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Foreword

The use of OR in Natural Resources has been with us for several decades now. It has

been developed importantly in the areas of forestry, agriculture, and mining. The

papers published in the literature show results that go from methodological devel-

opments to case studies to actual applications used in industry or government. One

area where OR has shown particular success has been in forestry. This has been

driven in large part by the fact that forest lands and firms are quite large in both area

and financial resources. Thus, there is the possibility and incentive to invest in using

sophisticated tools for management. We see in this special issue the fruits of similar

developments mainly in the area of agriculture. This is so because Agriculture and

the Agri-Food Industry are becoming capital intensive and a more complex busi-

ness than traditionally was. The academic and practical use of quantitative tools to

support decision making in agriculture is shown in its many facets. The papers and

the problems in them represent the typical challenges managers face:

– Planning of planting and harvesting.

– Production and logistics.

– Optimizing the supply chain.

– Risks of catastrophic events.

– Hierarchical planning.

– Multiobjective decision making.

These are areas where it is well known that Operations Research has proven

its high value, with its tools to solve problems, and perhaps more importantly,

in the way it helps, defines the issues, and characterizes the problems to be solved.

The use of OR tools has become more important given the increased specialization

of the sector, higher competition in a globalized world, need to produce and

distribute in an efficient way, and the huge improvement in software and

hardware possibilities. Additional challenges imposed by environmental constraints,
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sustainable development, and healthier, safe and secure products add to the need of

sophisticated decision making. The field of quantitative decision making in agricul-

ture (and in lesser volume other areas) is significantly enriched by this special

Handbook.

Santiago de Chile, Chile Andres Weintraub
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Preface

Many real-world decision-making situations arise from agriculture and related

agri-food industries such as fisheries, water management, and irrigation. Methods

and applications in Agriculture and the Agri-Food Industry are of interest at present
in research developments related to the globally critical area of food production,

animal welfare, and sustainability and it is expected to increase in the future. Many

treatments of this subject fail to describe why and how the concerned OR methods

work effectively in the context of practice. The scope of this book is to provide an

overview of Operations Research (OR) methods in agriculture and a thorough

discussion of derived applications in the agri-food industry. Of course, this pano-

ramic book does not claim to offer a detailed and exhaustive view of many OR

approaches to agriculture and the agri-food industry. We therefore sought high-

quality works from leading researchers in the field that fit with this general scope.

As Editor, I’m quite pleased with the result, which has brought together a diverse

blend of research topics and modelling and solution approaches for different

decisions in agriculture or in the agri-food industry.

Structure of the Book

This book represents a set of stand-alone works that introduce several OR meth-

odologies and captures recent research trends in the application of OR methods

in agriculture and the agri-food industry. In this sense, the book can be read in

different ways depending on the personal interest of the reader, and so, there is not a

unique recommended order for reading the different chapters. On the other hand,

I’m extremely grateful to the authors for their outstanding contributions and for

their patience, which have led to a final product that far exceeded my expectations.
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All chapters were rigorously reviewed and I would like to thank the anonymous

reviewers for their quality reviews and responsiveness.

It has been difficult to be consistent with the use of the same criteria to decide

and place one chapter after the other. However, the link or connection chapter by

chapter is given sometimes by the method others by the problem or field of

application. Hence, the book starts with seven chapters presenting different plan-

ning problems for different agricultural products. Afterwards, three chapters mak-

ing use of simulation and metaheuristics follow, before a set of five chapters dealing

with problems solved using multicriteria or multiobjective related methods are

presented. The last four chapters of the book are devoted to singular livestock

decision problems.

Table 1 shows different characteristics of each chapter in order to help readers

organize the reading of the book. Different dimensions are used to classify the

content of each chapter:

– Methodology: Most of the chapters present and develop mixed integer linear

programming models (LP) including several integer variables. The use of

commercial software to solve large LP models makes this kind of applications

very interesting for practical purpose. However, the adoption of these OR

solutions evolves little by little. The rest of the methods employed in the book

are simulation (SIM), metaheuristics (MHEU), multiobjective programming

(MO), risk analysis (RA), forecasting (FOR), data envelopment analysis

Table 1 Several characteristics of the chapters of the book

Chapter OR method Decision problem Product Level Country

1 SP Planning Pig Supply chain Spain

2 LP Planning Horticulture Supply chain USA

3 LP Planning Seed corn Supply chain Brazil

4 LP Planning Apple Orchard Chile

5 LP Planning Sugarcane Supply chain Cuba

6 LP Planning Soil Farm Chile

7 LP Planning Fruit Supply chain Spain

8 SIM DA Fruit and vegetable Supply chain Australia

9 SIM DA Fish Fish farming Israel

10 MHEU Planning Fish Aquaculture Spain

11 MO ALL Water Regional Africa

12 RA DA Crop Farm Netherlands

13 FOR DA Grape Farm Australia

14 DEA EA Pig Farms Spain

15 AHP Sustainability Olive Farm Spain

16 LP Location Beef Supply chain Australia

17 LP Planning Pig Farms Spain

18 LP Diet Pig Farm Canada

19 MDP Replacement Pig and cows Farm Denmark

viii Preface



(DEA), multicriteria Analytic hierarchy process (AHP), stochastic programming

(SP), and Markov decision process (MDP).

– Decision problem: Planning production is the problem with more applications in

this book. Most of these problems are solved using LP models. Other examples

of problems are decision analysis to assess either risk situations or just manage-

ment alternatives, efficiency analysis, sustainability, location, the diet problem,

and the replacement problem.

– Agricultural product: Agriculture produces a variety of products that most of

them are presented in one or more chapters of this book. Pig is the most frequent

product. There are also chapters dealing with fruits and vegetables, fish, seed

corn, olive oil, beef, and horticulture products. It is worth mentioning that even

when the described problems seem product-specific (e.g., replacement problem

in pigs), the method behind has a wider application to other products/species

(e.g., replacement problems in cows, sheep, or other livestock). A couple of

chapters are devoted to other topics focused more on the management of natural

resources like water and soil impacting on agricultural production. A chapter is

devoted to soil management or how to define plots to maximize crop yielding.

And another one is devoted to water management in some regions of Africa.

– Level: Although several problems are formulated and solved at farm level,

applications at supply chain level are becoming more and more common.

Furthermore, water management and risk analysis in agriculture are some

agricultural problems dealt at regional or national level regularly.

– Country: Studies presented have been developed under specific conditions of a

country that may be different country to country. There is a wide representation

of applications developed in Europe and America, less in Australia and Africa,

and unfortunately none from Asia.

The book is primarily a reference for researchers, Ph.D. students, instructors, and

advanced practitioners. Depending on the technique, most chapters introduce

briefly the method employed before tackling the agricultural problem presented.

So, the book is also expected to be useful and appropriate for use as a textbook for

certain advanced courses; and due to the interdisciplinary nature of the content,

such courses may be taught in a variety of departments including Operations

Research, Agriculture, Applied Mathematics, Agricultural or Agronomic Engineer-

ing, and Agricultural Economics or Ecosystems.

Lleida, Spain Lluis M. Pl�a-Aragonés
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Chapter 1

Optimal Planning of Pig Transfers Along
a Pig Supply Chain

Esteve Nadal-Roig and Lluis M. Pl�a-Aragonés

1.1 Introduction

A pig supply chain (PSC) is a complex process in which a group of several farms,

such as breeding, rearing and fattening, and one or more abattoirs work together to

produce pigs. Pigs are slaughtered and converted into pig meat to be distributed

among retailers. This is the result of a transformation of the pork sector from the

traditional farrow-to-finish farms to a bigger, more industrialized, controlled and

efficient pig production systems (Taylor 2006; Nijhoff-Savvaki et al. 2012).

Furthermore, concerns about environment, food quality and animal welfare are

becoming the new challenges for the pig industry. Modern and intensive production

of pigs is becoming more and more specialized. The size of facilities is increasing,

and the production process is structured through three phases: the first phase focuses

on producing piglets, the second phase focuses on rearing the piglets and the third

and last phase focuses on fattening the pigs and delivering them to the abattoir. For

each of these phases, a set of specialized farms (i.e. sow farms, rearing farms and

fattening farms, respectively) are involved. As a result, private companies and

cooperatives tend to integrate farms and abattoirs and coordinate their operations

into pork supply chains by using tighter vertical coordination linkages (Rodrı́guez

et al. 2014). Planning simultaneously pig production and transport of animals along

the supply chain greatly advances the efficiency of both processes (Mula et al. 2010).

Thus, this chapter presents a general formulation of a stochastic mixed integer

linear programming model with the aim to optimize the production planning of a

pork supply chain based on a previous seminal proposal (Pl�a and Romero 2008). The

model maximizes the total revenue of the chain. Income depends on animals sold to

the abattoir and main cost summarizes animal feeding, doses of insemination,
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Departament de Matem�atica, Universitat de Lleida, Jaume II, 73, Lleida 25003, Spain
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labour, transportation and veterinary expenses. A finite time horizon of 3 years is

considered on a weekly basis. As a result, the proposed model provides the best

solution for production planning, that is, the flow of animals among farms and

towards the abattoir, the number of animals to be produced and transferred at each

phase and stage, the number of trucks and optimal replacement policy for each

sow farm, as well as the optimal delivery of fattened pigs to the abattoir. The

formulation presented makes possible to envision new opportunities for operations

research methods to be successfully applied to the pork supply chain management

optimization (Pl�a et al. 2014). In this regard, we identify some extensions of the

model that we plan to address in the future.

1.2 Modelling Pig Supply Chains

Although the literature in models for supply chain production and transport is vast

(Mula et al. 2010), modelling of agricultural supply chains is not so extensive

(Ahumada and Villalobos 2009). However, research dealing with pork supply

chains agrees on the importance of planning pig production along the entire chain

to coordinate productivity and quality improvement strategies (Perez et al. 2010).

This is so because most of the literature to support the decision making on the pig

sector have only been focused on operations on single farms, while the pork supply

chain management involves the coordination of sets of farm units at different

phases (Pl�a 2007; Pl�a and Romero 2008; Rodrı́guez et al. 2014). Hence, the modern

structure of the pig sector, based on PSCs, requires the new modelling approaches

to tackle actual problems. For instance, more than one farm per phase and more

than one phase has to be considered. So far, modelling approaches for the pig

industry had been developed to mainly improve the productivity of individual

farms. Some of these studies made use of Markov decision processes and simula-

tion models (Pl�a 2007) and focused on a sow farm which is reasonable since it is the

most complicated part of the production process. Assumptions of the models

imposed by researchers to avoid complexities reduced the interest to practitioners

beyond strategic decisions. For instance, the homogeneity of parameters over time

or the randomness of parameters like prices were not accompanied with updating

methods allowing more precise results for short- or medium-term decisions

(Rodrı́guez et al. 2014). Original strategies to cope with this situation have been

presented, like Rodrı́guez et al. (2009) who considered some constraints aimed at

the modelling of a sow farm embedded into a pork supply chain. Other authors

(Pl�a and Romero 2008; Nadal-Roig and Pl�a 2014) proposed a mixed integer linear

programming model to optimize the entire supply chain, taking into account the

constraints of companies having the three phases.

The PSC considered in this chapter involves three different farms: sow, rearing

and fattening farms (see Fig. 1.1). The PSC model assumes all the farms and the

abattoirs are owned by the same company. The transport flow among the different

farms including the abattoir, the load to be transported and the structure of the

2 E. Nadal-Roig and L.M. Pl�a-Aragonés



agents taking part in the PSC model are depicted in Fig. 1.1. Hence, according to

that, the first phase produce piglets and takes place on sow farms. Sows are

inseminated and are expected to become pregnant. If not, there are limited

additional attempts until a successful conception happens, leading to a farrowing

and subsequent lactation period. Otherwise, the sow is culled and sent to the

abattoir for infertility reasons. The aim of sow farms is to wean the maximum

number of piglets to be transferred to rearing farms. The second phase involves

piglets transferred to rearing farms to be fed for a specific number of weeks until

they reach a weight of around 20 kg. Finally, in the third phase, pigs are transferred

to fattening farms. Fattened pigs are delivered to the abattoir once they have

reached a marketable weight. Fattening farms are filled and emptied at a time

with batches of animals, this is, the so-called all-in-all-out management system.

This strategy has been demonstrated useful for disease prevention and control

because avoid the contact between animals belonging to different batches and

allows the farmer to sanitize the facilities.

1.3 General Formulation of the Model

1.3.1 Mathematical Background on Stochastic Programming

Stochastic linear models provide a suitable framework for modelling decision

problems under uncertainty arising in several applications (Wallace and Ziemba

2005). Consider the following general form of a two-stage stochastic programming

model that follows the Deterministic Equivalent Model (DEM) proposed in Birge

and Louveaux (2011):

SP1ð Þ zSP1 ¼ min
x, yk

cTxþ
XK

k¼1

pkq
T
k yk ð1:1Þ

SOW REARING FATTENING

Farm
si

ABATTOIR

Farm
rj

Farm
fk

Abattoir

Piglet
Transport

Pig
Transport

Fattened Pig
Transport

Sow Transport

Fig. 1.1 Pig production system. Stages and transport
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s:t: : Ax ¼ b ð1:2Þ
TkxþWkyk ¼ hk 8k 2 Ω

x, yk � 0
ð1:3Þ

where x is the nx-vector of the first stage variables, which may include 0–1

variables; yk is the ny-vector of the second stage variables for scenario k2Ω, c is

a known vector of the objective function coefficients for the first stage variables,

b is the right hand side vector for the first stage constraints, A is the first stage

constraint matrix, pk is the likelihood of the scenario k, h is the right hand side

vector for the second stage constraints, qTk is the vector of the objective function

coefficients for the second stage variables, while Tk is the technology matrix andWk

is the recourse matrix under scenario k, 8 k2Ω.
The structure of the uncertain information in the two-stage stochastic linear

model SP1 can be visualized as a tree, where each root-to-leaf path represents one

specific scenario, ω, and corresponds to one realization of the whole set of the

uncertain parameters linked at the first stage by the non-anticipativity constraints

(Rockafellar and Wets 1991). In Fig. 1.2a, the scenarios are shown independently.

Solving the problem for each scenario would produce wrong solutions. Thus,

non-anticipativity constraints are added to force all the scenarios have the same

first stage variables (Fig. 1.2b). The flexibility of these models is related to their

multiperiod nature, i.e. besides the first stage variables that represent decisions

made in face of uncertainty; the models consider second stage decisions,

i.e. recourse actions, which can be taken once a specific realization of the random

parameters is observed. Hence, the vector x represents the same decision at the first

stage (St1) for all scenarios while the remaining decision variables ys are dependent
of the corresponding scenario, s2 S.

Fig. 1.2 Scenarios of a two-stage stochastic model. (a) Individual scenario representation.

(b) Compact representation
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1.3.2 Mathematical Formulation

In our approach, the uncertain parameters are those related with future sale prices.

Uncertainty is represented in the model by a set of possible scenarios, S, with
corresponding probabilities ps.

A mixed integer linear programming model was developed to determine optimal

planning of pig transfers along a PSC over a finite time period. To present the

multiperiod formulation, the following notations were used:

Sets and Indexes

S¼ {s} a finite set of scenarios.

T¼ {t} a finite set of periods in weeks.

T1� T: a subset of T corresponding to the periods of the first stage.

H¼ {h} the set of farms conforming the PSC.

H¼B[R[F disjoint partition of farms, being B the set of sow farms, R the rearing

farms and F the fattening farms.

E¼ {e} set of growing stages of pigs expressed in weeks, from birthdate to the

delivery to the abattoir.

E¼EB[ER[EF disjoint partition of growing stages of piglets (or pigs) housed in

different facilities (B, R or E) being EB the lactation period (from the birth to

the weaning of piglets), ER the rearing period (from weaning to the beginning

of the fattening) and EF corresponding to the fattening period.

Χ: set of physiological states in which sow lifespan is divided.

Χa�Χ set of physiological states in the end of which sows are culled and sent to the

abattoir, {a}.
Χg�Χ set of farrowing states in the end of which farrowing take place and

piglets born.

W¼ {w} set of growing stages at the end of the fattening phase when pigs can be

sent to the abattoir (marketing time window).

Parameters

INhe initial inventory of pigs of age e and farm h.
Kh farm capacity in number of sows if h2B or pigs if h2R[ F.

pbsij transition probabilities of sows from i to j, with i, j2X in sow farm b2B and

scenario s.
LSnbts litter size at parity n, on sow farm b, at week t and scenario s.
TRhh�ts ¼ Ctsd h; h�ð Þ cost of transport from h to another farm or to the abattoir at

week t and scenario s, where Cts is the unitary cost per km of a truck at week

t and scenario s, and d(h,h*) distance in km from farm h to another farm or to the

abattoir, h*2H[ {a}.
Nahh�ts number of trips from h to another farm or to the abattoir at week t and

scenario s.

1 Optimal Planning of Pig Transfers Along a Pig Supply Chain 5



CSOWhits unitary cost per sow on farm h, physiological state i, week t and scenario
s including feeding, doses of insemination, labour and veterinary expenses.

EXhets unitary cost in farm h per piglet/pig, at age e, week t and scenario s, including
feeding, labour and veterinary expenses.

phets sale price per kg of sows (e¼ 0; h2B) or pigs (e2W; h2 F) sent to the

abattoir at week t and scenario s.
kah load capacity per truck transporting animals from farm h to the abattoir.

kgh load capacity per truck transporting animals from farm h to another farm.

πbits steady state inventory of the total number of sows at physiological state i2X in

the sow farm b at week t and scenario s.
Dts minimum demand of the abattoir at week t and scenario s.
AWets average live weight of pigs at fattening stage e, week t and scenario s.
AWits average live weight of culled sow at state i2Xa, week t and scenario s.

Decision Variables

Ihets inventory of piglets on farm h, age e, week t and scenario s.
Ahts inventory of pigs on farm h, week t and scenario s to be transferred to the next

stage in the chain.

Abrts inventory of piglets sent from b to r, at week t and scenario s.
Arfts inventory of piglets sent from r to f at week t and scenario s.
Afets inventory of pigs sent from f to the abattoir at fattening stage e2W, at week

t and scenario s.
Nkahts number of trips from h2B[F to the abattoir at week t and scenario s.
Nkgh1h2ts number of trips from h1 to h2 being either h12B and h22R or h12R and

h22 F at week t and scenario s.

Let us note that farms are of different types, then H¼ {B[R[ F} and this

partition of the farms’ set is related to the age of pigs growing on them. More

formally: E�H¼E� {B[R[ F}¼E�B[E�R[E� F¼EB�B[ER�
R[EF� F, being E¼EB[ER[EF and EB\ER\EF¼∅. Therefore, without

loss of generality, in what follows, the use of pairs (e,h) will refer only to EB�B

or ER�R or EF� F.

1.3.2.1 Structure of the Objective Function

The objective of this model is to get the maximum benefit achieved by optimizing

the production planning of the PSC from sow farms to the abattoir. This benefit is

represented by the gross margin calculated by the summation of incomes from pigs

sold to the abattoir minus the total amount of expenses (such as feeding, doses of

insemination, labour and veterinary expenses) and the transportation cost incurred

for each farm. The model is formulated in a weekly basis given most of the

activities on farm, transportation between phases and to the abattoir occurs regu-

larly at this time frame. Therefore, the objective function is the summation of the

total gross margin weighted per scenario of each farm over the time horizon, gmhts.
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The gross margin per scenario farm and period is calculated from the income, vhts,
minus cost, chts, and hence:

max z ¼
X

s2S
ps
X

h2H

X

t2T
gmhts ¼

X

s2S
ps
X

h2H

X

t2T
vhts � chtsð Þ ð1:4Þ

where the income per scenario is the sale value of culled sows πbats and fattened

pigs Afets sent to the abattoir according to the sale price and total pig weight

at each marketable stage, that is: vhts¼ ph0ts ·AWts · πbats if h2B or

vhts ¼
X

e2Wphets AWetsAhets if h2 F. Notice that vrts¼ 0 because not marketable

product is produced. The costs are computed as transport cost and the rest of costs

including feeding, doses of insemination, labour and veterinary expenses:

chts ¼
X

h�2H[ af g
TRhh�tsNahh�ts þ

X

i2X
CSOWhitsπhits þ

X

e2E
EXhetsIhets ð1:5Þ

Total transport cost per week and scenario is calculated according to the number of

trips needed to transfer pigs from one farm, h1, to another one, h2, or to the abattoir,
a. This total cost depends mainly on the distance between these farms, d(h1,h2), in
km, therefore:

X

h2H

X

h�2H[ af g
TRhh�tsNahh�ts ¼

X

h2H�R

TRhatsNkahts þ
X

b2B

X

r2R
TRbrtsNkgbrts

þ
X

r2R

X

f2F
TRrftsNkgrfts

ð1:6Þ

1.3.2.2 Constraints of the Model

The different constraints affecting the planning of transfers along the PSC including

deliveries to the abattoir can be formulated as:

X

i2X
πbits � Kb b 2 B, t 2 T, s 2 S ð1:7Þ

X

e2E
Ihets � Kh h 2 H � B, t 2 T, s 2 S ð1:8Þ

πbits �
X

j2S
pbsji πbjts ¼ 0 i 2 X, b 2 B, t 2 T, s 2 S ð1:9Þ

Ib1ts �
X

n2Xg�X

πbnts � LSnbts b 2 B, t 2 T, s 2 S ð1:10Þ

Ihe0s ¼ INhe e 2 E, h 2 H, s 2 S ð1:11Þ

Ibeþ1ts ¼ Ibet�1s b 2 B; e 2 EB\ EBj jf g, t 2 T\ 1f g, s 2 S ð1:12Þ
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Ireþ1ts ¼ Iret�1s r 2 R; e 2 ER\ ERj jf g, t 2 T\ 1f g, s 2 S ð1:13Þ
If eþ1ts ¼ If et�1s f 2 F; e 2 EF\W, t 2 T\ 1f g, s 2 S ð1:14Þ

If eþ1ts ¼ If et�1s � Afet�1s f 2 F; e 2 W\ Wj jf g, t 2 T\ 1f g, s 2 S ð1:15Þ
Ir EBj jþ1ts ¼

X

b2B
Abrt�1s r 2 R; t 2 T\ 1f g, s 2 S ð1:16Þ

X

r2R
Abrts ¼ Abts b 2 B; t 2 T, s 2 S ð1:17Þ

If ERj jþ1ts ¼
X

r2R
Arf t�1s f 2 F; t 2 T\ 1f g, s 2 S ð1:18Þ

X

f2F
Arfts ¼ Arts r 2 R; t 2 T, s 2 S ð1:19Þ

A
f
��EF

��ts ¼ I
f
��EF

��ts f 2 F; t 2 T, s 2 S ð1:20Þ

πbits � Nkabtskab b 2 B, i 2 Xa, t 2 T, s 2 S ð1:21Þ
Afets � Nkaf tskaf f 2 F, e 2 W, t 2 T, s 2 S ð1:22Þ

Ah1h2ts � Nkgh1h2tskah1 h1 2 B [ R, h2 2 R [ F, t 2 T, s 2 S ð1:23Þ
X

f2F
Af ts � Dts f 2 F, t 2 T, s 2 S ð1:24Þ

All facilities have a limited capacity. The capacity in sow farms (1.7) depends on

the number of sows that can be housed while in rearing and fattening farms (1.8)

depends on the maximum number of pigs that can be fed at a time. The abattoir is

big enough to accept all pigs produced weekly, so there is no need to limit abattoir

capacity, although it would also be possible depending on the case study.

It is assumed that sow farms are operating under a steady state derived from the

herd structure at equilibrium (1.9). This is because sow herd dynamics is modelled as

a Markov Decision Process (Pl�a et al. 2009). The number of piglets born alive

weekly will depend on the number of sows at farrowing, being Xg�X the subset of

reproductive states of a sow with a farrowing, and the averaged litter size (1.10). All

farms have an initial inventory of piglets or pigs at the beginning of the planning

horizon (1.11). This initial inventory affects the flow of animals along the chain in

the succeeding weeks and over the time horizon period which is being considered.

Pigs which are fed on farms grow from one stage to the next one. We assume that all

pigs are fed under the same regime and kept in groups of the same age. Each group

grows accordingly to their age and the average live weight, consumption and mean

daily gain is known for calculation. Therefore, the inventory must reflect this

changing situation week by week over the time horizon. Inventory constraints can

be stated for each phase of the supply chain (1.12)–(1.14). Additional constraints are

added to represent the time window for marketing fattened pigs representing that not

all pigs reach at the same time a marketable weight (1.15). No casualties are

considered during the growing process. They could be taken into account when
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animals are transferred to the following phase in the chain or these constraints could

be relaxed by using inequality constraints. The number of piglets to be transferred to

the rearing or fattening farms has to be entered the same week. After completing the

expected time for the phase, all of them exit also at the same time. For this reason,

piglets sent to rearing farms cannot exceed the total number of piglets weaned (i.e. of

age |EB|) nor do the pigs starting the fattening phase exceed the number of pigs

finishing the rearing phase (1.16)–(1.17). Similarly, this also happens with piglets

reared (1.18)–(1.19) and ready to be transferred to fattening farms (i.e. of age |ER|)

and pigs fattened (1.20) and ready to be delivered to the abattoir (i.e. of age |EF|).

Furthermore, a minimum capacity of the batch (lower bound) could be fixed

complementing the upper bound represented by the farm capacity.

Constraints affecting transportation are related to the capacity of each truck.

Animals sent to the abattoir are heavier than those transferred between farms and

so, different capacities or trucks may apply. Hence, (1.21)–(1.22) represents the

number of trucks used to transport culled sows or fattened pigs to the abattoir,

respectively, and (1.23) the number of trucks needed to transfer animals among

farms. Optionally, a minimum weekly demand to assure some level of operation at

the abattoir can be stated by (1.24).

1.3.2.3 Non-anticipativity Constraints

Notice that constraints (1.7)–(1.24) represent s independent scenarios (see Fig. 1.2).
We must define the non-anticipativity constraints linking the different scenarios by

fixing the same decision variables at the first stage of the model. Hence, the

following constraints are added for such purpose:

Ihets ¼ Ihet1 h 2 H; e 2 E; t 2 T1, s 2 S ð1:25Þ
Ahts ¼ Aht1 h 2 H; t 2 T1, s 2 S ð1:26Þ

Abrts ¼ Abrt1 b 2 B; r 2 R; t 2 T1, s 2 S ð1:27Þ
Arfts ¼ Arf t1 r 2 R; f 2 F; t 2 T1, s 2 S ð1:28Þ
Afets ¼ Afet1 f 2 F; e 2 W; t 2 T1, s 2 S ð1:29Þ
Nkahts ¼ Nkaht1 h 2 H; t 2 T1, s 2 S ð1:30Þ

Nkgh1h2ts ¼ Nkgh1h2t1 h1h2 2 H; t 2 T1, s 2 S ð1:31Þ

1.4 Computational Results

1.4.1 Model Setup and Basic Case

In order to illustrate the suitability of the deterministic model resulting from the

consideration of one scenario and the corresponding stochastic extension when

considering several scenarios at a time a case study is presented. Basic parameters

1 Optimal Planning of Pig Transfers Along a Pig Supply Chain 9



of the study were taken from standard values under Spanish conditions and

recorded in the BD-Porc databank (national record keeping system hosted at

http://www.irta.es/bdporc/, Accessed 7 Aug 2014), and do not correspond to a

specific farm. The total set of farms per phase owned by a theoretical vertical

integrated company are four sow farms, four rearing farms and eight fattening

farms plus one abattoir. Since there are three types of origins when collecting

animals (sow, rearing and fattening farms) and three types of destinations to deliver

them (rearing and fattening farms plus the abattoir), two transfers are feasible

between farms of different type (sow to rearing or rearing to fattening farms) and

the rest of transports are directed to the abattoir (sow and fattening farms). The

transportation cost from sow farms to the abattoir is considered and corresponds to

culled sows. The entire set of parameters data is summarized in Appendixes 1, 2 and

3. For all the farms, parameters like farm capacity and initial inventory are required.

For simplicity, the herd size of each sow farm will be taken as a parameter

combined with the steady state of the herd structure determining accordingly the

associated piglet production. Thus, sow farms operate at a constant rate of occu-

pancy of lactation facilities. The road distances between farms and between farms

to the abattoir are also required. The inventory of sow, rearing and fattening farms is

given in number of piglets per lactation, growing or fattening stage, respectively.

The abattoir requires a minimum pig demand for this kind of chains, where the

product pushes along the chain instead of being pulled by demand. No risk of

overflow capacity of the abattoir is considered because slaughtering capacity is

larger enough to slaughter all pigs produced. The sale price is based on the

historical series recorded by Mercolleida, the main Spanish auction market for

pigs (http://www.mercolleida.com/mercados-ganaderos/porcino/, Accessed 14 Mar

2013). Two different series are considered depending on the meat quality of the

animal namely whether they come from the fattening farms or from sow farms, that

is, commercial pigs or culled sows. Other considerations regarding the value of pigs

include carcass classification depending on lean percent, carcass weight and back

fat thickness (SEUROP classification is mandatory in EU abattoirs). Sows and pigs

are valued assuming experimental distributions of these traits.

The finite time horizon is set to 3 years. The maximum number of parities cycles

for sows is nine. According to usual practices in Spain, lactation period and both

rearing and fattening stages for piglets are set to 4, 6 and 18 weeks, respectively, as

maximum. Capacity of trucks, weight of animals and unitary transport cost are

taken into account according to the age of animals transported and distance

conveyed. The number of available trucks is not taken into consideration explicitly,

only the number of trips required for transportation.

To develop the model, the modelling language IBM ILOG OPL has been used.

The solver CPLEX v12.2 solved the model in a laptop computer (Pentium Dual-

Core CPU at 2.1 GHz and 4 Gb RAM). Microsoft Excel has been used for storing

data, both input parameters and outputs, for its ease of use and flexibility to manage

data. The integration into an Enterprise Resource Planning (ERP) can enable a

simple adoption of the system by any company through the maintenance and update

of an XLS file with the list of parameter like the inventory of animals for each farm,

real prices and unitary costs considered by the model.
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1.4.2 Basic Example: Deterministic Model

The deterministic model is built reducing the set of scenarios to one, |S|¼ 1, and then

the non-anticipativity constraints (1.25)–(1.31) are not necessary. Strictly speaking,

decision variables of the proposed model representing the number of animals are

integer and non-negative variables. However, the computational time consumed for

calculations in preliminary tests when all decision variables related to animals were

considered integer, made the pure integer model inappropriate for practical purposes

(Rodrı́guez et al. 2009). Furthermore, the loss of precision considering these vari-

ables as real was neglectable. As a consequence, only decision variables related to

number of trucks and trips were considered integer relaxing the integrality condition

for the rest. Beyond this relaxation, the first stage represents the roller horizon where

decisions must be implemented before new environmental changes could be appre-

ciated or taken into account for an update of the solution.

Specific parameters of the linear programmingmodel are detailed inAppendixes 1,

2 and 3. Figures corresponding to the size of the deterministic model are presented in

Table 1.1. Themaximum average reward of the represented PSCwas 3,231 thousands

of euros per year with an overall occupancy of the available facilities of 97 %.

Moreover, optimal solution provided the scheduling of the number of piglets and

pigs to be transferred week by week and the way (from where to where). The

occupancy rate was more than 0.97 over the time horizon of planning and never

reached the full occupancy. Inspecting the solution was discovered a rational behav-

iour related to the preferred usage of the nearest farms to the abattoir and so, reducing

cost transport while keeping the rest of the operational cost constant.

Sensitivity analysis. To prepare the extension of the model into a stochastic linear

programming model and also to value the impact of the uncertainty of model

parameters on the optimal solution, two additional cases were considered.

The optimistic case, where the sale price paid by the abattoir was increased at

5 %, and the pessimistic case, where the sale price was reduced by 5 %.

The rest of parameters of the model concerning the productivity of the system

are maintained. In all cases, an average of 473 piglets produced every week was

considered. The system always produces as much piglets as possible regardless of

the sale price. The average occupancy of the system is also the same. The variations

over time in the sale price and the marketing window have a limited impact on the

technical performance of the system not sufficiently relevant on average. Despite

this, the farms’ occupation taken individually varies considerably from farm to

farm, and also affecting directly the farmers’ revenue. Figure 1.3a, b show an

example of two fattening farms’ occupancy throughout the time horizon. Changes

Table 1.1 Report of the size

of the deterministic model
CPLEX Value

Variables 68.057

Constraints 47.655

Non-zero-coefficients 199.088
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in the farm occupation can be observed, in particular at the beginning and at the

end of the time horizon due to the initial and final inventory. In both cases,

the occupancy rate is high.

While technical operation of the PSC is slightly affected by the scenario (either

optimistic or pessimistic), it is not the same regarding the economic performance.

Main economic outcomes are shown in Table 1.2. Economic indicators such as the

benefit and income increase according to the sale price while cost remains almost

the same showing a decreasing trend in the pessimistic case and increasing trend in

the optimistic case. These variations are also related to the marketing window in

which the model tries to achieve the higher benefit by selling the animals at the best

price. The sales prices do not affect the production planning committed unless they

are lower enough to force the system to not produce piglets. As is shown in Table 1.2

changes of 5 % in the sale price provoke changes of more than the 10 % in the

benefit. The overall benefit ranges from 8,687 to 10,721 thousands of euros.

Therefore, uncertainty seems to have an important impact on economic results of

the whole PSC.

Fig. 1.3 Representation of two fattening farm’s occupancy with capacity of 600 (a) and 3,000

pigs (b). Models: base, optimistic (+5 %) and pessimistic (�5 %) sales prices

Table 1.2 Economic

indicators for the three

cases in thousands of €

Base Pessimistic Optimistic

Cost of animals 10,755 10,706 10,782

Difference vs. Base �0.45 % 0.26 %

Cost of transport 38 38 38

Difference vs. Base �0.33 % 0.29 %

Total cost 10,793 10,745 10,821

Difference vs. Base �0.45 % 0.26 %

Income 20,488 19,432 21,843

Difference vs. Base �5.16 % 6.61 %

Benefit 9,695 8,687 11,022

Difference vs. Base �10.40 % 13.69 %
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1.4.3 Basic Example: Stochastic Model

Stochastic model formulation requires the generation of a set of scenarios S. In that
case, the full model has to include the non-anticipativity constraints (1.25)–(1.31)

linking all the scenarios. To illustrate and assess the suitability of the stochastic

approach, three scenarios were defined in this example. Again, the sale price as

uncertain parameter was considered to be modelled by scenario. Therefore, the

optimistic, normal or standard and pessimistic scenarios were defined in correspon-

dence with the values of high, average and low sale prices, respectively. Time

horizon was of 152 weeks as with the deterministic example and T1¼ {1}.

The resolution of this formulation gives an optimal profit (RP) of 3,235

thousands of €/year. The results confirmed also a globally high rate of occupancy.

However in that case, a different behaviour for each scenario is observed and

reveals the lower occupancy in the pessimistic scenario. The optimistic scenario

reached the maximum occupancy of the PSC sooner, and it was maintained more

weeks over the time horizon (Fig. 1.4).

Concerning the sales behaviour (see Fig. 1.5) shows how the scenarios tend to

take advantage of the marketing window making the sales not steady. Furthermore,

the pessimistic scenario shows a singular capability to sell more animals than the

rest of scenarios at some weeks to maximize the income.

In addition, just to analyse the importance of the time horizon and final inventory

on the outcome of the first 52 weeks different instances for T¼ 78, 104, 130 and

156 were solved. It was observed (data not shown) that the time horizon has a very

little influence on the first 52 weeks because in all instances the objective function

never reported differences greater than a 0.08 %. Even less is the impact on the

Fig. 1.4 Representation of the behaviour of the occupancy rate of the PSC with three scenarios
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expected profit for the first stage period represented by the first week (less than

0.02 % in the worst case).

Another aspect of interest was to see the impact of different number of weeks

considered in the first stage. The reason was to consider if the production planning

including the transfer of animals could be done biweekly or monthly. Therefore,

new instances were solved for a different range of weeks in the first stage. The

increment of weeks in the first stage showed a linear reduction in the profit in

agreement with the loss of variability represented.

Inspecting the solution of the deterministic models with respect to the stochastic

one, with the first 4 weeks as the first stage, we compute the expected value of

perfect information (EVPI), defined through the following expression:

EVPI ¼
X

s2Ω
psΦ

s � RP

being Φs the optimal value of the deterministic model when it was solved

(separately) for each scenario s in Ω and RP the optimal value of the stochastic

model. For our study, the EVPI¼ 9,801–9,707¼ 94 thousands of euros. EVPI

measures the value of knowing the future with certainty. This is how much the

farmer would be ready to pay this year to obtain perfect information about the

dynamic behaviour of future sale price.

Additionally, the Value of the Stochastic Solution (VSS) was computed.

Roughly speaking, it measures how good or bad results to use the optimal solution

of the stochastic model instead of the deterministic one. Then, the VSS is defined as

VSS¼RP�EEV, where EEV is the expected value assuming expected yields and

Fig. 1.5 Representation of the sales behaviour regarding three scenarios
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expected parameters fixing the optimal values at the first stage. In our case,

the VSS¼ 9,707�9,663¼ 44 thousands of euros, this is the cost of ignoring

uncertainty in choosing a decision.

1.5 Conclusions and Future Work

Despite the advantages of the stochastic solution shown in the previous section, the

preliminary results of the model themselves indicate opportunities for improve-

ments, mainly in two areas. First one, the management of an important amount of

farms involved in a PSC by a better coordination among them; second one, the

required relaxation of the integrality condition for several variables reducing the

computational time and making feasible and possible the use of the model in

practical condition for a PSC company.

The practical extension of the model considering more breeds and other sanitary

constraints to fit particular PSC companies will make the model more complex.

Hence, the resolution of such instances will require more computational power

and/or the parallelization of the model. Our contribution then, emphasizes the

importance and complexity of new decision-making tasks regarding the modern

organization of the pork sector, rationalize the flow of animals over the chain

providing a planning tool capable of updating the flow conveniently anticipating

changes or reacting face to them.

Finally, the presented model is flexible, allowing a deterministic or stochastic

formulation. The stochastic version can deal with the uncertainty of some param-

eters like the sale price and complemented with a more accurate growth and

reproductive performance modelling like litter size, mortality rate or culling rates,

but also likely changes in feed cost, labour, medicines, etc.
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Appendix 1: General Parameters

Parameter Value

Farms (in units)

Sow farms 4

Rearing farms 4

Fattening farms 8

Time horizon (in weeks): 156

Sows’ physiological states: 10

Production stages for piglets/pigs (in weeks)

Sow farms 4

Rearing farms 6

Fattening farms 18

Transportation capacity (in units):

From sows to rearing farms 700

From rearing to fattening farms 700

From sows/fattening farms to the abattoir 240

Animal cost (in Euro/week)

Sows 4,85

Piglets in sow farms 1,874

Piglets in rearing farms 2,66

Piglets in fattening farms 4,382

Transportation cost (euro/trip) 1

Appendix 2: Capacity of Farms

Farm # Type Capacity (in units) Initial stock (in units)

1 Sow 1.200 1.125

2 Sow 600 492

3 Sow 1.450 1.309

4 Sow 2.400 2.155

5 Rearing 300 101

6 Rearing 800 759

7 Rearing 2.800 2.633

8 Rearing 3.000 1.537

9 Fattening 1.200 228

10 Fattening 200 82

11 Fattening 548 2

12 Fattening 360 310

(continued)
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(continued)

Farm # Type Capacity (in units) Initial stock (in units)

13 Fattening 1.663 18

14 Fattening 200 116

15 Fattening 1.208 582

16 Fattening 2.834 865

Appendix 3: Distances Among Farms and Between
Farms and Abattoir

Distance from sow farm # (km)

To rearing farm # 1 2 3 4

1 18 5 36 33

2 14 6 42 34

3 48 31 36 5

4 18 5 36 33

Distance from rearing farm # (km)

To fattening farm # 1 2 3 4

1 204 199 186 204

2 0 7 36 0

3 52 56 34 52

4 49 55 46 49

5 45 46 10 45

6 45 45 9 45

7 40 44 24 40

8 51 55 36 51

From fattening farm # To Abattoir (km)

1 205

2 5

3 47

4 44

5 41

6 40

7 35

8 45
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Chapter 2

Planning the Planting, Harvest,
and Distribution of Fresh Horticultural
Products

Nicholas Mason, Héctor Flores, J. René Villalobos, and Omar Ahumada

2.1 Introduction

Many significant advances have been made in agriculture over the past century; we

now have the ability, in theory, to feed the entire world population. Nonetheless,

“there still remain great hunger, health and environmental concerns remaining to be

addressed” (Hazell and Wood 2008). These are not problems that can be solved

simply by increasing agricultural production (Alexandratos and Bruinsma 2006),

especially considering the environmental issues that if left unchecked could

adversely affect food supply in the future (M.E.A. 2005). Even though increasing

agricultural yields and developing better varieties have great importance, a signif-

icant breakthrough can be made through better management of agricultural supply

chains. The potential for better resource efficiency should not be overlooked,

especially in view that one-third of the food produced for human consumption is

estimated to be lost or wasted globally; some of the loss can be attributed to a lack

of coordination of the different actors of the supply chain (Gustavsson et al. 2011).

Thus, the issue of how to efficiently meet the demand with the production available

is of utmost importance when high levels of perishability are present in the

underlying product, as it is the case in fresh produce. For this reason the planning

of supply chain will play an increasingly key role in the definition of those products

that are successfully marketed.

The supply chains of agricultural commodities are already going through a

transformation that will affect the welfare of US farmers, the economy, and also

the health of the overall population. This transformation will result in the redefini-

tion of roles for current players in the supply chain and the level of control they
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maintain in their particular operations (Cook 2011). Nonetheless, in order to

address the global challenges ahead of us and to keep up with the changes occurring

in agricultural supply chains, greater efficiency must be achieved by all parties

involved. It is because of this strong need to increase the efficiency of the supply

chain that planning models will become of increasing importance to farmers,

intermediaries, and final distributors of agricultural commodities. Planning tools

and information technology for each of these key players must become increasingly

refined and applied, in order to drive non-value-adding costs out of the value chain.

In this chapter we will give a brief historical overview of planning and optimi-

zation models in agricultural supply chains, together with an analysis of the new

tendencies observed in the market and consolidation of supply chains, which will be

discussed in Sect. 2.1. The second section will give a brief literature review of the

most recent models made for planning activities within the supply chain. The third

section in this chapter will make use of specific mathematical optimization models

and planning methods to illustrate the functionality and importance of planning

tools for agri-food supply chains (ASCs); this section will be based in a bottom-up

approach, starting from the perspective of the grower, moving up to the marketing

and distribution of products to finally give a whole-chain perspective. Finally, we

will provide a brief discussion of the planning models, the current gaps in research,

and the opportunities for improvement.

2.1.1 What Makes Fresh Horticultural Supply
Chains Different?

The term agri-food supply chains (ASCs) has been used to describe all activities

from production to distribution that bring agricultural products from the farmland to

the table (Aramyan et al. 2006); we will use the term ASC to refer to the conjunc-

tion of these activities. The supply chain of agri-foods, as any other supply chain, is

a network of organizations and individuals working together in different processes

and activities in order to bring products and services to the market (Christopher

2005). However, in addition to the problems common to most supply chains, ASCs

must also deal with factors such as food quality, safety, and weather-related

variability (Salin 1998). ASCs must also manage issues related to limited shelf

life, which restricts the amount of time that most products can spend in storage and

therefore the capacity of holding inventory as a buffer for variability (Makeham and

Malcolm 1993). What is more, compounding the issues of variability and perish-

ability, we have very long lead times from the moment that planting is made, until

harvest (Lowe and Preckel 2004).

Among the problems encountered in ASCs, perishability is particularly critical

for horticultural products, whose shelf life is significantly lower than that of

traditional crops. Moreover, we must remember the greater economic context of

the farm business and the position of farmers who are subject to the forces of the

market and have little control over prices and the exact timing and yields of their
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crops (Ahumada and Villalobos 2009a; Makeham and Malcolm 1993), all of this

while working with relatively small profit margins (Lowe and Preckel 2004).

Complexity is further compounded when the supply chain has a large amount of

stakeholders at various echelons (such as farmers, shippers, and distributors) that

must coordinate their actions to avoid losses caused by a mismatch of supply and

demand (Kader 2002).

2.1.2 New Tendencies in ASCs

The complexity level of agricultural supply chains has seen a dramatic increase

over the past few decades. The increased competition and sophistication of the

supply chain has forced newer innovations in the marketing and commercialization

strategies of its players. No other fresh produce industry has seen such complexity

increase as the European. Over the past few decades, the complexity and compet-

itiveness of its food market industry has slowly consolidated the value chain of the

products at both the producer and the retail side. For example, up until the early

1970s, multiple food retailers in Britain each had combined market share of 20 %,

trailing both the cooperative and independent sectors (Morelli 1999). However, by

1971, the multiple sectors had 44 % of the food market overtaking the cooperative

and independent sectors (Morelli 1999). As of 2009, the four largest food retailers

in Britain accounted for 75.6 % of the total grocery sales (Garcia 2007).

External factors have been an indirect catalyst for the changes seen in the

European produce industry. Consumers have become more aware and increasingly

concerned over the quality and standard of food products, specifically fresh pro-

duce. This in turn has translated to higher quality standards for food retailers, their

suppliers, and more importantly, farmers. In this case, the latter was left with the

responsibility of revising their operational and organizational tools in order to

improve the quality and reliability of the products and meet the demands of the

end consumer. To face these challenges, investments were made in areas such as

infrastructure improvements, quality control programs, and integration of value-

added practices; in general, operations were made possible by the implementation

of centralized platforms.

The magnitude of these investments was often too large for individual farmers to

handle and thus many had to resort to alliances and partnerships. In the case of the

European farmers, the formation of cooperatives became the best solution. Indi-

vidual farmers formed alliances and created their own cooperatives, which they

used as platforms to launch more complex operations. Through these platforms, the

farmers were able to offer added value to their products, such as repackaging,

processing, maturation, etc., in order to differentiate their products from typical

commodities. Furthermore, they were able to coordinate logistics operations on a

grander scale, and more importantly, the farmer-owned cooperative structure gave

them a greater amount of leverage to their negotiating position. Today, private

cooperative structures have allowed European farmers to become primary players
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in the global fresh produce industry, as it provides a way for farmers to innovate and

maintain a high quality on products and service standards. They have also become

role models for farmer organizations in other regions of the world in their hopes to

develop sophisticated supply chains relative to those in Europe.

In the United States, the fresh produce industry has not yet reached the level of

maturity as the one observed in Europe. While the general tendency of the market

place is toward more complex and dynamic structures, the domestic conditions still

allow independent farmers to compete effectively. Nonetheless, the transition

toward vertically integrated supply chains has been a model to follow for many

farmer organizations. Since the enactment of the North American Free Trade

Agreement (NAFTA) in 1994, the commercial boundaries between the United

States, Canada, and Mexico liberated many of the commercial hurdles that had

been present in earlier decades. This allowed the increase of agricultural exporta-

tions into the United States, which led to a dramatic increase of the Mexican

presence in the domestic fresh produce industry. All these developments have

created a new playing field for all the parties involved in the industry.

More recently, the US market has shown signs of consolidating operations

further in the case of the large-scale farmers, who are capable of outcompeting

other smaller and midsize firms (Diamond and Berham 2012). As a response, small-

scale farmers have capitalized on growing consumer interest on food provenance.

Meanwhile, midsize firms which are too big to have direct marketing to the

consumer, yet too small to compete in price and variety with the larger producers

(Stevenson 2008), have responded through searching for more direct sales from

farms to retailers while achieving some degree of product differentiation and supply

chain collaboration (Diamond and Berham 2012).

2.1.3 Why Should We Focus in the Optimization of ASCs?

In the United States, the recent consumption growth of fresh agricultural products has

been impressive, with a consumption increase of nearly 25 % from the years 1970 to

1997 (Jones Putnam and Allshouse 1999), and although the per capita consumption in

recent years has not grown in a significant manner (Stewart 2010), the projected per

capita increase in consumption by 2020 may be higher than 7 % (Blisard et al. 2003).

Supplying for the increased demand of fresh fruits and vegetables in the United

States and the rest of the world is a challenge since the current supply chains might

not be ready to deliver the quality and quantity at the time needed. For instance, in a

study by the Food and Agriculture Organization (Gustavsson et al. 2011), it was

estimated that about one-third of the food produced for human consumption is lost

or wasted globally, which amounts to about 1.3 billion tons per year. The same

study estimated that the per capita food waste in Europe and North America was

about 95–115 kg/year which was attributed to consumer behavior and the lack of
coordination of the different players in the supply chain. This issue is further
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accentuated in the developing world, where the amount of food wasted before the

product reaches the consumer is significantly higher.

The technology and tools for increasing the efficiency of ASCs have been

researched in the past; however, their implementation has been very limited due

to their mathematical formulation, which contrasts with the intuition of traditional

decision-makers, their limitations on capturing the whole system dynamics, and the

added complexity inherent of integrated models (Ahumada and Villalobos 2009a;

Higgins et al. 2009; Lucas and Chhajed 2004). Therefore, it is our intention to

review some of the most relevant research that has been done in agricultural supply

chains and illustrate some ways in which operations research can be used to aid in

the management of the supply chain.

2.2 Literature Review

2.2.1 Historical Overview of Mathematical Models in ASCs

The use of mathematical models and operations research tools for agricultural

planning is not a new concept. As observed in the earliest review of mathematical

models in farm planning made by Glen (1987), some optimization models and

decision support tools have been developed for applications in crop planning as

early as 1954. In the earliest publication found of such methods, Heady (1954)

advocated the use of a linear programming model as a simple alternative for planning

and budgeting agricultural production. Thereafter, we observe that mathematical

models directed to agricultural planning started to become more widespread during

the 1970s and 1980s with just a few publications during the decade of the 1960s.

By the end of the 1980s, it can be seen that the knowledge of mathematical

formulations and optimization solutions was more widespread. The interest in these

models grew significantly during the decade of 1990, where we can observe that

many additional publications started to appear as it is illustrated by Ahumada and

Villalobos (2009a) who provide the most comprehensive compilation of planning

models for ASCs. In their review they catalogued the various research topics by

mathematical modeling approach, perishable and nonperishable crops, and plan-

ning scope of the models (operational, tactical, and strategic). As it can be seen

from this compilation, mathematical models for ASCs are becoming more wide-

spread and are starting to cover a much more complex array of problems.

In particular, Ahumada and Villalobos (2009a) observe that perishability of fresh

products and risk management are two themes which are quickly starting to gain

importance and visibility among the academic community.

The importance of specialty crops and mathematical models including perish-

ability features is further accentuated by the latest literature made in the field of

mathematical models for agricultural products by Zhang and Wilhelm (2009).

In this review an emphasis is made on specialty crops and the models made for

2 Planning the Planting, Harvest, and Distribution of Fresh Horticultural Products 23



the management of these crops. They conclude with a call for further research in

supply chain design, an issue they emphasize, which is becoming increasingly

important. Furthermore, Zhang and Wilhelm (2009) state that, so far, mathematical

models have remained relatively small and within the reach of commercial solvers;

however, as the industry grows and problems become larger (with more stake-

holders, locations, and further collaboration), basic research will become increas-

ingly important to ensure solvability.

2.2.2 Scope of the Review

Even though optimization models can be used to model separate specific activities

and have been used extensively in the past, the modeling of specific problems in

isolation is likely to be of little value given the complex and interdependent nature

of agricultural operations (Ahumada and Villalobos 2009a). Therefore, the review

makes an emphasis on those articles which consider more than one echelon of the

supply chain; these include articles that model interactions between different

stakeholders, as well as those considering strategic decisions for laying out infra-

structure for the ASC. Moreover, since the aim of this research is to identify the

state of the art on planning tools, only models created since the year 2000 will be

considered for review; for further reference, we will direct the reader to the

excellent literature reviews made by Ahumada and Villalobos (2009b), Higgins

et al. (2004), Lucas and Chhajed (2004), and Zhang and Wilhelm (2009).

2.2.3 Review of Models on Supply Chain Planning

In this section we present some works dealing with broad-scale supply chain

decisions published starting in the year 2000. A list of several articles that fall

within this category is found in Table 2.1 in the following page. Table 2.1 presents

the leading authors and the year of the publication, followed by a brief description

of the research paper; it was also of interest to identify whether perishability is

explicitly taken into account, the modeling approach used by the authors, and the

assumptions about decision-makers in the models. The perishability of the crops
(PER) indicates whether perishability is explicitly considered or not (X for yes).

The modeling approach (MA) refers to the analytical tools used to analyze and

solve the optimization problem at hand; these can be tools such as mixed integer

programming, stochastic programming, or other approaches. Finally, the decision-
maker (DM) can be either centralized or decentralized (D for decentralized).

The decision-maker is of particular interest because the most realistic case is that

of a decentralized decision-maker since most ASCs will actually be composed

of independent decision-makers needing to be coordinated (Ahumada and

Villalobos 2009a).

24 N. Mason et al.



Table 2.1 List of articles reviewed

Author(s) Description PER DM MA

Flores and

Villalobos

(2013)

Developed an opportunistic shipment policy for

extended commercialization of fresh produce

toward secondary markets

X Stochastic

Ahumada

et al. (2012)

Models the planting, harvesting, and distribution

decisions of a grower/shipper who has control

over the allocation of its products and wishes to

optimize its profits under uncertain yield and

price conditions

X Stochastic

Xia and Qi

(2011)

Making decisions for location of processing

facilities, transportation modes, production, and

storage of perishable agricultural products

X MIP

Zhao and Wu

(2011)

Models the interaction between one supplier and

one retailer when the supplier has stochastic

production using a revenue-sharing contract

X D News

vendor

Rong

et al. (2011)

Creates a framework to model the perishability of

products throughout a supply chain that can be

incorporated into a mixed integer program

X MIP

Kazaz and Web-

ster (2011)

Determines the amount of land to lease for the

production of fruit and how much fruit to buy in

the open market when prices and yields are

stochastic

Stochastic

Yandra

et al. (2010)

Proposes a multi-objective genetic algorithm for

the optimization of the supply chain of coconut

oil for the production of biodiesel in Indonesia

GA, MIP

Cai et al. (2010) Modeled the interaction of seller/buyer of per-

ishable items when there is a need to keep the

product fresh during transportation

X D Nonlinear

Dharma and

Arkeman (2010)

Uses a GA to coordinate the output of eight

distinct models in horticulture, optimizing overall

supply chain costs

X GA, MIP

Quadra

et al. (2009)

Models a supply chain consisting of resource

suppliers, growing, and distribution for several

specialty crops. Environmental factors such as

pesticide use and crop rotation receive an espe-

cial focus in this model

MIP

Ahumada and

Villalobos

(2009b)

Models the planting, harvesting, and distribution

of perishable crops to several markets by a

grower/shipper with centralized control of pro-

duction and distribution

X MIP

Frayret

et al. (2008)

Uses agent-based models to coordinate entities

within the lumber supply chain

D Various

(agents)

Lodree and

Uzochukwu

(2008)

Determines the appropriate amounts of product to

deliver by a producer in a VMI contract when

demand is stochastic and the product deteriorates

X Heuristics

Burer

et al. (2008)

Examined contract dynamics between suppliers

and retailers in the agricultural seed industry

D News

vendor

(continued)
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In order to better catalogue the research done in supply chain optimization

models in agriculture, we divide them into three main categories. These three

categories, to the judgment of the authors, are the ones that best capture the overall

focus of the research done in ASCs; these areas are dependent on the magnitude of

the scope for the research and are interaction models, location/allocation models,

and integrated industry models.

2.2.3.1 Buyer/Seller Interaction Models

The attributes that characterize these models are the explicit modeling of interac-

tions and decisions made by distinct players in the supply chain. These models focus

on direct interactions between suppliers and distributors of agricultural commodi-

ties, using methods such as the news vendor problem, nonlinear optimization,

Table 2.1 (continued)

Author(s) Description PER DM MA

Sanchez (2007) Developed a methodology to identify and estab-

lish a logistics platform for the commercializa-

tion of fresh produce

X Various

Thorburn (2006) Integrated four distinct models using agent-based

modeling to assess the implications of policy

changes in the supply chain of Australian

sugarcane

D Various

(agents)

Widodo

et al. (2006)

Models a growing and harvesting to plan for

harvesting of perishable crops using the ripening

of the crops to create a final value function

X DP

Ortmann

et al. (2006)

Measured the flow of fruit, originating in

South Africa, and assessed the total flow capacity

of all warehouses, cold-storage facilities, and

packing houses

Network

Schepers and

Van Kooten

(2006)

Models the interaction and collaboration between

growers and retailers of tropical fruits to obtain

appropriate product ripeness at the selling point

X D Nonlinear

Kazaz (2004) Determines the amount of olive trees to lease or

olives to buy in the open market before the season

starts to produce olive oil in a future period

Stochastic

Higgins

et al. (2004)

Developed an integrated model for harvesting,

transportation, and machinery selection in the

sugar mill industry to optimize profits

D Various

(agents)

Rantala (2004) Models strategic decisions for closing, opening,

and expanding greenhouses, warehouses, and

customer outlets for the Finnish seedling supply

chain

MIP

Gigler

et al. (2002)

Uses a dynamic programming approach to model

a full agricultural supply chain considering the

changes in quantity and quality of the products

X DP
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and game theory principles to achieve a state of equilibrium and greater benefit for

all stakeholders. Generally, very specific types of interactions are depicted between

the involved parties.

A good illustration for the peculiarities about supply chain interactions when

dealing with perishable agricultural commodities was made by Schepers and Van

Kooten (2006); they proposed a framework in which cost-sharing contracts between

growers and distributors can be used to allow products at the correct ripeness level

to be available at the selling point. Other articles which cover similar research are

Burer et al. (2008), examining contract dynamics between suppliers and retailers in

the agricultural seed industry; Cai et al. (2010), who added the considerations of

transit time and transportation technology to the interaction of a seller (producer)

and buyer (distributor) of perishable items when there is a need to keep the product

fresh throughout its transit time; and Lodree Jr. and Uzochukwu (2008) who created

a model consisting of a producer selling its product under a VMI contract when

demand is stochastic.

2.2.3.2 Location/Allocation Optimization Models

These research papers explore the possibility of modeling a large part of the supply

chain including the planting/harvesting plans and the infrastructure decisions such

as usage of warehouses, packing facilities, or transportation modes. The scope of

these models is larger than those of the previous section. Although the papers in this

section consider a wider set of decisions and much larger-scale problems, they do

not focus in specific interactions between key players of the supply chain; instead,

these models consider mostly strategic and tactical decisions assuming that

centralized control can be achieved for the operations under consideration.

Some articles which fall into this category are those of Gigler et al. (2002) who

used a dynamic programming approach to coordinate the handling, processing, and

distribution of agricultural goods explicitly considering the changes in appearance

and quantity resulting from the perishability of the goods; Widodo et al. (2006) who

modeled a plant growing and harvesting process in order to plan for periodical

harvesting and inventory consolidation; and Rantala (2004) who modeled strategic

decisions and expanded the modeling framework to tactical and operational

decisions.

A further expansion in the field, considering stochastic components, was made

by Kazaz (2004b) who addressed the problem of a Turkish company producing

olive oil; the objective of the model is to maximize the expected profit subject to

demand and the sales price of the olive oil. In a later implementation, a similar

model was made by Kazaz and Webster (2011b) who determined the amount of

land to lease for the production of fruit with stochastic prices and yields. Finally,

Ahumada and Villalobos (2009b) created a model that expands further on the topic

of stochastic optimization and considers the planting decisions and resource plan-

ning for two types of crops. The model builds over a previous research by Ahumada

and Villalobos (2009b) which solved the same problem in a deterministic manner.
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It can be seen that in this area of research, high-level models of the supply chain

have evolved rapidly, quickly generating larger and more robust models. However,

their high complexity makes it hard to model larger and more realistic scenarios in

which each player in the supply chain makes independent decisions. We address

these types of models in the following section.

2.2.3.3 Full-Chain Integrated Models

In this section we include those models with a broad scope and scale, modeling the

full supply chain as well as the interactions between key players in the supply chain.

These kinds of models are a minority due to their complexity and large size, which

makes them hard to solve through the use of traditional OR models. Similar to the

other models from Sect. 2.2.3, integrated models attempt to capture some of the

characteristics that interaction models and location/allocation optimization models

do; however, the analysis of these models is neither as detailed nor as likely to

provide a full optimal solution. Instead, these models usually rely on agent-based

models and other methods for dealing with decentralized, complex systems.

Higgins et al. (2004) was one of the first to propose a fully integrated model for

an agricultural supply chain, which integrated several models for harvesting,

transportation, and machinery selection in the sugar mill industry using an agent-

based framework. The final objective of the study was to propose opportunities for

enhancing the partnerships between the various players in the supply chain.

Other such research papers in this category are those of Thorburn (2006) who

linked four separate models (farm planning, harvesting, transporting, and refining

sugar), based on MIP and convex optimization, which were integrated in order to

understand the implications of specific change in the sugar industry, and Thorburn

(2006) and Frayret et al. (2008) who used a similar approach to assess the feasibility

of agent-based models for the Canadian lumber supply chain. Another example of a

highly complex system representing an agricultural supply chain was made by

Dharma and Arkeman (2010) who used a genetic algorithm approach to coordinate

the output of eight distinct models in horticulture: product demand forecast, veg-

etable supply forecast, planting schedule, aggregate planning, material requirement

planning I, material requirement planning II, inventory management, and transpor-

tation route.

Although the models created using agent-based methods don’t have strong

global optimization capabilities, they are capable of representing the interactions

of the various players in the supply chain in a manner that can still assume

independent decision-making. This is a great strength for these models since it

makes them more appropriate for high-level decision-making than other models.
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2.3 Sample Case Studies and Mathematical Models
in ASCs

In this section we will illustrate several optimization-based approaches for planning

and making decisions along the supply chain. This will be illustrated starting from

the planting and harvesting decisions and finalizing the section to the marketing and

distribution phase for horticultural products.

2.3.1 Planning the Planting and Harvesting
(Grower Perspective)

In order to illustrate the form in which planning decisions are made, we will base our

analysis in a full-chain optimization model developed by Ahumada and Villalobos

(2009b). This research consists in a deterministic optimization model, which solved

a problem for the case of a grower/shipper who has control not only over the planting

decisions of crops but also the distribution to the final market. In this model, the

perishability of the crops is modeled using a decay function, which is dependent on

the distance and time of transportation of the products, as well as the rate of decay.

A brief description of the optimization problem is provided below; however, for the

full model and analysis, we refer the reader to Ahumada and Villalobos (2009b).

The basic structure of the supply chain being modeled is illustrated in Fig. 2.1

below. The modeling of the supply chain is done in two stages: one where the

tactical decisions for planting and harvesting are made, together with all the

resource constraints and costs at the production level. Thereafter, once the product

is harvested, it enters into the production process, starting in the packing facility and

ending at the customer warehouse; the product can then flow either through

warehouses or the customer’s respective distribution center. The decisions for

sending the product through the second stage are directly dependent on the out-

comes of the first stage (harvesting of the crops).

Fig. 2.1 Traditional supply chain for agricultural products
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The supply chain illustrated in Fig. 2.1 is modeled as a mixed integer program

(MIP), using constraints for the resources used in the first stage as well as constraints

for choosing the appropriate routes and transportationmodes to the final market. The

objective function of the model is to maximize the expected profits for the season.

In addition to the model described above, we will provide examples for two

expansions to this model; one expansion for making tactical decisions under

uncertainty (Ahumada et al. 2012) and one for making labor allocation decisions

for the production of four crops, without distribution decisions (Wishon et al. 2012).

The use of these models will allow us to better illustrate the specifics expected from

these models when applied to real-world cases.

When making a plan for a full season, a variety of concerns must be taken into

account beforehand. For the case of the grower or grower/shipper preparing to make

the plantation, three basic constraints are observed, as seen in the previous math-

ematical formulation. From these, the capital is critical, since farmers may not

always have access to the capital, and the financing of the operations season to

season is one of the greatest concerns for growers (Makeham and Malcolm 1993).

Likewise, land is perhaps the most tangible resource that a grower has as their

greatest limitation (at least in the short term). Water is also a concern, although it is

only in some cases that this is an important limiting factor.

Of the various resources that a grower must utilize, labor is generally the most

problematic; this is particularly true for the case of horticultural products, which are

very labor intensive and for which mechanization is rarely a viable option (Emerson

2007). In fact, mechanization is only used when growers are left with no alternative

(Schmitz and Seckler 1970). Particularly, for many crops such as trees and other

specialty crops, labor can concentrate in a very limited time span, sometimes of a

few weeks. It is because of this that the assessment and planning of labor as well as

crop mix and the timing of plantations must be closely monitored when making

tactical decisions for the season.

To illustrate this, we take the example of a 500-acre farm growing four crops:

romaine lettuce, iceberg lettuce, broccoli, and cauliflower. The best planting schedule

is determined by using the model obtained in Wishon et al. (2012), for creating a

planting and hiring schedule (Table 2.2). However, for this model, we assume that

there is a given demand for each product that must be met and that the availability of

workers is constant throughout the season. Likewise, we assume that prices are

constant for each product and that all production not committed to a contract can

still be sold for the same price in the openmarket. The total profit calculated for a single

instance of this problem where the grower commits 50 % of its production to weekly

contracts is $120,000.00 and yields the following planning and harvesting schedules.

From this table it becomes apparent that broccoli and cauliflower have a higher

lead time than romaine and iceberg lettuce. We can also observe that there is some

fluctuation and overlap between various planting and harvesting schedules, which

show that even when the product is being harvested, it may still be appropriate to

plant another set of acres for a late-season harvest. Moreover, we can see that even

though the planting and harvesting schedules may seem to have a lot of variability,

the labor requirements can be rather stable, as seen in Table 2.3, which shows the

labor requirements and the planned labor for hiring throughout the season.
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Another interesting observation made from the results of the mathematical

optimization is the behavior of profits and planting plans as the amount of produc-

tion committed to contracts is varied. To illustrate this, we take the hypothetical

case in which a grower commits a certain production quantity for each week and for

each crop (Table 2.4). Under this scenario, each week would have a floor quantity,

which must be supplied and is modeled as a constraint in the model (average
required). We observe that as this quantity is incremented, the profit is severely

impacted. This is caused mainly due to one reason: taking a closer look at the

models output, we see that for a given amount of available labor, taking flexibility

away from the planning process by committing production without proper planning

will cause inefficiencies in the labor allocation; this in turn will cause shortages of

labor on some weeks (leading to product not being harvested) and overages of labor

on other weeks.

Similarly to the impact of different company policies and plans, factors outside

of the control of the farmers can impact the decisions made for throughout the

season. One clear example is, for instance, that of a labor shortage. Suppose, for

example, that growers expect that there will be a labor shortage for the following

season and calculate the highest amount of employees they will be able to hire.

Depending on this preliminary assessment, a very different crop mix may be

observed. To illustrate this, observe Fig. 2.2 below, which shows the projected

crop mix for a season as the expected number of workers available for a 500-acre

farm is reduced. As we can see, romaine lettuce which is the most labor-intensive

crop begins to disappear, while iceberg lettuce quickly gains ground together with

broccoli and cauliflower, two less profitable crops but also much less labor

intensive.

2.3.2 Assessment and Management of Risk
(Grower/Shipper Perspective)

Agriculture is a profession and lifestyle that has historically carried a lot of risks.

Growers and shippers of agricultural products are exposed to a variety of factors

which cause a great amount of variability on their day-to-day operations, the main

drivers of variability being weather, market prices, and public policy decisions

(Fleisher 1990).

The risks resulting from this variability can be hedged and reduced in many

ways, for instance, some traditional forms of reducing risk (Fleisher 1990) are using

risk-reducing inputs, product diversification, holding reserves, information, insur-

ance, and forward contracts. Unfortunately, for the case of specialty horticultural

crops, many of the alternatives for reducing risk are not available; for instance,

reserves can only be held for a very limited time span and forward contracts are not

an option for all crops. Because of this, many growers also resort to using insurance

as a tool for hedging their production (Backus et al. 1997).
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Growers are particularly affected by the fluctuations in market prices and the

yields of their crops, which are inherently stochastic which can be modeled through

an underlying probabilistic distribution. These features can be analyzed to under-

stand the way in which prices behave at the final markets, the behavior of crop

yields at the production points, and finally the interaction between these two

variables.

Although statistical analysis of prices and yields can be made from the perspec-

tive of the growers, it is of greater interest to analyze how market information at

distant locations can also be utilized by a grower/shipper. The availability of

information is one of the greatest resources that farmers have to hedge against

risk (Makeham andMalcolm 1993), and if the information can be enhanced through

statistical analysis and an integrated planning approach, then the benefits to growers

can become significant. For instance, a product portfolio is one of the main hedges

of producers against risk, but the construction of a suitable portfolio requires the use

of information and scenarios.

In order to support this claim, we will compare the output of two models, one

that assumes deterministic prices and yields through expected values (Ahumada

and Villalobos 2009b) and one which uses the probability distribution of prices

and yield to reach an optimal solution through stochastic optimization (Ahumada

et al. 2012). A sample planting plan for these two approaches can be seen in

Table 2.5, which shows the output for the deterministic model vs. the stochastic

formulation of the same problem showing that the planting plan resulting from

using the full information can be significantly different. Likewise, the expected

profits and worst losses are significantly different for both approaches.

A closer look at these numbers reflects how a plan that is specifically designed

for one case only is likely to fail, whereas a plan that is designed to yield a

profit under a great variety of scenarios has a greater advantage. In this sense, we

say that the stochastic approach is more robust than the deterministic approach

(Table 2.6).
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Although the previous example is based on a model that treats the growing,

harvesting, and distribution as done by one single decision-maker, there are many

cases in which this may not be the case. Under these scenarios, we are interested in

modeling the distribution of food products from the moment that they are bought

from growers until their delivery to the final customer. In this case, the scope of

planning is much smaller since we are no longer concerned about the planting

process and the factors that affect it; however, this perspective also allows us take a

broader approach for the possible locations where products are purchased, as well

as expanding the markets to which we can send our products. The following section

will cover two examples of fresh produce distribution and market integration.

Table 2.5 Sample planting plan for deterministic and stochastic approaches

Deterministic

Stochastic Stochastic

λ¼ 0 λ¼ 1

Week Peppers Tomatoes Peppers Tomatoes Peppers Tomatoes

1 28 – 22 – – –

2 – – – – 20 –

3 – 113 – 117 – 130

4 – 20 20 – – –

5 – – – – – –

6 – 29 – – – –

7 22 24 – 49 – 37

8 – – – – 20 –

9 – – 35 – – 20

10 – – 81 – 97 –

11 – 85 – 21 – –

12 23 – – 29 – 27

13 – 47 – 106 – 123

14 – – – – – –

15 – – – – 26 –

16 20 – – – – –

17 – – 20 – – –

18 – 89 – – – –

Total 93 407 178 322 162 337

Table 2.6 Comparison of results from stochastic program

Model λ Profit ($) Costs ($) ROI (%) Worst ($) CPU/s

Deterministic 0 3,255,643 14,439,900 22.50 37,598,000 197.54

Stochastic 0 5,621,200 14,427,100 38.90 174,526 1,325.4

Stochastic 1 5,619,360 14,434,100 38.90 138,500 1,350.2

Stochastic 10 5,510,680 14,434,500 38.10 153,871 1,485.5

36 N. Mason et al.



2.3.3 Direct Marketing and Distribution Through
Logistics Platforms

One of the primary issues facing agricultural producers in today’smarket environment

is the risk associated with their production. The inherent risk present in the farming

industry, together with the fact that agricultural commodities are often considered

perishable goods, allows the buyer to select from a broad variety of production sources

giving the farmers little or no leverage when it comes to negotiating their prices.

Consequently, the underlying situation is one in which the farmers assumemost of the

risks associated with production variability and in turn receive a reduced margin over

the final profits.

To counteract their poor bargaining position, many farmers have sought to

integrate vertically along the value chain of their products in order to curtail their

direct competition, as well as increase their share of the total profit margins. One

example of this is the case of European farmers who have asserted themselves as

global leaders by coming together through centralized, agricultural cooperatives

(Sect. 2.1.2). These cooperatives use “logistics platforms” to engage in value-added

practices that allow them to differentiate their products and gain greater ownership

of the chain’s profit margins. In this manner, the farmers assume a greater role in

their product’s added value, increase their bargaining leverage, and reduce the risk

associated with price variability.

Figure 2.3 exemplifies a common integration often undertaken by farmers within

the value chain of the product, from a traditional role to a more complex operational

system. The traditional role of the farmer, as it shown in the diagram, is mainly

associated with those activities related to production. This leaves the rest of the

operations within the value chain, and most importantly its benefits, in the hands of

its other members. On the other hand, as one can observe, a vertical integration

allows the farmer to assume a greater role of the value-added and distribution

activities.

Fig. 2.3 Vertical integration along the product value chain
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Vertical integration within the product value chain is a gradual process. In some

cases, such as in Europe, the initial market conditions allowed an easier transition

into more complex operations. For this case, the traditional structure of the farmers’

operations was based on cooperative auctions. Through these cooperatives, the

independent farmer had an organized marketplace through which they could sell

their products to wholesalers and retailers in simple auctions. The price of the

product depended mainly on the conditions of supply and demand factors. Eventu-

ally, these common cooperatives merged into centralized entities with established

logistics platforms through which they developed value-added activities and

centralized their decision-making strategies.

In the literature, a logistics platform can be viewed as homogenous and part of a

logistics system controlled by one actor in the supply chain (Aldin and Stahre

2003). This includes concepts for logistics operations, a physical structure,

processes and its activities, as well as the information systems needed for design,

operations, and reporting (Abrahamsson et al. 2003). The development we see is

that platform leaders need to exist for two kinds of coordination purposes. Firstly,

there is a need for coordination within the platform where the physical logistics

structure does not necessarily need to be centralized as long as the organizational

logistics structure is centralized. Secondly, coordination or collaboration is needed

between different actors in the supply chain.

This section develops a case study that illustrates the factors and considerations

in the implementation of a logistics platform. The case study involves the devel-

opment of an enhanced commercialization strategy for Mexican fresh produce

growers attempting to increase their marketing reach in the United States.

The case study will take the reader through the different decision-making require-

ments in the design and implementation of a logistics platform. This same case

study is applied in Sect. 2.3.4 to develop an alternative marketing strategy.

In this section, our definition of a logistics platform refers to a physical location

where several different types of complementary businesses—centralized or

decentralized—work together to provide different and better services to consumers.

The types of suppliers required in this “logistics campus” are defined by the needs

of the customer base inside the influence zone of the platform and can range from

redistribution centers to processing facilities.

2.3.3.1 Design of a Logistics Platform

The first step in the design of a logistics platform is to identify the relevant factors

involved in the development of an efficient platform, including a methodology for

the analysis and strategic design of the platform. The analysis is aimed to find a way

to vertically integrate the supply chain to improve its overall efficiency, focusing

especially on the case of the fresh produce industry—although the general
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methodology can be applied to other situations. To achieve this objective the

following steps are needed:

• Market estimation

• Facility location problems

• Multimodal transportation route design

• Product mix optimization for shipments

• Identification of customer base requirements for special services

• Strategic design of the logistics platform

The problem can be decomposed in four main questions: where to locate, how to

reach the location, what services to provide, and up to what level or the scope of the

implementation. The chart in Fig. 2.4 gives a better description of the parts of

the study.

The first part of the analysis is related to establishing an objective for the

logistics platform. While this might be already defined by the company strategy,

the rational initial step is to assess which segments of the market are more

convenient. This part includes a market estimation to establish a target region,

then research on the characteristics of that region—such as costs, availability

of land, subcontractors, distribution center clusters, etc.—and finally a facility

location process.

The second part of the analysis is concerned with how to reach the logistics

platform once it has been located. This refers to the haul of product from the

production site to the logistics platform. Considering there are different types of

products, the first step is to define an optimal loading mix based on the

Fig. 2.4 Problem

decomposition
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characteristics of the product (weight, volume, and compatibility with other

products) and finally a multimodal route based in a mixed integer program.

What services to provide to customers is probably one of the most important

sections of this study. The main issue here is to identify what types of potential

customers are available in the influence zone and which are the requirements or

services they have in order to become their supplier or strengthen the level of

service. Once these are identified, there are also infrastructure requirements needed

in order to provide the different types of services. The way each service is analyzed

depends on whether the platform is centralized or decentralized since the objectives

of the platform promoter would differ if the rest of the companies are owned by the

same entity or not.

This example aims to first find a general location where the platform would

operate near optimality. Thereafter, many other factors must be considered, such as

existing distribution center clusters, workers’ union issues, availability of other

services, access to different transportation channels, etc. For practical purposes, the

decision will be made in two steps:

1. Find a near optimal location based on a simplified p-median model dictated by

demand potential.

2. Manually adjust the location considering other factors.

For this, a model is developed based on the p-median problem. In the p-median

problem the objective is to choose p of the m sites to locate a warehouse such that

the total demand-weighted (travel distance) cost between the warehouse and the

retailers is minimized. For further insight on the plant location problem for this case

study, the reader is encouraged to read Sanchez (2007). Finally, once the location is

found, a manual selection process should undergo in order to consider more

subjective factors mentioned before.

In this particular case study, the p-median model provides five candidate markets

for the implementation of the logistics platform. Figure 2.5 presents the results

found by Sanchez (2007) for potential locations of a logistics platform for the direct

distribution of Mexican fresh produce in the United States. Note that this market

identification is not based solely in market size; rather, important competitors such

as tomato growers in Florida are taken into account. For instance, Los Angeles

seems to be the largest market but it is not; it is just more attractive from the

perspective of the Mexican farmers versus those from Florida.

Once the options are available, the decision-maker (or stakeholders) must

choose the final region to focus on. It is important that an expert in the business

under consideration makes the decision since many other factors (sometimes more

subjective) might become important at this point. For instance, even if Los Angeles

is the city with the biggest potential market, the decision-maker could opt not to

establish a logistics platform there if their current supply chain already serves that

zone efficiently or if competition is weak in the zone.

In the case study in question, Mexican farmers agreed on furthering the analysis

for the platform to serve the Chicago area. This was in part because of the reasons

described before, but also because they believed their current customer base in
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Chicago would be more interested in the new services that would be available once

the platform is located there.

At this point the target region is identified and for the case study will be the

Chicago area with a temporal centroid at Portage, IN, and a market potential of

approximately $5,300 million, including two other major cities, i.e., Detroit, MI,

and Indianapolis, IN, inside the influence zone.

2.3.3.2 Transportation of Fresh Produce

Once the location of the logistics platform is determined, the next question would

be how to reach it from the supply site. For this step, we consider:

• Routes available from the crop site to the platform in all modalities:

– Land

– Railroad

– Water

– Air

• Location of multimodal terminals in the route

• Cost of transportation for all possible choices

• Handling compatibility of the products being analyzed

While the first three bullets are straightforward, some people might not be aware

of the implications of the latter. Some products, including fresh products, have

certain characteristics under which they must be handled. In the case of vegetables,

Fig. 2.5 Candidate markets for implementation
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handling temperature, humidity, type of packaging, and shelf life must be

considered. But they also have certain organic properties which make them

compatible with some products and prevent them from being mixed with others.

Some examples are products sensitive to chilling injury or freezing injury and

ethylene-sensitive/ethylene-producing end products that emit or absorb odors.

It is extremely important to consider all factors to find which products can be

shipped together and which ones cannot.

The second issue in shipping the product from point to point is the route that the

containers will follow. The possibilities are wide and will depend on each situation;

in many cases the use of more than one type of transportation—i.e., land, sea,

railroad, and air—will be required to minimize cost. The first step is the creation of

a network diagram that will help in understanding better each specific situation.

The network for the Mexican farmers’ case study is presented again in Fig. 2.6.

Using the information obtained of compatibility and product characteristics, an

MIP is developed in Sanchez (2007) that aids the decision-maker in finding a cost-

efficient mix of products to be shipped. The parameters in the model reflect the cost

of transportation of one container from the origin to the destination or market.

There are also parameters for the capacity of a container and for the total demand

assumed per product.
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2.3.3.3 Value-Added Services

The types of services and possibilities are wide and depend much on the investors’

risk profile. As some companies will not find the risk of establishing some of those

services worthwhile, others would. Therefore, the main issue becomes whether the

platform would be centralized or not. In the first case, the analysis will have to be

done in detail for each type of service by the promoter of the platform, and every

business plan developed to start up all new companies required. In the latter, the

logistics platform leaders would have to organize and promote the leasing of space

to the necessary companies in order to make the services available.

Another issue that concerns the stakeholders of the platform is the investment

portion on the redistribution center. The best way to act would be to run a pilot;

unfortunately, a platform cannot be built as an experiment. The solution would be to

start operations by leasing the redistribution facility and later on start to build the

platform as a whole. The order in which farmers should implement the platform is

the following:

1. Subcontract redistribution service.

2. Subcontract delivery fleet to serve customers’ distribution centers.

3. Lease refrigerated facility and establish redistribution operation.

4. Buy land to establish the logistics platform and the redistribution center.

5. Buy repacking company or establish one for the platform.

6. Subcontract fleet for door-to-door deliveries.

7. Invest in or attract other companies to offer more services.

With this implementation plan, the expansion can be done gradually and still

start operations right away. At first, everything could be subcontracted, so the

farmers can just ship the product and manage the sales. The delivery fleet can

also be subcontracted with the same company if possible or with a third-party

logistics provider. A second step would be to subcontract a refrigerated facility and

start operations there. This time, it will be required to hire personnel and have an

operations staff to run it. Once the market is proven right, it can be chosen to buy

land and start the construction of an owned redistribution facility. This land will

serve also to build the rest of the platform and start leasing space to the companies

that will collaborate in it.

2.3.4 Indirect Marketing and Distribution
by Market Speculation

A second approach through which fresh produce owners can increase their

commercialization reach is to develop a strategy based on temporal arbitrage

opportunities. This would avoid resorting to high-capacity investments, i.e., logis-

tics platforms. The proposed strategy involves reaching secondary markets through
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intelligence-based operations that require minimum level of investments. The

overall objective of the operations is to maintain an attractive balance between

the levels of potential returns and associated risks.

The basic premise of an indirect marketing and distribution is the development

of a methodology that permits an established farmer with basic local operations to

expand his/her commercialization reach into secondary markets, by way of finan-

cial engineering tools and statistical analysis. Specifically, this methodology

develops decision-making tools that could identify potential opportunities and

take advantage of momentary arbitrage opportunities for product placement in

secondary markets. Finally, additional aspects of a similar operation, such as risk

management policies, allow effective and profitable operations.

2.3.4.1 Design of an Opportunistic Commercialization Strategy

The main argument behind the methodology is that the dynamic characteristics of

the fresh produce industry create a prime environment for intermittent commer-

cialization opportunities for those individuals that aim to increase their marketing

reach but that do not necessarily want to make an important capital investment. This

strategy is based on the market price variability present as a result of the inherent

characteristics of the fresh produce industry. These characteristics create market

opportunities when one considers inefficient price transmission between markets.

