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Fungal Secondary Metabolism and Epigenetics

Fungi produce a diverse array of low molecular weight, bioactive secondary me-
tabolites are not essential for their survival. Secondary metabolism (SM) is defined 
as “the production of ancillary metabolites and ‘useful’ compounds, initiated after 
using preferred carbon and nitrogen sources” [1, 2]. Secondary metabolites are not 
necessary for normal growth, but are considered important for the producing fungus 
to flourishing in its niche [3–5], stress tolerance [6, 7], or defense against hostile 
and/or competing organisms [1, 8]. They are important for day-to-day human life as 
beneficial antibiotics, pharmaceuticals, and/or harmful mycotoxins [9]. However, 
the true biological functions of many fungal secondary metabolites in producing 
fungi are largely cryptic.

Fungal SM is a complex process, which is often tightly related with morphologi-
cal development [10]. Due to the importance of fungal secondary metabolites, an 
increasing number of genes associated with SM have been identified and character-
ized. Furthermore, the availability of fungal genomes accelerates the identification 
of biosynthetic genes for secondary metabolites. However, the role and regulatory 
mechanisms of many of the newly defined genes remain to be investigated [11]. In 
fungi, secondary metabolite biosynthetic and regulatory genes are usually clustered 
and not evenly distributed across the genomes [12–14]. Many of the clusters are 
silent under the standard laboratory culture conditions, which makes it difficult to 
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elucidate their functions and regulatory mechanisms. It is both time and resource 
consuming to find the appropriate conditions to express the gene clusters of interest. 
A promising strategy to investigate unknown SM cluster(s) is via modifying global 
epigenetic regulators to activate the silenced SM clusters [15, 16].

Epigenetic phenomena are defined as reversible and heritable changes in gene 
expression levels without altering the DNA sequences. Epigenetic phenomena can 
derive from DNA-, chromatin-, and RNA-based effects, and include DNA meth-
ylation, position effects, RNA silencing systems, centromere/telomere location, 
and chromatin structure changes. Many of the aforementioned phenomena occur 
in fungi throughout the life cycle [17] which makes fungi an excellent model sys-
tem to understand the fundamental principles of epigenetics. During the life cycle, 
fungi regulate development by several epigenetic mechanisms. Most steps or cell 
types are known to be under control by DNA methylation, which is regulated by 
changes in the chromatin state. Methylation induced premeiotically (MIP) and re-
peat-induced point mutation (RIP) occur during dikaryon formation and conjugated 
nuclear division [18–25]. MIP is regulated by DNA methylation, and RIP may also 
be regulated by it. Moreover, filamentous fungi share conserved silencing systems 
with higher eukaryotes, such as RNA interference (RNAi) and DNA methylation 
[26–31]. However, it is uncertain whether RNAi, which regulates the parasexual 
cycle and germination, is related to DNA- or chromatin-mediated epigenetic phe-
nomena [32]. In addition, meiotic silencing by unpaired DNA, also known as meiot-
ic silencing (MSUD), is another RNA silencing mechanism, that occurs throughout 
meiosis [33, 34].

As mentioned, fungal secondary metabolite synthetic and regulatory genes tend 
to be clustered. Gene clusters may originate from the horizontal transfer of genes 
from bacteria to fungi [35–40]. However, some SM gene clusters—e.g., gibberellin 
(GB) gene cluster—are unlikely a result of horizontal transfer [41]. The clustered 
SM genes are likely subject to co-regulation by epigenetic changes. An emerging 
field, chemical epigenetics, has been evolving to stimulate expression of secondary 
metabolite gene clusters by altering epigenetic status such as DNA and/or histone 
modifications [1, 42].

Epigenetic Modifications that Affect Secondary 
Metabolism

The epigenetic regulation of fungal SM is mainly through histone modifications: 
methylation, acetylation, and sumoylation (Fig. 3.1) [43–47]. Histone proteins are 
the primary protein components of chromatin and function as a scaffold for the nu-
cleosome formation. Histone octamer consisting of two each of H2A, H2B, H3, and 
H4 is wrapped by DNA and forms a nucleosome [48].

Histone modifications can affect chromatin conformation and recruited proteins 
that cause epigenetic changes by interacting with histones [49]. Most histone modi-
fications involve histones H3 and H4 [44, 45, 50]. The N-terminus of H3 and H4 are 
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crucial to generate heterochromatin or euchromatin. In euchromatin, lysines in the 
H3 and H4 tails are hyperacetylated and H3K4 is trimethylated. In heterochromatin, 
in comparison, lysines in H3 and H4 are hypoacetylated and H3K9 is trimethylated 
[51]. By histone modifications, only a group of specific target genes inside of dis-
tinct regions of the chromosomes can be regulated, further supporting the advantage 
of SM genes being clustered [44, 45, 50].

