted compounds, cell lysates, mucilage and gases 
such as respiratory CO2 [44]. Although recalcitrant compounds are also present, the 
availability of easily degradable nutrients makes the rhizosphere a dreamland for 
microorganisms. It is also a playground for complex interactions among microor-
ganisms, such as cooperation through cross-feeding or competition for nutrients, us-
ing, for instance, antagonism through chemical warfare [45–47]. The diversity and 
complexity of the rhizosphere in terms of microbial life, in addition to the selection 
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for interaction-proficient microbes, makes it a potentially important source of natu-
ral products. A number of natural products from fungi associated with plants have 
already been isolated and characterized, as described in the following examples. 
Penicillic acid and two new natural products (6-methoxy-5, 6-dihydropenicillic acid 
and 4R, 5S dihydroxy-3-methoxy-5-methylcyclohex-2-enone) have been isolated 
from Aspergillus cervinus associated with Anicasanthus thurberi [48]. Similarly, 
Aspergillus terreus, which is associated with the roots of Opuntia versicolor, is a 
producer of compounds such as betulinan, quadrone, terricyclic acid A, asterriqui-
none C-1, asterriquinone D and asterredione, among others [49, 50]. These few ex-
amples suggest that the rhizosphere is a rich source of natural products. The diverse 
microorganisms that inhabit the rhizosphere have apparently learned to deal with 
the ecology of the niches present and developed key genetic systems allowing sur-
vival by chemical warfare accordingly. On the other hand, the studies only reported 
on fungal strains that can be grown in vitro. In the light of the lack of culturability 
of many microorganisms, it is likely that there is much more potential for finding 
and exploring natural product producers. Thus, techniques such as metagenomics, 
metatranscriptomics and even metabonomics should be applied to overcome the 
limitation of microorganism culturing in vitro.

Endophytic Fungi as Sources of Natural Products

Microorganisms that reside inside plants without causing disease symptoms have 
been coined endophytes [51]. This unique plant–microbe interaction is established 
entirely inside plant tissues [52] and is defined by the fact that the two partners do 
not affect each other lethally. Endophytes offer great biotechnological potential in 
terms of the biosynthesis of natural products and bioactive metabolites for appli-
cation such as therapeutics for a number of diseases [52–56]. Some studies have 
already reported the finding of key therapeutically important secondary metabo-
lites produced by fungi, such as taxol [57], deoxypodophyllotoxin [58], podophyl-
lotoxin [59, 60], hypericin and emodin [61, 62], azadirachtin [63] and camptothecin 
[64–67]. The production of these metabolites, as well as many others, makes en-
dophytes very important microorganisms for studying from an ecological as well 
as biochemical standpoint. In order to investigate and explore new secondary 
metabolites, it is imperative that such plant-interactive microorganisms are exploit-
ed in the best possible way, which should include an assessment on how genes for 
the biosynthesis of key metabolites are regulated.

Bacterial–Fungal Interactions and Natural Product 
Discovery

Recently, microbial interactions were found to be drivers the of the production of 
particular metabolites in bacteria and fungi. The interactions between microorgan-
isms, especially the bipartite ones (e.g., between bacteria and fungi) were deemed 
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important, as natural product formation can indeed be induced by bacteria that occur 
in the vicinity of fungi. For instance, the soil-dwelling bacterium Streptomyces 
rapamycinicus physically interacts with Aspergillus nidulans, and, in this interac-
tion, activates a silent polyketide biosynthesis gene cluster [68]. Therefore, includ-
ing microbial “neighbors” in studies for exploration of natural products is the way 
to go in further screens that eventually will include meta-omics techniques. The 
former study showed the production of polyphenols—i.e., cathepsin K inhibitors 
and lecanoric acid—derived from orsellinic acid [68]. In other studies on non-
endophytic fungi, Variovorax paradoxus strain HB44 was found to be selected 
in the mycosphere of Laccaria proxima [69]. The organism was able to grow on 
compounds released by a close relative of L. proxima, i.e., Lyophyllum sp. strain 
Karsten, particularly glycerol. The study also reported the release of other com-
pounds, i.e., acetic acid and formic acid, by the fungus [69]. Recent work in our 
laboratory shows that Lyophyllum sp. strain Karsten releases glycerol-rich exudates, 
which may be due to a stimulatory effect of the fungal-interactive Burkholderia 
terrae strain BS001. This mechanism may be of great significance for strain BS001 
in an ecological context. The stimulation of the fungal release of glycerol could be 
considered as a strategy to acquire easily degradable carbonaceous food, allowing a 
better survival in the mycosphere [70].