In other words, there is a short lag in time for market prices to adjust when the price

of a produce item changes. At times, this momentary price differential may be large

enough to offset the transaction cost of moving the item from one market to the

other. These differentials are in essence momentary arbitrage opportunities.

There are several characteristics of the fresh produce industry that create the

economic opportunities within the two-market structure. Among these characteris-

tics are the following:

• Integrated markets

– Variability at the supply source is indirectly transferred to the consumer

market.

– Constant fluctuation of product prices at wholesale markets.

• Homogenous products

– Under certain market scenarios, fresh produce can be categorized as undiffer-

entiated, commodity products (without considering those that have received

additional value-added activities).

– Allows for easier ownership of acquired products.

Additionally, given that fresh produce items have very limited shelf life, coupled

with high variability at the supply source, fresh produce markets tend to be

continuously fluctuating and highly volatile. For this reason, one could make an

indirect comparison with the behavior of financial markets.
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A potential operational structure that would allow the farmer to take advantage

of the market price variability associated with the fresh produce industry is to

increase the commercialization reach of the products (Fig. 2.7). In this case, the

farmer can use the price variability within two markets in order to identify partic-

ular time instances in which their price differential creates an opportunity for a

transaction. This transaction is the process of moving a single product from the base

to the secondary market under favorable conditions. If the transaction results in a

positive profit, then that particular arbitrage opportunity has been correctly identi-

fied and captured. If the transaction results in a negative profit, then the opportunity

was incorrectly identified.

The main assumption of this operational structure is that the base (primary)

market has continuous and established operations, while those in the secondary

market are intermittent. In this case, one assumes that the production dedicated to

the continuous operations at the established market will be large enough to fulfill

sudden opportunistic surges in demand within the secondary market. As a result, it

is assumed that that farmer will always have enough inventories at the primary

market to take advantage of favorable price differentials as determined by the

model. Therefore, for all practical purposes, the inventory at the established market

used to supply the secondary market is assumed infinite.

Additional assumptions for the operational structure include (1) the availability

of daily wholesale price information at markets (currently reported daily by the US

Department of Agriculture), which will be used to calculate the threshold level of

the shipment strategy, (2) an accessible secondary market due to the relative ease

through which a farmer can access wholesale markets, and (3) a third-party

transportation system for which a per item transportation cost is incurred to move

the products.

Fig. 2.7 Envisioned operational structure
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Figure 2.8 presents a schematic with the decision methodology underlying the

opportunistic commercialization strategy. Each question addresses different aspects

of the operation that need to be addressed throughout the planning process of the

commercialization expansion.

The question then becomes how one uses the dynamic market characteristics of

the fresh produce industry in order to develop a generalized method of operation

that allows an entity to identify and take advantage of momentary economic

arbitrage opportunities. The purpose is to have positive expectation of return on

minimal levels of investment. Furthermore, the farmer would want to limit his/her

risk exposure and only speculate on the market whenever the market conditions are

favorable.

A case study is presented to demonstrate the development of such commercial-

ization strategy. In this case, six markets were selected. These markets are part of a

larger database maintained by the US Department of Agriculture that publishes

daily terminal market prices on a variety of fresh produce items. In order to

maintain similarity to the case study presented in Sect. 2.3.3, Dallas, TX, was

selected as the base market and the rest of the markets in are the potential secondary

markets. Ten years of daily terminal market prices were collected from this

database and were adjusted by an inflation factor.

The long-run average prices for those markets considered suggest that continuous

shipment operations in these structures are not profitable (Table 2.7). As one can

observe from the table below, the average long-term prices at the base market in

Fig. 2.8 Problem decomposition
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general tend to be close, if not, higher than at the secondary. Consequently, the price

differentials between the structures are not large enough to allow continuous prof-

itable transactions. In order to capture the opportunities that are present within the

market price differentials, one has to search for specific opportunity windows in

which one might be able to observe from gains from engaging in a two-market trade.

For this, one needs to dwell a bit deeper into the market price differentials, in

order to identify the specific opportunity windows that indicate potential arbitrage

in a two-market transaction. Figure 2.9 presents an in-depth glimpse of the market

price differentials for an arbitrary year of 2005 within the Dallas-Boston market

structure. The values observed in this graph account for the non-lagged differentials

between these markets. This differential is the price of the product (per pound) at

the secondary market minus the price at the base market and the cost of transaction,

during the same day.

One can gain additional information regarding the behavior of these differentials

over the 10-year period by summarizing their statistical characteristics through a

fitted theoretical distribution. If one considers a stricter shipment condition

Table 2.7 Long-term average prices

Dallas ($) Boston ($) Atlanta ($) Chicago ($) DC ($) NYC ($)

Tomato 0.70 0.76 0.70 0.71 0.72 0.66

Squash 0.58 0.46 0.49 0.50 0.53 0.46

Eggplant 0.94 0.86 0.57 0.83 0.55 0.77

Cucumber 0.39 0.37 0.33 0.39 0.31 0.36

Bell pepper 1.07 0.67 0.99 0.97 1.01 0.84

Fig. 2.9 Two-market lagged price differentials
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(or threshold level) on the non-lagged differentials for the Dallas-Boston market

structure, the observed mean and variance of the lagged differentials become

increasingly positive, as shown from the histogram distribution in Fig. 2.10. In

the right-hand side of this figure summarizes a fitted logistics distribution (based on

a Pearson’s chi-square goodness of fit test) for each observation histogram on the

left, under various threshold levels.

As it can be observed on the figure above, the mean profit of a single, one-time

shipment is increased as the threshold condition for the non-lagged differential

becomes stricter. However, as the threshold becomes stricter, the number of

opportunities also decline greatly. Therefore, a strategic trade-off between the

number of opportunities and the expected profits has to be determined in order to

maximize revenues. Using the model developed in Flores and Villalobos (2013),

one can select the specific market price condition at which an opportunity maxi-

mizes the long-term revenues. This model indirectly accounts for this strategic

trade-off.

2.3.4.2 Risk Management Strategies

Given that this second approach is dependent on market speculation, it would be

necessary to develop a strategy that would reduce the risk associated with market

speculation. Thus, the second phase of this case study develops a shipment

Fig. 2.10 Histogram distribution under various thresholds
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configuration that would be able to limit the risk exposure of the decision-maker.

In this case, the market price characteristics of each individual component (under a

defined shipment strategy) are used to hedge the risk. It is assumed that one can

apply mean-value portfolio theory to the collection of shipment components in such

a way that one can manipulate the overall rate of return and variance. Ultimately,

the objective is to determine an optimal shipment configuration that minimizes the

variability of the returns for a particular component.

For demonstration purposes, it is assumed that one wants to limit the risk

exposure of tomato shipments from Dallas to Boston. It is also assumed that the

general objective of the decision-maker is to maximize his/her long-term profits of

the shipments during a defined operational period. Thus, the market price informa-

tion for the rest of the shipment components is limited to the opportunity time

windows of tomato within the Dallas-Boston market structure. The main objective

would be to reduce the variability of the rates of return for tomato shipments from

Dallas to Boston. To reduce the risk, one can use portfolio theory to hedge the risk

of only sending products to Boston. In this case, one can reduce the risk of a loss

when one sends a shipment to a single market by developing a strategic portfolio of

different markets. The goal is to offset the risk in the main target market. This

means that whenever an opportunity is identified for a tomato shipment in Boston, a

shipment of the same product is also sent to the rest of the secondary markets in a

strategic manner (Fig. 2.11).

Again, the objective is to use the market characteristics within each secondary

market in order to strategically invest in each for the sake of minimizing the

variability observed in the returns. For this approach, the objective is to hedge the

risk of sending a tomato container to Boston, by also sending a shipment of

the same product to the other secondary markets. The shipment policy used is

that for tomato within the Dallas-Boston market structure, which optimizes the

long-term profits for this item during the operational period. Thus, the information

of rates of return correlation and covariance is limited to the time windows of

opportunity of this product over the 3-year period.

Fig. 2.11 Secondary

market configuration
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Table 2.8 presents the rates of return of tomato per secondary market under this

shipment policy. As one can observe, the highest average rate is observed in

Boston, while the lowest details a negative rate in New York. Furthermore,

Table 2.9 summarizes the correlation levels observed between each secondary

market, which are much higher than those observed in the product mix. In this

case, the highest level of correlation with Boston is New York, which approximates

0.378. Overall, Atlanta and DC have the highest level of correlation with 0.571.

Since this table is just a representation of the covariance matrix, one can observe

that the variance between the Dallas and Boston price markets is 0.0346.

Applying a Markowitz model approach from financial engineering to this case

study (Luenberger 1998), it was found feasible to reduce the return variance for

tomato shipments to the Boston market by configuring a shipment strategy based on

the rest of the secondary markets. The results based on this strategy are found to be

satisfactory. Table 2.10 presents the variance of the rates of return before and after

the development of a market configuration.

As one can observe from the table above, the overall variance of the shipment in

the Dallas-Boston market structure is reduced by combining operations with other

secondarymarkets. It is observed that the variance of the rates of return is reduced by

52 %.

Table 2.8 Secondary market

configuration: average rate of

return

Two-market structure Rate of return (Tomato)

Dallas-Atlanta 0.060

Dallas-Boston 0.114

Dallas-Chicago 0.045

Dallas-DC 0.064

Dallas-NY �0.077

Table 2.9 Secondary market configuration: covariance matrix

Dallas-Atlanta Dallas-Boston Dallas-Chicago Dallas-DC Dallas-NY

Dallas-Atlanta 0.024 0.010 0.012 0.013 0.016

Dallas-Boston 0.010 0.035 0.008 0.007 0.014

Dallas-Chicago 0.012 0.008 0.043 0.007 0.014

Dallas-DC 0.013 0.007 0.007 0.020 0.009

Dallas-NY 0.016 0.014 0.014 0.009 0.039

Table 2.10 Variance before/after market configuration

Variance (only Dallas-Boston) Variance (market configuration)

Total 0.0346 0.0168
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2.4 Conclusions

In this chapter we have provided a brief overview about the evolution of the field of

ASC management and optimization, complete with a comment on the recent trends

and directions of the field, which is moving toward greater consolidation and

toward a vertical integration of operations. Under this perspective, we see that

supply chain operations that can be performed in isolation using mathematical

models are starting to be performed with greater collaboration between growers

and shippers; many of these shared operations can similarly be modeled through

mixed integer programming or using other decision tools to optimize the operations

of various players in the chain.

Throughout Sect. 2.3 in this chapter, we have described various decisions that

are made with the aid of mathematical programming and decision tools to perform

specific operations throughout the chain. These operations range from the pure farm

planning and planting decisions to the impact of these decisions on the future

marketing of the crops. We continue to take a complete approach to the supply

chain by analyzing the strategy that growers seeking to integrate vertically could

follow in order to penetrate a new market and establish a joint operation. Finally,

the perspective of a shipper with access to enough inventory and information to

engage into opportunistic marketing of agricultural commodities is illustrated,

therefore completing a full overview of operations performed in the chain and

their respective technical tools.

2.4.1 Comments on Integrated Farm Planning
and Marketing Execution

Upon analyzing the various sections of the supply chain of fresh produce and their

modes of operation, we go back to the trends being observed in the recent years for

agricultural supply chains. As we have seen before, growers and shippers alike

face changing market conditions due to the consolidation of supermarket chains and

the new purchasing policies implemented by those chains (Dimitri et al. 2003).

The response to this has been a new trend in the US market toward vertically

integrated producers, a trend which had already been advanced in the European

market.

One clear question that comes into mind (after observing these trends and after

reviewing the literature in the subject) is: what is needed to support this emerging

business model? Clearly, there will be a need to coordinate the actions of several

partners within the cooperative not only in a manner that maximizes the overall

profit but also in a way that creates profit and reduces risk for each individual

partner. This is a challenging problem which will need to be carefully evaluated, in

particular, if we deal with a decentralized system, where the incentives for complete

cooperation may not be predominant and individual interests could potentially
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create unwanted variability at the global level. An example of such problem could

be, for example, that several farmers shift a small amount of their production

toward a specific time period under the expectation of higher prices; however, if

this reasoning is too widespread and uncoordinated, then an oversupply could

result, therefore harming all players in the supply chain.

Unfortunately, little research has been done in the topic of decentralized

coordination of the supply chain. This emphasizes the need to create the appropriate

decision support tools to deal with this emerging complexity, be it with the purpose

of profit maximization, risk reduction, or supply chain coordination.
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Chapter 3

Production and Logistics Planning
in Seed Corn

Rogerio A.R. Junqueira and Reinaldo Morabito

3.1 Introduction

In wide countries like Brazil, the USA, and others, supply chains of seed corn can

involve multiple disperse crop fields, processing plants, and demand spots, which

require complex and elaborate aggregate production and distribution planning to

attend predefined harvest plans and meet forecasted product demands. The limited

processing capacities of the plants are also relevant for this tactical planning.

Seed corn enterprises that have experienced rapid growth or operate in a

complex and changing environment had a tendency to create simple practical

rules, sometimes disconnected, to develop production and logistics plans. For

instance, some of them have focused on only a few variables relevant to planning,

like the distances between crop fields and processing plants, disregarding other

relevant variables, such as the unit production and distribution costs and the goods

and services circulation taxes involved.

Optimization approaches have been applied to support production, inventory,

and distribution aggregate planning decisions in different agribusiness settings,

considering several technical and economical criteria and constraints. As these

approaches are incorporated into decision support systems, they become powerful

and flexible for the analysis and planning of these systems under different scenarios.

Several examples of successful applications in production and logistics planning of

agribusiness supply chains can be found in, e.g., Shapiro (1993, 2001), Chen

(2004), Higgins and Laredo (2006), Ahumada and Villalobos (2009), INFORMS

(2012), and the references therein.

In this chapter, we are concerned with optimization approaches to support

tactical planning decisions in production, inventory, and distribution of seed corn.

R.A.R. Junqueira (*) • R. Morabito

Production Engineering Department, Universidade Federal de Sao Carlos, Sao Carlos, Brazil

e-mail: rarjunqueira@gmail.com; morabito@ufscar.br

© Springer Science+Business Media New York 2015
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The chapter is organized as follows. In Sect. 3.2, we briefly discuss production and

logistics planning of seed corn including the process features, tax planning, and a

classification of supply chain systems and some aspects of the production and

logistics planning of seed corn. In Sect. 3.3, we review some optimization

approaches of the literature based on mathematical programming to support deci-

sion making in seed corn supply chains. In Sect. 3.4, we shortly describe some

results derived from a case study developed in a Brazilian seed corn company. The

emphasis is on the approaches that explicitly consider tax planning. The results

show important opportunities for production and logistics cost reduction by using

mathematical programming. Finally, in Sect. 3.5, we present some concluding

remarks.

3.2 Production and Logistics Planning

Several studies in the literature, such as Chen (2004) and Ahumada and Villalobos

(2009), show that the integration of production and distribution functions is very

important to achieve high performance in supply chains. Some applications in agri-

food industry can be found in the integrated production planning of poultry (Taube

1996), in the decentralizing distribution of ethanol (Yoshizaki et al. 1996), in the

aggregate production and distribution of frozen concentrated orange juice (Munhoz

and Morabito 2014), in the production planning and trade of lily flowers (Caixeta-

Filho et al. 2002), in the tactical planning of breeding farms producing piglets

taking into account the sow herd dynamics (Rodriguez-Sanchez et al. 2012), and in

the production, inventory, and distribution of sugar and ethanol (Colin et al. 1999;

Salassi et al. 2002; Higgins and Muchow 2003; Lopez et al. 2006; Kawamura

et al. 2006; Paiva and Morabito 2009).

Besides matching production and distribution, tax planning is another important

issue for the optimization of the supply chain performance. For instance, Balaji and

Viswanadham (2008) studied a multinational tax integrated model to decide the

foreign direct investment or outsource on global network supply chain planning.

Basset and Gardner (2010, 2013) proposed models to deal with multinational tax

costs to optimize the design of the global supply chain of an agricultural chemical

enterprise. Junqueira and Morabito (2012) proposed a production and logistics

planning considering circulation taxes in a multiplant seed corn company.

3.2.1 Seed Corn Production Process

Agricultural production is the first phase of the seed corn supply chain as depicted

in Fig. 3.1, which illustrates an example of a schematic representation of this supply

chain (Junqueira and Morabito 2012). In this phase, the final products to be

commercialized by the company are defined, as well as the quality standards
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desired for them. Seed corns are separated basically into three product types:

variety, hybrid, and genetic modified. Variety means that the seed has essentially

the same characteristics of its original corn plant, i.e., there are no genetic modi-

fications or improvements in the seed corn. In general, the productivity of a variety

seed corn for the customer (i.e., a corn producer or farmer) is relatively low. Hybrid

means that there are crossings between different corn plants, generating a seed with

different characteristics of its corn plants (matrices), appropriately manipulated as

the crossing effects are known. A hybrid seed corn can be simple, double, and triple,

and its productivity is higher than the variety. While variety production focuses on

low technological producers that remain in the seed market, the focus of hybrid

production is mainly on high technological companies with large-scale production

levels and which commercialize their products in broader areas. In the case of

commercial genetically modified corn seed, after previous laboratorial processes, it

can be either a parent of a hybrid or be treated as a variety.

The next phases of seed corn production are crop field harvesting and transpor-

tation of the raw material to the plants (Fig. 3.1). For seed production, a spike

harvest is recommended as the seed quality is better preserved in terms of germi-

nation and vigor (Oliveira et al. 1997). Meanwhile, there are cases in which the
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Fig. 3.1 A schematic representation of the seed corn supply chain
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enterprises choose to harvest corn seed in grain, especially for more robust products

which are less damaged by mechanized grain harvest, such as some varieties and

double hybrids. The type of harvest determines some transportation means and

equipment used during the initial agro-industrial stages in the processing plants.

Transportation must be fast in order to avoid deterioration due to the high water

level of the seed. Thus, the raw material (i.e., corn spike or grain) cannot be stored

before a drying processing to reduce its humidity.

Like other grain agro-industries, the corn seed process can be divided in two

stages: preparation of the raw material and processing of dried grains. The raw

material preparation changes humid corn (spikes or grains) into dried grains with a

minimum of impurities by means of cleaning, drying, and threshing operations.

Depending on the type of raw material, the preparation involves different process

operations. The plants can have infrastructure to dry both grains and spikes. This

stage enables to storage the corn seed (Fig. 3.1). The dried grain processing trans-

forms the dried seeds into final products, which means dried and clean seed corn,

classified by size, chemically treated, bagged, and in germination condition.

The supply of raw material to a processing plant does not come necessarily from

a crop field. It can be transferred from another plant or prepared in an independent

industrial unit. The demand of seed corn is a critical issue to be considered in

production and logistics planning due to its forecasting errors and the complexity of

its management. Because of production-scale savings, Brazilian and other wide

countries’ enterprises seek to commercialize seeds in broader areas to increase their

market share. Broader areas mean more diverse climate and production environ-

ments, which interfere in the time that the product should be available to the

customers. Moreover, farmers of the same area usually demand different

product mix.

3.2.2 Tax Planning

Another issue that greatly influences production and logistics plans of seed corn is

the taxation of multijurisdictional commerce, which leads managers to consider tax

planning (Junqueira and Morabito 2012). In Brazil, for example, tax obligation is

created when an incidence hypothesis predicted in laws occurs. However, it is not

mandatory to practice acts that result in duty incidence or that make it more costly.

A triggering event is a situation predicted in law, which is necessary and sufficient

to create this obligation. On the other hand, a tax evasion is characterized when a

triggering event occurs and someone tries to hide it or mischaracterize it. Thus, tax

planning aims to minimize the total tax payment in operational, administrative, and

financial acts or facts, choosing the best alternative among the existing legal ones.

A production and logistics plan can either avoid triggering an event of circula-

tion tax or reduce its due value. In the first case, the plan avoids triggering an event

by choosing routes with tax exemption. In the second case, the plan reduces the due

value of an event by choosing routes with lower rates. Brazilian laws determine that
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a circulation tax event occurs when goods leave an organization or establishment

(CONFAZ 2006). However, Brazilian states may interfere in the circulation tax

adding or adopting different rules. For example, for some states, there are circula-

tion tax exemptions for inner state operations and there are circulation tax reduc-

tions of up to 60 % for interstate operations. Moreover, there are circulation tax

reductions if the product is made in the south or southeast areas and is sold in the

north, northeast, or center-west areas.

A circulation tax exemption for inner state operations can produce a significant

impact on the final price of a seed corn. Note that in this way, the legislation aims to

promote production and sales inside the state. However, interstate rate differenti-

ation for operations from the south or southeast areas to the north, northeast, or

center-west areas adds a trade-off between distance and tax advantages in logistics

decisions. The following example of a seed corn supply chain in Brazil illustrates

this effect: consider that the transportation unit cost is $0.0988/t.km (SIFRECA

2004), that the product price is $100.00 per 20 kg sacks, and that there are six

available routes as presented in Table 3.1, whose origins are production areas in six

states (GO, MG, SP, PR, SC, and RS) and whose destination is a demand market in

one of the states (MT) (Junqueira and Morabito 2006).

Table 3.1 compares total (transportation + circulation tax) costs per sack for each

route with the shortest distance total cost option. For instance, note that for a

distance lower than the distance between Barretos (SP) and Cuiabá (MT) (i.e., a

distance lower than 1,000 km), the tax is superior to the transportation cost. In the

case of a product leaving Maringá (PR), the transportation cost is the same as the

tax; however, the total cost is lower than the shortest distance, i.e., departing from

Rio Verde (GO). At some point between Maringá (PR) and Chapec�o (SC) (i.e., a

distance of 1,640 km from Cuiabá (MT)), the point where the total cost is equal to

the shortest distance cost is located. The minimum cost occurs if the product is

delivered from Uberlândia (MG).

Although this trade-off analysis is focused in the Brazilian tax system, this case

shows effects of taxation of multijurisdictional commerce studied, for example, in

Shackelford and Shevlin (2001). This taxation introduces additional tax rates and

base variations, and it can be separated in two types: multinational and multistate.

Some of the models discussed here deal with multistate tax costs.

Table 3.1 Comparison of transportation costs and circulation taxes

Route Origin Destination

Distance

(km)

Transportation

cost ($/sack)
ICMS cost

($/sack)
Total cost

($/sack)

GO–MT Rio Verde Cuiabá 696 1.47 4.80 6.27

MG–MT Uberlândia Cuiabá 1,045 2.21 2.80 5.01

SP–MT Barretos Cuiabá 1,212 2.57 2.80 5.37

PR–MT Maringá Cuiabá 1,338 2.83 2.80 5.63

SC–MT Chapec�o Cuiabá 1,671 3.54 2.80 6.34

RS–MT Passo Fundo Cuiabá 1,856 3.93 2.80 6.73
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3.2.3 A Taxonomy of Production and Distribution Models

As pointed out in Chen (2004), several companies manage production and distri-

bution in an independent way and with little or no coordination, which leads to a

scenario of increasing holding costs and longer lead times and contradicts a

tendency to low inventory and customer responsiveness. Efforts are being made

to overcome this contradiction, specially the development of production-

distribution optimization models that explicitly integrate production and distribu-

tion operations.

A coupled production-distribution (EPD) model can be useful to treat seed corn

supply chains as addressed in this chapter. The taxonomy proposed by Chen (2004)

includes three main dimensions to classify production-distribution problems in

supply chains: (A) decision level, (B) integration structure, and (C) problem

parameters.

The decision level can be separated in tactical (A1) and operational (A2) (this

taxonomy does not emphasize strategic decisions). A1 EPD models deal with

decisions such as how much to produce of each product and to ship to each region

in a time period, how much inventory of each product to keep in each region, etc.

These decisions are different than strategic ones such as facility location, capacity,

and network structure. On the other hand, A2 Operational EPD models deal with

detailed scheduling level decisions, such as when and on which machine to process

a production lot, when and on which vehicle to deliver products, which route to take

for a vehicle for product distribution, etc.

The integration structure can be classified into three types: (B1) integration of

production and outbound transportation, (B2) integration of inbound transportation

and production, and (B3) integration of inbound transportation, production, and

outbound transportation.

The problem parameters are the planning horizon and the nature of demand. This

taxonomy considers three variations: (C1) one time period, (C2) infinite horizon

with constant demand rate, and (C3) finite horizon but with multiple time periods

and dynamic demand.

It also considers five classes of problems based on dimensions A, B, and C:

Class 1: Production-transportation problems—A1, B1, C1

Class 2: Joint lot sizing and finished product delivery problems—A1, B1, C2

Class 3: Joint raw material delivery and lot sizing problems—A1, B2, C2

Class 4: General tactical production-distribution problems—A1, B1 or B3, C1 or C3

Class 5: Joint job processing and finished job delivery problems—A2, B1, C3

The seed corn supply chain models discussed in this chapter can be classified

mainly as Class 4. In this class, the number of products of the problem (D1, one

product, and D2, multiple products) can be also considered. In the parameter nature

of demand, the taxonomy highlights other features like whether the demand is

deterministic or stochastic (E1, deterministic, and E2, stochastic) and if backlog has

penalty or not (F1, backlog without penalty, and F2, backlog with penalty).
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Other characteristics are particularly important to be observed in the models

analyzed here:

G: Capacity (G1, limited, and G2, unlimited).

H: Nature of production (H1, deterministic, and H2, stochastic).

I: Number of production stages (I1, one, and I2, more than one). More than one

stage allows the transfer between facilities.

J: Penalty to production exceeded (J1, not considered, and J2, considered).

K: Tax costs (K1, not considered, and K2, considered).

3.3 Some Approaches in the Literature

Few studies are found in the literature dealing with the seed corn agribusiness

supply chain. In the following, we briefly review two optimization models of the

literature based on mathematical programming that do not consider explicitly the

tax planning decisions. The remaining of this section is dedicated to a more detailed

description of the third optimization approach which considers these decisions.

3.3.1 Production and Transportation in a Single Stage
and Time Period

One of the earliest studies in seed corn supply chains found in the literature appears

in Zuo et al. (1991). This study addresses an aggregate production-distribution

problem for a large seed corn company located in North America. Linear program-

ming and mixed integer programming models were proposed to help the manage-

ment make production decisions, as the allocation of products (corn hybrids) to

available production plants and the transportation of the products to where they are

needed by the customers. The models consider production capacity constraints,

minimum capacity usage requirements, transportation resource constraints, demand

constraints, maximum concentration constraints, among others. The production was

not planned by the company as a whole but planned by each company division in

parts, usually allocating to the facility that was close to the customers who demand

the production. The result was an uneconomical tactical production-distribution

system. The models were applied to unify the planning policy of the company,

without being restricted by division boundaries or by the proximity of the facility to

the customer. They minimize production and transportation costs by allocating the

productions of seed corn to the regions that provide maximum yields and then

transporting them to the sales regions. They consider production and shipping costs

in a single production stage and period.

In the following, we present the baseline model in Zuo et al. (1991) represented

as a linear programming formulation. The decision variables of the model are
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xij, the amount of hybrid j produced at facility i, in bags

yijk, the amount of hybrid j shipped from facility i to sales region k, in bags

The model parameters are

L, the total number of facilities.

M, the total number of hybrids.

N, the total number of sales regions.

Aj, the output-input conversion factor, representing the number of bushels of input

needed to produce a bag of hybrid j.
Pij, the unit cost of producing hybrid j at facility i, in $/bag; this cost is a

combination of unit acre grower cost (money paid to the contracted growers),

per acre cost (including parent seed cost, fertilizers, chemicals), and per bag cost

(including treating material cost, dry and shell wage, harvest utilities).

Sijk, the unit cost of shipping hybrid j from facility i to sales region k, in $/bag (this cost
is a function of unit mileage transportation cost per truck load, number of miles

between facility i and sales region k, number of bags that can be loaded on a truck).

Ci, the total capacity available at facility i, in bushels.

COi, the minimum capacity usage requirement at facility i, in bushels,COi � Ci, 8i.
Djk, the demand for hybrid j in sales region k, in bags.

maxij, the maximum amount of hybrid j at facility i, in bags.

This approach searches for an optimal utilization of the available resources at

minimum cost, without compromising seed quality, facility capacity, and market

demands:

minZ ¼
XL
i¼1

XM
j¼1

Pijxij þ
XL
i¼1

XM
j¼1

XN
k¼1

Sijkyijk; ð3:1Þ

s.t.

XM
j¼1

Ajxij � Ci, i ¼ 1, 2, . . . , L; ð3:2Þ

XM
j¼1

Ajxij � COi, i ¼ 1, 2, . . . ,L; ð3:3Þ

xij �
XN
k¼1

yijk � 0, i ¼ 1, 2, . . . ,L, j ¼ 1, 2, . . . ,M ð3:4Þ

XL
i¼1

yijk � Djk, j ¼ 1, 2, . . . ,M, k ¼ 1, 2, . . . ,N ð3:5Þ

xij � maxij, i ¼ 1, 2, . . . ,L, j ¼ 1, 2, . . . ,M ð3:6Þ

xij, yijk � 0, i ¼ 1, 2, . . . ,L, j ¼ 1, 2, . . . ,M, k ¼ 1, 2, . . . ,N ð3:7Þ
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The objective function of the model aims to minimize total production (first term in

(3.1)) and distribution (second term) costs. Note that the production costs consider

the cost of the land designated to the facility and the agricultural cost of growing the

corn hybrid in this area, besides the industrial cost. The transportation cost is a

function of mileage per truck to travel from the facility to the sales region. Equation

(3.2) represents the capacity constraints, which are defined by the dryer, i.e., the

bottleneck of the production processes within a facility in Zuo et al. (1991)’s study.

Also the freezing risk was considered in the adjustments of the capacity constraints.

Minimum capacity usage requirements are considered in (3.3) in order to ensure

that no facility would be closed in accordance with the company’s policy. Equation

(3.4) corresponds to the transportation resource constraint and balances the flows

between production and transportation, i.e., the amount of hybrid produced at a

facility has to be greater or equal to the sum of the amounts of this hybrid shipped

from that facility to all the sales regions. The demand for various hybrids in each

sales region is satisfied due to (3.5). Equation (3.6) relates to maximum concentra-

tion constraints and imposes that the concentration of a hybrid production was

limited, i.e., no more than a certain amount of a hybrid can be grown at one facility.

Finally, (3.7) defines the domain of the variables.

The study also proposed another group of equations that defines if nothing or a

large amount of a hybrid can be produced on the facility, “either-or” equations.

These equations are defined as

xij ¼ 0 or xij � minij, i ¼ 1, 2, . . . ,L, j ¼ 1, 2, . . . ,M

where minij (minij � maxij) is the agreeable minimum production amount of hybrid

j at facility i, in bags, in order to eliminate solutions involving small amounts which

are neither convenient nor economic for handling. By introducing auxiliary binary

variables zij and slightly modifying (3.6), the either-or equations can be easily

converted into linear constraints:

xij � minijzij, i ¼ 1, 2, . . . ,L, j ¼ 1, 2, . . . ,M

xij � maxijzij, i ¼ 1, 2, . . . ,L, j ¼ 1, 2, . . . ,M

but this conversion transforms the linear programming model above into a mixed

integer programming model.

The linear and mixed integer models were implemented in IBM MPSX (Math-

ematical Programming System Extended) package and MIP (Mixed Integer Pro-

gramming) package used together with heuristics written in FORTRAN language.

The real problem had 1,095 constraints and 11,500 variables. When the either-or

equations were used, the number of constraints increased to 960, and 480 integer

variables were added to the model, which complicates the solution of the model.

Several scenarios were analyzed with different configurations of the models, and

sensitivity analyses for them were done varying production and transportation

costs, facility capacities, transportation resources, and customer demands.

These results were presented to the company staff to show the effects of various
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constraints to the system operation and total cost. After these analyses, the company

identified potential savings of $5.69 million per year. If some inefficient facilities

were closed, as well as good weather forecast and irrigation could be assumed,

these savings would increase to $7.53 million per year. The learning obtained after

this work motivated a company-wide reorganization, and $10 million of cost

savings was recognized. The results of this study indicated benefits in applying

optimization techniques to decision making in a large-scale seed corn production

system.

3.3.2 Production in Two Time Periods (Stochastic)

The fact that growing seed corn is a biological process dependent upon local

weather and other conditions during the growing season complicates production

planning. In addition, customer’s experiences with a particular corn hybrid during a

given year influence demand for that hybrid during the next year. Jones et al. (2001)

proposed a stochastic dynamic model to integrate the aggregate hybrid seed corn

production of an international seed corn enterprise with plants in North and South

America, considering production uncertainties and demand uncertainties. The

model also considers two periods: a first growing period in North America and a

second growing period in South America, which is offset by approximately

6 months. The company took advantage of this second growing season to better

manage its production planning process by means of the second-chance production

planning, in which decisions of the second period take into account production and

demand realizations of the first period.

In the first phase of the planning process, the company determines, for each corn

hybrid, how much acreage to plant for the North America production period and

makes a contingent production plan for South America. In the second phase of the

planning process later in the year, the company updates and finalizes the production

plan of the hybrid for South America. At this point, the company knows the average

seed corn yields from North America production, and the significant uncertainties

remaining are the average seed corn yields from South America production and the

customer demand. The objective is to maximize expected gross margin, i.e.,

expected revenue from seed corn sales less expected costs of production, holding,

and shortage.

This problem can be viewed as an extension of the single-period newsvendor

(newsboy) problem (Johnson and Montgomery 1974), in which there is a second

chance to produce a product to meet a random demand, instead of only one chance

as in the newsvendor problem. In this two-period stochastic problem, for each

hybrid, the production yields of the two periods are also random variables, besides

the hybrid demand. The model treats each hybrid independently of others. Jones

et al. (2002) solved this problem by means of a linear programming model

discretizing the probability distribution functions of the corn yields and the hybrid

demand, i.e., using discrete approximations for each of the yield distributions and
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the demand distribution. This linear programming model was also reported in Jones

et al. (2003) along with the results of the application of the model (with a few

changes) to this international hybrid seed corn enterprise.

The parameters of the model are

p, the selling price per unit (80,000 kernels) at the end of period 2

π, the shortage cost per unit for unmet demand at the end of period 2

v, the salvage value per unit for any unsold seed at the end of period 2

ci, the cost per unit of processing seed at the end of period i (includes holding or

shipping as applicable)

Ki, the cost per acre in period i
w1, the number of units available at the beginning of period 1, which is the quantity

of product carried out from the previous year

The discrete approximations for the probability distributions of the random

variables yield y1 and yield y2 in periods 1 and 2, respectively, are

g y1ð Þ ¼ g11; g12; . . . ; g1i; . . . ; g1mf g, where prob y1 ¼ y1ið Þ ¼ g1i

g y2ð Þ ¼ g21; g22; . . . ; g2j; . . . ; g2n

n o
, where prob y2 ¼ y2j

� �
¼ g2j

The discrete approximations for the probability distribution of the random variable

hybrid demand D is

f Dð Þ ¼ f 1; f 2; . . . ; f k; . . . ; f p
� �

, where prob D ¼ Dkð Þ ¼ f k

The decision variables of the model are

Q1, the number of acres to plant during period one, i.e., the first season acreage

choice

Xi, the number of acres to plant during period 2 when y1¼ y1i, i¼ 1,. . .,m, i.e., the
second season acreage choice

Zijk, a dummy variable that reflects sales revenue + salvage�shortage penalty, when

y1¼ y1i, y2¼ y2j, and D¼Dk.

maxZ ¼ �K1Q1 � c1
Xm
i¼1

g1iy1i

 !
Q1 � K2

Xm
i¼1

g1iXi

� c2
Xm
i¼1

g1i
Xn
j¼1

g2jy2j

 !
Xi þ

Xm
i¼1

g1i
X
jk

g2jf kZijk

 ! ð3:8Þ

s.t.

Zijk � p w1 þ y1iQ1 þ y2jXi

� �
� π Dk � w1 þ y1iQ1 þ y2jXi

� �� �
i ¼ 1, . . . ,m, j ¼ 1, . . . , n, k ¼ 1, . . . , p

ð3:9Þ
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Zijk � pDk þ v w1 þ y1iQ1 þ y2jXi � Dk

� �
i ¼ 1, . . . ,m, j ¼ 1, . . . , n, k ¼ 1, . . . , p

ð3:10Þ

Q1 � 0 ð3:11Þ

Xi � 0 i ¼ 1, . . . ,m ð3:12Þ

Zijk � 0 i ¼ 1, . . . ,m, j ¼ 1, . . . , n, k ¼ 1, . . . , p ð3:13Þ

The objective function (3.8) maximizes the earnings. The first and third terms

represent the first- and second-period planting costs, respectively. The second and

forth terms represent the expected cost of processing the first- and second-period

harvests, respectively. The fifth term corresponds to the value of revenue plus

salvage minus shortage cost, which can be calculated once the seller has realized

the demand.

In (3.9), the term w1 þ y1iQ1 þ y2jXi represents initial inventories plus produc-

tion of the first and second periods. These equations evaluate total revenue versus

shortage costs, and they are tight when the demand is greater than or equal to the

supply, i.e., when

Dk � w1 þ y1iQ1 þ y2jXi

In this case, the optimal solution of the model sells the supply and pays shortage

costs for the difference between the demand and the supply. On the other hand,

(3.10) is tight when the demand is less than or equal to the supply:

Dk � w1 þ y1iQ1 þ y2jXi

In this case, the optimal solution of the model sells the demand and pays salvage

costs for the difference between the supply and the demand. Equations (3.11)–

(3.13) define the domain of the variables.

In order to ensure feasible, finite, and nontrivial solution to the linear program-

ming model (3.8)–(3.13), two assumptions are necessary. The first one guarantees

that the expected harvest cost plus the processing cost is greater than or equal to the

salvage value of seed in each period:

v � Ki

E yið Þ þ ci, i ¼ 1, 2 ð3:14Þ

where E(yi) denotes the expected value of the random variable yi. Without this

assumption, the expected profit of the producer would be unbounded, i.e., it would

not exist as a feasible and finite solution to the problem. The second assumption

states that the expected production cost (harvest + processing) must be less than
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or equal to total gain (product price + shortage cost) obtained by selling seed in

each period:

Ki

E yið Þ þ ci � pþ π, i ¼ 1, 2 ð3:15Þ

If this condition is not satisfied, the optimal solution would be zero production, i.e.,

a trivial solution would solve the problem. Both assumptions must be applied to

both periods (1 and 2).

The linear programming model (3.8)–(3.13) was implemented in the company

for each hybrid and generated approximately 1,500 variables and 1,500 constraints.

The implementation was stepwise starting by an experiment with four hybrids and

data of 2 years. Although the results of the experiments were promising, the senior

managers decided to compare the model’s performance during a whole season in

parallel with the actual method.

After this second validation process, the solutions presented by the model

suggested to plant fewer areas, reducing the inventory to carry over. As a final

result, the margins increased approximately $5 million on the 18 hybrids studied.

Applying the model on the historical data of the company, the old method

overestimated demand about 73 % of the time. The model helped to reduce the

bias of the forecasting procedures.

3.3.3 Production and Transportation in Multistages
and Multi-periods

Junqueira and Morabito (2012) studied the aggregate production and logistics

planning of seed corn of a typical Brazilian multiplant company. They presented

a linear programming model to support medium-term planning decisions, and they

report the results of the model application for a full seed corn season in this case

study (more information about this case study is also found in Junqueira and

Morabito (2008)). The studied enterprise experienced a rapid growth from one to

four facilities in a few years. The planning policy that was once used, sending the

seed to the closest facility, could be improved in order to explore opportunities with

tax planning.

Basically, the seed corn aggregate production and logistics planning problem

can be formulated as a multi-period, multi-product, multiplant two-stage model.

Stage 1 corresponds to the harvesting, transportation, and preparation of raw

material, resulting in dried grains, while stage 2 corresponds to the transportation

(if necessary) and processing of dried grains, resulting in final products. Both stages

involve capacity constraints, and there are different suppliers (crop fields), cus-

tomers (demand markets), and types of harvest (spike and grain). Note that the

planning is aggregated in time periods (months), final products (families of variety
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and hybrid seed corn), and production stages (1 and 2), besides supply (fields) and

demand areas (markets) (for more information about the model formulation, see

Junqueira and Morabito (2006)).

Figure 3.1 presented before shows the schematic model of the tactical produc-

tion and logistics planning problem proposed by the authors. The planning time

horizon of the problem is typically of 1 year (i.e., the season from April of the

current year to March of the following year), divided into monthly periods. The

problem involves the irrigated and nonirrigated crop fields with their raw materials

and productivities, the different types of harvest of raw material, the transport of

raw materials to the processing plants, the preparation of raw material in the plants,

the storage of dried grains in the plants and the transfer of these grains between

plants, the processing of semi-processed products in the plants, the warehousing of

final products in the plants, and the transfer of these products between plants and the

transport of final products to the demand areas, among others.

The study assumed that the planting decisions have already been taken by the

company, that is, a plan determining which seed corn is planted in which crop field

and period and the required type of harvest. This assumption helps to develop the

linear programming model of the next section (instead of more complex mixed

integer programs) to derive effective tactical plans for the company. As shown in

the next section, this planning is useful to determine minimum cost flows from the

agricultural fields to the market regions, particularly in cases where the company is

increasing the scope of its market, the number of final products, and the number of

plants, and in situations where there are changes in the Brazilian state policies of

circulation tax exemption.

For instance, it is known that the transfer of dried grains between plants can

happen only once, which means that the outputs of the raw material preparation go

directly to the silo of the plant and from this silo it is moved directly to the

production process. This simplification is reasonable since it disregards only the

situations in which the product of the same crop field is transferred in the form of

dried grains twice. However, these situations are not desirable in the tactical

planning because they involve additional transportation costs. Similarly, in the

distribution of the final products, after being processed in the plant, the product is

moved to the plant warehouse. Then, the product can either be sent to a market

region to meet its demand in this period or be stored in the plant warehouse to meet

the demands of the following periods. In this study, the transfer of products between

plant warehouses is not considered in the tactical planning. Similarly to the transfer

of dried grain between the aforementioned plants, this transfer is not desirable

because it involves additional transportation costs.

The level of aggregation of supply and demand areas should be sufficient to

characterize the differences between transportation costs and circulation taxes. The

level of aggregation of product families should be considered in terms of the

customer demands, which depend on specific features, such as differences in

product sale prices and adequacy of the product to the customer region. The

planting and crop management are also made specifically for the product. The

periods should be short enough to avoid processing multiple fields in the same
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period of time and long enough to not be influenced by the production setup times.

The packaging unit of analysis used in the model is a 20 kg sack, as the final

products are sold. In the following, index i indicates the crop field, index j indicates
the processing plant (UBS), index k indicates the demand market, index h indicates
the product, index m indicates the type of harvest, and index t indicates the time

period.

The decision variables of the model are

Xh,i,j,m,t, amount of product h collected in crop field i with harvest type m and

transported to plant j in period t for preparing dried grain [20 kg sack]

Yh,j,jp,t, amount of product h prepared in plant j and transported to plant jp in period
t for processing final product [20 kg sack]

Zh,j,k,t, amount of product h processed in plant j and transported to demand area k in
period t [20 kg sack]

Igh,j,t, amount of product h stored as dried grain in plant silo j in period t [20 kg

sack]

Ifh,j,t, amount of product h stored as final product in plant warehousing j in

period t [20 kg sack]

The input parameters of the model are

Ctgi,j,m,t, freight cost to transport one ton from crop field i with harvest type m to

plant j in period t [$/t]
Ctpj,jp,t, freight cost to transport one ton from plant j to plant jp in period t [$/t]
Ctdj,k,t, freight cost to transport a 20 kg sack from plant j to demand region k in

period t [$/sack]
ICMSj,k, circulation tax rate paid by the sale of a 20 kg sack of plant j in demand

region k
Ph,k, sale price of product h in demand region k [$/sack]
Cpgj,m, cost of raw material preparation of plant j with harvest type m to produce

dried grains [$/sack]
Cppj, cost of dried grain processing of plant j to produce final products [$/sack]
Igh,j,0, initial quantity of product h, stored as dried grains in plant j [20 kg sack]

Iph,j,0, initial quantity of product h, stored as final product in plant j [20 kg sack]

Ipfh, minimum final quantity of product h, stored as final product in the plants

[20 kg sack]

Dh,k,t, quantity demanded of product h in market region k in period t [20 kg sack]

Sh,i,m,t, quantity supplied of product h by crop field i with harvest type m in period

t defined in the harvest plan [20 kg sack]

Egm, efficiency of raw material preparation with harvest type m to produce dried

grains [%]

Ep, efficiency of dried grain processing to produce final products [%]

Kgj,m, capacity of raw material preparation of plant j for harvest type m to produce

dried grain [sacks per day]

Ksj, capacity of storage of plant silo j [sacks per day]
Kpj, capacity of dried grain processing of plant j to produce final product [sacks

per day]
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Kwj, capacity of storage of plant warehouse j [sacks per day]
Nt, number of workdays in period t [days]

The objective function of the model minimizes total production and logistics

costs, that is, raw material transportation costs from the crop fields to the plants

(first term in (3.16)), raw material preparation costs in the plants (second term),

dried grain transferring costs between plants (third term), dried grain processing

costs in the plants (fourth term), and final product distribution costs to the markets

(fifth term), which are split into transportation costs and circulation taxes:

TC ¼
X

h¼1, ...,H

X
i¼1, ...,H

X
j¼1, ..., J

X
m¼1, ...,M

X
t¼1, ...,T

Ctgi, j,m, t
EgmEp

Xh, i, j,m, t

þ
X

h¼1, ...,H

X
i¼1, ..., I

X
j¼1, ..., J

X
m¼1, ...,M

X
t¼1, ...,T

Cpgj,mXh, i, j,m, t

þ
X

h¼1, ...,H

X
j¼1, ..., J

X
jp¼1, ..., J

X
t¼1, ...,T

Ctpj, jp, t
Ep

Yh, j, jp, t

þ
X

h¼1, ...,H

X
j¼1, ..., J

X
jp¼1, ..., J

X
t¼1, ...,T

CppjYh, j, jp, t

þ
X

h¼1, ...,H

X
j¼1, ..., J

X
k¼1, ...,K

X
t¼1, ..., T

Ctdj,k, tZh, j,k, t

þ
X

h¼1, ...,H

X
j¼1, ..., J

X
k¼1, ...,K

X
t¼1, ..., T

Ph,kICMSj,kZh, j,k, t

ð3:16Þ

It should be noted that the objective function does not include raw material and

harvest costs since the model assumes that the harvest plan has already been made.

Moreover, it does not include storage costs because it does not acknowledge the

possibility of transferring the product only looking for the most viable storage

without necessarily having been processed. The constraints of the model basically

correspond to mass balancing and capacity limitation. The mass balancing con-

straints are

X
j¼1, ..., J

Xh, i, j,m, t ¼ Sh, i,m, t h ¼ 1, . . . ,H, i ¼ 1, . . . , I, m ¼ 1, . . . ,M, t ¼ 1, . . . ,T

ð3:17ÞX
i¼1, ..., I

X
m¼1, ...,M

Xh, i, j,m, t þ Igh, j, t�1 ¼
X

jp¼1, ..., J
Yh, j, jp, t þ Igh, j, t

h ¼ 1, . . . ,H, j ¼ 1, . . . , J, t ¼ 1, . . . ,T

ð3:18Þ

X
jp¼1, ..., J

Yh, j, jp, t þ If h, j, t�1 ¼
X

k¼1, ...,K
Zh, j,k:, t þ If h, j, t

h ¼ 1, . . . ,H, j ¼ 1, . . . , J, t ¼ 1, . . . , T

ð3:19Þ
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X
j¼1, ..., J

Zh, j,k, t ¼ Dh,k, t h ¼ 1, . . . ,H, k ¼ 1, . . . ,K, t ¼ 1, . . . ,T ð3:20Þ
X

j¼1, ..., J
If h, j,T � Ipf h h ¼ 1, . . . ,H ð3:21Þ

The capacity constraints (and variable domain restraints) are

X
h¼1, ...,H

X
i¼1, ..., I

Xh, i, j,m:, t � NtKgj,m j ¼ 1, . . . , J, m ¼ 1, . . . ,M, t ¼ 1, . . . , T

ð3:22ÞX
h¼1, ...,H

X
jp¼1, ..., J

Yh, j, jp, t � NtKpj j ¼ 1, . . . , J, t ¼ 1, . . . ,T ð3:23Þ

X
h¼1, ...,H

Igh, j, t � Ksj j ¼ 1, . . . , J, t ¼ 1, . . . ,T ð3:24Þ

X
h¼1, ...,H

If h, j, t � Kwj j ¼ 1, . . . , J, t ¼ 1, . . . ,T ð3:25Þ

Xh, i, j,m, t, Yh, j, jp, t,Zh, j,k, t, Igh, j, t, If h, j, t � 0

h ¼ 1, . . . ,H, i ¼ 1, . . . , I, j ¼ 1, . . . , J, jp ¼ 1, . . . , J,

k ¼ 1, . . . ,K,m ¼ 1, . . . ,M, t ¼ 1, . . . ,T

ð3:26Þ

Constraint (3.17) ensures that in the harvest plan, each product h in crop field

i with harvest technology m is transported in period t and the preparation of the raw
material is made in the plants. Constraint (3.18) ensures that product h is either

processed in plant j in period t or stored in the plant silo j as dried grains for the next
periods. Constraint (3.19) ensures that product h is either delivered to regions of

demand in period t or stored in the plant warehouse j as final products for the next
periods. Constraint (3.20) ensures that the demand of product h in region k in period
t is met. Constraint (3.21) ensures that the desired final stock of product h is met.

Constraints (3.22)–(3.25) consider, respectively, the limitations in the capacities of

preparing raw material, processing dried grains, storing dried grains, and storing

final products of the plants in each period. Furthermore, constraint (3.26) imposes

that the decision variables are nonnegative.

In order to solve the model, the authors used the modeling language GAMS

2.0.10.0 and the optimization software CPLEX 7.0.0 (Brooke et al. 1998; Kiup

1993). A basic microcomputer (Intel Pentium-4, 2.20 GHz, 496 MB of usable

RAM, and HD of 40 GB) was used for these experiments, and the original model

resulted in 4,758 linear equations and 6,679 variables. After the preprocessing of

CPLEX, the numbers of lines and columns of the technological matrix were

substantially reduced to 625 and 2,138, respectively. The computer runtime
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(in seconds) required to solve the model was less than 1 s, which is relatively low

and quite acceptable to support the decisions in practice, providing flexibility to

generate and evaluate different problem scenarios.

3.3.4 Comparison Among the Models

Table 3.2 shows a comparison among the models previously showed.

Zuo et al. (1991) was the first work that analyzed the problem with emphasis on

the integration between production and transportation, as well as, with concerns on

the capacity of multiplants and multi-products. Jones et al. (2003) approached the

stochastic nature of seed production and demand balancing shortages and salvage

production. They also analyzed the influence of two production time periods, the

first in North America and the second in South America, knowing that the produc-

tion of the first period can be used on the second period. Junqueira and Morabito

(2012) proposed a model that can be seen as a more detailed representation of Zuo

et al. (1991)’s model considering multiple time periods, tax costs besides produc-

tion and transportation costs, as well as the division of the production stages into

raw material preparation and processing. This separation enables the transfer of

dried grains between facilities.

Table 3.2 Comparison of models characteristics

Zuo et al. (1991) Jones et al. (2003) Junqueira and Morabito (2012)

Decision

level

Tactical Tactical Tactical

Integration

structure

Production and

outbound

transportation

Production Inbound transportation,

production, and outbound

transportation

Number

of stages

Two (production

and outbound

transportation)

One Four (inbound transportation,

raw material preparation,

processing, and outbound

transportation)

Planning

horizon

One time period Two time periods (North

America and South

America)

Multiple time periods

Number

of products

Multiple products One product Multiple products

Nature

of demand

Deterministic Stochastic with penalty

for demand shortage

Deterministic

Capacity Limited Unlimited Limited

Nature of

production

Deterministic Stochastic with penalty

for salvage production

Deterministic

Tax costs Not considered Not considered Included
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These studies indicated that the application of optimization models coupling

production and distribution can be useful to support the integration between

organizational functions of production and commercialization.

3.4 Optimizing Production and Logistics Planning
in a Brazilian Seed Corn Company

The model presented in Sect. 3.3.3 (3.16)–(3.26) was applied by Junqueira and

Morabito (2012) in a Brazilian seed corn company. After expanding from one to

four processing plants (UBS), the company contracted a specialized consultancy to

analyze its production and logistics processes. This partnership took more than

1 year, and among other factors, it focused the dispatch policy from the crop fields

to the plants. At that time, the multiplant planning method of the company had the

same policy of the single plant method, i.e., always transporting the corn seed to the

nearest UBS of the field, independently of the demand.

After a number of interactions with the production and sales departments, the

team realized that, besides the demand itself, the consideration of circulation taxes

had a significant impact over production costs, affected by this dispatch policy. This

information motivated the development of the proposed production and logistics

planning optimization approach, which was used by the consultancy to support

some recommendations to the company managers. The model was also applied to

generate and evaluate several scenarios with the company managerial board to

analyze tactical decisions, exploring the fact that one of the plants had an important

production cost reduction because of its drying system. The next step would be the

implementation of the model in the production planning and control system of the

company.

In order to measure the benefits of the application of the proposed model, its

solution was compared to the company method, which considered only transporta-

tion costs. For more details of this company method, the reader can consult

Junqueira and Morabito (2008). This comparison is illustrated in Table 3.3 and

evaluates the impact of circulation taxes (scenario 1), preparing costs (scenario 2),

and the combination of both (scenario 3). In this table, columns “Company solu-

tion” and “Model solution” represent the percentage of each component cost in the

total cost of each solution, while column “Cost reduction” represents the cost

difference (in percentage) between the model and the company solution values.

In scenario 1, the model solution reduced the cost component of circulation taxes

by 27 %. On the other hand, transportation costs of raw material increased by 20 %,

and transfer costs among plants were generated (1 % of total costs). The model

solution reduced the total cost by 12 % with respect to the company solution, which

was equivalent to $420,000, disregarding additional preparation costs. This reduc-

tion was possible because, among other factors, there was spare capacity at some of

the processing plants (especially UBS that pursued circulation tax advantages).
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In scenario 2, the cost component of raw material preparation was reduced by

87 % with the model solution. On the other hand, transportation costs of the raw

material increased by 20 %. Considering the priority to minimize preparing raw

material and transportation costs in one of the plants and disregarding the costs

associated to circulation taxes, the model solution reduced total costs by 19 %,

equivalent to $450,000. Once more, this reduction was possible because, among

other factors, there was spare capacity at some of the processing plants (especially

in the UBS that pursued lower preparation costs).

In scenario 3, the model solution was able to reduce both the cost component of

circulation taxes by 30 % and the raw material preparation costs by 83 %. On the

other hand, transportation costs of the raw material increased by 23 %, and transfer

costs among plants were generated (2 % of total costs). The overall cost reduction

was 23 %, equivalent to $974,000. Again, this reduction was possible due to spare

capacities at some of the plants with circulation tax and preparation cost advan-

tages. These and other comparisons showed important opportunities to reduce total

costs using the model. In cases where some model parameters were uncertain or

even unknown, sensitivity analysis were straightforwardly performed with the

model to consider a number of possible scenarios.

These and other simulations using this approach were performed by the consult-

ing team to support production and logistics tactical decisions to the company.

These results were presented to the company decision makers and guided some of

these decisions, such as (1) changing the original policy of always transporting

seeds to the closest plant of the crop fields because of the impact of circulation taxes

and drying costs, (2) activating working shifts in one of the processing plants and

deactivating in other due to the same reasons, (3) changing the drying system of one

of the processing plants in order to have similar drying costs as others and reducing

delivery transportation costs to some states, and (4) building a new spike dryer in

one of the plants (UBS GO1) with similar costs to others to reduce transportation

costs of raw material from the crop fields to the plant. All these actions were

implanted in the seed corn company based on the results obtained with the model

simulations, except to (4) which became part of future investments.

3.5 Concluding Remarks

In this study, we reviewed linear programming models of the literature which were

applied to different corn seed production and logistics settings. The application of

these models resulted in important practical benefits to the studied companies.

Besides the economic gains, the integration of production and distribution opera-

tions considered in the approaches also provided relevant organizational improve-

ments in these case studies. In particular, the linear model presented in Sect. 3.3.2,

based on discrete approximations of the probability distributions of the corn yields

and the product demand, resulted in a potential approach to reduce forecasting bias.

And the linear model discussed in Sect. 3.3.3 can be an effective optimization tool
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in the contexts of relevant multijurisdictional costs, as it explicitly considers

tax planning decisions that can highly influence the minimization of production

and transportation costs and the determination of optimal corn seed flows in the

supply chain.
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Chapter 4

Harvest Planning in Apple Orchards
Using an Optimization Model

Marcela C. González-Araya, Wladimir E. Soto-Silva,

and Luis G. Acosta Espejo

4.1 Introduction

During the 2010 season, Chile became the first apple exporter in the southern

hemisphere and reached second place worldwide (11.4 % of the world market),

right after China with 14.2 % (Bravo 2011). On the other hand, in the last few years,

agriculture in Chile has lost competitiveness, mainly because of a 30 % decline of

the US$, of a 300 % increase in the prices of goods such as fertilizers and pesticides

(Contreras 2008), of a 10 % decrease of the availability of agricultural workforce,

and finally of a 12 % increase of the workers’ wages (Domı́nguez 2007; Alarc�on
2008). These factors progressively led to a decrease in the growth rate of the

agricultural sector during the period 2005–2008, being surpassed by the National

GDP growth (Contreras 2008). For this reason, producers and exporters in the

industry are focusing on improving practices and better allocate resources, in

order to reduce the costs involved along the supply chain.

In Chile, the apple (Malus domestica) is the second most planted fruit species in

the country, covering about 13 % of the national fruit area. The Maule Region
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concentrates 59.8 % of the planted area and the O’Higgins Region 28.8 % of the

surface of apple (Bravo 2011). The country counts with about 324,294 ha of fruit

trees, of which about 39,000 are apple trees, which represent 12 % of the national

agricultural area. The Maule Region itself has approximately 20,000 ha of apple

trees, 84 % of which are the red variety and 26 % the green one (INE 2007).

Regarding the production of this fruit, from 2000 to 2008, the modernization of

irrigation policies, as well as the incorporation of new planting systems and

treatments of diseases, enabled a significant increase in the apple yield from

22,492 kg/ha, in 2000, to 39,142 kg/ha, in 2008 (Maule Competitiveness Center

2010). Plus, the apple represents 31.5 % of the fresh fruit exports, with earnings’

returns of about $485,829 Million dollars during the 2008/2009 season.

As such, Maule is the main region producing apples in Chile, and, therefore, an

improvement of the productivity and quality of the fruit produced in the region

would have a significant impact on its economy. In this sense, this research seeks to

increase the amount of fruit that could be exported, which would generate major

incomes for the regional agricultural sector.

When harvesting apples, one of the main factors affecting the quality of the fruit

(and therefore its export) is the fruit ripeness and this must be taken into account

when planning the harvest and the efficient use of resources such as equipment

(ladders, containers), machinery (tractors, cars, and collectors carriers), and of

course workforce, which is critical in this process. Indeed, over the last 10 years,

during the harvest season, it has been every year harder to find the required quantity

of seasonal workers, creating a 10 % decrease of them (Contreras 2008), and a 12 %

increase in their costs over the last 3 years (Alarc�on 2008). The main problem with

the lack of workers is that the fruit cannot be harvested at the right ripeness and

therefore cannot be selected for export, as it should. This issue has reduced the

profitability of the agricultural producer, even though apple plantings remained

constant over the last 10 years and the yield per hectare increased by approximately

73 % (Maule Competitiveness Center 2010).

This work proposes a mathematical programming model to support planning

decisions in an orchard and minimizing the amount of resources used, ensuring the

production of good quality fruit for export. Furthermore, this model provides a harvest

schedule that minimizes the loss of fruit for not fulfilling the desired quality param-

eters for export. The constraints of the model seek to fulfill the demands from the fruit

packing plants, respect the processing capacity of the plants, availability of production

in orchards, and harvesting time accordingly to the planted apple variety. The model

was applied to three orchards in the Maule Region, specifically in the province of

Curic�o. The data was collected during the 2009/2010 harvest season for each of them.

The model here presented improves the tactical planning of a pome orchard,

considering harvesting times for each fruit variety and penalizing the quality if the

fruit is not harvested at the right time. Previous models have not so far focused on

the specific activities of the apple industry.

This chapter is structured as follows: Section 4.2 presents a review of mathe-

matical programming models developed and applied in agriculture, which are the

basis for the proposed model. Section 4.3 describes the global management of an
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apple orchard and its difficulties, whereas Sect. 4.4 focuses on the main factors of

harvesting and post-harvesting. Section 4.5 presents the proposed model and the

results of computational experiments. Section 4.6 is a summary of the analysis of

the main results obtained by applying the model in the orchards studied. Finally,

Sect. 4.7 provides the conclusions of this work.

4.2 Crop Planning in Agricultural Sector

Regarding harvest planning in agriculture, a review covering 40 years of research

can be found in Bjorndal et al. (2012). Even though within the agricultural sector,

optimization models for harvest planning have been proposed for different types of

fruit and vegetables, such as orange (Caixeta-Filho 2006), sugar (Higgins and

Laredo 2006), grape (Ferrer et al. 2008), and tomato (Van Berlo 1993), there is

no reference to authors who would have studied through mathematical modeling,

harvest planning in apple orchards.

The different models developed for harvest scheduling reflect the fact that

harvesting operations vary from one crop to another (Glen 1987). But most crops

must be harvested during a relatively short period of intense activity. Moreover, the

techniques that help planning these activities can bring considerable economic profit.

Glen (1987) considers that implementing crop-planning models has greatly contrib-

uted to the design and development of harvesting systems for agricultural goods.

Regarding natural resources area, Schuster and Allen (2004) proposed a model of

production planning for grape juice. Tadei et al. (1995) developed another model in

this area, seeking tominimize stock levels to satisfy a known demand, determining the

number of workers required for eachmonth of the year. Thus, the model estimates the

number of workforce to be subcontracted in the months of high demand. Themodel is

applied to a company that produces perishable goods, some seasonal, some not.

Regarding optimization models for managing pome orchards, Hester and Cacho

(2003) developed a dynamic simulation model, which considers economic and

biological interrelationships within an apple orchard, in order to improve the

incomes on a given planning horizon. Following this research line, Catal�a
et al. (2013) presented a model for strategic planning pome orchards, which

considers the varieties and planting densities fields, delivering an optimal invest-

ment policy for a given orchard. This policy minimizes the conversion of the

orchard (replacing crops) as well as the financial requirements for this conversion.

Ferrer et al. (2008) present a model for planning and scheduling harvest oper-

ations of grapes for wine. This model considers the costs related to the harvesting

activities and these related to the quality loss of grapes, due to either an early or a

delayed harvest. Decisions in this model include the amount of grapes to be

harvested in different orchard fields for each period. This aspect depends on the

maturity of the fruit, the routes of the workers in the orchard, the scheduled harvest

time between the different fields, and the number of workers to hire or let go for

each period of the harvest season. The authors conducted computational

experiments and an application to a vineyard in central Chile.
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Moreover, Ahumada and Villalobos (2011a) also developed a planning and

distributing model for fresh goods, seeking to increase the profits of the producers

during a harvest season. These authors also included the quality of the product in

the objective function of the model by estimating the rejection or discarding cost of

the shipment. The model considered whether the product quality reached a limit

established by consumers as well as a fine for the deterioration of the product all

along the supply chain, from harvest to consumers. The authors performed compu-

tational experiments with hypothetical case study producers of tomatoes and green

peppers, making possible their resolution with commercial optimization software.

In the work of Ahumada and Villalobos (2011b), the authors propose once more

a planning and distributing model for fresh goods, seeking to increase the profits of

the producers; but in this model, they let producers have some control over

decisions related to harvest distribution.

In a later work, Ahumada et al. (2012) proposed a stochastic tactical model for

both harvest planning and distribution, incorporating uncertainty in weather and

product demand. The aim of this model was to propose more robust harvest plans,

allowing different levels of risk exposure. For the computational experiments, the

authors used a stochastic version of Ahumada and Villalobos’ case (2011b).

Finally, it should be noted that both Ahumada and Villalobos (2009) and Zhang

and Wilhelm (2011) point out that few models or planning tools have been

proposed to harvest perishable products, and so that this area requires a greater

amount of research. Actually, the first authors who mentioned the lack of models to

support decisions in the agricultural area were Lowe and Preckel (2004), describing

new problems that had arisen and should be solved in the area.

Since 32 % of fresh fruits exported from Chile are apples, the agricultural sector

requires a new optimization model for planning harvest the literature has so far not

produced. Our work proposes a model of Mixed Integer Linear Programming

developed for this purpose, as it will be exposed in the following sections.

4.3 Global Context of Apples Harvest Planning in Chile

When considering apple harvest planning, many factors have to be taken into

account; many of them (including all kinds of costs) at a much earlier stage than

harvest itself. If fruit quality remains a key factor, others are involved throughout

the process of fruit growth in crop management and post-harvest (Gil 2001).

4.3.1 Managing an Orchard

To understand our model, it is relevant to have an overview of the management of

an apple orchard.

82 M.C. González-Araya et al.



The Maule Region counts with about 51 varieties of apples that, according to

agricultural managers, can be mostly classified into four categories. This classifi-

cation enables to manage more accurate harvest and/or yield indicators, together

with an estimation of harvest periods for each of them. Table 4.1 shows the planted

area for the main varieties of the Maule Region, in addition to the times and harvest

method for each of them.

Granny Smith variety is the only green apple present among the six varieties

planted in the Maule Region. Regarding the Gala apples, they do not ripen at the

same time (expected color and size), so they are selectively picked (more than one

harvest along the field in a harvest season). Generally speaking, for this category,

three “selective pickings” are carried out at the most, each selective picking imply-

ing browsing the whole field in search of suitable apples for harvest. On the other

hand, Red apples do ripen at the same time. For this reason, they are strip picked

(only one harvest along the field in a harvest season). Finally, Fuji apples represent

about six apple varieties planted in Chile. However, since all have similar features

they can be classified into one single category. Just as Gala apples, Fuji apples are

selectively picked and, between two and four harvests take place in a harvest season.

4.3.1.1 The Use of Fertilizer

Orchard management also involves fertilizers and nutrients to be spread on the

ground. Indeed, to obtain a good production of apples, nutrition, or nutritional

balance is a key factor. In apples, nitrogen, potassium, calcium, and magnesium

must be well balanced to prevent physiological disorders, and obtain a good fruit

quality. For this reason, Yuri and Moggia (2007) noted “care should be taken not to

over-fertilize with nutrients such as nitrogen and potassium, which is a common

situation in orchards. In this case, it creates a calcium imbalance, provoking

disorders such as greasiness and cracking pedicle, since these three elements are

competitive with each other to occupy locations within cells.”

Table 4.1 Planted area and characteristics of the main varieties of the Maule Region

Category Variety

Planted area

(Hectares) Harvest dates Harvest method

Gala Royal

Gala

4,683.3 Second half of

February

Selective pickings (at most three

harvests per season)

Galaxi 1,241.5 Mid-February

Red Red

Chief

1,770.8 Late March–Early

April

Strip picking (once-over pick)

Scarlet 1,370.4 Late March–Early

April

Fuji Fuji 2,135.1 Second half of April Selective pickings (between two

and four harvests per season)

Granny

Smith

Granny

Smith

3,114.9 Second half of

March

Strip picking (once-over pick)

Source: Center for Pome (2010)
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4.3.1.2 Tradition, Timing, and Location

In 1984, France and Thornley observed that fruit harvesting in the orchards is

generally traditionally performed, only based on the experience of those involved in

this process, either administrative staff or field workers. This observation is also

true for harvest planning in Chile.

On the other hand, apple harvesting in Chile has a time horizon that depends on

the varieties planted in the orchard. However, this horizon usually starts in

mid-February and ends in late April. In addition, each variety generally involves

a 2-week harvest period, only taking into account those varieties planted in the

Maule Region.

In most of the country’s orchards, harvest areas are divided into fields, each field

corresponding to an area with several rows of trees of a single variety. In these

orchards, during the daily harvest planning, collection areas, i.e., the rows of fields,

are assigned at the beginning of the workday to the workers, who are transferred to

these areas to start harvesting the fruit. This decision is typically made by the

manager of the orchard, based on the characteristics of the fruit ripening to be

harvested, according to the parameters required by the consumer market.

4.3.1.3 Workforce and Costs

As mentioned earlier, one of the critical points in the apple harvest is to hire

workers for the season. Agricultural unemployment rate has remained below 4 %

(Contreras 2008). The labor shortage is mainly due to the increasing job opportu-

nities in the cities, due to the significant growth experienced by construction and

retail. In addition, cultural reasons have discouraged the rural residents to work in

the agricultural sector (Contreras 2008). This worrying factor implies that there is

more work to do than workers to do it. As a consequence, these workers ask for

wages that are often not profitable for producers, making negotiation necessary.

Indeed, if the fruit is not harvested on time, its quality deteriorates, damaging sales

incomes. For this reason, knowing in advance the number of workers that will be

needed for harvest in each period is necessary.

Besides having a good estimation of the number of workers required, it is

necessary to estimate the number of crews (working groups) to assign to each

field, considering the size and the variety to be harvested in each field. Finally, the

organization of equipment needed for the harvest is also required: containers,

ladders, among others.

Another aspect that must be taken into account is the important economic

changes the apple harvesting business has suffered over the last few years.

Contreras (2008) explains that the costs of fertilizers have increased from 1998 to

2008. As such, urea price has increased over 300 %, while Triple Superphosphate

(TSP) and mono-ammonium phosphate (MAP) have increased 200 % but now

remain constant. These fertilizers are the most used in the Chilean fruit industry.
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As shown in Table 4.2, the workforce represents the most important cost. This

cost is related to the number of man/days needed to harvest one hectare of apples.

The costs of chemicals come next and are used for orchard management, pre- and

post-harvest.

One last aspect that must be taken into account when considering orchard

management is the price of the US$. Between 2003 and 2009, the US$ lost 30 %

in Chile, with critical consequences for agricultural producers and exporters who

receive their incomes in US$ but spend in Chilean Peso, the local currency.

As such, their profit margin is greatly reduced.

4.4 Apple Harvesting

During the apple harvest, timing influences the condition and quality of the fruit

(Gil 2001). Thus, harvesting an unripe fruit can develop a number of physiological

disorders during post-harvest such as bitter pit and/or scalding. On the other hand,

by harvesting an overripe fruit, other disorders could be observed during

post-harvest such as lenticel, as a consequence of nutritional imbalances (calcium

deficiency), pedicle cracking, excessive grease formation, and increased dehydra-

tion and yellowing of the fruit. All these elements could block the potential export

of the fruit (Gil 2001). These disorders are described in more detail in Table 4.3.

According to Gil (2001), the parameters to be considered in order to obtain a

good quality fruit are:

• Shape of fruit: Are only accepted those fruits having the characteristic shape of

each variety.

• Caliber: Are only accepted those fruits that are within the diameter and weight

set by the caliber.

• Maturity: Integrates parameters such as coverage color, background color, flesh

firmness, starch, and acidity.

Table 4.2 Costs involved

in the harvest of one

hectare of apple

Operating costs for an apple orchard (full production)

Item %

Workforce (man-day) 43.6

Agrochemicals 17.4

Fertilizers 5.9

Pesticides 11.6

Machinery (machine-day) 5.9

Freight 4.8

Management (15 %) 10.8

Total 100

Source: Centre for Pome, Universidad de Talca (2010)
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For each of the categories of apples (Gala, Red, Fuji, or Granny Smith), required

maturation parameters have been established for the beginning of the harvest as

well as the limits to do it. These ratios are shown in Table 4.4 (ASOEX 2009).

The most relevant parameters among those shown in Table 4.4 are pressure and

soluble solids. The pressure indicates the fruit firmness whereas soluble solids, the

sweetness of the fruit. These parameters are the most controlled by orchard

managers to begin harvesting apples. Thus, to start harvesting Red apples, the

pressure should be between 15 lb and 18 lb, while soluble solids should be higher

than 11 �Bx (see Table 4.4).

Figure 4.1 shows the maturation behavior of the Gala category, taking into

account the parameters of pressure or firmness (Lb) and soluble solids (�Bx).
An agribusiness company in the Maule Region provided data over the last five

harvest seasons. The days in Fig. 4.1 correspond to the days after the first flowering

(DAFF).

As it can be seen in Fig. 4.1, there is an estimated period of 15 harvest days for

the category Gala. This period was estimated from the relationship between

firmness (Lb), which maximum limit is 20 Lb and minimum 17 Lb, and fruit

soluble solids (�Bx), with a minimum limit of 11 �Bx. As shown in the highlighted

period in Fig. 4.1, there are about 15 harvest days for the Gala category (131–146

DAFF). However, there are about 5 days where maturity parameters remain stable

and ideal values are fulfilled for harvest (133–138 DAFF). After this period, the

parameters decline, even though the fruit may still to be harvested. This implies that

the fruit harvested before or after the ideal time may not be exported.

The parameters shown in Fig. 4.1 present a similar behavior for the Red, Fuji,

and Granny Smith apples. Firmness and soluble solids remain balanced during the

same span of days for all categories (about 5 days). But, the beginning of the harvest

of these categories may vary if conditions changed in the zone, altering the

evolution of these parameters.

As described above, there are time windows in which the most representative

parameters by category remain relatively constant. Harvesting can be done during

this time window in order to obtain a higher export potential of the apple. Table 4.5

presents the estimated days to harvest each category in Maule Region.

The dates presented in Table 4.5 can change regarding their days in the calendar,

but not their duration.

Table 4.3 Possible physiological disorders observed during the post-harvest

Situation Disorder Description

Unripe fruit Scalding Brown spots on the surface skin of the fruit

Bitter pit Small depressions on the skin of the fruit, bright green

Overripe fruit Cracking

pedicle

Excessive cracking in the stalk of the fruit, i.e., fruit is in the

process of decay

Yellowing Yellowing of the skin of the fruit surface

Source: Gil (2001)
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Since each orchard counts with different categories of apples, each category

reaches the desired harvest parameters at different times.

As mentioned above, for the mathematical model the harvest window for each

field of the orchards was estimated. For this estimation, historical data and literature

information regarding fruit harvest was considered (Gil 2001; Razeto 1999; Yuri

and Moggia 2007; Center for Pome 2009 and 2010).

Besides estimating the duration of the harvest time window for each field, the

planning model must include, for each day of the established harvest window, the

loss associated with lack of quality. Since the main business of an orchard is to

maximize the fruit sale to export, apple harvesting must take place when all the

maturation parameters required by the consumer markets meet. Indeed, a regular

fruit that does not reach the parameters required for harvest will not be selected for

export. Therefore, to include the relationship between quality loss and harvest date,

the objective function of the model counts with a cost parameter that reflects the

Fig. 4.1 Firmness (Lb) and soluble solids (�Bx) in category Gala (DAFF). Source: Agribusiness
Maule Region—Orchard A

Table 4.5 Harvest periods by category of apple

February March April
Group 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Gala
Red

Granny Smith
Fuji

Harvest Period
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apples lost for not being harvested during the harvest window. In this sense,

the model seeks to harvest the greatest possible quantity of kilograms within the

time window during which the parameters reach the desired values. For example,

for the variety Gala, the model will try to harvest as much fruit within its ideal time

window. It here corresponds to the 5 days when the firmness and soluble solids

parameters are stable, i.e., days 133–138 DAFF (see Fig. 4.1).

Another important aspect the model considers is that, during the harvest of an

apple orchard, the yield of each variety and the harvest productivity of workers

vary. At the beginning of each season, orchard managers estimate the amount of

kilograms to be harvested for each variety of the orchard and use historical behavior

data of the orchard and/or experience of workers.

On the other hand, in the orchards, the productivity of the workers is estimated

for each field, according to the variety to be harvested. This estimation, just like the

performance of the varieties, is obtained through historical data from previous crops

and the agricultural manager’s experience. For this estimate, the manager bases on

the planting configuration (contours, distances of the trees in the row and between

rows), age of the fields, and variety of planted trees.

Regarding the calculation of the productivity of each worker in each of the fields,

the average productivity in each field harvested is estimated, distinguishing pro-

ductivity between permanent and non-permanent workers. It is calculated

according to the records of the orchard, by the kilograms yield harvested per day

and per field. Permanent workers are known and work for the entire harvest season.

There will be different productivities in an orchard, since there are different

varieties planted, and since the conditions of each field are different.

4.4.1 Relevant Factors on Post-harvest

During storage, the condition of the fruit can be at most maintained, but never

improved, according to the administrator in charge of an agro industry of the Maule

Region. However, several actions can be taken from the reception at the processing

plants to the shipping of the packed fruit that prevent the deterioration of the

condition (Ferreira 2006).

When fruits are needed for rapid consumption, the most wanted apples are the

ones with the following characteristics: some progress in terms of softening,

increased soluble solids, and reduced titratable acidity. However, when a long

shelf life is required, either to be stored in Controlled Atmosphere (CA) or

Conventional Cold (CC), a higher content of starch and acid, and a lower concen-

tration of soluble solids is preferred (Gil 2001). These rules are only a guide for

decision makers to start harvesting in a particular orchard, considering the next

destination of the fruit to be harvested.
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4.5 Model for Harvest Planning in Apple Orchards

The formulation of the proposed model for planning a harvest season of apple

appears as follows. Indexes, parameters, and decision variables of the model

developed are presented in the Annex.

4.5.1 Mathematical Formulation

X
t2T

X
c2C1

Q� HMQct þ H1 þ F1ð ÞTHF1 þ
X
t2T

F2 � TFVt þ
X
t2T

H2 � THVt

þ
X
t2T

X
c2C

Jc1 � TFCctþ
X
t2T

X
c2C

Jc2 � TVCcjt þ λ
X
c2C

X
t2T

X
k2K

X
p2P

ActXctkp

ð4:1Þ

s.a.

X
c2C

Xctkp � Gkpt, 8k 2 K, p 2 P, t 2 T: ð4:2Þ
X
t2T

Xctkp ¼ Dckp, 8k 2 K, p 2 P, c 2 C: ð4:3Þ
X

Xctkp � Nctk, 8c 2 C, t 2 T, k 2 K: ð4:4Þ
X
t2T

Yctp � MVc, 8c 2 C, p 2 P: ð4:5Þ
X
t2T

Yctp � 1, 8c 2 C, p 2 P: ð4:6Þ

Xctkp � Lk � Yctp, 8c 2 C, t 2 T, k 2 K, p 2 P ^ Dckp 6¼ 0: ð4:7Þ
Xctkp � M � Yctp, 8c 2 C, t 2 T, k 2 K, p 2 P: ð4:8ÞX

p2P
Xct1p � Pc � HMQct, 8c 2 C1, t 2 T: ð4:9Þ

X
p2P

Xct2p � Rc � TFCct þ Sc � TVCct, 8c 2 C2, t 2 T: ð4:10Þ

Xctkp � E� NBctp, 8c 2 C, t 2 T, k 2 K, p 2 P ð4:11ÞX
c2C2

HMQct � It, t 2 T: ð4:12Þ
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X
c2C2

TFCct � THFt, 8t 2 T: ð4:13Þ
X
c2C2

TFCct � N, 8t 2 T: ð4:14Þ
X
c2C2

TFCct � W, 8t 2 T: ð4:15Þ

THFt ¼ THFtþ1, t ¼ 1, . . . , Tj j � 1: ð4:16ÞX
c2C2

TVCct ¼ THVt, t ¼ 1: ð4:17Þ
X
c2C

TVCct ¼
X
c2C

TVCct�1 þ THVt � TFVt, 8t 2 T : t � 2: ð4:18Þ

YVctp 2 0; 1f g 8t, c ð4:19Þ
Xctkp,Hmaqct � 0 8t, p, k, c ð4:20Þ

THFt,THVt, TFVt, tvct, tf cct,Num binsctp � 0 8t, p, k, c ð4:21Þ

The objective function (4.1) seeks to minimize the costs related to the workforce,

goods, and fruit loss due to poor quality. Thus, the objective function can be

articulated around the following terms:

Minimizing: machinery costs + permanent workforce turn over costs + the

seasonal workforce turn over costs + salary cost + cost for loss of fruit quality.

The cost for loss of fruit quality considers the harvested apple during each

harvest season and the percentage of fruit quality loss. Indeed, during the harvest

period, in each of the fields, loss of apple quality occurs for not counting with the

maturity parameters needed for export. This loss of quality is transformed into

monetary units, using the parameter λ ($/kg). λ corresponds to the amount of money

lost by the producer when a kilogram of apple is classified as commercial fruit

instead of for export, reducing their income.

Constraint (4.2) presents the amount of harvested fruits in each period and is

restricted by the capacity of the processing plant. Constraint (4.3) establishes that

the estimated amount of fruit each plant should receive from a certain field and that

has been obtained by a specific mode of harvest must be fulfilled. Constraint (4.4)

shows that the amount of apples harvested during a season in an orchard, using a

harvesting mode, must not exceed the maximum amount that can be harvested for a

particular harvest mode at the same time. Constraint (4.5) shows that the harvest of

an orchard should be performed during the season, within a time window

predetermined by orchard managers. Constraint (4.6) shows that the harvest of a

field should be undertaken during at least 1 day within the established harvest

window. Constraint (4.7) shows that the amount of apples harvested in each field

and for each period, must be greater or equal to the minimum amount of estimated

kilograms so the harvest could be profitable in each field. Constraint (4.8) shows
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that the harvest must be completed at some time within the harvest window of each

field, provided that there is fruit to be harvested. In this case, the maximum amount

of fruit harvested at a time was used as the value for M (very large number).

Constraint (4.9) shows that the amount of apples harvested by machinery in an

orchard, in each period, is limited by the productivity of the machine in the field.

Constraint (4.10) shows that the amount of apples harvested by hand in an orchard, in

each period, is limited by the productivity of each laborer type (permanent or

non-permanent) for that field. Constraint (4.11) shows that the amount of kilograms

of apples harvested in an orchard, according to the harvest mode and destination

facility, depends on the number of bins available for the harvest season. Constraint

(4.12) shows that the number of machine-hours available for each period must be

respected. Constraint (4.13) shows that the amount of permanent workforce used for

a period, considering all the orchards to harvest, must be less or equal to the amount

of permanent labor hired for that period. Constraint (4.14) shows that the permanent

workforce used during the whole harvest season must be greater or equal to the

amount of workers hired by the orchard to do the job. Constraint (4.15) shows that

non-permanent workers used in each field and in each period must be less or equal to

a maximum value of seasonal workers available in the season period. This value is

fixed and predetermined according to historical harvesting data. Constraint (4.16)

shows that the amount of permanent workforce estimated for a planning period must

be equal in all periods within the harvest season. Constraint (4.17) shows that in the

first period, the non-permanent workforce used in all the orchards must be equal to

the non-permanent workforce hired in the period. Constraint (4.18) shows the

balance of non-permanent workforce. Constraint (4.19) establishes binary decision

variables. Constraint (4.20) corresponds to the non-negativity of continuous deci-

sion variables. The constraint (4.21) defines integer decision variables.