Genes Affecting Histone Methylation

HepA  HepA is the Aspergillus nidulans  homolog of HP1 (the heterochromatin 
protein-1, SWI6 in Schizosaccharomyces pombe) [52–54]. Heterochromatin 
domains are silenced and have hypoacetylation of lysines in H3 and H4 [55] with 
different degrees of methylation of H3K9 (H3K9me) by a histone methyltransferase 
(Clr4 in S. pombe) [56, 57]. As a transcriptional repressor, HP1 recognizes H3K9me 
and directly binds to it, achieving both targeting and transcriptional repression by 
maintaining the heterochromatin structure [58–63]. Artificial recruitment of HP1 to 
a gene promoter region leads to gene repression, supporting that HP1 is essential in 
gene silencing [64, 65].

HepA acts as an epigenetic repressor in expression of secondary metabolite genes 
[52]. The deletion of HepA leads to derepression of secondary metabolite biosynthet-
ic genes, including sterigmatocystin (ST), penicillin (PC), and terrequinone A (TA). 

Fig. 3.1   Examples of fungal secondary metabolites and their epigenetic regulators. Certain fungal 
secondary metabolites regulated by one or more epigenetic regulators are shown. PC Penicillin, 
LOV Lovastatin, GB Gibberellin, AT Asperthecin, GL Gliotoxin, OA Orsellinic Acid, TA Terrequi-
none A, ST Sterigmatocystin
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Biochemical analysis shows that the silent ST gene cluster is marked by H3K9me3 
and recruits high levels of HepA, leading to repression of ST production during 
growth phase. Upon growth arrest and activation of SM, HepA, and H3K9me3 
levels decrease while the acetylated histone H3 increases [52]. HepA occupancy 
and H3K9me3 levels are counteracted by the global SM regulator (LaeA) (Fig. 3.2).

LaeA  (loss of aflR expression-A) is a global regulator of SM and development in 
filamentous fungi. This nuclear protein was first reported in Aspergillus spp. [44]. 
The lack of laeA blocks expression of several metabolic gene clusters, including ST, 
PC, and lovastatin (LOV). The overexpression of laeA contrarily increases expres-
sion of ST and LOV gene clusters and subsequent ST and LOV production [44]. 
In Penicillium chrysogenum, the overexpression of laeA increases PC production 
(~ 125 %) and the lack of laeA dramatically reduces PC gene expression levels and 
PC production [50]. Similarly, LaeA serves as a positive regulator of GB produc-
tion in Fusarium fujikuroi [66]. In addition, microarray analysis indicates that LaeA 
regulates up to 9.5 % of the Aspergillus fumigatus transcriptome and up to 13 of its 

Fig. 3.2   Overview and the roles of the epigenetic regulators in fungal secondary metabolism. 
Many epigenetic regulators participate in fungal secondary metabolism. HepA, Clr4, COMPASS, 
and LaeA are involved in histone methylation ( red box, red stars indicate histone methylation). 
Clr4 leads to H3K9 methylation, which enables HepA binding to histone. HepA binding stabilizes 
the heterochromatin structure and thus leads to silencing the secondary metabolic gene clusters. 
COMPASS methylates H3K4 and H3K9, and silences SM, while LaeA removes the histone meth-
ylation and HepA binding and induces SM. HDACs and SAGA/ADA complex play a role in 
controlling histone acetylation ( blue box, blue stars indicate histone acetylation), which induces 
fungal SM. HDACs deacetylate the lysines of H3 and/or H4, while the SAGA/ADA complex 
acetylates them. SUMO ( the scarlet decagon) conducts sumoylation of several epigenetic regula-
tors, including Clr4, COMPASS, HDACs, and SAGA/ADA, and silences SM
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22 secondary metabolite gene clusters, containing NRPS, PKS, and P450 monooxy-
genase genes [67].

LaeA forms a key heterotrimeric complex with the two velvet proteins, VelB and 
VeA. The VelB/VeA/LaeA trimeric complex coordinates light signals with fungal 
development and SM [68]. VeA physically interacts with VelB, and bridges it to 
LaeA. All three components in this complex are essential for sexual development 
and ST production in A. nidulans. Previous studies showed that LaeA and VeA in-
teract in P. chrysogenum and F. fujikuroi, too [50, 66]. The successful cross-genus 
complementation between Fusarium, Aspergillus, and Penicillium indicates that the 
VelB/VeA/LaeA complex has undergone a divergence in specific functions mediat-
ing SM [66].