With respect to bacterial–fungal interactions, complex interplays of events have 
been shown, in which the toxic compound rhizoxin was produced. Rhizoxin is the 
causative agent of rice seedling blight. Until recently, it was believed that the rice-
pathogenic fungus Rhizopus microsporus was the producer of this rhizoxin. How-
ever, this turned out not to be the case, as the bacterium Burkholderia rhizoxinica, 
which inhabits the fungal cytosol, was revealed to be the producer [71]. Recently, 
it has been reported that R. microsporus also contributes to the potency of the (phy-
totoxic) rhizoxin, as the rhizoxin produced in co-cultures with B. rhizoxinica con-
tained two bis-epoxide moieties compared to the one that is solely produced by 
the bacterium, clearly indicating that there is synergism in production of natural 
products [72].

In another study, fungi interacting with lichens were reported to produce natural 
products such as bis-naphtopyrones and lichenicolins A and B, both of which have 
activity against Gram-positive bacteria [73]. Co-culturing an unidentified bacterium 
with the fungus Libertella sp., diterpenoids- including libertellenone A–D––were 
discovered. The compounds were induced by the presence of the bacterium, as they 
did not show up in cultures without the bacterium [74]. The marine fungus Emeri-
cella sp., when grown in co-culture with Salinispora arenicola, produced two dep-
sipeptides (emericellamides A and B) that were shown to exert antibacterial activity 
against methicillin-resistant Staphylococcus aureus [75], and are thus interesting as 
antibiotics against this dangerous bacterium. Similarly, formyl-xanthocillin analogs 
were shown to be synthesized when Streptomyces peucetius was grown with Asper-
gillus fumigatus [76].

All these studies on the biosynthesis of natural products have been carried out 
in relatively “simple” circumstances, in which basic (co-)culturing techniques 
were applied. However, the complexities of their natural environment, including 
fluctuating and often harsh circumstances, are rarely included in such experiments 
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and the full potential of natural compound production in nature is still cryptic. 
Therefore, to unlock the wealth of natural products hidden in the natural micro-
biota, it is imperative to dig deeply into natural habitats, focusing on the interacting 
microorganisms and to “eavesdrop” on the cross-talk between them using meta-
omics tools. In such strategies, a combination of the current and newly emerging 
advanced molecular tools, including RNA sequencing and metabonomics, with tra-
ditional cultivation-based efforts needs to be applied as such an approach will take 
advantage of the complementary strong points of both types of analyses.

Conclusion

Outlook

There is a progressively increasing feeling that the scientific community, and society 
as a whole, is close to exhausting the capability of finding novel natural products 
that serve society, if we continue to bioexplore our natural environments by the tra-
ditional (cultivation-based) and advanced molecular methods. The natural products 
include the dearly needed novel antibiotics, which are often produced by fungi from 
soil or other natural environments, that allow us to treat dangerous bacterial or fun-
gal diseases. The reasons for this contention of reaching the “limit” are the simple 
facts that (1) increasingly we reencounter organisms and the natural compounds 
they produce via the traditional way of cultivation and assessing bioantagonism, 
and (2) the novel molecular tools often stop short of telling us the complete story on  
the expression of genes/operons for natural products in the light of the absence of 
the suitable conditions that trigger gene expression.

To tackle both types of problems, it is imperative that a better focus is placed on 
mimicking the conditions that govern the life of the target microbiota in its natu-
ral environment. And, included in such conditions, we need to consider the biotic 
component of it (i.e., the presence of other organisms), as microorganisms such as 
fungi in nature have most likely “learned” to express their key antagonistic com-
pounds when other organisms (that might present ecological threats) are in their 
vicinity. Hence, we here reviewed the available literature with respect to the effect 
of microbial “neighbors” on the expression of (otherwise silent) genes that underlie 
microbial antagonism and thus might yield novel antibiotic compounds. Moreover, 
we strongly advocate the inclusion of such organisms, or consortia of organisms, 
in screens for the production of novel compounds. Then, the power of meta-omics 
techniques might be harnessed to improve our screens and get at the natural prod-
ucts and their underlying genes in the most efficient way possible. This may include 
(in that order) metabonomics, metatranscriptomics and metagenomics, leading to 
the identification and isolation of genes/operons responsible for the biosynthesis.

However, in the end it might be very useful to also attempt to isolate the producer 
organism, allowing production by the natural organism, as incited by neighbors. 
In this isolation effort, the availability of molecular tools will be a great asset.  
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In other words, if fragments of interesting genes are discovered, probes and primers 
might be generated that enable the monitoring of the organisms in enrichments and 
allow the guidance of a directed isolation effort, leading to the availability of novel 
“nature-derived” producer organisms.
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