4.5.2 Computational Experiment

This section shows the impact of the most important parameters in relation to the

model behavior. These parameters are: PMCct, parameter associated with the

extension of the harvest period in each field and associated fruit loss mediated by

poor quality, and the parameter λ, which is associated with the decrease of the

producers’ income for switching from an export fruit to a domestic consumption

one. Computational times are analyzed, looking for the solution and the type of

solution to be provided.

For parameter PMCct, scenarios presented in Table 4.6 are considered.

Along with the variation of the PMCct parameter, different values of λ are taken
into account, which are λ¼ 20, 45, 89, 138, 200, and 500, respectively.

The optimization software used for this computational experiment is

ILOG-OPL, version 6.1, with CPLEX-11. The model was solved using a computer

with an AMD Turion (tm) 64� 2 Mobile Technology TL-60 2.00 GHz, 2 GB

RAM, and 512 GB hard drive.
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The data considered in this study correspond to three orchard companies:

Orchard A, Orchard B, and Orchard C. All problems model a full season, consisting

of planning 64 days; the difference being the amount of fields harvested during the

2009/2010 season in each orchard.

Two important aspects to consider in the computational analysis are related to

the quality of the solution and the time spent to obtain it. The quality of the solution

will be measured with the GAP, which for integer programming problems is defined

as the percentage difference between the integer solution found (P) and the relaxed
solution of the whole problem (RP) (Mathioudakis 2007). The equation used for this

calculation is:

GAP ¼ 1� P

RP

� �
� 100

The computational time associated with the search for a solution to the various

scenarios is measured in seconds.

As shown in Table 4.7, there is an upward trend in computational time associated

with finding solutions when a greater harvest window is available in the field.

By increasing the value of λ, the computational time associated with finding the

solution tends to decrease.

Table 4.6 Scenarios for the

parameter of the harvest

window (PMCct)

Extension of the harvest (days)

First scenario 1 day of harvest

Second scenario 5 days of harvest

Third scenario 10 days of harvest

Fourth scenario 15 days of harvest

Table 4.7 Computational time of the different models analyzed

Computational time (sec)

Orchard

Harvest

window (days)

Parameter λ

10 45 89 138 200 500

Orchard A 1 1,986 3,689 2,246 1,876 1,987 2,365

5 2,435 2,034 1,364 3,543 2,321 2,675

10 3,546 2,311 1,897 2,432 2,143 1,987

15 3,429 2,543 1,698 2,675 1,765 2,341

Orchard B 1 2,435 1,956 707 1,987 2,134 239

5 1,975 2,176 1,230 1,890 2,508 2,134

10 1,690 1,903 1,898 2,546 1,742 1,865

15 2,314 2,978 2,235 1,236 1,342 2,124

Orchard C 1 2,480 5 17 3 2 1

5 2,897 530 2,148 1,890 2,100 3

10 3,140 2,476 14 13 2,800 28

15 2,190 480 2,390 13 2,456 2,567
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Table 4.8 presents the GAP associated with a search for solutions for each

scenario.

Even though the solutions are very close to optimal ones, the model finds solutions

with lower GAP when the harvest window decreases and the value of λ increases.
Regarding the value of the objective function, the results are presented in

Table 4.9.

As seen in Table 4.9, the value of the objective function decreases as the harvest

window increases. This behavior is mainly due to two reasons: first, there will be no

apple loss for poor quality; so all apples will be for export. The second reason deals

with the workforce. Indeed, by having fewer days to harvest, the workers should

harvest more fruit, and therefore the hiring and wages costs will increase. But, with

more harvest days, the permanent workforce is enough to do the job.

Table 4.9 also shows that the objective function value increases when the value of

λ also increases. Let’s not forget that λ represents the loss of income for having a fruit

that does not have suitable maturity indices for export, mainly because not harvested

at appropriate dates. Therefore, if there is a higher decrease of the incomes, the

model seeks to harvest as much fruit in time windows with desirable maturation

indices for export. This income decline, or penalty for the fruit quality, is reflected on

the objective function, so if this penalty increases, the objective function will too.

4.6 Case Studies

The model presented in Sect. 4.5 was applied to three case studies corresponding to

three fruit orchards from the Maule Region. These orchards have different charac-

teristics regarding the number of fields, apple varieties; hectares planted, and

Table 4.8 GAP obtained for the different models analyzed

GAP (%)

Orchard

Harvest

window (days)

Parameter λ

10 45 89 138 200 500

Orchard A 1 0.21 0.00 0.00 0.00 0.00 0.00

5 0.19 0.18 0.00 0.07 0.10 0.07

10 0.36 0.28 0.03 0.21 0.25 0.09

15 0.43 0.47 0.27 0.33 0.24 0.13

Orchard B 1 0.08 0.03 0.00 0.02 0.02 0.00

5 0.11 0.06 0.00 0.04 0.04 0.04

10 0.15 0.08 0.09 0.07 0.09 0.04

15 0.22 0.16 0.21 0.34 0.14 0.08

Orchard C 1 0.09 0.00 0.00 0.00 0.00 0.00

5 0.05 0.00 0.00 0.00 0.00 0.00

10 0.04 0.06 0.00 0.00 0.04 0.00

15 0.04 0.00 0.06 0.00 0.03 0.02
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estimated kilograms of apple harvested during the season. Table 4.10 shows the

values of the characteristics of the orchard.

The considered planning horizon represents 64 days, time during which all the

apple varieties present in an orchard are harvested. This schedule runs approxi-

mately from mid-February to mid-April.

The models were run in the same software and hardware as computational

experiment. Associated times when applying the model in the case studies for the

Orchards A, B, and C are respectively of 1364 s, 1,230 s, and 2,148 s. These times

are reasonable considering that labor, supplies, and machinery for the entire harvest

season are being planned.

The next subsection describes in detail the results obtained by the model for

Orchard C harvest planning. It provides information that helps decision makers.

4.6.1 Analysis Results for Orchard C

Harvest weekly schedule for each of the five fields of Orchard C is presented in

Table 4.11 below.

As seen in Table 4.11, weeks 4, 5, and 6 are the ones with the strongest

harvesting activity, mainly because this is when the Red variety is harvested,

with a total of one million kilograms, which is the greatest number of scheduled

kilograms. The amount of kilograms of apple harvested in each field will depend on

the variety in each of them, which will affect the type of harvest to be held in the

season. For example, Gala apples are selectively picked (about three harvests

per season). Whereas, the Red variety is strip picked, i.e., all fruits are harvested

on a tree.

The method used for harvesting has implications on the worker productivity in

each field. Thus, productivity is given by the apple variety in the orchard, the type

of harvest to be performed, and the type of worker currently in the field. Permanent

workers have a greater commitment to the job; so will count with a greater

productivity than the seasonal or non-permanent worker. The orchard counts with

eight permanent workers, who will be there for the 9 weeks harvest. As shown in

Table 4.11, week 7 has no scheduled harvest, but these workers must be paid, just

for having them for future tasks.

Table 4.10 Characteristics of orchards taken as case studies

Orchard

Planted

hectares

No. of

fields Varieties

Crop estimation season

2009/2010 (kg)

Orchard A 36.4 13 Gala-Red-Granny-Fuji 844,300

Orchard B 39.3 12 Gala-Red-Granny-Fuji 2,186,850

Orchard C 16.9 5 Gala-Red-Fuji 1,489,084
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The productivity of each of the varieties and fields are parameters included in the

proposed model. Each orchard manager delivered them. It is important to note that

the program presented in Table 4.11 is a summary of a 64-day harvest planning,

thus kilograms harvested within 1 week may be obtained in one or more days

within it.

Scheduling of non-permanent workers for harvesting tasks is presented in

Table 4.12.

As Table 4.12 shows, the largest number of non-permanent workers is needed to

harvest the Red variety (fields 1 and 4), which provides about 80 % of the harvested

fruit. Most of this harvest should be performed during weeks 4 and 5, which

respectively represents 290 workers and 262 days to do the job, including the

days of permanent and non-permanent workers.

It is noteworthy that the requirements of the permanent and non-permanent

workers in each of the fields, depend on several relevant parameters in the model,

such as the amount of kilograms to harvest, harvest type, among others, will depend

on their productivity in orchard, particularly in each variety and associated fields.

That is why for example, during week 1, when the Gala variety is harvested, the

productivity is very low for both permanent and non-permanent workers; thus,

hiring non-permanent workers to avoid damaging the quality of the fruit is neces-

sary. By contrast, during week 9, the Fuji variety is harvested. The productivity

associated with this variety and associated fields is greater than the productivity of

the fields of Gala variety, both permanent and non-permanent staff, mainly due to

the characteristics that this field has, such as configuration of the trees, and

irrigation type. Therefore, hiring non-permanent workers will not be necessary,

and the job will only be performed with permanent workers present in the orchard.

The fruit harvested from different fields can have two destinations: export or

domestic market. This is why the export fruit goes to plant 1 and commercial fruit to

plant 2. The amount of bins bound to each of the plants during the harvest season is

presented below in Table 4.13.

Table 4.11 Weekly harvest schedule

Apples harvested

(kg)

Fields�Variety

Total�Week

Gala Red Fuji

Weeks 3 5 1 4 2

1 6,490 21,092 0 0 0 27,583

2 64,548 46,477 0 0 0 111,025

3 32,479 67,003 0 0 0 99,482

4 0 0 174,941 386,497 0 561,438

5 0 0 256,052 252,000 0 508,052

6 0 0 21,600 6,794 0 28,394

7 0 0 0 0 0 0

8 0 0 0 0 93,711 93,711

9 0 0 0 0 59,400 59,400

Total�Variety 103,517 134,573 452,593 645,291 153,110
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As seen in Table 4.13, the greatest amount of export fruit is harvested between

weeks 4 and 5 (plant 1), where 1,609 and 1,066 bins are, respectively, needed for

the harvest. Throughout the harvest season, which lasts 9 weeks, a total of 3,576

bins are required to transport the export fruit.

Table 4.13 also shows the required bins per week for each season for commercial

fruit. Most of the bins are needed during week 3 and 5, respectively, with 209 and

391 bins. During week 3, the Gala variety will be harvested, both in fields 3 and 5;

and during week 5, the Red variety will be harvested, both in fields 1 and 4. A total

of 716 bins are required to transport commercial fruit.

Table 4.14 is a summary of the results that can be generated to help the

organization and distribution of labor, bins, and kilograms of fruit to be harvested

by season for an orchard, particularly for Orchard C. This information indicates that

for the season under study, the Orchard employs on average 20 workers during the

harvest days (of which 8 are permanent), with an average extraction of 23,267 kg

per workday. Moreover, 1,046 man-days are needed throughout the period of

harvest planning, considering both permanent and non-permanent workers.

This harvest lasts 42 working days, and to collect orchard apples, a total of

4,294 bins are required, of which 3,578 are for export apples and 716 for

commercial ones.

The information provided by the model is presented for each period and/or

workday modeled for each orchard. For space reasons, it only shows the totals for

each of the relevant items in the analysis and planning of the harvest.

4.6.2 Analysis of the Results Obtained
for the Three Orchards

Tables 4.15, 4.16, and 4.17 show the results obtained by applying the proposed

model to the three case studies and comparing them with the observed data of the

modeled season, 2009/2010 season.

The main cost savings shown in Table 4.15 correspond to a better distribution of

workers in the fields, for each apple harvest period, with an estimated average costs

saving of 17 %. This is due to the harvest planning model that delivers the optimal

Table 4.14 Summary of the distribution and organization of kilograms to be harvested, workers,

and bins during the 2009/2010 season in the Orchard C

Period planning crop (Days)

Total crop (kilograms) 1,489,048

Permanent labor (worker) 512

Non-permanent labor (worker) 534

Total labor (worker) 1,046

Bins (Unit) Plant 1 3,578

Plant 2 716
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amount of workers for each variety, allowing better organization and distribution of

the seasonal workers in the orchard throughout the harvest period analyzed.

This planning allows deciding, which needs more workers for harvesting.

Regarding the man-days to be used in each of the orchards (days per workers

needed for the entire season), Table 4.16 shows the results of the proposed model,

which are compared with the man-days used in the season.

As seen in Table 4.16, there is a reduction of man-days required for harvesting

Orchards A, B, and C of 20 %, 9 %, and 31 %, respectively, giving an average

reduction of man-days of 20 %. This decrease is due to the fact that planning,

distribution, and assignment of workers for the harvest was carried out much more

rationally. Since the model solution reduces the number of workers to be used in the

harvest season, the number of man-days also decreases.

Regarding the loss of apples for poor quality, Table 4.17 shows that the planning

model can help producers improve their incomes since a greater amount of apples is

harvested in the time windows, where they reach the desired maturity parameters.

The reduction in costs for loss of apples from the Orchard A, Orchard B, and

Orchard C represents, respectively 12 %, 17 %, and 9 %, with an estimated average

of 13 % cost reduction for losses to the three orchards.

Table 4.15 Summary of the results using labor (Permanent and Non-permanent)

Orchard

Total cost observed for season

2009/2010 (US$) (a) (*)
Optimal total cost obtained

through the model (US$) (b) (*)
% Difference

(100(a�b)/a)

Orchard A 21,007 16,700 19 %

Orchard B 74,984 64,394 14 %

Orchard C 23,849 19,636 18 %

(*) Observed Dollar: $480.39 pesos (Friday, November 30th, 2012)

Table 4.16 Summary results of man-days

Orchard

Days/man for the season

2009/2010 (a)

Optimal days/man obtained

through the model (b)

% Difference

(100(a�b)/a)

Orchard A 1,214 976 20 %

Orchard B 2,916 2,651 9 %

Orchard C 1,516 1,049 31 %

Table 4.17 Summary results of quality loss

Orchard

Cost of the loss for the season

2009/2010 (US$) (a) (*)
Cost of the loss obtained

through model US$ (b) (*)

% Difference

(100(a�b)/a)

Orchard A 9,799 8,646 12 %

Orchard B 28,751 23,883 17 %

Orchard C 18,071 16,491 9 %

(*) Observed Dollar: $480.39 pesos (Friday, November 30th, 2012)
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Considering these improvements in reducing labor forces and increasing quality,

reduced overall costs of the Orchard A, B, and C are 18 %, 15 %, and 14 %,

respectively, with an estimated average decrease of 16 % in estimated costs for the

three Orchards.

The main change in the planning of the orchards, pulling down costs for quality

loss, stands in a greater amount of fruit harvested when their maturity parameters

are appropriate. This is only possible by effective estimation of the number of

required workers.

4.7 Conclusions

The proposed model can work as a support for tactic decisions during the harvest

season by organizing and distributing labor and required supplies. As one of the

objectives of this model is to provide a plan for the required labor per harvesting

tasks within an orchard and in each of the fields, the results of this model work as a

proposal when managers need to take decisions regarding staff hiring for the fruit

harvest at a given period of time within the season.

Regarding the amount of fruit to be harvested in each of the periods of time, the

model provides the quantity of apples to harvest, the day within the time window,

and the field. This information helps the decision maker organize the staff, so the

estimated amount in each field can be harvested, and prevent damages on the apple

quality.

According to the results obtained for the case studies, the solution of the model

allows a better distribution of workers in the fields for each apple harvest period,

reducing the average labor cost by 17 %. This result is possible because the model

allows decreasing the man-days by an average of 20 % in order to perform the

harvest. Moreover, the planning provided by the model allows a larger amount of

fruit harvested in the time windows, reaching desired maturity parameters. This

implies that costs associated to lower incomes are reduced on average to 13 %. All

these improvements reduce the average total costs in the orchards of 16 %.

The model can be applied to different orchards that produce pome or stone fruit.

Thanks to it, theywill be able to choose better tools for decision support on operational

planning during the harvest. Even though this is presented as a general model, it

provides a basis for a more efficient organization of the resources used in the harvest,

since considering planning requirements minimizes costs.

This model allows decision makers (orchard managers in charge of the harvest)

plan the whole season, including required goods and workforce. The model

includes the experience of orchard managers in charge of the harvest for parameters

such as harvest estimation, harvest type, destination of the fruit in each field, and

quality requirements for fruit export (quality parameters and ideal dates of harvest).

It is important to note that the model considers two methods of apple harvest:

strip picking (all apples harvested in a field) and selective picking (one or more

harvests to collect fruit from the fields), which implies different resource planning
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and labor for their activities. For the harvesting type of selective pickings, the

decision maker can decide how many times a field should be harvested in order to

collect all the fruit. Based on the model results, the manager can check what type of

harvesting is more convenient according to the planning of labor and harvest

schedule for the work. This means an improvement of the planning process, since

decisions are so far taken based on the experience of those in charge of the orchards

to prepare the harvest workday.

In future research, it is recommended to improve the crop estimation method

currently used in orchards. This research is important to obtain reliable estimates of

harvest, since the modeling results are very sensitive to this parameter. Besides, the

optimization model may be extended to modeling the transportation of the bins

from the orchard to different process plants, in order to optimize the timing of

transfer of the raw material and harvest fields within corresponding time windows.

4.8 Annex

Sets and parameters used in the formulation.
The index sets that are considered in the model are:

K: Set of harvesting modes, K¼ {1: mechanical harvesting, 2: manual harvesting}.

Ck: Set of fields in an orchard using harvesting mode k, k2K.
C: Corresponds to the total set of fields feasible to be harvested within the orchard,

C ¼ C1 [ C2.

O: Set of types of existing labor, O¼ {1: permanent labor, 2: non-permanent

labor}.

P: Set of types of fruit processing plants, P¼ {1: Export, 2: Commercial}.

T: Planning Horizon for the harvest period of the orchard.

Act: Percentage of apple loss due to poor quality of the fruit in the field c, c2C,
in period t, t2T.

Hl: Cost of hiring a labor unit l, l2O.
Fl: Cost of dismissing a labor unit l, l2O.
Jcl: Cost of labor l, l2O, for the working day in the field c, c2C2.

Q: Cost per hour of work for a machine for harvest.

Pc: Productivity for harvesting mechanically the fields c, c2C1, expressed in

kilograms per hour.

Rc: Productivity for harvesting by hand the field c, c2C2, with permanent labor,

expressed in kg/man.

Sc: Productivity for harvesting by hand the field c, c2C2, with non-permanent

labor, expressed in kg/man.

MVc: Number of days when it is possible to harvest apple in the field c, c2C.
Dckp: Number of apples to be harvested in the field c, c2C, harvested with the mode

k, k2K, bound to the processing plant p, p2P, expressed in kilograms.
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Gkpt: Capacity of the plant p, p2P for apples harvested with mode k, k2K, in
period t, t2 T, expressed in kilograms.

Nctk: Maximum amount of apples that can be harvested in the field c, c2C, in
period t, t2 T, using the harvesting mode k, k2K, expressed in kilograms.

Lk: Minimum amount of apples that can be harvested in a fields using crop mode k,
k2K, expressed in kilograms.

It: Availability of machines in period t, t2T, expressed in hours.

M: A very large positive scalar.

λ: Parameter to work as a penalty for harvesting fruit without adequate ripening

conditions. Furthermore, it is used to transform the fruit loss from kilograms to

pesos or monetary units, in order to standardize the units in the objective

function.

N: Minimum number of permanent staff required for harvest. This is the number of

seasonal workers, which participation should be assured and who are hired prior

to the beginning of the job.

W: Maximum number of non-permanent staff allowed in crop planning. This value

is constant throughout the season.

E: average load capacity of a bin (in kilograms).

Decision variables.

Xctkp: Apple quantity (in kilograms) harvested in the field c, c2C, in period t, t2 T,
with harvesting mode k, k2K, and bound to the processing plant p, p2P.

Yctp¼ 1, if harvested in the field c, c2C, in period t, t2 T, bound to the processing

plant p, p2P; Yctp¼ 0, otherwise.

THFt: Number of workers hired in period t, t2 T, that will remain throughout the

harvest period.

THVt: Number of non-permanent workers hired at the beginning of period t, t2 T.
TFVt: Number of non-permanent employees dismissed when the period t, t2 T.
TFCct: Number of permanent employees per field c, c2C2, in period t, t2 T.
TVCct: Number of non-permanent workers per field c, c2C2, in period t, t2 T.
HMQct: Number of machine-hours necessary for harvesting field c, c2C1, in period

t, t2 T.
NBctp: Number of bins required in the field c, c2C, in period t, t2 T, which will be

bound to the processing plant p, p2P.
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Chapter 5

Optimization of the Supply Chain
Management of Sugarcane in Cuba

Esteban L�opez-Milán and Lluis M. Pl�a-Aragonés

5.1 Introduction

The international sugar market is very competitive, and from time to time, it suffers

from economic crisis when the price of sugar goes down. This is a serious concern

for many large producers (e.g., Brazil and India) and for countries that depend on

sugar exports (e.g., Brazil, Australia, and Cuba). After tourism, sugar is the second

most important generator of revenue for Cuba, although its importance is decreas-

ing in favor of other activities. Last decade, the Cuban Ministry of Sugar Industries

operated 156 sugar mills (http://www.cubagob.cu/des_eco/azucar.htm, accessed

10 Feb 2013). As a result of past sugar market crisis, nowadays there are only

around 54 sugar mills operating. The price of sugar in the international market leads

to constantly controlling and lowering production costs in order to increase eco-

nomic efficiency and at the same time increase the chances of some profit. The most

important component of production cost in the sugar industry is transportation. This

is especially true for developing countries. Cane transport is the largest cost

component in the manufacturing of raw sugar as different authors have already

shown (Dı́az and Pérez 2000; Martin et al. 2001). Australian studies estimated the

transportation cost range from 25 to 30 % of the total production cost under their

conditions (Higgins 1999, 2002).

The management of the sugar supply chain, and in particular the sugarcane

harvest, is a complex logistical operation that involves the cutting and loading of
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cane in the fields, the transportation by truck or train to the sugar mills, and the

unloading of the cane in the mill to be processed (Semenzato 1995; Pavia and

Morabito 2009; Jena and Poggi 2013). Although the situation may vary from

country to country, all these activities may involve different companies or agents

that have to operate, collaborating among each other and coordinating with the

sugar mill. Hence, the system is organized as a supply chain where the sugarcane

supply to the mill has to be assured (Lejars et al. 2008). This supply chain

coordination usually starts with the selection of planting dates and cultivars

(Scarpari et al. 2008, Scarpari and de Beauclair 2010; Le Gal et al. 2009;

Piewthongngam et al. 2009).

Normally, during harvest season, mills operate 24 h a day at a constant level

unless there are short programmed shutdowns for maintenance. Each sugar mill has

a number of teams that cut cane manually or with several harvester machines to

meet a daily quota. The daily quota is imposed naturally by the regular operation at

a constant level of the mill to avoid any interruption of sugarcane processing (Jena

and Poggi 2013). As people on the field cannot work at night and the processing of

cane has to be made as soon as possible to avoid sugar quality deterioration, large

storage facilities are cost-ineffective. Depending on the quota and available

resources for a particular day, the scheduling is proposed by sugar mill managers

based upon their own expertise. In view of day-to-day changes in the amount of

cane in the fields, the cane ripeness, the unforeseen failures in machinery, and the

performance of harvesters, managers must adapt their schedules daily. Quite often,

all these are being done manually, even in developed countries, as Higgins (2006)

pointed out. In this sense, recent studies indicated great opportunities to improve the

value chain and reduce the cost in the operational and tactical planning to remain

competitive (Higgins et al. 2007; Pl�a et al. 2013).
In order to cope with daily scheduling changes, there has to be a constant and

ongoing analysis of the current organization, the available infrastructure, and the

future needs. Hence, this chapter shows how computers and mathematical program-

ming can be combined into a practical DSS capable of supporting the operational

decisions of sugar mill managers who control the sugarcane supply chain. The DSS

has been developed and tested in “Fernando de Dios” mill, a Cuban sugar mill

settled in the province of Holguı́n. The DSS is flexible enough to be adapted to other

different conditions of sugarcane harvesting.

5.2 The Sugarcane Supply Chain

The sugar industry is characterized by large sugar mills that are able to take supplies

of cane from surrounding farms (Higgins 2002; Grunow et al. 2007). Coordination

between producers must be done to avoid problems like the overflow of mill’s

capacity during the peak of harvest season as reported by Piewthongngam

et al. (2009) in Thailand. Stray et al. (2012) among others emphasize the benefits

of collaboration between growers and millers. In Cuba, this collaboration is
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mandatory. The whole sector is controlled by the government through public

companies being mill managers who organize and schedule main activities along

the sugarcane supply chain. At harvest season, sugarcane must be cut when it is

ripe; otherwise, the sugar quality of the cane deteriorates rapidly. As the harvester

cuts cane, it fills a truck or a haul-out vehicle next to the harvester. When the truck

or the haul-out vehicle is full, they transport the cane to the sugar mill. Generally,

sugarcane can be conveyed in two different ways:

1. Direct transportation to the swing bolster for just-in-time processing by road

transport only. The truck or the haul-out vehicle completes the distance to the

mill. This system is predominant in Brazil (Jena and Poggi 2013).

2. Intermodal transportation (Rizzoli et al. 2002). Thismeans the use in a first step of

trucks and tractors (road transport) and, thereafter, in a second step, the train (rail

transport). In this case, the sugarcane is transported by road and stored at rail

loading stations, where the cane is cut in small pieces, cleaned, and placed into

rail wagon bins in a continuous process. Later, the cane is delivered by train to the

sugar mill yard to be processed. This system is available in many countries like

Australia and Cuba (L�opez et al. 2004, 2006). Depending on the rail network and
the train load capacity, different stations may be visited before themill is reached.

Hence, a problem of transport planning may arise (Higgins and Laredo 2006).

Railways connecting loading stations and the mill are almost only devoted to

sugarcane transport in most countries. At the mill, sugarcane is unloaded at the

same place regardless of the transport mean employed.

The transportation system has to maintain a constant flow of ripe cane to the

sugar mill (Higgins 2002). Therefore, the planning of the transport of sugarcane

from fields to the sugar mill is a difficult task depending on the carriage means

available but at the same time is necessary to avoid the waste of valuable resources

(Dı́az and Pérez 2000; Higgins and Muchow 2003). The rail system may operate

24 h a day, whereas the harvest period may comprise only a part of the day

(in daylight). Then, when the road transport stops working at night, the rail system

is the only source of supply. Thus, the rail system acts as storage for cut cane,

allowing the creation of a buffer. Mills have minimal storage facilities, so rail

transport satisfies the demand of the sugar mill, while road transport either is

covering other routes at the same time or is stopped at night. Unless a sugar mill

failure or breakdown occurs, railway transportation allows the sugar mill to work

24 h a day without interruption; however, from time to time, the sugar mill is

stopped for technical maintenance.

The organization of the operations prior to processing cane affects sugar quality

and productivity at the sugar mill. For instance, harvested sugarcane spoils if it is

not processed as soon as possible after harvesting. A degradation process begins

when sugarcane is cut. This process transforms the sweet juice of sugarcane in acid

juice in less than 24 h. This reason makes it necessary to mill as soon as possible the

cut cane in the sugar mill, so the cut cane must be milled the same day it is cut. Long

time ago, the degradation process was accelerated when sugarcane was set on fire

before cutting (this practice is not in use nowadays in most countries).
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Therefore, the sugar industry employs the so-called sugarcane freshness as a

technical quality indicator (sugarcane freshness is defined as the standard time that

sugarcane lasts from being cut in the field until it is processed in the sugar mill).

Taking this indicator into consideration, the use of road transport is the best

alternative, since it allows the sugarcane to arrive at the sugar mill in optimal

conditions to be processed and is therefore preferred. Nevertheless, carriage costs

are higher than the ones presented by the railway alternative under agro-industrial

conditions.

The second aspect affecting sugar quality is the pol of the cane (i.e., an index

related to the ripeness that is used for deciding the cutting moment). If necessary,

the ripeness of the cane can be assessed by the supply of reapers to the cane

plantations. Reapers improve the pol of certain cane varieties; however, a disad-

vantage is that when using these products, the cane must be cut as soon as possible

to avoid its earlier deterioration. For this reason, planning the supplies of sugarcane

to the mill is related to the agronomical aspects of the crop. In this sense, a balanced

arrival of fields to the peak of maturity is required and involves tactical and strategic

decisions left aside in this study. Readers interested in these aspects can find

interesting the papers of Bezuidenhout and Singels (2007a, b), Grunow

et al. (2007), and Le et al. (2008).

In brief, once a set of fields have been selected for harvesting (they are around

the maturation peak), the most important operational aspect of cane harvesting is

being able to determine the optimal combination of transportation means. The

objective is of minimizing the global transportation cost while fulfilling the daily

sugar mill supply needs with an acceptable level of quality and avoiding cane losses

caused by not harvesting or sugar deterioration.

5.3 General Formulation of the Sugar Supply Chain

The mathematical model formulated is a mixed-integer linear programming

(MILP) model dealing with all of the aspects of the operational problem of

sugarcane transport for one day. The model is based on a linear programming

model developed previously by L�opez et al. (2006) producing schedules of road

transports and cutting means. This model is similar to others proposed for produc-

tion and transport planning reported by Mula et al. (2010). Accordingly, the

organization of rail transports is not detailed; only the amount to be served daily

to the mill is estimated. It is assumed that cane in storage facilities is available to the

mill when needed, i.e., once road transport cannot operate due to inactivity on

fields, in particular at night. Quality aspects are considered by means of an

opportunity coefficient determined empirically by the decision-maker and by

establishing minimum quantities of cane processed just in time to preserve cane

freshness.
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5.3.1 Decision Variables

The decision variables are represented by Xijklm, where the subscript i represents the
origin (i¼ 1 to i¼A, as storage facilities; i¼A+ 1 to i¼A+B, as sugarcane fields);
j is the destination ( j¼ 1, sugar mill; j¼ 2 to j¼A+ 1, as storage facilities); k is the
transportation means used (k¼ 1 represents railway transportation and from k¼ 2 to

k¼K different road transportation means); l is the cutting system (l¼ 1, for k¼ 1

since in railway transportation, the way in which cane is cut is not relevant; l¼ 2 to

l¼ L+ 1 as a group of harvesting machines; l¼ L+ 2 to l¼ L +C + 1 as a group of

manual cutters); and m is the time of the day (m¼ 1 to m¼H, H� 24).

Then Xijklm is the quantity of sugarcane transported from origin i to destination

j by transportation mean k during the hour m and harvested by the group l (Xijklm is

expressed in “arrobas,” traditional system of weight in Cuba represented by the

@ symbol; 1 @¼ 25 lb¼ 11.502 kg).

The decision variables have a combinatorial nature which are not all possible; to

define those that will be feasible in the model formulation, the following rules are

necessary:

• The variables determining routes (both for road and rail transportation) where an

origin is also the destination are not considered.

• In case the origin is a storage facility (i¼ 1 to A), the only destination admitted is

the sugar mill ( j¼ 1). The storage facilities will not transfer cane between them,

and only unloading it in the swing bolster is allowed.

• The sugarcane fields as origins will admit any destination ( j¼ 1 to j¼A+ 1).

• The variables presuming the railway transportation (k¼ 1) will only be defined

for the combination with the sugar mill ( j¼ 1) and the subindex l¼ 1.

In order to represent specific field conditions, other rules affecting decision

variables can be considered. In a complementary way, the inclusion of binary

variables provides the scheduling of transports and cutting tasks for a day’s

operation. Namely, binary variables are Bilm, Yil2 {0, 1} where the meaning of

subscripts are preserved to be consistent with previous notation, but the range is

lower to consider only relevant cases:

I: represents the sugarcane fields (i¼A + 1 to i¼A+B).
L: is the cutting system (l¼ 2 to l¼ L+ 1 as a group of harvesting; l¼ L+ 2 to l¼ L

+C + 1 as manual cutting).

M: is time of the day (m¼ 1 to m¼H, H� 24).

In practice, it is the mill manager who has to maintain and update the

abovementioned rules determining the total number of decision variables for

feasible solutions.
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5.3.2 Main Constraints

Main constraints refer to constraints always present in the different formulations of

the problem. The core of the problem can be solved with only these constraints, i.e.,

taking H¼ 1 (representing one working day and ignoring the schedule hour by

hour). These are constraints including continuous variables, and so the model can

be solved faster than when binary or integer variables are present. This distinction

allows getting a first approach to the level of resources required for a working day,

leaving aside the complexities of a detailed scheduling. Thus, the constraints of the

mathematical model are classified in the following groups:

• Supply of cane to the sugar mill for a working day

• Capacity of the storage facilities

• Conservation of flow-through storage facilities

• Capacity of transportation by road transportation means

• Production of the sugarcane fields

• Cutting capacity of different teams

5.3.2.1 Supply of Cane to the Sugar Mill

A daily quota of cane has to be cut in the fields and later transported to the mill. It

would be desirable to avoid wide variations in this quota. Therefore, limits for

upper (Mmax) and lower (Mmin) supply of cane to the sugar mill in a working day

are stated.

XA
i¼1

XH
m¼1

Xi111m þ
XAþB

i¼Aþ1

XK
k¼2

XLþCþ1

l¼2

XH
m¼1

Xi1klm � Mmax

XA
i¼1

XH
m¼1

Xi111m þ
XAþB

i¼Aþ1

XK
k¼2

XLþCþ1

l¼2

XH
m¼1

Xi1klm � Mmin

In order to maintain a uniform flow of sugarcane to the mill, the supply per hour is

considered. The sugar mill can only process a fixed quantity of cane per hour as

maximum (named Smaxm). A problem to avoid is the overflow caused by direct

transportation ( j¼ 1 and k 6¼ 1).

Maximum processing capacity of the sugar mill by direct transportation:

XAþB

i¼Aþ1

XK
k¼2

XLþCþ1

l¼2

Xi1klm � Smaxm m ¼ 1, 2, . . . ,H

Direct transportation has priority if the aim is to maintain good cane quality.

Therefore, a minimum hourly quantity of sugarcane to be transported to the sugar

mill is established, in this case Sminm @ (of course, Sminm< Smaxm).

112 E. L�opez-Milán and L.M. Pl�a-Aragonés



Minimal supply of the sugar mill by direct transport:

XAþB

i¼Aþ1

XK
k¼2

XLþCþ1

l¼2

Xi1klm � Sminm m ¼ 1, 2, . . . ,H

5.3.2.2 Capacity of the Storage Facilities

Each storage facility has a limited management and storing capacity expressed

in @/h. Each one is represented by SPj, with j¼ 2, . . . ,A+ 1.

XAþB

i¼Aþ1

XK
k¼2

XLþCþ1

l¼2

Xijklm � SPj m ¼ 1, 2, . . . ,H and j ¼ 2, 3, . . . ,Aþ 1

5.3.2.3 Conservation of Flow-Through Storage Facilities

The sugarcane delivered to a storage location must come out by train during the day

(and even every hour) in order to satisfy the demand of the sugar mill. Hence, for

each storage facility:

Xj�1111m �
XAþB

i¼Aþ1

XK
k¼2

XLþCþ1

l¼2

Xijklm ¼ 0 m ¼ 1, 2, . . . ,H j ¼ 2, 3, . . . , Aþ 1

5.3.2.4 Capacity of Transport by Road Transportation Means

Railway transport is able to carry the amount of cane the sugar mill needs in the

daily production. A correct operation of the rail system to deliver the cane to the

mill is assumed, so that capacity constraints on the transport process will only be

associated to road carriage. Thus, we define the coefficient CRijkl representing

transport need (in hours) to carry an @ of cane harvested by harvester group l,
from origin i to destination j by the road transport k. This coefficient is irrelevant to
the time, m, in which the transportation is carried out, and it is calculated through

the following formula:

CRijkl ¼
Dij � 1

Vcck
þ 1

Vsck

� �
þ Tckl

Cck
ð5:1Þ

where

Dij: Distances from origin i to destination j
Vcck: Speed of the given carriage means k, with load

Vsck: Speed of the given carriage means k, without load
Tckl: Waiting time of carriage means k, with cutting system l
Cck: Loading capacity of carriage means k
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If the number of carriage means type k available per hour is denoted by TMk, the

related constraint can be written as follows (note that for each working hour, TMk

equals total transport force of transportation means type k expressed in hours of

work):

XAþB

i¼Aþ1

XAþ1

j¼1

XLþCþ1

l¼2

CRijkl � Xijklm � TMk m ¼ 1, 2, . . . ,H and k ¼ 2, 3, . . . ,K

5.3.2.5 Production of the Sugarcane Fields (in @)

The production of sugarcane fields is estimated in @ and represented by Capi. This
parameter is set by the mill manager assisted by technicians on the field. However,

for tactical or strategic planning, this value can be estimated making use of more

refined methods simulating crop production (see, e.g., Bezuidenhout and Singels

2007a, b; Piewthongngam et al. 2009; Stray et al. 2012).

XAþ1

j¼1

XK
k¼2

XLþCþ1

l¼2

XH
m¼1

Xijklm � Capi i ¼ Aþ 1,Aþ 2, . . . ,Aþ B

5.3.2.6 Cutting Capacity of Different Teams (in @)

The production of sugarcane fields is cut by different teams having a capacity of cut

represented by Prodl. This parameter is set by the mill manager according to the

composition of the different cutting means available. These can be essentially

mechanical or manual.

XAþ1

j¼1

XK
k¼2

Xijklm � Prodl i ¼ Aþ 1,Aþ 2, . . . ,Aþ B;

l ¼ 2, 3, . . . ,Lþ Cþ 1 and m ¼ 1, 2, . . . ,H

5.3.3 Constraints for Scheduling Daily Tasks

As seen, sugarcane harvesting is carried out with groups of harvesting machines

(in number: L) andmanually with groups of sugarcane cutters (in number:C). Hence,
if we consider the workload per hour, the reformulated constraint is as follows:

XAþ1

j¼1

XK
k¼2

Xijklm � Prodl Bilm i ¼ Aþ 1, Aþ 2, . . . , Aþ B;

l ¼ 2, 3, . . . , Lþ Cþ 1 and m ¼ 1, 2, . . . , H
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where Bilm2 {0, 1} is the binary variable controlling possible combinations of

origin-cutting mean per hour. Aimed at getting a logical and reasonable work

plan and scheduling, a group of binary variables are included. The introduction of

these binary variables per hour makes it necessary to add new constraints. This set

of new constraints refers basically to constraints related to the operation of cutting

means used in sugarcane harvesting and transport trips required hour by hour.

Therefore, the extra constraints appended have the following meaning:

• Cutting means can work in only one field in 1 h.

• A field can hold up to two groups of harvesters.

• Movements of cutting means between fields are limited to one.

• The work of harvesters cannot overcome the daily hours of work, H.
• A group of harvesters can only work consecutive hours in a field.

5.3.3.1 Cutting Means Can Work in Only One Field in One Hour

Groups of harvesting machines are compounded by several means designed to work

together in a field during 1 h; therefore, it is unpractical to divide them to work in

more than one field during the same hour.

XAþB

i¼Aþ1

Bilm � 1 l ¼ 2, 3, . . . , Lþ Cþ 1 and m ¼ 1, 2, . . . ,H

5.3.3.2 A Field Can Hold up to Two Groups of Harvesters

Each group of harvesting machines is sized to work in a field; therefore, it is

unpractical to allow more than two groups placed in the same field. This has to

be verified per hour:

XLþCþ1

l¼2

Bilm � 2 i ¼ Aþ 1,Aþ 2, . . . ,Aþ B and m ¼ 1, 2, . . . ,H

But also during the day:

XLþCþ1

l¼2

Yil � 2 i ¼ Aþ 1,Aþ 2, . . . ,Aþ B

where Yil2 {0, 1} is the binary variable representing if the cutting mean l has been
working or not on field i during the working day.
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5.3.3.3 Movements of Cutting Means Between Fields Are Limited

The task of harvesting groups is to cut cane at their full capacity, and hence, loss of

time in movements should be reduced. On the other hand, more than one change

between fields during the day would be unrealistic. Then:

XAþB

i¼Aþ1

Yil � 2 l ¼ 2, 3, . . . , Lþ Cþ 1

5.3.3.4 Harvesters Cannot Exceed the Daily Hours of Work, H

Working days have a limited number of hours that affect the working hours of

harvesting machines:

XH
m¼1

Bilm � HYil i ¼ Aþ 1,Aþ 2, . . . ,Aþ B l ¼ 2, 3, . . . ,Lþ Cþ 1

5.3.3.5 Harvesting Is Deployed at Consecutive Hours on a Field

If a group of harvesting machines leaves a field to work in another, it makes no

sense to come back later to the former. Similarly, idle time or pauses are not

allowed in the middle of a working period of time in a day. If a worker stops, he

should start working again on the next day.

XH
m¼tþ2

Bilm � H � 1� tð ÞBil, tþ1 þ H � 1� tð ÞBil, t � H � 1

i ¼ Aþ 1,Aþ 2, . . . ,Aþ B l ¼ 2, 3, . . . ,Lþ Cþ 1 and t ¼ 1, 2, . . . ,H � 2

5.3.4 Transport Cost and Quality Aspects

When planning sugarcane harvest, there are usually two major objectives: quantity

of cane harvested and transported and quality of sugar. In this sense, the primary

objective is the minimization of daily transportation cost. Hence, the economic

coefficients of the objective function (Cijklm) establish the transportation cost of

sugarcane, related to the distances and the transportation means used in each case.

The economic coefficient of each variable is determined by Cijklm¼ ck · di,j, where
ck is the specific economic coefficient related to transport k and dij is the distance
between origin i and destination j. Since Cijklm are just representing transportation

costs, the way and time in which the cane is cut do not affect.
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However, quality aspects are introduced in the objective function through an

opportunity coefficient,Coi, which represents the preference to cut a sugarcane field
i. By default, it is assumed that all fields susceptible of harvest have a similar

maturation level (similar pol or sugar content) and Coi¼ 1. If not, this coefficient

serves to give priority in the cutting of a field instead of another given the pol of the
cane. Corresponding priority has to be set accordingly by the manager or the person

who knows the pol of fields. Note that the preservation of cane freshness can also be
considered by establishing minimum quantities of cane processed just in time, i.e.,

sent directly to the mill by road. To summarize, the objective function representing

the transportation cost is:

O:F: : Minimize
XAþB

i¼1

XAþ1

j¼1

XK
k¼1

XLþCþ1

l¼1

XH
m¼1

Cijklm � Coi � Xijklm

where

Cijklm: represents the economic coefficients.

Coi: represents the opportunity coefficients.

Xijklm: are the decision variables.

5.3.5 Total Constraints and Variables

The total number of constraints and variables serves to get an idea of the complexity

of the model. Nowadays, there exist commercial solvers that can solve very

efficiently any linear program. L�opez et al. (2006) detail the calculation of the

total number of constraints H� (1 + 2A+ (1 + 2B)(L +C) +B+K ) + 2 + 2B+ (L +C)
(1�B) and variables B(L +C)� [1 +H[(A + 1)� (K� 1) + 1]] +AH, emphasizing

that B� (L +C)� (H + 1) of them are binaries and the rest continuous.

The number of integer variables converts the linear model into a mixed integer

linear model (MILP) and raises the difficulty level of reaching an exact solution.

Note that the size of the problem is reduced significantly when considering H¼ 1,

i.e., one day of work. Because of that, a two-stage approach was introduced to solve

the model as explained in the next section.

5.3.6 Model Implementation

The package to solve the model was LINDO (Schrage 1997). This was a require-

ment by the user. With variables representing daily quantities, the system provides a

solution in a few milliseconds as reported in L�opez et al. (2004). The whole model

as formulated in L�opez et al. (2006) was unsolvable with LINDO due to the
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complexity of the system and the number of integer variables. Therefore, a

two-stage approach was adopted successfully. The first stage consisted in a first

round solving the problem for a day without the hourly scheduling. The optimal

solution serves to identify the fields to harvest and other resources present in the

optimal solution. Not all constraints are saturated nor decision variables needed.

This way, the total number of variables and constraints can be pruned smartly

before solving successfully the full model in a second stage. Thus, a detailed

solution by hour can be obtained from the initial solution for a day. The quantity

of cane transported to the sugar mill, the location where cane is collected, the

transportation means used, the way cane is cut, and the transportation time are all

provided in the solution. In a complementary way, the remaining binary variables

provide the scheduling of transports and cutting tasks for a day’s operation. In

addition, sugar mill managers are able to determine the amount of transportation

means required, the exact time of shipment, and the amount of petrol in reserve.

5.4 Embedding the Model into a DSS

The practical use of the model presented in the previous section needs a friendly

environment for being used as an operational tool in the sugar industry. For this

purpose a DSS was developed and allowed the user to set parameters for the model,

solve the model, generate and save reports, and explore different alternatives in a

reasonable time. Inherent complexities of the mathematical model are hidden to the

intended user who concentrates in the analysis of the problem and proposed

solution.

5.4.1 DSS Structure

The structure and system elements of the DSS are presented in Fig. 5.1. The heart of

the system is the mathematical model representing the supply chain. The interface

was implemented in MS Visual Basic v. 6. It interacts with the user and manages

the LINDO library in two ways: to formulate and reformulate the model and to

retrieve and show the outcome. The database stores inputs and outputs. Inputs are

all of the resources available for daily sugarcane harvesting and processing, like

fields, cutting means, road transport means, and storage facilities. The database was

implemented in MS Access. Other inputs concern technical characteristics of the

mill, as, for example, the daily quota that can be processed as maximum or

minimum and the distances to the fields and storages facilities. Outputs are

represented by the allocation and distribution of resources along the chain, giving

priority to transportation cost minimization and sugar quality. The interface allows

the user to interact with the system, modifying inputs and retrieving outputs.

Outputs can be displayed summarized by day or hour by hour.
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The interface allows also the user to interact with the database to make queries or

updates and run the model. This way, inherent complexities of the mathematical

model are avoided to the user who can be concentrated in defining all the resources

available for harvesting and transport, running the model, and analyzing, approv-

ing, and implementing the results. The internal generation of the model is automat-

ically performed from user specifications of model inputs through different menus

and tables.

5.4.2 DSS Operation

The DSS was developed accounting for the regular operation of sugar mills in

Cuba. In particular, it was tested in a sugarcane supply chain located in the Holguı́n

province (Cuba) that processes cane from 239 fields (Fig. 5.2), representing a total

surface of 25,000 ha. All the resources are owned by public companies and involve

the mill “Fernando de Dios” and a dedicated railway system serving the mill.

The harvesting labor on the fields is a maximum of 14 h per day, and it

corresponds to the maximum daylight duration. The daily train supplies represent

about 80 % of cane from a total of 300,000 @ (i.e., 3,400 tm) of sugarcane that can

be processed in a working day, and the train can operate also at night. Between

8 and 9 % of the weight of sugarcane is converted in sugar; therefore, the expected

production of sugar is 27,300 tm per year during the season (i.e., 100 days per year

as maximum). On a regular working day, this sugar mill is supplied with cane cut in

different surrounding fields and sent directly by road or transferred by train. The

train serves from five storage facilities to the mill. The rail network has a star shape

with the mill connected to all the vertices without intermediate stations. This way,

congestion is inexistent and organization of rail transports simple (not included in

this study). Out of the harvesting season, the use of the train is insignificant and

most of the wagons stored for the next season. Regarding road transport means,

Mill Manager

Model Subsystem

Data Management
Subsystem

DSS

Interface Subsystem

Execution LP Solver
Parameters

Results

Outputs

Query facility

Database Updating

Displaying of
Outputs and

Printing of Reports
Inputs

Fig. 5.1 Structure of the DSS
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about 100 of automotive transport means work in the mill. These include 58 ZIL-130

trucks (with and without tows) and 38MTZ-80 tractors with two tows. The database

has to be updated with the units available, new types of vehicles, by unselecting

those not present or unavailable at all (e.g., KAMAZ 53212) as shown in Fig. 5.3.

The fields ready to be harvested and the rest of available resources have to be

selected by the user from the database before launching the model. The estimated

sugarcane on fields, opportunity coefficient, available road transportation with the

corresponding technical and operational characteristics, number of groups of

harvesting means (mechanical or manual), and corresponding work capacity have

to be set or revised periodically. For this purpose, the DSS interface has a set of

windows and displays where all these parameters can be inspected through different

tabs and corresponding figures introduced. Transport means with similar character-

istics are grouped, and the user sets the number of them available for the day (e.g., in

Fig. 5.3, there are 78 trucks ticked as available). Something similar happens with

cutting means where each harvesting machine is represented (15 in total) and

corresponding capacities set. In addition, the daily processing capacity of the

sugar mill, the minimum quantity of cane to be processed, the maximum and

minimum quantities of sugarcane supplied to the sugar mill per hour, and the limited

management capacity of each storage facility have also to be set.

The cane is transported to the sugar mill straightaway after being cut or passed

through storage facilities to be conveyed by train. Time consumed in load, unload,

and road transportation is taken into account through coefficients (1) applied in

Fig. 5.2 Selection of fields with sugarcane ready to harvest
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constraints of available transport means. All available arcs connecting road origins

and destinations for each feasible combination also have to be set. They can be

enabled or disabled through the interface at any time, for example, when a storage

place is unavailable. Distances of each feasible path are stored in the database and

considered in the calculation of Cijkl.

The solution, as it is shown in Fig. 5.4, represents the daily quantity of sugarcane

transported. The solution indicates how direct transportation is not always pre-

ferred, because all related constraints are not fully satisfied, and thus, the maximum

processing capacity of this kind is not attained. In particular the storage center (i.e.,

loading station) named Júcaro receives 12,499@ of cane to be sent by train, while

14,588@ are sent directly by road to the mill. Generally, direct transportation

involves the nearest fields to the sugar mill for which road transportation is cheaper.

Also, the nearest storage facility to each field is the preferred one to store cane when

needed. On the other hand, fields to be cut (only #87, not yet #88 and #89), road

means needed (Zil 130 CR and SR), and cutting teams involved (only #3, although

#2 and #5 are available) are displayed with an expected amount of cane.

Daily solution can be used to refine the final outcome and retrieve an hourly

scheduling of cutting teams and road transports means. In view of the daily

solution, resources not used according to the daily solution can be discarded.

Hence, the manager can reduce the number of variables and constraints disabling

storage places, harvesting teams, or road transport means. The manager can limit

the resources to those appearing in the daily solution and request to the system an

hourly solution (Fig. 5.5). In other words, daily solution allows the user to prune

Fig. 5.3 Selection of harvesting means and corresponding technical and operational

characteristics
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Fig. 5.4 Work plan for a day

Fig. 5.5 Scheduling of resources per hour
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resources that are not necessary for that day, reducing the dimension of the problem

and speed up the resolution. Therefore, an hourly solution represents a refinement

of this primary daily solution with additional computational savings. As a result,

allocations of cutting teams on fields and road transports, means, and paths involved

per hour are obtained. This is shown in Fig. 5.5 where the list of nonzero variables is

displayed sorted by origin (any other ordering criteria can be selected). The list

shows for each origin and destination the transport mean involved, the cutting team,

the amount of cane to be cut, and the time (hour of the day). Upon demand by the

user, the list is refined and sorted by time showing the schedule of transport means

or cutting teams.

5.5 Discussion

The model formulated here represents the particular situation of the Cuban sugar

industry. Other sugar supply chain models in literature are focused on other aspects

of particular interest in other countries like Thailand, Australia, Venezuela, Brazil,

or South Africa. However, the main contribution of this study is the development of

a DSS for use daily at mills, covering real needs of mill managers in Cuba. The

internal complexity is inherited from its embedded mathematical model. What was

more problematic was handling of the large number of variables, although this

problem is unappreciated for the user and remains inside the DSS. Other DSSs

developed for the sugar industry have been presented by Lejars et al. (2008) and

Stray et al. (2012) but with a strategic scope.

The operation with the DSS (and with the embedded model) is as follows. In a

preliminary step, a reduced case considering just one day should be solved in order

to approximate the optimal solution of the problem with a reasonable computational

time (L�opez et al. 2004). The report of solutions is similar to that shown in Fig. 5.3

where resources for a working day are allocated. This first step serves to verify,

adjust, and refine the real needs of all kinds of means to perform the harvesting, and

thus, superfluous variables can be ignored (unticked) in subsequent runs of the

model. This way computational load is lighter instead of having to solve the full

instance.

The problem can become more complex depending on the changes in available

resources, impacting to the number of constraints from one day to another as L�opez
et al. (2006) reported. For instance, the availability of cutting and transportation

means, the number of railway stations, the number of fields with matured sugar-

cane, and the number of working hours may all vary. It is the user who daily has to

select the actual parameters from a correctly updated database. If the number of

fields and the number of harvesting machines increase and the available transpor-

tation means and their working hours increase, then the number of decision vari-

ables in the model also increases. Therefore, a regular size of the problem may

represent 19,294 constraints and 2,420 variables, of which 1,084 are integers (e.g.,

when A¼ 5, B¼ 9, C¼ 2, K¼ 4, L¼ 6, and H¼ 14). Solving this kind of complex
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model daily is seen as very useful in practice by Cuban managers. The DSS

presented is capable of solving the problem of cost minimization of sugarcane

transport from fields to the sugar mill for one working day. The model determines

the capacities of the road and rail transport facilities for transporting cane to ensure

an uninterrupted supply to the sugar mill. Moreover, the scheduling of road

transportation and harvesting quotas of cutting means are derived from an optimal

solution that simplifies the daily task of the mill’s managers. Railway transport is

not a limiting resource in Cuba, and only daily quotas carried by train are deter-

mined. Thus, specific railway scheduling is not considered in detail and kept as a

problem apart.

Although the requirement of using LINDO was an initial obstacle because it was

impossible to solve the whole model containing all variables and constraints (L�opez
et al. 2006), finally it revealed useful in practice when forcing a two-stage solution

method. Firstly, a daily solution was obtained summarizing the resources needed

for transport and harvesting of the day (subindex m is not considered and many

binary variables avoided). This first model represented a reduction of more than

90 % of constraints and variables over original sizes. Secondly, the user refined this

solution selecting optimal resources involved in the daily solution to obtain an

hourly solution, more practical for operational purposes. This second stage implies

that subindex m is enabled and only the resources present at the first solution. Thus,

the number of constraints are 10,290 with 1,900 variables, of which 840 are integers

(when A¼ 3, B¼ 7, C¼ 2, K¼ 4, L¼ 6, and H¼ 14). Validation tests performed in

the mill confirmed this point. In the second stage, the model has become lighter due

to the reduction in the number of variables and constraints considered in the

formulation.

The mathematical formulation of the model integrates rail and road transport

systems emphasizing the reduction of transportation cost. This problem is common

to other countries and different solutions are proposed (Higgins 2006). The

approach presented here benefits of the use of coefficients Cijkl that account for

road transport capacity according to speed, load–unload time, trip time (with and

without load), and distance between origin and destination. Hence, a reliable

estimation of such coefficients is crucial for the goodness of the optimal solution

proposed. The model also controls sugarcane freshness through the minimum

supply constraints to the sugar mill with direct transport. Furthermore, the model

allows sugar mill managers to schedule daily transport plans automatically, based

on either objective criteria or on considerations that have been acquired through

professional experience. This was of great value for managers who previously

operated only under his/her expertise. They have estimated savings of 8 % in fuel

with respect to the traditional scheduling method which represents 23,000 L during

the harvesting season. Furthermore, other benefits are the time managers save

comparing the computerized system with the old by hand method. Also included

are manpower savings valued in the mill of USD 150,000 due to the rational use of

road transport means (i.e., less repairs and maintenance activities) and a better

welfare of employees. These results confirm the sort of opportunities for value

chain research in sugar industries claimed by Higgins et al. (2007).
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Professional solvers permit solving huge linear programming models, but man-

agers find them difficult to handle. Because of this, it is helpful to elaborate custom-

made software based on a friendly interface that simplifies such complexities, deals

with large amounts of variables, and makes the mathematical model transparent to

the user. In this way, the reformulation of the problem and its daily update is easier

and feasible, saving a lot of time and money for the sugar industry. Combining the

capabilities of specific software for solving MILPs with the knowledge and the

experience of who are familiar with the “cutting–loading–transportation” system

for sugarcane allows the users of such models to make more flexible allocation

decisions of harvesting and road transportation means. Moreover, it also provides

the scheduling of these resources in place and time according to their daily

availability. An open challenge is the integration of different models covering all

the decision spectrums for the sugarcane industry as noted by Higgins et al. (2007)

and Pl�a et al. (2013).

5.6 Conclusions

Production per hectare in Cuba is low compared with other figures reported in

literature for other countries like Australia or Venezuela (Higgins 2006; Grunow

et al. 2007). Reasons for that are the resources and technology involved like

irrigation, modern machinery, weather, and seeded varieties. However, the rational

use of the scarce resources allows mill managers to achieve a better efficiency

productivity and a higher control over production costs remaining competitive. In

this sense, the model described in this chapter was developed for planning daily

operations in the sugarcane supply chain. The DSS in which the model was

embedded was developed and tested in the mill “Fernando de Dios” in the province

of Holguı́n, Cuba. The DSS is of great value for mill managers who previously

operated only under his/her expertise by hand. They reported savings of 8 % in fuel

with respect to the traditional scheduling method. Furthermore, other benefits are

manpower savings valued only in the mill of USD 150,000 due to the rational use of

road transport means (i.e., less repairs and maintenance activities) and a better

welfare of employees.

Although all inputs are recorded in the database and related to this case, the set of

parameters can be easily adapted to represent different situations in the sugar

industry where road and rail transports are involved. In general, from mill to mill,

the database can change in size according to the number of resources available but

not in the kind of these resources. This makes the DSS flexible enough to be applied

in other Cuban mills and even foreign mills. New developments involving the

enlargement of the model are expected in the future, for instance, including crop

planning.
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Chapter 6

A Hierarchical Planning Scheme Based
on Precision Agriculture

Vı́ctor M. Albornoz, Néstor M. Cid-Garcı́a, Rodrigo Ortega,

and Yasmı́n A. Rı́os-Solı́s

Abstract The process for agriculture planning starts by delineating the field

into site-specific rectangular management zones to face within-field variability.

We propose a bi-objective model that minimizes the number of these zones and

maximizes their homogeneity with respect to a soil property. Then we use a method

to assign the crops to the different plots to obtain the best profit at the end of the

production cycle subject to water forecasts for the period, humidity sensors, and

the chemical and physical properties of the zones within the plot. With this crop

planning model we can identify the best management zones of the previous

bi-objective model. Finally, we show a real-time irrigation method to decide the

amount of water for each plot, at each irrigation turn, in order to maximize the total

final yield. This is a critical decision in countries where water shortages are

frequent. In this study we integrate these stages in a hierarchical process for the

agriculture planning and empirically prove its efficiency.

6.1 Introduction

Precision agriculture has modified the decision-making tools used by the farmers

in order to plan their production cycle as well as their daily operation. Investing

in precision agriculture goods such as humidity sensors or soil samples is

interesting when farmers get not only tools for monitoring their fields but also
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Vitacura, Santiago, Chile

e-mail: victor.albornoz@usm.cl; rodrigo.ortega@usm.cl

N.M. Cid-Garcı́a • Y.A. Rı́os-Solı́s

Graduate Program in Systems Engineering, Universidad Aut�onoma de Nuevo Le�on (UANL),

San Nicolás de Los Garza, Mexico

e-mail: nestor.cidgrc@uanl.edu.mx; yasmin.riossls@uanl.edu.mx

© Springer Science+Business Media New York 2015
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a powerful hierarchical system that optimizes the benefits of the yields as the

one we present in this study.

One of the main aspects of precision agriculture is to provide farming manage-

ment methods to respond to within-field variability. Precision agriculture permits

the application in a site-specific manner of agronomic practices such as fertiliza-

tion, weed and pest control, as a function of the information compiled from

collected field data.

Physical and chemical soil properties make the soil suitable for agricultural

practices. Texture, structure, and porosity influence the movement and retention

of water, air, and solutes in the soil, which subsequently affect plant growth and

organism activity. Chemical soil properties affect nutrient availability and growing

conditions (McCauley et al. 2005). All these properties may be altered by manage-

ment practices that are usually expensive; so it is imperative to determine which

zones of the plots need these practices.

The first problem farmers face (see Fig. 6.1) is how to delineate management

zones within the plots before planting the crops to improve the overall yield. More

precisely, a management zone is a subregion of a plot that is relatively homoge-

neous with respect to soil parameters, and for which a specific rate of agricultural

inputs is needed (Roudier et al. 2008). For this, soil samples are taken and then

analyzed. One of the main contributions of this work is a model that takes as input

Plots

Crop
Planning

Real-Time Irrigation

Irrigation Period 3 Irrigation Period 2 Irrigation Period 1

Physical R&H-MZ

Chemical R&H-MZ

Fig. 6.1 Hierarchical agriculture planning method HAP
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the soil samples and delineates the minimum number of rectangular management

zones such that the homogeneity within the obtained zones is maximized. Indeed,

tiny management zones even if they are rectangular are difficult to operate by

agriculture machinery. Therefore, a main issue that is solved in this work is to

have the largest management zones that are the most homogeneous possible. We

name our methodology as Minimization of Rectangular and Homogeneous Man-
agement Zones (R&H-MZ). Two types of management zones are obtained

depending on the soil property used during the delineation method: physical and

chemical management zones.

The second problem encountered by farmers is to select the crops that they are

going to sow into their plots considering the previously delineated management

zones. For example, if a plot has several management zones with high amount of

phosphorus and nitrogen, then probably it would be better to plant tomatoes or

maize because they would save in fertilizers. This problem is known as the Crop
Planning Problem (CPP). It becomes quickly a hard problem since there are many

parameters to take into account.

Once the CPP problem has been solved and the selected crops are already

planted, the decisions the farmers must take are mainly about the optimal amount

of water that has to be irrigated to the plots at each irrigation period (see Fig. 6.1).

This is another hard problem, named as the Real-Time Irrigation Problem (RTIP),
and it considers the phenological stages of the crops, the soil properties of the

management zones, the data from the humidity sensors, the evapotranspiration

factors, and the previous irrigation decisions. When a drought arises and the total

amount of water is not sufficient to irrigate all the crops to optimality, the RTIP

decides which crops must be under deficit irrigation or even without irrigation in

order to maximize the total final benefits at the end of the production cycle.

In this work we propose an approach named as Hierarchical Agriculture Plan-
ning (HAP) for helping the decision makers (the farmers) to plan and operate their

plots avoiding wastage and maximizing their benefits. The importance of an

hierarchical approach resides on the fact that one stage needs as input the results

of the previous one.

HAP is composed by a new bi-objective mathematical model that improves the

method proposed by Cid-Garcia et al. (2013) to solve R&H-MZ methodology since

it considers both the minimum number of management zones and the maximum

homogeneity within these zones. One of the contributions of this work is to use the

CPP methodology of Cid-Garcia et al. (2014) as a criterion to help the farmer chose

between the set of proposals that arise from R&H-MZ. As mentioned, with CPP

the farmer obtains an optimal crop pattern. After the crops have been planted on the

plots, HAP takes hand of RTIP proposed by Cid-Garcı́a et al. (2014) to assign them

the exact amount of water at each irrigation turn.

As mentioned by Bitran and Hax (1977), to provide effective managerial support

for decisions related to production planning, it is useful to partition the set of decisions

into a hierarchical framework as we propose in the HAP. Indeed, strategical higher

level decisions (management zones) impose constraints on tactic lower level
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actions (crop planning and real-time irrigation), and lower level decisions provide the

necessary feedback to evaluate higher level actions for future production cycles.

The rest of the work is organized as follows. Section 6.1.1 is devoted to related

scientific literature. In Sect. 6.2 we present the R&H-MZ methodology. In Sect. 6.3

we present the CPP and how to use it as a discriminator between the set of solutions

given by R&H-MZ. In Sect. 6.4 the RTIP is summarized. In Sect. 6.5 we empiri-

cally test the R&H-MZ methodology together with the HAP approach on a real

instance. Finally, Sect. 6.6 concludes the study.

6.1.1 Literature Review and Terminology

Most of the approaches in literature for determining management zones are based

on clustering algorithms. Many of them are based on soil samples information like

in our case. For example, Fraisse et al. (2001) and Schepers et al. (2004) use soil and

relief information, Carr et al. (1991) base their zoning on topographic maps while

methods of Bhatti et al. (1991), Mortensen et al. (2003), or Mulla (1991) need soil

sampling. Other approaches are based on yield maps, combining data from several

seasons like in Blackmore (2000), Diker et al. (2004), and Pedroso et al. (2010).

Some other clustering methods combine soil samples and yield maps: Franzen and

Nanna (2003), Hornung et al. (2006), Hornung et al. (2003), and Whelan

et al. (2003). In Roudier et al. (2008) they use a watershed segmentation algorithm

where the user can introduce morphologies of the desired zones.

Usually, K-means or Fuzzy K-means methods are used for the classification like

in Jiang et al. (2011), Li et al. (2005), and Ortega et al. (2002), or principal

component analysis with a cluster method (Ortega and Flores 1999). Nevertheless,

the choice of the data layers processed by the clustering is an issue as mentioned by

Jaynes et al. (2005). Moreover, the resulting fragmentation of the oval-shaped

zones due to clustering methods is not an appealing solution for farmers as pointed

out by Frogbrook and Oliver (2007), Li et al. (2005), and Simbahan and

Dobermann (2006).

Indeed, to the best of our knowledge, Cid-Garcia et al. (2013) are the first to

propose a management zone delineation method that directly gives rectangular

shape zones. This is important since most of the fertilizing agricultural machinery

is towed by tractors. Moreover, most of the irrigation systems are designed in a

rectangular pattern. In this work, we improve the results of Cid-Garcia et al. (2013)

since instead of minimizing the variance between the fields, we minimize the

number of zones. Additionally, we maximize the homogeneity within the manage-

ment zones. This gives a bi-objective model that offers more practical solutions for

the farmers.

In terms of crop planning, Sarker et al. (1997) propose a linear programming

model considering land type, alternative crops, crop patterns, input requirement,

investment, and output. Nevertheless, they do not take into account that the water

is a restriction as we do in this work. Later, Sarker and Ray (2009) formulate the
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CPP as a multiobjective optimization model. Mainuddin et al. (1997) propose a

crop planning model for an existing groundwater irrigation. Nevertheless, they do

not consider the use of humidity sensors as we do in this work. Adeyemo and

Otieno (2010) present evolutionary algorithm to solve the multiobjective crop

planning model: minimize the total irrigation water, to maximize both the total net

income from farming and the total agricultural output. Contrary to our research,

water availability is not a restriction.

Ortega Álvarez et al. (2004) propose a nonlinear model solved by genetic

algorithms to identify production plans and water irrigation management strate-

gies. They estimate crop yield, production and gross margin as a function of the

irrigation depth. In our work, the yields also depend on the irrigation depth, but

we manage to have linear restrictions. Moreover, we use the real-time data for the

irrigation stage. Sahoo et al. (2006) propose some fuzzy multiobjective linear

programming models for land–water–crop system planning. Reddy and

Kumar (2008) present a multiobjective approach for the optimal cropping pattern

and operation policies for a multi-crop irrigation reservoir system. These authors

do not consider water shortages since they try to maximize the yields and to

minimize the water.

In Casadesús et al. (2012), Hassanli et al. (2009), Hedley and Yule (2009), and

Xu et al. (2011) authors propose schedule irrigation plans according to weather

conditions, crop development, and other factors. In this work we propose a math-

ematical model instead of heuristics. In Alminana et al. (2010) they present models

and algorithms to determine water irrigation scheduling by taking into account the

irrigation network topology, the water volume, technical conditions, and the logis-

tical operations. Their models do not use the real-time information of humidity

sensors like we do in this research.

We use the term field for the whole of land that can be irrigated by a water well

or a dam. This field is made up of different plots. In each plot a single crop is to be

planted. Each plot is subdivided into physical and chemical management zones

(see Fig. 6.2). Notice that all the management zones of a plot must be planted with

the same crop.

Fig. 6.2 Terms used in this

chapter: field, plot, and

management zone
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6.2 Rectangular and Homogeneous Management Zones

At the begin of the production cycle, two delineations of rectangular and

homogeneous management zones are made for each one of the plots. The first

one uses chemical soil properties and the second one physical soil properties.

The delineation with chemical soil properties is used to determine the expected

amount of nutrients (fertilizers, pesticides, etc.) that the crops require in the whole

production cycle, while the delineation with physical soil properties is used to

determine the expected amount of water required by the crops in the whole

production cycle and the amount of water required by the crops during each

irrigation period, respectively.

The R&H-MZ methodology proposed in this work improves the one of Cid-

Garcia et al. (2013) since we present a bi-objective problem where the number of

rectangular management zones is minimized and the homogeneity within the zones

is maximized. R&H-MZ methodology consists of two main stages:

(a) Instance generation. In this stage, we process the information from the soil

samples that have been taken from the field. These soil samples are approx-

imately equidistant in the field (a GPS detects their position). Then, they are

labeled and their positions are translated into the first quadrant of the Cartesian

map. Next, the information about each soil property is registered [pH, organic

matter rate (OM), amount of phosphorus (P), sand, field capacity, permanent

wilting point, etc.]. Soil texture is considered among the most important

physical properties and it corresponds to the proportion of three mineral

particles (sand, silt, and clay). Then, all the quarters (or potential zones)

are computed together with their variances (more details about this stage are

given below).

(b) Mathematical model. With the input of stage (a), we propose a bi-objective

Integer Linear Programming (BILP). The aim of the BILP is to find

the minimum set of rectangular management zones such that they cover the

whole field and at the same time this set is the one that maximizes the

homogeneity within the selected management zones. BILP has a set of optimal

solutions that are a trade-off between the two objectives. This set (or Pareto

front) is exactly obtained by an ε-constraint algorithm.

We now describe these two stages in more detail. Soil diversity in the field can

be observed from a thematic map of a certain property (here we use MapInfo with

the default grid and the inverse distance weighting interpolator). In Fig. 6.3 the

thematic map of a real plot using phosphorus as chemical soil property and the label

of each soil sample (in this case we have 40 soil samples) are presented. In the

thematic map we can see the regions at optimal level.

With the thematic map we determine an important parameter which is

the smaller management zone allowed, MinWidthQ�MinLengthQ, where

MinWitdthQ is the number of samples in the width of the smaller zone and

MinLengthQ is the number of samples in its length. If the diversity of the soil
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property is high, then the zones should be relatively small (one sample width by one

sample length in the worst case).

Once the minimum size of a zone is set, we enumerate all the possible

management zones (or quarters) that could be created in this plot. Notice that

the soil samples included inside of each potential zone is known. The search of

potential zones can be done inΩ(WidthF �LengthF) where WidthF is the number

of samples in the width of the field while LengthF is the number of samples in its

length. An illustration is given in Fig. 6.4. The left-hand side of this figure shows a

plot with nine samples (each one with its label). On the right-hand side, all

potential zones are labeled. For this example, we have a total of 36 rectangular

quarters (generated by Algorithm 1 presented below). Each quarter shows which

samples are included on it, e.g., quarter 1 include only the sample 1 but quarter

30 include the samples 4–9.

The soil samples are almost equidistant, in our example four soil samples

(two width for two long) are needed to cover an ha but this number can change

according to the farmer’s requirements. The total number of potential

zones j Z j can be computed by the following formula:

jZj ¼
XWidthF�MinWidthQþ1

i¼1

i

 ! XLengthF�MinLengthQþ1

j¼1

j

 !
:

The determination of all possible management zones is implemented by

Algorithm 1 from Cid-Garcia et al. (2013). The input of this algorithm is the soil

samples data, the number of samples in the width of the plot (WidthF), the number

of samples in the length of the plot (LengthF), the minimum quantity of samples the

width of a quarter must contain (MinWidthQ), and the minimum quantity of

samples the length of a quarter must contain (MinLengthQ). The algorithm starts

creating the smallest quarters width-wise. Then it checks if there is still some width

to cover. After, it checks the length.

Phosphorus (P)

27.31% above
optimal level.

10.34% above
optimal level.

Optimal level.

13.79% below
optimal level.

48.27% below
optimal level.

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40

Fig. 6.3 Thematic map for

a real plot using phosphorus

as chemical soil property
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Algorithm 1 Quarters generation of a plot

1: INPUT: WidthF, LengthF, MinWidthQ, MinLengthQ, soil samples

2: for j¼MinWidthQ To WidthF do

3: for l¼ 0 To (WidthF � 1) do

4: if ( j + l )�WidthF then
5: for i¼MinLengthQ To LengthF do

6: for k¼ 0 To (LengthF � 1) do

7: if (k + i)� LengthF then

8: creation of a new quarter

9: end if

10: end for

11: end for

12: end if
13: end for

14: end for
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Fig. 6.4 The 36 potential management zones or quarters of a plot
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The result of Algorithm 1 is a correspondence matrix C¼ {czs}, where czs¼ 1 if

quarter with label z covers sample point with label s, czs¼ 0 otherwise. Once all the

potential quarters are determined, we compute the variance of a particular soil

property for the set of the samples included in each potential quarter. For example, a

quarter that only covers a soil sample would have a variance of 0. A quarter that

covers three soil samples would have the variance computed from these three

samples. Also, there would be a quarter that covers all soil samples (i.e., there is

only one zone that is equal to the plot).

For an example about this instance generation stage, see Sect. 6.5. Next stage is

the mathematical model that requires the correspondence matrix of the potential

quarters together with their variances. For this purpose, let Z be the set of potential

quarters and S the set of soil samples of the field ( j S j ¼N ). Each quarter z has nz
soil sample points. Farmers do not wish to have tiny management zones because of

their machinery; so let LS be the maximum number of zones in the field while LI is
the minimum one. The set of decision variables of the BILP model is:

qz ¼ 1 if quarter with labelzis chosen;
0 otherwise:

�

The main idea is to cover the plot by a set of non-overlapping quarters. To

guarantee a homogeneous zoning delineation we use the relative variance since it

has been proved to be a high quality criterion to measure the efficiency of a zoning

method (Ortega and Santibáñez 2007; Cid-Garcia et al. 2013). Suppose a set of

quarters Q� Z is already selected, then the relative variance of Q is

RVðQÞ ¼ 1�
P
z2Q

σ2wz

σ2T
, where σT

2 is the total variance of all the field and sum of the

σ2wz
is the variance within each z2Q defined as follows:

X
z2Q

σ2wz
¼
P

z2Qðnz � 1Þσ2z
N � jQj : ð6:1Þ

Numerator in (6.1) considers the number of samples nz in quarter z (minus one

degree of freedom) as a weight and the denominator takes into account the number

of selected quarters (total number Nminus the number of quarters jQ j ). Therefore,
we have the following equation where variable α2 [0, 1] must be maximized to

have the highest homogeneity within the management zones:

1�

X
z2Z

ðnz � 1Þσ2z qz

σ2T N �
X
z2Z

qz

" #
0
BBBB@

1
CCCCA � α: ð6:2Þ
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The BILP model to determine the best management zones for a plot is as

follows:

min
X
z2Z

qz, maxα

( )
ð6:3Þ

s:t:
X
z2Z

czsqz ¼ 1 8s 2 S ð6:4Þ
X
z2Z

qz � LS ð6:5Þ
X
z2Z

qz � LI ð6:6Þ

1�

X
z2Z

ðnz � 1Þσ2z qz

σ2T N �
X
z2Z

qz

" #
0
BBBB@

1
CCCCA � α

α 2 ½0, 1�, qz 2 f0, 1g 8i 2 I

ð6:7Þ

Bi-objective function (6.3) minimizes the sum of the chosen zones (or potential

management zones) and maximizes the homogeneity within each management

zones (value of α). Restrictions (6.4) ensure that every point sample s is covered
by only one zone, i.e., the whole field is partitioned into non-overlapping zones.

Constraints (6.5) and (6.6) limit the number of zones in which the plot will be

partitioned. Restriction (6.7), which can be easily linearized, corresponds to the

relative variance.

In Sect. 6.5 we prove that the objective functions considered by BILP are

conflicting. For the kind of bi-objective problems as BILP, there are many

solutions that optimize both objectives. The set of non-dominated solutions (for

non-dominated solution there are no other solutions that improve an objective

without worsening the other one) represents the trade-off set satisfying both

objectives. This trade-off curve is known as the Pareto front and we compute

it using the ε-constraint method (Marler and Arora 2004; Ehrgott 2005).

This ε-constraint method optimizes one of the objective functions using the

other one as constraint of the model. In our case we have, if we apply the

ε-constraint method we get the following problem for an α that is fixed and not

anymore a decision variable.
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min
X
z2Z

qz

s:t: ð6:4� 6:6Þ

1�

X
z2Z

ðnz � 1Þσ2z qz

σ2T N �
X
z2Z

qz

" #
0
BBBB@

1
CCCCA � α

qz 2 f0, 1g 8i 2 I

ð6:8Þ

By using a parametrical variation of the values of α, the efficient solutions of the

problem can be obtained. Indeed, in our case α acts as the ε of the method.

Once that we have the Pareto front, the next step is to choose a solution from it

that satisfies the farmer’s requirements and that guarantees the wished homogeneity

within each zone. Experimental results of this bi-objective model in HAP are

presented in Sect. 6.5.

6.3 Crop Planning Problem and Selection of the Best
Management Zones

We first summarize the CPP problem presented in Cid-Garcia et al. (2014) and then,

in Sect. 6.3.2, we show how to use it in order to select the best solution among the

Pareto front obtained by R&H-MZ.

6.3.1 Crop Planning Problem

After the chemical and physical management zones have been obtained by R&H-

MZ, the second decision in HAP is which crops i to plant in the different plots j by
taking into account the soil properties of the physical and chemical management

zones that were previously delineated. In this section we present an integer linear

programming (ILP) to solve CPP which improves the model presented in Cid-

Garcia et al. (2014) since it introduces the chemical and physical management

zones of the plots.

Let I be the set of the different crops a farmer could plant, J the set of plots of

the farmer’s field, ZPh( j) the set of physical management zones within plot j,
while ZCh( j) the set of chemical management zones of j. Data we use for the ILP

mathematical model is described in the following list.

• Gi is the expected benefit of selling a ton (tn) of crop i at the end of the

production cycle.

• Cirrjz is the cost of irrigating one cubic meter (m3) of water in plot j and physical
zone z2 ZPh( j).
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• Cseedi is the cost of buying a kilogram (kg) of seed of crop i.
• Cplantijz is the cost of planting an hectare (ha) of crop i in plot j, and chemical

management zone z2 ZCh( j).
• haj is the number of ha of plot j.
• hacjz corresponds to the number of ha in chemical management zone z2 ZCh( j)

of plot j.
• hapjz corresponds to the number of ha in physical management zone z2 ZPh( j)

of plot j.
• Iseedi is the quantity of seeds in kg of crop i in the farmer’s stock.

• Seedi is the quantity of seeds in kg needed to plant a ha of crop i.
• Yi is the expected yield in tn by ha of crop i at the end of the production cycle.

• Di is the demand in tn of crop i 2 I⊊I where is a subset of the crop set I. This is
to model situations where a farmer is payed in advance for some yields of a

specific crop.

• W is the expected total amount of water in m3 for all the production cycle.

• Wijz is the expected amount of water in m3 needed for irrigating a ha planted

with crop i in plot j in physical management zone z2 ZPh( j).

Parameter Wijz can be obtained either by historic data or by deriving it from

the Penman–Monteith equation (Allen et al. 2006):

ETcvi j ¼ ETov � Kcvi j ð6:9Þ

where ETcij
v is the crop evapotranspiration that represents the amount of water

(in mm) required by crop i at phenological stage v for plot j, ETov is the reference
crop evapotranspiration that expresses the evaporating power of the atmosphere

(in mm) during phenological stage v. The crop coefficient Kcij
v values change from

crop to crop, phenological stage of the crop v, and geographic location j. Then, total
expected amount of water consumed by crop i planted in plot j and situated in

physical management zone z2 ZPh( j) throughout the production cycle (Wijz) is the

sum of all the expected amount of water required by crop i planted in plot j for each
vegetative stage v (ETcij

v) minus the sum of all the stored water in plot j in physical

management zone z2ZPh( j) at each vegetative stage v (SWjz
v):

Wijz ¼ 10
X
v

ETcvi j

 !
�
X
v

SWv
jz: ð6:10Þ

The assignment variables for the CPP integer linear programming model are:

xij ¼ 1 if crop i is planted in plot j;
0 otherwise:

�

Finally, variables si correspond to the amount of seeds the farmer must buy of crop i
in kg, i2 I.

140 V.M. Albornoz et al.



max
X
i2I

X
j2J

xij � Gi � Yi � ha j � xij
X

z2ZChð jÞ
Cplantijz � hac jz

2
4

�xij
X

z2ZPhð jÞ
Cirr jz �Wijz � hap jz

3
5�

X
i2I

si � Cseedi
ð6:11Þ

s:t:
X
i2I

xij � 1 j 2 J ð6:12ÞX
j2J

X
z2ZChð jÞ

Yi � hac jz � xij � Di i 2 I ð6:13Þ
X
j2J

X
z2ZChð jÞ

Seedi � hac jz � xij � Iseedi þ si i 2 I ð6:14Þ

X
i2I

X
j2J

X
z2ZPhð jÞ

Wijz � hap jz

2
4

3
5xij � W

si � 0, xij 2 f0, 1g i 2 I, j 2 J

ð6:15Þ

Objective function (6.11) maximizes the total expected benefits: first term represents

the benefits of selling the expected yields of each crop planted in each plot, second

one corresponds to the cost of planting the crops in each one of the plots (it includes

fertilizers and pesticides that each chemical management zone would require), third

term is about the irrigation costs per plot and per physical management zone, finally,

we have the cost of buying seeds.

Restrictions (6.12) guarantee unique assignment of a crop i to each plot j.
Restrictions (6.13) specify that there are some crops i that must be planted in

order to satisfy a certain demand Di but only for crops in Ī� I. Restrictions (6.14)
determine the amount of seeds needed and also the amount of seeds that must be

bought. Restrictions (6.15) establish that the expected amount of water needed to

irrigate the crops must be sufficient for the whole production cycle.

Notice that we are supposing that any crop i can be planted on any plot j. In
the case where some crops could not be planted in a specific plot (due to soil cycles,

or experience), we could easily introduce the notation J(i) corresponding to the set

of plots where i can be planted and analogously, I( j) would be the set of crops that

can be planted on plot j.
The CPP is a NP-hard problem which has an ILP that is elegant enough to

optimally solve real size instances by a branch-and-bound algorithm in less than 1 s

as it can be seen in Sect. 6.5.

6.3.2 Selection of the Best Management Zones

After the Pareto front has been obtained by R&H-MZ, the next step is to select the

best delineation of chemical and physical management zones in each plot of the
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farmer’s field, that is, the delineation that gives the best profit at the end of the

production cycle.