LaeA-mediated SM regulation primarily depends on histone methylation. LaeA 
contains a predicted and functionally necessary S-adenosyl-methionine (SAM) 
binding domain [68–70], which is present in all members of the methylase super-
family [71], and has sequence similarity to histone and arginine methyltransferase 
[44, 72]. The laeA gene is negatively regulated by AflR, a Zn2/Cys6 transcription 
factor located in the aflatoxin and ST gene clusters, in a feedback loop [44]. In A. 
nidulans, the ST gene cluster expression analysis shows that LaeA-mediated regu-
lation of the cluster is location specific. The placement of argB in the ST cluster 
results in argB silencing in the laeA deletion background, whereas the genes border-
ing the ST cluster are unaffected [69]. Similar location-specific effects on SM gene 
regulation have been reported in other Aspergillus species as well [73–75]. Notably, 
the location specific effect is only reported in Aspergillus and Neurospora [13, 76],

These findings indicate that LaeA may differentially affect histone protein meth-
ylation, which in turn allows the cluster region to be more accessible to gene tran-
scription [69]. Biochemical analyses of laeA and heterochromatin mutants (e.g., 
histone deacetylase and histone methyltransferase mutants) in A. nidulans demon-
strate that LaeA activates SM gene expression by being involved in the removal of 
heteromatin marks like H3K9 methylation and HepA binding [13, 52, 77]; i.e., the 
LaeA-involved machinery reverses the heterochromatic signature and activates the 
gene expression inside the SM cluster.

COMPASS  COMPASS (complex proteins associated with Set1) is a multi-subunit 
complex consisting of Set1, Bre2, Sdc1, Spp1, Swd1, Swd2, and Swd3 [78–80]. 
COMPASS is involved in H3K4 mono-, di-, and tri-methylation [77, 79–82], which 
is necessary for RNA Pol II binding and transcriptional activity in development and 
differentiation [79, 80, 83] in Saccharomyces cerevesiae. Three core components, 
Set1, Swd1, and Swd3 are essential for COMPASS [78]. Swd2, Bre2, Sdc1, and 
Spp1 affect the degree of Set1 methylation [84–86]. Set1 has the SET domain, which 
possesses histone or lysine methyltransferase (HMTase or KMTase) activity [87].

CclA (Bre2 in S. cerevisiae) is one of the eight members of COMPASS in A. 
nidulans. The lack of CclA leads to reduced levels of H3K4 and H3K9 di- and 
tri-methylation, as well as reduced H3 acetylation [88]. H3K4 di- and tri-meth-
ylation is associated with actively expressed genes and are required for telomere 
silencing in S. cerevesiae [79, 80, 89–91], and activating A. nidulans SMs, e.g., 
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monodictyphenone, emodins, and the polyketides F9775A and F9775B [52, 77]. In 
A. fumigatus, loss of CclA results in slow fungal growth and increased SM produc-
tion like gliotoxin [92]. Based on 6-azauracil (6AU) sensitivity test result, CclA 
plays a role in transcription elongation [92].

Genes Influencing Histone Acetylation

Histone Deacetylases (HDAC)  Histone deacetylases (HDACs) and histone acetyl-
transferases (HATs) play critical roles in fungal epigenetic regulatory mechanism. 
Histone acetylation is reversible and controlled by HDACs and HATs [51]. HDACs 
are classified into three main groups based on their homology to yeast proteins: 
Class I HDACs have homology to yeast Rpd3; Class II HDACs have homology to 
yeast Hda1; Class III HDACs have homology to yeast Sir2. Both Classes I and II 
HDACs contain zinc in their catalytic site, and are known as epigenetic regulators 
in fungal SM. Class III HDACs do not have zinc in the catalytic site but require 
NAD+ instead [93].

A. nidulans RpdA is a Class I HDAC and the homolog of the global repressor 
Rpd3 in S. cerevisiae. RpdA is necessary for growth, conidiation, and gene regula-
tion. The lack of Rpd3 leads to increased acetylation of H4K5, H4K12, and H3K18 
in derepressed genes [94]. The absence of RpdA is lethal in A. nidulans and Neuros-
pora crassa [95]. Silencing of RpdA in A. nidulans reveals that RpdA is involved in 
normal growth and H3 and H4 deacetylation [96].

Histone deacetylase A (HdaA) is a Class II HDAC playing a counter role to LaeA 
in SM regulation in A. nidulans. Loss of hdaA causes precocious and increased 
expression of ST and PC biosynthetic genes. The deletion of hdaA causes dere-
pression of SM gene clusters that are located close to the telomeres in A. nidulans 
[97]. In A. fumigatus, HdaA plays a similar role in SM regulation [98]. Inhibition 
of most HDACs induces the production of unknown SMs in Penicillium expansum 
[97]. Treating the fungus with HDAC inhibitors leads to overproduction of several 
secondary metabolites, suggesting that HDAC-mediated repression of certain SM 
gene clusters is conserved in fungi [97].