It is difficult for the farmer to establish a criterion to chose between a delineation

with α¼ 0. 7 or α¼ 0. 5 (Ehrgott 2005). Therefore, we execute CPP for each

solution of the Pareto front of R&H-MZ and selected the management zones that

gives the best farmer profit.

Figure 6.5 shows an example about this procedure. We show the delineation

resulting of R&H-MZ for a plot using α values of 0.5, 0.7, and 0.9. After executing

CPP, we obtain that the best delineation is obtained with alpha value of 0.5. This

manner, the farmer does not have trouble to specify which solution is better in the

Pareto front because the HAP procedure does it for the farmer.

6.4 Real-Time Irrigation Problem

Suppose that a drought arises once the crops have already been planted in the plots.

How to choose the crops that need to be irrigated to optimality, the crops that would

be in deficit irrigation, and the crops that would not be irrigated at all (until the point

to let a crop die) in order to maximize the benefits at the end of the production cycle?

The production cycle of each crop is divided in different irrigation periods, then,

at the beginning of each irrigation period the farmer must decide how much water

must be assigned to each plot according to their water requirements in real time,

Plot Soil diversity

Management zones

Best
Management zone

 = 0.5

 = 0.7

 = 0.9

 = 0.5

Fig. 6.5 Selection of the best management zone
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to maintain the maximum crop yield at the end of the production cycle. For this, we

use the information of water sensors placed in each one of the physical management

zones of the plots. Notice that the aim is to have the maximum possible yields at the

end of the production cycle considering that each crop has different vegetative

cycles and different needs of water. If there are no water shortages, the crops must

be irrigated to optimality. If there are water shortages, then the farmer needs to

decide which crops is better to put under deficit irrigation.

The crop water production function (Doorenbos et al. 1986) is given by

Ya p
ij

Ym p
ij

¼ 1� Ky p
i 1�

X
z2ZPhðJÞ

ETa p
ijz

ETc p
ijz

0
@

1
A ð6:16Þ

where the only unknown parameter is Yaij
p that corresponds to the real yields of

crop i planted in plot j at period p. Ymij
p is the maximum yield reached by crop i in

parcel j at last irrigation period p. When p is the first irrigation period, Ymij
p is the

harvested yield of crop i under an optimal growing environment, i.e., the yield of

the crop is not limited by water, nutrients, pests, nor diseases.

ETcijz
p represents the maximumwater requirements of crop i in plot j and physical

management zone z2 ZPh( j) at period p. This is expressed by the sum of all the

rates of evapotranspiration in mm per phenological stage v since the last irrigation
period minus the sum of all the amount of stored water in plot j in physical

management zone z2ZPh( j) of each vegetative stage v since the last irrigation

period p (Allen et al. 2006). This value can be computed by Eq. (6.9) presented in

Sect. 6.3. Based on Eq. (6.10), the amount of water in m3=ha needed by crop

i planted in physical management zone z2 ZPh( j) of plot j for irrigation period p is

ET c p
ijz ¼ 10

X
vð pÞ

ETcvij

0
@

1
A�

X
vð pÞ

SWv
jz: ð6:17Þ

where v( p) represents all the vegetative stages in irrigation period p.
ETaijz

p represents the amount of stored water in the soil of plot j in physical

management zone z2 ZPh( j) at current irrigation period p plus the amount of water

supplied at current irrigation period. The water level stored in each one of the

physical management zones of the plots, before the current irrigation, is determined

by a moisture sensor in real time.

Response factorKyi
p represents the relationship between water and yield for crop i.

These values are crop specific and have different values at each irrigation period p.
At the beginning of each irrigation period, the farmer knows the volume of

available water. This volume may not be the expected one, therefore some crops are

not going to be optimally irrigated. For each irrigation period p a Linear Program-

ming (LP) must be solved to obtain the amount of water to be irrigated in each
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physical management zone to maximize the expected total benefit. The parameters

needed to formulate the LP model for RTIP are listed below:

• Gi
p expected benefit of selling a tn of crop i at the end of the production cycle

given that we are at period p. Indeed, this value is known at the beginning of each
irrigation period p but it can vary from period to period.

• γ( j)¼ i is a function that indicates that crop i is sown in plot j (this is obtained
from the solution of CPP).

• ETcijz
p corresponds to the real amount of water in m3=ha that crop i needs in

physical management zone z2 ZPh( j) of plot j at period p. It is easy to compute

which vegetative stages v corresponds to crop i at period p, so we omit cumber-

some notation.

• hapjz is the number of hectares in physical management zone z2 ZPh( j) of plot j.
• SWjz

p is the amount of water that already exists in physical management zone

z2 ZPh( j) of plot j at the beginning of irrigation period p. This information is

retrieved from the humidity sensors in m3=ha.
• Wp represents the amount of available water for irrigation period p.
• Kyi

p is the yield response factor of crop i corresponding at period p.

• y
p�1

jz is the maximum crop yield in tn=ha in physical management zone

z2 ZPh( j) of plot j reached at previous irrigation period p.

The variables used in the formulation of the RTIP model are listed below:

• wjz
p is a variable representing the amount in m3 of irrigated water in physical

management zone z2 ZPh( j) of plot j at period p.
• y p

jz represents the current total crop yield in tn=ha reached in physical manage-

ment zone z2 ZPh( j) of plot j computed after current irrigation period p.

The LP for RTIP is as follows:

max
X
i2I

G p
i

X
f jjγð jÞ¼ig

X
z2ZPhð jÞ

hap jz � y p
jz

0
@

1
A

s:t: y p
jz ¼ y

p�1

jz 1� Ky p
γð jÞ 1� w p

jz þ ðSW p
jz � hap jzÞ

ETc p
ijz � hap jz

 ! !

i 2 I, f j j γð jÞ ¼ ig, z 2 ZPhð jÞ

ð6:18Þ

X
j2J

X
z2ZPhð jÞ

w p
jz � W p ð6:19Þ

w p
jz þ ðSW p

jz � hap jzÞ � ETc p
ijz � hap jz

i 2 I, f j j γð jÞ ¼ ig, z 2 ZPhð jÞ ð6:20Þ

X
f jjγð jÞ¼ig

X
z2ZPhð jÞ

y p
jz � hap p

jz � Di i 2 I

w p
jz,y

p
jz � 0 j 2 J, z 2 ZPhð jÞ

ð6:21Þ
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Objective function maximizes the expected total yield revenues: the price per tn

times the total number of ha times the current crop yield (tn=ha), for all crops
planted in the different plots of the field.

Restrictions (6.18) correspond to the current yield reached after irrigation

period p. It is based on the crop water production function (6.16) where term ETaijz
p

is equal to wp
jz þ ðSW p

jz � hapjzÞ, i.e., the amount of water irrigated at period p plus

the already existing water that is indicated by the humidity sensor. By Eq. (6.17),

the maximum water requirements are ETcijz
p � hajz. Restriction (6.19) is about the

available water the farmer can use for the irrigation of its plots during period p.
Restrictions (6.20) indicate that the real amount of water ETaijz

p cannot exceed the

maximum (or optimal) amount of water ETcijz
p required by crop i in plot j in physical

zone z2 ZPh( j) at irrigation period p. Restrictions (6.21) determine that current

yield reached by the crop i2 I0 at period p must satisfy the demand negotiated

beforehand by the farmer.

RTIP is a linear programming that can be solved in an efficient way as we show

in Sect. 6.5.

6.5 Experimental Results

In this section we empirically show that the HAP methodology is valid and efficient

for a real size instance. For R&H-MZ we use the data from a plot called “Quilaco”

presented by Cid-Garcia et al. (2013). CPP and RTIP use crops data from Cid-

Garcia et al. (2014) where we use an instance of a field constituted by a set J of

10 plots and a set I of 19 possible crops to be sowed.

The HAP was executed on a Virtual machine with Windows 7 fitted with 1 GB of

RAM and a processor Intel Core 2 Duo of 3.06 GHz running on a IMAC equipped

with the same processor and 4 GB of RAM. For R&H-MZ and CPP we used the

linear integer branch-and-bound algorithm of GAMS/CPLEX 12.2 using default

options, except for the optimal criterion fixed at 0. For RTIP we use the linear

programming solver of GAMS/CPLEX 12.2 with default parameters. Specific

parameters for each stage of the HAP methodology are presented in the following.

6.5.1 Rectangular and Homogeneous Management Zones

In this section two delineations of rectangular and homogeneous management zones

are made for each one of the plots. The delineation with chemical soil properties is

used in CPP to determine the expected amount of nutrients (fertilizers, pesticides,

etc.) that the crops require in the whole production cycle, while the delineation with

physical soil properties is used in CPP and RTIP to determine the expected amount of

water required by the crops in the whole production cycle and the amount of water

required by the crops during each irrigation period, respectively.
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The procedure performed in the delineation of management zones is similar for

both physical and chemical soil properties. Then, we only present an example for

“Quilaco” using as specific chemical soil property the organic matter (OM).

In the instance generation phase of R&H-MZ we create all the possible quarters

that could be a management zone in the plot (see Fig. 6.4) using the Algorithm 1

and information about the soil samples of the plot.

Table 6.1 shows the soil samples of “Quilaco.” This field has 256m width and

305.6m long (around 7.82 ha). There have been taken 40 soil samples that are

approximately spaced by 50m one from each other, so four soil samples are needed

to cover an ha. Each soil sample is labeled (first and fourth column of the table) and

their positions are translated into a Cartesian map, coordinates (x, y) (second and

fifth column of the table). Finally, the information about each chemical soil

property is presented: pH, organic matter (OM), phosphorus (P), and sum of

bases (SB) determined by the CH3COONH4 method of INIA (2006). A similar

table could be presented for the physical soil properties such as field capacity, water

holding capacity, and permanent wilting point.

From the thematic map for “Quilaco” of the OM property, we determine that the

minimum size of a quarter contains a single sample width (MinWidthQ¼ 1) per one

sample of length (MinLengthQ¼ 1) since there is a lot of diversity.

Afterwards, the 588 possible quarters are generated and labeled by Algorithm 1.

Then, Table 6.2 allows to see the structure of the correspondence matrix of

“Quilaco” for organic matter, except by the last column that corresponds to the

variance of the different soil samples that are contained in quarter with label z.
Most of the fields are not initially rectangular, so the R&H-MZ method inserts

dummy soil samples to fill a rectangle where the field can be contained. This is the

reason why Table 6.2 is composed of 42 samples. The dummy samples are also

equidistant with respect to the others. Nevertheless, their data about the properties is

very high with respect to the real samples. This manner, the mathematical model

puts these dummy soil samples alone in a zone or with other dummy samples which

facilitates their elimination afterwards.

Table 6.3 presents the experimental results of ε -constraintmethod applied to the

R&H-MZ for the “Quilaco” instance. First column is the alpha parameter (ε value)
that determines the homogeneity level in each selected quarter. The higher the α,
the more homogeneous the management zones. Second column is the number of

quarters (zones) used to partitioning the plot (we want to minimize the number of

management zones). Last column is the solution time in seconds required by the

solver to obtain the optimal solution computed by the branch-and-bound algorithm

of GAMS/CPLEX 12.2.

With Table 6.3 we empirically prove that minimizing the number of manage-

ment zones and maximizing the homogeneity within each zone are conflicting

objectives. We can also notice that the computing times are negligible. This implies

that we can compute the exact Pareto front in an efficient way which is a remarkable

characteristic.

Figure 6.6 shows the exact Pareto front for “Quilaco” using organic matter

as chemical soil property. The x-axis represents the value of alpha and the y-axis
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shows the optimal number of zones obtained for partitioning the plot. Here we

partition the α rank [0, 1] in subintervals of 0.1. We could easily do a more dense

partition.

Once that we have the Pareto front, the next step is to choose the solution from

this front that satisfies the farmer’s requirements and guarantees homogeneity in

each selected quarter. In this case, only solutions with α greater or equal than 0.5

guarantee homogeneity in the selected zones (this value is given by an agricultural

expert). In Fig. 6.7 is presented the chemical management zones resulting after

partitioning the field “Quilaco” using organic matter as soil property and α values of
0.5, 0.7, and 0.9 (left to right maps). We can observe that if α increases, then the

number of quarters increases too.

Table 6.3 Experimental

results for R&H-MZ
α Quarters Time

0 1 0.296

0.1 3 0.227

0.2 5 0.237

0.3 6 0.291

0.4 7 0.229

0.5 9 0.211

0.6 11 0.241

0.7 14 0.251

0.8 17 0.241

0.9 20 0.231

1 40 0.225
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Fig. 6.6 Pareto front for “Quilaco” using organic matter as chemical soil property
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With R&H-MZ method we have the chemical and physical management zones

of all the plots of the field. Then, with this information, HAP decides which crops to

plant in each one of the plots.

6.5.2 Crop Planning Problem

In this section we first selected the best delineation of chemical and physical

management zones, in each plot of the farmer’s field, executing CPP model in

each solution of the Pareto front given by R&H-MZ (see Fig. 6.6). Once we have

the best chemical and physical management zones, CPP uses this delineation to

generate the optimal crop pattern that maximizes the farmer’s profit at the end of the

production cycle. In this stage, we use the same crops than Cid-Garcia et al. (2014)

and 10 plots with their respective best physical and chemical management zones

obtained by R&H-MZ.

The total number of ha is 81 and the total expected amount of available water for

the whole production cycle is 486, 000m3 (we assume that we have the maximum

limit of water per ha, established by CONAGUA1: 6, 000m3 per ha.) The irrigation

costs Cirrjz for each one of the plots j is chosen at random between 1.8 and 2.2 per m3

(these parameters are based on real data).

General information of plots and the number of their physical and chemical

management zones are shown in Table 6.4. First column is the label of the plot,

second and third columns are the number of physical and chemical management

zones in each plot, and last column is the total number of ha in each plot.

In Table 6.5 the crops used in the instance are presented. They correspond to the

crops that can be sown in Michoacán, Mexico, during the production cycle of

spring–summer (data of 2008 from SAGARPA2). First and second columns are

Fig. 6.7 Management zones for “Quilaco” using organic matter as chemical soil property and

alpha values of 0.5, 0.7, and 0.9

1 The Mexican national water commission.
2Mexican ministry of agriculture, livestock, rural development, fisheries, and food.
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the identification number (ID) and name of the crop i. Third column shows the

expected yield Yi of the crop i in tn=ha at the end of the production cycle.

Fourth column is the amount of seeds Seedi in unit=ha needed to sown crop i. The
term unit represents kg, plants or packages. Sowing costs Cplantijz in plot j within
chemical management zone z2 ZCh( j) in $=ha and seed costs Cseedi in $=unit of crop
i are presented in the fifth and sixth columns, respectively. The expected benefit Gi of

selling a tn of crop i at the end of the production cycle is shown in the last column.

Table 6.4 General

information of plots
Plot ZPh( j) ZCh( j) haj

1 2 4 10

2 4 3 17

3 2 2 4

4 4 1 7

5 1 2 3

6 2 4 9

7 1 2 6

8 2 3 11

9 2 1 4

10 2 4 10

Table 6.5 Crop data from spring–summer cycle in the state of Michoacán, Mexico

ID Crop i
Expected

yield Yi

Seed

amount

Seedi

Sowing

cost

Cplantijz

Seed

cost

Cseedi

Expected

benefit Gi

1 Sesame TCS 0.60 4 2,318.00 10.00 13,681.80

2 Sesame TMF 0.50 4 8,117.91 10.00 13,681.80

3 Onion BMF 40.60 12,500 69,251.08 0.15 3,381.17

4 Green pepper BMF 24.70 12,500 106,121.91 0.15 4,923.99

5 Strawberry BMF 20.40 85,228 74,543.27 0.11 3,943.97

6 Strawberry GMF 20.40 85,228 48,533.07 0.11 3,493.97

7 Corn grain BCF 4.85 25 10,273.02 17.10 4,373.49

8 Corn grain BMF 5.38 25 10,013.49 17.10 4,373.49

9 Corn grain GCF 4.85 25 9,693.02 17.10 4,373.49

10 Corn grain GMF 5.38 25 10,668.41 17.10 4,373.49

11 Corn grain TCF 2.41 25 10,512.40 17.10 4,373.49

12 Sorghum grain BMF 8.31 324 12,022.65 1.50 3,491.25

13 Sorghum grain GMF 8.31 324 7,891.88 1.50 3,491.25

14 Sorghum grain TMF 4.71 324 6,674.43 1.50 3,491.25

15 Red tomato BMF 38.10 12,500 75,259.74 0.56 2,171.99

16 Red tomato GMF 38.10 12,500 74,440.68 0.56 2,171.99

17 Green tomato BCF 16.20 12,300 50,574.63 0.15 3,416.17

18 Green tomato BMF 17.80 12,300 41,867.90 0.15 3,416.17

19 Green tomato TCF 2.70 12,300 34,056.14 0.15 3,416.17

The 19 crops and their related information were obtained from SAGARPA for the year 2008
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We assume that the demands that should be satisfied by the farmer of onion BMF,

green pepper BMF, corn grain BCF, and red tomato GMF (crops 1, 4, 7, and 16) are all

equal to 30. Finally, the stock of seeds Iseedi for all crops is equal to zero.

When HAP has previous information about the sowing costs Cplantijz of each

crop i, then this cost is specific for each chemical zone z2 ZCh( j) of each plot j.
In this research we take the same sowing costs of crops i for all the chemical zones

z2 ZCh( j) of all the plots j.
To calculate the total expected amount of water supplied Wijz to crop i in each

plot j in each physical management zone z2 ZPh( j) during the whole production

cycle, we use Eqs. (6.9) and (6.10). The parameters to compute these equations

were obtained from FAO and INIFAP.3 Crop coefficient values Kcij
v of crop i in

plot j for phenological stage v at irrigation period p and the duration of the

vegetative cycle of the crops were collected from FAO (Allen et al. 2006). Values

for crop reference evapotranspiration ETov at phenological stage v and for the

amount of water stored SWjz
v in plot j in physical management zone z2 ZPh( j) at

phenological stage v were obtained from INIFAP located in Zacatecas, Mexico.

These values correspond to averages of previous years.

Table 6.6 shows the total expected amount of waterWijz needed by crop i in each
physical management zone z2 ZPh( j) of plot j after computing Eqs. (6.9) and (6.10)

(data of ETov and SWjz
v are averages of the last 5 years). In this table we only present

the first ten crops of Table 6.5 related to two plots with four physical management

zones each one. First column is the plot j and second column is the physical

management zone z2 ZPh( j). The surface hapjz in ha of each physical management

zone z2 ZPh( j) is shown in the third column. The total expected amount of water

Wijz in needed by crop i during its production cycle in the plot j in each physical

management zone z2 ZPh( j) is presented in the rest of the columns. The instances

are generated such that each crop i consumes the same amount of water in the

physical management zones z2 ZPh( j) with the same ID. For example, crop

number 3 (onion) consumes 3, 418m3 in the physical management zone 1 of plots

1 and 2, while the same crop consumes 4, 081m3 in the physical management zone

4 of plots 1 and 2.

The result of CPP for this particular instance is an expected income of

$877,690.90 at the end of the production cycle. The crops that should be sown in

each plot are presented in Table 6.7. First column indicates the plot while second

column the crop sown on it. Notice that all the zones of each plot are planted with

the same crop, but the decision about which crop to plant strongly depends on the

chemical and physical characteristics of the zones of the plots.

Recall that CPP is used as a method to chose between the different management

zones delineations proposed by R&H-MZ. Here we have shown the CPP with the

best management zones, that is, the one that gives the best profits in CPP. With this

result, we now consider the operational plan of the irrigation decisions.

3 The Mexican national institute for forestry, agriculture, and livestock. There is a research center

INIFAP at every state, and therefore producers can get specific information depending on the

geographic location of their fields.
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6.5.3 Real-Time Irrigation Problem

In this stage it is already known which crops i have been sown in each one of plots j
(Table 6.7). The RTIP step of HAP decides the amount of water to be supplied on

each plot j during each irrigation period p to maintain the yields as high as possible

at the end of the production cycle.

Table 6.8 presents the parameters needed for RTIP at irrigation period p¼ 1.

First and second columns correspond to the plot j and the physical management

zone z2 ZPh( j). Third column is the yield response factor Kyγ( j )
p of crop i sown in

plot j at irrigation period p (plots with the same crops and planted at the same time

have the same factor), this parameter is obtained from FAO. Fourth column is the

amount of stored water SWjz
p in m3=ha in each physical management zone

z2 ZPh( j) of plot j before irrigating at period p. This information is given by the

humidity sensors (in this research we usedWATERMARK 200SS-V sensors). Fifth

column is the amount of water ETcijz
p in m3=ha needed by crop i in each physical

management zone z2 ZPh( j) of plot j at current irrigation period p. This data is

calculated with Eqs. (6.9) and (6.10) using information from INIFAP. Last column

is the maximum yield y
p�1

jz in tn=ha reached in each physical management zone

z2 ZPh( j) of plot j in the previous irrigation period p � 1. When p is equal to zero,

y
p�1

jz takes the value of the expected harvest yield of crop under an optimal

growing environment (this value is given by INIFAP or FAO).

We consider six irrigation periods for our experimental instance. Table 6.9

shows the experimental results for RTIP at period p¼ 1 with available water of

81, 000m3 which corresponds to a sixth of the total expected amount of water by the

production cycle (486, 000m3). First and second columns represent the plot and

the physical management zone. Third column is the amount of water supplied to the

crop in m3 at current irrigation period. Fourth column indicates whether the crop

was irrigated at optimal level or not. Finally, last column is the current expected

Table 6.7 Results of CPP Plot Crop

1 Sesame TCS

2 Onion TMF

3 Sesame TCS

4 Corn grain BCF

5 Red tomato GMF

6 Sesame TCS

7 Sesame TCS

8 Sesame TCS

9 Green pepper BMF

10 Sesame TCS

This output is used as input for RTIP
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yield in tn=ha reached after irrigating the plot. Optimal solutions were computed in

less than 1 s. At this period, the total amount of water is enough for irrigating all the

crops at optimal level. The total amount of water supplied to irrigate all the crops is

only 43, 268. 6m3 which corresponds to 53.4% of the total available water of the

period. Therefore, savings on water are made.

Table 6.10 presents the experimental results of the RTIP throughout the whole

production cycle. First column indicates the plot j and the second column the physical

management zone z2 ZPh( j). Third column is the expected harvest yield of crop

i planted in plot j under a growing environment, this is the parameter of maximum

yield by crop i of plot j only for the first period (Ymγ( j)
1). Fourth column indicates if the

irrigation level at period 1 (IL1) was optimal or not (“–” means that the crop was not

irrigated to optimal level). Fifth column shows the current yield of crop i of plot j
(Yaγ( j)

1) reached after irrigation at period 1, Yaγ( j)
1 is the parameter Ymγ( j)

2 for

the second period. Columns 6 and 7 are the same as above but for period 2, and so

on until period 6.

At periods 1 and 2 the crops are in their initial phenological stages, so they do not

consume too much water. All the crops are irrigated at optimal level and reach their

Table 6.8 Parameters of RTIP at irrigation period 1

Plot j Zone z
Yield response

factor Kyγ( j )
p

Stored

water SWjz
p

Required

water ETcijz
p

Maximum

yield y
p�1

jz

1 1 0.3 100 393.4 0.6

1 2 0.3 100 424.9 0.6

2 1 0.45 100 1,040.2 40.6

2 2 0.45 100 1,123.5 40.6

2 3 0.45 100 1,010.8 40.6

2 4 0.45 100 1,250.2 40.6

3 1 0.3 100 393.4 0.6

3 2 0.3 100 424.9 0.6

4 1 0.4 100 786.8 4.85

4 2 0.4 100 849.8 4.85

4 3 0.4 100 884.1 4.85

4 4 0.4 100 972.5 4.85

5 1 0.4 100 1,219.2 38.1

6 1 0.3 100 393.4 0.6

6 2 0.3 100 424.9 0.6

7 1 0.3 100 393.4 0.6

8 1 0.3 100 393.4 0.6

8 2 0.3 100 424.9 0.6

9 1 1.1 100 706.4 24.7

9 2 1.1 100 789.9 24.7

10 1 0.3 100 393.4 0.6

10 2 0.3 100 424.9 0.6
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maximum expected yield at the end of these periods. At period 3 there is no enough

water to irrigate all crops to optimum level, and the current expected yield of plot 2

in zones 2, 3, and 4, together with the current yield of plot 4 in zone 4, decrease

considerably with respect to the maximum yield.

Since there is no enough water to irrigate the crops to optimal level on their

flowering and yield formation stages, the current expected yield of plot 2 in zones

2, 3, and 4 decrease again at period 4 with respect to maximum yield of period 3. At

period 5, the current yield of plot 2 in zones 2, 3, and 4, the current yield of plot 5 in

zone 1, and the current yield of plot 9 in zones 1 and 2 decrease considerably. At

period 6 the crops are in their final phenological stage, so they do not consume too

much water (as the initial stages) and all of them are irrigated again to optimal level.

The model must comply with the established demand in the CPP (sesame, green

pepper, corn grain, and red tomato), so these crops have priority over the others.

The model can let die crops that do not have a fixed demand even if those crops

would generate more profit for the farmer. Table 6.11 shows the final yield reached

by each crop after each irrigation period. It is verified that the demand established in

the CPP is satisfied for each crop at the end of the production cycle (last irrigation

period).

Table 6.9 Experimental

results of RTIP at irrigation

period 1
Plot j Zone z

Supplied

water wjz
p

Irrigation

level

Current

yield y p
jz

1 1 880.20 Optimal 0.60

1 2 2,274.30 Optimal 0.60

2 1 3,760.80 Optimal 40.60

2 2 40,940 Optimal 40.60

2 3 6,375.60 Optimal 40.60

2 4 2,300.40 Optimal 40.60

3 1 586.80 Optimal 0.60

3 2 649.80 Optimal 0.60

4 1 686.80 Optimal 4.85

4 2 749.80 Optimal 4.85

4 3 3,136.40 Optimal 4.85

4 4 872.50 Optimal 4.85

5 1 3,357.60 Optimal 38.10

6 1 1,760.40 Optimal 0.60

6 2 974.70 Optimal 0.60

7 1 1,760.40 Optimal 0.60

8 1 14,670 Optimal 0.60

8 2 1,949.40 Optimal 0.60

9 1 1,819.20 Optimal 24.70

9 2 689.90 Optimal 24.70

10 1 1,173.60 Optimal 0.60

10 2 1,949.00 Optimal 0.60
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Finally, in Table 6.12 the expected profit achieved by the farmer at each

irrigation period after watering the crops is presented (notice that the sowing

costs are not considered here). First column indicates the irrigation period. Second

column is the amount of available water in m3 for irrigating crops (AW), and third

column is the real amount of irrigated water in m3 on crops (IW). Fourth column is

the percentage (%) of irrigated water (IW) with respect to the total available, and

the last column is the expected profit in $ achieved in the period. In the first two

periods the crops were irrigated at optimal level; therefore the farmer’s expected

profit remained at 100%. However, in periods 3, 4, and 5, there is a greater need of

water with respect to the total amount of available water in each irrigation period.

Water needed by the crops was not 100% satisfied causing a decrease of 50.46% in

the farmer’s profit that would never be recovered despite that in the period 6 all

crops were irrigated at 100% (see Fig. 6.8). So, at the end of the production cycle

the farmer’s profit is only 49.54% with respect to the total expected profit at the

beginning of the production cycle.

In Fig. 6.9 the yield reached in each physical management zone z2 ZPh( j) of plot
j after each irrigation period p is shown (periods 1, 3, 4, and 6).

RTIP guarantees to supply only the amount of water needed to satisfy the water

requirements of crops and avoid wastage. Thus, water can be stored to future

irrigation periods. Moreover, the farmer now has a decision tool that is relevant

when water shortages arise.

Table 6.11 Final total yield reached by the crops after each irrigation period

Irrigation

period

Final yield (tn)

Sesame

TCS

Green pepper

BMF

Corn grain

BCF

Red tomato

GMF

Onion

TMF

1 30 98.80 33.95 114.30 690.20

2 30 98.80 33.95 114.30 690.20

3 30 98.80 30.00 114.30 464.60

4 30 98.80 30.00 114.30 329.80

5 30 36.39 30.00 41.65 291.52

6 30 36.39 30.00 41.65 291.52

Table 6.12 Final expected

profit reached by the farmer

at each irrigation period

Period AW (m3) IW (m3) IW (%) Profit ($)

1 81,000 43,269 53.4 3,627,366.19

2 81,000 43,269 53.4 3,627,366.19

3 81,000 81,000 100 2,847,269.31

4 81,000 81,000 100 2,391,531.03

5 81,000 81,000 100 1,796,976.97

6 81,000 49,449 61.1 1,796,976.97
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6.6 Conclusions

Physical and chemical soil properties existing in agricultural production plots are an

important characteristic that should be considered in the agricultural planning

process. Chemical soil properties affect the application of inputs (fertilizers,

pesticides, etc.), while physical soil properties are related to water use.

In this work we propose a new approach named as Hierarchical Agriculture

Planning (HAP) for helping the decision makers (the farmers) to plan and operate

their plots in order to avoid wastage and to maximize their benefits considering the

soil diversity. In this hierarchical approach the farmers start by delineating the field

into rectangular and homogeneous site-specific chemical and physical management

zones to face within-field variability. Then the farmers assign a crop to the different

plots to obtain the best profit at the end of the production cycle (CPP). Finally, in

each irrigation period the farmer must decide how much and which plots must be

watered to maximize the total final yields (RTIP).

Experimental results show that the new hierarchical approach is efficient and

practical since optimal solutions are obtained in seconds.
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Chapter 7

Optimal Transport Planning for the Supply
to a Fruit Logistic Centre

Esteve Nadal-Roig and Lluı́s M. Pl�a-Aragonés

7.1 Introduction

Supply chain planning has been studied intensively in recent years (Catalá

et al. 2013) in particular for production and transport planning (Mula et al. 2006;

2010), but less in the agri-food industry (Ahumada and Rene Villalobos 2009).

Ahumada and Rene Villalobos (2009) distinguish two main types of agricultural

supply chains: fresh and non-perishable agri-food chains. They review fresh prod-

ucts paying attention to their logistical complexity, their limited shelf life and the

interest of the public on the safety of these products. On the other hand, according to

Verdouw et al. (2010) fruit supply chains exhibit some food-specific characteristics

such as long lead times, seasonable production, quality variations between pro-

ducers and plots, fast handling, short delivery time to preserve freshness and special

storage conditions and packing demands (Trienekens et al. 2012). Hence, fruit

supply chain planning is a complex system involving the interaction of different

agents in charge of production, processing, storing and distribution (Fig. 7.1).

The fruit industry is very important in Europe being the EU a major fruit

producer. The majority of fruit production in the EU takes place in southern

countries like Spain, expecting a significant increase in following years as response

to fruit demand (Verdouw et al. 2010). According to the FAOStat in 2011, the rank

of Spain in the world for selected fruits was: third one for peaches and nectarines,

fifth one for cherries, sixth one for pears and eighth one for plums (FaoStat 2013).

Within the EU-27 the role of Spanish fruits is also important being the first producer
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of nectarines, the second producer of pears, cherries and peaches, the third producer

of plums and the sixth producer of apples (Eurostat 2013). Such a position has

stimulated the Spanish fruit industry to evolve, becoming very competitive and

looking for a more efficient management of supply chains.

Logistics of fresh fruits is a problem related with the balance between the price

achievable in the market and the quality of the product. Quality is related with

parameters like sweetness, crunchiness and strengthens, connected in some way

with the optimal ripeness of the fruit. The fresh fruit sector is affected by season-

ality, understood here as the production of fresh fruits during a limited period of

time (Hester and Cacho 2003). This time period is variable depending on the decay

of the fruit variety and the admissible means of preservation. There are fresh fruit

varieties that have to be consumed rather quickly after harvesting like apricots,

cherries and berries in general. Other fruits can complete more slowly the matura-

tion process after harvesting and then enlarge their marketing time window. Even

though, there are environmental conditions during storage and transportation that

can be used to regulate fruit quality in some extension like cooling, temperature

control or controlled atmosphere.

The motivation of this chapter is the PP operating with limited storage capacity,

so fruits to be processed have to be transported from intermediate storage centres.

This chapter aims to formulate a mixed integer linear programming model

to optimise the transport planning of fruit varieties from storage centres (SCs) to

a packaging plant (PP) for being processed upon demand to cover daily orders.

The main interest of the decision maker is to avoid idle times at the PP and the stock

breaking of fruits to be processed. Then, the PP has to maintain a rolling stock to

cover committed orders without stopping the processing line. An additional interest

concerns the distribution of workload among trucks and drivers available.

Depending on the demand, the model may suggest the opening of a controlled

atmosphere SC. Then, the model organise the transports from the cooperatives

supplying convenient fruit varieties to the PP, maintaining a stock capable of

satisfying the daily demand from the customers.

As a case study, the model is applied to a fruit logistic centre (FLC) located in

one of the most important production areas of fresh fruit of Spain, in Lleida.

However the FLC has special features, the model has been developed in general

terms for being applied on most fruit supply chains worldwide.

Transport Transport Transport
Production

Storage
(SC)

Distribution
(PP) Retailer

Fig. 7.1 General fruit supply chain structure
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7.2 Problem Description

Supply chain structure may vary from country to country having different

configurations, but sharing characteristics inherent to the fruit industry (Verdouw

et al. 2010). A generic fruit supply chain is shown in Fig. 7.1, adapted from the

modelling approach presented by Rong et al. (2011). During the harvesting season,

the different fruit varieties are usually picked and collected in pallets by farmers

who deliver them to the SC or PP, either to be stored or processed (Broekmeulen

1998). Sometimes, SCs are close or part of a PP, depending if the PP is operated by

the same company or cooperative or if fruits are distributed quickly or not. Some

fruits like apples and pears can be stored for long, others not so, like peaches and

some very little like cherries or apricots. However, in all cases, cooling systems is

an element to consider for controlling the maturation process and the decay of

fruits. This way, apples and pears are available during all year if they are stored in

controlled atmosphere while the rest of fruits produced in Europe have a limited

marketing time window.

Producers transport harvested fruits to the SC. Regular SC send fruits to the PP

in few days or weeks. However, SCs with controlled atmosphere have to be filled

with fruits and closed for a longer period. Facilities with controlled atmosphere

allow fruits to be stored up to 12 months, but they have to be only opened when all

the content is going to be retrieved for processing in the PP. The PP is in charge

of washing, sorting and grading of fruits; packaging and labelling in the end

of packaging lines. Afterwards, fruits are distributed to retailers to fulfil the day-

to-day orders. Operation at PP has to be planned beforehand because ordered fruits

have to be processed on time. Transports have to be also planned according to

the availability of trucks and drivers even when these activities are outsourced

(Hsiao et al. 2010).

A usual fruit supply chain may involve different producers that supplies fruits

during the harvesting season to a PP, where they are processed and delivered to

the consumer by different retailing channels. The number of PPs may depend

on the size of the company and the number of producers, but it is agreed that a PP

is the core of the fruit supply chain from a tactical point of view (Blanco

et al. 2005). Two main functions are assigned to a typical PP: warehousing and

distribution. However, the problem studied here relies on a structure of the supply

chain keeping warehousing and distribution apart. Let’s consider fruit producers

grouped in cooperatives. Individual cooperatives only have storage capacity and

thus, the warehouse function is deployed by them. The distribution function,

including processing activities, is centralised in the so-called FLC where all

orders are concentrated and served. Orders are fulfilled by the fruits stocked in

the cooperatives. The FLC manages the logistics of the chain, that is, the plan-

ning, implementing and controlling the efficient cost-effective flow and storage of

fruits, in-process inventory, distributed fruits and related information from
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producers and retailers for the purpose of conforming the customer requirements

(Van Goor et al. 2003). Thus, according to Manzini and Accorsi (2013) the FLC,

as crucial node in the chain, can contain the main source of inefficiency, waste and

uncontrollable costs throughout the fruit supply chain.

The long-term storage can be of two types: cooling storage or controlled

atmosphere storage. Once a storage is open the preservation chain of fruits is

broken and the maturity process progress again making necessary to empty the

storage before opening a new one. An issue is the continuous supply of fruits to

the centre for a non-stop operation of the packing lines. Fruits have to be sorted out

the storages few days before shipping to recover natural properties related to

follow-up a good maturity process. Fruits sent by cooperatives to the logistic centre

are shipped the same day, but the FLC is who select the suppliers and determines

which storage facilities to open. Only a secure inventory is maintained permitting to

start up the following day. Then, the logistic centre acts as a PP but without storage

capacity which relies on the cooperatives.

The flow of fruits managed from the logistic centre varies along the year. More

transport capacity is needed during the harvesting season. There is an increment

of transports from fields to cooperatives, among cooperatives and from coopera-

tives to the FLC (Fig. 7.2). Transports from fields are done by farmers while those

to the FLC are planned and controlled by the logistic centre. Out of the harvesting

season transports from fields and among cooperatives disappear and only remain

the flow from cooperatives towards the FLC. The reason is because not all fruit

are available all-round the year. There are perishable fruits with a limited mar-

keting window. No technical means of decay control are feasible for them.

However, apples and pears can be preserved in controlled atmosphere and

marketed out of the harvesting season.

Fruit Logistic Center

Storage #1 Storage #K

Producer #2 Producer #NProducer #1

Storage #2

Fig. 7.2 Possible paths followed by fruits from producers till the fruit logistic centre
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7.3 Modelling of the Transport Planning Problem
of a Fruit Logistic Centre

Transport planning in an FLC is a task with a variable workload depending on the

daily demand of fruits, the arrival of new orders and the number of trucks available.

The problem modelled here represents the operational planning for a day. The

demand of fruits is defined for the next day and the manager makes the planning

with which the activity in the FLC will start the following day. However, new orders

may arrive or changes in priorities can be introduced. These unforeseen changesmay

force to refine or redo the original planning again changing the schedules for truck

drivers and suppliers. It is in this context that the following model is formulated.

7.3.1 Decision Variables

There are two sets of decision variables according to the quantity of goods to be

delivered and the number of trucks needed to perform these operations. The first

one, Xifcv, represents the quantity of fruit to be transported in kilograms from the

cooperatives of producers to the logistic centre, where the subscripts: i represents
the cooperative of producers to procure the fruit (i¼ 1, 2, . . . , |I|); f represents the
variety of the fruit ( f¼ 1, 2, . . . , |F|); c represents the category of the f-fruit
(c¼ 1, 2, . . . , |C|) and v represents the truck to be used (v¼ 1, 2, . . . , |V|). The

second one, the binary variables Yiv2 [0, 1] are defined to represent the expected

numbers of trips for the truck v from the cooperative i to the logistic centre.

The total number of decision variables varies from season to season and

depending on the number of storages used to preserve and deliver fruits in winter.

These fruits are also apples and pears of different varieties and categories.

7.3.2 Objective Function

The primary objective is the minimization of the daily cost of transport. This results

in a minimum number of trips that allows the FLC to satisfy the demand.

Depending on the unitary cost coefficients, they can be easily adapted to represent

distances, load in kilograms or cost in euros.

minC ¼ min
X

i

X

v

ciYi,v

This is in other words, the minimisation of the sum of the transport cost from the

cooperative i to the FLC, given the number of trips to perform, Yi,v, are covered by

the truck v. A secondary result interesting for practical purpose is the schedule of

transports derived from the optimal solution.
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7.3.3 Constraints

7.3.3.1 Nature of Daily Demand of Fruits

The daily demand is given by the sum of all customer orders confirmed for the day

and that must be delivered. Moreover, a threshold corresponding to a security stock

of fruits has to be considered to allow the smooth operation of the FLC during

the day and the start-up of the following one. Based on the arriving orders and the

experience of the FLC manager, this threshold is stated. If the total demand is

represented by Dfc, the total quantity for each fruit and category Xifcv transported

from all cooperatives must be higher than it:

Dfc �
X

i, v
Xifcv f ¼ 1, 2, . . . ,

��F
��; c ¼ 1, 2, . . . ,

��C
��

7.3.3.2 Number of Loads and Total Load

The various trucks’ capacities require constraints on the total load carried by

available trucks due to the orders with high volume. Given the capacity of trucks

is known, Cv, and the maximum number of trips a truck can do from a specific

cooperative of producers, Yiv, a constraint verifying the total amount of fruits

transported is taken into consideration:

X

fc

Xifcv � CvYiv i ¼ 1, 2, . . . ,
��I
��; v ¼ 1, 2, . . . ,

��V
��

This constraint allows the decision maker to detect paths with more demanded trips

and then, assigning trucks of more capacity to satisfy the demand given when

necessary. Note that different fruits and categories can be transported by the same

truck visiting a cooperative.

7.3.3.3 Timetable of Trucks

Trucks are normally used for several trips per day. It is considered that all trips start

and finish at the FLC. It is assumed that a truck is driven by the same driver. The

number of trucks available may vary. However, the availability of drivers who

cannot drive more than a legal number of hours J(v) is more stringent.

On the other hand, depending on the cooperative of producers, the loading

and unloading time may vary depending on resources available for such tasks.

Regarding the trip time covering the distance from the fruit logistic centre to the

cooperative is affected by the type of lorry, the load and the speed to cover the path.
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Thus, the total transport time for each truck
X

i
TTiYiv must not exceed the

available number of working hours of corresponding truck driver:

X

i

TTivYiv � J vð Þ v ¼ 1, 2, . . . ,
��V
��

where

TTiv ¼ Di� 1
Vccv

þ 1
Vscvð ÞþWi

Cv
represents the trip time for truck v to cover the path

FLC—cooperative i—FLC, being:

Di: Distances from cooperative i to the FLC.

Vccv: Speed of the given carriage means v, with load.

Vscv: Speed of the given carriage means v, without load.
Wi: Waiting time at the i-cooperative.
Cv: Loading capacity of truck v.

However, previous constraint can be reinforced taking into account the avail-

ability of trucks and the maximum time drivers can be working per day (Tv):

X

i

X

v

TTiv � Yiv �
X

v

Tv

7.3.3.4 Multiple Transports Per Truck

Aside the time, the trucks are allowed to make per day a certain number of

transportations. These transports are independent of the cooperative to visit. This

means, a truck can transport fruit from the same cooperative or not until it reaches

its maximum number of daily trips. Therefore,

X

i

Yiv � NTv v ¼ 1, 2, . . . ,
��V
��

This constraint tends to balance the number of trips per truck and hence, the workload

of drivers. It can be also specified in terms of total distance covered by day or in total

fruit carried per day or simply as stated just in total number of trips per day.

7.3.3.5 Fruit Inventory at the Cooperatives of Producers

The quantity of the fruit to be transported from each cooperative i for fruit f and
category cmust not exceed the cooperative inventory for this fruit type and category:

Sif c �
X

f cv

Xifcv i ¼ 1, 2, . . . ,
��I
��; f ¼ 1, 2, . . . ,

��F
��; c ¼ 1, 2, . . . ,

��C
��
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7.3.4 Size of the Problem

In order to give a view about the problem in terms of size, this section details the

total amount of decision variables and restrictions, irrespective of the input data

used for the execution of the model:

Total number of constraints:

Nature of daily demand of fruits F�C

Number of loads and total load I�V

Timetable of trucks V+ 1

Multiple transports per truck V

Fruit inventory at the cooperatives I�F�C

Total #constraints: FC + IV+V + 1 +V+ IFC¼FC(1 + I ) +V(I+ 2) + 1.
Total number of variables:

Continuous variables procuring fruits to the FLC:

Xifcv : I � F� C� V

Integer variables representing trips:

Yiv : I � V

Total #variables: IFCV+ IV¼ IV(FC + 1).

7.4 Application of the Model: A Case Study

To illustrate the use of the model, a real case is considered from a Spanish company

specialised in pome fruit with a similar supply chain structure than that described

previously. The main actors of this supply chain are three: the individual farmers,

the producer cooperatives where farmers send their production to be stored and a

cooperative owning the FLC. Main fruit types are grouped in pome (apples and

pears) and stone (nectarines, peaches, cherries and plums).

ACTEL is a Spanish fruit cooperative of second order (i.e. a cooperative of

cooperatives, the so-called cooperatives of first order) with one LFC. Different

cooperatives of fruit producers (29 in total) are the stakeholders of ACTEL.

Individual producers, members of a cooperative, are in charge of the growing,

harvesting of fruits. Fruits are sent to the corresponding cooperative for storage

while ACTEL, as logistic centre, is in charge of packaging, labelling and distribu-

tion to international retailers, exporters and local retailers, wholesalers and food

service providers. The FLC is ruled by ACTEL and manage the fruit supply chain.

Few of the fruits are sold directly without any processing by producer cooperatives,

although most of them are stored only very short.
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In Fig. 7.3, the fruits processed in ACTEL are displayed, as well as the market-

ing calendar. As shown, July is the most complicated month given all fruits are

being harvesting and marketing. On the other side, from November to April only

apples and pears are available, thanks to the use of storage facilities under con-

trolled atmosphere. The type of coordination with costumers differs a lot, including

spot market, informal long-term relations, formalised contracts and partnerships.

Especially, big retailers have specific requirements regarding variety, size, ripeness,

certificates, labels and packaging. Fruits can be ready for distribution 24 h after

harvesting. However, they are trying new products that include processing like

peeled apples for vending machines.

As fruit types have different temperature control protocols and because packag-

ing rates are typically fruit dependent, the different fruit types should be considered

as separated commodities. The FLC takes decisions regarding cool storage of fruits

and storage under controlled atmosphere for pome fruits. For example, when and

how storage facilities has to be filled and closed for fruits being processed later. The

FLC organises the transports of fruits to the logistic centre for processing and

distribution to fulfil the orders received from customers.

Fig. 7.3 Fruits processed by ACTEL and regular marketing calendar (http://www.actel.org/

fruita_cataleg/eng/calendario.html)
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7.4.1 Formulation of the Model

The FLC has an averaged capacity for processing of around 150 ton per day

although the maximum stocking capacity is between 4 and 5 ton only. The contin-

uous supply of fruits is necessary during the day to allow the non-stop operation of

the FLC. There are 29 cooperatives available to provide fruit to the FLC. Figure 7.4

shows the relative location of cooperatives and their distance regarding the FLC

(coordinates 0.0). The exact distance can be found at Appendix 1 as well as the total

time per trip (loading, unloading and trip time) from the cooperatives to the FLC.

All the cooperatives have in their stock three varieties of pears (Blanquilla,

Conference and Alexandrine) and two of apples (Golden and Red Delicious)

representing five different fruits ( f¼ 5). Each variety can have until eight different

categories (c¼ 8) according to the fruit’s size (101, 104, 108, 201, 202, 215,

218 and 220). In Appendix 2, the detailed stock per cooperative, variety and

category is shown. Note that this stock corresponds to the winter season.

Daily, the FLC manager sets up the expected demand of fruit per variety and

category to deliver to the customers as well as a threshold needed in the FLC to

ensure the delivery of fruits. Out of the harvesting season, and in a certain days, it is

possible to not have demand or threshold for some categories. Appendix 3 shows

the demand and the threshold data used in the model for each variety.

The FLC has outsourced the transport from cooperatives, but the work plan and

the schedule of trips are provided by the FLC. The number of trucks available is

variable and can be adapted from the needs of FLC from one day to the following

day. During the low season (non harvesting months), the FLC uses regularly two

different types of trucks with different load capacities and a total of four trucks

named T1, T2, T3 and T4. The first type can transport 24 ton each truck (trucks T1

and T3 in the results) and the other one (trucks T2 and T4 as referred in the text)

is smaller, that is, of 14 ton. The truck’s cost is a daily price, without taking into

Fig. 7.4 Cooperatives

location from the logistics

centre
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account the kilometres done or the load transported by trucks. At this time, two

trucks of each type are used regularly. However, the FLC can have additional

trucks available from the transport company if they request them in advance.

During peak days at the harvesting season, the FLC can contract more than ten

trucks for daily tasks.

7.4.2 Results and Discussion

To develop the preliminary version of the model and its execution, the modelling

language ILOG OPL and the solver CPLEX v12.2 has been used. The hardware

used in the development and test of the model was a laptop computer (Pentium

Dual-Core CPU at 2.1 GHz and 4 Gb RAM). Microsoft Excel has been used for

storage data, both inputs and outputs of the model due to the easy analytical use.

With the case data provided by the cooperative, the model has 4,756 variables in

total (4,650 as continuous and 4,640 as integer). The model finishes in 7:14 s. This

allows the FLC manager to get results in a short time and therefore to execute again

the model in case the demand changes during the day, to make additional correc-

tions if needed or to explore different alternatives. For instance, the manager can

use the model to explore the impact of additional trucks or different number of trips

permitted to the same supplier cooperative.

The model shows the optimal transport planning according to the remaining

daily demand. As the sum of stock in cooperatives is much higher than the demand

in the FLC, all demand is satisfied. Figure 7.5 shows the optimal quantity of fruit to

be transported from each cooperative as well as the trucks to be used and the total

quantity. Only variables for which the value is different of zero are shown.

On the other hand, the number of trips for each truck and cooperative is shown in

Table 7.1. That table shows how only seven cooperatives are visited to load fruits to

satisfy the FLC demand.

Furthermore, the smallest trucks T2 and T4 are not used and the biggest ones are

preferred reducing in this way the total number of trips required to procure the fruits

Coop 
Code

Blanquilla Conference Golden
T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

2 24
3 24
6 2 22
14 2 22
17 24
23 24
29 24

Fig. 7.5 Transport and quantity map for cooperatives procuring to the FLC
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to the FLC. Therefore, trucks T1 and T3 are not necessary for that day. This table is

useful to explore the increasing or decreasing in the number of trucks available. As

the trucks are outsourced, the FLC can act proactively according to the demand

expected in future and booking the trucks needed beforehand.

The total number of trips per truck was of four and three. A balanced result as the

manager wished. This interaction between the end-user and the system is the main

appreciated characteristic of the model because it allows the FLC to save time and

money to plan the procurement of fruits for daily operation of the FLC. Furthermore,

parameters of the model and results are recorded into an Excel spreadsheet that can

be updated automatically by the ERP of the FLC. Even reports and results can be

customised according to the intended use by the FLC manager. Although this model

was developed to deal with an FLC, the same company owns other plants for which

theyfind also suitable this kindofmodels like the procurement of a drying forage plant.

7.5 Conclusions

We have presented a mixed integer linear programming developed to support

operational decision making in the transport planning for an FLC. We have

illustrated the use of the model in a real case satisfying the end-user requirements.

FLC manager appreciates the flexibility of the model and saving performed com-

pared to past operation in planning the procurement of the logistic centre.

Although the results from the implementation of the model have been success-

ful, the final adoption of the model is pending of internal adjustments allowing the

complete automatisation of the process.

Future work involves the running of the model for the harvesting season, where

the number of fruits and categories is bigger, as well as the number of trucks

involved in the transportation. Furthermore, from academic point of view the

reformulation of the model as a capacitated vehicle routing problem is also in our

agenda.

Acknowledgement The authors acknowledge the financial support of the Spanish Research

Program (AGL2010-20820 and MTM2009-14087-C04-01).

Table 7.1 Number of trips

per truck and cooperative
Coop code T1 T2 T3 T4 Trips

2 1 1

3 1 1

6 1 1

14 1 1

17 1 1

23 1 1

29 1 1

Total 4 0 3 0

174 E. Nadal-Roig and L.M. Pl�a-Aragonés



Appendix 1: Distance Between Cooperatives and the FLC

Coop code FLC distance Transportation time (h)

1 36 4.20

2 12 1.40

3 10 1.33

4 28 2.93

5 28 3.93

6 38 3.27

7 35 4.17

8 48 3.60

9 30 3.00

10 26 1.87

11 17 2.57

12 13 2.43

13 27 3.90

14 8 2.27

15 50 2.67

16 35 2.17

17 10 1.33

18 48 4.60

19 22 3.73

20 42 3.40

21 27 3.90

22 0 0.00

23 5 2.17

24 30 4.00

25 30 3.00

26 24 2.80

27 42 4.40

28 40 3.33

29 8 2
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Appendix 2: Stock per Cooperative, Variety
and Category (in ton)

Coop code Variety

Category

Total101 104 108 201 202 215 218 220

2 Conference 1,409 0 0 0 0 0 0 0 1,409

2 Alexandrine 66 2 0 0 17 0 0 0 85

3 Blaquilla 209 0 0 0 0 16 0 0 225

3 Conference 1,102 55 0 0 0 146 0 0 1,303

3 Alexandrine 102 0 0 0 0 43 0 0 145

3 Red Delicious 127 40 0 0 0 0 0 0 167

3 Golden 611 0 0 0 0 69 0 0 680

5 Golden 178 47 0 0 0 0 0 0 225

6 Conference 785 0 0 0 0 0 0 0 785

6 Alexandrine 134 0 0 0 0 0 0 0 134

6 Golden 997 0 0 0 0 0 0 0 997

11 Conference 194 0 0 0 0 0 0 0 194

11 Golden 341 0 0 0 0 0 0 0 341

12 Conference 542 0 0 0 0 0 0 0 542

12 Golden 493 0 0 0 0 0 0 0 493

14 Blaquilla 131 8 0 0 0 0 0 0 139

14 Conference 481 30 0 0 0 0 0 0 511

14 Golden 237 0 0 0 0 0 0 0 237

17 Blaquilla 180 0 0 0 0 0 0 0 180

17 Conference 1,750 0 0 0 0 0 0 0 1,750

17 Golden 1,750 0 0 0 0 0 0 0 1,750

21 Blaquilla 149 11 0 0 0 0 0 0 160

21 Conference 261 0 0 0 0 0 0 0 261

21 Golden 489 0 0 0 0 0 0 0 489

23 Conference 684 0 0 0 0 16 0 0 700

23 Golden 653 71 0 2 0 0 0 0 726

24 Conference 343 63 0 0 0 0 0 0 406

24 Golden 520 0 0 0 0 0 0 0 520

25 Conference 220 0 0 0 0 0 0 0 220

25 Golden 353 47 0 0 0 0 0 0 400

26 Golden 261 0 0 0 0 0 0 0 261

28 Golden 291 5 0 0 0 0 0 0 296

29 Blaquilla 353 78 0 0 0 0 0 0 431

29 Conference 225 0 0 0 0 0 0 131 356

29 Golden 290 0 0 0 0 0 0 0 290
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Appendix 3: Demand (in ton) and Minimum Stock
in the FLC (in kg)

Variety

Minimum stock per category

Demand101 104 108 201 202 215 218 220

Blaquilla 240 60 50

Conference 400 100 50

Alexandrine 80 20 0

Red Delicious 0

Golden 320 80 68
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Chapter 8

Simulating Vulnerability in Victoria’s Fruit
and Vegetable Supply Chain

Leorey Marquez, Andrew Higgins, and Silvia Estrada-Flores

8.1 Introduction

The horticultural industry in Australia is valued at $3.6 billion per annum

(Australian Natural Resource Atlas, www.anra.gov.au). In Victoria, the industry

contributed to the state’s economy with $1.3 billion in 2009–2010. Victoria has

8,500 horticulture-related enterprises, employing 50,000 people full-time and up to

100,000 during harvest periods (DPI 2012).

In comparison to other sectors such as livestock and broadacre crops, horticul-

tural production can be regarded as a low emitter of greenhouse gases (GHG).

However, post-farm supply chain activities such as freight and storage contribute

significantly to the carbon footprint of field-grown fruits and vegetables (F&V). For

example, Mithraratne et al. (2008) found that primary production of New Zealand

apples exported to the UK represents 20 % of the total carbon footprint, while

shipping, retailer and local/consumer distribution chains represent 80 %. In the case

of New Zealand, kiwifruit exported to the UK, primary production represents 4 %

while 96 % represents GHG emissions from distribution (Hume et al. 2009).

An aspect that has been seldom investigated in published literature dealing with

GHG emissions associated to food supply chains is the effect of disruptions, and in
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particular, extreme weather events (EWE) in food freight emissions. It is generally

recognised that supply chains are being increasingly exposed to EWE, with varying

degrees of damage and consequences. While food distribution systems have been

able to cope with infrequent EWE, the IPCC report establishes that global warming

will increase the risks of the following phenomena (William et al. 2007; Ugalde

et al. 2007):

• Severe storms, flooding, droughts

• More intense, more frequent and longer-lasting heat waves

• Increase in extreme rainfall intensity

• More frequent and more severe cyclones

• A rise in sea level

The Australian Government has pointed out that EWE are likely to have greater

impacts today than a century ago. This is because of the greater population density

in vulnerable areas, the increase in urbanised areas, and the more extensive net-

works of sophisticated and costly infrastructure (e.g. transport and energy systems),

among other reasons (Parliament of Australia 2008).

Evidence of the effect of EWE on the Australian horticultural sector includes the

following:

• In March 2006, Cyclone Larry ruined 200,000 tonnes of bananas, worth an

estimated $300 million. In addition to the crop loss, the impact of Cyclone

Larry on the Australian banana industry left thousands of Queenslanders out of

work and caused banana prices to increase by more than 400 %. It took over

2 years for the banana industry to return to normal harvesting patterns.

• In Victoria, floods in Gippsland in 2007 affected the local supply of some

vegetables and herbs (primarily broccoli, cauliflower, carrots, some lettuce and

herbs) (Stewart 2007 as cited in Larsen et al. 2008).

• The 2009 floods in Tablelands (QLD) made transport of fruits and vegetables

infeasible through the Bruce Highway (Cairns Post 2009). Up to $10 million

worth of fresh fruits and vegetables in cold rooms and sheds were stored in

cut-off coastal areas.

• Major drought and heatwave conditions increased the severity of the Victorian

bushfires in 2009. Severe damage to field and protected crops were registered in

several production areas (Food Magazine 2009). For example, in Port Phillip—

one of the most important fruit production areas—50–90 % of berry crops and

20–25 % of orchard crops (apples and late season apricots) were lost.

The 2011 Queensland floods provide another example of the significant impact

of EWE-related disruptions in the Australian horticultural supply chain. Wide-

spread flooding was also experienced in southwest New South Wales, western

Victoria and northern Tasmania. The combination of the January floods and

Cyclone Yasi caused almost $2 billion damage to crops, disrupted food supply

Australia-wide and increased food prices in South East Queensland. The January

2011 flooding is estimated to have reduced agricultural production by at least

A$500–A$600 million in 2010–2011, with significant impacts on the production
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of fruits and vegetables, cotton, grain sorghum and some winter crops (ABARES

2011). Using 2005–2006 levels, the flood-affected regions in Queensland

accounted for 19 % of the total value of Australian vegetable production and 8 %

of the total value of fruit and nut production. The key fruits and vegetables affected

include beetroot, sweet potatoes, zucchini, mandarins, spring onions, peas, capsi-

cums and chillies. In Victoria, production of vegetables in the flood-affected

regions accounts for around 3 % of total Australian production. In the case of

fruit, the flood-affected regions of New South Wales and Victoria each accounted

for around 13 % of the total value of Australian fruit production.

Evaluating the potential impacts of future EWE events on the F&V is very

complex due to the geographically diverse supply chains between farms, proces-

sors, distributors and markets. If many of these chains are disrupted and demands

are not met through traditional supply chain paths, alternative sources are used,

often interstate or overseas. The extent to which these alternatives are used and

additional costs incurred depends on disruption to existing chain paths. A supply

chain tool that maps out all supply chain paths provides a capability to better

understand transport costs, GHG emissions and supply restrictions under future

EWE scenarios. Such a tool has not been available in the past primarily due to: lack

of complete data sets over a large region (e.g. state of Victoria) for multiple types of

crops; confidentiality of available data; and lack of tools to generate transport routes

and supply chain paths. This chapter describes how these data limitations are

overcome, along with the development of a Supply Chain Database Tool

(SCDT). The SCDT is a deterministic model that maps the transport and distribu-

tion components of a supply network for F&V and enables the calculation of

relative measures of emissions for different scenarios.

The SCDT tool was used to simulate the GHG effect of supply chain disruptions

of F&V grown in Victoria. We use the Victorian bushfires scenario where as a

consequence of partial loss in some productive areas of Victoria, Victorian buyers

are forced to source 25 % of their normal intake of Victorian-grown F&V from

interstate suppliers. We demonstrate the capability of simulation technologies in

benchmarking the environmental performance of food freight, assessing the envi-

ronmental costs of supply chain disruptions and identifying new opportunities to

decrease the carbon footprint of food distribution systems from farm to fork.

8.2 Literature Review

There have been limited studies in Australia aimed at analysing food freight

logistics in a holistic sense. A State of Logistics study was carried out by CSIRO

in 2006/2007 (Higgins et al. 2011) which aimed to “Develop and test a methodol-

ogy that estimates the costs of logistics in Australian food industries, and to apply

this methodology to better understand the structure, drivers and challenges of these

logistics”. Rather than considering all food categories, four different case studies

were selected: fresh mango domestic chains, livestock represented by beef and
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lamb production, field crops including sugar and grain and wine. The project helped

to better understand value chains operations such as transport, storage and packag-

ing. The methodology developed can be extended to other food industries in

Australia.

A study by Morgan (2009) assessed supply chains of F&V from the perspective

of waste and consumption and their impacts on public health in Australia. As with

the CSIRO study, case studies were used, primarily due to lack of available large

data sets. Morgan considered GHG emissions across the food supply chains through

reference to published reports for farming (Rab et al. 2008), distribution and

processing and food preparations. The reports cited by Morgan (and Morgan’s

report itself) provide general statistics rather than a detailed supply chain analysis.

There have been various logistics studies conducted at an industry or sector

level. For example, grains logistic costs were extensively addressed in the Royal

Commission into the Grains Storage and Transport (1988), though the findings are

largely outdated. Internationally, there have been State-of-Logistics (SoL) studies

aimed at defining R&D and infrastructure investment priorities, with CSIR (2005)

providing a general analysis across the major industry sectors of manufacturing,

mining and agriculture of South Africa. Scientists from CSIR also conducted a

more detailed analysis on South African fruit logistics (Van Dyk and Maspero

2004) with a focus on providing recommendations for priority investments in

infrastructure. In light of the high-level analysis and recommendations from the

South African studies, several “more-focused” logistics projects between CSIR and

South African industries have been established. To date, there has been no

published whole of chain analysis assessing GHG emissions in food systems.

Analysis of F&V GHG emissions at farm scale is far more advanced than post-

farm gate. Based on a project by HAL, Rab et al. (2008) and O’Halloran

et al. (2008) extensively considered GHG emissions in the Australian vegetable

industry by addressing: availability and applicability of emissions factors; limita-

tions on data availability; and features of the production system that have the

greatest contribution to GHG emissions. The authors state that their estimation of

GHG emissions in the vegetable farming sector (1,047,008 tonne CO2/year) was

about one third of other estimates, highlighting the need to gather more relevant

carbon footprint data. At the farm scale, the authors considered farm inputs and

their land impact, as well as farm operations (e.g. irrigation, use of machinery). The

Australian Farm Institute has released FarmGAS (AFI 2009), a GHG emissions

calculator for farmers for use in scenario planning to reduce GHG emissions on

their farm. The Victorian DPI website also contains GHG accounting tools for other

forms of agriculture (DPI 2012).

Stochastic models have been developed to evaluate the effect of disruptions in

multi-echelon supply chains on food quality (Van der Vorst et al. 2009) and levels

of inventory (Schmitt and Singh 2009). There are fewer examples of models suited

to evaluate the effect of changes in single or multiple parameters of freight systems

(e.g. distances between suppliers and buyers, mode of transport, loading efficiency,

fuel factor) on transport GHG emissions. For instance, McKinnon and Piecyk

(2009) used average fuel efficiency, distances travelled, lading factors and similar
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data captured in road freight surveys and statistics captured annually by the

Department of Transport (UK) to provide a carbon footprint of road freight in the

UK. Although this approach allows high-level data on particular food sectors on

road freight emissions, it does not allow a complete farm-to-fork assessment, as it

neglects the consumer’s role on transport.

8.3 Development of an SCDT

8.3.1 Modelling Philosophy and Scope

Figure 8.1 illustrates the principal activities in the Victorian F&V supply chain. As

the diagram shows, F&V transport involve complex spatial and dynamic networks

in Australia, incorporating many factors, such as: multiple food products and supply

chain paths; long supply chains with multiple stages of processing/distribution;

specialised transport needs; multiple modes; mixture of domestic and export prod-

ucts; underpinning supply chain relationships; evolving production systems; and

climate variability (Higgins et al. 2010). Road transport paths between farms,

markets, DCs and supermarkets are also a complex network for food

freight (Victorian Department of Transport 2008), which vary substantially with

time of year.

The boxes below each supply chain stage in Fig. 8.1 capture the processes that

lead to the generation of GHG emissions. Processes highlighted in bold were in the

scope of the freight model and encapsulate all of the transport stages from farm to

consumer. The F&V freight model was focused on the transport components of the

supply chain, including refrigeration within transport where required. However, it

did not include energy use of emissions from production, processing, packaging and

other processes. Therefore, the outcomes of the model were not representative of

the entire product life cycle. The model was developed as a tool to increase

understanding of the transport components of F&V supply chains in one specific

region (Victoria).

Fig. 8.1 Features of F&V supply chain that contribute to emissions
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The transport segments investigated were:

• Movements of F&V produced and consumed in Victoria

• Movements of F&V produced elsewhere in Australia and consumed in Victoria

(interstate)

• Movements of F&V produced overseas, transported by ocean freight and con-

sumed in Victoria (imported product)

For the purposes of identifying the major factors affecting CO2 emissions in

Victorian F&V chains, major supermarket chains (MSC) and Melbourne Markets-

greengrocer chains (MM) were considered. Cumulatively, these channels account

for 97 % of the total fruit and vegetable trade in Australia. Further, exports and

volumes leaving Victoria were not considered.

A deterministic methodology was used to identify and assign suitable values

(observed or estimated) for each set of variables representing the required compo-

nents of the supply chain. A full description of this methodology can be found in

Marquez et al. (2010). The SCDT model was conceptualised as an MS Access

model. Queries are performed on Excel input tables to obtain estimates of GHG

emissions produced during the transport of F&V. The tool enabled the combination

of parameters and input tables to define different supply chain scenarios.

8.3.2 Data Collection

To construct the SCDT, the following types of information were required:

• Victorian production of F&V

• International imports and exports

• Interstate imports and exports

• Location of processors, supermarkets and distribution centres (DCs)

• Location of consumers

8.3.2.1 Victorian Production of F&V

Primary production data was obtained from the Australian Bureau of Statistics

(ABS), which provided production data for 2004–2008. The data, which is

partitioned by Natural Resource Management (NRM) region, contained the tonnes

of each F&V produced.

Figure 8.2 shows the boundaries of the Victorian NRMs. The ABS data does not

specify the exact locations within each NRM region where major production takes

place, so assumptions were made as to the coordinates of the origin points.

Two options were available:

1. Assume that production occurs at the geographical centroid of the NRM region

2. Assign a centre on the major production areas
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For this version of the freight flow model, the geographical NRM centroids were

chosen as the origin points. This is because statistics of production per NRM were

available, while statistics for production from major growing areas were not. While

alternative (2) may be more accurate, there were a number of difficulties with this

option in the deterministic approach, namely:

• Data was not available on the actual boundaries of the farm areas

• Classification by growing area could result in different origin points being

assigned for different fruit and vegetable items within the same NRM

• The growing region for one item may straddle several NRMs

It was expected that the results of using option (1) would lead to a mixture of

over and underestimating distances, which would mostly cancel out one another.

Unless restricted by national parks, large bodies of water or extensive urban areas,

Victorian farms are expected to be scattered widely within NRMs resulting in

growing areas that are non-contiguous and that frequently cross NRM boundaries.

With each NRM producing at least 9 of the 45 items of interest, it is highly unlikely

that the centroids of all growing areas for the items produced (had these been

known) would fall in exactly the same location. Thus, in the absence of any data

other than NRM production and boundaries, the NRM centroid remains the best

single point estimate of the source of production.

Fig. 8.2 NRM regions for Victoria
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8.3.2.2 International Imports and Exports

Imports and exports were analysed through the following data from the Victorian

Department of Primary Industries:

• Volumes (T) of each F&V imported and exported by port for 2004–2008

• Country of origin and destination

• Interstate transfers via port

Emissions from international imports were computed from two sources: (1) sea

leg emissions from shipping the volumes from a foreign port to an Australian port,

and (2) land leg emissions from transporting the volumes from Australian ports to

Victorian DCs.

Representative sea distances between major Australian ports and the nearest port

of entry for different countries were obtained using distance calculators available

from various websites such as PortWorld (http://www.portworld.com/map/). The

distances obtained were based on typical shipping routes used between origin and

destination points and do allow for passage through important portals such as the

Panama Canal, Suez Canal and Bosporus Strait. Figure 8.3 displays a composite

map showing various routes calculated by the PortWorld website for shipping

between Melbourne and nine sources of imports. For example, imports from

New Zealand only travel 2,700 km to reach Melbourne while those from the UK

travel on average 20,200 km.

Fig. 8.3 Composite map of shipping routes and distances between Melbourne and import

countries from PortWorld website
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8.3.2.3 F&V Volumes to and from Interstate

Interstate freight data was obtained from the 2001 ABS Freight Movements survey

(Catalogue No. 9220.0), which detailed the tonnes moved by road between states

and territories for the year ending 31 March 2001. The volumes transported from

Victoria to the other states, and the volumes delivered to Victoria from the other

states, were then scaled up to reflect volumes for 2007. The scaling factor used was

the ratio between the 2001 total volume of road freight and the total volume for

2007 obtained from Table 17 of the ABS SMVU (2008).

8.3.2.4 Location of Processors, Supermarkets and Distribution Centres

The addresses of the largest seven F&V manufacturers, 800 supermarkets and their

corresponding DCs and 540 greengrocers in Victoria were obtained from: (a) the

listing of IGA stores (GPS POI 2010c); (b) the listing of Woolworth stores (GPS

POI 2010d); (c) the listing of Coles stores (GPS POI 2010b); (d) the listing of ALDI

stores (GPS POI 2010a); and (e) the Foodworks store locator (Foodworks 2010).

The addresses listed were plotted using Google Maps to obtain their coordinates in

latitude and longitude. In addition, the coordinates of the Melbourne Market

Authority (MMA) (representing the location of major wholesalers) was also

obtained.

8.3.2.5 Location of Consumers

Victoria had 9,298 collection districts in 2006, with an average of about 550 con-

sumers in each. This value was used to represent the locations of households. The

concentration of Victoria’s population is highest in the Melbourne Metropolitan

region.

With the huge volume of data collected and the variety of sources used, it was

inevitable for gaps and inconsistencies to occur between the data sets. A number of

assumptions were then applied to resolve these issues. Table 8.1 lists the eight

principal sources of uncertainties.

8.3.3 General Estimation Procedure

The SCDT enables investigation of relative (rather than absolute) estimates of

emissions, indicating the emissions produced from a base scenario based on one set

of average values (e.g. average payload, average emissions factors, average distance).

The estimates of emissions from the various supply chain legs for this base scenario

were then aggregated into a collection of sub-totals (e.g. by F&V, by vehicle type) to

enable comparison, i.e. relative contributions of different system attributes.
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Figure 8.4 shows the general procedure used in the SCDT for calculating

emissions resulting from the transport of F&V volumes from growing areas to

supermarkets to consumer.

The components of the supply chain contributing to emissions start with F&V

volumes from Victoria’s production regions (NRMs), along with interstate sources

for local imports, and foreign ports for international imports. Using the capacities

for different modes of transport (LCV, rigid trucks, articulated trucks, ships), the

Table 8.1 Key sources of data uncertainties in the model

Assumption

Likely effect

on emissions

Produce takes most “efficient” pathway from producer to consumer

in terms of distance, i.e. moves from production to closest processor,

DCs, retailers to meet requirement

Underestimate

F&V sourced for processing direct from production (not via MM)

and proportional to production volumes for that region

Underestimate

Assuming that produce moves in the shortest road route in all cases Underestimate

F&V as a proportion of interstate transport/amount of F&V

moved interstate

Unknown

Proportion of vehicle types kept constant in different stages

of the supply chain

Unknown

Payloads not differentiated by F&V type, i.e. tonne of potatoes

requires same transport volume as tonne of lettuce

Unknown

Households would only travel to the nearest supermarket

and grocery store to purchase F&V

Underestimate

Attributing all consumer trip emissions to F&V for grocery stores,

but only 7.25 % to supermarkets

Likely bias towards

supermarkets

Fig. 8.4 SCDT menu for F&V emissions
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number of trips needed to transport the volumes to the different DC, processing

centres (PROC) and the MMA are then estimated. The distances for the various

origin–destination pairs (obtained from Goggle Maps) are then incorporated to

produce the vehicle-kilometres travelled for these trips. The emission estimates

are then obtained by applying the corresponding emission factors for the transport

modes used. A similar procedure is applied to obtain the number of trips, vehicle-

kilometres travelled and emissions produced when the F&V volumes are

transported from the distribution points (DC, PROC and MMA) to the different

supermarkets and green grocer locations.

Finally, emissions from household shopping trips are estimated using a number

of assumptions on the frequency and distance of grocery trips and the proportion of

F&V items purchased based on a representative grocery basket. Full details of the

deterministic methodology and assumptions used in the SCDT can be found in the

Marquez et al. (2010) report.

8.3.4 Calculating the GHG Emissions

The mathematical formulation of the calculation of GHG emissions for each supply

chain leg (e.g. NRM region to DC, DC to supermarket, supermarket to consumer,

foreign port to Australian port) for the SCDT was based on individual trips to

transport fruit and vegetable items using specific vehicle types (LCVs, rigid trucks,

container/ships).

8.3.4.1 Emissions from Road Transport

To estimate emissions from road transport, we define the indices used in the

formulation as follows:

• Let j 2 J be an individual supply chain link such as between a specific NRM

centroid and DC or between a supermarket and a consumer CD (collection

district) centroid. It can include interstate and international legs as well.

• Let v 2 V be a road transport of a given type, mode and fuel category

(e.g. articulated trucks using diesel fuel).

• Let i 2 I be an individual fruit or vegetable item (e.g. potatoes, apples, oranges).

If Mv;j
i is the total volume (in tonnes) of F&V item i 2 I transported over supply

chain link j 2 J using vehicle v 2 V in a given year, then the amount of

corresponding emissions produced Ev;j
i (in kg) is given by 8.1):

Ev, j
i ¼ Mv, j

i =Pv
� �

� Dj � λv � Fv � αv � Rv � βv � Bvð Þ ð8:1Þ
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where

• Pv is the average payload (in tonnes) of vehicle type, v 2 V
• Dj is the distance travelled (in km) on supply chain link, j 2 J
• λv is the multiplier used to account for the combined weight of the vehicle and

load

• Fv is the emissions factor for the forward component of the trip (in kg/km) for

vehicle type v 2 V
• αv is the proportion of trips made by vehicle type v 2 V that are refrigerated

• Rv is the emissions factor for the refrigeration component of the trip (in kg/km)

for vehicle type v 2 V
• βv is the proportion of trips made by vehicle type v 2 V that have backhaul

• Bv is the emissions factor for the backhaul component of the trip (in kg/km) for

vehicle type v 2 V. This is usually the same value as Fv

Note that (Mv;j
i /Pv) gives the number of trips required to transport the volume

while (Mv;j
i /Pv) *Dj gives the vehicle-kilometres covered. The emissions formula

merely multiplies the vehicle-kilometres covered with the emissions factors from

the three components of the trip (forward-delivery, refrigeration and backhaul).

The database model provides the following input tables for the vehicle

parameters:

• Pv is given in column Average of table Q_VehPayload.
• λv is given in column FullLoadMult of table P_EmissFactors. This is currently

1.50 which sets the average weight of the load as 50 % of the weight of the

vehicle.

• Fv is given in column EmissKGPerKm of table P_EmissFactors.
• αv is given in column FreqPropn of table Q_VehFreqOfRefrigTrips.
• Rv is given in column RefrigEmissFctr of table P_EmissFactors.
• βv is given in column FreqPropn of table Q_VehFreqOfBackhaulTrips.
• Bv is given in column BHaulEmissFctr of table P_EmissFactors.

8.3.5 Emissions from Shipping

Similarly, emissions from shipping are estimated by (8.2):

Sx,yi ¼ Mx,y
i *Dx,y*σC

� �þ Mx,y
i =PC

� �
*Dx,y* δC*ωC*ϕC=ψC

� �� � ð8:2Þ

where

• Sx;yi is the total emissions (in kg) from shipping F&V item i 2 I between

Australian port x 2 X and partner country y 2 Y.

• Mx;y
i is the total volume (in tonnes) of F&V item i 2 I shipped between

Australian port x 2 X and partner country y 2 Y.
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• Dx,y is the voyage distance (in km) between Australian port x 2 X and partner

country y 2 Y.

• PC is the average payload for 20-ft containers (currently 21 tonnes).

• σC is the emissions factor for container (ship) movement (currently 0.014 kg

CO2-e per tonne-km).

• δC is the average fuel consumption of the refrigeration unit of the container

(currently 300 g-MDO per kWh).

• ωC is the emissions factor for the refrigeration unit of the container (currently

0.003206 kg CO2-e per g-MDO. MDO stands for marine diesel oil, the fuel used

by generators in refrigerated containers).

• ϕC is the average power consumption of the refrigeration unit of the container

(currently 4 kW).

• ψC is the average speed of the container/ship (currently 38 km per hour).

In (8.2), the first term computes the emissions from the container/ship move-

ment, while the second term calculates the emissions from the refrigeration

component.

8.3.6 Aggregations

Using the above notation, we obtain the following basic aggregations:

• Total emissions per year ¼
X
j2J

X
i2I

X
v2V

Ev, j
i

• Total emissions on supply chain link j 2 J for F&V item i 2 I ¼
X
v2V

Ev, j
i

• Total emissions on supply chain link j 2 J ¼
X
i2I

X
v2V

Ev, j
i

• Total emissions from vehicle type v 2 V ¼
X
i2I

X
j2J

Ev, j
i

• Total emissions per tonne transported ¼
X
j2J

X
i2I

X
v2V

Ev, j
i

 !� X
j2J

X
i2I

X
v2V

Mv, j
i

 !

The component nature of the calculations allows more detailed aggregations to

be made based on combinations of:

• Supply chain links

• Vehicle types

• Item types

• Specific fruits and vegetables

• Processed and fresh produce

• Victorian production, interstate imports and international imports
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• Supermarkets and grocery stores

• Household collection districts

• (Export/import) partner countries

The above formulas can also be expanded to incorporate emissions per month in

the case of seasonal effects in state production and interstate trade.

8.4 Modelling Scenarios and Results

8.4.1 Base Scenario

For the case study, a base scenario of fruit and vegetable freight movements was

defined using volumes from fiscal year 2007–2008 and involving seven fruit items

(apples, grapes, mandarins, oranges, peaches, pears, strawberries) and 28 vegetable

items (artichokes, Asian vegetables, asparagus, beetroot, broccoli, Brussels sprouts,

butter beans, cabbages, capsicums, carrots, cauliflower, celery, chillies, cucumbers,

eggplant, fennel bulb, french and runner beans, garlic, herbs, leeks, lettuce, melons,

mushrooms, onions, parsnips, peas, potatoes, pumpkins, radish, silver beet and

spinach, snow peas, spring onions, swedes and turnips, sweet corn, tomatoes,

watermelons, zucchini and button squash). The base scenario represents the supply

chains under the regional crop production levels and transport of 2007/2008.

The scenario covers food transport between the National Resource Management

(NRM) regions and export points, DCs for the four MSC (Coles, Woolworth,

IGA/Foodworks, Aldi), major food PROC (Simplot, McCain, National Foods,

SPC), MMA and listed grocery stores. It also covers imported produce from

overseas and the customers’ trip to collect food (also known as “the last mile”).

Figure 8.5 shows a bar chart comparing the emissions from the top eight

countries exporting F&V to Victoria. Notice that most of the high emission sources

come from Western and Eastern Europe, where the sea distance covered is highest.

As one would expect, GHG emissions are proportional to distance travelled.

Top Eight Countries for Kg Emissions per ton imported
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Fig. 8.5 Source countries with highest emissions per tonne of imported F&V
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Table 8.2 compares the average GHG emissions per tonne of Victorian-grown

F&V consumed in Victoria compared to F&V sourced from interstate and imported

from overseas. As Table 8.2 shows, imported fruits and vegetables showed the

highest overall transport emission levels (248 and 216 kg CO2-e per tonne, respec-

tively) while interstate supplies were not far behind with overall emissions of

221 kg CO2-e per tonne. Both international and interstate transport presented an

emissions profile of almost four times the levels obtained for Victorian-grown fruits

and vegetables (60 and 49 kg CO2-e per tonne, respectively). These results can be

attributed to the significantly longer distances required to connect foreign ports and

state capitals to Victorian DCs compared to points within Victoria for Victorian-

grown fruits and vegetables, particularly the road segments.

Emissions from vegetables were highest for interstate transport while emissions

from fruits were highest for international imports. An interesting observation is that

the international shipping leg had similar GHG emissions to the interstate road

transport leg.

Although international imports produced the highest emission levels of 248 kg

per tonne of fruit imported, these emission levels only represent transport (includ-

ing refrigeration) from the port of departure from the partner country to the port of

entry in Australia and ultimately to Victorian DCs. Transport GHG emissions

between the overseas growing region and the port of departure in the foreign

country are not included. Therefore, these results are likely to underestimate the

true values. As noted earlier, the land leg portion of international transport is

considerably shorter than interstate transport since most foreign imports use the

Port of Melbourne as the port of entry into Victoria, and Victoria DCs are already

close to the Port of Melbourne.

Table 8.3 presents the intrastate transport emissions for 28 F&V items delivered

to DCs. For the intrastate emissions obtained, the items are presented in descending

order of emissions per $1,000 value (at farm gate). The second column of Table 8.3

shows the GHG emissions per tonne of item transported. There is more than a

fourfold difference between items with the highest (grapes, 97) and lowest (celery,

18) GHG emissions per tonne. Differences in distances between the growing region

and MM/DCs were the main driver of the differences. For example, oranges,

mandarins and grapes were amongst the highest as they are primarily grown in

Mallee, the furthest NRM region from MM/DCs. By considering product value, the

order changes a bit, as F&V with a lower dollar value will have a higher GHG

emission per dollar value ratio.

Table 8.2 Comparison of GHG emissions between Victorian and non-Victoria produced F&V

Product type Destination type

kg of emissions per tonne transported

Vic produced Foreign imported Interstate supplied

Fruit Victoria DC 59.57 248.02 215.70

Vegetable Victoria DC 48.73 216.22 222.45

All Victoria DC 51.94 222.89 220.62
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With the base scenario measures in place, new scenarios can be created in the

SCDT by incorporating new data or values for the various parameters representing

alternative policy options or transport strategies. The differences between the

measures obtained in the new scenario and those from the base scenario are then

used to evaluate the relative impact of the new options or strategies on GHG

emissions. For investigating the impact of Victoria’s vulnerability to EWE

increases to GHG emissions from the F&V transport, a EWE scenario was defined

and tested in the next subsection.

Table 8.3 GHG emissions of 28 F&V items as a function of volume transported within Victoria

and farm gate value

Items

Emissions (kg) per

tonne transported

Emissions (kg) per

1,000 dollars value

Watermelons 93.64 160.35

Oranges 92.38 159.27

Grapes 97.24 107.68

Carrots 77.86 106.81

Potatoes 43.03 89.64

Melons 93.63 83.75

Tomatoes 41.31 78.69

Sweet corn 67.20 67.88

Mandarins 97.38 59.74

Pears 38.68 56.88

Pumpkins 37.45 56.23

Onions 47.17 49.97

Beetroot 18.16 46.91

Cabbages 42.43 44.20

Peaches 42.71 35.01

Lettuce 32.11 34.97

Capsicums 72.40 32.18

Cauliflower 22.89 32.05

Zucchini and button squash 43.23 30.66

Parsnips 19.71 19.97

Apples 38.49 18.59

Celery 17.56 18.48

Broccoli 31.93 15.89

Cucumbers 21.96 8.38

Asparagus 22.04 4.87

Asian vegetables 19.02 4.20

Mushrooms 26.94 4.15
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8.4.2 Victorian EWE Scenario

In this scenario, we investigate the GHG impacts of lost production in Victoria’s

NRM regions caused by EWE. The analysis simulates losses in production due to

bushfires, storm damage and droughts and estimates the increase in GHG levels

resulting from the transport of replacement produce. Under normal circumstances,

when production is lost in one or more NRM regions, the shortfall in production

to meet Victoria’s demand (consumption) requirements would be met through

other NRM regions in Victoria (as distinct from international imports). Further-

more, when there is insufficient supply from other NRM regions, the shortfall

would be compensated by interstate imports, where the GHG emissions are

expected to increase due to lengthier freight movements and increased fuel use.

In this subsection, we focus on the use of interstate imports as the primary source

of replacement for production losses. We believe a basic scenario where lost

production from an NRM is replaced by interstate imports can provide important

insight into the efficiency of alternative sources of supply during EWE. We also

identify the NRM regions most vulnerable to increased GHG emissions resulting

from EWE. Included in Victoria’s “consumption” were the F&V demand by

PROC, as the inability to meet demand locally (or reliably) will impact on their

costs of sourcing produce (at some oil / carbon price point, there could be a

significant impact).

A representative scenario was set up to investigate the impact on emissions of

switching the source F&V volumes from an NRM to interstate. The scenario

simulates the condition where 25 % of the annual production of an NRM is lost

and the lost volume is replaced by corresponding additional supply from interstate,

with each state given equal allocations. This condition may be produced by an

extreme weather event causing damage to production areas in an NRM with

recovery taking three months or more. The increased distance in transporting the

replacement volumes between the interstate capitals and Victorian DCs would

result in increased emissions, with the total amount dependent on the actual

volumes replaced.

Figure 8.6 presents a bar chart of the estimated overall percentage increase in

total emissions from the base scenario when the NRMs lose 25 % of their produc-

tion and the corresponding replacement volumes are sourced from interstate to the

DCs and MM. The line chart displays the volume of lost production re-sourced

from interstate. The four NRMs with the highest volumes of production also have

the highest replacement requirements if 25 % of production is lost, i.e. Goulburn/

Broken (76 M-kg), Port Philip/Westernport (70 M-kg), Mallee (58 M-kg) and North

Central (54 M-kg). Consequently, these four NRMs produced the biggest impact on

emissions from lost production. The figure shows that the most significant increases

on fruit emissions is produced by production loses from Goulburn/Broken (6.24 %),

followed by Mallee (3.29 %) and Port Philip/Westernport (1.10 %). For vegetable

emissions, the highest increases came from Port Philip/Westernport (2.99 %), North

Central (2.20 %) and East Gippsland (1.56 %).
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In terms of overall emissions, Port Philip/Westernport (2.46 %), Goulburn/

Broken (2.38 %) and North Central (1.72 %) represent the NRMs with the biggest

impact on Victoria’s fruit and vegetable supply chain. Overall, these do not

represent significant gains in GHG emissions (mostly less than 4 %) given a

significant loss of production of 25 % in a region. However, this finding is an

average based on the simulated volume replacements from interstate sources for

lost production from one affected NRM at a time, assuming the remaining NRMs

are unaffected. Replacement volumes (equalling the volumes lost) will come from

the other states (through their import/export point) in equal proportion. Thus, the

gain in GHG is proportional to the lost volume and takes into account the (average)

interstate distances travelled by replacement produce.

8.5 Opportunities for Supply Chain Optimisation

There is an extensive literature on optimising food supply chains for efficiencies or

costs. See Ahumada and Villalobos (2009), Lucas and Chhajed (2004) and Higgins

et al. (2010) for extensive reviews. Limited studies (e.g. Tan and Comden 2012;

Romero 2000) consider biophysical and climatic uncertainty, which may affect

yield or best time to harvest. However, chain optimisation to increase resilience to

EWE is an important issue that has not been addressed in the literature. There is also

a need to consider a trade-off between the severe impacts of infrequent EWE versus

small impacts of regular yield uncertainty. With such high uncertainty, Pannell

(2006) recognises the flat earth economic problem where the benefits of mathemat-

ical optimisation have low sensitivity to changes to decision variables. This is

particularly an issue with smaller scale operational decisions such as a transport

route of an individual vehicle, and tactical decisions such as hectares of different

Pct Increase on Emissions from Re-Sourced Production by NRM

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

Corangamite East Gippsland Goulburn
Broken

Glenelg
Hopkins

Mallee North Central North East Pt Phillip /
Westernport

West
Gippsland

Wimmera

%
 In

cr
ea

se
 in

 T
o

ta
l E

m
is

si
o

n
s

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

R
e-

so
u

rc
ed

 P
ro

d
u

ct
io

n
 (

M
ill

io
n

s-
kg

)

Fruit increase Veg increase F+V increase Lost production

Fig. 8.6 Impact of lost production from NRM on total emissions from transport of F&V

196 L. Marquez et al.



crops that a farmer plants in a given year. For strategic decisions, such as where to

place DCs or new growing regions for F&V, there are opportunities for mathemat-

ical optimisation to increase resilience to EWE.

Archer et al. (2009) formulates a complexity matrix for supply chains, where

opportunities to increase resilience (typically strategic) face both high biophysical

and managerial complexity. Archer et al. (2009) goes on to describe the use of

agent-based methods to capture the dynamic relationships under high uncertainty

(such as EWE and market instability) and described applications in forestry, grains,

sugar and canola. In the case of F&V, agents would potentially represent chain

actors (farmers, distributors, processors, retailers) along with the relationship

between these actors and those currently outside the network (e.g. interstate or

overseas suppliers). By linking such an agent-based model with our SCDT, one

could optimise contingency F&V supplied between chain actors to minimise costs

and GHG emissions or meeting similar demands under a range of EWE scenarios.

Probably, the best optimisation application to maximise the resilience of the

F&V industry to EWE is in land use allocation of different crops. The main problem

of the Australian banana industry with respect to Cyclone Larry and Yasi was that

90 % of the industry was within 50 km of the Tully region of Queensland, where the

cyclones hit hardest. A land use profit map (Marinoni et al. 2012) would show that

these are the best regions to grow bananas under normal climatic and soil condi-

tions. When considering the severe impacts of EWE and GHG emissions, other less

profitable regions (e.g. Coffs Harbour) could be part of an optimal land use

allocation zone for bananas. Models for land use optimisation of different agricul-

ture/horticulture crops are available in the literature (e.g. Rounsevell et al. 2003).

These typically optimise the mixture of crops and rotation strategies at each

location to maximise combined profitability, subject to resource constraints and

climate and land suitability. A future opportunity would be in combining a land use

planning model with our SCDT. It would provide a more holistic approach, over

time and space, to optimising land allocation of different crops, accounting for

alternative supply chain paths in the event EWE and consequential transport costs

and GHG emissions.

8.6 Conclusion

With Australia’s recent catastrophic flooding and bushfires resulting in consider-

able damage to life and property, inflicting massive losses to regional economies

and causing serious disruptions and price increases in the food supply chain,

attention has been focused on tools for analysing and mitigating the impacts of

these EWE. This chapter described the development of the SCDT, a simulation and

scenario evaluation tool aimed at estimating the impact of transport efficiency

measures on the level of GHG emissions produced by various legs in the supply

chain. The SCDT was employed in a case study, where a hypothetical EWE

scenario is applied to the Victorian F&V supply chain. A base scenario featuring
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the distribution network of 7 fruits and 28 vegetables consumed in Victoria was

defined using 2007–2008 levels of F&V production and imports. A representative

EWE scenario was then set up to simulate the condition where 25 % of the annual

production of an NRM is lost, and the lost volume is replaced by corresponding

additional supply from interstate, with each state given equal allocations.

The results of the case study demonstrate that simulation in general, and the

SCDT in particular, can be an effective tool for evaluating emission reduction

measures in the food supply chain. The SCDT also helps in understanding the

complex interactions between the different components of the supply chain. While

the emission estimates produced by the SCDT provide a useful indicator of the

relative impacts of transport measures, several data availability and consistency

issues restrict the range of analyses that can be performed. Due to the severe lack of

suitable data on interstate transport, many questions around the seasonal implica-

tions of GHG emissions remain unanswered. This includes better understanding of

the inefficiencies of interstate (and intrastate) F&V GHG emissions at a more

granular scale such as individual trip movements and companies. Such a more

detailed analysis would help identify more tangible strategies to reduce GHG

emissions. To do this, the key data requirements are: tonnes of individual F&V

transported between each state in each week, as well as movements at company

scale. If the latter will be impossible to obtain as complete data sets, then we

recommend it be collected in part through surveys.

Although GHG emissions of transport to and from the processor were consid-

ered, a lot more information is needed on the freight movements to provide an

accurate analysis. In particular, data of F&V from different states or overseas for

processing is much needed. Also, GHG emissions of activities within the processor

need to be considered to provide a balanced comparison with fresh F&V supply

chains.
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Chapter 9

Simulation Optimization: Applications
in Fish Farming—Theory vs. Practices

Ilan Halachmi

Nomenclature

Simulation optimization problem general form

Minimize F(x) (Objective function)

Subject to: Ax � b Constraints on input variablesð Þ
gl � GðxÞ � gu Constraints on output measuresð Þ
l � x � u Boundsð Þ

where F(x) and G(x) represent output performance measures obtained from the
simulation. The constraints represented by inequality Ax� b, and both the

coefficient matrix A and the right-hand-side values corresponding to vector b
are known. The constraints represented by inequalities of the form gl�G(x)� gu
impose simple upper and/or lower bound requirements on an simulation output

function G(x) that can be linear or nonlinear. The values of the bounds gl and gu are
known constants. The vector x is the decision variable that includes continuous

and discrete values. All decision variables x are bounded. Each evaluation of F(x)
and G(x) requires an execution of a simulation of the system.

Bf Final body weight of a fish (kg)

Bi Body weight of a fish (kg) in growing phase i
c Number of netcages
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ci Number of netcages in growing phase i e.g., c1, c2, c3¼ 4, 8, 16

stands for 4 netcages in the first growing phase 8 netcages in the

second growing phase, and 16 netcages in the third phase

D Fish biomass stocking density (kg/m3)

Di Biomass in growing phase i
DOE Design of experiment (Kleijnen 2008)

MR Mortality rate. The number of fish at each phase: Ni+1¼Ni�
(1� MR). Survival rate¼ 1�MR

N, c1, c2, c3,
S1, S2, S3, P1,

P2, P3

The decision parameters

Nf Final number of fish in a batch

Ni Number of fish in a batch in growing phase i
P Number of sub-batches formed from a batch

RSM Response surface methodology (Kleijnen 2008)

S Growth period in a netcage (years)

S.T. “Subject to the constraints.” This term refers to extrema with

constraints in mathematical optimization

Si Growth period in growing phase i
T Fish age (days in sea)

V Culture volume (m3)

Vi Culture volume in growing phase i a culture volume is a manmade

water tank pond or netcage, made of plastic, concrete, soil, etc.

(inland aquaculture) or made of a net and located in the sea (marine

fish farming), lakes, rivers, seaports, or offshores, e.g., in Ashdod

harbor 18 netcages of 2,900 m3 each and 11 netcages of 2,000 m3

each can fit along the breakwater. Total number of netcages is 29

y(t) Fish body weight on any given day

λ and μ Fish arrival and departure rates, respectively (batches/year)

ρ Expected utilization of a netcage

9.1 Introduction

Aquaculture continues to be the fastest growing animal food-producing sector and

to outpace population growth. Per capita supply from aquaculture increased from

0.7 kg in 1970 to 7.8 kg in 2006, an average annual growth rate of 6.9 %. From a

production of less than one million tons per year in the early 1950s, production in

2006 was reported to be 51.7 million tons with a value of US$78.8 billion,

representing an annual growth rate of nearly 7 %. Increased yields were obtained

as a result of intensification, advanced feed formulations, water chemistry, disease

prevention, fish treatment, and genetic selection for desirable traits. However, the

aquaculture industry has realized that economic viability of aquaculture systems

cannot be ensured solely through increased yields. To seek an economically viable
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solution, the complexity of the system should be conceptualized to consider the

interactions among many decision variables and biological factors.

The immense leaps in computational power have greatly benefited both optimi-

zation and simulation. Now, large-scale simulation “optimization” routines can

be performed on PCs in a fraction of time, comparing with only few years ago.

Therefore, nearly every commercial simulation software packages have now included

a sort of “optimization.” [AutoStat (AutoMod; www.autosim.com)—genetic algo-

rithms; OptQuest (Arena, Crystal Ball, et al.; www.opttek.com)—scatter search and

tabu search, neural networks; OPTIMIZ (SIMUL8; www.simul8.com)—neural net-

works; SimRunner (ProModel; www.promodel.com)—genetic algorithms; Opti-

mizer (WITNESS; www.lanner.com/corporate)—simulated annealing, tabu

search—the interested reader can refer to Fu (2002) and Fu et al. (2002)].

However, optimization procedures such as linear programming, nonlinear pro-

gramming, and (mixed) integer programming—require an explicit mathematical

formulation. Such a formulation is generally impossible for problems, where

simulation is relevant.

Contrary to the use of mathematical programming software packages, the

simulation user has no way of knowing if a global optimum has actually been

reached (hence, the quotations around optimization at the beginning of this para-

graph). Optimizers designed for simulation embody the principle of separating the

optimization method from the simulation model. In such a context, the optimization

problem is defined outside the complex system.

Stochastic discrete-event simulation (the so-called simulation) mimics the random

spirit of a system. The simulation’s (a) stochastic nature, (b) ad hoc heuristic tools,

and (c) random numbers generators—do not adequately addressed by the currently

implemented optimization algorithms (Fu 2002; Fu et al. 2000; Marco XX).

Therefore, in the aquaculture context, a method is proposed as follow steps:

(a) Build a valid simulation model of the aquaculture system. (For a complete

validation process, refer to Law (1990) and

(b) Generate initial guess, “optimal” solution based on classic optimization

methods, the known bio-physiology of the specific fish growth function,

aquatic conditions, the environment, and the local management practices of

the farm (9.1)–(9.9) below)

(c) Feed the “optimal” solution from step (b) and (a) wide mesh of nodes around

the solution (based on response surface methodology (RSM) Sect. 9.3.6 DOE

and RSM below and (Kleijnen 2008))

(d) Run the simulation, get simulation outputs, fit an objective function ( f(x)), and
if needed fit constraints function (g(x)) (RSM equations—refer to Sect. 9.3.6

DOE and RSM below and (Kleijnen 2008)). In our two cases presented here

below, 100 scenarios were simulated at this phase

(e) Solve the optimization problem ( f(x), g(x) from step (d), check the feasibility

of the solution from practical point of view and only if “make sense”—feed the

new optimal solution to the simulation model

(f) Compare the previous solution and the new one, stop the iterations when no

considerable improvement has been reached
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(g) Enrich the simulation with animation and user friendly reports, and validate

the simulated solution with data from similar systems (if exist?) and with panel

of experts and with the farm workers who are familiar with the system. For

complete validation process, refer to Halachmi et al. (2001)

(h) Discuss the proposed solution with the farm management while running

simulated scenarios during the meeting till an agreed design has being selected

The above (c)–(f) scheme is presented by Fig. 9.2.

The differences between the proposed method (Fig. 9.2) and the classical

simulation–optimisation (Fig. 9.1) are: (a) human inspected selection of a fitted

equation that guarantees that the global optimization point is at reached (up to order

Fig. 9.1 “Classic”

optimization for simulation,

in nearly every commercial

software the simulation

kernel engine is separated

from the optimization

engine

Fig. 9.2 The proposed simulation–optimization procedure. Combining bio-physiology knowl-

edge about the aquaculture system that brings us closer to the global optimal point, then mesh

around the global optimum, RSM-based objective function, fine tuning until satisfactory solution

has being reached
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three polynomial, KKT conditions, etc. see Sect. 9.3.6 RSM). (b) Human inspection

of the practical feasibility of a solution generated by the optimization engine before

fed into the simulation kernel, and (d) the other way around—human inspection of

the practical feasibility of the simulation output before fed into the RSM equations

and the optimization engine.

The drawback of the proposed method (Fig. 9.2) is that a designer must be well

acquainted with (9.1) the existing and the planned aquaculture system, ins-and-outs

(fish biology, biomass density, potential aquatic conditions the will allow a pro-

posed growth function, and physical limitation of the filters and the space) in order

to set the correct constraints and boundaries and to reject most of nonpractical

solutions at early phase before they enter into the simulation kernel. (2) Such a

designer should be able to perform all the tasks, by himself, in-house:

(a) constructing the simulation model, (b) validate and alter the simulation model,

(c) to formulate the set of optimization functions and to solve them, (d) design and

execute the RSM methodology including its all design of experiment (DOE)

aspects. (3) Frequently, to perform 2b–2d on-the-spot, at the fish farm facility

while discussing selected simulated alternatives with the farm workers and farm

managers as they talk.

This book chapter describes the development of Fig. 9.2’s equations and pro-

cedures and reports their application in two aquaculture farms. While the two

farms’ numerical values, presented below, reflect local aquatic conditions, the

concept (the equations and the methodology) may be applicable elsewhere.

9.2 The State of the Art

9.2.1 Aquaculture

This study address to types of production systems: (a) recirculating aquaculture

system (RAS) and marine netcages.

Fish production in an RAS requires less than 10 % of the water (Hamlin

et al. 2008) needed by extensive pond systems to produce a given quantity of fish.

RAS reduces the effluent waste stream by a factor of 500–1,000 (Timmons

et al. 2001). Furthermore, an RAS enables production to proceed at the consumer’s

“doorstep” (Timmons et al. 2001), and with a high degree of product traceability

(Smith 1996; Jahncke et al. 2000). This system also ensures higher levels of

biosecurity, and enables year-round production. Unfortunately, (a) an intensive

RAS production is strongly dependent on high water quality and minimal fish

stressors. (b) The RAS is rather capital intensive (O’Rourke 1996); its profitability

relies on maximizing economic productivity per unit volume of rearing water (Brune

et al. 2003; Summerfelt et al. 2009). Thus, operating an RAS demands well-

coordinated management of the many unit processes and/or operations involved
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(Summerfelt 1996; Libey and Timmons 1996). Timmons et al. (2001) lists several

RAS ventures that failed, citing poor management as the primary reason.

Fish farming in netcages is a traditional practice for raising fishes. Fish netcages

of various shapes and dimensions have been used all over the world. In general,

square or rectangular cages are widely used for farming of yellowtail (Harada 1970;

Fujiya 1979), salmonids (Møller 1979; Kennedy 1975), and groupers (Chua and

Teng 1978). Cylindrical cages are used for marine or brackish water species such

as milkfish (Yu and Vizcarra 1979) and rainbow trouts (Tatum 1973).

Cylindrical cages can be designed to rotate so as to delay change of nets due to

biofouling (Caillouet 1972). Other forms of cages such as orthogonal (Milne 1979;

Anonymous 1976) and octagonal (Møller 1979) in shape have been used for

salmonid culture in United Kingdom, Norway, and France. The design of

the physical structure of a cage is determined by the oceanographic conditions

of the culture site and the target species. Each design is site specific and knowledge

of the topography, wind force and direction, prevalence of storms or monsoons,

wave loads, current velocity, and water depths are important parameters for

consideration.

Refer to Weintraub et al. (2007) for operational research (OR) models in both

types of fisheries.

9.2.2 Simulation Optimization

Simulation optimization is providing solutions to important practical problems

previously beyond reach—optimization via simulation. Refer to Fu (1994, 2002),

Fu et al. (2000), Better et al. (2008) for review.

9.2.3 Simulation, Optimization, and Statistical Models
in Aquaculture

Modeling aquaculture a fish farm operation and harvesting time requires both

equations describing fish growth, and algorithms determining the optimal harvest

size at any future time. Three model approaches have been described. Summerfelt

et al. (1993) calculated the number of fish available for harvesting by assuming that

fish length follows a normal distribution; thus, the number of harvested individuals

was determined from the capacity limit of the farm. In the second approach, the size

distribution of individuals was considered a discrete, time-varying Markov process

in which the number of individuals in each size class could be calculated. The

optimal harvesting of individuals from various size classes was determined by

dynamic programming (Leung et al. 1990; Leung and Shang 1989; Sparre 1976).

The third approach is a variation of linear programming (LP) and dynamic
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programming (DP). LP has been frequently used in production planning in aqua-

culture production, such as for cost minimization in oyster farms (Lipschultz and

Krantz 1980) and profit maximization in prawn farms (Shaftel and Wilson 1990;

Wilson 1991), multicycle and multiponds operation of shrimps farms (Yu and

Leung 2005; Yu et al. 2006), salmonid hatcheries (Johnson 1974), and salmonid

grow-out farms (Gates et al. 1980; Varvarigos and Home 1986). We refer to

Forsberg (1996) who discussed LP vs. DP in the aquaculture context and indicated

that neither LP nor DP is adaptable to all aquaculture systems. Other approaches

include modeling sinusoidal marketing conditions (Seginer and Halachmi 2008)

and operational research (Weintraub et al. 2007). Halachmi (2007) reported on a

single application of queuing theory, but it did not combine simulation optimization

or address marine netcages. It ended with an analysis of a “what-if?” scenario,

rather than a complete optimization methodology. A more recent study (Part I of

this study: (Halachmi 2012a) integrated optimization, but (1) dealt with the design

of a smaller facility that would handle 250 ton/year, (2) applied predefined param-

eters, set by the farmers, such as fish arrival frequency—once per month that

reduced the space of feasible solutions. Part 2 (Halachmi 2012a), introduced

reliability analysis (6σ robust design) into the optimization solver, and addressed

the location issue. But both parts, Halachmi (2012a, b) developed queuing-based

models to inland recirculating aquaculture system (RAS). Inland RAS operation

mode is considerably different since the RAS limitation is the biofilter capacity and

RAS’s water temperature and water quality can be controlled, parameters that are

uncontrollable in marine netcages. Halachmi (2012d) reported on a single applica-

tion of queuing theory, but it did not combine simulation optimization to address

RAS or marine netcages.

We could not find any scientific reported simulation addressing the same prob-

lem of designing 1,000 ton/year RAS and 2,500 ton/year netcages fish farms.

A queuing network model that had been built in a previous study (Halachmi

2007) but could only handle steady-state situations; moreover, earlier simulation

models (for reviews, see Halachmi et al. 2005; Halachmi 2006; Seginer and

Halachmi 2008) did not address the same problem. They address smaller farms or

ornamental fish farms.

In conclusion, an integrated model (simulation optimization) in aquaculture has

not been reported yet. The current study might serve to bridge the gap.

9.3 Model Formalisms

The model is presented in three parts: Sect. 9.3.1 presents the general case,

Sect. 9.3.2 develops the equations for three growing phases. Section 9.3.3 presents

a detailed examination of two case studies: (a) 2,500 ton/year marine netcages,

(b) 1,000 ton/year recirculating aquaculture system. While the numerical values

reflect local aquatic conditions, the concept (9.2)–(9.8) may be applicable elsewhere.
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9.3.1 Developing the Analytical Concept: General Case

The model developed herein applies queuing-theory terms. A fish culture volume

(tank, pond, marine netcage, etc.) can be treated as a queuing system:

ð9:1Þ

where λ and μ are the arrival and departure rates, i.e., the number of fish batches that

arrive and depart per year. The expected time spent by a fish in a culture volume is S.
When a fish has completed its growth in a culture volume, it leaves that culture

volume, and therefore

S ¼ 1

μ
ð9:2Þ

The expected utilization of a culture volume (in queuing terms “service facility”) is

ρ ¼ λ

μ
ð9:3Þ

Over-holding (ρ> 1) or idle (ρ< 1) culture volumes are not economic.

The number of parts into which a fish batch is divided (P), and the number of

culture volumes (c) in a growing phase gives:

ρ ¼ λ

μ
� P

c
ð9:4Þ

Substitute ρ¼ 1, which means we want 100 % culture-volume utilization:

1

μ
¼ 1

λ
� c

P
ð9:5Þ

Substituting S ¼ 1
μ, the expected time S that a fish spends in growth phase i,

gives:

Si ¼ 1

λ
� ciY i

1
Pi

ð9:6Þ

where Si is the period in growing phase i, ci is the expected number of culture

volumes in growing phase i, Pi is the number of parts into which a batch is divided

as it enters growth phase i (this division is known in fishery practice as grading and
sorting events). A batch is divided into smaller parts, P sub-batches, i.e., a batch
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with N1¼ 200,000 fish is divided into two batches of N2¼ 100,000 fish each:

P2¼ 2.

The entire growing period,
X

Si, is usually known, although it depends on local

conditions such as water quality, temperature, oxygen, feed, genetic merit, han-

dling, and more:

X
Si ¼

X 1

λ
� ciQ

Pi

� �
!
X

Si ¼ 1

λ

X ciQ
Pi

! 1

λ
¼

X
SiX ciQ
Pi

ð9:7Þ

The yearly turnover, T (ton per year) is:

T ¼ λ� Nf � Bf ð9:8Þ

where λ (batches per year) is arrival and departure rates, i.e., the number of fish

batches that depart per year, Nf (fish) is the number of fish in a batch at marketing

time, and Bf (kg) is the fish’s final body weight.

Thus, the optimization problem appears to be:

max T ¼ max

X ciQ
PiX
Si

� Nf � Bf ð9:9Þ

S.T.

X
ci� upper limit of the number of culture volumes restricted by available space,

length of the breakwater or water-carrying capacity.

Di ¼ Bi � Ni

Vi
� 1

p1 � p2 � p3 � � � � � pi
� fish biomass-density limitation, at any

growing phase i.

where Vi is the culture volume in growing phase i. Di is the biomass in growing

phase i. Pi is the number of sub-batches formed from a batch;Ni is the number of fish

in a batch in growing phase i. Bi is the body weight of a fish (kg) in growing phase i.
The decision parameters were: N, c1, c2, c3, S1, S2, S3, P1, P2, P3.

9.3.2 The Equations for a Special Case:
Three Growing Phases

Three growing phases, such as the “4,8,16 layout” (Fig. 9.3), derive i¼ 1 to 3,

therefore (from 9.7) above),
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1

λ
¼

X
Si

c1
p1

þ c2
p1p2

þ c3
p1p2p3

� � ð9:10Þ

Note that (I) (9.10) and (9.11) apply only for three growing phases, i.e., i¼ 1 to 3;

(II) the zero phase is the hatchery, not on our farm, and therefore it is not a 1, 4, 8, 16

system, i.e., not i¼ 1 to 4.

9.3.3 A Special Case: 2,500 ton/year, Three Growing Phases,
a Space for Only 29 Netcages Along the Breakwater

The three phases, substituting the given biomass-density limitations and the avail-

able space, give the following set of equations:

Fig. 9.3 The 4,8,16 layout. Fish culture netcages, 0, I, II, and III growing phases. The zero (“0”)

growing phase is the fingerling source. Our farm grows phases I to III. Phase I contains four round

netcages, 2,900 m3 each, summing to 11,600 m3 in total. Phase II contains eight round netcages,

2,900 m3 each, and one 2,900 m3 summing to 23,200 m3 in total. Phase III contains 16 round

netcages: six 2,900 m3 each, and ten 2,000 m3 each, summing to 37,400 m3 in total. “Fish traffic”:

once a month, a batch arrives with 3–6 g fish to phase I and occupies a netcage for 4 months

(122 days, till around 60 g). Then, the batch is split into two while size sorting and is moved

forward to occupy two netcages in phase II (also 4 months, till around 200 g). Then, each batch in

phase II is split again into two netcages in phase III while size sorting. Phase III is also 122 days,

reaching around 400 g. Batch splits are P1¼ 1, P2¼ 2, P3¼ 2. In total, each original batch is split

into four sub-batches during its lifetime in the sea, while size sorting
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max T ¼ max

c1
p1

þ c2
p1p2

þ c3
p1p2p3

� �
X

Si
� Nf � Bf

S:T:
P

ci ¼ c1 þ c2 þ c3 � 29 netcages

ð9:11Þ

D1 ¼ B1 �N1

V1
� 1

p1
� 15kg=m3 is fish biomass density at the end of

the first growing phase.

D2 ¼ B2 �N2

V2
� 1

p1�p2
� 20kg=m3 is fish biomass density at the end

of the second growing phase.

D3 ¼ B3 �N3

V3
� 1

p1�p2�p3
� 25kg=m3 is fish biomass at the end of the

final, third growing phase.

In our case, market demands B3¼Bf¼ 0.350–0.402 kg. Experience in

our marine conditions suggests
P

Si ¼ 365� 420days, which is given by

the fish growth functions (9.1), the harbor’s depth and its available space:

Vsmall netcage¼ 2,000 m3, Vlarge netcage¼ 2,900 m3, total
P

ci ¼ 29 netcages:

18� 2,900 m3 and 11� 2,000 m3 netcages can fit along the breakwater. In our

case, given a constant fish mortality, the initial amount of fish N1¼Nf/MR, where

MR is the fish mortality rate.

The decision parameters were: Nf, c1, c2, c3, S1, S2, S3, P1, P2, P3, and the model

was fed into the Matlab optimization toolbox (Coleman et al. 1999). The solution

was a 4,8,16 layout.

9.3.3.1 Calculating Fish Growing Periods

The sections below (Sects. 3.3.1–3.3.4) demonstrate the calculations for “4,8,16”

potential layout (Fig. 9.3 describes the “4,8,16 layout” details). “4,8,16” stands for

4, 8, and 16 netcages for each of the three successive growing phases; 4 + 8

+ 16¼ 28 netcages, while the length of the breakwater allows 29 netcages. One

netcage is therefore reserved for daily operational tasks such as temporary storage

of small numbers of fish waiting to be transported to market, disease analysis,

vaccination activities, etc.

An optimal value of arrival rate, λ, can be calculated as follows:

 
Si ¼ 1

λ
� ciQ

Pi

!
! SI ¼ 1

λ
� cI
pI

¼ 1

λ
� 4

1
¼ 4

λ
, SII ¼ 8

2λ
; SIII ¼ 16

2� 2λ
ð9:12Þ

X
Si ¼ SI þ SII þ SIII ¼ 4

λ
þ 4

λ
þ 4

λ
¼ 12

λ
! 1

λ
¼
X

Si

12
ð9:13Þ

where, for a given set of aquaculture conditions, ∑Si¼ 365 days is the total time

needed to raise a gilthead seabream from fingerling size (2–3 g) to a final product
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size of 350 g. Substituting ∑Si¼ 365 into (9.13) suggests that 1/λ¼ 30.4 days, i.e.,

the farmer should purchase a fresh fingerling batch every month (30.4 days).

Substituting 1/λ¼ 30.4 into (9.12) suggests growing periods in phases SI, SII, and
SIII of 4� 30.4¼ 122 days each.

9.3.3.2 Fine Tuning. Calculating Facility Utilization

and Number of Sub-batch Splits

Full capacity is assured from the model construction bricks (9.4 and 9.5) assume

ρ¼ 1 which means 100 % netcage utilization).

Phase 1. Arrival rate λ ¼ 12 batches/year, a batch grows for 4 months (122 days),

μ ¼ 365
122

¼ 3batches/year. From (9.3) ρ ¼ λ
μ �

Q
Pi

c

� �
! ρ1 ¼ 12

3
� 1

4
¼ 1, meet-

ing the ρ ¼ 1 design criteria.

Phase 2. Arrival rate λ ¼ 12 batches/year, a batch grows for 4 months (122 days),

μ ¼ 365
122

¼ 3 batches/year and P2¼ 2. From (9.3) ρ ¼ λ
μ �

Q
Pi

c

� �
!

ρ1 ¼ 12
3
� 2

8
¼ 1.

Phase 3. Arrival rate λ ¼ 12 batches/year, a batch grows for 4 months (122 days), μ

¼ 365
122

¼ 3 batches/year, and P3¼ 2. From (9.3) ρ ¼ λ
μ �

Q
Pi

c

� �
!

ρ1 ¼ 12
3
� 2�2

16
¼ 1.

9.3.3.3 Fine Tuning Calculating Number of Fish in Each Batch

D is the biomass stocking density criterion; say D¼ 20 kg/m3. V is the volume of a

netcage; say V¼ 2,000 m3. Nf is the number of fish in a batch at the final stage, and

Bf is the final body weight of a fish. In the present case, the market demands fish of

350 g. Therefore: D ¼ N � Bf

V ! N ¼ V�D
Bf

¼ 2, 000 � 20
0:35 ¼ 114, 000 fish in a batch

on the final day. The survival rate at the final stage was 70 %, and in a 7,7,12 layout,

a batch is divided into 1.71 parts; therefore, the original batch of purchased

fingerlings should comprise 114k
0:7 � 1:71 ¼ 280, 000 fish. In a 5,5,16 layout, a

batch is divided into two parts; therefore, the original batch of purchased fingerlings

should comprise 114k
0:7 � 2 ¼ 326, 000 fish.

9.3.3.4 Fine Tuning Calculating Grading (Sorting) Criteria

The optimal growth periods, i.e., 147, 147, and 147 days for the 7,7,12 layout,

determine the grading criteria as follows: from (9.1), Yave(t¼ 147)¼ 46 g for
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moving a fish from phase I to phase II at the age of 147 days. Yave(t¼ 294)¼ 183 g

for moving it from phase II to phase III at the age of 147� 2¼ 294 days. However,

other growth functions lead to different grading criteria: Ymin (9.1) leads to 20 g and

126 g, respectively, and Ymax (9.1) leads to 71 g and 239 g, respectively.

9.3.4 1,000-ton/year Recirculating Aquaculture System

Based on (9.8)–(9.11) and converting the measurement units, the optimization

problem was:

max T ¼ λ� Nf � Bf

with λ ¼ 1X
Si

c1
p1

þ c2
p1p2

þ c3
p1p2p3

� �
ð9:18Þ

S.T.:

pt 1

ΣSi
c1
p1
þ c2

p1p2
þ c3

p1p2p3

� �
� 52 � 0 is the arrival rate, λ � 52 fish batch arrivals/

year (once per a week); c1 þ c2 þ c3 � 50 � 0 is the total number of culture tanks

that can fit into the given building space �50;
BfingeringsþGr�S1ð Þ�0:9N

V1�p1
� 30 � 0,

seabream biomass density in first growth phase �30 kg
m3 ;

BfingeringsþGr� S1þS2ð Þð Þ�0:9 N

V2�p1p2

�55 � 0 is the seabream biomass density in second growth phase �55 kg
m3 ;

BfingeringsþGr� S1þS2þS3ð Þð Þ�0:9 N

V3�p1p2p3
� 55 � 0 is the seabream biomass density in third

growth phase �55 kg
m3 ;

273
365

� S1 � S2 � S3 � 0 is the total growth period S1 þ S2
þS3 ¼ 273

365
years ¼ 273days ; Vi � 350 � 0 is the off-the-shelf round tank, 2-m

height and volume up to 350 m3.

Bf ¼ Bfingering þ Gr
X

Si fish body weight ð9:19Þ

Gr ¼ 1:7e� 3� 365kg=year; Bfingering ¼ 2e� 3kg ð9:20Þ

c1 ¼ λ� S1 � p1 is the number of culture tanks in the first growth phase,

c2 ¼ λ� S2 � p1p2 is the number of culture tanks in the second growth phase,

c3 ¼ λ� S3 � p1p2p3 is the number of culture tanks in the third growth phase,

p1 ¼ p2 ¼ p3 ¼ 1. In our case, the farmer preferred only one single batch through-

out the entire rearing process, i.e., no batch splits were allowed, and, additional

lower bound was 0� xi (all decision parameters are above zero).
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The solution vector X¼ [c1, c2, c3, S1, S2, S3 V1, V2, V3, N] can be obtained by use
of Matlab’s fmincon function, with the “active-set” algorithm (Coleman

et al. 1999).

Solution. The optimal layout was found to comprise 13 culture tanks in each of the

three growth phases, which sums to 39 culture tanks. Optimal parameters included:

arrival frequency—a single fish batch into the system every 7 days, then 91 days in

each phase; growth up to 77, 233, and 468 g in the successive growth phases (the

so-called three growing phases, 13, 13, 13 culture tanks and 91, 91, 91 days,
respectively). The optimal values satisfied the criteria of biomass density below

50 kg/m3 and culture tank utilization above 99 %. Expected production was

1,000 ton/year. The proposed layout can accommodate different fish species with

different growth rates, e.g., seabream and grouper can be reared under the same

proposed layout, culture volume, density, and schedule. Increasing the desired bio-

mass density from 50 to 60 kg/m3 advances the expected production to 1,335 ton/year.

9.3.5 Simulation

9.3.5.1 Constructing the Simulation Model

The computer program, ARENA, simulates the flow of entities, i.e., fish batches,

through the growth phases in the culture tanks (a process-orientationmethod rather

than an event-sequencing method—Banks 1998). An entity can “request” use of a

resource (culture tank): if its request is denied, it joins a virtual queue and changes

its color value to red to signal an alarm; if its request is “approved,” it is permitted to

capture a resource, which it retains until the entity has grown to its predetermined

size, at which point it releases the resource.

The resources are the culture tanks, each of which has its own capacity, its own

cleaning schedule, and its own state variables, comprise fish population, growth

function, and mortality rate. The resource (tank) status may be idle, busy, or

blocked, i.e., suffering a technical problem or being cleaned.

The model incorporated two types of input variables. Discrete-event variables

comprise number of fish, number of culture tanks, time between arrivals of finger-

lings, and frequency of fish sorting. Continuous-time variables were: fish body

weight, O2 demand, feed intake, and excretions of TAN and TSS.

For detailed for description of the simulation model building blocks, refer to

Halachmi et al. (2014).

Model inputs:

(i) Number of tanks in each of the three growth phases

(j) Stocking frequency, i.e., number of days between successive stocking events

(k) Number of fingerlings per stocking event, i.e., batch size

(l) Initial fingerling size or weight

(m) Final product size
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(n) Desired stocking density at each time point in the fishes’ life in each culture

tank

(o) Fish-growth functions and mortality rate in each culture tank

Model outputs (i.e., the simulation responses):

(p) Monthly and annual sales, expressed as tons and number of fish per year, costs,

and revenues

(q) Stocking density (kg/m3) and standing stock biomass (tons) in each culture tank

at any given time, and feed load on the filters

(r) Utilization of each culture tank and overall facility utilization at any given time

(s) Sorting frequency and criteria at various points along the production line

For detailed for description of a model verification and validation, refer to

Halachmi (2000), Halachmi et al. (2001), and Kleijnen et al. (1998)

9.3.6 DOE and RSM

DOE. Use of the D-optimal (Anonymous 2008) reduced the number of input

combinations that were actually simulated to 100. Matlab’s D-optimal design

maximizes the determinant of Fisher’s information matrix XTX. Maximizing det

(XTX) is equivalent to minimizing the determinant of the covariance of the esti-

mated parameters. There are several Matlab functions that generate D-optimal

designs: cordexch, daugment, dcovary, and rowexch; we used cordexch. Cordexch
(n factors, n runs) uses a coordinate-exchange algorithm to generate a D-optimal

design with n runs (the rows) for a linear additive model with n factors (the

columns). The DOE followed the procedure (Kleijnen and Standridge 1988) and

(Kleijnen 2008).

The DOE outcome was 100 input combinations. The inputs were fed to the

simulation software. Then, after running the simulation 100 times, an input–output

function (I/O transformation) was fitted using stepwise regression. The regression

model itself was found to be significant ( p¼ 0.000), and the adjusted R2 was above

0.90 in both cases.

The I/O transformation which is defined as a model of the underlying simulation

experiments and is formulated by means of RSM, uses regression models, and

steepest ascent (gradient, unique maximum, saddle point, etc.). In our case study,

this meta-model was a first- or second-order polynomial, which meant that Kuhn–

Tucker conditions were both necessary and sufficient for a global optimum point.

The global optimum was found with ordinary projection methods (Coleman

et al. 1999). Thus, the meta-model enabled a global optimum to be found and the

integrated design methodology to be completed.
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9.3.7 Proposed Integration Optimization and Simulation
Throughout the Life-Time of a Project

Given the above considerations, a typical simulation–optimization aquaculture

project involved the following steps:

i. Clear formulation of the project aims and phases, with farm staff participation

(1 week)

ii. Clear formulation of the simulation model goals, with farm staff participation

(1 week)

iii. Gaining an understanding of the Inputs and Outputs (“I/O”) of the intended

simulation model, in parallel with real-life data measurements (1/2 year, given

3 years data exist in the farm management computers)

iv. Formulation of a conceptual model of the system, and obtaining farm staff

confirmation of its validity, before starting any programming work (2 months)

v. Translation of the conceptual model to “Arena” modeling software (1 month)

vi. Software verification (2 months)

vii. Model validation, including statistical validation, visual analysis, etc.

(1/2 year)

viii. Designing simulation experiments (DOE, 2 months)

ix. Formulation of the meta-model using RSM (1 month)

x. Formulation of the optimization problem, objective function, and constraints

(1 month)

xi. Simulation runs, scenario analysis, interpretation, and solving the optimiza-

tion problem while brainstorming/discussion sessions with the farm staff

(2 months, two meetings)

xii. Project documentation and delivery

The iterative process described in Fig. 9.3 (mentioned above) is performed in

step xi.

9.4 Applications

The real-life data are described in (Halachmi 2012b, c, d). Based on the simulation

optimization, the flowing results were obtained:

In the 2,500 ton/year netcages case-study, the model optimizes: (1) facility

allocation, i.e., number and volume of netcages in each growing phase; (2) fish-

batch arrival frequency; (3) number of fingerlings in a batch; (4) number of days in

each culture netcage; and (5) grading criteria along the production lines.

Compared with today existing management (200,000 fish per batch, 4 g finger-

lings, 441 days in sea, 7,7,12 layout), the 5,5,16 layout was superior, giving 1,687

vs. 981 ton/year).
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For the new system that is now under construction, the 4,8,16 layout was

selected. Optimal arrival frequency is a batch every month, and optimal retention

times are 122 days in each successive growing phase (up to 62, 196, and 382 g,

respectively). Use of these parameters did not violate the biomass-density criterion

(15, 20, and 25 kg/m3, respectively) or the netcage utilization criterion (never below

99 %), which suggests that it is not feasible to have fewer culture netcages.

The above numerical values reflect local conditions, but the concept is applica-

ble anywhere. It is recommended that every aquaculture enterprise apply this

concept in its design stage. The onus now lies with the industry.

9.5 Discussion

The main imperfection of simulations lies in their heuristic character: outputs are

obtained only in response to the selected inputs, so that there is no guarantee of

having obtained the best possible solution (Halachmi et al. 2002, 2012; Halachmi

2000; Banks 1998; Law and Kelton 1991). Classic simulation–optimization

(Fig. 9.1) made attempts to overcome this imperfection. However, classical

simulation–optimization does not pretend to guarantee global optimal point. If the

commercial simulation software could have grant access to the exact optimization

algorithm and would allow controllable F(x) and G(x) functions, then the entire

proposed methodology has no necessity anymore. The onus is now on the simula-

tion industry to improve their software.

The proposed method (Fig. 9.2) cuts the automatic linkage between the simula-

tion kernel and the optimization engine and replaces that linkage with a set “global-

optimization-enabled” objective function (up to third-order polynomial form, KKT

conditions, etc.). However, one should verify that his fitted functions reached

enough degree of goodness-of-fit. Otherwise, no proof of optimality. The respon-

sibility is on the modeler to verify that fitted functions well adequately mimic the

simulation and the real system.

In the future, more applications in other aquaculture farms are foreseen and

highly recommended. The authors encourage practitioners also in other industries

to adopt the proposed simulation–optimization and to send us their conclusions.

9.6 Conclusion

A simulation–optimization model aimed at best possible managerial parameters of

marine netcages and recirculating aquaculture system was developed and applied.
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Chapter 10

Swarm Intelligence in Optimal Management
of Aquaculture Farms

A. Cobo, I. Llorente, and L. Luna

10.1 Introduction

Optimization problems are of high importance and practical application both for the

industry and for the scientific world. Of course, the field of aquaculture farm

management is no exception to the applicability of optimization techniques.

Many strategic and operational decisions in the management of such farms can

be optimized by mathematical modeling. In particular, seeding strategies, feeding

policies, feed selection, and harvest times determination are examples of decisions

that can be optimized using mathematical methodologies. An optimization algo-

rithm is a search method where the goal is that a given quantity is optimized

(maximized or minimized), possibly subject to a set of constraints. In general,

any classical optimization problem has the three following elements: an objective

function which represents the quantity to be optimized, a set of decision variables,

and a feasible region defined by a set of constraints that restrict the values that can

be assigned to the decision variables. Due to the practical importance of optimiza-

tion problems, many algorithms to tackle them have been developed. However, in

many practical problems, it can arise various problems or difficulties. Firstly, the

complexity of the problems can make it difficult to find the optimal solution or an

approximation in reasonable computation times. This happens, for example, in

many problems of combinatorial nature, where there are a finite number of feasible

solutions but classical optimization techniques are not applicable or lead to com-

putation times too high for practical purposes. Moreover, in many real-life prob-

lems, the goal is often to optimize several objective functions at the same time; in

these cases we need to use multicriteria optimization techniques that can be applied
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for solving problems that require an evaluation and measuring in which different

and very often opposed criteria intervene. Finally, sometimes decisions are affected

by nonformalizable criteria or subjective judgments of the decision-makers. In such

cases it is advantageous to have techniques that generate sets of possible solutions,

thereby facilitating the process of decision-making. These are some of the reasons

that the use of metaheuristic methods to solve optimization problems has received

more and more attention in the last 30 years, especially the population-based

metaheuristics. In these methods we sacrifice the guarantee of finding optimal

solutions for the sake of getting good solutions in a significantly reduced amount

of time (Blum and Roli 2003).

The term metaheuristic, first introduced in Glover (1986), refers to a new kind of

algorithm which basically tries to combine basic heuristic methods in higher-level

frameworks aimed at efficiently and effectively exploring a search space. In short,

metaheuristics are high-level strategies for exploring search spaces by using differ-

ent methods. There is no commonly accepted definition for the term metaheuristic,

but in the following we present one of the first definitions proposed in the specialized

literature: “A metaheuristic is formally defined as an iterative generation process

which guides a subordinate heuristic by combining intelligently different concepts

for exploring and exploiting the search space, learning strategies are used to struc-

ture information in order to find efficiently near-optimal solutions” (Osman and

Laporte 1996). This definition highlights one of the key features of metaheuristic

techniques: the dynamic balance between diversification (exploration of the search

space) and intensification (exploitation of the accumulated search experience).

Metaheuristic algorithms form an important part of contemporary global optimiza-

tion algorithms, computational intelligence, and soft computing (Yang 2012).

Blum and Roli (2003) outline fundamental properties which characterize

metaheuristics: efficiently exploration of the search space in order to find near-

optimal solutions, approximate and usually nondeterministic algorithms, use of

learning processes, not problem specific, incorporation of mechanisms to avoid

getting trapped in confined areas of the search space, use of domain-specific

knowledge in the form of heuristics that are controlled by the upper-level strategy,

and use of search experience to guide the search.

There are different criteria to classify metaheuristic algorithms (Blum and Roli

2003). Based on the origins of the algorithm, we can distinguish between nature-

inspired and non-nature-inspired. The first ones try to mimic some successful

characteristics in nature and have attracted a great deal of attention in engineering

and industry. Example of nature-inspired metaheuristic is the genetic algorithms,

inspired by evolution and natural selection principles. Another characteristic that

can be used for the classification of metaheuristics is the number of solutions used at

the same time. Algorithms working on single solutions are called trajectory

methods. Population-based metaheuristics, on the contrary, perform search pro-

cesses which describe the evolution of a set of points in the search space, that is, a

population of potential solutions. In general, population-based metaheuristics are

more complex to use than trajectory methods; they require mechanisms to manage

population of solutions, and they need effective operators for the combination of
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solutions. It is clear that the use of a population is an appropriate way to achieve

search space diversification. Thus population-based methods are desirable if their

complexity is not overwhelming (Kochenberger 2003).

A subset of population-based metaheuristics is often referred to as swarm

intelligence (SI) algorithms. These algorithms have been developed by mimicking

the so-called swarm intelligence characteristics of biological agents such as birds,

fish, insects, and others (Yang 2012). The increasing popularity of these computa-

tional techniques is due to their flexibility, versatility, and efficiency to deal with

very complex optimization problems. In the following sections the theoretical

foundations of the two main SI techniques will be presented, and then we will

expose a practical application in the context of optimal planning of aquaculture

farms.

10.2 Swarm Intelligence

Swarm intelligence, also referred to as collective intelligence, is an innovative

distributed artificial intelligence paradigm for solving optimization problems that

originally took its inspiration from the collective behavior of social insects such as

ants, termites, bees, and wasps, as well as from other animal societies such as flocks

of birds or schools of fish. These algorithms use multiple interacting agents in order

to exploit the benefits of cooperation in situations where you do not have global

knowledge of an environment. In these situations individuals within the group

(agents) interact to solve the global objective, exchanging locally available infor-

mation, which in the end propagates through the entire group such the problem is

solved more efficiently than can be done by a single individual (Engelbrecht 2005).

The term swarm intelligence was first used by Beni (1998) in the context of cellular

robotic systems where simple agents organize themselves through nearest-neighbor

interaction. In short, SI refers to various techniques based on the idea that groups of

extremely simple agents with little or no organization can exhibit complex and

intelligent behavior by using simple local rules and communication mechanisms

(Bonabeau et al. 1999). Thanks to this intelligent behavior, a group of social agents

can carry out actions on a complex level and form decentralized and self-

organizational systems. These groups of agents are known as swarms; formally a

swarm can be defined as a group of generally mobile agents which communicate

with each other (either directly or indirectly) by acting on their local environment

(Hoffmeyer 1994).

The roots of SI are deeply embedded in the biological study of self-organized

behaviors in social insects (Bonabeau et al. 1999). Colonies of social insects have

fascinated researchers for many years, and the mechanisms that govern their

behavior remained unknown for a long time. Biological swarm systems that have

inspired computational models include ants, termites, bees, and spiders. Even

though the single members of these colonies are non-sophisticated individuals,

they are able to achieve complex tasks in cooperation. Examples of collaborative
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work are nest building, task allocation, recruitment of colony members for prey

retrieval, foraging behaviors, larvae organization, clustering task of corpses . . .
Many aspects of these collective activities are self-organized and work without a

central control (Blum and Li 2008). Other examples of collective intelligence and

emergent behavior from nature are the self-organization in optimal spatial patterns

of birds in a flock and fish in a school, hunting strategies of predators, communi-

cation using molecules in bacteria, and behaviors of some simple cellular organisms

in times of food shortage (Engelbrecht 2005).

Different mathematical models inspired by such behaviors have been success-

fully applied for solving a wide range of real problems. Among the most well-

known SI models are the ACO (ant colony optimization) and PSO (particle swarm

optimization) techniques. Both are population-based metaheuristic algorithms that

can be applied to optimum solution-seeking problems and represent an interesting

alternative to problems of a combinatorial nature that are difficult to solve using

classic techniques.

10.2.1 Ant Colony Optimization

Ant colony optimization (ACO) was one of the first techniques for approximate

optimization inspired by SI. It was introduced as a technique for combina-

torial optimization in the early 1990s (Dorigo 1992). The inspiring source of ant

colony optimization is the foraging behavior of real ant colonies. The basic ACO

algorithm mimics the way real ants find shortest route between a food source and

their nest. The ants communicate with one another by means of chemical phero-

mone trails, which enables them to find short paths between their nest and food

sources. When searching for food, ants initially explore the area surrounding their

nest in a random manner. While moving, ants leave a chemical pheromone trail on

the ground; and wherever an ant has a choice of direction, it chooses the branch to

follow with a probability that is dependent on the pheromone concentration. With

each successful round-trip to the food source by an ant, the trail beacon comes

stronger. The deposited pheromone is subject to evaporation over time, and then the

pheromone concentration will be higher in the shortest paths and more ants get

attracted toward the source using these routes. This indirect communication

between the ants via pheromone trails enables them to find shortest paths between

their nest and food sources.

In ACO, principles of communicative behavior occurring in real ant colonies are

used, and several generations of artificial ants search for good solutions. An

artificial ant is a stochastic constructive procedure that incrementally builds a

solution by adding opportunely defined solution components to a partial solution

under construction. Every ant of a generation builds up a solution step by step using

information provided by the previous ants (pheromone trails) and heuristic infor-

mation that represents a priori information about the problem. Once a solution is

completed, pheromone trails are updated according to the quality of the solution
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built, so that the following ants are attracted by the pheromone and will likely

search in the solution space near good solutions (Dorigo and Stützle 2004). ACO

has been applied successfully to solve various optimization problems (Dorigo and

Stützle 2004). The first ACO algorithm, called ant system (AS), was applied to the

traveling salesman problem (TSP) (Dorigo 1992), but in general ACO can be

applied to any combinatorial optimization problem that can be represented by a

graph, consisting of a finite number of nodes and links between nodes. In the case of

continuous optimization problems, the main problem is to determine a way of

mapping the continuous space problem to a graph search problem. Different

approaches have been used for this purpose; a simple solution is to encode

floating-point variables using binary string representations (Engelbrecht 2005).

In order to apply the basic ACO approach to solve an optimization problem, we

need to proceed as follows. First, we need to derive a finite set C¼ {c1, c2, . . . , cn}
of solution components which will be used to assemble solutions to the combina-

torial optimization problem and a finite set of possible transitions among these

components. Each component is associated to one of the nodes of the graph, and

each link in the graph represents one possible transition. We also need a cost

function, which associates a cost to each solution generated by the search process.

Each component added to a solution contributes to the total cost of the solution.

Given these basic elements, the optimization algorithm aims to construct a feasible

sequence of components such that the cost of the solution is minimized, that is, to

construct a minimum cost path in the graph.

One of the central elements of ACO is the pheromone model, defined as a set of

pheromone values T. Each link between solution components i and j has associated
a pheromone value τij 2 T. The pheromone model is used to probabilistically

generate solutions to the problem by assembling them from the set of solution

components, that is, by constructing incrementally a path in the graph. Normally a

random constant value is used to initialize the pheromone values τij¼ τ0, and then

the candidate solutions will modify these values in order to concentrate the search

in regions of the search space containing high-quality solutions.

The success of ACO algorithm is in the cooperative behavior, so a set of

software agents called artificial ants search for good solutions. The number of

ants is a parameter that must be specified; the fewer ants used, the less the

exploration ability of the algorithm. Small values of this parameter may cause

suboptimal solutions. Moreover, if the parameter value is high, the computational

complexity grows. Then we need to find the right balance between complexity and

effectiveness.

Each artificial ant stars the solution construction with an empty path S. At each
construction step the path is extended by adding a solution component (node) from

a set of feasible components N(s). This set of feasible components includes the

unvisited nodes that are connected with the ant’s current node. The choice of a node

from N(s) is at each construction step performed probabilistically with respect to the

pheromone model and heuristic information. The heuristic information is

represented by a new matrix (ηij) whose values can be seen as a priori measure of

the quality of inclusion in the path of node cj after node ci, i.e., the attractiveness, or
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desirability, of the move from ci to cj. For example, in the case of TSP, these values

can be defined as a function of the distance between nodes (cities). For most of

ACO algorithms, the transition probabilities from node ci to node cj are defined as

follows:

pij ¼
τij
� �α

ηij
� �β

X
q2N sð Þ

τiq
� �α

ηiq
� �β if j 2 N sð Þ

0 if j =2 N sð Þ

8>>>><
>>>>:

ð10:1Þ

where α and β are two positive parameters whose values determine the relative

influence of pheromone and heuristic information. This transition probability bal-

ances the exploration-exploitation trade-off; the best balance is achieved through

proper selection of the parameters α and β, so their values must be selected

carefully. If α¼ 0, no pheromone information is used, previous search experience

is neglected, and the search can degrade to a stochastic greedy search. Moreover,

large values of α give excessive importance to the pheromone information which

may lead to a rapid convergence to suboptimal solutions, that is, all ants follow the

same nonoptimal path.

After completion of a path by each ant, the pheromone values must be updated.

Different update strategies can be used; in the following we outline a general rule in

order to provide the basic idea. This rule includes a pheromone evaporation, which

uniformly decreases all the pheromone values, and an update process based on the

quality of the solution found by each ant. According to the ideas, the pheromone on

each link is updated as

τij tþ 1ð Þ ¼ 1� ρð Þτij tð Þ þ
Xna
k¼1

Δτ kij tð Þ ð10:2Þ

where ρ in [0, 1] is a parameter called evaporation rate that controls the influence of

search history; na denotes the number of ants in the colony, i.e., the number of

solutions that are used for the update (each ant constructs its solution); and

Δτijk(t) is the amount of pheromone deposited by ant k on the link (i, j) at time

step t. This amount must be calculated using an increasing function of the quality of

the solution. The value of the evaporation rate must be selected carefully. For large

evaporation rates, pheromone evaporates rapidly and more random the search

becomes.

10.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic technique based on the evolution

of populations for problem solving. PSO was developed by Kennedy and

Eberhart in 1995 and has been successfully applied in a great variety of contexts
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(Kennedy and Eberhart 1995, Poli et al. 2007). PSO is a kind of SI that simulates the

social behavior of a flock of birds or fish schooling when moving all together

following a common tendency in their displacements.

A PSO algorithm is initialized with a population (swarm) of “particles.” Each

particle represents a single candidate solution of the optimization problem and

makes use of its individual memory and knowledge gained by the swarm as a

whole to try to find the best solution to the problem. In PSO the particle swarm

simulates the social optimization commonly found in communities with a high

degree of organization. For a given problem, some fitness function is needed to

evaluate the proposed solution. In order to get a good one, PSOmethods incorporate

both a global tendency for the movement of the set of individuals and local

influences from neighbors (Eberhart and Kennedy 1995, Kennedy and Eberhart

1995).

PSO procedures start by choosing a swarm of random candidate solutions in

the search space. Then they are displaced throughout their domain looking for an

optimum, taking into account global and local influences, the latest coming from

the neighborhood of each particle. To this purpose, all particles have a position

Xi(t) and a velocity Vi(t) that allows updating the particle’s position in each

iteration.

The initial position vectors Xi(0) and velocity vectors Vi(0) are randomly

selected over the search space. Then these particles evolve all through the space

according to two essential reasoning capabilities: a memory of their own best

position and knowledge of the global or their neighborhood’s best. The meaning

of the “best” must be understood in the context of the problem to be solved. In a

minimization problem that means the position with the smallest value for the target

function.

The dynamics of the particle swarm is considered along successive iterations,

like time instances. Each particle modifies its position Xi(t) along the iterations,

keeping track of its best position in the variable domain implied in the problem.

This is made by storing for each particle the coordinates Pb
i associated with the

best solution (fitness) it has achieved so far along with the corresponding fitness

value, f bi. These values account for the memory of the best particle position. In

addition, members of a swarm can communicate good positions to each other, so

they can adjust their own position and velocity according to this information. To

this purpose, we also collect the best fitness value among all the particles in a

neighborhood of each particle i, f bgi, and its position Pbg
i from the initial iteration.

This is a social information for modifying the position of each particle. Different

PSO algorithms have been developed which differ in the size and topology of their

neighborhoods (Engelbrecht 2005). In the simplest implementation of PSO, known

as global best PSO, the neighborhood for each particle is the entire swarm, that is,

the social information reflects information obtained from all the particles in the

swarm. Furthermore, the local best PSO uses a ring social network topology where

smaller neighborhoods are defined for each particle; in this case the social infor-

mation reflects local knowledge of the environment.
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The evolution for each particle i is given by

Vi tþ 1ð Þ ¼ wVi tð Þ þ α r1 Pbg
i tð Þ � Xi tð Þ

� �
þ β r2 Pb

i tð Þ � Xi tð Þ
� � ð10:3Þ

Xi tþ 1ð Þ ¼ Xi tð Þ þ Vi tþ 1ð Þ ð10:4Þ

where Xi(t) and Vi(t) are the position and the velocity of particle i at time t,
respectively; w is called inertia weight and it decides how much the old velocity

will affect the new one; and coefficients α and β are constant values called

acceleration coefficients, which decide the degree of affection of Pbg
i and Pb

i. In

particular, α is a weight that accounts for the “social” component, while β repre-

sents the “cognitive” component, accounting for the memory of an individual

particle along the time. The acceleration coefficients are also referred to as trust

parameters, where α expresses how much confidence a particle has in its neighbors,

while β expresses how much confidence a particle has in itself. Finally, two random

numbers, r1 and r2, with uniform distribution on [0, 1] are included to enrich the

searching space. Figure 10.1 shows the three components of the velocity vectors—

inertia, social component, and cognitive component—and their influence in the new

position of each particle.

After the update process of positions and velocities, a fitness function must be

given to evaluate the quality of the new positions, and the local and global best

positions of each particle must also be updated. This procedure is repeated several

times (thus yielding successive generations) until a termination condition is

reached. Common terminating criteria are that a solution is found that satisfies a

lower threshold value, or that a fixed number of generations has been reached, or

that successive iterations no longer produce better results. The final PSO procedure

is briefly sketched in Table 10.1.

As happens in other metaheuristics, the basic PSO algorithm is influenced by a

number of control parameters: swarm size, neighborhood size, inertia weight,

P(t+1)

Personal best

P(t)

Best neighbor

Social component

Cognitive component

inertia 

Fig. 10.1 Components of

the velocity vector in a PSO

algorithm
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acceleration coefficients, and number of iterations. Implementing a PSO algorithm

requires a careful selection of these parameters.

10.4 Metaheuristics for Management Aquaculture Farms

The complexity of the problems that arise in the management of aquaculture farms

makes metaheuristic techniques to be particularly suitable for the solution of many

optimization problems of practical importance. In this section we will examine the

research contributions to the application of metaheuristic techniques and swarm

intelligence in different problems related to optimal management of aquaculture

farms. In particular, several research works that can be found in the literature use

population-based metaheuristics; perhaps the most commonly used in this area are

genetic algorithms (GA), which is one of the modern optimization techniques

because of its evolutionary nature; it can handle any kind of objective function

and constraint. Recent works of application of GA in aquaculture are cited below.

Atia et al. (2012) use genetic algorithm to the optimal design of solar water

heating systems; the work presents a model of a forced circulation solar water

heating system for supplying a hot water at a certain temperature for an aquaculture

system. In this context Liu et al. (2011) address the water quality prediction in

aquaculture management using a hybrid approach. In the work, a prediction model

based on support vector regression is proposed, and genetic algorithms are used for

the optimal selection of parameter values. Gutiérrez-Estrada et al. (2012) evaluate

several linear and nonlinear models for modeling the water exchange process in

gilthead sea bream semi-intensive aquaculture systems; in particular, they use

genetic algorithms to find the optimal values of the parameters of a fuzzy logic

model. A very different application is the use of genetic algorithms in

Table 10.1 General structure of a PSO algorithm
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environmental models to predict the potential distribution of invader species. In

Therriault and Herborg (2008), a genetic algorithm for rule-set prediction environ-

mental model is presented; the model analyzes the potential distribution of a

tunicate specie in Canadian waters. Chen et al. (2007) use the same methodology

to model the niches of silver carp and bighead carp in their native ranges using

hydrologic and general environmental parameters in concert with native distribu-

tional data. The model suggests that both species have the potential of spreading

throughout the eastern USA and selected areas of the West Coast. Genetic algo-

rithms have also been used to design an optimal diet composition with the objective

to ensure the maximal survival in the culture of common octopus (Hormiga

et al. 2010). Other applications of genetic algorithms in aquaculture are fish

stock-recruitment processes (Chen et al. 2000), predicting fish distributions

(D’Angelo et al. 1995), optimization of multi-objective fisheries bioeconomic

models (Mardle et al. 2000), or optimization of harvest management strategies of

many species, considering interactions between and within species (Stafford 2008).

ACO is not a metaheuristic that has been widely used in practical problems of

aquaculture management; however, it is also possible to find some practical appli-

cations. For example, Liao et al. (2012) develop four metaheuristic algorithms for

the solution of grouping problem in high-throughput cryopreservation operations of

fish sperm; one of the algorithms proposed is based on ant colony optimization.

Another area of application of optimization techniques is transport and logistics; in

the case of the distribution of aquaculture products, it is possible to find works that

apply other types of metaheuristics, such as simulated annealing (Wang et al. 2012).

Although there are fewer works making use of PSO techniques, it is possible to

find interesting practical applications that have been addressed with these tech-

niques. For example, in Deng et al. (2006), a PSO algorithm was proposed to train a

fuzzy neural network that defines a prediction model for dissolved oxygen concen-

tration in fishponds. This work presents experimental results showing that the

proposed method is effective and more accurate than other conventional approaches

as back-propagation method. Xuemei et al. (2011) address the same problem of

prediction of dissolved oxygen by using a neural network but introduce an adaptive

genetic algorithm to optimize the network and make it faster convergence. Chau

(2005) uses PSO for training perceptrons to forecast real-time algal bloom dynam-

ics on the basis of several input hydrodynamic and/or water quality variables. It is

shown that when compared with the benchmark back-propagation algorithm, its

results can be attained both more accurately and speedily.

10.4.1 Example of Application: A PSO Model for Optimal
Management of Aquaculture Farms

Similar to other animal breeding industries, aquaculture production is based in the

daily growth of individuals. Modeling this biological process is complex due to the
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broad range of factors that influence fish growth, which are both internal, such as

feeding rates or fingerling weight, and external, such as water temperature or the

social behavior of individuals. In this complex scenario, bioenergetic models mea-

sure the daily growth of fish as the energy gain from the difference between the

energy input and output. By modeling the complex interactions between economic

and biological systems, it is possible to make the most efficient decisions about

aspects such as the diet composition, feeding rates, and harvesting time. Thus,

bioeconomicmodels have played a crucial role in ORmethods (Bjørndal et al. 2004).

Although these studies have contributed significantly to the optimization of

production planning, the complex interactions of technical, biological, and eco-

nomic aspects in fish farming limit the application of classical optimization

methods. A useful method when the optimization problem is complex, stochastic,

and nonlinear is the particle swarm optimization (PSO). As an example of appli-

cation, we present in this section a PSO model to address problems of production

planning in aquaculture farms. This model aims to provide aquaculture producers

with a methodology and a tool to facilitate their decision-making process, in

particular, the determination of optimal time of planting and harvesting. Determin-

ing the optimal planting and harvesting strategy allows managers to maximize

results and eliminate operational risk, and swarm intelligence techniques are

particularly suited to address such problems and eliminate the uncertainty of

aquaculture enterprises due to the complexity and the large number of factors and

constraints involved in the process.

The model consists of a biological submodel of the process of farming in sea

cages, which is interrelated with an economic submodel that quantifies the process

so as to continue the economic implications of any change in the parameters of

farming and market. Different factors are considered in the proposed model: abiotic

factors affecting the growth process; feeding rate and daily growth, which are a

function of water temperature and the average weight of fish; and survival rates

depending on the average weight of specimens and environmental conditions. The

proposed model considers weights in harvest time, fingerling weights, and delay

periods between harvests as decision variables. The objective function to optimize

is the farming gross margin obtained in a period of time. To calculate this function

the cost of stocking and the cost of feed are considered.

The use of a population-based metaheuristic like PSO provides additional

advantages. Firstly, it provides a set of possible schedules close to the optimal

and allows to perform a complete analysis of the temporal evolution of the process

of fattening and bioeconomic analysis of production location.

10.5 Particular Case: Production of Sea Bream
in Floating Cages

Traditionally, gilthead sea bream were cultured extensively in coastal lagoons and

saltwater ponds until intensive rearing systems were developed during the 1980s.

Artificial breeding was successfully achieved in Italy in 1981–1982, and large-scale
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production of gilthead sea bream juveniles was definitively achieved in 1988–1989

in Spain, Italy, and Greece.

Gilthead sea bream are very suitable species for extensive aquaculture in the

Mediterranean due to their good market price, high survival rate, and feeding habits

(which are relatively low in the food chain). This species very quickly demonstrated

a high adaptability to intensive rearing conditions, both in ponds and cages.

Ongrowing in sea cages is simple and economical, and it is the fattening system

normally used in the Mediterranean basin. In sea cages biomass densities are lower

than in tanks (10–20 kg/m3), but there are great advantages that make cage farming

more profitable: no energy costs for pumping, aeration, or post-rearing water

treatment. However, it is not possible to control temperature in cage rearing, it is

necessary to stock larger juveniles, and longer rearing periods to market size are

needed. On average, larger pre-fattened gilthead sea bream (10 g) reach first

commercial size (350–400 g) in about 1 year, while smaller juveniles (5 g) reach

the same size in about 16 months. The production cycle of an intensive system of

production of Sparus aurata is shown in Fig. 10.2.

Fig. 10.2 Production cycle of Sparus aurata—intensive system (Source: Food and Agriculture

Organization of the United Nations http://www.fao.org/fishery/culturedspecies/Sparus_aurata/en)
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10.6 Objective Function and Decision Variables

The proposed approach aims to determine the optimal planting and harvesting

strategy in order to maximize the present value of farming gross margin obtained

in a period of time and eliminate the uncertainty of aquaculture enterprises.

To calculate the gross margin for farming, the only costs considered are the cost

of stocking and the cost of feed.

Production costs do not fit a linear function in aquaculture. There are two issues

that directly affect gross margin: location, which determines the environmental

variables, logistic costs, etc., and decision of operational strategy, that is, the

sequencing of the strategy of planting and harvesting. In this example of application,

only variables associated with operational strategy are considered. Variables associ-

ated with environmental conditions are considered as input parameters in the model.

A planted and harvesting strategy in a time period is defined by the following

decisions:

• Number of seed-harvest processes in the time period.

• Time of planting.

• Juvenile weight.

• Market size, that is, weight in harvest time. This size determines the time of

harvesting.

• Diet scheduling.

Stocking costs are calculated by estimating the number of fingerlings in order to

reach the maximum biomass density in the cage at the time of harvesting and

considering the price of the juvenile as a function of its weight.

In order to simplify the model, we assume that the production process uses a

single floating cage and only one type of feed.

We have developed a bioeconomic model to evaluate the production of gilthead

sea bream in floating cages based on location. The biologic submodel contains a

growth model based on the specie physiology and using the following functions:

• T(t): water temperature at time t
• R(T(t), w(t)): ration size as function of water temperature and fish weight

• GR(T(t), w(t)): specific fish growing rate as function of water temperature and

fish weight, that is, a function that relates feed consumption to weight gain

• M(T(t), w(t)): probability of mortality depending on the temperature and fish

weight

In the model, the time is considered as a discrete variable that counts the number

of days from an initial date t0. The function T( ) is determined by the environmental

conditions at the location of the farm; whereas the functions R( ) and GR( ) are
determined by the technical specifications provided by the manufacturer of the

feed. The daily mortality rate is a function with a larger value for fingerlings than

for individuals with more of 50 g.
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If Nt represents the number of individuals in the cage at time t, No can be

initialized with the number of fingerlings that allows to reach the maximum

biomass density in the cage at the time of harvesting, and then the following rule

is used:

Nt ¼ N0

Yt
k¼0

1�M
�
T kð Þ,w kð Þ� �

: ð10:5Þ

And the weight function is defined as follows:

w tð Þ ¼ w 0ð Þ
Yt
k¼0

1þ GR
�
T kð Þ,w kð Þ� � ð10:6Þ

where w(0) is the weight of the seed juveniles.

The economic submodel aims to maximize the gross margin of breeding. This

gross margin must be calculated considering juvenile prices as function of its

weight w(0), sale price of the final product, minimum weights for sale, seasonality

of prices, and feeding prices. All prices are also weight dependent.

The model also considers a set of parameters that define the characteristics of the

aquaculture farm, the environmental conditions, and several constraints that limit

the feasible production strategies. In the example to be presented below, the values

of these parameters are shown in Table 10.2.

10.7 Application of a PSO Algorithm

In order to apply a PSO strategy for planning the optimal production of a farm with

the characteristics described in Table 10.2, we must follow the general structure

defined in Table 10.1. The algorithm starts with random initialization of particle

position and velocity. Each position in the particle represents a production

planning:

Table 10.2 Input parameters: characteristics of the farm and environmental conditions

Location Canary islands

Maximum biomass density 20 kg/m3

Volume of the cage 100 m3

Maximum number of days between harvesting and seeding 60 days

Feasible sale sizes [300, 700] g

Available juvenile weight [3, 10] g

Temporal horizon 5 years

Maximum number of seed-harvest processes 8
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Pi tð Þ ¼ ri1 tð Þ, hwi1 tð Þ, jwi1 tð Þ; ri2 tð Þ, hwi2 tð Þ, jwi2 tð Þ; . . . ; rin tð Þ, hwin tð Þ, jwin tð Þð Þ
ð10:7Þ

where n is the maximum number of planting-harvesting processes to perform in the

period under planning; rik(t) represents the number of days of delay with respect to

the previous process of harvest; hwik(t) represents the harvest weight of the fish; and
jwik(t) represents the juvenile weight. The velocity vector has the same structure.

Both vectors are initialized randomly in the feasible ranges.

The PSO is influenced by a number of control parameters; Table 10.3 shows the

values of these parameters used in the example.

The basic PSO algorithm was implemented in a Web-based application that

can be used in decision-making processes by managers of aquaculture farms.

Figure 10.3 shows a screenshot of this application with a set of potential

near-optimal planting-harvesting strategies obtained using a PSO algorithm.

Table 10.3 Control parameters of the PSO algorithm

Number of particles 80

Neighborhood topology Ring

Neighborhood size 20

Inertia weight 1.0

Weight of the social component (α) 1.0

Weight of the cognitive component (β) 0.4

Termination criteria (number of consecutive iterations without improving) 15

Fig. 10.3 Web-based application for optimal management of planting-harvesting processes in

aquaculture farms
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After applying the algorithm with the parameter values defined in Tables 10.2

and 10.3, a set of 80 potential solutions is obtained. Figure 10.3 shows only the ten

best solutions. The fact of offering to the decision-maker a set of good alternatives

or near-optimal schedules facilitates the final decision and allows considering new

factors not initially included in the model. The implemented tool also provides

decision-makers with detailed information on the evolution of the product (number

of fish available, average size of fish, daily feeding ration, etc.); all this information

is extremely useful in the control processes.

Figure 10.4 displays the evolution of best gross margin for each generation along

the iterations. As can be seen, a total of 48 iterations were required to complete the

algorithm. Also observe how as it advances the gross margin of the schedules found

also improves.

Although the maximum number of permitted harvests in the 5-year temporal

horizon was 8, all of the schedules obtained in the final iteration could fit only

4 harvests. Specifically, the best position found by the particles determined the

following planning:

Pbest ¼ 0, 512, 7; 21, 300, 4; 15, 300, 4; 0, 352, 6ð Þ:

As can be observed, the days of delay with respect to the previous process of harvest

are minimized (r1¼ 0; r2¼ 21; r3¼ 15; and r4¼ 0); different juvenile weights are

used ( jw1¼ 7; jw2¼ 4; jw3¼ 4; and jw4¼ 6), and in most of harvest, the harvest

weight is close to the minimum commercial size (300 g). However, in the first

harvest, the algorithm recommends delaying time to market of the product. Given

fattening rates, survival probabilities, and farm parameters, it is possible to

4 8 12 16 20 24 28 32 36 40 44 48
Iteration

42000

43000

44000

45000
Gross margin Evolution of the best solution

Fig. 10.4 Evolution of best gross margin for each generation along the iterations of the PSO

algorithm
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determine the exact times in which to proceed to planting and harvesting each

harvest. Specifically, the algorithm recommends to the producer the following

strategy:

• Day 1: Initial planting with 8,232 juveniles of 7 g

• Day 514: Harvesting with 512 g of fish weight. Number of surviving fish, 7,812

• Day 535: Second planting with 13,866 juveniles of 4 g

• Day 884: Harvesting with 300 g of fish weight. Number of surviving fish, 13,320

• Day 899: Third planting with 13,832 juveniles of 4 g

• Day 1,248: Harvesting with 300 g of fish weight. Number of surviving fish,

13,287

• Day 1,248: Fourth planting with 11,830 juveniles of 6 g

• Day 1,627: Harvesting with 352 g of fish weight. Number of surviving fish,

11,356

The gross margin associated with this best production plan is 44908.52€. As
happens in any metaheuristics, there is no guarantee of optimality. However,

planning obtained makes rational use of resources and generates a near-optimal

strategy.

10.8 Conclusions

Swarm intelligence offers a new and powerful approach to the optimization prob-

lems, and their use is made possible by the increasing availability of high-

performance computers at relatively low costs. These algorithms have recently

found extensive applications in solving global optimization searching problems

when the classical optimization techniques cannot be applied.

In spite of their wide applicability and simplicity, metaheuristic techniques are

not being used in the management of aquaculture farms as widely as in other

contexts. In particular PSO techniques have proven to be more efficient than

genetic algorithms, making them well suited to address complex problems that

arise in the management of such farms. It is demonstrated that PSO gets better

results in a faster, cheaper way compared with other methods. In this work we have

presented a PSO approach for optimal planning of production of sea bream in

floating cages as an example of the applicability of swarm intelligence to find the

optimal operational strategies that maximizes gross margin and to delimit opera-

tional risk. In general, swarm intelligence provides aquaculture managers with

methodologies and useful tools that can be used in decision-making processes in

aquaculture systems.
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Dorigo M, Stützle T (2004) Ant colony optimization. Bradford/MIT, Cambridge

Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of

the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan,

pp 39–43

Engelbrecht AP (2005) Fundamental of computational swarm intelligence. Wiley, Chichester

Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput

Oper Res 13:533–549

Gutiérrez-Estrada JC, Pulido-Calvo I, De la Rosa I, Marchini B (2012) Modeling inflow rates for

the water exchange management in semi-intensive aquaculture ponds. Aquac Eng 48:19–30

Hoffmeyer J (1994) The swarming body. In: Rauch I, Carr GF (eds) Semiotics around the world.

In: Proceedings of the Fifth Congress of the International Association of Semiotic Studies,

pp 937–940

Hormiga JA, Almansa E, Sykes AV, Torres NV (2010) Model based optimization of feeding

regimens in aquaculture: application to the improvement of Octopus vulgaris viability in

captivity. J Biotechnol 149(3):209–214

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE Interna-

tional Conference on Neural Networks. Perth, Australia, pp 1942–1948

Kochenberger GA (2003) Handbook of metaheuristics. Springer, Berlin

Liao TW, Hu E, Tiersch TR (2012) Metaheuristic approaches to grouping problems in high-

throughput cryopreservation operations for fish sperm. Appl Soft Comput 12(8):2040–2052

Liu S, Tai H, Ding Q, Li D, Xu L, Wei Y (2011) A hybrid approach of support vector regression

with genetic algorithm optimization for aquaculture water quality prediction. Math Comput

Model. doi:10.1016/j.mcm.2011.11.021

238 A. Cobo et al.

http://dx.doi.org/10.1016/j.mcm.2011.11.021


Mardle SJ, Pascoe S, Tamiz M (2000) An investigation of genetic algorithms for the optimization

of multi-objective fisheries bioeconomic models. Int Trans Oper Res 7:33–49

Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Oper Res 63:513–623

Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell

1(1):33–57

Stafford R (2008) A computational approach to ecological and economic sustainable harvest

management strategies in a multi-species context, with implications for cod recovery plans.

Ecol Informat 3(1):105–110

Therriault TW, Herborg LM (2008) Predicting the potential distribution of the vase tunicate Ciona

intestinalis in Canadian waters: informing a risk assessment. ICES J Mar Sci 65(5):788–794

Wang EJ, Tsai DM, Su TS, Lin KY (2012) Simulated annealing for cost-effective transport of live

aquaculture products. Aquac Econ Manag 6(1):68–95

Xuemei H, Yingzhan H, Xingzhi Y (2011) The soft measure model of dissolved oxygen based on

RBF network in ponds. In: Proceedings 4th International Conference on Information and

Computing, ICIC 2011, pp 38–41

Yang XS (2012) Nature-inspired metaheuristic algorithms: success and new challenges. J Comp

Eng Inform Technol 1(1). doi: 10.4172/jceit.1000e101

10 Swarm Intelligence in Optimal Management of Aquaculture Farms 239



Chapter 11

Multi-objective Optimization for Improved
Agricultural Water and Nitrogen
Management in Selected Regions of Africa

M. Pastori, A. Udı́as, F. Bouraoui, A. Aloe, and G. Bidoglio

11.1 Introduction

African agriculture has enormous potential for growth thanks to its natural

resources, including water and land, that in many cases are only partially used:

for example, only 10 % of the crop-suitable land in the Guinean savannah is

actually cropped (Morris et al. 2009).

Nitrogen pollution is recognized as a crucial threat to our planet together with

biodiversity loss and climate change (Giles 2005). It can be considered as the main

factor for increasing crop production and has become an issue for the environment

after 1970 when the amount of global reactive N increased rapidly (Zavattaro

et al. 2012).

Research shows that in most African countries, the main limiting factor to crop

production is nitrogen, while water limitation is more restricted in only a few

countries (Pastori et al. 2011). Furthermore, it can be estimated that irrigation

may substantially increase yield in water-rich regions, but the lack of infrastructure

does not allow these countries to reach higher production levels. On the other hand,

some North African countries are already mining water resources (Pastori

et al. 2011), and an improved sustainable use of water resources will be needed,

in particular, to cope with climate change (drier and hotter climate). In this context,

the problem of nitrogen and, more generally, of nonpoint source pollutants (NPS),

such as phosphorus (P), sediment, and pesticides, shall increase in the future, and it

will require the availability of tools and methods to optimize the use of fertilizer and

irrigation.
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African agriculture will need to invest capital and technology to adapt to the

new situation: higher yields required multi-cropping systems, new or more inten-

sive irrigation systems, increased fertilizer application, changes in sow rates and

livestock types, etc. (Easterling and Apps 2005; FAO 2011). However, the inade-

quate implementation of these measures could increase the impacts on the envi-

ronment and lead to new conflicts between users of ecosystems (Schröter

et al. 2005, IPCC 2007). For example, increased use of water for irrigation could

conflict with the demands of water for domestic or industrial use, leading to adverse

ecological effects (Bates et al. 2008). In addition, loss of soil by erosion may

increase due to climate change; this effect could be exacerbated by changes in

land management (Lee et al. 1999).