SAGA/ADA Complex  The Spt-Ada-Gcn5-acetyltransferase (SAGA/ADA) coacti-
vator complex regulates numerous cellular processes by posttranslational modifica-
tions of histones [99]. SAGA/ADA contains a HAT, Gcn5, and acetylates multiple 
lysine residues at the N-terminal tails of H3 and H2B. In A. nidulans, GcnE (Gcn5 
homolog in A. nidulans) regulates PC biosynthesis gene cluster located on chromo-
some VI by histone acetylation [45, 100]. The Ada1–5 proteins (Alteration/defi-
ciency in activation) are components of SAGA/ADA in S. cerevisiae [101]. Ada2/
Ada3/Gcn5 complex is sufficient for robust histone and nucleosomal HAT activity 
in yeast [102].

Both GcnE and AdaB are required for induction of the orsellinic acid gene clus-
ter in A. nidulans. Similarly, SAGA/ADA plays a major role in specific induction of 
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other SM gene clusters, such as ST, PC, and terrequinone [45]. Chromatin immu-
noprecipitation (ChIP) data shows that SAGA/ADA increases acetylation at H3K9 
and H3K14 in A. nidulans. Interestingly, the increase of H3K14 acetylation is a 
global phenomenon of the whole genome, while the increase of H3K9 acetylation 
can be only observed within SM gene clusters [45].

Genes Impacting Sumoylation

SUMO  Small ubiquitin-like modifier (SUMO) is a small protein that has high 
structural similarity to ubiquitin, despite its low similarity at the level of the amino 
acid sequence [103–106]. SUMO covalently attaches to other proteins through the 
activities of an enzyme cascade (E1-E2-E3) similar to that of ubiquitination, and is 
known to play a role in histone modification like ubiquitin [105, 107–111]. Histone 
sumoylation mediates gene silencing through recruitment of HDAC and Hp1 both 
in vitro and in vivo in human cells [112, 113]. SUMO also modifies Gcn5, a mem-
ber of the SAGA/ADA complex, and results in gene silencing in yeast [114].

In A. nidulans, SUMO represses sexual development and is involved in accurate 
induction and light stimulation of asexual development [104, 115]. CclA and SetA, 
two members of COMPASS, connects the SUMO network to histone modification. 
The interplay of the fungal sumoylation network controls temporal and spatial steps 
in cell differentiation [104].

SUMO is also essential for sexual fruiting body formation and SM in A. nidulans 
[47, 116]. Deleting sumo causes about 200-fold increase of asperthecin production 
but decreases production of austinol/dehydroaustinol and ST [47]. The effect of 
sumoylation on SM may occur at several levels, such as silencing the secondary 
metabolite gene clusters at the chromatin level or regulating TFs involved in the 
SM regulation [47]. Additional work needs to be done to elucidate how SUMO 
regulates specific secondary metabolite production.

Application of Epigenetic Regulators of Fungal  
Secondary Metabolites

Understanding the SM epigenetic regulators can accelerate fungal SM studies by 
activating certain SM gene clusters that are often silent and cryptic in lab culture 
conditions. Suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, has been 
used to stimulate the production of new cladochromes and calphostin B, a known 
protein kinase C inhibitor [117], in Cladosporium cladosporioides [118]. Treatment 
with SAHA can boost nygerone A production in Aspergillus niger [119, 120] and 
orsellinic acid production in A. nidulans without coculturing with Streptomyces ra-
pamycincus [45]. In addition, using a global SM regulator is a new approach to 
identify new secondary metabolic genes. For example, LaeA is an excellent ge-
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nomic mining tool and has successfully been manipulated to uncover several novel 
secondary metabolites such as terrequinone A [15, 16]. Another way to alter expres-
sion of SM gene clusters is to manipulate histone modification, for example, by the 
deletion of hepA [52] or hdaA [97].

Conclusion

Fungi produce a wide range of secondary metabolites. These low molecular weight 
compounds are diverse in structure and perform important yet often cryptic biologi-
cal functions. The scientific community shows great interest in fungal secondary 
metabolites due to their importance to humankind. However, sequencing data of the 
fungal genomes indicate that a large number of fungal secondary metabolites are 
yet to be uncovered and characterized. As most fungal secondary metabolic gene 
clusters are silent under standard laboratory conditions, the importance of global 
regulators and epigenetic regulatory mechanism has been increasingly recognized. 
Various proteins and their complexes play a role in the regulation of fungal SM gene 
clusters through histone modification. Some of these epigenetic regulators mediate 
modification at distinct sites, such as methylation, acetylation, and sumoylation, 
whereas others inhibit such alterations (Fig. 3.2).

In this chapter, we have reviewed several known epigenetic regulators that are 
involved in regulating fungal SM. Epigenetics is an emerging area for investigating 
fungal SM, and a better understanding of SM epigenetic regulation would lead to 
the discovery of new drugs.
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