Fortunately, researchers are developing models to evaluate the economic

impacts of environmental effects to achieve sustainable agriculture. They usually

use a crop-simulator model to predict the environmental effects of various man-

agement practices and then link to an optimization model to determine trade-offs

between economic returns and environmental impacts. The final output is usually a

sustainable compromise between economic achievements and environmental qual-

ity (Weintraub and Romero 2006).

Multi-objective optimization methods in connection with biophysical models

have shown great potential for addressing such issues of opposing management

goals. Johnson et al. (1991) linked CERES, a crop-simulator model, to a dynamic

optimization model to determine the optimum applications of water and fertilizers

needed to maximize gross margin. Zekri and Herruzo (1994) combined NTRM,

a crop-simulator model, and a mathematical mixed multi-objective programming

model to assess the effects of an increase in nitrogen prices and a reduction in

drainage irrigated water, thus inducing the adoption of best management practices.

Finally, Teague et al. (1995) used the EPIC-PST simulation model to predict

the environmental risks of using pesticides and nitrates. Sadeghi et al. (2009)

applied an optimization approach to maximize profits from land use, while

minimizing erosion risk. Meyer et al. (2009) coupled SWAT (soil and water

assessment tool) with an optimization routine to determine optimum farming

system patterns to reduce nitrogen leaching while maintaining income. Similarly,

Whittaker et al. (Whittaker et al. 2009) applied SWAT in connection with a Pareto-

optimization approach considering profits from land use and chemical pollution

from farm production. Latinopoulos (2009) applied optimization to a problem of

water and land resource allocation in irrigated agriculture with respect to a series of

socioeconomic and environmental objectives. Thus, the multi-objective modeling

of joint production processes that combine private goods sold on the market place

and public goods without established markets, such as environmental protection, is

an important line of research (Nalle et al. 2004).

The overall goal of this paper is to propose a multi-objective methodological

tool, able to incorporate conflicting elements such as environmental objectives and

economical issues, to identify optimum crop and land management patterns in

different African countries, demonstrating the ability to provide trade-off Pareto

solutions which simultaneously minimize total nitrate pollution through runoff and
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leaching and at the same time maximize the exploitation benefits by choosing the

adequate crop, fertilization, and irrigation management sequences. Knowledge of

these sets helps the decision-maker to choose optimum alternative patterns of

agricultural management adapted to countries with multiple soil types and different

climate, soil composition, and crops.

The methodological tool integrates the multi-objective evolutionary algorithm

presented in Udias et al. (2011) with the GIS-EPIC modeling tool developed at the

African continental scale and described in Pastori et al. (2011). Results for different

crops and African countries are presented to illustrate the method which is shown to

be powerful and fully operational in making management decisions. This method-

ology may become an important support for policy makers, farmers, and water

managers, providing information about cost-effectiveness of different agricultural

practices in African countries.

11.2 Multi-objective Evolutionary Optimization Model

The starting point for handling multi-objective optimization problems (MOPs) is to

consider a set of best alternatives or solutions that represent optimal criterion trade-

offs. When a scenario involves an arbitrary optimization problem with M objec-

tives, all of them to be maximized, a general multi-objective problem can be

formulated as follows:

maximize f m xð Þ, m ¼ 1, 2, ::::, M

subject to : gj xð Þ � 0, j ¼ 1, 2, . . . , J

hk xð Þ ¼ 0, k ¼ 1, 2, . . . , K

x
Lð Þ
i � xi � x

Uð Þ
i i ¼ 1, 2, . . . , n

ð11:1Þ

where x is a vector of n decision variables x ¼ x1, x2, . . . , xnð ÞT . The terms gj(x) and
hk(x) are called constraint functions and fm(x) is the multi-objective function.

J inequality and K equality constraints are associated with the problem. The last

subsets of constraints are called variable bounds, which restrict each decision variable

xi to take a value within an interval with a lower x
ðLÞ
i and an upper x

ðUÞ
i bound. All of

these constraints define the decision variable space D or simply the decision space.

In this case, a Pareto-optimal objective vector f * ¼ f 1*, f 2*, . . . , f M*ð Þ is such that
it does not exist any feasible solution x0 and corresponding objective vector f 0 ¼
f 1

0, f 2
0, . . . , f M

0ð Þ ¼ f 1 x0ð Þ, f 2 x0ð Þ, . . . , f M x0ð Þð Þ such that f m* � f m
0 for each m

¼ 1, 2, ::::, M and f j* < f j
0 for at least one 1 � j � M.

Many applications of multi-criteriamethods conclude that their main value does not

lie in providing the “answer,” but in endowing such process with an improved trans-

parency, setting a better structuring of the problems, and facilitating decision-maker
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learning (Ananda and Herath 2003; Prato 1999; Mills et al. 1996). Even if

decision-makers disagree with MCA’s output, it can still provide a valuable input to

the decision procedure (RAC Resource Assessment Commission 1992). The notion

ofmulti-criteriamethods as a “glass box,” rather than a “black box,” suggests that those

using multi-criteria techniques can understand in a better way the implicit trade-offs

and appreciate the consequences of alternative preference positions.

The variety of techniques for solving continuous and nonlinear multi-objective

optimization methods has grown rapidly over recent decades. Usually the methods

are divided into three major categories: methods with a priori articulation of

preferences (which implies that the user indicates the relative importance of the

objective functions or desired goals before running the optimization algorithm),

methods with a posteriori articulation of preferences (which entail selecting a single

solution from a set of mathematically equivalent solutions), and methods that

require no articulation of preferences are addressed. A complete survey of all

them is included in Marler and Arora (2004).

Multi-objective genetic algorithms provide an approach for a posteriori articu-

lation of preferences; they are intended for depicting the complete Pareto-optimal

set. In this sense, they provide an alternative to the a posteriori methods. There, the

methods determine one Pareto point at a time, and each point requires the solution

of a single-objective optimization problem. Alternatively, multi-objective genetic

algorithms do not require solving a sequence of single-objective problems; it has

the ability to converge on the Pareto-optimal set as a whole. In addition, these

algorithms are relatively robust, which has led some researchers to combine them

with gradient-based methods (Poloni et al. 2000; Coverstone-Carroll et al. 2000).

In our approach for identifying optimum patterns of agricultural management

considering multiple ecosystems of countries with different climate, soil composi-

tion, and crops, we applied a multi-objective evolutionary algorithm (MOEA)

routine which had proven to be highly suitable for addressing complex nonlinear

and combinatorial problems in many previous applications (Udı́as et al. 2007, 2009,

2011; Galbiati et al. 2007) and provides the Pareto cost-efficient management

strategies which usually helps the decision-maker to choose the best alternative.

MOEA is an iterative search algorithm that is based on the principles of

evolution (Goldberg 1989). A solution is represented as a “genome.” The optimi-

zation starts with an initial “population” of “genomes.” In each iterative step, the

“genomes” of the “population” are evaluated with a defined objective function and

the “fittest genomes” are chosen to be recombined. The newly generated solutions

or “offspring genomes” also are evaluated, and the least “fit genomes” are excluded

from the population to maintain the original population size. The MOEA algorithm

applies the usual procedures of selection (tournament), crossover (multipoint),

and mutation (uniform) to generate the new population. The Pareto fitness function

and the tournament selection approach can be relatively efficient methods of

incorporating into fitness a point’s non-dominated tendencies. It also introduces

elitism by searching for and storing Pareto-optimal points (separate from the

general population) that surface with each one.
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This process is continually repeated for a given number of iterations known as

generations: a big population and a higher value of iterations are usually a guarantee

of a better GA performance, but it requires longer computation time to reach

optimal solutions. The output of the optimization process is a range of

non-dominated solutions know as Pareto-optimal solutions (Deb 2001) that can

be visualized in a two-or-more-dimensional plot to see the optimal solution trade-

off between the different objective functions.

11.3 Methodology

The approach proposed in this work combines a biophysical model to predict the

effects of candidate agricultural management practices, an economic model to

estimate the benefit of the candidates, and a multi-objective evolutionary algorithm

(MOEA) to search for best management practices. A flow chart of this approach is

shown in Fig. 11.1.

The geodatabase includes all the African data required for a biophysical model

(meteorological, soil, land use, and agricultural management). The biophysical

model is coupled with a geodatabase covering the entire African continent and

has proven to have a good performance in simulating actual yields in most of the

African countries (Pastori et al. 2011).

Protection option

Co
st

MOEA Population
First generation:
Choose randomly
Next generations:
Crossover/Replacement/Mutation

EPIC Model

Initial Agricultural
Strategies

Economic Models
Investment and operation

Star

Fitness assessment
Trade off Scores

Dominance
analysis

Update 
Pareto front

Density
estimationTermination
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No

Yes

Final Pareto front Best
Agricultural Strategies

Protection option
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st

AFRICAN
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Land use
Soil

Meteo
Crop management

Fig. 11.1 Flow chart of the integrative MOEA with EPIC and GIS methodology
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The MOEA generates candidate strategies according to the considered decision

variables (regarding the amount and performance of the fertilization and irrigation

processes); the biophysical model estimates the outputs (production, fertilization,

irrigation, etc.) for the MOEA proposed strategies. These outputs are used by the

economic model for determining the gross income, production costs, and net benefits

for each cropand country. This iterative process continues until convergence is reached.

The final result is a set of efficient trade-off (Pareto) alternatives in relation to

the exploitation of both resources are generated by the integrated tool, allowing

comparisons between optimal and inefficient management of the agricultural pro-

duction and water pollution. In addition, the proposed approach provides a platform

for public discussion of alternative measures or management decisions between

stakeholders with often opposing interests. It could also provide information, at

the level of regions or watersheds, about the environmental impacts of real and

simulated management practices to decision-makers.

11.3.1 The Biophysical Model and the African GIS

The use of biophysical models makes it possible to estimate, among other factors,

crop nutrient uptake, the leached fraction of fertilizers, and soil erosion. These

estimates provide decision-makers with information about the environmental

impacts of current and modified farm management practices.

The biophysical model used in this study is the environmental policy integrated

climate (EPIC) model. It is a biophysical, field-scale agriculture management

model. It simulates crop water requirements and the fate of nutrients and pesticides

as affected by farming activities such as timing of agrochemical application, tillage,

crop rotation, irrigation strategies, etc., while providing a basic farm economic

account at the same time. The main components can be divided in the following

items: hydrology, weather, erosion, nutrients, soil temperature, and plant growth.

For a detailed and complete description of the model and the simulated processes,

see Williams (1984).

The model EPIC was chosen as it simulates crop production under different

farming practices and operations including fertilization and irrigation application

rates and timing and therefore considers nutrient losses to the environment. In

addition, it has been thoroughly evaluated and applied from local to continental

scale (Gassman et al. 2005) and used in global assessment (Liu et al. 2008, 2009;

Pastori et al. 2011). The model has been applied for irrigation scheduling assess-

ment (Rinaldi 2001; Wriedt et al. 2009), climate change studies (Mearns

et al. 1999), and biofuel production and assessment (Velde et al. 2009).

The capability of the EPIC biophysical model to simulate cereal crop yields in

the African continent was assessed in a previous study (Pastori et al. 2011) com-

paring simulated yields with the reported: maize, millet, sorghum, barley, and

wheat showed a good correlation between simulated and measured values

(at country level, R2 value is around 0.8–0.9 for maize and sorghum and 0.6–0.7

for sorghum, wheat, millet, and barley).
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11.3.2 Economic Model

The economic analysis was assessed taking various factors into consideration and

the potential income deriving from the sales of the crop on the local market and the

difference in costs of management in relation to the different management practices

hence adopted (fertilization and/or irrigation levels). More specifically, for each

crop, the selling price is considered homogenous at a country level, and the average

from FAO statistical data was chosen as the reference value (see Table 11.1).

The value of nitrogen fertilizer is quite variable year by year depending on

market trends possibly on local matters as well. For this study, we considered the

average price of two important fertilizers commonly used and available on the

African market: DAP and urea that result respectively at an average cost of 1.7 and

0.5 US$ per kg N ha�1. In the simulations, a generic cost of 1.1 US$ per kg N ha�1

was used (Table 11.1). Having an accurate estimate of the water cost is an important

issue when making a trade-off assessment of cost benefit of alternative management

practices. Water cost is variable year by year depending on many variables such as

the availability of water, the type of irrigation applied, and the investment cost

required to set up the irrigation plant.

For this study, we decided to consider only the variable water cost for irriga-

tion, not taking into account the fixed cost (e.g., linked with investments) as we

wanted to focus on the assessment of different management practices also,

considering the investment costs in developing countries can be paid or supported

by local authorities or external organizations. The operating water cost was

estimated by considering the use of a water pump to draw up and/or distribute

water in the field, and for each country, this cost depends on the cost of diesel and

the depth of the well. The method and the equation used are described in detail in

Hogan et al. (2007).

The total income is computed according to (11.2) based on the EPIC output

values of the yield, water consumption, and fertilization consumption:

Table 11.1 Crop values and water and fertilizer costs in each African country assumed in

the analysis

Country

Crop value [US$ t�1] Water irrigation

cost [US$
100 mm�1]

Fertilizer

cost [US$ kg�1]Maize Wheat Barley Sorghum

Algeria 270 340 210 160 7 1.1

Congo DEM 370 n.a. n.a. n.a. 9 1.1

Ethiopia 180 280 250 230 12 1.1

Libya n.a. 280 250 n.a. 5 1.1

Morocco 250 280 220 300 28 1.1

Mozambique 150 n.a. n.a. 140 9 1.1

South Africa 140 210 200 150 7 1.1

Tunisia n.a. 250 160 n.a. 29 1.1
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B ¼ Y � SP�WC�WP� FC� FP ð11:2Þ

where B represents benefits (US$/ha), Y yield (t/ha), SP crop selling price (US$/Tm),

WC water consumption (m3),WP water price (US$/m3), FC fertilizer consumption

(kg/ha) and FP fertilizer price (US$/kg).

11.3.3 Optimization (Genome Definition)

The optimization starts with an initial “population” of “genomes.” With each

iterative step, the “genomes” of the “population” are evaluated with the defined

objective functions and the “fittest genomes” (non-dominated) are chosen to be

recombined. The newly generated solutions or “offspring genomes” also are eval-

uated and the dominated genomes are excluded from the elitist population.

11.3.3.1 Genome Definition

The variables used to build the population of different management strategies are

related mainly with the fertilization and irrigation practices that can be considered,

in this analysis, to be the most important factors in the hands of farmers to control

crop production.

The EPIC model was set with the auto-fertilization and auto-irrigation options. In

this case, the model estimates the amounts and the number of operations required

according to crop-specific characteristics and to user-defined parameters. The decision

variables considered in this study are described in Table 11.2, including the ranges,

which are the management elements on which it is possible to act. EPIC determines

the daily amounts of fertilizer and water that should be applied to each crop, cell, and

day in the under consideration period, according to the value of these variables: the

climatic conditions, the soil characteristics, and the crops presented in each cell.

For example, the fertilization is calculated on the basis of a stressing factor

linked to nitrogen availability that can range from minimum of 0 (no stress and no

fertilization is applied) to a maximum of 1 (as soon as the crop encounters a

nitrogen stress, the model applies the fertilizer).

Table 11.2 Range of the decision variables considered in all the analyses

Parameter Description Minimum Maximum

BIR Water stress (irrigation trigger) 0 1

VIMX Maximum annual irrigation 20 900

ARMX Maximum irrigation in single application 50 80

ARMN Minimum irrigation in single application 10 60

BFT0 Fertilizer stress (fertilization trigger) 0 1
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The final water or fertilizer amounts calculated are also dependent on local

specific (for each cell of 15 km� 15 km) characteristics that influence crop growth

such as the meteorological conditions and the soil type and fertility.

11.3.3.2 Objective Functions

The objectives simultaneously considered are:

(a) Maximization of the net income dependent on the crop yield production

combined with the general cost of water and fertilizer and computed according

to (11.2).

(b) Minimization of the environmental impact of the practice calculated as nitro-

gen leaching through the soil profile, potential indicator of soil, and subsurface

and groundwater body quality.

The figures of nitrates are directly provided by the EPIC model. The EPIC model

allows the determination of these figures, for each crop, country, and management

practice, required to estimate total income by applying (11.2).

11.3.4 Case Study

To illustrate the implementation of the presented approach and its possible out-

comes, we conducted a model at country scale in Africa for the most frequent cereal

crops (see Table 11.1): maize, sorghum, millet, wheat, and barley. The maize is the

most important one in Central and Southern Africa; wheat is also the most frequent

crop in Northern Africa. For this analysis, we applied the optimization tool for each

crop in five countries representative of different environments in the continent

where the studied crop is dominant.

For the optimization study, the model was applied at a spatial resolution of

15� 15 km2 individual cells characterized by uniform topography, soil, and climate.

Each cell could account for up to five different crops/rotations. The simulation period

is 20 years withmeasured data. TheHarmonizedWorld Soil Database (HWSD)with a

resolution of about 1 km (30 arc sec) was used to characterize the soils. A detailed

database of global land use (SAGE) describing the area (harvested) and yield of

175 distinct crops for the year 2000 on a 5 min by 5 min (approximately

10 km� 10 km) grid was used for crop area and management. A climate database

with a resolution of 10minwas developed including daily precipitation, minimum and

maximum temperature, wind speed, and solar radiation for the period 1961–2006.

The geodatabase is linked with the EPICmodel and was developed to support a quick

application of the model for the entire African continent. The geodatabase includes all

the data required for EPICmodeling (meteorological daily data, soil profile data, land

use data with crop distribution, and agriculture management data) and all necessary

sets of attributes required to simulate different strategies, management, and scenarios.
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For a complete description of the geodatabase structure, the methodology adopted,

and the input data used, refer to the European report (Pastori et al. 2011).

The integrated optimization tool was executed for each considered African

country and crop. The MOEA population size was 10 chromosomes per generation,

for 200 generations. The number of evaluations of the objective function (around

2000) is quite low compared to the requirements of similar problems. Experimen-

tally, it was observed that in most cases, this small amount of evaluations was

enough to achieve the convergence, most likely due to working with the option of

auto-fertilization and auto-irrigation of EPIC, as it speeds the process of conver-

gence to the Pareto trade-off. In any case, one of the advantages of our approach is

the low number of evaluations of the biophysical model required, as each evalua-

tion of one strategy scenario by EPIC requires high computational times. For most

African countries, executing the EPIC model 2000 times requires more than two,

one of the computations on a standard PC.

11.4 Results and Discussions

Tables 11.3 and 11.4 respectively reported the trade-off optimal strategy solutions

for barley and maize. Included in both tables are averages of average yield,

fertilizer, irrigation, N leaching, benefits, water cost, and fertilizer cost from the

execution of the multi-criteria optimization tool.

One of the results of the analysis is that each country shows a particular pattern

that is closely related to the specific characteristics of the country itself such as the

climate, the soil, and the management (see Tables 11.3 and 11.4). Logically, average

benefit also varies highly according to the country, the crop type, and obviously

the crop selling price and management costs (the range is between 145 and

2,580 US$ ha�1). Nitrate losses for optimized solutions range from 2 to 9 kg ha�1,

with the highest value corresponding to the maximization of gross margin.

Nitrogen pollution varies widely between countries and it is so strictly linked with

local climatic and soil condition that can facilitate nitrogen losses, especially under

new high productive management practices.

Table 11.3 Average values of main outputs derived from the optimization process for barley

Yield

t ha�1
Fertilizer

kg ha�1
Irrigation

mm ha�1
N leaching

kg ha�1
Benefits

US$ ha�1

Water

cost

US$ ha�1

Fertilizer

cost

US$ ha�1

Algeria 0.93 43 50 4.38 414 8 64

Libya 1.42 86 187 1.99 280 9 95

Morocco 1.91 73 149 2.59 304 41 73

South Africa 1.68 49 314 3.36 260 21 54

Tunisia 1.31 76 29 7.55 194 8 84
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Results of these tables have a fairly limited utility and only could be used to give

orders of magnitude of the results for each crop and country. However, one of

the main advantages of applying an evolutionary multi-criteria methodology

approach is to provide decision-makers information about all the efficient trade-

off between the objectives they have previously selected. This is the Pareto frontier

curves which allow simultaneous comparisons of all efficient strategies and show

the optimal solutions for best management practices that can be applied in the

studied area.

The Pareto curves generated with the integrated tool are the result of an

optimization process that considers concurrently the different objectives identified:

in our case of the crop production, the management cost (in this case summarized

with use of water and nitrogen fertilizer) and the impact on the environment

(simplified for this analysis with the nitrogen leaching into the soil). All the

solutions presented in the graph are optimized under the perspective of the objec-

tives chosen, but, at this point, a further analysis or decision that should consider a

wider context is required.

The integrated tool may apply up to five objectives simultaneously, for example,

looking at how to maximize the production of a crop minimizing water

consumption and fertilizer application as well as minimizing nitrate contamination.

However, to simplify the understanding, in this chapter, we only present results

obtained by simultaneously considering two objectives: net profit and nitrate

percolation.

Figures 11.2 and 11.3 show the barley and maize values for the efficient trade-off

strategies (Pareto solution) with net profit and minimization of nitrate percolation

as objectives. That is, the values of Tables 11.3 and 11.4 are the average of the

values obtained by each strategy of each country, shown in Figs. 11.2 and 11.3,

respectively.

For each country, it is also possible to identify a range of optimal solutions where

the increase on the benefit for the farmers is linearly correlated with the environ-

mental impact. After a specific point, the relation benefit/nitrogen losses starts to

increase much more rapidly and this implies that a small increase in the benefit

corresponds to a high increase in the environmental impact. It is quite clear that the

shape of the optimized solutions is strictly linked with the relation between

Table 11.4 Average values of main outputs derived from the optimization process for maize

Yield

t ha�1
Fertilizer

kg ha�1
Irrigation

mm ha�1

N

leaching

kg ha�1
Benefits

US$ ha�1

Water

cost

US$ ha�1

Fertilizer

cost

US$ ha�1

Congo 6.56 155 46 8.29 2,251 4 171

Ethiopia 4.50 113 0 6.79 684 0 125

Mozambique 4.66 99 0 9.17 599 0 99

Nigeria 7.26 166 18 4.87 2,663 1 163

South Africa 1.68 49 314 3.36 260 21 54
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Fig. 11.2 Pareto-optimal front solutions obtained by the application of the multi-objective

optimization tool for barley in different countries in Africa

Fig. 11.3 Pareto-optimal front solutions obtained by the application of the multi-objective

optimization tool for maize in different countries in Africa

252 M. Pastori et al.



the economic components and the environmental issues. A greater slope in the

curve indicates that we can gain less net benefit for the same environmental impact.

In the case of maize (Fig. 11.3), we applied the tool in some central and southern

countries. Nigeria shows a higher potential for benefit increase: this partially

depends on the maize price that is quite high on the local market (380 US$ t in
the period 2000–2009 according to FAO statistics), but it is also linked with the

high water availability (no or very limited irrigation is necessary in this region)

that limits the management costs required to increase the yield production and also

reduces the risk for nitrogen leaching associated with high irrigation inputs.

In all the countries, it is possible to identify the benefit value beyond which the

risk for water contamination increases very rapidly: in the case of South Africa, for

example, above the value of benefit of 1,300 $ ha�1, the Pareto curve tends almost

to be vertical. In the case of Mozambique, the nitrogen availability in the soil is

quite high and part of the nitrogen fertilizer added to raise the production is partially

lost in the water percolating into the soil resulting in a leaning Pareto front.

Barley is another important cereal crop for the Northern and Southern Africa.

The optimization tool points out a similar trend for all the countries also varying the

crop type. It is quite interesting to compare the results for the Northwest African

countries: in the case of Morocco, the benefit is maximum for barley because

the nitrogen leaching is generally low, also with high input of water and fertilizer.

More generally, Morocco, Libya, and South Africa show a similar trend while

Tunisia and Algeria point out a higher impact to the environment, an aspect that

can be very useful in the case of an integrated management of crop production in

these countries.

Another advantage of applying multi-criteria analysis is that it allows for

performing the sensitivity analysis of the influence of certain parameters of the

model in the final results almost automatically.

Figure 11.4 presents for Morocco and wheat the effect of variations in the

economic model parameter. In this case, there is an increase and reduction of

30 % in the water and fertilizer costs. In the linear part of the Pareto frontiers, the

slopes are quite similar in just all the cases, suggesting that changes in water and

fertilizer costs lower than 30 % generally have no great impact on the net income

which may be achieved without causing an increase in percolation of nitrates.

However, an exponential increase is observed when the cost benefit made from

the fertilizer does not exceed 1,550 $/ha allowing to achieve a reduction of

1,750 $ ha�1, both having a similar environmental impact. The case of the increased

cost of water (+30 % WC) is the only one in which the slope of the linear region is

slightly higher and it is apparently hard to find strategies that achieve net profit to be

between 600 and 1,300 $ ha�1.

If we consider the case of wheat (Fig. 11.4) in Morocco, as an example, we may

observe that the actual crop management stands in the lower left part of the graph

that corresponds to the lower impact on the environment and also on the lower

production and finally on the lower benefit.
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Figure 11.5 shows the spatial distribution of crop production for the current

management compared with two of the optimal management solutions identified

with MOO tool.

Wheat is one of the major crops in Morocco and counts for 40 % of the total

agricultural harvested area according to FAO statistics (2009). Nevertheless, the

final output is not yet enough to satisfy the full local demand over the past few

years. As a result, the country has to import high quantities of wheat. The

integrated optimization tool points out the possibility to move toward a more

Fig. 11.4 Wheat in Morocco Pareto-optimal front solutions resulted by the application of the

multi-objective optimization tool varying water and fertilizer cost

Fig. 11.5 Crop yield maps. Crop yield maps of GIS-EPIC Africa system set up with current and

two optimal set of management configuration resulted from the application of MOO; the three

maps correspond to the circled areas of Fig. 11.4
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profitable yield production by preserving the environment at the same time: the

second highlighted area in the graph show a set of optimal solutions that corre-

spond to a very sensible increase of the yield reaching an average level of

production in the country of 3 t ha�1 y�1. These optimized and more productive

solutions correspond to an increase of the fertilization from 40 to 70 kg ha�1 and

to an increase of the irrigation amounts to 150–200 mm. The increase of nitrogen

input according to the model is sustainable and it demonstrates real transferability

to the farmers linked with the market price of fertilizer and crops. In the case of

the new water management strategies, the analysis points out that the sustainabil-

ity is more complex because it depends on the current water availability for the

irrigation withdrawals and also on the balance with other sectors that could have

alternative (and more profitable) water requirements.

11.5 Conclusions

For this study, we have coupled a multi-objective optimization model with a GIS

crop management simulation model (EPIC) in order to identify best management

practices for different crops and countries in Africa. The optimization tool is a

multi-objective genetic algorithm that controls biophysical model variables related

with the level of fertilizer and irrigation application for each crop and cell

(15 km� 15 km). Depending on these parameter values and climatic and soil

characteristics, the biophysical model estimates, among other things, the crop

production, the fertilizer and water consumption, and the potential effects on the

environment (nitrates percolation and runoff, erosion, etc.).

Thus, after a reasonable number of evaluations of the EPIC model outputs (less

than 1,000), the optimizer finds the efficient trade-off strategies according to the

simultaneous considered criteria. The integrated tool has been used taking up to five

simultaneous objectives into consideration, for example, looking at how to maxi-

mize the production of a crop minimizing water consumption and fertilizer appli-

cation as well as minimizing nitrate contamination. Moreover, the methodological

approach presented in this study also includes a simplified economic model. It

allows to select the best compromise solution by taking into account at the same

time the gross margin potential for farmers and the environmental impact (in this

case, nitrate losses as a simplified indicator of the environmental impact on soil and

water) of the agricultural production.

We applied this methodology for most common crops in African countries,

showing that actual management practices are in general inefficient solutions or

correspond to the lowest values of potential production and benefits that farmers

can use. This implies that the African agriculture farmers can improve their gross

margin by maintaining low nitrate losses that are already limited under current

management due to the low input (both for water and fertilizer). On the other hand,

it has been shown that in some countries the nitrate leaching can increase
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considerably by moving to a more productive and profitable production, thus

becoming a potential source of contamination for water resources.

The tool can be easily used on a more detailed scale if required by decision-

makers to develop new Pareto-optimal fronts specifically defined for particular

regions and/or conditions. The final proposed solutions provide a wide range of

local management strategies to optimize nitrogen leaching and the farmers benefit.

The final decision can be obviously more focused on one of the two objectives and

can be taken by managers considering other socioeconomic aspects.

Finally, it is shown that the coupling of multi-objective programming models

with crop simulation models and GIS spatial information is a powerful tool to

address the agricultural–environmental issue. This methodology is based on objec-

tive quantitative data and gives valuable information to decision-makers.
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Chapter 12

Modelling of Catastrophic Farm Risks
Using Sparse Data

V.A. Ogurtsov, M.A.P.M. van Asseldonk, and R.B.M. Huirne

12.1 Introduction

Farmers often face risky events in agriculture. Risk means the possibility of a loss

of income or property resulting from some event (Pritchet et al. 1996). Catastrophic

risks are infrequent events but can cause large losses to farmers. In deriving the

optimal farm plan, alternative options should be addressed to cope with catastrophe

events. Those options are on-farm risk management strategies (e.g. diversification)

as well as risk transfer strategies (e.g. insurance) (Ogurtsov et al. 2009). Thus, for a

proper risk assessment of a catastrophe event, its probability and magnitude need to

be taken into account. The assessment should ideally be based on a long-term and

reliable farm-level history. But, in practice, farm-level data is often very sparse to

provide a good and reliable basis for such a risk assessment (Hardaker et al. 2004),

and this is certainly the case when focusing on catastrophe events. The reliability

can be enhanced by eliciting subjective probability judgements, in addition to the

available data (Hardaker and Lien 2005). Furthermore, it is advised to smooth the

sparse data (i.e. interpolating between observations and extrapolating outside

observations) by fitting a parametric or empirical distribution (Shlaifer 1959;

Anderson et al. 1997, pp. 42–44). However, by smoothing the data in such a way,

the risk analyst might face the problem of overrepresenting the middle part of the

distribution and underestimating one or both tails. Catastrophes cause a serious

downside risk, and therefore it is important to analyse the tail of the distribution

very carefully by investigating alternative tail estimations. Before the smoothing
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procedure, a realistic assumption should be made about the upper and lower

bounds, ensuring that the distribution will be a reasonable approach to include the

downside and upside tails.

One of the ways to smooth data and to include the downside and upside tails is to

fit the sparse data to a (parametric) normal distribution. There is a continuous

discussion about the applicability of normal distribution assumptions of yields in

agriculture (i.e. Antwood et al. 2003; Galagher 1987; Just and Weninger 1999;

Ramirez et al. 2003; Swinton and King 1991). The problem arises because it is

difficult to reject normality assumptions, especially when data is sparse. For farm

outcomes, it is generally hard to obtain 10 relevant observations under the same

economic policy, management regime, farm programme or trade policy (Just and

Weninger 1999; Richardson 2006). At least 20 or more observations are usually

required to test with any accuracy whether a distribution is normally distributed or

not (Richardson 2006). Non-normality might therefore be masqueraded as normal-

ity, simply because of the misspecification of the test (Just and Weninger 1999).

Normality is not likely because the upward potential of yields is biologically

bounded and there is a risk of (complete) crop failure because of, for example,

adverse meteorological circumstances (Galagher 1987). Many studies stated that

crop yields are skewed and do not follow normality (Just and Weninger 1999;

Galagher 1987; Antwood et al. 2003; Swinton and King 1991; Ramirez et al. 2003).

However, Just and Weninger (1999) argued that many studies that rejected normal-

ity are typically cited as the basis for making non-normality assumptions but are no

better individually justified than normality.

Alternatively, to a parametric normal distribution, the technique of kernel

density estimation (KDE) can be used to generate unobserved data to supplement

sparse data. The KDE procedure is a non-parametric approach of smoothing data by

hand. Instead of minimising the sum of squared residuals, the KDE method weights

observations on relative proximity to estimate the probability. The estimation of the

probability at a given point depends on a preselected probability density. In that

way the kernel is analogous to the principle of local averaging, by smoothing, using

evaluations of the function at neighbouring observations (Yatchew 1998). There-

fore, the probabilities in the tails depend largely on the choice of kernel. The kernel

density smoothing procedure is popular in many fields, but it is not widely used in

agriculture (Richardson et al. 2006), and only a limited number of agricultural

studies were conducted (i.e. Hardaker et al. 2006; Richardson et al. 2000, 2006). In

the early work of Richardson et al. (2000), analysis of simulated statistics showed

that KDE gives acceptable results for simulating sparse data. Hardaker et al. (2006)

suggested that in case of sparse historical data, additional information and judge-

ments need to be incorporated about the tails of the distribution when applying the

KDE approach to improve the confidence of the results. Richardson et al. (2006)

found that KDE provided better results than parametric distributions and a linear

interpolation of the empirical distribution.

In complex systems with more than one activity, like farming, the stochastic

dependency needs to be accounted for (Hardaker et al. 2004). Ignoring stochastic

dependency between risky prospects in farm planning can be seriously misleading

260 V.A. Ogurtsov et al.



(Richardson et al. 2000). For example, crop yields tend to be positively correlated

in that a good year for one crop also often suits other crops and vice versa.

Similarly, prices for several kinds of farm products tend to move together,

depending on the general economic conditions (Hardaker and Lien 2005). There-

fore, the univariate normality versus the univariate KDE debate needs to be

upscaled to multivariate normality (MVN) versus multivariate kernel density

estimation (MVKDE).

This paper compares the alternative ways of conducting a farm risk analysis

using sparse data with special reference to catastrophe events. For this purpose

MVKDE and MVN procedures are applied to simulate the joint distributions of

crop yields and prices. Six case farms were chosen to reflect the conditions of

typical Dutch arable farms. The risk analysis focuses on the impact of the functional

form chosen to generate the joint distribution on the density in the downside tail.

Subsequently, the result of incorporating the downside tail alternatively on the

optimised net farm income and farm plan is addressed by applying utility-efficient

programming (UEP).

12.2 Methods to Characterise Catastrophe Events
in Farm Planning Models

In this section the methods of MVN and MVKDE procedures are described, which

can be used to generate the required probability distributions that then can be

incorporated into UEP models for obtaining the optimal farm plans.

12.2.1 Simulation Procedure for the Multivariate
Normal Distribution

An MVN distribution for some random variables (crop yields and prices) is

specified by three components: a (deterministic) component capturing the mean

(i.e. the expected value of the observations), a (stochastic) component based on the

variance and a multivariate component based on the covariances of the observa-

tions. The steps for constructing an MVN distribution are the following (Richard-

son 2006):

1. Calculate the best possible model to predict each variable, whether this is simply

the arithmetic mean or based on a trend regression, a multiple regression or a

time-series model.

2. Calculate the residuals based on the prediction for each random variable.

3. Calculate variances for each variable using their residuals.

4. Calculate covariances using their residuals.
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12.2.2 Simulation Procedure for the MVKDE

Besides the MVN procedure, also the MVKDE simulation procedure will be

applied to simulate the joint distribution of random variables (crop yields and

prices) alternatively. The procedure in specifying MVKDE distribution consists

of the following steps (Richardson et al. 2006):

1. From the matrix of observations (yields and prices, usually historical

de-trended), the covariance matrix Rkxk is estimated and then factored by

Cholesky decomposition so that P¼RRT, where P is identity matrix, k is a set

of variables (yields and prices) and T is used to transpose matrix R into RT.

2. The minimum XMin, j and maximum XMax, j bounds for each variable k are

then determined. The cumulative probabilities for these values are assumed

F(XMin, j)¼ 0 and F(XMax, j)¼ 1, where j¼ 1, . . ., k is one of the k variables.

3. For each variable k, a new vector of XA
sj, of dimension S (s¼ 2, . . ., S) is created

with a given minimumXA
sj ¼ XMin, j (i.e. s¼ 1 for the minimum observation) and

maximum XA
sj ¼ XMax, j by the formula:

XA
sj ¼

1

S� 1

� �
XMax, j � XMin, j

� �þ XA
S�1ð Þj ð12:1Þ

4. The smoothed percentiles for each XA
sj between the extreme points F(XMin, j)¼

0 and F(XMax, j)¼ 1 are calculated based on KDE (Silverman 1986; Scott 1992).

For each variable j, the smoothed percentile is evaluated at a given point XA
sj as

F̂ XA
sj

� �
¼ 1

nhj

Xn
i¼1

K
XA
sj � Xij

� �
hj

2
4

3
5 ð12:2Þ

where K(�) is the cumulative kernel function associated with a symmetric

continuous kernel density k(�) such thatK xð Þ ¼
ðx

�1
k tð Þdt;and hj is the bandwidth

of the variable j.

With a specific kernel function, the value of bandwidth, called a smoothing

parameter, determines the degree of averaging in the estimate of the density

function. Bandwidth is also called the standard deviation of the kernel density

function. It is important to choose the most appropriate bandwidth because a value

that is too small leads to under-smoothed data, or if too large to over-smoothed data.

When a bandwidth decreases towards zero, the number of modes increases and the

KDE is very noisy. As bandwidth increases to infinity, the number of modes drops

to one, so that the KDE displays a unimodal pattern.
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The best criterion to select a kernel is the smallest root mean square (RMSE) of

residuals between the historical kernel cumulative probabilities and probabilities

for the kernel function.

Formula (12.2) can be used for a univariate KDE. If the interest is in a multi-

variate distribution, covariances of the underlying random variables have to be

taken into account. In this way the MVKDE procedure can be used to incorporate

the stochastic dependency (Richardson et al. 2006). Then, the simulation of

MVKDE would take the following steps:

1. Generate correlated uniform standard deviates (CUSDs) from the observed

random variables; the result will be a value between 0 and 1.

2. Given the CUSDj, along with respective vectors XA
sj and smoothed percentiles

F̂ XA
sj

� �
with a scale (including F(XMin, j)¼ 0 and F(XMax, j)¼ 1) between the

nearest lower F̂ L XA
Lj

� �
and nearest upper F̂ L XA

Uj

� �
percentiles, interpolate

among the XA
sj random vector of eXj is generated.

The final formula of the generated MVKDE vector is the following:

eXj ¼ XA
Lj þ XA

Uj � XA
Lj

� �
*

CUSDj � F̂L XA
Lj

� �� �
F̂U XA

Uj

� �
� F̂L XA

Lj

� �� � ð12:3Þ

Goodness-of-fit tests can be conducted whether the simulated joint MVN and

MVKDE distributions of yields and prices are appropriate.

12.2.3 Utility-Efficient Programming (UEP)

UEP is a mathematical programming method and can be used for optimising farm

plans (Van Asseldonk et al. 2005, Lien et al. 2009, 2011). In UEP the expected

utility of the farm plan is maximised (Ogurtsov et al. 2008). UEP is a

non-parametric method, which implies that it is free of distribution assumptions

and includes the joint distribution by means of the so-called states of nature

(i.e. specific combinations and probabilities of possible outcomes). UEP takes the

following form (Hardaker et al. 2004)

Maximise E U½ � ¼ p U z, rð Þ, r is varied ð12:4Þ

and is subject to

Ax � b ð12:5Þ
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Cx� Iz ¼ U z, rð Þ ð12:6Þ

And x � 0 ð12:7Þ

where

E[U] is expected utility.

z is a vector of farm incomes by state of nature.

r is a coefficient of risk aversion.

p is a probability of each state of nature.

U(z, r) is a vector of utilities of farm incomes by state of nature with risk aversion

level r.
A is a vector of technical-economic coefficients per each activity.

x is a vector of activities.
b is a vector of available resources (constraints).

C is a vector of the state of nature matrix of activity incomes.

I is an identity matrix.

In most cases, r represents a coefficient of absolute risk aversion. As long as the

risk aversion coefficient of a farmer is not known, a range of risk aversion

coefficients can be considered for modelling. Hardaker et al. (2004) developed a

method called SERF, where alternative farm plans can be provided in terms of

certainty equivalents as a measure of risk aversion over a definite range, developed

by Anderson and Dillon (1992). For a risk-averse farmer, the coefficient of relative

risk aversion of wealth rr(W )1 varies from 0.5 to 4, typically about 1, with the

following interpretation: 0.5, hardly risk averse at all; 1.0, somewhat risk averse

(normal); 2.0, rather risk averse; 3.0, very risk averse; and 4.0, almost paranoid

about risk.

12.2.4 Available Sparse Data and Optimisation Constraints

For the current analysis, six Dutch arable farms were selected from the Farm

Accountancy Data Network (FADN) database. The FADN data is an official

European Union dataset, which includes detailed farm-specific data of, among

other things, yields per unit per crop. A prerequisite for the selection of the arable

farms was that at least 10 consecutive years with observations was available for a

farm to be selected. The corresponding number of states of nature ranged from 11 to

13 for the farms under study (Table 12.1). The main crops in the production plan

constituted consumption potato, wheat, rye and sugar beet.

1 Absolute risk aversion coefficient is usually calculated as a proportion of the relative risk

aversion coefficient to wealth.
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The farm-specific yields observed in the states of nature were de-trended by a

linear function (formula 12.8):

yqit ¼ αqi þ βqi1tþ ε, ε � N 0, σ2
� � ð12:8Þ

where yqit is the yield unit of activity q on farm i in year t (t¼ 1, . . ., T ); αqi is the
regression constant for activity q on farm i; βqi is the systematic change per activity

q on farm i (it is assumed that the trend caused by technological change among

other things will continue in the future); and ε is a normally distributed random

error term (Murdoch 1966, p. 34).

Farm gate prices and costs of production were assumed to be identical for all farms

considered. The average annual crop prices were de-trended by the Paasche equation

with the consumer price index (CPI) as deflator (Mas-Colell et al. 1995, p. 37):

I pð Þqt ¼
pqt
pqy

ð12:9Þ

where I( p)qt is a deflator price of activity q in year t (t¼ 1, . . ., T ), pqt is the volume

of price of activity q in year t and pqy is the fixed volume of price of activity q in

basic year y.
Crop-specific production costs were obtained from norms (see Dekkers 2002)

and were equivalent to prices deflated. Following the usual crop-rotation rules,

cereal crops (e.g. wheat and rye) were restricted to a maximum of two-thirds of the

cultivated area. Tuberous crops (consumption potato and sugar beet) were restricted

to a maximum of one-third of the cultivated area. Each crop was also restricted to

the maximum observed area in its past (i.e. 11–13 years). Moreover, for sugar beet,

the maximum quota limitations were accounted for.

12.2.5 Expanding the States of Nature Matrix for MVN
and MVKDE to Account for Catastrophe Events

MVN and MVKDE approaches can be applied to generate a more enhanced sample

than the observed sparse data as explained before. By doing so, it will make them

more relevant and reliable to the uncertainty to be faced in the future farm planning

Table 12.1 Summary of characteristics of the farms selected

Farm

number

Number of

observations

Cultivated

area (ha)

Main activities in

production plan

I 13 17 Potato, wheat, rye, sugar beet

II 11 80 Potato, wheat, sugar beet

III 11 101 Wheat, rye, sugar beet

IV 11 37 Potato, wheat, sugar beet

V 11 205 Wheat, rye, sugar beet

VI 11 155 Potato, wheat, sugar beet
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period to date, having been accounted for, among other things, catastrophe events.

The densities in the downside tails are predefined when applying the MVN

approach and root from the specified means, variances and covariances. The

MVN distribution can be truncated to prevent the anomalies occurring

(e.g. negative yields and prices). Given the MVKDE procedure, subjective maxi-

mums and minimums need be added prior to the sampling.

Catastrophe events in arable farming, resulting into high losses, stem from

numerous risks (i.e. perils), for example, weather-related perils as hail, storm and

drought. However, the different catastrophic risks are generated simultaneously,

since the applied MVN and MVKDE approaches do not discriminate if a downside

outcome originates from one peril or another (no separate distributions are gener-

ated for different perils). Note that catastrophe events correspond to extreme

unfavourable outcomes, not necessarily the minimum value that is specified for

each KDE. For instance, a 50 % reduction of the expected level is often regarded as

a catastrophe event.

12.2.6 Computations

We used the Simetar software to compare the MVN procedure with the MVKDE

procedures (Richardson 2006). The following kernel density functions were

applied: Cauchy, cosine, double exponential, Epanechnikov, Gaussian, Parzen,

quartic, triangle, triweight and uniform (see Richardson 2006). On the basis of

the available historical yields, prices and corresponding covariance matrix, the

MVN distribution and each MVKDE alternative were parameterised, and subse-

quently 500 states of nature (of yields and prices) were derived by the Latin

hypercube (LH) sampling procedure. In this way, the impact of the functional

form on the joint distribution and the density in the downside tail could be studied.

The LH procedure was taken in favour of Monte Carlo simulation (MCS), because

it divides the distribution in an equal number of intervals so that tails with a

downside risk and upside potential are taken into account (Richardson 2006). On

the contrary, MCS randomly selects points, so that the tails can be underestimated

even with a higher number of replications. The minimum values, for both MVN

distribution and MVKDE, equalled zero. The change of the maximum affects the

shape of the distribution, and the maximum values imposed arbitrarily were calcu-

lated as the observed (from the limited sparse data) maximum value plus one

standard deviation.2

2Different assumptions in defining the maximum value were considered: ‘maximum plus one

standard deviation’, ‘maximum plus two standard deviations’ and ‘maximum plus three standard

deviations’. The choice was made in favour of the ‘maximum plus one standard deviation’ because

it accommodates a more dense tail.
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Subsequently, the impact of incorporating the downside tail alternatively when

optimising net farm income was addressed by applying UEP. Hereto, the 500 gen-

erated samples per alternative were incorporated as states of nature in UEP.

Detailed results are presented for farm II whereas only the aggregated results for

the other five farms.

12.3 Results

12.3.1 Probability Distributions of Random Variables

12.3.1.1 Graphical Representation

The kernel functions under study were parameterised with the available states of

nature, as discussed before. The appropriate approach is to select subsequently the

kernel function with the smallest RMSE between the kernel itself and the historical

observations (derived from the available states of nature complemented with the

specified bandwidth). It was observed, however, that the density in the downside

tail was underestimated for the majority of the kernels. The only kernel function

that encompassed a denser downside tail, inherent to catastrophic risks and imposed

by an extremely lower bound, was the Cauchy kernel. The remainder kernels

definitely overestimated the middle section of the distribution and were equivalent

to each other with respect to the downside tail. The double exponential and the

Parzen kernel functions are typical representatives of kernels that overestimate the

middle part and underestimate the downside tail. The remainder of this paper

focuses therefore on the normal distribution as well as the Cauchy, the double

exponential and the Parzen kernel functions.

For only farm II, we elaborate on the generated cumulative distribution functions

(CDFs) and the corresponding test characteristics. Then, the general results for all

farms will be presented. In Fig. 12.1, the CDFs of yields and prices for consumption

potato, wheat and sugar beet are shown. For both yields and prices, it can be seen

that the Cauchy kernel matched the downside tail better (e.g. entire crop failure).

Since the Cauchy kernel captured the downside tail best, the crop yield distri-

butions simulated by the Cauchy kernel for all six farms were compared in

Fig. 12.2. As presented before, identical prices were assumed for all the farms

and are therefore not presented.

As can be seen, the Cauchy kernels of the several farms had a similar pattern, but

there were significant differences between the yield levels of the farms. The proba-

bility of an entire potato failure was almost 5 % for farms I, IV and VI, while for farm

II the most extreme event was a potato yield of 5 t per hectare with a probability of

2 %. Note that the observed crop plans of farms III and V did not comprise potatoes.

In general, more extreme unfavourable wheat and sugar beet yields were gen-

erated for farm II than for the other five farms. For example, given farm II, the

probability of an entire wheat or sugar beet failure was approximately 3 % and 5 %

respectively.
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12.3.1.2 Test Statistics

Several statistical tests were performed to validate whether the structure of the

simulated data adequately captured the structure present in the available sparse

dataset. In Table 12.2, test values and critical values for normality tests, two-sample

Hotelling T2, Box’sM test and complete homogeneity test, were summarised at the

95 % confidence level. If the test value does not exceed its critical value, then the

null hypothesis is not rejected for the test under consideration. The critical values

for farms II–VI were identical and are shown in the last column (equal number of

degrees of freedom given three activities). The preceding column depicts the

critical values for farm I (number of degrees of freedom given four activities).
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Fig. 12.1 Cumulative distributions of yields and prices for farm II
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The skewness and kurtosis criterion of the MVN distribution showed that the

hypothesis that the data are multivariate and normally distributed was not rejected

(Table 12.2). However, this finding can illustrate that the model with a limited

number of states of nature can be misspecified as in the study by Just and

Weninger (1999).
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The two-sample Hotelling T2 test was applied to test whether the mean vectors of

the simulated data and available sparse data were different. The hypothesis that the

mean vectors are equal was not rejected for all four distributions for each farm

(at 95 % confidence level).

The Box’s M test was used to test whether the covariance matrices were equiv-

alent. The simulated and the historical covariance matrices were not statistically

different at the 95 % confidence level for the multivariate normal distribution for

almost all farms (except in the case of farm V, where the test value of 32.96 was

slightly higher than the critical value of 32.67). The hypothesis that the covariance

matrices obtained from the Cauchy kernels are equal to the historical covariance

matrices was persistently rejected. For the double exponential kernel, the hypothesis

of maintaining the covariance structure was accepted for 5 farms out of 6 (except

farm V), while the Parzen kernel was appropriate four times (farms I up to IV).

To test simultaneously whether both simulated mean vectors and covariance

matrices were equal to the historical ones, the complete homogeneity test was used.

The test failed to reject (at 95 % confidence level) that both simulated mean vectors

and covariance matrices are statistically equivalent to the historical ones for the

normal distribution (except farm V). Maintaining of the mean and covariance

structure simulated by means of Cauchy kernels was always rejected. The results

from the double exponential and Parzen kernels were rather mixed.

The test results differ from the study by Richardson et al. (2006), where the

hypothesis of the appropriate covariate structure between sparse and simulated data

was preserved. This might be explained by the fact that in their state of nature

matrix very low yields were observed, close to our extreme subjective minimums,

whereas in this study the observed states of nature did not represent observations in

the downside tail.

12.3.2 Impact of Input Distributions on Optimal Farm Plan

The optimal farm plans resulting in the maximal expected utility were obtained in

GAMS on the basis of a negative exponential utility function. The absolute risk

aversion coefficients (Ra) were calculated as the proportion of the relative risk

aversion (Rr) coefficients (on a scale from 0.5 to 4) to the permanent income (for

details see Hardaker et al. 2004). The permanent income was obtained for each farm

with a separate linear programming model. Then, for each level of risk aversion, the

optimal farm plan with corresponding certainty equivalents (CEs), expected mon-

etary values (EMV) of net farm income and risk premiums (RP) were calculated.3

Table 12.3 presents the results obtained from UEP for farm II on the basis of

MVN distribution and MVKDE (Cauchy, double exponential and Parzen kernels)

of inputs. In general, it can be seen that if a farmer was more risk averse, he was

3 The risk premium is defined as the difference between EMV and CE and is expressed as a

percentage; it is calculated as RP %¼Risk premium/EMV.
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more prone to choose a production plan comprising more less profitable lower-

variance crops (wheat instead of potato) compared to the optimal plan achieved

with Ra1 (implying that the decision-maker is almost risk neutral). The changes in

the production plan correspondingly resulted into changes in the net farm income.

With an increase of risk aversion, the farmer was willing to pay a higher risk

premium.

The impacts of alternatively specified input distributions on the optimal farm

plan (i.e. level of activities) were mixed. The allotted acreage in the farm plan of

sugar beet, which was the most profitable cropping activity, always corresponded to

the maximum quota allowed. The changes in production plans between potato and

Table 12.3 UEP results for farm II

Ra Rr
EMV,
euro

CE,
euro

Risk
premium
(RP), euro

RP
(%)

Activities

Potato Wheat
Sugar
beet

Normality

Ra1¼Ra
min

5E�06 � 0.5 94,941 81,122 13,819 14.6 26.4 37.6 16

Ra2 1E�05 � 1 83,656 70,826 12,830 15.3 17.8 46.2 16

Ra3 2E�05 � 2 81,356 61,047 20,309 25 16 48 16

Ra4 3E�05 � 3 81,356 52,406 28,950 35.6 16 48 16

Ra5¼Ra
max

4E�05 � 4 81,356 44,753 36,604 45 16 48 16

Cauchy

Ra1¼Ra
min

5E�06 � 0.5 94,422 74,662 19,760 20.9 26.4 37.6 16

Ra2 1E�05 � 1 82,443 62,262 20,181 24.5 18.7 45.3 16

Ra3 2E�05 � 2 78,243 50,519 27,724 35.4 16 48 16

Ra4 3E�05 � 3 78,243 41,702 36,541 46.7 16 48 16

Ra5¼Ra
max

4E�05 � 4 78,243 34,617 43,625 55.8 16 48 16

Double exponential

Ra1¼Ra
min

5E�06 � 0.5 93,886 81,586 12,300 13.1 26.4 37.6 16

Ra2 1E�05 � 1 93,458 72,202 21,257 22.7 26.1 37.9 16

Ra3 2E�05 � 2 79,884 63,047 16,838 21.1 16 48 16

Ra4 3E�05 � 3 79,884 57,352 22,532 28.2 16 48 16

Ra5¼Ra
max

4E�05 � 4 79,884 52,669 27,216 34.1 16 48 16

Parzen

Ra1¼Ra
min

5E�06 � 0.5 93,656 84,150 9,505 10.1 26.4 37.6 16

Ra2 1E�05 � 1 93,656 77,292 16,364 17.5 26.4 37.6 16

Ra3 2E�05 � 2 89,239 68,300 20,939 23.5 23.1 40.9 16

Ra4 3E�05 � 3 79,897 63,781 16,116 20.2 16 48 16

Ra5¼Ra
max

4E�05 � 4 79,897 60,779 19,118 23.9 16 48 16
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sugar beet between the distribution alternatives were considerable for a ‘somewhat

risk-averse’ (Ra2) and ‘rather risk-averse’ (Ra3) farmer. For a ‘very risk-averse’

(Ra4) and ‘almost paranoid about risk’ (Ra5) farmer, the production plan did not

alter despite the differences in input distributions. The net farm incomes (EMV)
were not much different between the models based on a normal distribution,

Cauchy, double exponential and Parzen kernels. For farm II, with Cauchy kernel

distribution, which better incorporates the lower tail, the net farm income was lower

than for other distribution assumptions.

Substantial changes in the size of CEs were observed (Fig. 12.3). As in theory,

the CEs are decreasing as a cost of paying for increasing risk aversion (Hardaker

et al. 2004). The decrease of CEs was steeper for Cauchy kernel, which better

incorporates the downside tail.

The conclusions drawn from farm II were also valid for the other farms under

study. The risk premiums increased if the level of risk aversion increased. It

corresponded to the decrease in CEs, due to worse optimal plans and increased

levels of risk aversion.

12.4 Conclusions and Discussion

Initially, the sample of historical data comprising 11–13 observations of annual

returns for an individual farm situation, which is already difficult to obtain, was not

appropriate to analyse the impact of catastrophe events. However, the available

sparse data was then used to generate data by applying MVN and MVKDE

procedures to incorporate the downside tail. The analysis showed that the functional

form chosen to generate the joint distribution substantially impacted the density
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Fig. 12.3 CEs for farm II
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in tail, although they were parameterised with the same observations. The differ-

ences in the optimal farm plan obtained (i.e. activity levels) generated by UEP were

less profound.

To specify kernel density functions, usually expert opinions are elicited to define

subjectively the minimum and the maximum values. If, on the basis of these

subjective judgements, it is believed that catastrophe losses do occur (such as an

entire crop failure), one might be inclined to specify the lower bound accordingly

(equal or close to zero). It was observed that the normal distribution and all kernels,

except the Cauchy kernel function, underestimated the impact of these beliefs,

thereby neglecting the downside tail of the distribution. Note that the upper bound

was arbitrary, augmented to the value of the mean plus one standard deviation.

Limiting the upside potential will definitely have its impact of the density over the

whole distribution, thus also the downside tail.

The statistical tests showed that the simulated mean vectors from the Cauchy

kernel were not statistically different from the mean vectors of the sparse data.

Furthermore, the covariance structure was statistically different. However, it was

not logical to expect that on the basis of the available sparse data, in which

catastrophe states of nature were absent, the covariance structure of the Cauchy

kernel distribution would not change. Sensitivity analysis, by altering the minimum

and maximum values, consequently rejected the hypothesis that the covariance

structures of sparse and simulated data were approximately identical. The limited

available observations were only positioned in the mode part of the kernel density,

and therefore it was not possible to simulate the appropriate tail data on the basis of

the observed data (under the assumption that catastrophe events do occur).

In the statistical field, there is extensive discussion about the choice of band-

width. For this paper we used the standard bandwidth settings in Simetar. However,

changing of bandwidth parameters could result in different estimates of the low tail.

Thus, there is a need to explore the effect of bandwidth choice in farm-level

catastrophe simulation models.

Contrary to the asset integration assumptions, in which the decision-maker

views gains and losses as a change in wealth position, this paper applied the

measure of permanent income for UEP on the basis of constant absolute risk

aversion properties of the expected utility function. According to these assump-

tions, farmers make their decisions on the basis of the annual incomes that are

permanent in the long term. By doing so, relatively high risk premiums to avoid

downside risks are expected. Alternatively, if wealth measures were taken as the

basis of rational decision-making, differences in the optimal farm plans would be

limited between alternatively generated joint distributions. However, when a more

simplistic utility function containing the target minimum level of net farm income

is the basis for decision-making, the approach on how the tail is included does

certainly affect the optimal farm plan.
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Chapter 13

Forecasting Grape Maturation Under
Heat Stress Using MatPred

Leorey Marquez, Geoff Robinson, and Simon Dunstall

13.1 Introduction

Recent episodes of extreme heat in Australia have highlighted the vulnerability of

the wine industry to heatwave events. For many of its grape-growing regions,

Australia is projected to experience shifts in annual average temperature between

2006 and 2030 in the order of 0.2–1.1 �C. By 2050, the projected increase in annual
average temperature in grape-growing regions is 0.4–2.6 �C (Webb 2006). The best

estimate of warming over Australia by 2030 relative to the climate of 1990 is

approximately 1 �C with warmings of around 0.7–0.9 �C in coastal areas and

1–1.2 �C inland. Mean warming in winter is a little less than in the other seasons,

as low as 0.5 �C in the far south (CSIRO 2007).

13.1.1 Impact of Extreme Heat on Grapes

The effects of a heatwave on winegrapes will vary depending on the location of the

vineyard and on the timing of the heat event relative to the developmental stage

(or phenology) of the grapevine. Webb et al. (2008) described the climate sensitiv-

ity of winegrape quality and provided a model to quantitatively inform the

Australian wine industry of the impacts of projected climatic changes.
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Extreme heat causes winegrapes to ripen at a faster rate, reducing the number of

days available for optimised harvest conditions (Webb et al. 2008). Thus, grape quality

becomes increasingly compromised in hot regions (White et al. 2006) as quality may

be inversely related to the degree and duration of warm temperatures (Jackson and

Lombard 1993). In addition, the crushing of the grapes is more likely to take place at

higher temperatures, increasing the likelihood of oxidation faults (Coombe 1987).

Excessively high temperatures are detrimental to grape development as they inhibit

berry growth, delay sugar accumulation, impede fruit coloration, cause fruit to shrivel,

and may cause abnormal pigmentation of white fruit (Hashim-Buckey 2006). Grapes

are highly susceptible to heat, wind, and water stress during the flowering stage and

any exposure to extreme weather events may result in yield loss and poor fruitset

(Hayman et al. 2012). Excessive and prolonged heat can impair photosynthesis by

causing plants to close their stomata and shut down the photosynthetic process.

Grapes are most vulnerable during the veraison or ripening phase. This is the

period when grape berries resume growth (through cell expansion), become soft

and accumulate sugar. Levels of acids decline and color appears in red or purple

fruit. Studies have documented that very high temperatures during the ripening

phase reduce or completely inhibit key enzymes that are responsible for the

synthesis of anthocyanins. This results in poor coloration of fruit which reduces

the amount of marketable fruit at harvest (Hashim-Buckey 2006).

Heat-induced shriveling of grapes is often referred to as “sunburn” or heat injury.

This type of damage generally occurs after a sudden rise in temperature and may

occur at any time from fruit set to harvest. The type and extent of damage varies;

single berries, parts or whole clusters may wilt, shrivel, and dry. In some cases,

damage occurs only to fruit that is directly exposed to sunlight. However, shaded

fruit may also become damaged when temperatures exceed 40 �C, but susceptibility
to such heat damage is usually variety-dependent (Hashim-Buckey 2006).

13.1.2 Recent Extreme Heat Events in Australia

Most of the climate warming in the last 100 years has been attributed to increases in

greenhouse gases from human activities. Global temperatures from 11 of the last

12 years (1995–2006) have been ranked among the 12 warmest years in the

instrumental record of global surface temperature (IPCC 2007). The projected

changes in maximum and minimum temperature are associated with a projected

strong increase in frequency of hot days and warm nights and a moderate decrease

in frost. A substantial increase in fire weather risk is also likely at most sites in

southeastern Australia (CSIRO 2007).

As the world becomes warmer, the frequency of heatwaves is likely to increase,

but there will still be variability on a year-by-year basis. In the past 4 years alone,

five significant extreme heat events have occurred namely:

1. March 2008 Autumn Heatwave—An exceptionally prolonged heatwave

affected much of southern Australia in the first half of March 2008 (BOM
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2008). This event was unusually late in the season and became a major concern

for the southern regions of Victoria, South Australia, and Western Australia.

Affecting mostly late ripening grape varieties, vines were defoliated and suf-

fered from sunburn and heat damage. Ripening was delayed causing harvest

schedules to be thrown into disarray (Hayman et al. 2012).

2. November 2009 Late Spring Heatwave—An exceptionally prolonged heatwave

affected large parts of central and south-eastern Australia in November 2009,

resulting in the month being the hottest November on record for many areas

(BOM 2009a). This event came unusually early in the season and affected

vineyards mostly in South Australia along with several areas in Victoria and

New South Wales. Grape stock flowering during this event suffered from low

yield, including Granache in the Barossa Valley and Merlot in the Limestone

Coast (Hayman et al. 2012).

3. 2011 Summer heatwave—Between January 30 and February 6, 2011, the Hunter

Valley in New South Wales experienced a heatwave that was both exceptionally

hot and humid (BOM 2011).

4. December 2011 WA Record—Roebourne, in the Pilbara, recorded a maximum

temperature of 49.4 �C on 21 December 2011, breaking Western Australia’s

previous December record of 48.8 �C at Mardie in the Pilbara on 26 December

1986. This was also the second-warmest December day on record for Australia,

just 0.1 �C behind the all-Australia record 49.5 �C, observed at Birdsville on the
24 December 1972, and the fifth warmest day ever recorded in WA, for any

month (BOM 2012).

5. January–February 2009 Heatwave—An exceptional heatwave affected south-

eastern Australia during late January and early February 2009. The most extreme

conditions occurred in northern and eastern Tasmania, most of Victoria and

adjacent border areas of New South Wales, and southern South Australia, with

many records set both for high day and night time temperatures as well as for the

duration of extreme heat (BOM 2009b). A survey of 92 winegrowers across ten

selected regions affected by the heatwave showed unprecedented impacts of the

heatwave on vineyardswith significant heat-related crop losses at some sites (Webb

et al. 2009). Themost obvious effects on grape vines included stalled development,

leaf burn, leaf drop, berry sunburn, berry ‘bagging’, and berry shrivel. On

February 7 (Black Saturday), catastrophic bushfires engulfed many of the heat-

affected areas causing 173 fatalities, destroying more than 2,100 homes, and

destroying a number of townships includingMarysville and Kinglake (Egan 2012).

Having established the critical impact of extreme heat events on wine growers,

the rest of the paper presents an innovative maturation forecasting methodology as

implemented in the CSIRO decision tool MatPred. The next subsections describe

the VitiForecaster package of which MatPred is a component and explains the logic

behind the calculation of the harvest dates. Section 13.3 then describes the major

data inputs required by MatPred followed by a discussion of the model estimation

approach in Sect. 13.4. Finally, Sect. 13.5 presents the fitting of various regression

models and the selection of the recommended regression function.
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13.2 Maturation Forecasting with MatPred

As noted earlier, extreme heat accelerates the ripening process for grape berries

resulting in significantly reduced opportunities for harvesting grapes at their desired

level of maturity. With the increase in the frequency, intensity, and duration of

extreme heat events, there have been stronger calls for more research into managing

these events. The challenge will be for grape growers to appropriately manage the risk

and conditions once informed of impending extreme heat events (Hayman et al. 2012).

The implementation of best-practice methods for managing extreme heat events

will become critical for continued profitable wine production in Australia and

globally (Webb 2006). This paper presents the forecasting tool MatPred for mon-

itoring the maturation of grapevines with or without heat stress and for identifying

the optimal period for harvest, thereby minimising the risks associated with extreme

heat events. This paper also describes the process of fitting statistical models to

provide a means of forecasting the maturation of grapes for a given vintage based

on block and grower attributes, vintage characteristics, sampling measurements,

and weather data. Using analysis of data from Vintage 2009, the results will show

that statistical models that use meteorological data generally perform better than

ones that do not (Marquez et al. 2009b). Based on analysis of the sample data,

regression estimates for a certain model, referred to as “Model 5”, are

recommended for use in maturation forecasting in Australia.

13.2.1 VitiForecaster and Components

Grapes are a highly perishable product, so timing is crucial. To assist the wine

industry, Australia’s CSIRO in collaboration with Pernot-Ricard Pacific has devel-

oped VitiForecaster, a decision support system for planning and managing grape

intake logistics. MatPred is part of the VitiForecaster package. VitiForecaster

assists viticulturists and winemakers by providing analysis on crucial decision

issues concerning winery intake, such as (CSIRO 2012):

1. Ripened grapes must be harvested as close as possible to the ideal time

2. Harvested grapes must be transported to a winery before significant berry

deterioration occurs

3. Transport of unfermented juice and incomplete wine between wineries needs to

be integrated with grape logistics and other winemaking considerations

Knowing when grapes are likely to be ready to harvest not only improves the

quality of the wine they produce, but also helps with scheduling and planning for the

rest of the supply chain. Harvest logistics must be planned about a week in advance in

order to schedule harvesters and transport. Grape processing equipment is expensive

and requires careful scheduling to maximise its use and efficiency. VitiForecaster

allows customers to predict numbers of grape blocks that will be ready for harvest and

therefore make much better decisions about harvesting and cartage (CSIRO 2012).
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With VitiForecaster, CSIRO aims to make the intake planning process less

intermittent, and instead institute a continuous process where plans and schedules

(vintage-plans, crushing-plans, bookings, etc.) are updated whenever new informa-

tion becomes available. VitiForecaster provides the following tools and compo-

nents to support the intake planning process (Dunstall and Owens 2008):

1. Maturation forecasting—MatPred is used to predict the maturity time (time of

reaching preferred Brix) for blocks by investigating the grape maturation pat-

terns that are evolving in the current vintage.

2. Vintage projection—A view of vintage can be formed early in seasons when

there is little or no grape sample data. VitiForecaster can provide indications of

likely harvest dates, as well as giving a whole-of-vintage view from which

decisions on harvesting and winemaking resourcing can be made.

3. Vintage planning—Microsoft Excel spreadsheets provide harvest date predic-

tions to viticulturists, helping them to maximise overall vintage intake quality

and to construct individual block plans taking into consideration block matura-

tion, winery capacities, parcelling, and various other factors. In particular, the

predictions can affect decisions about harvest dates and about which grape

blocks send their grapes to which wineries.

4. Parcel planning—Spreadsheets are again used to facilitate the process of

converting the vintage plans for blocks to individual parcels of grapes that will

be scheduled for physical crushing at a winery.

5. Intake scheduling—Bid Sheet Workbooks allow limited crushing capacity to be

allocated and crushing and pressing equipment to be scheduled.

For more details on the individual modules of VitiForecaster, please refer to

Dunstall and Owens (2008).

13.2.2 Harvest Prediction Overview

The main function of MatPred is to generate estimates of the best harvest dates for

blocks of grapevines given the desired level of maturity assigned to each block.

As grapes mature, their sugar content increases. Thus, the level of maturity of a

block is indicated by the average sugar content of the berries, measured in Brix, the

number of grams of sucrose per 100 g of grapes. In technical terms, the Brix of

grapes is the percentage of sugar by mass in an aqueous solution which has the same

specific gravity. Higher Brix levels generally indicate higher potential levels of

alcohol in the wine produced. Another commonly used measure of sugar content is

Baume where 1 Baume¼ 1.8 Brix (DeGaris 2004). For consistency, this paper will

use Brix to indicate sugar content. However, MatPred allows users to use either

Brix or Baume for sugar content as shown in forthcoming examples.
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Given the target or preferred Brix value for a block of grapevines, the process of

predicting the best harvest date generally involves the following steps:

1. Obtain sample measurements of sugar level from the block during the entire

ripening period.

2. From the series of sample measurements recorded, calculate the average daily

increase in Brix for the block giving more weight to the most recent Brix

measurements.

3. Update the predicted harvest date using the latest estimate of the average daily

increase in Brix.

4. Repeat steps 1–3, preferably with samples taken more frequently as the

predicted harvest date draws nearer.

MatPred’s modelling approach uses the rate of increase in Brix per day as the

response variable in a regression model estimated using explanatory variables that

include time of year, block location, grape type, Brix sampling measurements and

the weather. Other factors such as altitude, block orientation, and soil type will be

included in the regression estimate in future versions. Details of the input data

records describing block characteristics, grower attributes, sampling measurements,

and weather are presented in Sects. 13.3.1, 13.3.2, 13.3.4, and 13.3.5, respectively.

The predicted date of harvest, referred in MatPred as “P-dates”, is calculated by

applying the derived daily rate of increase in Brix to the latest sampling date and

projecting forward until the target Brix is reached. MatPred can also provide

harvest dates for blocks with missing or incomplete sampling measurements. For

these blocks, MatPred provides an “inferred” date of harvest (“I-date”) based on the

“P-dates” of blocks with similar grape characteristics, location, and weather data.

The flowchart in Fig. 13.1 summarises the process in MatPred of calculating

predicted harvest dates (P-dates) or inferred harvest dates (I-dates). Given the target

sugar content (“preferred Baume” in Fig. 13.1), a “P-date” can be obtained if there

are sample measurements for the block. If there are none, a sufficient number of

similar blocks having the same preferred Baume are then used to compute the

inferred harvest date (I-date) for the block.

13.2.3 Harvest Dates

Aside from P-dates and I-dates, MatPred can also provide other types of harvest

dates depending on available data. Single-letter codes are used to indicate the type

of harvest date. Harvest dates fall into one of three categories, described as follows

(Dunstall and Owens 2009):

1. Maturity dates. These are harvest dates that are related to grape maturity. These

dates estimate when an average grape on a block will reach preferred target

sugar level. There can only be one maturity-type harvest date for a block. There

are four types of maturity dates described as follows:
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• An X date indicates that nothing is known about a block’s history or future

maturation profile.

• An H date (historical date) provides an expected harvest date this vintage,

based solely on what the corresponding date was in a preceding vintage.

• An I date (inferred historical date) is computed by the CSIRO system when

an H date is not known for the block and there are no samples for the block.

The date is computed using date information relating to “similar” blocks.

• A P date (predicted date) is the most useful maturity type of harvest date,

and it is computed by MatPred using Brix sample information for the block.

A P-type date is most preferred, and an X date is least preferred.

2. Bookings and actual dates. These dates relate to actual harvests and crushes, and
there can be several of these types current for a block at any given time (showing

a series of bookings or crushes). This group consists of three date types, namely:

• A B date (booked date) corresponds to a booking that has been recorded in the
system

• An A date (actual date) corresponds to a crush that has actually occurred

(including the weight as recorded on a weighbridge)

• A U date (uncrush date) is computed when a block has some actual crushes,

no more bookings in the system, and further tonnes are expected. The date
part of the U date is equal to the time of the last crush and the tonnage part is

equal to the estimated tonnes remaining to be harvested

Fig. 13.1 Logic applied by MatPred to calculate a P (predicted) or I (inferred) harvest date for a

block (Source: Dunstall and Owens 2009)
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3. Planning dates. Planning dates provide additional control for harvest manage-

ment purposes. The date types in this category are:

• A V date (vintage-planned date) is determined by vintage planning staff and

typically updated twice-weekly during vintage. A block can have different

vintage-planned dates for different intended-uses (e.g. if it is planned that

grapes will go to two different wineries, to one as a red and the other as a

rosé).

• An R date (recommended date) indicates that a block has been marked as to-

be-harvested in the short term (e.g. next fortnight) and is ready to be booked.

• An L date (latest-view date) is a special case and is manually set by users.

Sometimes an L date acts as a maturity date, sometimes as a planning date,

and at other times as both, depending on the circumstances.

Table 13.1 presents a summary of the various harvest-date types and their

relationship with each other.

13.3 MATPRED Input Data

MatPred requires historical and current data from three principal groups:

1. Grower data—Attributes of the blocks and area where the grapes are grown and

managed

2. Maturation data—Brix, Ph, and acidity measurements from samples of the

grapes to be harvested

3. Meteorological data—historical and forecast data on the weather conditions

surrounding the vintage

13.3.1 Block Attributes

The basic unit of grape area used is the grape block, or simply block. Each block

designates an area where grapes of the same variety from one area are being grown

for the same intended use and will be harvested at the same time.

The fields in the block records consist of:

1. VendorCode—the identification code for the grower.

2. BlockRef—the identification code for the blocks within a given grower.

3. VinYr—the year of vintage, coded as 0 for 2000, 1 for 2001, 2 for 2002, etc.

4. IntendedUse—the identification code for the product type that will be produced

with the grapes from the block. For example, “LILINC” refers to Lindauer Cuvee.

5. Grapetype—the type of wine that will be produced from this block. The value is

one of “Red” (R), “White” (W), “Sparkling” (S), or “Fortified” (F).
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Table 13.1 Harvest date_type definitions and update protocols (Source: Dunstall and Owens

2009)

Date

type Meaning

Member

of set Constraints

Invalidated by

arrival of

Invalidates, on

arrival

X No history Maturity Only one of (XHIP) can be

current (for a given (block,

destination code) tuple)

XHIP XHIP

H Historical

date

Maturity Only one of (XHIP) can be

current(for a given (block,

destination code) tuple)

XHIP XHIP

I Inferred
historical

date

Maturity Only one of (XHIP) can be

current (for a given (block,

destination code) tuple)

XHIP XHIP

P Predicted

date

Maturity Only one of (XHIP) can be

current (for a given (block,

destination code) tuple)

XHIP XHIP

L Latest

view

Maturity Only one L can be current

(for a given (block, desti-

nation code) tuple)

L L

B Booking Bookings

and

actuals

Multiple B can be

current, and multiple har-

vests from (B,A,U) can be

current, for any (block,

destination code, winery)

tuple

New set of

(B,A,U)

harvest

elements for

same block

Existing

(B,A,U) har-

vest elements

for same block

A Actual

crush

Bookings

and

actuals

Multiple A can be

current, and multiple har-

vests from (B,A,U) can be

current, for any (block,

destination code, winery)

tuple

New set

of (B,A,U)

harvest

elements for

same block

Existing

(B,A,U) har-

vest elements

for same block

U Uncrush Bookings

and

actuals

Only one U can be

current, but multiple har-

vests from (B,A,U) can be

current, for any block

(even when a block

streams to multiple prod-

ucts/wineries, only one U

can be computed)

New set of (B,

A,U) harvest

elements for

same block

Any existing

(B,A,U) har-

vest elements

for same block

V Vintage

plan date

Planning

dates

Multiple V can be

current for any given

(block, destination code,

winery)

Any V for same block (assum-

ing V dates pass through the

vp2pp service first)
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13.3.2 Grower Attributes

Each grower data record consists of:

1. VendorCode—a three-character identification code for the grower. Also referred

to as GrowerCode.

2. Location—the label for the principal geographical location of the grower’s

activities. This is usually the suburb or local government area where the blocks

are located.

3. Longitude—the longitude coordinate of the centroid denoting the centrepoint of

the growers’ activities.

4. Latitude—the latitude coordinate of the centroid denoting the centrepoint of the

growers’ activities.

5. Altitude—the altitude (in meters) of the centroid denoting the centrepoint of the

growers’ activities.

When altitude values are available for both weather stations and blocks, the

MATPRED software adjusts temperature for altitude differences by subtracting

2 �C per 1,000 ft rise. In a setup phase, block coordinates are also helpful for

determining which weather stations to use for meteorological data.

13.3.3 Maturation data

The term “maturation data” includes measurements for levels of pH (PH), titratable

acidity (TA), and sugar concentration (Brix) either prior to harvest (referred to as

sampling data) or at harvest (referred to as weightag data). For Australia, there were

9 years of sampling data (2000–2008) with each record consisting of:

1. VendorCode—the identification code for a grower.

2. BlockRef—the identification code for a block.

3. Vintage—the year of vintage for grapevines.

4. SampleDate—the day, month, and year when the sample was taken.

5. AnalysisCode—Code for the grape property being measured. This is denoted by

BX for Brix, PH for pH value, or TA for titratable acidity.

6. AnalysisResult—the value observed for the AnalysisCode.

There were also 9 years of weightag data (2000–2008). The weightag data

records consist of:

1. VendorCode—the identification code for the grower.

2. BlockRef—the identification code for the blocks within a given grower.

3. VinYr—the year of vintage for grapevines, denoted by 0 for 2000, 1 for 2001,

2 for 2002, etc.

4. WeightagDate—the day, month, and year when the weightag data was taken.

5. WeightagBr—the value observed for Brix.
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6. WeightagpH—the value observed for pH.

7. WeightagTA—the value observed for titratable acidity.

8. WeightagTonnes—total volume of grapes harvested in tonnes.

Table 13.2 shows the number of blocks per year per grape type for which

maturation data was provided.

13.3.4 Meteorological Data

The MatPred software requires the following meteorological data for each day of

vintage (DOV):

• Minimum (ambient) daily temperature (�C)
• Maximum (ambient) daily temperature (�C)
• Daily rainfall (mm)

These data are required as either observations (past) or forecasts (future), for the

set of weather stations that are relevant to the vineyard blocks of interest.

In Australia there are two major types of weather stations, (1) automated weather

stations (AWS) and (2) rainfall-only stations. Observations of many meteorological

variables are available for an AWS, and near-term forecasts are also available for

AWS. Forecasts are not readily available for non-AWS stations.

Figure 13.2 shows the locations of rainfall-measuring stations in Australia, while

Fig. 13.3 shows the distribution of stations that measure temperature. Notice that

weather stations are clustered closer to the coasts particularly in the southeast and

southwest.

Required Australian meteorological data can be obtained from the Bureau of

Meteorology (BOM). The BOMwebsite (http://www.bom.gov.au/) provides access

to various types of weather data, including:

• Historical data. There is historical data available from which long-term average

rainfall and temperature values can be calculated.

• Recent daily rainfall observations. Recent rainfall data for many stations includ-

ing non-AWS stations is typically available for the daily period up to 9 am local

Table 13.2 Numbers of blocks for each grape type for each vintage

Vintage Fortified O¼Rosé Red Sparkling White Unknown

2002 30 0 1,644 161 864 0

2003 21 0 1,606 226 820 0

2004 20 16 774 136 557 297

2005 24 104 1,638 291 1,042 0

2006 17 167 1,552 307 957 0

2007 21 189 1,541 300 981 0

2008 13 54 1,566 306 963 0

The blocks of unknown grape were not used for fitting of models (Marquez et al. 2009b)

13 Forecasting Grape Maturation Under Heat Stress Using MatPred 287

http://www.bom.gov.au/


Fig. 13.2 Locations of rainfall-measuring stations in Australia (from Bureau of Meteorology)

Fig. 13.3 Locations of temperature-measuring stations in Australia (from Bureau of

Meteorology)
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time in the preceding day (data to 9 am today is posted at some number of hours

after 9 am). It relates to one day only and is updated daily.

• Recent hourly AWS observations. There is data for near-real-time observations at

AWS. These are recent to at least the last 3 h, if not better. The data has a 1-h

frequency and covers a range of measures including ambient temperatures and

rainfall.

• Daily forecasts. BOM provides daily forecasts up to 8 days into the future for

various weather-related measures including ambient temperatures and rainfall.

Table 13.3 summarises the meteorological data used for the 2009 vintage.

13.3.5 Data Lookup Protocol

The meteorological data tables used by MatPred contain the following fields:

1. StationCode—the three-character code used to identify a weather station

2. CompDate—the day, month, and year when the data was observed

3. TotRain—the total amount of rain (in mm) observed for the entire day

Table 13.3 Summary of Australian meteorological data used in analysis of Vintage 2009

Data set

Weather

stations

BOM data

product URL (as of 21 Nov 2008)

Minimum

update

frequency

Weather

station

definitions

All – ftp://ftp.bom.gov.au/anon2/

home/ncc/metadata/sitelists/

stations_20081120.txt or at

least the subset relating to the

required IDCL* and IDY*

products

Annually/

service start-

up only

Long-term

averages

AWS only? n/a n/a Annually/

service start-

up only

Daily rainfall

observations

>3,000

stations

(i.e. AWS

and

non-AWS)

IDCLRD00001 ftp://ftp.bom.gov.au//anon/

home/ncc/www/rainfall/

totals/daily/data/latest.data

Daily

(approx 3 pm

AEDST)

Daily tem-

perature

observations

~865

stations

(i.e. most are

AWS?)

IDCLCD0002 ftp://ftp.bom.gov.au//anon/

home/ncc/www/temperature/

silo/daily/data/latest.dc

Daily

(approx 3 pm

AEDST)

Temperature

and rainfall

forecasts

(OCF)

~783

stations

(i.e. most are

AWS?)

IDY02122 and

IDY02123

ftp://ftp.bom.gov.au/anon/

gen/fwo/IDY02122.dat

(0:00Z) ftp://ftp.bom.gov.au/

anon/gen/fwo/IDY02123.dat

(12:00Z)

Twice daily

(approx 3 am

and 3 pm

AEDST)
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4. MinTemp—the minimum temperature (in degrees Celsius) observed for the

entire day

5. MaxTemp—the maximum temperature (in Celsius) observed for the entire day

When assembling meteorological records for a particular place and time,

MatPred will (in general) access different kinds of meteorological data depending

on the availability of data and the meteorological measure(s) sought. MatPred

applies the following lookup protocol when searching for temperature and/or

rainfall values from stations for a particular date or time (Dunstall et al. 2009):

• If the sought date is far in the past, prior to the time at which daily observations

began to be accumulated, MatPred uses the long-term averages.

• If the sought date is in the past, between the time that the observations started

and around 36 h prior to now, MatPred can usually look up the daily observa-

tions (in Australia: AWS for temperatures, and AWS or non-AWS for rainfall).

• If the sought date-and-time is in the last 36 h, MatPred will typically use AWS

observations or forecasts received in the past few hours, depending on when the

last set of observations was downloaded.

• If the sought date-and-time is in the near future (i.e. in the forecast horizon),

MatPred will use forecasts for the AWS.

• If the sought date is further into the future, MatPred will use long-term averages

(in Australia, these apply at AWS only).

Figure 13.4 illustrates the lookup protocol used when searching for representa-

tive rainfall and temperature values for a given time period “Now”. If “Now” is too

far in the past or in the future, then long-term averages are used for the location of

interest. For more recent times, daily observations, hourly observations, or daily

forecasts may be used.

13.3.6 Assigning Blocks to BOM stations

In order to find the meteorological conditions corresponding to the maturation data,

MatPred assigns the grape blocks to a set of Key BOM stations. For each wine-

growing area, MatPred uses a two-step procedure to assign a Key BOM station to

the area. This is performed for data-validation and data gap-filling purposes. As a

Fig. 13.4 General data lookup protocol
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first step, MatPred identifies the Key BOM stations most commonly assigned to

blocks in the wine-growing areas. Key BOM stations are chosen with the following

criteria in mind:

• Historical data on daily maximum temperature and daily rainfall are constructed

for each Key BOM station. Where such data is missing for a Key BOM station,

values are estimated using historical data from neighbouring BOM stations.

• Forecasts of daily maximum temperature and daily rainfall are constructed for

each Key BOM station. Where such forecasts are unavailable for a Key BOM

station, values are estimated using forecast data from neighbouring BOM

stations.

• The Key BOM stations cover the regions in which most wine is being grown, so

for most blocks it is reasonable to expect that their weather will be similar to that

at the nearest Key BOM station, allowing for adjustments such as those for

altitude. (A commonly used figure for the atmospheric lapse rate is 2 �C per

thousand feet.)

• The number of Key BOM stations is optimised so that the computer resources

and processing time required to perform the estimation of parameters from

historical data and the construction of predictions are minimised while providing

cover for the maximum number of grape blocks.

In the second step, the closest Key BOM station is assigned to each block, with

the second closest Key BOM station as alternate. For each growing area, maps were

used to select a Key BOM station that is close to the middle of that area. These are

recorded in a BOM-station-to-area table (Area2BOMStn.csv). For blocks with
no GPS data, block-to-area information is used to assign a Key BOM station, using

the BOM-station-to-area table.

13.4 Forecasting Methodology

13.4.1 Modelling Brix Changes as Brownian Motion

The modelling approach essentially consists of fitting a regression model to the rate

of change of Brix over a given period. This rate of change is expected to be affected

by factors such as the time of year, the starting Brix, rainfall, temperature, and grape

type. In building the regression equations for Vintage 2009, the statistical analysis

observed the following guidelines:

1. Sugar concentration (measured in Brix) varies as a function of a number of

factors including time, grape characteristics, block location attributes, weather,

and grower activities.

2. For each block, the pattern of Brix changes from season to season.

3. Measurement of Brix is subject to sampling and testing errors.
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4. The starting Brix value may vary from block to block and from vintage to

vintage.

5. The pattern of Brix over time can be modelled as Brownian motion.

The variance of the change in Brix over a period of h days is expected to be

approximately linear as a function of h. The variance for h¼ 0 is the sum of the

measurement error variances for the initial and final Brix. The slope of the variance

as a function of h may be interpreted as a Brownian motion variance per unit time.

Hence, the variance of the change in Brix may be written as

2σ2 þ VBh

where

• σ2 is the variance of a Brix measurement

• VB is the Brownian motion variance per day

Therefore, the variance of the rate of change of Brix over a period of h days is

given by

2σ2h�2 þ VBh
�1

Whenfitting amodel to data itemswhich are each predicting rates of change ofBrix,we

use weighted linear regression, with weights given by the reciprocal of this variance.

In practice, the parameters σ2 and VB are estimated by an iterative model-fitting

technique as follows:

1. The ratio 2σ2/VB is initially set to a typical value, say 10.

2. The model is then fitted to data on the rate of change of Brix. The residuals from

this model are multiplied by h, so that they can be interpreted as residuals from a

model for the change in Brix over a period.

3. Then a simple linear regression model for the squares of these residuals using

h as a predictor enables the parameters σ2 and VB to be estimated. These

estimated values are then used for fitting the model to the rate of change of Brix.

4. Step 3 is repeated until it converges (which usually takes about seven iterations).

One complication to this model-fitting procedure arises when there are outliers

among the data. The solution adopted for dealing with this problem is to fit the

model to the rate of change of Brix twice. First the model is fitted to the raw data.

Then scaled residuals are computed by multiplying the residuals by the square root

of the weighting factor. The median of the absolute values of the scaled residual is

computed and divided by the quartile of a standard normal distribution (the median

of absolute values of standard normals) in order to provide an estimate of the

standard deviation of the scaled residuals.

Several regression models for the daily change in Brix for Vintage 2009 were

estimated using different sets of explanatory factors and their interactions. These

models were then analysed and compared in terms of robustness and accuracy.
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13.4.2 Regression Estimation Without Heat Stress

Marquez et al. (2009b) describes the series of linear models estimated and analysed

to plan the 2009 Vintage for a major Australian wine company. Information from

2002 to 2008 were provided to CSIRO on the attributes, grape samples, and

harvests for all blocks supplying grapes to this wine company and its contract

processors. These data were then used to estimate the daily rate of change in Brix as

a function of sampling date, starting Brix, rainfall, temperature, and other factors.

This initial set of explanatory variables did not include heat stress. Table 13.4 lists

some of the coefficients used in the regression models for Vintage 2009 and their

corresponding variables when implemented in MatPred.

Nine regression models were estimated for Vintage 2009 using weighted linear

regression with the length of the interval between Brix measurements as the

weighting variable (Marquez et al. 2009b). The models were intended to predict

Brix levels 1 day at a time so only rates of change for intervals of up to 10 days were

used for fitting. Analysis of the weightag data provided showed that the weightag

values were subject to different sources of noise and errors. As a result, the

weightag data were discarded and only sampling data were used for the fitting of

the models for Vintage 2009.

Analysis and comparison of the nine regression models for Vintage 2009 showed

that (Marquez et al. 2009b):

• The effect of DOV is positive, which is different from the effect found for

New Zealand data (Marquez et al. 2009a). Other factors being equal, grapes

ripen slightly more slowly late in the season than early in the season. The effect

of being 60 days later in the season is approximately an increase of 0.08 Brix

per day.

• The rate of increase in Brix decreases as the initial Brix (StartBX) increases. For

instance, it is about 0.25 Brix per day slower at a starting Brix of 23 than at a

starting Brix of 15.

• Rain during the period tends to decrease Brix. However, previous rain (rain more

than 4 days before the sampling date) has a smaller effect and tends to increase

the rate of change of Brix.

• Grapes ripen at about 0.01 Brix per day faster for each degree Celsius increase in

maximum temperature.

• Grapes for red, fortified, and rosé wines ripen slightly faster than white wine

grapes, whereas grapes for sparkling wine ripen more slowly.

• The model with the smallest estimated Brownian motion variance was judged as

the most robust and selected as the model to be used for predicting harvest dates.

This model combines fortified wines with white wines and aggregates the

rainfall over the 4 days before the start of the interval into a single variable,

rainp. The square of that 4-day-aggregate rainfall, rainpSq, is also used in this

model.
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13.4.3 Estimating Maturation Under Heat Stress

As noted earlier, the extreme heat events in January and February 2009 caused

unprecedented impacts on the affected winegrape-growing regions both in terms of

yield loss as well as the scale of damage noted on the grape bunches

(Webb et al. 2009). This event rendered the then-current maturation forecasting

model inadequate as the meteorological conditions have completely altered the

regression factors.

In response, CSIRO incorporated several revisions into the regression modeling

to account for the impact of extreme heat events. The principal changes introduced

in the analysis are summarized as follows:

• Sampling measurements from 2009 were added to the maturation data. How-

ever, the matching of grape blocks to BOM weather stations was not as metic-

ulously followed as previous efforts where weather predictions were available.

For the 2009 data, we only used grape blocks such that the BOM station could be

found from earlier matching of grape blocks to BOM stations.

• The earlier analyses used time-of-year effects (ToY and quadratic, cubic and

quartic terms in ToY) when fitting models but these were not expected to be

equally appropriate in all latitudes. Hence, time-of-year effects have largely

been replaced by a measure of the amount of sunshine which is computed from

latitude and the time of year. It was expected that models fitted using terms

involving the amount of sunshine will be useful over a wide range of latitudes.

• In direct response to the observation that many blocks of grapes were adversely

affected by very high temperatures during the 2009 season, a term representing heat

stress was added to the model. This term does not consider the nature of the effects

of heat on plant physiology, but simply estimates how the rate of ripening of grapes

is affected by high temperatures. Themathematical form of the heat stress termwas

developed in conjunction with Angus Davidson of Pernot-Ricard Pacific.

The next two sections provide details on the derivation of measures for sunshine

and heat stress.

13.4.4 Modelling the Amount of Sunshine

Previous models fitted used the daily rate of change in Brix as the response variable

and the day of the year (DOY) as an explanatory variable. With the introduction of

sunshine and heat stress into the regression formulation, a procedure was formu-

lated whereby sunshine can be calculated from DOY which represents the position

of the earth relative to its orbit, and latitude which represents the position of a point

on the earth’s surface relative to the sun.

The calculation of the amount of sunshine per day impacting on a horizontal

surface is described as follows.
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First, the DOY is expressed as an angle ϕ in relation to the earth’s orbit. To

obtain ϕ (in radians), we use

ϕ ¼ DOY= 365þ 97=400ð Þð Þ*2π

where

• 365 + 97/400 is the average number of days in a year (since there are 97 leap

years every 400 years)

• 2π is the total radians in a complete orbit

If ψ is the apparent latitude of the sun at DOY, then its tangent is approximated by

tan ψð Þ ¼ 0:0712 sin ϕð Þ � 0:3999 cos ϕð Þ þ 0:0006 sin 2ϕð Þ � 0:0067 cos 2ϕð Þ
þ0:0013 sin 3ϕð Þ þ �0:0026 cos 3ϕð Þ

The apparent latitude of the sun can then be computed by taking the arctangent. Note

that positive angles are conventionally used tomean that the sun is north of the equator.

The length of daylight D at the given point depends on time of the year (DOY)

and the latitude λ of the point. Half the length of daylight, D/2, expressed as an

angle in radians, at the specified latitude λ is then given by

D=2 ¼ arccos � tan ψð Þ* tan λð Þð Þ

If latitudes within the Arctic or Antarctic circles are used, then the quantity whose

arccosine is computed must be constrained to be between �1 and +1.

A measure of the amount of sunshine S is then given by

S ¼ cos ψð Þ* cos λð Þ* sin D=2ð Þ þ sin ψð Þ* sin λð Þ* D=2ð Þ

This quantity is plotted in Fig. 13.5. The scale of this measure is calculated such that

the amount of sunshine is unity at the equator at the equinoxes.
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Fig. 13.5 Amount of sunshine as a function of day of year and degrees south latitude (written over

lines). Unity is taken to be the daily amount of sunshine at the equator at the time of an equinox.

Cloud cover and shade are ignored
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13.4.5 Estimating Heat Stress

The calculation of the term for heat stress consists of four steps.

1. An inquiry into the temperature at which heat stress starts to occur was

conducted with initial values for these parameters chosen based on advice

from Angus Davidson from Pernot-Ricard-Pacific. Alternative values were

tested for goodness-of-fit with observed data for vintages 2003–2009. The

resulting temperature thresholds obtained were:

(a) 42.5 �C if the previous overnight minimum temperature was 20 �C or less

(b) 39.5 �C if the previous overnight minimum temperature was 30 �C or more

(c) 42.5 �C� 0.35� (previous overnight minimum temperature �20 �C) if the
previous overnight minimum temperature was between 20 and 30 �C.

2. If the daily maximum temperature is greater than the temperature at which heat

stress starts to occur, then the daily heat stress is taken to be equal to the

temperature excess in degrees celsius. Daily heat stresses are accumulated and

the cumulative sum of daily heat stresses is the number which is assumed to be

related to the rate of change of Brix.

3. If the daily maximum temperature is at least 5 �C lower than the temperature at

which heat stress starts to occur, then the cumulative sum of daily heat stresses is

reduced by 2 or to its minimum possible value of zero.

4. If the daily maximum temperature is lower than the temperature at which heat

stress starts by between 0 and 5 �C, then the reduction in the cumulative sum of

daily heat stresses is proportionately smaller.

For example, Fig. 13.6 shows a pattern of daily temperatures where the maxi-

mum temperature on the fourth day was 44 �C and there was a series of 4 very hot

days from day 12 to day 15 with maximum temperatures of 44, 46, 45, and 42 �C
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Fig. 13.6 Pattern of maximum and minimum temperatures to illustrate calculation of heat stress
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and high overnight minimum temperatures. Figure 13.7 presents the calculated

effect of heat stress for the pattern of daily temperatures shown in Fig. 13.6.

Note that the isolated very hot day causes a small amount of heat stress, but the

series of very hot days causes much more substantial heat stress according to the

model, with the rate of increase of Brix being much smaller than it would otherwise

have been. There are other terms in the model which tend to increase Brix more

rapidly at higher temperatures, but this heat stress term can be larger than them in

magnitude so that the overall model predicts that Brix will decrease.

13.5 Fitting Models

Several linear regression models were fitted to the daily rates of change in Brix (Y),

largely following the models used in previous data analyses for Vintage 2009, but

now incorporating sunshine and heat stress as explanatory variables (Marquez

et al. 2009a, b). Table 13.5 presents some of the principal explanatory variables

used in obtaining the regression estimates. Only rates of change for intervals of up

to 10 days were used for fitting these models. It is intended that the models will be

used for predicting one day at a time. Again, only sampling data was used for the

fitting of these models.
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13.5.1 Model 1

This is the simplest model fitted, estimating the daily rate of change in Brix (Y) as a

constant value of 0.17 for all grape types. For Vintage 2009, Model 1 estimates that:

Y¼ 0.17

13.5.2 Model 2

Model 2 expands Model 1 by providing a separate estimated daily rate of change in

Brix (Y) for each wine type. These estimates are only slightly different from those

reported in Marquez et al. (2009b). For Vintage 2009, Model 2 estimates that:

White: Y¼ 0.24

Red: Y¼ 0.19

Sparkling: Y¼ 0.30

Fortified: Y¼ 0.17

Rose: Y¼ 0.24

13.5.3 Model 3

This model expands Model 2 by making the daily rate of change in Brix (Y) a

function of the initial Brix value (StartBX). This adds the feature that the daily rate

of change in Brix is smaller when the starting Brix is larger. The estimated

Table 13.5 Regression variables used in estimating daily rate of change in Brix

Regression

variable Description

DoV Day of vintage which is 1 for March first, 32 for April first, etc.

(The midpoint of the interval was used)

DoV2 Quadratic term in day of vintage, defined as DoV * (DoV� 100)

DoV3 Cubic term in day of vintage, defined as DoV*DoV2

DoV4 Quartic term in day of vintage, defined as DoV2 *DoV2

Sunshine Amount of sunshine computed from latitude and day of vintage

sunshineSq Quadratic term in sunshine, defined as (sunshine� 1) squared

StartBx Initial Brix

BxSq Square of initial Brix

GrapeTypeRed Difference of slope for red wine grapes from the slope for white wine

grapes

AvTotRain Average rainfall in millimetres over interval

heatStress$reg Calculated heat stress for the given day and location

rainpN Total rainfall for the 24-h period N days before the start of the interval

AvTotRain:

AvMaxTemp

Interaction term for average total rain and average maximum temperature
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coefficients for this fitted model are similar to those reported in Marquez

et al. (2009b). For Vintage 2009, Model 3 estimates that:

White: Y¼ 0.74� 0.03 * StartBX

Red: Y¼ 0.77� 0.03 * StartBX

Sparkling: Y¼ 0.81� 0.03 * StartBX

Fortified: Y¼ 0.43� 0.01 * StartBX

Rose: Y¼ 0.68� 0.02 * StartBX

Note that the coefficients from this model can be used to find estimates of the

maximum Brix, by looking at the Brix for which the fitted rate of change is zero.

These estimated maxima are 26.39, 28.61, 24.07, 39.63, and 29.18 for white, red,

sparkling, fortified, and rosé wine grapes, respectively. These maxima should not be

thought of as real biological limits. However, the data do suggest that the rate of

increase of Brix becomes smaller as these values are approached.

13.5.4 Model 4

This model included a large number of predictor variables and interactions, in order

to obtain the maximum fit that can be expected. The intention was to trim this large

model into a more compact model that can be adopted for routine use. To illustrate,

the Model 4 estimate for White wines for Vintage 2009 is given by:

Y¼ 1.16 + 0.036 * StartBX� 0.0023 *BxSq +

0.094 *AvTotRain� 0.004 *AvTotrainSq

�1.26 * sunshine� 0.75 * sunshineSq+
0.0036 * rainp1 + 0.0031 * rainp2+

0.0033 * rainp3 + 0.0026 * rainp4+

�0.0079 *AvMinTemp+ 0.019 *AvMaxTemp+

–0.0053 * StartBX * interval+

0.0002 * interval *BxSq+

–0.0013 * StartBX *AvTotRain+

–0.0029 *AvTotRain *AvMaxTemp+

–0.0002 *AvTotRainSq *AvMaxTemp

Model 4 estimates for Red, Sparkling, Fortified, and Rose wines follow a

similar format.

Many of the fitted coefficients are similar to those found in previous reports.

Both sunshine and day-of-vintage (DoV) variables have been included in this model

even though they are alternative ways of explaining the same types of effects, so it

would not be reasonable to expect the coefficients for theDoV terms to be similar to

those found previously.

The residual standard error from this model is intended to be used as a bench-

mark for choosing a simpler model. We expect to be able to find a simpler model

with residual standard error not very much larger than for this model.
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13.5.5 Model 5

This model aggregates the rainfall over the 4 days before the start of the interval

(rainp1, rainp2, rainp3, rainp4) into a single variable, rainp. The square of that

4-day-aggregate rainfall, rainpSq, is also used in this model. To illustrate, the

Model 5 estimate for White wines for Vintage 2009 is given by:

Y¼ 0.98+0.033*StartBX� 0.0004*BxSq�
0.008 *AvTotRain+ 0.053 * interval

�0.37 * sunshine� 0.41 * sunshineSq+

0.0039 * rainp + 0.00002 * rainpSq+

�0.014 * heatStress$reg + 0.014 *AvMaxTemp+
0.0021 * StartBX * interval+

–0.00006 * rainp *AvMaxTemp

Again, Model 5 estimates for Red, Sparkling, Fortified, and Rose wines follow a

similar format.

The heat stress term in this model was zero most of the time. The number of

intervals between successive maturity samples for which the heat stress term was

not zero is given in Table 13.6. The average estimated size of the non-zero heat

stress effects is also given in Table 13.6. We can see that heat stress was much more

of a problem in 2009 than in previous vintages.

Similar information is displayed in Fig. 13.8. The heat stress effects are gener-

ally zero. However, for 2009 there were a much larger number of non-zero heat

stress effects than for other vintages and these effects were generally larger in

magnitude.

13.5.6 Model 6

This model used day of year (DoV) and its square and cube (DoV2, DoV3) as

substitutes for the amount of sunshine and its square. The results show that these

alternatives are equally good as Model 5 in terms of measurement variance, but not

as robust when considering the Brownian motion variance, as shown in Table 13.7.

To illustrate, the Model 6 estimate for White wines for Vintage 2009 is given by:

Table 13.6 Numbers of intervals affected by heat stress

Vintage Number of intervals affected by heat stress Average size of heat stress effects

2003 926 0.0066

2004 864 0.0282

2005 118 0.0036

2006 1,098 0.051

2007 724 0.0042

2008 481 0.0024

2009 5,500 0.1144
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Y¼ 0.62� 0.032*StartBX� 0.0004*BxSq�
0.008 *AvTotRain� 0.053 * interval

�0.0013 *DoV� 0.00003 *DoV2+

0.004 * rainp� 0.00002 * rainpSq+

�0.014 * heatStress$reg + 0.014 *AvMaxTemp+

0.0021 * StartBX * interval+
–0.00006 * rainp *AvMaxTemp

Again, estimates for Red, Sparkling, Fortified, and Rose wines follow a similar

format.

Size of heat stress effects on rate of changes of Brix
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Fig. 13.8 Stacked bar chart showing frequencies of non-zero heat stress effects for 2009 and for

all other vintages combined

Table 13.7 Comparison of models for the components of variation

Derived model

Measurement

variance

Brownian motion

variance

Number

of outliers

Model 1 0.2311 0.1711 531

Model 2 0.2358 0.1558 544

Model 3 0.2743 0.1184 618

Model 4 0.2806 0.0922 627

Model 5 0.2868 0.0917 611

Model 5 red wine only 0.2995 0.0781 384

Model 5 without 2008

data

0.2918 0.0770 512

Model 6 0.2849 0.1103 609

Model 7 0.2830 0.0953 618
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13.5.7 Model 7

This model uses meteorological information like Model 5, but only uses linear

terms in an attempt to produce a model which is easy to interpret. To illustrate, the

Model 7 estimate for White wines for Vintage 2009 is given by:

Y¼ 0.76� 0.033 * StartBX + 0.008 *AvTotRain�
0.012 * interval� 0.30 * sunshine+ 0.0014 * rainp

�0.014 * heatStress$reg + 0.014 *AvMaxTemp

As in the previous models, estimates for Red, Sparkling, Fortified, and Rose

wines follow a similar format.

13.5.8 Selection of a “Best” Model

13.5.8.1 Comparing Estimates of Variance Components

For each of the models fitted we find estimates of the measurement variance and the

Brownian motion variance per day. These estimates are given in Table 13.7. As in

Marquez et al. (2009b), Model 5 is preferred largely because it has the smallest

estimate of Brownian motion variance. When the model for the rate of change of

Brix is better, the estimated Brownian motion variance is smaller because more of

the variation in the slope data is explained by the factors included in the model.

Model 5 gives the smallest estimate and appears to be a sensible choice. In this

model, sunshine, heatstress, total rain, and maximum temperature are all significant

variables in explaining the daily change in Brix.

The Brownian motion variance is much larger than those obtained for

New Zealand by Marquez et al. (2009a). For Model 5, the estimate of Brownian

motion variance is 0.0917 compared to 0.0189 for New Zealand. This suggests that

grape maturity is much harder to predict in Australia, perhaps because its weather is

more variable. This component of variance would be expected to be smaller if more

accurate weather data were used for fitting the models.

The measurement variance is slightly larger than for New Zealand (0.2868

compared to 0.2123 for Model 5). One possible explanation for this difference is

that there is more bunch-to-bunch variation in Australia.

13.5.8.2 Comparing Predictions of Models

The amount of difference in fitted values between Model 5 and some of the other

models is summarised in Table 13.8. Most of the differences are small, compared to

the average slope of about 0.15 Brix per day. This suggests that Model 5 is fairly

robust. In particular, it is substantial proof that fitting the model leaving out the

2008 data does not change the predictions much.
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13.5.9 Conclusion

Recent extreme heat events have shown the need to update MatPred’s maturation

forecasting capabilities to take into account the impact of heat stress on wine grapes.

As a result, the estimation procedure has been extended to include measures for

sunshine and heat stress and the examination of several new regression estimates.

These variables not only maintained the prediction capabilities of earlier models, but

have enhanced the robustness of the newmodels by accounting for extreme variations

in weather events. A comparison of these new estimates has established a

recommended process for formulating regression relationships for future vintages

that will enable analysis of the impact of future extreme heat events on the Australian

wine industry to be achieved and corresponding risks to be managed effectively.
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Chapter 14

Technical Efficiency of Sow Farms:
A Parametric and Non-parametric Approach

Xavier Ezcurra and Lluı́s M. Pl�a-Aragonés

14.1 Introduction

The importance of pig production for the Spanish economy is reflected by recent

agricultural statistics for Spain’s swine industry. The sector contributes 15 % of the

Final Agricultural Product and accounts for 35 % of the total economic value of the

country’s livestock production. Pork is the main meat consumed in Spain (60 kg/

person/year); 55 % of total meat consumption. Moreover, after Germany, Spain is

the second largest pig producer in the European Union (EU).

Due to recent EU regulation of pig farms and continuous growth of the census,

there has been increasing concern about the measurement and comparison of the

technical efficiency of different Spanish sow farms. Vertical integration is more and

more common in the sector, concentrating production in few hands. Private com-

panies and cooperatives play the role of the so-called integrators (Rodriguez

et al. 2014). This integration leads to base production on different farms owned

by the same integrator. Hence, identifying the best practices among farms to

increase technical efficiency is crucial for either farmers or integrators. The future

of swine producers, integrated or not, will depend on their ability to enhance their

economic performance by improving productive efficiency rather than increasing

farm size. The current literature on livestock production contains several studies of
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the efficiency of dairy farms (Cloutier and Rowley 1993; Reinhard et al. 1999;

Jaforullah and Whiteman 1999; Hansson and Öhlmér 2008), sheep farms (Gaspar

et al. 2008; Ripoll-Bosch et al. 2012; Theodoridis et al. 2012), and extensive

livestock farming (Gaspar et al. 2009), but fewer for sow farms (Galanopoulos

et al. 2006). Moreover, hardly any economic studies have been undertaken on

Spanish swine farms, which is strange given the importance of the sector in Spain.

Pig farming in Spain could be divided into three different phases according to

final product and different economic activities. The first one relates to farms

producing piglets (FPP), the second one to producing feeder pigs, and the third

one to producing fattened pigs. Integrators own more than one sow farm and also

several rearing and fattening farms. However, it is common to host the second

phase in a sow farm generating two types of sow farms: those producing piglets or

producing feeder pigs. Less and less common are the farrowing-to-finish farms

embracing all the phases. The foundation of the economic activity relies on good

herd management practices in sow farms which are much more complicated

compared to the management of the other pig farms (Rodriguez et al. 2014).

In this context it is reasonable that companies owning several sow farms are

wondering about the efficiency of their farms and detecting the ones more efficient

to be taken as a reference. Hence, for the purposes of this study, we consider a sow

farm to be a farm that houses sows and that produce as output either weaned piglets

or feeder pigs. Inputs include reproductive sows, concentrates and labour, etc.

Different farms tend to organise their operations in different ways, so consequently

values for individual outputs will also tend to differ, even if they are integrated

under the same company. There is, therefore, a special interest in comparing

different sow farms and highlighting efficient practices, in order to identify a

best-practice sow farm group. This group of farms could then be used as a point

of reference for less efficient units and for benchmarking performance. As observed

by Weersink et al. (1990), identifying possibilities for improving efficiency should

help to enhance the profitability of farms and make the pig industry more compet-

itive. The existence of an official record keeping system (the BD-porc® 2013),

which registers the main controllable variables on a Spanish farm, allows us to

select the inputs and outputs registered by farm basis to calculate efficiency and

perform subsequent improvements.

The simplest way of measuring technical efficiency, the pure relationship

between input and output as such, is often inadequate due to the existence of

multiple inputs and outputs relating to different resources, activities, and environ-

mental factors. A variety of techniques have been proposed to study the efficiency

overcoming this inconvenience. For instance, the measurement of relative effi-

ciency where there are multiple possibly incommensurate inputs and outputs was

early addressed by Farrell (1957) and developed by others in the 1960s and early

1970s. The method is focusing on the construction of a hypothetical efficiency

frontier of a firm to compute efficiency measures relative to this reference firm.

Most of the papers related to the measurement of productive efficiency have based

their analysis either on parametric or non-parametric methods. The choice of

estimation method has been an issue of debate, and some researchers prefer
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parametric approach (e.g. Berger 1993) and other the non-parametric approach

(Banker et al. 2004). Parametric frontier functions require the definition of a

specific functional form for the function of production, meanwhile DEA does not

distinguish between technical efficiency and statistical noise effects avoiding the

need to assume functional relationship between inputs and outputs. The aim of this

chapter is to analyse the technical efficiency of Spanish sow farms comparing

parametric and non-parametric approaches. In addition, several technical indexes

used regularly for sow herd management will be explored as explanatory variables

for efficiency scores. Therefore, the present chapter is structured as follows; in the

next section an overview of both approaches is presented. Sow farm data used in

this analysis are presented in Sect. 14.3. This is followed by some results and

conclusions, in Sects. 14.4 and 14.5, respectively. Finally, the chapter concludes

with a brief outlook of the subject in Sect. 14.6.

14.2 Methodology

14.2.1 Parametric Approach

The parametric approach requires the definition of a specific functional form for the

technology and for the inefficiency error term, using mathematical programming or

econometric techniques. It can be subdivided into deterministic and stochastic

models. Deterministic models envelope all the observations, identifying the dis-

tance between the observed production and the maximum functions, defined by the

frontier and the available technology, as technical inefficiency. On the other hand,

stochastic approaches allow distinguishing between technical efficiency and statis-

tical noise.

Farrell (1957) suggested the use of functional forms in the estimation of pro-

duction functions. Aigner and Chu (1968) were the first ones to estimate a para-

metric frontier, adjusting a Cobb–Douglass function and imposing the

non-negativity of the error terms. The model was:

Yi ¼ αþ
Xr
j¼1

βjXj, i þ Vi � Ui ð14:1Þ

where i¼ 1, . . .,N indicates the units and j¼ 1, . . ., r indicates de inputs,Yi is output of
the ith firm, Xj,i are productive factors used by the ith firm, β is a vector of parameters

to be estimated, and Vi�Ui is the composed error term where Vi represents random-

ness (or statistical noise) and Ui represents technical efficiency. Vi are assumed to be

independently and identically distributed N(0, σ2i ) random errors, independent of Ui,

and Ui are non-negative random variables associated with technical inefficiency

production, which are assumed to be independent and identically distributes

and truncates (at zero) the normal distribution with mean, μ and variance σ2u.
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It allows the definition of the likelihood functions and it gets estimators for β and

variance parameters, σ2 ¼ σ2v þ σ2u and γ ¼ σ2u=σ
2. Subtracting Vi from both sides of

(14.1) yields

eYi ¼ Yi � Vi ¼ αþ
Xr
k¼1

βkXk, i � Ui ð14:2Þ

where eYi is the observed output of the ith firm adjusted for the stochastic noise

captured. For a given level of output eYi, the technically efficiency input vector

for the ith firm, Xt
i is derived by simultaneously solving (14.2) and the input ratios

X1/Xi¼Ki (i> 1), where Ki is the ratio-observed inputs X1 and Xi.

The measures of technical efficiency relative to the production frontier are

defined as:

EFFi ¼ E Y*
i

��Ui,Xi

� �
=E Y*

i

��Ui ¼ 0,Xi

� � ð14:3Þ

where Y�i is the production of the ith firm, whichwill be equal toYiwhen the dependent
variable is in original units and will be equal to exp(Yi) when the dependent variable
is in logs. EFFi will take a value between zero and one. The efficiency measures can

be shown to be defined as (Jondrow et al. 1982; Battese and Coelli 1988):

Logged dependent variable Efficiency (EFFi)

Yes exp(�Ui)

No xiβ � Uið Þ=xiβ

14.2.2 Non-parametric Approach

Non-parametric approach doesn’t require the specification of any particular

functional form to describe the efficient frontier. In these circumstances, suppose

that we have observations of n farms, each one transforming inputs into m outputs,

efficiency of a target farm j can be expressed as:

rEj ¼
a1y1j þ a2y2j þ � � � þ amymj
u1x1j þ u2x2j þ � � � þ usxsj

¼ AT � yj
UT � xj

ð14:4Þ

where

rEj is the relative efficiency for farm j
ai is the weight given to output i, i¼ 1, 2, . . ., m
yij is the amount of output i from farm j
ui is the weight of input i from farm j, i¼ 1, 2, . . .,s
xij is the amount of input i from farm j
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The initial assumption is that this measure of efficiency requires a common set

of weights to be applied across all sow farms. This immediately raises the problem

of how such an agreed common set of weights can be obtained. It could be possible

that a farm might value inputs and outputs differently and therefore adopt different

weights, and consequently each farm should be allowed to adopt a set of weights

which shows it in the most favourable light in comparison to the other farms. In that

case relative efficiency of farm j respect to the set of k farms can be obtained by

solving the following model:

maximise rEj ¼
AT � yj
UT � xj

subject to :
AT � yk
UT � xk

� 1; k ¼ 1, . . . , n

ð14:5Þ

where k represents the total number of farms involved in the analysis and the

weights, a’s and u’s components of the vectors A and U, are treated as the decision

variables of the problem. They could be constrained to be greater than or equal to

some small positive quantity in order to avoid any input or output being totally

ignored in determining the efficiency. The solution produces the weights most

favourable to farm j and also produces a measure of efficiency, rEj. If rEj¼ 1

then farm j is efficient relative to the others, but if rEj turns out to be less than l

then some other farm is more efficient than farm j, even when the weights are

chosen to maximise efficiency of farm j. These farms constitute the peer group for

farm j. A peer group is a group of efficient farms that act as a reference for an

inefficient one. Thus, an inefficient farm can identify and eliminate their less

efficient practices by comparing to its peer group.

The model presented is a fractional linear program with infinite solutions when

there exist. To solve the model, it is first necessary to convert it into an equivalent

linear form as Charnes et al. (1978) proposed. They were the first to develop the

DEA approach based on the concept of technical efficiency of Farrell (1957).

Hence, DEA is a linear programming technique that converts multiple inputs and

outputs into a scalar measure of efficiency and it is extensively used in Economics

and Operations Research (Seiford 1996). The transformation of (14.5) into a linear

model provides (Charnes et al. 1978):

maximise AT � yj
subject to : AT � yj � UT � xk � 0; k ¼ 1, . . . , n

UT � xk ¼ 1

A,U � 0

ð14:6Þ

About the linear transformation applied in (14.5), we can remark that in

maximising a fraction or ratio it is the relative magnitude of the numerator and
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denominator that are of interest and not their individual values. It is thus possible to

achieve the same effect by setting the denominator equal to a constant and

maximising the numerator.

For linear programs in general the more constraints the more difficult a problem

is to solve. Hence, the dual DEA model involves fewer constraints and uses to be

simpler than primal and it is usual to solve it rather than the primal. Following

mathematical formulation corresponds to the dual model of the linear version of

(14.6). Let ηj be the output-oriented efficiency associated to farm j. Let Y¼ (yj) be
an (m� n) matrix of outputs for n Spanish sow farms with yj representing the

(m� 1) vector of outputs for the jth farm. Let X¼ (xj) be an (s� n) matrix of inputs

with xj representing the (s� 1) vector of inputs for the jth farm and μ an (n� 1)

vector of weights to be defined. The linear version of the model is as follows:

ηj ¼ maxη,μ 1 0T
n

� � η

μ

 !

subject to :
0m �X

�yj Y

 !
η

μ

 !
� �xj

0s

 !
η, μ � 0

ð14:7Þ

which assumes the existence of constant returns to scale (CRS). This assumption of

the original model may be relaxed following Banker et al. (1984) by adding any of

the constraints
X

μi ¼ 1 for variable returns to scale (VRS) or
X

μi � 1 for

non-decreasing returns to scale (NDRS) (Banker et al. 1984; Färe et al. 1985;

Lovell 1994). Apart from output-oriented relative technical efficiency measure

defined as in (14.7), input-oriented measures can be also obtained:

θj ¼ minθ,λ 1 0T
n

� � θ

λ

 !

subject to :
0s Y

xj �X

 !
θ

λ

 !
� yj

0m

 !
θ, λ � 0

ð14:8Þ

where θj represents the input-oriented efficiency associated to farm j and (14.8)

assumes the existence of CRS. This assumption of the original model may be

relaxed like in (14.7) by adding any of the constraints
X

μi ¼ 1 for VRS or
X

μi
� 1 for non-increasing returns to scale (NIRS). Input-oriented measures of ineffi-

ciency measure the potential reduction in inputs holding outputs constant. Alterna-

tively, output-oriented measures of inefficiency measure the potential increase of

outputs, holding inputs constant. We understand inefficiency as the complementary

to one of the efficiency. Efficiencies are usually expressed in percentage terms.
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In this work we will focus on input-oriented measures, then the θ represents a

proportional reduction in all inputs (0� θ� 1) and θj is the minimum value of θ for
farm j. Maximum value for θ is one and represents the farm operating at best-

practice (given the existing set of observations). We will consider θcj , θ
v
j and θnj

solutions for DEA models assuming CRS, VRS, and NIRS, respectively.

There are different methods of testing a farm’s return to scale nature (Banker

et al. 1984; Färe et al. 1985; Seiford and Zhu 1999). We will use the scale efficiency

index method provided by Färe et al. (1985) because it is robust and simple. We

assume no inefficiency due to input congestion, i.e. farms are subject to strong input

disposability. The scale efficiency index measure for farm j can be calculated as:

Sj ¼ θ c
j =θ

v
j ð14:9Þ

If the value of the ratio is equal to unity, then farm j is scale-efficient. This means

that the farm is operating at its optimum size and hence the productivity of inputs

cannot be improved by increasing or decreasing the size of the sow farm. The VRS

model ensures that a farm is only compared to other farms of a similar size (Fraser

and Cordina 1999).

If not and θ c
j ¼ θ n

j , then the results suggest that scale inefficiency is due to

increasing returns to scale. This means that the farmer can improve the productivity

of inputs by increasing the farm size. Or whenθ c
j < θ n

j , the results suggest that scale

inefficiency is due to decreasing returns to scale. This means that the farm is bigger

than its optimum size.

14.2.3 Explanatory Variables

Following the two-step approach (Coelli 1998), different explanatory variables

were proposed to estimate inefficiency scores. First estimates of relative efficien-

cies using the inputs and outputs are calculated. Second the effect of different

variables on efficiency is analysed. Apart from all the inputs and output, other

exogenous variables as piglet mortality, culling rate, litter size, piglets alive, and

farrowings per sow per year were considered. Since the inefficiency scores are

censored, values between zero and one, a Tobit model is proposed:

Ineff*k ¼ αþ βzk þ εk

Ineffk ¼
Ineff*k if Ineff*k > 0

0 otherwise

8<:
where Ineff�k represents the latent variable related to the inefficiency scores and is a
dependent variable not censored. Ineffk is the censored variable defined by the DEA
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efficiency scores; z is a vector of independent explanatory variables related to the

k-farm, α is the constant term; β is the vector of parameters to be estimated and ε is
the statistical noise, normally distributed with mean zero.

14.3 Sow Farm Data

An initial sample of 193 sow farms from the north-east of Spain was considered.

It is the main pig-producing area of Spain (around 2 % of the national surface area

concentrates 15 % of total national production). The farms belonged to the same pig

supply chain and data is recorded in the main swine data bank of Spain (BD-porc®),

which is promoting a new extension program to encourage pig industry economists

to complement economic analysis with efficiency studies. The farms were classified

into two groups according to their final product: piglets or feeder pig. Homogeneity

was considered from the perspective of both sow farms (belonging to the same

company) and the common environment. This meant that observed differences in

technical efficiency would be the result of managerial ability. A filtering process

was performed, and several farms were rejected because of problems associated

with previous healthcare problems (e.g. classical swine fever and Aujersky dis-

ease), different production systems, geographical situation, and recent initiation in

the activity or outliers detected by statistical analysis. If a farm reported unreason-

able values, or values more than two standard deviations from the mean, it was

eliminated from the data set. Hadi’s (1992, 1994) method for identifying and

removing multiple outliers was also used. Hence, only 96 farms from the initial

sample were finally considered. The reasons for rejecting the other 97 farms were:

incomplete economic data (64), inconsistencies in data (9) and outliers (24). The

farms used in the study included 45 producing piglets (average weight 5.8 kg per

piglet sold) and 51 producing feeder pigs (average weight 18.7 kg per feeder pig

sold), respectively. Data relating to these farms are shown in Tables 14.1 and 14.2.

The period analysed was 1st January to 31st December 2006.

The choice of variables was constrained by the availability of data registered

with the BD-porc® data-bank, economic data provided by the company, and

Table 14.1 Summary of variables for DMUs producing FPP

Variables Mean SD Median Minimum Maximum

Output (t) {O} 63.96 28.65 56.42 23.03 141.61

Labour (#) {I} 2.374 1.10 2.12 0.77 5.23

# Sows {I} 520.99 242.24 420.26 174.15 1,131.60

Feed (t) {I} 554.68 242.98 492.42 161.96 1,189.45

Veterinary (€) {I} 397.44 221.66 308.60 127.12 981.12

Expenses (€) {I} 10,657 4,874 9,290 3,349 22,501

FeedWP (kg) {I} 108.90 71.95 88.81 20.72 292.65

AI (#) {I} 3,911 1,755 3,318 1,609 8,344
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protocols suggested by Dyson et al. (2001) for avoiding pitfalls in the use of DEA.

It was assumed that sow farms produced one output: weaned piglets or feeder pigs.

The two outputs are different in age and weight. Weaned piglets are from 3 to

4 weeks old with a weight of around 7 kg, while feeder pigs are from 4 to 6 weeks

older and weighting between 15 and 20 kg. Depending on the activity, seven or

eight inputs were considered: labour working in the farm, both salaried and family

workers, average number of breeding sows, feed consumed by sows, veterinary

expenses, other expenses (water, fuel, electricity, repairs, etc.), feed consumed by

piglets (FeedWP) and/or feeder pigs (FeedS), and number of inseminations (AI).

It was difficult to measure labour because the registered data was not introduced in

the same way for all farms. Labour was therefore expressed in terms of equivalent

workers (1,920 h/year). Tables 14.1 and 14.2 summarise statistics on inputs and

outputs for each group of farms considered. Sow FPP produced more units,

i.e. piglets, than farms producing feeder pigs (FPFP). The size of the farm, in

terms of its number of sows, was also bigger. This seems logical considering both

the shorter productive cycle for FPP and the greater value per unit produced by the

second as opposed to the first group. Data presented in Tables 14.1 and 14.2 make

it possible to calculate several sow-related ratios. Some of these ratios are similar

for both groups of farms, for instance kg of feed consumed per sow (1,065 kg for

FPP and 1,080 kg for FPFP) and the number of inseminations per sow (7.51 for FPP

and 7.52 for FPFP).

However, other ratios calculated from Tables 14.1 and 14.2 revealed differences

between the two groups and were more useful for characterising piglet and feeder

pig production. For instance, the output produced for each type of farm (112 kg

vs. 364 kg), feed consumed by suckling piglets (109 kg vs. 589 kg), or the

veterinary expenses per sow or per unit produced (0.76€ vs. 1.67€) were also

greater for producers of feeder pigs than piglets. All of these reveal that the longer

productive cycle and lifespan of feeder pigs imply an increase in both feed

consumption and veterinary expenses by young pigs respect to farms producing

only piglets. In addition, the average size of farms (571 vs. 301) was different, being

farms producing piglets bigger than those producing feeder pigs.

Table 14.2 Summary of variables for DMUs producing feeder pigs

Variables Mean SD Median Minimum Maximum

Output (t) {O} 109.71 63.23 89.11 31.81 321.65

Labour (#) {I} 1.36 0.79 1.12 0.36 3.95

# Sows {I} 301.43 176.23 248.58 81.08 885.58

Feed (t) {I} 325.01 190.92 264.18 79.56 923.601

Veterinary (€) {I} 501.70 274.98 444.93 141.93 1,433.09

Expenses (€) {I} 9,463 5,466 7,494 2,662 27,825

FeedS (kg) {I} 5,830 3,575 4,575 1,352 18,497

FeedWP (kg) {I} 588.71 345.19 493.22 0.00 1,627.14

AI (#) {I} 2,262 1,466 1,812 361 7,950
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14.4 Empirical Results and Discussion

14.4.1 Parametric Approach

The maximum likelihood estimated of the parameters of the stochastic production

frontier was obtained for feeder pigs and weaned piglets using the program,

FRONTIER 4.1 (2013). The stochastic frontier production for the cross-section of

feeder pigs and weaned piglets is specified as follows:

For weaned piglets:

ln Outputi ¼ β0 þ β1ln Labouri þ β2 ln Sowsi þ β3 ln Feedi

þ β4 ln Veterinaryi þ β5ln Expensesi þ β6ln FeedWPi þ β7ln AIi

þ Vi � Ui

For feeder pigs:

ln Outputi ¼ β0 þ β1 ln Labouri þ β2 ln Sowsi þ β3 ln Feedi

þ β4 ln Veterinaryi þ β5 ln Expensesi þ β6 ln FeedWPi þ β7 ln AIi

þ β8 ln FeedSi þ Vi � Ui

where i refers to the ith DMU in the sample; and Vi and Ui are the random

variables as defined in Sect. 14.2. The variance parameters were estimated in

terms of σ2 ¼ σ2v þ σ2u and γ ¼ σ2u=σ
2.

A Cobb–Douglas production function with the forward-selection technique and

the stepwise method using PROC REG of SAS was estimated for each group of

farms (Table 14.3). The estimated regression coefficients for input variables were

Table 14.3 Estimated

Cobb–Douglas

production frontiers
Estimates

FPP FPFP

Value SE Value SE

β0 0.53 1.00 4.46 2.27

β1 – – – –

β2 0.13 1.00 0.58 0.36

β3 �0.49 1.00 0.18 0.32

β4 – – 0.18 0.55

β5 0.20 1.0 – –

β6 – – – –

β7 �0.10 1.0 – –

β8 – – – –

Σ 0.0064 1.0 0.0360 0.0100

Γ 0.0500 1.0 0.9190** 0.0860

Log (likelihood) 50.189** 37.4630**

**Significant at the 5 % level
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different depending on the activity analysed and not significant (at the 5 % level) in

any case. However, parameter γ was not significantly different from zero for FPP

(i.e. the inefficiency effects are not significant in determining the level and vari-

ability of the output) and significant for FPFP (at the 5 % level).

The parameters βi represent the elasticity of output with respect to each input i.
For instance, those with the greatest elasticity were number of sows (FPP) and feed

consumption of sows (FPFP). These results are meaningful because both variables

are important components in the production cost of piglets. However, the signs of the

slope coefficients in FPP had different signs, positive and negative mixed.

In particular, the sign of the slope coefficients of β3 (Feed) was not consistent:

negative for FPP and positive for FPFP. Finally, the Log (likelihood) was significant

at the 5 % level in both groups of farms and so there is a significant relationship

between the dependent variable and the set of independent variables. These results

revealed the existence of different production functions for each group of sow farms.

Once the production function was estimated, the technical efficiency for each farm

was calculated. Some statistics of the estimated technical efficiencies are presented in

Table 14.4. The mean technical efficiency estimated was 0.98577 and 0.87198 for

weaned piglets and feeder pigs, respectively. The main implication of these results is

that the set of farms analysed are very efficient, being on average FPP more efficient

than FPFP. Surprisingly, the efficiency of FPP is very high, with a capability of less

than a 2%of technical efficiency improvement andwith a low standard deviation. The

fact that FPFP are less efficient than FPP can be interpreted as production in FPP is

more complicated, controlled, and delicate than in FPFP.A reason for that is the longer

production cycle deployed in FPFP, introducing variability in the final output as

revealed the higher coefficient of variability (0.45 vs. 0.58) in FPFP. On the other

hand, this situationmay partially explain the bad estimates of the stochastic production

frontier for FPP and suspecting of problems related to multicolinearity.

14.4.2 Non-parametric Approach

As stated before, the solution to the DEA model (14.8) provides a measure of the

relative efficiency of each DMU and the weights leading to the efficiency. To solve

the different DEA models, the DEAP software was utilised (Coelli 1996). The CRS,

VRS, NIRS, and scale (Scale) input-oriented DEA frontiers were estimated for the

same number of farms as for the stochastic frontier depending on the final product:

total weight of weaned piglets or feeder pigs. This meant solving three linear

Table 14.4 Frequency

distributions of technical

efficiency estimates from the

stochastic frontier method

Efficiency score FPP Efficiency score FPFP

Mean 0.9858 Mean 0.8720

Minimum 0.9820 Minimum 0.5970

Maximum 0.9890 Maximum 0.9745

Standard deviation 0.0015 Standard deviation 0.0797
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mathematical programs for every farm. The scale efficiency for every farm was

obtained by (14.9). The summarised statistics for the four estimated measures for

the two groups of farms are presented in Table 14.5.

In both cases the average efficiency index is very high showing a strong market

competition in agreement with the trend observed from the parametric approach

similar to other European studies. For instance, the average efficiency under CRS

and VRS is very similar to the figures reported by Lansink and Reinhard (2004) in

the Netherlands, but slightly higher than those reported by Galanopoulos

et al. (2006) in Greece or Sharma et al. (1999) in Hawaii. However, the stochastic

frontier and DEA approach showed similar values, though with lower minimum

values in the DEA approach which derived in different standard deviations. As the

DEA approach is not stochastic, it interprets noise as inefficiency and so we can

consider the different estimates consistent. This comparison agrees with the find-

ings of Sharma et al. (1999) who obtained similar conclusions from both

approaches. Furthermore, Banker et al. (2004) considered DEA-based estimator

of efficient input better than stochastic-based ones even under heteroscedasticity.

The mean efficiencies for the VRS, CRS, NIRS, and Scale DEA frontiers range

from 0.88681 to 0.97427. Thus, the DEA analyses reveal substantial productive

efficiency in all the cases.

Summarising apart the number of relative efficient and inefficient farms

(Tables 14.6 and 14.7), we observe the mean technical inefficiency is quite high

Table 14.5 Statistics of DEA models

FPP FPFP

Mean SD Minimum Mean SD Minimum

CRS 0.8903 0.0870 0.7143 0.88681 0.10793 0.5355

VRS 0.93320 0.0744 0.7473 0.91066 0.10595 0.5370

NIRS 0.9009 0.0858 0.7143 0.89934 0.10832 0.5370

Scale 0.9546 0.0590 0.7143 0.97427 0.04103 0.7687

Table 14.6 Summary of relative efficiency (CRS and VRS) for FPP

Variables

CRS VRS

Efficients Inefficients Efficients Inefficients

Mean 1.00 0.86 1.00 0.89

% farms 17.77 % 82.23 % 40.00 % 60.00 %

Labour{I} 2.41 2.36 2.35 2.38

Sows{I} 535.64 517.82 520.20 521.52

Feed{I} 565.67 552.31 543.58 562.08

Veterinary{I} 347.79 408.17 370.65 415.30

Expenses{I} 10,473 21,631 10,366 10,850

FeedWP{I} 82.31 114.65 86.41 123.90

AI{I} 3,610 4,976 3,671 4,072

Output{O} 71.17 82.32 66.23 62.44
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in both FPP (0.86 and 0.89) and FPFP (0.85 and 0.86) under CRS and VRS

assumptions. The percentage of efficient DMUs producing feeder pigs under the

CRS (25.49 %) is greater than the percentage in producing weaned piglets

(17.77 %). In terms of the VRS model the percentage of efficient DMUs producing

weaned piglets (40.00 %) is greater than the percentage in feeder pigs (35.29 %).

For comparison reasons, we have also included in Tables 14.6 and 14.7 the average

inputs and output of efficient and inefficient farms under CRS and VRS. The

comparison of efficient and inefficient farms within each group has no clear

outcome. It seems reasonable that the results of inefficient FPP under VRS and

FPFP under CRS with more inputs produce less output with respect to efficient

farms. More difficult to explain is the behaviour of the other inefficiencies like FPP

under CRS where a reduction in several inputs leads to an increment in output, but

maybe the noticeable increment of expenses (from 10,474 to 21,631) in this group

of farms compromises the efficiency. On the other hand, inefficient FPFP under

VRS exhibit less input in general (only FeedWP increases) and less output than

corresponding efficient FPFP under VRS.

Table 14.8 presents the scale efficiency scores complementing the mean scaled

efficiency showed in Table 14.5 (0.95 for FPP and 0.97 for FPFP). Although

previous mean values implied that the average size of farms is not far from the

optimal size, most of the farms are characterised by increasing returns to scale

(58 % of FPP farms and 45 % of FPFP). According to the efficiency analysis theory,

these farms are small farms and efficiency gains would be expected by increasing

the size and achieving cost savings, assuming no other constraining factor. Again,

the variability in FPFP is higher than those in FPP as shown in Table 14.8. Lansink

and Reinhard (2004) reported similar scale efficiency for pig farms in the Nether-

lands, while Galanopoulos et al. (2006) presented lower scores for Greek farms.

Table 14.7 Summary of relative efficiency (CRS and VRS) for FPFP

Variables

CRS VRS

Efficients Inefficients Efficients Inefficients

Mean 1.00 0.85 1.00 0.86

% farms 25.49 % 74.51 % 35.29 % 64.71 %

Labour{I} 1.27 1.40 1.51 1.29

Sows{I} 280.60 308.56 333.31 284.05

Feed{I} 309.11 330.44 359.51 306.19

Veterinary{I} 400.41 536.34 484.13 511.28

Expenses{I} 8,589 9,762 10,284 9,016

FeedS{I} 5,440 5,963 6,573 5,425

FeedWP{I} 459.99 632.75 568.22 599.89

AI{I} 2,005 2,350 2,409 2,182

Output{O} 114.26 108.15 129.77 98.77
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To discuss further the possible link between efficiency and input variables

depending on the production level of the DMU, and also to draw an approach to the

relationship between efficiency and optimal dimension, we have considered four

groups of DMUs by production level (i.e. output). In Tables 14.9 and 14.10 we

summarise these results by group. Differences in efficiency by output do not seem

Table 14.8 Optimal, sub-optimal, and super-optimal distribution of DMUs producing weaned

piglets and feeder pigs

Sow farm Scale efficiency N %

Output

Mean SD CV

FPP Sub-optimal 26 57.78 46.14 12.95 0.28

Supra-optimal 11 24.44 100.83 23.00 0.23

Optimal 8 17.78 71.17 17.04 0.24

FPFP Sub-optimal 23 45.09 74.77 23.75 0.32

Supra-optimal 14 27.45 165.60 69.68 0.42

Optimal 14 27.45 111.21 58.00 0.52

Table 14.9 Technical efficiency for FPP by output

Output

<44.00 44.00–56.40 56.41–78.70 >78.70

Number DMUs 11 11 12 11

Labour{I} 1.32 1.74 2.42 3.99

Sows{I} 285.10 386.68 531.95 879.23

Feed{I} 307.57 414.37 583.76 910.38

Veterinary{I} 258.86 262.24 404.07 663.97

Expenses{I} 6,008 7,743 11,144 17,689

FeedWP{I} 76.41 113.54 110.07 135.48

AI{I} 2,329 2,828 4,127 6,342

Scale (mean) 0.89 0.98 0.99 0.96

Table 14.10 Technical efficiency for FPFP by Output

Output

<67.35 67.35–89.11 89.12–138.47 >138.47

Number DMUs 14 12 12 13

Labour{I} 0.67 0.99 1.40 2.43

Sows{I} 148.26 217.33 305.98 539.83

Feed{I} 156.24 230.64 337.57 582.27

Veterinary{I} 275.33 400.16 598.68 749.68

Expenses{I} 4,767 6,721 9,565 16,957

FeedWP{I} 303.02 455.12 579.31 1,028.38

FeedS(I) 2,843 4,211 5,570 10,781

AI{I} 998 1,653 2,215 4,232

Scale (mean) 0.97 0.99 0.99 0.96
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very important in any of both groups of DMUs. The results are similar to those

reported by Sharma et al. (1999). Medium-size farms (532 sows in FPP and

306 sows in FPFP) were more scale-efficient, but with small differences. Small FPP

are the least scale-efficient showing a remarkable difference according to the rest of

scores, so we can assert the size of a farm plays a more important role in FPP than in

FPFP regarding the scale efficiency. Most of the DMUs are characterised by increas-

ing returns to scale. However, the results differ with respect to returns to scales

properties with Sharma et al. (1997).

As Galanopoulos et al. (2006) recognise, the DEA analysis can neither fully

explain the underlying differences in efficiencies in the use of a particular input, nor

assess the constraints to changes in operational practices that would improve

efficiency. In part this is why we considered in the next section additional explan-

atory variables to explain variations in efficiency scores and identifying places to

make improvements in pig production systems.

14.4.3 Explanatory Variables

To explain some variations the inefficiency scores were regressed on the

DMU-level characteristics, using a Tobit model, since the inefficiencies vary

from zero to unity. The objective is to identify the common features in the most

efficient farms. Authors as Hansson and Öhlmér (2008) had used the same approach

to investigate how operational managerial practices can contribute to improved

dairy farm efficiency. Apart from the input–output variables already considered,

additional variables selected by livestock experts from Bdporc databank were

included in the analysis to explain variations in efficiency scores. These five

exogenous variables are: piglet mortality, culling rate, litter size, piglets alive,

and farrowings per sow per year. Some other different explanatory variables related

to Greek managerial practices had been considered by Galanopoulos et al. (2006) in

a similar analysis. The inefficiency scores were regressed on these 14 variables

(inputs + output + exogenous) and are presented in Tables 14.11 and 14.12. For the

results presented, the independent variable is the inefficiency score, so a positive

(negative) sign of a coefficient reflects a negative (positive) effect on efficiency

levels. Recall that the estimated coefficients in Tobit regression models do not have

a direct interpretation as a true marginal effect, but rather a two-scale effect: effect

on the mean of the dependent variable and on the probability of the dependent

variable being observed.

The Tobit results for FPP (Table 14.11) and FPFP (Table 14.12) indicate that no

exogenous variable related to technical indexes considered in the analysis was

significant explaining the inefficiencies of farms. Only the output, the size of the

farm (Sows), the feed consumption of sows (Feed), suckling piglets (FeedWP), and

the number of artificial inseminations (AI) are significant. As expected, Output has

negative effects on inefficiency scores, while Sows has positive effects. In a similar

study, Galanopoulos et al. (2006) found that several managerial practices such as
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Table 14.12 Tobit model of FPFP

CRS VRS

Variables Estimate SE Variables Estimate SE

Intercept 0.6297 0.2661 Intercept 0.3812 0.3594

Output** �0.0000 0.0000 Output** �0.0000 0.0000

Labour �0.0004 0.0013 Labour 0.0012 0.0017

Sows 0.0024 0.0015 Sows �0.0002 0.0020

Feed �0.0000 0.0000 Feed �0.0000 0.0000

Veterinary 0.0001 0.0001 Veterinary 0.0002 0.0001

Expenses �0.0000 0.0000 Expenses �0.0000 0.0000

FeedWP 0.0001 0.0001 FeedWP 0.0001 0.0001

AI** 0.0000 0.0000 AI** 0.0001 0.0000

FeedS** 0.0000 0.0000 FeedS 0.0000 0.0000

Piglet mortality 0.0014 0.0032 Piglet mortality �0.0020 0.0046

Culling rate �0.0008 0.0007 Culling rate �0.0011 0.0010

Litter size 0.0492 0.0372 Litter size �0.0088 0.0524

Piglets alive �0.0739 0.0426 Piglets alive �0.0123 0.0590

Farrowings pspy �0.1305 0.0875 Farrowings pspy 0.0056 0.1188

Estimated parameters for CRS and VRS inefficiencies (14 variables)

**Significant coefficients at the 5 % level

Table 14.11 Tobit model of FPP

CRS VRS

Variables Estimate SE Variables Estimate SE

Intercept 0.7675 0.2359 Intercept �0.6335 0.3349

Output** �0.0000 0.0000 Output** �0.0000 0.0000

Labour �0.0005 0.0004 Labour �0.0009 0.0007

Sows** 0.0010 0.0005 Sows 0.0014 0.0007

Feed 0.0000 0.0000 Feed** 0.0000 0.0000

Veterinary �0.0000 0.0001 Veterinary �0.0001 0.0001

Expenses 0.0000 0.0000 Expenses �0.0000 0.0000

FeedWP** 0.0002 0.0001 FeedWP** 0.0006 0.0001

AI** 0.0000 0.0000 AI** 0.0001 0.0000

FeedS �0.0045 0.0093 FeedS �0.0281 0.0145

Piglet mortality 0.0034 0.0032 Piglet mortality �0.0043 0.0050

Culling rate 0.0006 0.0004 Culling rate 0.0008 0.0006

Litter size �0.0113 0.0265 Litter size 0.0240 0.0400

Piglets alive �0.0614 0.0332 Piglets alive 0.0036 0.0494

Farrowings pspy 0.0229 0.0552 Farrowings pspy 0.1495 0.0836

Estimated parameters for CRS and VRS inefficiencies (14 variables)

**Significant coefficients at the 5 % level

322 X. Ezcurra and L.M. Pl�a-Aragonés



insemination method, origin of genotype, and how the feed was prepared signifi-

cantly influenced the technical efficiency of Greek pig farms. Although we didn’t

consider genotype because it was the same for all farms belonging to the same

company and AI and Feed were considered as inputs, these variables showed

similar significant influence on the efficiency of farms.

The results for FPFP (Table 14.12), only the output, the number of inseminations

(AI), and the feed consumed by feeder pigs (FeedS), were significant. That is, less

variables than for FPP. However, again, as expected, output had negative effects on

inefficiency scores, while AI and FeedS had positive effects under CRS. Under

VRS only output and AI were significant. Overall, in terms of signs of the regres-

sion coefficients, these results are quite consistent for both activities (FPP and

FPFP). However, it seems a little bit strange to observe some negative signs

pointing out interesting conclusions. For instance, under VRS the effect of piglet

mortality is negative either in FPP or FPFP. From the analysis of these specific

farms, it is not mortality itself which explains inefficiency, but a higher prolificity

correlated to more efficient farms and hence more susceptible to suffering more

casualties of piglets. Even though the different signs shown by litter size and piglets

alive in FPP and FPFP suggest again the importance of litter size in FPP to produce

many piglets, but perhaps, larger litter sizes are not so suitable for FPFP. Less

piglets, but weightier, might be more interesting and profitable for FPFP. This

argument can be reinforced observing the sign of the culling rate that also differs

between FPP and FPFP. In FPP inefficiency is associated with higher culling rates,

while in FPFP it is in the contrary. This agrees with the general idea of managers

about high culling rates in FPP with younger sows, more productive in the number

of piglets than older populations, putting the emphasis more on the quantity than the

quality of piglets.

The fact that artificial insemination appeared as significant in all the analyses

may suggest the importance of the reproductive performance in the technical

efficiency of sow farms, either producing piglets or feeder pigs, regardless of the

number of sow or the feed consumption of concentrates in many cases. The

importance of artificial insemination as explanatory variable was already detected

by Galanopoulos et al. (2006).

14.5 Conclusions

Pig farming is a biological activity with many uncertainties, so in view of efficiency

measurements the choice of stochastic frontier analysis allowing for a correction of

stochastic events would seem obvious. However, the parametric specification of the

production technology can be problematic and may not always provide suitable

results and are more difficult to interpret as we have shown. For example, the results

for the stochastic frontier production function for feeder pigs and weaned piglets

exhibit problems related to multicolinearity. However, the observed trends of
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technical efficiencies calculated from the parametric approach were consistent with

those calculated with the non-parametric method for the same set of DMUs.

The sow farms analysed were highly technically efficient, FPP being slightly

more efficient than FPFP. With respect to scale efficiency, scores were also high,

FPFP being more scale-efficient than FPP. However, the important percentage of

farms operating at below their optimal scales suggests that the current trend towards

larger farm sizes could have a beneficial impact upon the efficiency of sow farms

(either they produce piglets or feeder pigs) in future. Considering that current levels

of efficiency are already quite high, a lot of effort is expected to achieve further

improvements. Mean technical efficiency and the percentages of efficient DMUs

are higher in this study compared with other published results. This fact can suggest

a more homogeneous and competitive DMUs in the Spanish context dominated by

vertically integrated companies. On the other hand, it has been seen how the

increase of number of inseminations leads to a higher level of technical efficiency.

The strength of the DEA methodology lies in the fact that it focuses on individ-

ual farms (microeconomic agents) and can be used by advisers, specialist, or

extension service agents to promote and diffuse best practices in farm management.

It may therefore facilitate local action to combat relative inefficiency and become

an important feature of programmes aimed at raising overall performance standards

in the pig farming sector.

The computational and interpretative simplicity of DEA face stochastic methods

make it a practical tool for individual agents such as small companies. Furthermore,

the structure of the Spanish pig sector, with production concentrated in a relatively

small number of companies and cooperatives, may benefit from such efficiency

studies. However, DEA analysis should be only considered a starting point for

identifying places to make improvements in farm production rather than an ending

point.

14.6 Outlook

Although it was not in the scope of the study, other applications of technical

efficiency should be pointed out as important future trends in this kind of studies.

Sustainable development is a matter of concern with increasing attention from

policy-makers and academics. For instance, the concept of environmental effi-

ciency is gaining importance recently, mainly in Europe, but also in other countries.

Manure management issues and GHG emissions are concerns that also have a rising

interest (Piot-Lepetit 2014).

Many times, the consideration of environmental aspects is related to the exis-

tence of undesirable inputs (Piot-Lepetit 2014) and the way they can be dealt and

interpreted by the methodology, either stochastic frontier or DEA models. Hence,

Piot-Lepetit and Vermersch (1998) used DEA to measure the efficiency of French

pig farms and derived a shadow price of organic nitrogen. Similarly, Lansink and

Reinhard (2004) investigate the possibility of improving the environmental
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performance of Dutch pig farms reducing ammonia emissions, while Asmild

and Hougaard (2006) employed the same DEA methodology to evaluate the

environmental improvement potential of Danish pig farms. Environmental effi-

ciency was also considered by Yang (2009) in pig farming in Taiwan. Other

proposals beyond pig farming are also published concerning the eco-efficiency of

farms (Picazo-Tadeo et al. 2011). Eco-efficiency benefits public expenditure in

agri-environmental programs, although the cost-benefit balance is disputable.

Finally, Yang (2009) and Picazo-Tadeo et al. (2011) emphasised also the benefits

of training farmers to promote the integration between farming and environment,

and hence, achieving a more efficient and sustainable production.
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Chapter 15

Multicriteria Analysis of Olive Farms
Sustainability: An Application
of TOPSIS Models

Laura Riesgo and Jordi Gallego-Ayala

15.1 Introduction

Spain is the first world producer and exporter of olive oil and table olives. Olive

grove is grown in 2,032,290 ha, considering rainfed and irrigated area

(MAGRAMA 2010). Spanish olive production yields 43 % of the total olive oil

world production in 2007/2008 (1.2 million tonnes) which comprises a gross

production of 1,990 million Euro (MAGRAMA 2010, 2012).

Andalusia region located in southern Spain is the major olive production area

worldwide with a total area of 1.5 million hectares (19 % of the total olive grove

area in the world, 30 % of the total olive grove area in the EU and 59 % in the

Spanish territory) (CAyP 2008). In macroeconomic terms, olive production is the

second most important agricultural sector in Andalusia, creating an overall income

of 2,660 million Euro in 2007 (26 % of total agricultural production of Andalusia

which accounts for 10,227 million Euros). Olive groves are identified as a ‘social

crop’ as it is one of the agricultural activities that creates the most jobs per hectare

(CAyP 2008). Indeed, the olive industry creates 32 % of agricultural employment in

Andalusia (91,327 direct jobs), more than any other dynamic agricultural sector

(like, e.g. horticulture). In summary, olive grove production is an important socio-

economic activity, which is particularly relevant in rural municipalities in Andalu-

sia, where olive farming is almost the only source of income for the population.

The environmental relevance of olive groves is also worth highlighting. The

olive groves in Andalusia traditionally were associated to high biodiversity, being

an example of a ‘high natural value’ agricultural system. This was possible due to
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low intensity olive farming (minimum use of agrochemicals), old olive trees with

semi-natural herbaceous vegetation and their location in areas with different

land uses (Beaufoy and Cooper 2009). However, in recent years this ecological

value has diminished due to the ‘modernization’ of olive groves. This moderniza-

tion has been based on the expansion (new farms that have led to single-crop

systems in large areas of Andalusia) and intensification of the crops (intensive

use of fertilizers, pesticides, machinery and a large number of farms with uncovered

soil). In spite of this modernization process, many olive grove systems are still

associated with specific natural ecosystems, and 138,536 ha of olive groves (10 %

of the olive grove area in Andalusia) are included in the Natura 2000 Networking

Programme.

Therefore, olive grove systems provide a wide array of goods and services to the

Andalusian society. Some of these goods and services are ‘commodity outputs’

since they are commercialized by the market, for instance olive oil. Alternatively

other goods and services are ‘non-commodity outputs’ or ‘public goods’ since they

have no market to be commercialized (e.g. the contribution of olive grove systems

to support rural areas). Due to the lack of markets for public goods, olive growers

do not receive any monetary compensation for their provision. The concurrence

of production systems that provides both commodities and non-commodities to

the society and the possibility of ‘market failure’ (unsuitable supply of public goods

due to the lack of incentives—remuneration—for a suitable supply) makes olive

farming a perfect example of multifunctional agricultural system.

15.1.1 Recent Development of the Olive Groves
and Sustainability Problems in Andalusia

Spain’s accession to the EU and the implementation of specific mechanism of

support to the olive sector within the Common Agricultural Policy has encouraged

the expansion and intensification of olive grove systems in Andalusia over the

last two decades (DG ENV 2010). However, this rapid expansion and intensifica-

tion caused several negative environmental impacts (G�omez-Lim�on and Riesgo

2012):

(a) Soil erosion. This environmental impact has been exacerbated in recent years

due to the expansion of olive groves towards soils with unfavourable condi-

tions for agricultural production (steep slopes, lands particularly sensitive to

erosion or with frequent torrential rain). These adverse conditions and poor

management of soils by farmers has damaged the natural vegetation cover

(farms with uncovered soil). The Regional Andalusian Government reported

that 29.7 % of olive farms had moderate soil erosion problems

(12–50 t � ha�1 � year), 11.8 % showed high soil erosion (50–100 t � ha�1 � year)
and 11.2 % very high soil erosion (more than 100 t � ha�1 � year).
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(b) Overexploitation of water resources. The massive intensification of the olive

sector is also reflected in the expansion of irrigated systems. Thirty years ago

olive farming was almost non-irrigated, but nowadays the irrigated

olive groves surface is estimated to be 546,425 ha, representing 35.3 % of

the olive grove area in Andalusia. Despite the low water requirements of olive

trees and the highly efficient irrigation systems used (water extractions

range between 1,500 and 2,000 m3 � ha�1 � year), the pressure on water

resources is high. Increasing water extraction causes not only the

overexploitation of water resources but jeopardizes the satisfaction of other

water demands.

(c) Non-point source water pollution. Olive grove systems have contributed to the

worsening of water quality due to the use of agrochemical products (mainly

herbicides and fertilizers). Non-point source water pollution in rivers, dams

and aquifers has produced several sanitary alarms in the last few years in

Andalusia, such as the prohibition of drinking water from dams surrounded by

olive trees.

(d) Biodiversity loss. One of the main characteristics of the olive grove in the

1980s (traditional farming) was the high biodiversity associated with this crop.

The presence of trees and scrubland provided a habitat similar to meadows

(dehesa), where a large number of insects, birds, reptiles and mammals lived.

However, the intensification of olive farms changed this situation (disappear-

ance of vegetable cover, water pollution, and high insecticide use and soil

erosion) and diminished both the number and the diversity of animal species in

the olive grove systems.

(e) Damages in traditional agricultural landscapes. The olive grove systems

coexisted in the past with other crops such as pastures, vineyards or cereals.

However, this diversity disappears with the intensification of olive grove

systems and the olive grove is now often the only crop on farms.

What ‘sustainable agriculture’ actually means is a difficult question to answer.

There is a scientific debate on how it is possible to reconcile the preservation of

natural resources with production growth to satisfy food and fibre requirements as

the world’s human population expands. Examining this issue, several definitions

and alternative approaches can be found. Notwithstanding, there is a broad consen-

sus that agricultural sustainability meets the following requirements (Raman 2006):

(a) enhance food security, (b) protect natural resources and prevent environmental

degradation, (c) be economically viable and (d) be socially acceptable. Taking these

requirements into consideration, agricultural sustainability can be defined by the

‘mosaic’ approach, as a concept that encompasses three main dimensions (Yunlong

and Smit 1994; Raman 2006):

Economic sustainability. To be sustainable, agriculture must be economically

viable, ensuring not only adequate profitability for farmers (microeconomic

approach), but also a positive contribution to national/regional income (macroeco-

nomic approach).
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Sociocultural sustainability. Agriculture must be socially and culturally relevant,

i.e. it should ensure food security and equitable income distribution, as well as

contributing to the viability of rural communities.

Environmental sustainability. Sustaining the preservation of biological productivity
and ecosystem services is fundamental to achieve sustainable agriculture. Indeed,

agricultural sustainability can be defined as the ability to ensure greater agricultural

productivity while simultaneously conserving natural resources and preventing the

depreciation of ecosystems.

The analysis of agricultural sustainability requires some geographic bounds. The

farms (i.e. Andalusian olive farms) are considered the basic unit for this analysis of

agricultural sustainability, like in other related works in the literature (Bockstaller

et al. 1997; Girardin et al. 2000; Andreoli and Tellarini 2000; van Passel et al. 2007;

Andersen et al. 2007; Russillo and Pintér 2009; G�omez-Lim�on and Riesgo 2009).

15.1.2 Objective

This chapter develops a theoretical framework and a methodology to evaluate the

sustainability of olive farms. To this end, we used a hybrid Multicriteria

Decision Making (MCDM) model integrating the Analytic Hierarchy Process

(AHP) and the Technique for Order Preference by Similarity to Ideal Solution

(TOPSIS) to rank the olive farms in terms of their performance with respect to a set

of socio-economic and environmental attributes. The objective of this study is to

evaluate the sustainability of olive farms in Andalusia through the construction of

composite indicators using an MCDM approach. The three dimensions of sustain-

ability (economic, social and environmental) as stated previously are considered in

the analysis and a set of indicators was selected in order to obtain a precise

diagnosis of the sustainability of olive farms in this region. This result can be useful

for public decision-making to encourage policy actions to promote the most

sustainable farms.

Notwithstanding, it should be highlighted that the most common MCDM

approach to construct composite indicators is based on the weighted sum method

(Zhou and Ang 2009; Rowley et al. 2012). However, one of the main disadvantages

of analysing the sustainability of agriculture through the implementation of the

weighted sum method is that allows compensability between the different dimen-

sions of sustainability (i.e. compensability amongst the indicators considered to

measure sustainability). Some authors (Hansen 1996; Bockstaller et al. 1997;

Morse et al. 2001; Ebert and Welsch 2004; Munda 2008) have criticized this

approach because it considers that trade-offs between attributes (commensurability)

are incompatible with the concept of sustainability. In order to test the results

obtained by the hybrid TOPSIS model, we also calculate the weighted sum method

to analyse the sustainability of olive farms. This analysis will allow us to compare

results of two MCDM methods: TOPSIS and weighted sum.
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The chapter is organized as follows. Section 15.2 presents the materials, with a

brief description of the dataset of indicators utilized for this research. Section 15.3

includes an explanation of the AHP technique, the TOPSIS method used to calcu-

late the sustainability indicator and the weighted sum approach. Section 15.4 pre-

sents the results obtained and aims to determine which the most sustainable farm

types are. In addition, this section includes a comparison between the results

obtained by TOPSIS and the weighted sum methods. Finally, Sect. 15.5 contains

a discussion of the results and the conclusions drawn.

15.2 Materials

15.2.1 Economic, Social and Environmental Indicators

With the aim to achieve the objective proposed in this research, it is necessary to

select a set of criteria that allow quantifying the multidimensional performance of

the olive farms in Andalusia from a holistic perspective (economic, social and

environmental). We use the comprehensive theoretical framework proposed by

Sauvenier et al. (2006) and van Cauwenbergh et al. (2007) known as SAFE

(Sustainability Assessment of Farming and the Environment Framework) to select

a set of indicators which cover the multifunctional aspects of the olive grove

agricultural systems. Thus, a total of 27 indicators were selected to quantify the

sustainability of olive grove. See below a brief explanation regarding each sustain-

ability indicator (interpretation and numeric calculation). For more information on

indicators’ selection and calculation, see G�omez-Lim�on and Riesgo (2012).

15.2.1.1 Economic Sustainability Indicators

Olive grove economic sustainability encompasses two principles: (a) farmers’

economic sustainability (i.e. the economic viability of olive farms) and (b) public

economic sustainability (i.e. food security and wealth creation in the society as a

whole). According to these principles, seven indicators were included:

1. Olive farmers’ profit (PROFITOLIV, in € � ha�1 � year). Net profit is defined as

gross income less total expenses in a given period, including depreciation on

capital goods. Only those olive farms that record positive PROFITOLIV scores

will be sustainable in the long run. The sustainability of olive farms would

increase as PROFITOLIV records higher positive values.

2. Variation in farmers’ profits (PROFITVAR, dimensionless and bounded [0,1]).

The variation in farmers’ profit over a period of time may be quantified through

measures of dispersion from time series of annual profits. This variation was

calculated by a coefficient of variation of the indicator PROFITOLIV over the
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last 8 years. Farmers’ income stability over a period of time (low values of

PROFITVAR) would result in olive farms being more economically

sustainable.

3. Adaptation index (ADAPTIND, dimensionless and bounded [0,1]). Olive farm

viability depends not only on income and costs (profits and their stability over

time), but also on how farmers adapt to changes in technology, policy reforms,

changes in agricultural outputs or inputs, market or environmental changes

(climate change). An ad hoc index is developed as a proxy to quantify farmers’

capacity to face changes. This indicator is defined as a mathematical function of

a set of variables such as (a) average slope of the land as a shaping factor of the

technologies applied on the farm, (b) irrigation water availability as a factor

needed for a potential irrigation transformation of the farm, (c) farmers’ age, as

young farmers are usually more willing to confront changes and (d) farmers’

education, as educated farmers are usually more willing to confront changes.

ADAPTIND values were bounded between 0 and 1. Farms that recorded high

scores for this indicator are viable in the long run and more sustainable from an

economic perspective.

4. Production value (PRODVAL, in € � ha�1 � year). The contribution of olive

farms to food security can be approached by the value of olive production. The

higher the value of this indicator, the greater the economic sustainability of the

olive farm.

5. Changes in farm sales (SALESVAR, dimensionless). Changes in farm sales over

a period of time may be quantified through measures of dispersion. These

changes were calculated using a coefficient of variation of the indicator

PRODVAL over the last 8 years. Changes in PRODVAL due to changes in

yields or prices imply a reduction in agricultural sustainability. Production

stability implies a steady olive oil supply chain, as it minimizes the risk of

olive supply being insufficient to meet demand. Therefore, the higher the

SALESVAR score, the less economically sustainable the olive farm.

6. Contribution to agricultural added value (CONTRAAV, in € � ha�1 � year). The
contribution of olive farms to regional wealth can be assessed through gross

value added (GVA). GVA is defined as income from output sales less expenses

due to intermediate consumption goods. This indicator is a proxy to quantify

olive farms’ contribution to regional gross domestic product (GDP), as it shows

the value added in the olive oil supply chain by olive farms. Positive values of

CONTRAAV imply a positive contribution to regional wealth (i.e. high eco-

nomic sustainability of olive farms from a public perspective).

7. Percentage of income from subsidies (PERCSUBV, bounded [0,1]). The eco-

nomic viability of olive farms, excluding subsidies received by farmers, helps

to achieve acceptable levels of economic sustainability from a public perspec-

tive. A zero value of the indicator PERCSUBV means the highest sustainabil-

ity, as olive farm viability does not depend on public support (i.e. public

subsidies). By contrast, higher values of this indicator represent lower eco-

nomic sustainability.
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15.2.1.2 Sociocultural Sustainability Indicators

The sociocultural sustainability of olive farms is based on two principles: (a) social

sustainability due to the contribution of olive farms to rural development and

(b) cultural sustainability as olive farms contribute to the conservation of cultural

heritage. According to these principles, nine indicators were included.

8. Total labour (TOTLAB, in agricultural labour unit � ha�1). Job creation in rural

areas is one of the most important social roles of agriculture. Total labour in olive

farms was selected as an indicator to quantify the social implications

of olive farms in rural areas. Higher values of TOTLAB show labour-demanding

olive farms and thus more sustainable farms from a social perspective.

9. Apparent labour productivity (PRODLAB, in € � agricultural labour unit�1).

Fulfilling a social role requires not only creating jobs but also generating

income to guarantee proper remuneration of jobs. Apparent labour

productivity is considered as an indicator to quantify the capacity of olive

farms to remunerate jobs. Apparent labour productivity is defined as value

added per person employed. The higher the value of PRODLAB, the more

sustainable farms are from a social perspective, because olive farms help job

creation in the long run.

10. Risk of agricultural and rural abandonment (ABANDON, bounded [0,1]).

Agricultural and rural abandonment is a consequence of a number of factors,

such as low profitability of agriculture in less favoured areas (i.e. the presence

of environmental handicaps), perceived lack of opportunities for young people

in rural areas and well-paid jobs in neighbouring territories. ABANDON is

bounded between 0 when nobody manages the farm after the farmer’s retire-

ment and 1 when the farm transfer is guaranteed.

11. Percentage of family and permanent labour (FAMPERLAB, bounded [0,1]).

Olive farming shows seasonal employment as labour is mainly demanded

during harvesting (around 45–60 % of total labour in olive farms is required

during harvesting). Seasonal employment neither increases population density

in rural areas nor contributes to rural development in olive grove systems. The

indicator FAMPERLAB quantifies the percentage of family and permanent

labour of total labour in olive farms. As family and permanent workers usually

live close to the farm, values of FAMPERLAB close to 1 imply more socially

sustainable olive farms.

12. Guarantee of origin membership (ORIGIN, dimensionless and bounded [0,1]).

Agriculture must provide high-quality food. This indicator varies between 1 if

the olive farm is a member of a Designations of Origin and 0 if not. A value of

1 denotes the highest cultural sustainability of an olive farm.

13. Percentage of olive oil classified as extra virgin olive oil (VIRGINOIL,

bounded [0,1]). Extra virgin olive oil satisfies the high-quality criteria on

olive oil production. Values close to 1 show that most of the olive oil produced

on the farm is extra virgin and consequently the sustainability of the olive farm

is higher.
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14. Percentage of farm planted with crops other than olive trees (OTHERCROP,
bounded [0,1]). One of the cultural sustainability criteria is to protect the visual

quality of agricultural landscape. OTHERCROP is defined as the percentage of

land covered by crops other than olive trees. As the visual quality of olive grove

landscapes in Andalusia includes contrasting colours and textures due to a

mixture of olive trees and other crops (Arriaza et al. 2004), breaking single-

crop farming contributes to enhancing the visual quality of the landscape. The

indicator OTHERCROP ranges from 0 to 1. A value of 0 means a farm solely

consists of olive trees, which does not enhance the visual quality of the

landscape (lowest cultural sustainability), whereas a value of 1 indicates a

multiple-crop farm with higher quality agricultural landscape (highest cultural

sustainability).

15. Soil cover (COVER, bounded [0,1]). Since soil cover contributes to enhancing

landscape valuation, soil cover was selected as an indicator to quantify the

visual quality of agricultural landscape. This indicator is actually defined as the

percentage of days during the year in which vegetation covers the soil. In this

case, a value of zero value implies uncovered soil and low-valued olive grove

landscape, whereas soils with vegetation denote high-valued landscape (higher

sustainability).

16. Index of protection of olive heritage (HERITAGE, dimensionless and bounded

[0,1]). Agricultural landscape includes the protection of a number of anthro-

pogenic elements such as 100-year-old olive trees, ranches (haciendas), old

mills for making olive oil, stone walls and hedges. The protection of olive

heritage is considered an intangible factor and consequently an ad hoc index

was built to quantify HERITAGE. This indicator is defined as a mathematical

function of a set of variables such as the presence of 100-year-old olive trees on

the farm, the presence of ranches or old mills for making olive oil on the farm,

the presence of stone walls, terraces, hedges or similar heritage elements on the

farm and the presence of rural tourism activities (rural houses, guide tours, etc.)

on the farm. The indicator HERITAGE is bounded between 0 and 1. The higher

the values of this indicator, the higher the sociocultural sustainability of olive

farms.

15.2.1.3 Environmental Sustainability Indicators

The environmental sustainability of olive groves addresses three criteria:

(a1) guarantee of olive grove genetic diversity, (a2) protection of biological diver-

sity and (a3) protection of habitat diversity (ecosystem). In order to quantify the

achievement of each criterion, 11 indicators were selected.

17. Number of olive grove varieties (NUMVAR, in number of crops). The genetic

diversity of olive groves is a natural heritage that should be protected for

future generations. A new indicator is included in the analysis to quantify the

contribution of olive farms to the protection of the phylogenetic resources of

olive farms. NUMVAR calculates the number of olive grove varieties on the
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farm. The minimum value of NUMVAR is 1, denoting the least sustainable

olive farm (e.g. 1 olive grove variety on the farm).

18. Index of biological diversity (DIVERSIND, dimensionless and bounded

[0,1]). Biological diversity in the ecosystems of olive groves includes several

living beings. Quantifying species at farm level goes beyond the scope of this

research, but an ad hoc indicator has been built to analyse biological diversity

on olive farms. DIVERSIND is defined as a mathematical function of a

number of variables: (a) the presence of vegetation cover (flora and fauna

protection), (b) weed control through sheep grazing (the least harmful soil

management method), (c) placement of branches from pruning into piles on

the borders of the farm (refuge areas for some species), (d) olives left on olive

trees after harvesting (olives for fauna feeding) and (e) removal of ferti-

irrigation or subsurface drip irrigation (minimizing animal poisoning). The

indicator DIVERSIND is bounded between 0 and 1. A value of 1 indicates

optimum biodiversity on the farm and the highest environmental

sustainability.

19. Pesticide risk (PESTRISK, in rat � kg � ha�1 � year). Pesticides help control

pests but may also reduce the population of non-target species. The lowest

value of this indicator is zero, denoting organic olive farms. These production

systems are the most sustainable from an environmental perspective because

they have the highest value of biodiversity protection.

20. Percentage of land with crops other than olive groves (OTHERCROP,

bounded [0,1]). This indicator achieves two criteria as it contributes to the

visual quality of agricultural landscape and biodiversity, i.e. as a proxy of

heterogeneity of land use and diversity of the ecosystem. High values of the

indicator represent the presence of several crops or land uses on the olive farm

and thus the existence of several ecosystems and higher environmental

sustainability.

21. Percentage of non-arable land (NONARABLE, bounded [0,1]). This indica-

tor assesses the value of non-agricultural ecosystems in olive farms such as

river flows, and rocky out-crops. The higher the value of NONARABLE, the

more environmentally sustainable the olive grove is.

22. Soil erosion (EROSION, in t � ha�1 � year). Soil erosion is one of the main

environmental problems in olive grove systems (G�omez Calero and Giráldez

2009; G�omez Calero et al. 2009). High values for the indicator EROSION

(high soil loss) denote olive farms with a limited capacity to protect soil and

which are consequently less sustainable from an environmental perspective.

23. Soil organic matter (ORGMAT, dimensionless and bounded [0,1]). As one of

the main determinants of soil quality is soil organic matter, an ad hoc indicator

was built to analyse the soil organic matter of olive farms considering a set of

variables such as tillage activities to maintain vegetation cover, the vegetation

cover and the milling of pruning rests. The indicator ORGMAT is bounded

between 0 and 1. The highest value of the indicator shows the most sustain-

able olive farms in terms of maintaining soil fertility.
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24. Nitrogen balance (NITROGENBAL, in N kg � ha�1 � year). This indicator is
defined as the physical difference (excess/shortage) between the nitrogen

content of inputs (fertilizers) and outputs (harvesting). The difference between

both quantities is the nitrogen liberated into the environment. Positive values

of NITROGENBAL imply less environmentally sustainable olive farms.

25. Residual herbicide use (RESHERB, in active ingredient kg � ha�1 � year). This
indicator measures the active ingredient content of residual herbicides used in

olive farming. The lowest value of this indicator is 0 indicating that no

residual herbicides are used on the farm. This value suggests organic olive

farming and consequently no damage is caused to the environment.

26. Irrigation water use (WATERUSE, in m3 � ha�1 � year). Irrigated olive farms

account for 47 % of irrigated land in Andalusia (CHG 2008) and are the main

irrigation water users (864 hm3/year or 26 % of water demand). This high

consumption leads to problems of over-extraction and environmental damage

and, consequently, an indicator measuring the water actually extracted from

the ecosystems (irrigation) was chosen. The indicator WATERUSE takes a

value of zero in non-irrigated olive farms. These farms are the most environ-

mentally sustainable as water is not used for irrigation purposes.

27. Energy balance (ENERGYBAL, in kcal � ha�1 � year). This balance is defined
as the difference between the energy contained in the output (agricultural

production) and the energy contained in agricultural inputs (input use and

tillage practices). Positive values of ENERGYBAL mean that olive farms are

using less energy than that produced by photosynthesis. The higher the

positive values of this indicator, the higher the environmental sustainability.

15.2.2 Dataset: Olive Grove in Andalusia

A total of 410 olive farmers were interviewed face-to-face in Andalusia during May

and September 2010. To carry out the survey, prior stratification was undertaken

with respect to growing areas in Andalusia, and five agricultural districts were

selected. Together, these districts account for 29.3 % of the total olive grove area in

Andalusia (429,156 ha). In each district, 82 olive farmers were randomly

interviewed.

A questionnaire was designed to collect information for the calculation of the

above-mentioned indicators. The questionnaire consisted on three sections. The

first section aimed to gather data on farm characteristics such as location, farm size

or hired and family workers. The second section included questions on the man-

agement of olive groves, such as variety of olive grove, tillage system, use of

herbicides and pesticides, prices and production). Finally, the last section compiled

socio-economic information from the respondents. In order to calculate some

economic and environmental indicators, secondary information was collated to

complement the primary information supplied by the survey.
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15.3 Methodology

The methodological framework proposed to evaluate the sustainability of olive

farms using two MCDM approaches is based on four steps: (1) selection of the

socio-economic and environmental attributes and indicators, (2) identification of

the relative importance of the selected attributes and indicators via AHP, (3) ranking

the olive farms in terms of sustainability by using a TOPSIS model and the weighted

sum method and (4) classification of the farms by their sustainability performance

using cluster analysis and description of the main factors that influence the sustain-

ability performance of the olive farms. Therefore, this study is rooted in the

combination of different MCDM methods, first the combination of the AHP and

TOPSIS and secondly the combination of the AHP and the weighted sum. The

methodological framework followed in this research is summarized in Fig. 15.1.

15.3.1 The Analytic Hierarchy Process

The AHP method developed by Saaty 1980 is an MCDM technique based on

arranging decision-making problems in a hierarchical structure which allows the

Selection of socio-economic
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indicators

Decision
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Weighting criteria
Dataset
(farms)

AHP

Ranking
farmsh

Cluster
analysis

Homogeneous groups
of farmsh

SAFE
methodology
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2nd step

3rd step

4th step

TOPSIS

Weighted Sum

Fig. 15.1 Outline of the methodological approach
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identification of the relative importance of each element under analysis by using a

pairwise comparison system. Scores of these comparisons are used to build the

Saaty matrices (A¼ akl), which are employed to determine the vector of priorities

or weights (w1,. . .wk,. . .wn). Although various procedures to estimate the weights

of the criteria under evaluation have been proposed, for this research we select

the simplest one: the geometric mean method (Aguar�on and Moreno-Jiménez

2000).

Although the AHP technique was originally developed for individual decision-

makers, overtime groups began using it in decision-making sessions (Easley

et al. 2000), such as our case study. Thus, in order to determine the weights attached

to each criterion we need to consider the judgements of a group of people ( p), each
with his/her own pairwise comparison matrix (A¼ aklp) and its related weights

(wkp). This individual information is suitably treated in order to obtain a synthesis of

aggregated weights (wk). For this purpose, Forman and Peniwati (1998) suggest that

group decision-making should be performed by aggregating individual priorities

using the geometric mean:

wk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yp¼m

p¼1

wkp
m

vuut ð15:1Þ

The AHP technique was first applied to a representative sample of the population of

Andalusia region (survey of 503 individuals), with the aim of obtaining the weights

of the three criteria dimensions (economic, social and environmental) considered

for the study, in order to calculate the relative importance of the set of economic

(weco), social (wsoc) and environmental (wenv) criteria. Thus, we have:

weco¼ 58.6 %; wsoc¼ 14.3 %; wenv¼ 27.1 %. For more information on this survey,

see Arriaza and G�omez-Lim�on (2011).

AHP was afterwards applied to a panel of 18 experts, with the aim of obtaining

the weights of the socio-economic and environmental criteria contained in each of

the three criteria dimensions. This experts panel comprised eight scientific experts

in different fields such as agricultural economics, sociology and rural development,

ecology and environmental management and olive agronomy, together with ten

experts from the olive industry (two experts from the Regional Ministry of Agri-

culture and the Environment, two experts from agricultural professional organiza-

tions, three technical managers, one representative from the Spanish Association of

Olive Municipalities and two olive growers).

Taken into consideration the weights given by the population of Andalusia and the

expert panel, the normalized weight given to each indicator is display in Fig. 15.2.

For more information on the weights resulting from the AHP methodology,

see Arriaza and G�omez-Lim�on (2011).
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15.3.2 The TOPSIS Method

The TOPSIS analysis developed by Hwang and Yoon (1981) is a widely used

MCDM tool to support the selection of the best compromise solution between a

finite set of alternatives (Olson 2004), resulting in a rank of alternatives by using a

distance measures framework. This procedure is based on the premise that the best

alternative should have the closest distance to the positive ideal solution and the

farthest distance from the negative ideal solution (Lai et al. 1994; Zanakis

et al. 1998).

The TOPSIS model is becoming one of the most common multicriteria tools

used to solve real-life problems (Behzadian et al. 2012). The main advantages of the

TOPSIS models are: (a) the idea behind this model is rational and comprehensible

for alternative selection, (b) low rank reversal and (c) the approach allows to

identify the best alternatives in a simple mathematical and computational form

(Kim et al. 1997; Deng et al. 2000; Olson 2004; Shih et al. 2007; Wu et al. 2010).

The TOPSIS models have been used in the fields of supply chain management and

logistics (Awasthi et al. 2011), energy management (Yan et al. 2011), water

resources management (Srdjevic et al. 2004) and irrigated agriculture (Gallego-

Ayala 2012) amongst others.

This technique was initially developed as a decision-support tool for alternatives

selection, but can be adapted perfectly well to the composite indicator construction

(Zhou and Ang 2009; Rowley et al. 2012). In fact, the multicriteria aggregation

procedure followed in the TOPSIS model allows evaluating in a comprehensive

way the sustainability performance of a system (Rowley et al. 2012). Thus, the

TOPSIS approach has been used to evaluate the sustainability performance of the

olive groves farms. The TOPSIS is applied in seven steps as listed below:

Step 1. Obtain the decision matrix (D)
Build the decision matrix (D) for ranking farms, by using the data obtained for each

indicator (F) by farm (A). The decision matrix for evaluating the farms sustain-

ability is as follows:

F1 F2 � � � Fj � � � Fn

D ¼

A1

A2

⋮
Ai

⋮
Am

f 11 f 12 � � � f 1j � � � f 1n
f 21 f 22 � � � f 2j � � � f 2n
⋮ ⋮ � � � ⋮ � � � ⋮
f i1 f i2 � � � f ij � � � f in
⋮ ⋮ � � � ⋮ � � � ⋮
f m1 f m2 � � � f mj � � � f mn

2
6666664

3
7777775

ð15:2Þ

where fij denotes the performance value of farm Ai with respect to each indicator Fj.
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Step 2. Calculate the normalized decision matrix (R)
The normalization has been carried out by using vector normalization, following

the next expression:

vij ¼
f ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
f 2ij

q ð15:3Þ

where vij denotes the normalized value. Thus V¼ [vij]m�n.

Step 3. Weight the normalized decision matrix (R) is obtained as follows:

rij ¼ vij � wj ð15:4Þ
where wj denotes the associated weight to each attribute. Weighting makes it

possible to differentiate the relative importance of the various socio-economic

and environmental attributes considered in this research. The weights calculated

using the AHP technique have been integrated in this research to determine the

weights of the criteria evaluation when developing the TOPSIS model to rank the

olive farms. Thus, R¼ [rij]m�n.

Step 4. Determine the positive (T+) and negative (T�) ideal solution using the
following formulation:

Tþ ¼ rþ1 ; r
þ
2 ; . . . ; r

þ
n

� � ¼ maxirij j 2 J
0��� �
; minirij j 2 J

00��� �n o
ð15:5Þ

T� ¼ r�1 ; r
�
2 ; . . . ; r

�
n

� � ¼ minirij j 2 J
0��� �
; maxirij j 2 J

00��� �n o
ð15:6Þ

where J0 and J00 are linked to the indicators with positive polarity (more is better)

and the indicators with negative polarity (less is better), respectively.

Step 5. Calculate the separation distance of each alternative from the positive and
negative ideal solution.
Separation distance is calculated by using the n-dimensional Euclidean distance.

The separation of each farm from the positive-ideal solution (Sþi ) is given by the

expression:

Sþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
j¼1

rij � rþj
� �2

vuut ð15:7Þ

Similarly, the separation of each farm from the negative-ideal solution (S�i ) is as
follows:

S�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
j¼1

rij � r�j
� �2

vuut ð15:8Þ
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Step 6. Calculate the relative closeness to the ideal solution, for each farm. The
relative closeness of the farm Ai to the ideal solution is given by:

CiTOPSIS ¼ S�i
Sþi þ S�i

, i ¼ 1, . . . ,m ð15:9Þ

where CiTOPSIS is an index with values ranging between 0 and 1, where 0 corre-

sponds to the worst possible performance of the farm and 1 to the best.

Step 7. Rank the farms, according to the descending order of CiTOPSIS index
values.

15.3.3 The Weighted Sum Approach

In order to compare the TOPSIS model with other MCDM approaches, we applied a

conventional MCDM methodology to calculate agricultural sustainability, the

weighted sum method combined with the AHP methodology. Once the normalized

weights (w�
k) have been obtained using the methodology mentioned in Sect. 15.3.1,

resolving problems by means of the AHP technique is equivalent to optimizing a

multi-attribute utility function, as has been demonstrated by Zahedi (1987).

Adjusting this formula to our case study, the sustainability of each olive farm can

be obtained through the following expression:

CiWS ¼
Xk¼27

k¼1

w*
k � Iki ð15:10Þ

where CiWS is the sustainability by olive farm i using the weighted sum method,

w�
k is the normalized weight to indicator k (using the weights obtained from the AHP

technique), and Iki is the normalized outcome of indicator k in the olive farm i.1

Finally, the olive farms will be ranked according to the descending order of CiWS

values.

15.4 Results

15.4.1 TOPSIS Method

Following TOPSIS methodology, we obtained a ranking of farms. A cluster anal-

ysis was carried out to classify the olive farms into homogeneous groups regarding

1 Instead of vector normalization to express the base indicators in homogeneous units as in the

TOPSIS approach, we used linear normalization (re-scaling method), to normalize the indicators

in the weighted sum approach.
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its sustainability level (CiTOPSIS). To develop this classification, the CiTOPSIS values

were considered as classifying variables. Furthermore, a hierarchical aggregation

method was applied (the Ward or minimum distance method), defining the distance

between elements as the Euclidean square distance. This aggregation procedure

results in a dendrogram (see Fig. 15.3). We considered appropriate to cut the

dendrogram in order to group the olive farms into three homogeneous groups or

clusters.

Statistical tests were conducted to ensure that groups obtained from the cluster

analysis differ on average from each other (see Table 15.1). In particularly, and

before checking that the distribution is normal, we use the ANOVA test for equality

of means not assuming equal variances (Games-Howell test).

Taking into account olive farm characteristics (see Table 15.2), these groups can

be characterized as follows:

• Cluster 1. This group comprises traditional mountain rainfed olive farms (91 %

of the farm size is non-irrigated on average) in high sloping lands (17 % on

average) and with low olive production (2,714 kg ha�1). Around one third of the

olive farms (31 %) are located in a Denomination of Origin (DO) area and

eco-friendly production systems (organic and integrated production farming) are

used in 19 % of farms. These features led us to denominate this group as

‘Traditional mountain rainfed olive farms’.

• Cluster 2. This group includes both rainfed (70 % of the farm size) and irrigated

olive plots (30 % of the farm size) in moderate sloping lands (9 % on average)

and moderate olive production (around of 5,000 kg ha�1). Production systems

are mainly conventional (92 %) and only 20 % of the olive farms are located in a

DO area. This group is therefore labelled as ‘Traditional plain olive farms’.

Fig. 15.3 Dendrogram

considering CiTOPSIS values
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• Cluster 3. This group includes both rainfed and irrigated olive plots (50 % of the

farm on average) in low sloping lands (6 % on average) and with high olive

production (7,722 kg ha�1). Production system is conventional (100 %) and only

15 % of the farms are located in a DO area. This group is labelled as ‘intensive

olive farms’.

Once this classification of farms has been established, the differences in the

sustainability values of the three groups have been analysed (see Table 15.1). The

results (mean CiTOPSIS values) show that ‘intensive olive farms’ (cluster 3) are

significantly more sustainable than ‘Traditional mountain rainfed olive farms’

(cluster 1) and ‘Traditional plain olive farms’ (cluster 2). Thus, agricultural sus-

tainability of olive farms is correlated to the farm profile.

When analysing separately the dimensions of olive grove sustainability

(i.e. economic, social and environmental dimensions) for each of the three clusters,

we obtained the results in Table 15.3.

Results show that intensive olive farms (cluster 3) are significantly more eco-

nomic sustainable than the other two olive farm types (Traditional mountain
rainfed olive farms—cluster 1—and Traditional plain olive farms—cluster 2).

When analysing sociocultural sustainability, results show no statistically significant

Table 15.1 Means of olive grove sustainability for each olive farm type

N Mean CiTOPSIS S.D.

F ANOVA ( p value)

Post hoc tests Games-Howell

Cluster 1 180 0.3871 0.039 1,022.938

Cluster 2 157 0.4950 0.037 (0.000)

Cluster 3 72 0.6347 0.050 Ccluster3TOPSIS>Ccluster2TOPSIS>Ccluster1TOPSIS

Table 15.2 Olive farm characteristics per olive farm group

Cluster 1

c1

Cluster 2

c2

Cluster 3

c3

F ANOVA ( p value)

Post hoc tests Games-Howell

Rainfed land (% of farm

size)

91 69 53 35.280 (0.000)

c1***> c2***> c3***

Irrigated land (% of

farm size)

8 30 47 35.530 (0.000)

c3***> c2***> c1***

Average olive production

(kg ha�1)

2,714 4,994 7,722 712.421 (0.000)

c3***> c2***> c1***

Slope land (%) 17.11 8.85 6.39 39.438 (0.000)

c1***> c2***> c3***

Denomination of origin

(% of farm size)

31.11 19.75 15.28 4.859 (0.008)

c1**> c2**; c1***> c3***

Eco-friendly production

system (% of farms)

18.89 7.64 0 11.588 (0.000)

c1***> c2***> c3***

***Mean differences are statistically significant at the 0.01 level of significance, ** at 0.05-level
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differences amongst the three olive farm types. Regarding environmental sustain-

ability, results show that the least sustainable olive farms in Andalusia are the

Traditional mountain rainfed olive farms.
In order to analyse these results, we examine the mean values of each indicator

included in each sustainability dimension (economic, sociocultural and environ-

mental dimensions) per cluster (see Tables 15.4, 15.5 and 15.6).

Intensive olive farms show the highest mean values in those indicators with the

greatest importance in the economic dimension of olive grove sustainability (see

Table 15.4). Olive farmers’ profit (PROFITOLIV), production value (PRODVAL)

and contribution to agricultural added value (CONTRAAV) account for 69.5 % of

Table 15.3 ANOVA tests for comparison of economic, social and environmental sustainability

between olive farm groups

Cluster 1

c1

Cluster 2

c2

Cluster 3

c3

F ANOVA ( p value)

Post hoc tests Games-Howell

Economic CiTOPSIS

(S.D.)

0.2785

(0.0599)

0.4388

(0.0556)

0.6445

(0.0756)

952.498 (0.000)

c3***> c2***> c1***

Sociocultural CiTOPSIS

(S.D.)

0.3123

(0.0629)

0.3160

(0.0627)

0.3124

(0.0554)

0.177 (0.838)

Environmental CiTOPSIS

(S.D.)

0.6300

(0.0526)

0.6499

(0.0290)

0.6462

(0.0445)

9.556 (0.000)

c2***> c1***; c3**> c1**

***Mean differences are statistically significant at the 0.01 level of significance, ** at 0.05-level

Table 15.4 ANOVA tests for comparison of economic indicators between olive farm groups

Indicators

Weights in

economic

dimension

(%)

Cluster 1

c1

Cluster 2

c2

Cluster 3

c3

F ANOVA ( p value)

Post hoc tests Games-

Howell

PROFITOLIV

(S.D.)

28.4 802,498

(683,087)

4,133,155

(1,862,871)

13,893,060
(5,894,452)

579.710 (0.000)

c3***> c2***> c1***

PROFITVAR
(S.D.)

6.2 0.0387
(0.0074)

0.0366
(0.0046)

0.0358
(0.0039)

8.393 (0.000)
c1***> c2***;
c1***> c3***

ADAPTIND

(S.D.)

9.2 0.1079

(0.1278)

0.2073

(0.1511)

0.2784
(0.1780)

40.511 (0.000)

c3***> c2***> c1***

PRODVAL

(S.D.)

24.7 1,431,941

(847,047)

4,572,452

(1,532,731)

11,031,886
(3,304,415)

759.930 (0.000)

c3***> c2***> c1***

SALESVAR
(S.D.)

5.8 0.0344
(0.0054)

0.0349
(0.0043)

0.0347
(0.0038)

0.398 (0.672)

CONTRAAV

(S.D.)

16.4 948,266

(581,069)

3,321,626

(1,133,276)

8,778,744
(3,066,206)

689.974 (0.000)

c3***> c2***> c1***

PERCSUBV
(S.D.)

9.4 0.1236
(0.0505)

0.1100
(0.0053)

0.1090
(0.0037)

8.586 (0.000)
c1***> c2***> c3***

***Mean differences are statistically significant at the 0.01 level of significance, ** at 0.05-level

See the highest values of each indicator in bold

See indicators with negative contribution to economic sustainability in italics
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the total value of economic sustainability. These indicators have a positive contri-

bution to the economic sustainability since the higher the values of these indicators

the higher the economic sustainability. In contrast, Traditional mountain rainfed
olive farms show the lowest mean values for these indicators and the highest values

for indicators such as changes in farm sales (SALESVAR) and percentage of

income from subsidies (PERCSUBV). These latter indicators have a negative

contribution to the economic sustainability since the higher the values of these

indicators the lower the economic sustainability.

When analysing sociocultural sustainability, we can conclude that intensive
olive farms show the highest values for total labour (TOTLAB), percentage of

family and permanent labour (FAMPERLAB) and soil cover (COVER). Since this

olive farm type accounts for the highest olive production (7,722 kg ha�1), this is as

well the most labour demanding (see Table 15.5). In contrast, Traditional mountain
rainfed olive farms mountain show the lowest mean values for these indicators but

the highest for cultural indicators (guarantee of origin membership—ORIGIN,

percentage of olive oil classified as extra virgin olive oil—VIRGINOIL, percentage

Table 15.5 ANOVA tests for comparison of sociocultural indicators between olive farm groups

Indicators

Weights

in social

dimension (%)

Cluster 1

c1

Cluster 2

c2

Cluster 3

c3

F ANOVA ( p value)

Post hoc tests

Games-Howell

TOTLAB

(S.D.)

24.5 0.0223

(0.0043)

0.0275

(0.0058)

0.0289
(0.0038)

70.074 (0.006)

c3***> c2***> c1***

PRODLAB

(S.D.)

9.9 68,475

(58,167)

77,629
(48,442)

55,493

(40,695)

4.844 (0.008)

c2**> c3**; c1*> c3*

ABANDON
(S.D.)

5.2 0.8792
(0.2281)

0.8726
(0.2258)

0.9028
(0.2079)

0.457 (0.633)

FAMPERLAB

(S.D.)

7.2 0.6689

(0.3230)

0.7269

(0.2866)

0.8098
(0.2584)

5.893 (0.003)

c3***> c1***; c3*> c2*

ORIGIN

(S.D.)

6.3 0.35
(0.478)

0.20

(0.399)

0.06

(0.231)

14.324 (0.000)

c1**> c2**> c3**

VIRGINOIL

(S.D.)

15.5 88.34
(11.67)

73.89

(20.83)

76.56

(16.74)

34.501 (0.000)

c1***> c2***;
c1***> c3***

OTHERCROP

(S.D.)

7.9 0.04
(0.131)

0.03

(0.108)

0.02

(0.105)

1.195 (0.304)

COVER

(S.D.)

8.2 0.59

(0.365)

0.51

(0.344)

0.95
(0.173)

44.000 (0.000)

c3***> c1***;
c3***> c2***

HERITAGE

(S.D.)

15.3 0.1583
(0.1432)

0.1047

(0.0785)

0.1261

(0.0996)

9.296 (0.000)

c1***> c2***

***Mean differences are statistically significant at the 0.01 level of significance, ** at 0.05-level

and * at 0.10-level

See the highest values of each indicator in bold

See indicators with negative contribution to sociocultural sustainability in italics
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of farm planted with crops other than olive trees—OTHERCROP, and index of

protection of olive heritage—HERITAGE).

As it is mentioned above, traditional mountain olive farms are less environmen-

tal sustainable than the other two olive farms types. When analysing the indicators

included in the environmental dimension, soil organic matter (ORGMAT) and

energy balance (ENERGYBAL) show the lowest values in traditional mountain
olive farms (see Table 15.6). These indicators have a positive contribution to the

environmental sustainability since the higher the values of these indicators

the higher the environmental sustainability. In addition, residual herbicide use

(RESHERB) and soil erosion (EROSION) show the highest value, but they have

a negative contribution to the environmental sustainability since the higher

the values of these indicators the lower the environmental sustainability. The

weight of these four indicators in the environmental sustainability of olive grove

in Andalusia is 46.6 % explaining the low score of traditional mountain olive farms.
In contrast, we cannot correlate the characteristics of the highest environmental

sustainable with the olive farm type, since no statistically significant differences

were found between traditional plain olive farms and intensive olive farms
(see Table 15.3). However, intensive olive farms show the highest mean values of

negative indicators such as pesticide risk (PESTRISK), nitrogen balance

(NITROGENBAL) and irrigation water use (WATERUSE).

15.4.2 The Weighted Sum Approach

Following the weighted sum methodology combined with AHP, we obtained a

ranking of farms. A cluster analysis was carried out to classify the olive farms into

homogeneous groups regarding its sustainability level (CiWS). The resulting den-

drogram produced three olive farm types (see Fig. 15.4).

Table 15.7 shows how the homogeneous groups obtained from the cluster

analysis differ on the agricultural sustainability CiWS mean values from each other.

There is a high degree of similarity between the farm groups obtained using the

weighted sum method, and those obtained via TOPSIS technique (see Table 15.8).

Thus, we label the first group as traditional mountain olive farms (cluster 1), the
second group as traditional plain olive farms (cluster 2) and the third group as

intensive olive farms (cluster 3).
Despite sustainability scores per cluster in the case of the weighted sum

approach (mean CiWS values) are lower than the sustainability values obtained

through the TOPSIS methodology (mean CiTOPSIS values), results shows that

‘intensive olive farms’ (cluster 3) are significantly more sustainable than the other

two olive farm types (‘Traditional mountain rainfed olive farms’—cluster 1—and

‘Traditional plain olive farms’—cluster 2).

348 L. Riesgo and J. Gallego-Ayala



Fig. 15.4 Dendrogram

considering CiWS values

Table 15.7 Means of olive grove sustainability for each olive farm type

N Mean CiWS S.D.

F ANOVA ( p value)

Post hoc tests Games-Howell

Cluster 1 207 0.2740 0.022 743.308

Cluster 2 140 0.3380 0.023 (0.000)

Cluster 3 62 0.4434 0.059 Ccluster3WS>Ccluster2WS>Ccluster1WS

Table 15.8 Olive farm characteristics per olive farm group

Cluster 1

c1

Cluster 2

c2

Cluster 3

c3

F ANOVA ( p value)

Post hoc tests Games-Howell

Rainfed land

(% of farm size)

93 64 48 55.319 (0.000)

c1***> c2***> c3***

Irrigated land

(% of farm size)

7 34 52 56.630 (0.000)

c3***> c2***> c1***

Average olive production

(kg ha�1)

3,018 5,152 7,782 423.993 (0.000)

c3***> c2***> c1***

Slope land (%) 16.49 8.37 5.55 39.874 (0.000)

c1***> c2***> c3***

Denomination of origin

(% of farm size)

25 25 18 0.773 (0.462)

Eco-friendly production

system (% of farms)

20 8 0 12.386 (0.001)

c1*> c2*> c3***

***Mean differences are statistically significant at the 0.01 level of significance, ** at 0.05-level
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An in-depth analysis of the olive farms comprised in each cluster shows that

81.17 % of farms belong to the same cluster using both methodologies (i.e. TOPSIS

and weighted sum methods). Consequently, results obtained under the weighted

sum methodology seem to be equivalent to those obtained under the TOPSIS

methodology (see Sect. 15.4.1).

15.5 Discussion and Conclusions

This chapter contributes to the literature on the analysis of agricultural sustainabil-

ity by using composite indicators rooted in MCDM techniques. Sustainability’s

views expressed through a survey to the population in Andalusia and a panel of

olive grove experts allowed us to calculate the weights of each sustainability

dimension and indicator, respectively. Three different olive farm types were iden-

tified in Andalusia according to their sustainability index calculated by using

TOPSIS and weighted sum methodologies.

Despite some authors criticized additive aggregation methods, results show that

no differences were found in the classification of farms regarding their sustainabil-

ity (in terms of CiTOPSIS and CiWS values) between the two MCDM approaches

followed in this research. Nonetheless, further comparative analysis using alterna-

tive MCDM techniques to calculate agricultural sustainability such as VIKOR,

ELECTRE, PROMETHEE, MACBETH or MELCHIOR should be applied, to

continue investigating the pros and cons of MCDM tools in analysing agricultural

sustainability issues.

Our results indicate that any public policy intended to promote olive grove

sustainability should be based on a structural policy that promotes the intensifica-

tion of olive farms. Therefore, and taking into account the weights given to each

indicator by the experts panel and the weights given to each of the sustainability

dimension by the society, we can conclude that ‘intensive olive farms’ are the most

sustainable in Andalusia. This result is mainly caused due to the high weight given

to economic sustainability from the Andalusian citizens (58.6 %) and the high

values achieved by economic indicators in this type of olive farms. In general, we

can conclude that CiTOPSIS and CiWS values depend in a high degree on the

particular weights given to the socio-economic and environmental indicators.

Despite the results show that an intensification of olive grove would result in

higher agricultural sustainability, this intensification process is not always suitable

for all plots. For instance, an olive farm located in high sloping lands or without

irrigation water access could not be successfully intensified (i.e. higher erosion

rates related to sloping agricultural land or lower yields of olive trees due to the lack

of water).

Finally, it should be pointed out that further research is needed in order to

validate the results obtained in this research. A sensibility analysis of the weights

given to indicators and sustainability dimensions would be welcome. In addition,

the implementation of this methodology in other olive grove systems would be
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valuable. Both analyses may contribute on the suitability of the methods proposed

for olive grove sustainability calculation by distinguishing between the influence of

the selection of indicators for each dimension of sustainability and the social

preferences regarding olive grove sustainability.
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Chapter 16

On the Feasibility of Establishing
a Northern-Western Australian Beef
Abattoir as a Facility Location Problem

Rodolfo Garcı́a-Flores and Andrew Higgins

16.1 Introduction

Beef production all over the world is currently undergoing pressure to become more

efficient. While global demand continues to increase (Kearney 2012), thanks

mostly to demand from developing countries, consumers everywhere are becoming

more conscious of their choices in food quality and safety. This has imposed many

requirements on beef producers. For example, international trade has made it

necessary to introduce labelling and traceability regulations, whereas sustainability

and impact on the environment have become of paramount concern to both society

and industry. Unpredictable climate patterns have also forced the beef producers to

plan for unforeseen changes in their physical landscapes, while at the same time the

increasingly uncertain economic environment and changing regulatory policies

have forced them to increase the efficiency of the whole supply chain. Optimisation

studies in this area must now consider many of these factors simultaneously.

Despite their differences in environmental, economic, and productive condi-

tions, the challenges that the beef supply chains face in many countries are similar.

Beef supply chains are linear sequences of activities, from primary production

through to the consumer and waste management. Figure 16.1 is a schematic of a

generic agricultural supply chain, which also encompasses beef and cattle. In this

diagram, industry drivers are highlighted in the top four rectangular boxes, and
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some of the issues that can be modelled and improved using OR are listed as dot

points in the lower boxes. Concrete problems to address include:

• Increasing the reliability of supply chain operations in the event of natural

disasters and environmental changes.

• Adding value to the chain by, for example, finding methodologies that assure

quality and quantity of beef regardless of the season.

• Exploiting potential synergies between different economic actors and between

regions in the same country. A clear example is multi-modal transport in

countries where agriculture and resources are important.

• Exploiting alternatives in the development of feeding, processing, and transpor-

tation operations to increase the value and efficiency of the industry.

• Exploring integrated approaches to production, for example, the development of

multi-species abattoirs or integrated beef and milk production systems.

• Improving pasture and beef management to reduce the variability on the supply

end of the chain.

Likewise, governments share responsibility for the efficient operation of the

cattle producers in their countries by

• Directing rational exploitation of agricultural areas by mapping and zoning land

resources.

• Fostering commercial and technological partnerships among all supply chain

participants.

• Ensuring sustainability of the industry through environmental, safety, and

quality legislation.

Fig. 16.1 Description of a general agricultural value chain (Higgins et al. 2010), highlighting

some important features for achieving sustainability at each segment. Industry level drivers are

listed at the top
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• Stimulating coordinated production programs and systems.

• Regulating licensing of abattoirs and other premises, staff training, export fees,

and taxes.

• Investing in physical infrastructure.

In the particular case of northern Australia, the beef industry is a critical part of

the economy: it is worth over one billion Australian dollars, covers 90 % of the land

area, carries 30 % of the nation’s cattle numbers, and produces 80 % of Australia’s

live cattle exports (Department of agriculture, Fisheries and Forestry 2012). The

north is fundamentally different to the more intensive beef farming industry of the

south because it takes place in an environment characterised by large scale enter-

prises on pastoral lease, low herd density, long distances to market, and significant

annual interruptions of the production and distribution processes due to heat,

drought, and tropical rainfall patterns.

In this chapter, we review common optimisation approaches that have been used

to address some of the above issues and present the northern Australian beef supply

chain as a case study. Section 16.2 introduces the beef supply chain, highlighting its

agricultural and logistical aspects, and provides pointers to existing literature. We

introduce our case study in Sect. 16.3, together with an optimisation tool devised to

assist the stakeholders in deciding on the best choices for infrastructure investment.

The tool solves a facility location and network design model. We discuss prelim-

inary results in Sect. 16.4 and summarise and outline the path for future develop-

ments in Sect. 16.5.

16.2 Review of Relevant Features of the Beef Supply Chain

In this section we review relevant research on particular issues that complicate

management of the beef and livestock supply chain and explain in detail some

optimisation concepts widely used to address them. We organise the review in

problems that stem from the food and agricultural nature of the supply chain and

problems that are inherent to logistics and production. For an exhaustive review,

the reader should refer to Ahumada and Villalobos (2009) and Lucas and

Chhajed (2004).

16.2.1 The Food Supply Chain

The application of OR methods to agricultural chains expanded rapidly in the mid

1990s, as seen in the increase in publications in the OR and agricultural literature

(Higgins et al. 2010). However, success has been limited, partly because published

projects lack a supply chain-wide perspective, and partly because of the inherent

complexity caused by the biological nature of agricultural supply chains.
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This complexity is reflected in high variability, the difficulty to incorporate

sustainability issues, and critical timing to process and market. These problems

(and some of the solutions that have been proposed) are described in the following

subsections.

16.2.1.1 Variability of Biological Processes

Perhaps the distinguishing feature of all agricultural supply chains is their variabil-

ity, which is evident in all temporal and spatial scales. The causes of this variability

are biological, e.g., the genetics of the cattle breeds and pastures of interest,

environmental, as for example the changing weather patterns that affect the yields

and the quality of meat and feed stocks, and socio-economical, as for instance the
changing demand patterns and political decisions that often affect contracted

production agreements.

The most used technique to deal with uncertainty is stochastic programming, as
a survey of the literature shows. Stochastic programming and dynamic formulations

are better suited to capture the temporal variation of uncertain variables. A sto-

chastic program is an optimisation problem where some or all of the parameters are

described by random variables. These formulations are not only harder to solve, but

also require a deeper understanding from the decision maker. In contrast to deter-

ministic solutions, where the solution “prescribes” unique values for the decision

variables, the solution of a stochastic programming problem is the solution that

truly optimises the expected value of the objective function. As a consequence, the
stochastic solution is normally never optimal after the values of the variables are

known, but at the same time, it is hardly ever really bad (Kall and Wallace 1994).

When using this type of model, the decision maker must be aware that the value of

the stochastic solution is in the options it provides in the sense that the solution

suggests some investment decisions in anticipation of realisations of uncertain

variables, e.g., high prices or demands.

Stochastic programming has been used extensively by many authors, for

example, by Boyabatli et al. (2011), who developed a two-stage stochastic recourse

problem for understanding the trade-offs facing a meat-processing company in the

choice of alternative arrangements for sourcing cattle, when that company acts as a

wholesaler into several final product markets. The results showed that higher

variability increases the profits of the processing company, but decreases the reli-

ance on the contract market relative to the spot market. Schütz and Tomasgard

(2011) and Schutz et al. (2009) studied the relationship between uncertainty and

flexibility in a meat supply chain by using a two-stage stochastic programming

model. The authors compared the results of this model to the deterministic expected-

value problem in order to discuss the impact of flexibility in the supply chain. Their

results showed that, given sufficient flexibility in the supply chain, a deterministic

approach to planning may result in better results than a stochastic model. Jiang

et al. (2009) formulated a mixed-integer stochastic programming model of a meat

supply chain and solved it using a Benders decomposition algorithm.
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Other projects have made extensive use of simulation to deal with variability.

McDermott et al. (2005) introduced a simulation model of the New Zealand beef

value chain and analysed three simulation scenarios: changes in land price, wider

use of beef semen in the dairy industry, and introduction of a gene to improve feed

intake. The authors conclude that land price dominates this industry’s ability to

create value in the long run. While reviewing the distinguishing features of fresh-

food supply chains, Bruzzone et al. (2009) presented a case study for the fresh-meat

supply chain of a major retailer operating in northern Italy. They introduced a

simulation system and proposed a heuristic to balance demand and manage vari-

ability. We also note that there are a number of simplified models for many

inherently variable processes related to cattle production systems. An overview of

these can be found in Hirooka (2010).

16.2.1.2 Sustainability

Many aspects of the management of food supply chains are central to ensuring

sustainability, understood as satisfying the needs of the present human generation

without compromising the ability of future generations to meet their needs. Ensur-

ing sustainability requires the analysis of social, economic, and environmental

dimensions (see, for example, Dake et al. 2005; White and Lee 2009).

Sustainability optimisation studies explore a variety of environmental protection

strategies, in addition to the traditional focus on the economics of beef production

only. These include the selection of processing sites (for example, disposal plants as

in Caballero et al. 2007), improvement of farm efficiency (as in Dimara et al. 2005,

who use data envelopment analysis), and disease outbreak and management (Zhao

et al. 2006). Maintaining biodiversity and rationally exploiting natural resources are

also objectives of operational research projects in this area. The study by Havlik

et al. (2006) introduced a linear model which accounted for the joint production of

beef and other agricultural goods in a region of the Czech Republic. This project

focused in joint production of organic suckler cow farms, grassland, and crops. The

model maximised the margin subject to the availability of land resources, produc-

tion capability, and production agreements. The authors explained that European

governments support farm multi-functionality on the grounds of maintaining bio-

diversity. Costa and Rehman (2005) analysed the reasons why farmers encourage

overgrazing in Brazil and assessed the optimal policy using a bi-criteria optimisa-

tion model. The model maximised returns and the asset value of cattle subject to

herd structure, forage and capital restrictions, pasture costs, and minimum herd

requirements. The authors concluded that a certain level of over-grazing is eco-

nomically rational. In Australia, Moloney and Hearne (2009) showed that the

replacement of domestic livestock with native alternatives, or even mixed grazing,

is economically and environmentally viable. The interested reader can find a review

of optimisation and simulation models of livestock farming systems with emphasis

in sustainability in Gouttenoire et al. (2011).
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16.2.1.3 Time to Market

As in all agricultural supply chains, timing and seasonality are also of concern for

beef producers. A good example of the kind of time restrictions imposed on this

type of models is due to Nielsen et al. (2004), who devised a model to optimise

grazing strategy, feed level in winter, and time of fattening and slaughter in organic

steer production. Their dynamic programming model used a multi-level hierarchic

Markov process. Crosson et al. (2006) introduced a model of Irish beef production

systems and used it to investigate how farmers might optimally react to variations in

beef and feed prices, alternative feed sources, and participation in an agro-

environmental scheme that limits nitrogen usage. As is typical for this kind of

system, monthly time intervals were chosen to describe seasonal variations.

Commer (1991) solved a spatio-temporal model of the south eastern United

States to determine the optimal number, size, and regional locations of slaughter

and processing facilities, and to determine optimal regional locations for

backgrounding, feeding, and finishing, given spatially dispersed patterns of weaned

calf supply and beef demand. Glen (1986) introduced a linear program to assess the

performance of an integrated crop and intensive beef production enterprise.

The model assumes that calf breeding and rearing activities form a separate part

of the enterprise, and therefore they are not considered in the model.

16.2.1.4 Flat Payoff Functions

A consequence of the forgiving nature of biological processes is the commonly

found flat payoff functions in economic studies of agricultural activities that strive

to find economically optimal production levels. This has often been cited (e.g.,

Higgins et al. 2010) as a reason for the lack of widespread adoption of operational

research techniques in the primary sector in particular, and of precision agriculture

in general. Pannell (2006) states it very clearly and warns the OR practitioner that

flat payoff curves have important consequences. “A modeller can usually be more

helpful to the decision maker by identifying the shape of the payoff function, and

specially the range over which it is relatively flat, rather than emphasising a single

optimal solution”. Agricultural optimisation models are meant to be used to gain

insight on the processes, not to prescribe “best” solutions.

16.2.2 Optimisation of Livestock Supply Chains

Although beef supply chains are inherently variable due to its biological nature, they

have many features that make them akin to the supply chains of industries in the

secondary sector. In particular, the location of processing facilities is affected by the

closeness of consumption and distribution centres, and for this reason studies on
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cattle and livestock logistics have also focused on infrastructure and investment
decisions, often taking the form of facility location problems. In many studies, they

are considered as variations of the trans-shipment problem. These are reviewed next.

16.2.2.1 Infrastructure

The selection of roads and facilities such as bridges, abattoirs, and agistment farms

is usually modelled as facility location and network design problems. Roads,

bridges, and other facilities are expected to operate for decades, and planning

their layouts and capacities is a non-trivial task that, more often than not, must

consider multiple commodities, transportation modes, and economic interests in the

region of concern. Multiple productive activities are often incorporated in agricul-

tural supply chain models, as in Branco et al. (2010), who formulate a multi-

commodity network flow problem that considers flows of sugar, alcohol, corn,

soybean, soybean oil, and wheat, in order to identify potential hubs for multimodal

transportation in central Brazil. In the same vein, the prototype mentioned in

Sect. 16.5 considers cattle transportation in conjunction with other productive

activities and incorporates a range of transportation modes and commodities. The

cost of transportation infrastructure makes construction projects a long-term invest-

ment, which often is financed by governments.

This is a problem which can be modelled using static, deterministic models that

are invariably limited to decisions taken in a single step. Examples concerning the

location of abattoirs include Cassidy et al. (1970), who presented a study to find the

optimum size and location of beef slaughter plants in the Eastern Central Queens-

land region. The authors showed that, for the year of the study, building abattoirs in

the production-area would reduce the supply chain operating costs by 50 %.

Domingues-Zucchi et al. (2011) introduced a model to determine the optimum

location of new export-oriented slaughterhouses in the Brazilian state of Mato

Grosso. The problem considered supply, demand, and production constraints.

Their results showed that building abattoirs close to the export ports would mini-

mise logistical costs. However, deterministic models fail to capture the uncertainty

of important variables such as demands, distances, and travel times. Sensitivity

analysis has been used to address this shortcoming, as in Broek et al. (2006), who

tested various demand scenarios to assess the results of a linear programme

intended to determine abattoir location. Sensitivity analysis assesses the effect of

varying parameter values on the objective function value, but it does not address the

variability in operation conditions directly. Deterministic models assume that the

values of operating conditions are known, and the optimisation is made as one-time

decision values.

Stochastic programming and dynamic formulations are better suited to capture

the temporal variation of uncertain variables, as discussed in Sect. 16.2.1.1.

Stochastic facility location has been applied by Schutz et al. (2008) to determine

the best location of an abattoir as a two-stage stochastic programming model where

both demand and short-run costs may be uncertain at investment time. Brown and
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Drynan (1986) stressed the inability of deterministic models to produce results that

adequately reflect variability in cattle supplies and produced a stochastic model to

select potential sites for abattoir construction. The interested reader can find a

review on strategic facility location in Owen and Daskin (1998) and an introduction

to facility location problems with stochastic demands in Berman and Krass (2001).

16.2.2.2 Transportation and Logistics

Food distribution is nowadays a global business that enables most countries access

to most foods all year round. Food supply chains have become more complex,

leading to a dual emphasis on quality preservation and efficiency. The early paper

by Cassidy et al. (1970) to determine the location of abattoirs in Queensland is

formulated as a modified transshipment problem. Judge et al. (1973) analyse the

inter-regional transport of meat in the United States in order to determine the

optimal geographical flows and prices of livestock and meat.

Because the cattle and beef supply chain is a system where decision making is

distributed, companies have also tried to learn from other participants’ experience

in the logistics of distribution. For example, Simons and Taylor (2007) report on a

study where the participants of the red meat supply chain in the UK work together

to cooperatively identify and implement improvements in chain performance that

would not be available to companies working individually. Surprisingly, for many

of the participants this was the first attempt to reach out and coordinate actions with

their partners, other than immediate customers.

We would like to finish this section stressing that modelling beef supply chains is

a complex task and modelling some of its aspects necessarily require simplifica-

tions. For example, a common simplification is to consider a spatial network by

selecting representative locations, as is the case in the papers by Commer (1991),

Branco et al. (2010), and Domingues-Zucchi et al. (2011). Other projects address

complexity by focusing on individual stages of problems in the supply chain, as in

Stott et al. (2003), who use linear programming to assess the relative contribution

that disease prevention could make to farm income and to its variability, or Stygar

and Makulska (2010), who provide a review of optimisation and simulation models

used for herd management. Most studies neglect the loss of weight that the cattle

experience when they are transported over long distances.

16.3 Case Study: The Northern Australia Beef
Industry Strategy

Cattle and beef production is an important economic activity in Australia.

The 2010–2011 Australian farm exports earned the country $32.5 billion

(Australian dollars), of which beef and veal production contributed 17 %.
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The increase on demand was of $400 million from the 2008–2009 to 2009–2010

financial years, and of $600 million from 2009–2010 to 2010–2011. Australia

exported 937,301 tonnes of beef and veal in 2010–2011, worth $4.5 billion. The

major export markets for beef and veal are Japan (37 %), the United States (17 %),

and Korea (15 %) (Department of Employment, Economic Development and

Innovation 2010). Australian live cattle exports were worth $660 million in

2010–2011, predominantly exported to Indonesia (57 %), Turkey (13 %), and Israel

(7 %). Cattle processing is expected to rise 13 % to a capacity of 9.5 million heads,

whereas production is projected to reach 2.4 million tonnes by 2015. Assuming

continued export to foreign markets and average seasonal conditions, the Australian

cattle herd is expected to increase to 29.7 million head by 2015, 11.9 % higher

than in 2010.

During the 1980s and 1990s many abattoirs in Australia closed. One detailed

case is presented in Piggot et al. (1987), who analysed the cost structure of a single

abattoir through a simulation study and identified the problems that led to difficul-

ties in covering its variable costs. The main of these is the fact that the abattoir did

not adjust its fee for service in a timely manner, but it has been reported that other

abattoirs did also close due to an increasing dominance of Indonesian buyers of live

cattle (Strategic Design and Development, Meateng Pty Ltd 2010).

Recent evidence indicates that the economic environment is changing.

According to the study in Meateng Pty Ltd (2012) and Kearney (2012), there is

evidence of a shift in the global market for beef consumption, with demand

stagnating in traditional northern hemisphere markets and growing rapidly in

parts of Asia and the Middle East. In order to capitalise on this opportunity, the

corresponding government’s taskforce has identified potential to increase produc-

tion from Australia’s northern cattle herd through the intensification of production

and greater diversification and flexibility in land use. To realise this potential, the

governments of the northern states of Australia are working with industry to

provide a comprehensive analysis of the livestock industry value chain. This

analysis is part of a plan known as the Northern Australia Beef Industry Strategy,
or NABIS.1 The analysis of the livestock industry value chain presented in this

section optimises the infrastructure and transport logistics of the beef supply chain

while considering production, transport and handling of live cattle, processing,

retail, and exports.

Cattle production in the north of Australia is fundamentally different to the more

intensive beef farming industry of the south. Northern beef production takes place

in an environment characterised by large scale enterprises on pastoral lease, low

herd density, long distances to market, and significant annual interruptions to turn-

off due to heat, drought, and tropical rainfall patterns. These are important chal-

lenges that must be addressed in a highly competitive global market

(Strategic Design and Development, Meateng Pty Ltd 2010).

1 www.regional.gov.au/regional/ona/nabis.aspx, retrieved 19 Sept 2012.
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Figure 16.2 shows a schematic of the northern Australian supply chain. Breeding
properties typically produce weaner calves to about the age of about 8 months,

when their weight is approximately 330 kg. These cattle can then be sold to live
export for finishing in other countries. Many breeding properties do not have

enough forage to produce cattle to slaughter weight. Such cattle are transported

by road trains to finishing propertieswhere they are grass-fed, or to a more intensive

confined feeding system (or feedlot) where they are grain-fed. Cattle spend a

minimum of 100 days in feedlots until they reach suitable weight categories for

sale. In sale yards, cattle of multiple classes are sold by auction, which includes

sales for abattoirs, breeding, and for further finishing. Abattoirs transform the

finished cattle into frozen or chilled meat products. Abattoirs vary significantly in

terms of throughput (up to 2,000 head per day) though Australia’s largest 25 abat-

toirs account for 61 % of production. Once processed, meat is either transported in

refrigerated containers to terminals or to domestic wholesale.

The preliminary model we introduce in the next subsection considers only two

stages: the transportation from breeding to agistment farms (i.e., feedlots and

finishing properties), and the transportation from agistment farms to abattoirs.

The questions the case study addresses are:

• At what locations should meat processing take place so as to minimise trans-

portation costs subject to infrastructure choices and budget?

• What transportation infrastructure is crucial to keep the beef value chain

operating?

• What are the flows to be transported and processed among facilities during the

time horizon?

Fig. 16.2 Schematic of the northern Australian beef supply chain. Reproduced from the study in

Meateng Pty Ltd 2012
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16.3.1 The Model

The purpose of the preliminary model described in this subsection is:

Given the locations of breeding and agistment farms, potential abattoir sites, unit trans-

portation costs, road maintenance and construction costs, and cattle production, determine
the transportation routes and location of the abattoir(s) that minimise the total costs subject
to road network constraints, farm and abattoir capacity constraints, and budget.

The region of Western Australia under consideration is shown in Fig. 16.3. This

model incorporates two key findings reported in the feasibility studies of Strategic

Design and Development, Meateng Pty Ltd (2010) and Meateng Pty Ltd (2012).

Firstly, that unpredictable supply and high labour costs caused by transporting

livestock could be ameliorated if the agistment sector was developed. This is

considered in the first stage of the solution methodology, which considers the

transportation from properties to farms where agistment can take place. Secondly,

that access to a processing stream would be of significant benefit to producers, who

are exposed to tightening live export market constraints. However, this will not be

viable in competition with a strong live export trade, and without tangible

Fig. 16.3 The region under

consideration for the

optimisation model. The

highlighted area covers an

area of approximately

180,000 km2
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government support and producers’ commitment. For this reason, the second stage

of the methodology assumes that all cattle are processed in the abattoir, i.e., there

are no live exports. An additional advantage of this assumption is that processed

meat product can be transported more cheaply than live cattle.

The model we present considers only two stages: the transportation from breed-

ing to agistment farms, and the transportation of agistment farms to abattoirs. As

noted above, we disregard live exports, assuming all cattle are processed in the

abattoir and reflecting the current restrictive constraints on the live export trade. We

acknowledge that incorporating live exports is an important extension since, cur-

rently, most production goes to export. However, the model outlined here is a good

starting point because it addresses the questions of the feasibility of an abattoir in

the north and the design of alternative transportation routes in case of disruptions.

The problem considered is as follows: cattle are transported in truckloads from

the properties to fattening farms, possibly through intermediate junctions, where

they spend a number τ of periods until they are ready to be sent to the abattoir. The

problem is solved in two stages. In the first stage, we solve a trans-shipment

problem with inventory to determine the amount of cattle ready for slaughtering

after the agistment period. In the second stage, we solve the facility location

problem to find the locations of the abattoirs that minimise total costs. In contrast

to Domingues-Zucchi et al. (2011), we do not calculate centroids for the demand

centres, but consider the actual distances between facilities. The following sub-

sections explain these sub-problems in greater detail.

16.3.1.1 Nomenclature

The parameters and variables used in the model are defined next.

Sets

D The set of transhipment points.

F The set of agistment farms.

A The set of potential abattoir sites.

KFA The set of commodities to be transported from agistment farms to abattoirs.

LFA The set of valid links from farms to abattoirs. Locations of the abattoirs are

not known a priori.

S The set of properties.

T The set of all periods.

Decision variables

DFAit The number of truckloads supplied to the abattoir(s) by farm i 2 F [ Af g.
This decision variable is used for the facility location problem, which

considers flows from farms F to abattoirs A.
pit Number of truckloads of cattle held at farm i at time t.
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qijut Number of truckloads of livestock that flow on link (i, j) E LSF that enter a

time u and leave at time t, that is, after agistment (properties and farms).

wk
it

Fraction of demand of k served by node i at time t.

xij Indicator variable, takes value one if link (i, j) E LSF is open (agistment

farms and abattoirs) and zero otherwise.

ykijt Fraction of demand of commodity k EKFA that flows on link (i, j) E LFA at

time t (farms and abattoirs).

zi Indicator variable, takes value one if abattoir is located at node

i 2 F [ Af g and zero otherwise.

Parameters

τ Number of periods required to fatten a truckload of livestock.

Vijt Availability of link (i, j) between properties and farms at time t.
B Total budget allocated to facility construction.

cij Cost of constructing link (i, j).
DSFit Demand (or supply) of site i at time t. This parameter is used for the trans-

shipment problem, which considers flows from properties S to farms F.
fi Cost of setting an abattoir in location i.
FKj Total capacity (in truckloads) of farm j.

TC
0
ijt

Transportation cost from nodes i to j at time t, i, j 2 F [ Af g in dollars.

TCijt Transportation cost from nodes i 2 S [ Df g to j 2 F [ Df g at time t in
dollars per truckload.

16.3.1.2 Cattle Flows from Properties to Farms

The first stage of the supply network is the transportation from properties to

fattening farms, which is modelled as a trans-shipment problem with constraints:

X
u2T

X
j2 S[Ff g

Vjitqjiut �
X
u2T

X
j2 S[Ff g

Vijtqijut ¼
DSFit if

X
j2 S[Ff g

Vijt > 0

0 otherwise

8<
: ð1Þ

for all i 2 S and for all t 2 T. For the farms,

X
u2T

X
j2 S[Ff g

Vjitqjiut �
X
u2T

X
j2 S[Ff g

Vijtqijut ¼ �DSFit þ pit ð2Þ

for all i 2 F and for all t 2 T, where Vijt is the availability of link (i, j) between
properties and farms at time t and DSFit is the number of truckloads supplied by the

properties and farms. Note that the model considers that the agistment farms
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produce truckloads of cattle, just like any other property. Constraints (2) state that

the sum of all inputs plus production must equal total outputs; if site i is a farm,

accumulation (agistment) is permitted. The necessary number of periods to fatten

each truckload of livestock, denoted by τ, is captured in

X
j2S

qjitt ¼ qii, tþτ 8i 2 F, 8t 2 T: ð3Þ

The model assumes that agistment farms can only accommodate a limited number

of truckloads of cattle. This farm holding capacity constraints are expressed as

pit � FKi 8i 2 F, 8t 2 T: ð4Þ

The objective function of this sub-problem minimises the total costs of trans-

portation from properties to agistment farms, in order to determine the optimal

design of the transportation network:

Minimise
X
i;jð Þ2LSF

X
t2T

X
u2T

TCijtuqijtu ; ð5Þ

where qijtu is the number of truckloads transported between properties and farms

and TCijt is the transportation cost of commodity k from nodes i to j at time t. The
links correspond to the existing road network in the Pilbara region.

16.3.1.3 Cattle Flows from Farms to Abattoirs

For the second sub-problem it is necessary to define a commodity k, which represents
the truckloads of live cattle sent from a given farm to an abattoir. Let xij be variables
that indicate if link between nodes i and j are open between fattening farms and

abattoirs, ykijt the fraction of demand flows of commodity coming from node k on link

(i, j) at time t between farms and abattoirs, zi a variable that indicates if an abattoir is

located at node i, and wk
it the fraction of demand of k served by node i at time t.

This stage of the formulation is a combined network design and facility location

problem that assumes that the demand of the nodes selected as facility is in fact

served by a super-node; see Melkote and Daskin (2001a, b) for details. The flow

conservation constraint for the nodes selected as abattoirs i is

zi þ
X

j2 F[Af g
xij ¼ 1 8i 2 F [ Af g; ð6Þ

which says that nodes selected as abattoirs fulfil the total demand, and that there are

no outbound links transporting livestock from the sites chosen to be abattoirs. We

assume that the sets S,F � Sare known, but the locations of A are not and need to be
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determined as from the set of farms and proposed abattoir sites as a facility location

problem.

For the case where i is the destination of k, we have

zk þ
X

i2 F[Af g, i 6¼k

wk
it ¼ 1 8k 2 F [ Af g, 8t 2 T; ð7Þ

which says that the demand of all other nodes that are not abattoirs is supplied by

the abattoirs. Equations (6) and (7) specify zero demand for the nodes that are not

selected as abattoirs. Conservation constraints for selected and non-selected links in

the network design are

xki þ
X

j2 F[Af g
ykjit ¼

X
j2 F[Af g

ykijt þ wk
it 8i, k 2 F [ Af g, i 6¼ k, 8 k; ið Þ 2 LFA, 8t 2 T

ð8ÞX
j2 F[Af g

ykjit ¼
X

j2 F[Af g
ykijt þ wk

it 8i, k 2 F [ Af g, i 6¼ k, 8 k; ið Þ=2LFA, 8t 2 T ð9Þ

where wk
it is the fraction of demand of k served by node i at time t. Constraints (8)

and (9) are the conservation equations for links that remain open and those that do

not, respectively. Also, flow is only permitted in the links that are part of the

transportation design from farms to abattoirs,

ykijt � xij8 i; jð Þ 2 LFA, 8k 2 F [ Af g, i 6¼ k, 8t 2 T ð10Þ

and demand from an individual farm is served by a node only if this node is selected

as an abattoir,

wk
it � zi 8i, k 2 F [ Af g, i 6¼ k, 8t 2 T: ð11Þ

Because we only care if links are open and not about their direction, we state that

xij þ xji � 1 8 i; jð Þ 2 LFA, 8t 2 T: ð12Þ

To assess the trade-off between allocating resources to operations or facilities,

we add the budget constraint

X
i2N

f izi þ
X
i;jð Þ2LFA

cijxij � B; ð13Þ

where B is the budget allocated to facility construction and cij is the cost of

constructing link (i, j).
The objective function of the facility location sub-problem minimises the sum of

the transportation costs.
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Minimise
X

i, j2LFA

X
t2T

X
k2KFA, k 6¼i

TC
0
ijtijty

k
ijt þ TC

0
jity

k
jit

� �
; ð14Þ

where TC
0
ijt are the transportation costs in link (i, j) and time t.

Finally, the integrality and non-negativity constraints are

qijtt0 � 0 8 i; jð Þ 2 LSF, k 6¼ i, 8k 2 KSF; ð15Þ
ykijt � 0, xij 2 0; 1f g, 8 i; jð Þ 2 LSF, k 6¼ i, 8k 2 KSF; ð16Þ

wk
t � 0, zi 2 0; 1f g, 8i, k 2 F [ Af g, k 6¼ i: ð17Þ

16.3.1.4 Solution Procedure

The network design and facility location problem is solved according to the

following steps:

1. Solve the trans-shipment problem for the whole time horizon T to determine the

number of truckloads sent from the properties qijt and the inventories in farms pit.
2. Calculate the number of truckloads that must be transported from each farm to

the abattoirs as

DFAit ¼ qii, t�τ, t 8i 2 A [ Ff g:
3. Calculate the transportation cost from farms to abattoirs TC

0
ij ¼ TCijtDFAit.

4. Solve the facility location problem using the transportation cost calculated in

step 2 in objective function (14).

The rationale for separating the problem in two stages is as follows. The purpose

of the facility location/network design problem in the second stage of the algorithm

is to devise a longer-term, strategic plan to guide investment in road and abattoir

construction. The funding of these is likely to come from a central source (e.g. State

or Commonwealth governments), and it is of interest to policy makers. By contrast,

the multi-period distribution of young animals for agistment in Step 1 of the above

algorithm is funded mainly by the farmers. However, the total number of truckloads

of cattle ready for processing after agistment must be calculated before agistment

planning. Determining the optimal road network is critical to keep the beef supply

chain operating, and it is of interest to policy makers only.

16.3.2 Data Set

The locations of a number of cattle stations in the Pilbara region are shown in

Fig. 16.4. For the preliminary model presented in this paper, the amount of cattle

produced by each property was simulated from a Uniform (500, 8,500) distribution

and normalised so that the average is 280,000 head divided by the number of
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properties. The number of heads is the current estimate of the total herd’s size for

this region. Most of the parameter values were taken from the studies in Strategic

Design and Development, Meateng Pty Ltd (2010) and Meateng Pty Ltd (2012) for

calculation.

16.4 Results and Discussion

All the results presented here were obtained using lpsolve 5.5.2.02 in a 64-bit Intel

Xeon CPU with 2 processors of 8 cores (2.27 GHz) each and 48 GB of RAM.

To show changes in the actual designs as a function of budget, Fig. 16.6a–d show

the structure of the supply network, including the selected abattoirs. In this figure,

Fig. 16.4 All properties, farms, and candidate abattoirs. Properties are marked in green, agistment

farms in orange, and road junctions in red. Existing roads are shown in gray, proposed roads in

orange. In the simulation, all the properties inside the area marked in yellow lose production and

link with the rest of the network during the months of December, January, and February

2 http://lpsolve.sourceforge.net, retrieved 12 May 2012.
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sites selected as abattoirs are shown in red, existing roads are marked in green, and

proposed roads are marked in blue. Designs a and b recommend the construction

of one abattoir (Roebourne), design c recommends the construction of two

abattoirs (Roebourne and Pippingarra), and design d recommends three abattoirs

(Roebourne, Ettrick, and Braeside). It is interesting to note that the three sites

considered by the feasibility study (Strategic Design and Development, Meateng

Pty Ltd 2010) as more likely to host an abattoir in the region, namely Karratha,

Newman, and Port Hedland, are very close to sites selected by the optimiser

(Roebourne, Braeside, and Pippingarra). This can be appreciated in Fig. 16.6:

Roebourne and Karratha are located in the northwest, Port Hedland and Pippingarra

are located in the northern coast, and Braeside and Newman are in the south of the

region under study. Although the closeness between the sites selected by the

optimiser and those proposed by the feasibility study does not validate our model,

it at least gives credibility to the magnitude of the parameters chosen.

There is one feature worth noting in these results. Figure 16.5 shows that there

are not many agistment farms in the central part of the area under study (orange

Fig. 16.5 All farms and candidate abattoirs to be used in the facility location/network design

problem. Existing roads are shown in gray, proposed roads to be built are coloured in orange. All
farms (marked in orange) are also potential abattoir sites, whereas sites marked in green are simply

potential abattoir locations that do not produce cattle
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sites). For this reason, the solution that corresponds to Figure 16.6a prescribes a

road from Nanutarra to Carlindi, a path that seems counter-intuitive because the

abattoir is located closer to Nanutarra. However, aggregating truckloads and

transporting them through already-built roads is more economic, although at the

expense of higher transportation costs (see Fig. 16.7). This result may be the

product of not using accurate, realistic data. However, in an area as large as

northern Australia, it is not unlikely to have very big extensions of land without

sites of any type, so a more realistic model could easily produce similar results. This

is something that deserves further investigation once we have access to more

realistic data sets.

Figure 16.7 shows the expenses the policy maker would incur as a function of

total budget. This figure provides insight into the question of resource allocation: as

the total budget increases, both the transportation cost and road maintenance costs

decrease, whereas more money is invested in new abattoirs and roads. According to

the figure, an acceptable compromise would be attained with a budget of around

$70M, although the parameter values used seem to produce a very flat curve of total

costs in the region neighbouring this budget of $70M.

Fig. 16.6 Sites selected as abattoirs (marked in red) and network design. Existing roads are

marked in green and proposed roads are marked in blue. The total budgets for each design are (a)
$50M, (b) $93.3M, (c) $100M, and (d) 130M. Designs (a) and (b) recommend the construction of

one abattoir (Roebourne), design (c) recommends the construction of two abattoirs (Roebourne

and Pippingarra), and design (d) suggests building three abattoirs (Roebourne, Ettrick and

Braeside)
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Figure 16.8 is a breakdown of all costs. Total investment costs are made up of

abattoir construction costs and road construction costs. The steps in the abattoir

construction cost line show clearly that it is optimal to build a second abattoir when

the budget is equal to or greater than $97M, and a third abattoir after the total budget

Fig. 16.7 Plot of all costs

as a function of budget

Fig. 16.8 Breakdown of all

costs as a function of budget
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exceeds $124M. However, the total investment costs in Fig. 16.8 when building a

second abattoir with a budget of around $97M are smoothed by a spike in road

construction. Once there is an advantage on building a second abattoir, the con-

struction costs suddenly decrease to increase again with the budget at around

$104M. It is also worth noting that there is a wide range where the cost components

do not vary much, from around $70M until $87M, which explains the relatively flat

payoff curve in Fig. 16.7.

Figure 16.9 shows the components of the total costs when the roads and

properties in the coast of the Pilbara are affected by cyclones from December

until February. In this case, the changes in the optimal investment decisions change

substantially within a short budget range. The policy maker is advised:

• To build two abattoirs if the budget is of around $84M and decrease the road

construction costs,

• To build one abattoir only in case the budget is of around $90M and invest more

in-road construction,

• To build two abattoirs if the budget increases to approximately $97M. The road

construction costs decrease slightly.

Although the payoff curve for the supply chain affected by cyclones (not shown)

is also flat and not too different to the payoff curve of the unaffected supply chain

(Fig. 16.8), the cost breakdown is significantly different. This can be seen clearly in

the budget interval spanning between $80M and $100M: the amounts of money are

earmarked under different headings in Figs. 16.7 and 16.8 inside this interval. These

are important changes that are not self-evident, and a study like the one presented

here could unveil similar patterns that could potentially save the stakeholders

hundreds of thousands of dollars.

Fig. 16.9 Breakdown of all

costs as a function of budget

for affected coastal towns

and roads during the austral

summer
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16.5 Conclusions and Directions for Research

In this chapter, we have reviewed the food/agricultural and production/logistics

aspects of the beef supply chain, and some commonly operational research tech-

niques used to address them. We also presented a model of a trans-shipment and

network design/facility location problem that selects segments of the road network

to upgrade, and abattoirs from a set of potential sites in the Pilbara region of

Western Australia. The model provides insight on the trade-off between resource

allocation to facilities and links.

Cattle raising in the north of Australia is characterised by large scale enterprises

on pastoral lease, low herd density, long distances to market, and significant annual

interruptions to turn-off due to heat, drought, and tropical rainfall patterns. The

trade of livestock from north Western Australia has recently become more vulner-

able to policy and environmental changes. For instance, the dependence on live

export as a market for cattle produced in the Rangelands of Western Australia has

become a major source of risk to the viability of pastoral enterprises.

The model considers recommendations of two existing feasibility studies in

that, first, unpredictability in supply and high labour costs caused by transporting

livestock could be ameliorated if the agistment sector was developed, and second,

that access to a processing facility would be of significant benefit to producers as

long as this facility does not operate in competition with live exports. The former

is considered in the first stage of our methodology (i.e., the trans-shipment

problem), whereas the latter is a basic assumption of the model. The values of

the parameters are close (for the most part) to what these feasibility studies

recommend.

The results show a clear trade-off between investment and transportation costs.

As observed by Pannell (2006), the pay-off curve of this primary industry’s supply

chain turns out to be quite flat. This is a result of aggregated investment costs;

however, splitting these costs by heading provides valuable insight into long-term

decisions that are not trivial. For example, there are narrow ranges of budget

expenditure where it is optimal to build two abattoirs, and outside these ranges,

it is optimal to build only one abattoir. Investment advice provided by this or

similar models could potentially unveil savings of hundreds of thousands of

dollars.

It is interesting to note that the three sites considered by the feasibility study as

more likely to host an abattoir in the region, namely Karratha, Newman, and Port

Hedland, are very close to sites selected by the optimiser (Roebourne, Braeside, and

Pippingarra). The model presented here is preliminary and a number of issues

remain to be investigated, including seasonality. For example, it has been reported

that some sites, if commissioned as abattoirs, would most profitably operate as dual-

species facility. This would balance out supply variations due to seasonality

regarding cattle: goat supply is at its lowest in winter, when cattle supply is at its

highest. The possibility of considering multiple species and seasonality will be

incorporated in the model in the future.
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We would like to stress that active assistance from the state and regional

governments will be required to stimulate the development of the beef industry

sector in the north. This assistance should balance societal factors, not necessarily

relevant to the feasibility case study introduced in this chapter, which will influence

the viability of new abattoirs in northern Australia. A clear example of these is the

competition from the mining and resources industries to recruit suitably skilled

labour in areas with relatively low population density. A regional development plan

is a necessary pre-requisite for any abattoir development; the model presented is

just an initial step assisting the stakeholders in devising such plan.

Finally, the abattoir selection model presented is part of a larger research effort

in logistics. In addition to the problem described in this chapter, we are undertaking

a number of projects in the agricultural, mining, and services industries that use

network optimisation algorithms implemented in a newly developed software

platform known as the Infrastructure Futures Analysis Platform (IFAP). IFAP

(Fig. 16.10) makes extensive use of Geographic Information Systems, and in the

near future its capabilities will be extended to answer a wide range of transport

infrastructure planning questions. IFAP will be used to provide a commercial

software implementation of the abattoir location problem.

Fig. 16.10 The Infrastructures Futures Analysis Platform (IFAP) makes extensive use of Geo-

graphic Information Systems and implements network optimisation methods to determine the most

cost-effective capacity, location, and maintenance sites of major transport links, interchanges, and

ports in time horizons of up to 25 years
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Chapter 17

Optimal Delivery of Pigs to the Abattoir

Lluı́s M. Pl�a-Aragonés and Sara V. Rodrı́guez-Sánchez

17.1 Introduction

During last years, the increment of competition between intensive pig producers has

caused the marginal benefits per unit of product to reduce. Pig production has

changed a lot during the last decade within the European Union (EU) as well as in

the rest of the world. Statistics of the Food and Agriculture Organization of the

United Nations (FAOSTAT 2013) has outlined the European Union (EU-28

members) as the second-largest producer in the world, after China. The evolution

of the modern pork industry is a result of the global economy, advances in

technology, scientific developments and changes in social and cultural attitudes

(Taylor 2006; Trienekens et al. 2009). Economies of scale have continued to

accelerate changes in the pork production industry (Perez et al. 2009; Ohlmann

and Jones 2011). As general response, a concentration of production to maintain

past profit levels is performed provoking a reduction in the number of farms

although their sizes are increasing (Perez et al. 2010; Khamjan et al. 2013;

Nadal-Roig and Pl�a 2014). Additionally, consumer concerns about environment,

animal welfare, food safety and food quality are becoming new challenges for the

pork industry (Backus and Dijkhuizen 2002; Rodrı́guez et al. 2014). As a result, the

profile of the typical farm is changing from a family-based, small-scale, indepen-

dent firm to one in which larger firms are more tightly aligned along the pig

production and distribution processes (Perez et al. 2010; Rodriguez 2010).

Traditionally, judgement based on experience had been the basis for the

production planning on individual farm units, but the increasing complexity of
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the pork industry made the development of more formal planning methods

necessary (Boland et al. 1993; Pl�a 2007; Rodrı́guez et al. 2014). The usual planning
problem in fattening pig units is related with the optimal delivery to the abattoir of

fattened pigs. Visual inspection is used for selecting pigs to be delivered as the

cheapest method, whilst novel information technology solutions remain expensive

for this purpose (Pl�a-Aragonés et al. 2013). Hence, the objective of this paper is to
formulate a mixed-integer linear programming model (MILP) describing a fatten-

ing pig unit operating under all-in-all-out (AIAO) strategy. The interest of the

model is to maximise the revenue from deliveries of pigs according to a carcass

classification. It is assumed that the farm is vertically integrated and all production

is sold to an abattoir prescribed by the company into which the fattening farm is

integrated.

The organisation of this chapter is as follows. We present in Sect. 17.2 a brief

description of the problem highlighting the role of the growing process. In

Sect. 17.3, we describe the proposed model whilst in Sect. 17.4, we present main

computational results that are discussed in Sect. 17.5. Finally, we present the

conclusions in the last section.

17.2 Fattening Pigs and the Delivery to the Abattoir

Fattening pig farms are the place where pigs are fattened before being sent to the

abattoir. Therefore, these farms can be seen as growing places for pigs till they

reach a marketable weight. According to Whittemore and Kyriazakis (2006), the

live weight of slaughtering pigs in Europe is around 115 kg. Nevertheless,

slaughtering weight can vary considerably according to the country, region and

abattoir. The same authors value this variation at the 30–50 % of the mature size.

For instance, in Spain, slaughtering weight is around 100 kg, but if pigs are intended

to produce cured products (e.g. ham or chorizo) or dealing with the Iberian pig

breed, then the slaughtering weight is higher reaching the 140 kg.

The most extended management of fattening farms is the AIAO management.

AIAO management is practised by the majority of producers with large facilities or

as a part of a vertically integrated company. As a result, the entire facility is emptied

for cleaning before replacing the actual batch of pigs with a new one (Ohlmann and

Jones 2011). The main advantage of AIAO management is the disease control and

prevention. The easier cleaning and disinfection of facilities between batches

makes difficult the spread of illness and disease. In practice, this means all young

pigs are entered at the same time in the farm and sold also at the same time within a

narrow time window. Once the farm is empty, a cleaning and drying period of a

week as maximum follows before a new batch of young pigs arrive. The farmer

must determine when to send pigs and deliver them to the abattoir because not all of

them reach marketable weight at the same time even though they have the

same age.
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Spanish pig production is highly specialised and mostly controlled by big

companies or cooperatives, namely, integrators (Ouden et al. 1996; Rodrı́guez

et al. 2014). Then, optimal delivering policies of pigs for individual farms may be

different when operating as an independent producer or as an integrated one.

Integrated farmers has less control about the composition of the batch of pigs in

terms of number of animals, suppliers, weight distribution at the beginning, feed-

stuffs, maximum duration of fattening, etc. Differences in marketing strategies are

mainly due to different weight distributions at the beginning of the marketable time

window. Additionally, consumer concerns about environment, animal welfare,

food safety, food quality and healthier diets have led to a grading system of

payment prioritising leaner carcasses (Pl�a-Aragonés et al. 2013; Rodrı́guez

et al. 2014). Hence, the determination of when to start to deliver pigs of a batch

to the abattoir and which and how many pigs to sell is the central problem to the pig

manager.

We model the decision-making problem of delivering pigs to the abattoir as an

MILP that determines the marketing strategy that maximises expected profit. By

discretising the population into appropriate growth clusters, meat quality and

carcass weight categories, we formulate a mixed-integer programme. We solve

the problem for one individual farm considering the full fattening process. Addi-

tional expected benefits of the model are the analysis of different marketing

windows, transport costs and homogeneity in the growth of the batch of pigs.

17.3 Modelling a Fattening Pig Farm

17.3.1 Approaching the Life Weight of a Group of Pigs

The fattening process is basically a growing process of pigs. Many mathematical

models are used in order to describe the growth of domestic animals in the attempt

to predict optimal slaughter time and weight. As growing is not equal for each

individual, a batch of pigs at the same age has a natural mean weight and variation.

Our approach is based on a discretisation of a given regression growth curve (Castro

2001; Pl�a-Aragonés et al. 2013). Hence, the regression provides the normal weight

distribution over time: mean and standard deviation of the live weight for a given

herd of pigs at the same age. The growth curve is based on experimental data

representing a particular breed and fitted for male pigs. If we assume a normal

distribution of live weight,W � N μ, σ2ð Þ, then the truncated normal distribution of

W between A and B, TW � N μA�B, σ
2
A�B, A, B

� �
, has as expectation:

μA�B ¼ E TWð Þ ¼ μþ σ φ A�μ
σ

� �� φ B�μ
σ

� �� �
Φ B�μ

σ

� ��Φ A�μ
σ

� � ð17:1Þ
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where φ is the standard normal probability density function and Φ the cumulative

distribution function of a normal standard distribution. Hence, the truncated normal

allows us to calculate the expected live weight of a group of pigs falling into a

specific weight range within a herd.

17.3.2 The Model for Optimal Delivery

The decision variables involved in the problem are related either to the number of

pigs present on the farm (i.e. the inventory over time) or those sold to the abattoir

forcing to update the inventory on the farm. Complementary to that, the number of

trucks to deliver pigs can be considered. The nature of these decision variables is

integer: pigs or trucks. Other logical operation rules of pig deliveries to the abattoir

have to be taken into account. For instance, weight distribution and visual inspec-

tion of pigs lead to consider the selection of heavier pigs to be delivered to the

abattoir. There would not have sense the delivery of lighter pigs to the abattoir

being some heavier ones present. Modelling these rules may lead to consider

additional variables. The formulation of the complete model follows.

17.3.2.1 Set and Indexes

P¼ {i} set of partitions applied to the batch of pigs, P. Each individual belonging to
a partition is assumed that will grow according to similar parameters. Thus, this

subscript represents a growth category preserved along the fattening period.

T¼ {t} set of periods of time in which the fattening phase is divided, i.e. number of

weeks.

17.3.2.2 Parameters

N: number of pigs in a batch.

jPj: number of groups in which the herd is divided.

Wt � N μt, σt
2ð Þ: live weight distribution of the batch at week t.

TWti � N wti, σti2, i� , iþð Þ: truncated live weight distribution of the partition i at
week t, being i� and i + the extreme weights bounding the partition.

Cct: load capacity of trucks in number of fattened pigs covering the path to the

abattoir.

Lw: averaged maximum live weight of loaded pigs to calculated the maximum load

capacity of trucks in kg of weight.

Pv: is the base selling price in € per kg of live pig.
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Bonus (gender, % leanit, wcarcassit): is a bonus if positive, or a penalisation if

negative, on the base selling price that the abattoir computes depending on

carcass weight and the lean percentage.

Gender: can be male, female or castrated.

% Leani: lean composition of a pig estimated from the live weight of pigs.

wcarcassi: carcass weight estimated from the live weight of pigs.

p0: represents the unitary cost of purchasing a growing pig to be fattened.

Ct: is the unitary cost for one trip to the abattoir.

Cft: is the accumulated cost of feedstuff or concentrates consumed on average by a

pig till the t-week.
kit: represents the unitary cost associated to other costs per sold pig.

K: fixed costs associated to a batch like cleaning and disinfection.

17.3.2.3 Decision Variables

Xit: number of pigs at growth stage i, sent to the abattoir at week t.
Nit: inventory of pigs at growth stage i and week t.
hit: binary variable, {0, 1}, representing two consecutive growth stages (i�1 and i)

sending pigs to the abattoir at week t when it takes the value 1 or 0 otherwise.

dit: binary variable, {0, 1}, representing whether pigs at growth stages i and time

t are sent to the abattoir when it takes the value 1 or 0 otherwise.

Yt: integer variable representing the number of trucks needed to transfer pigs from

the farm to the abattoir at week t.

The proposed deterministic model maximises the total profit of the production and

delivery of a batch of fattened pigs to the abattoir, and the feasible solutions must

satisfy a set of constraints that mainly concern the population dynamic behaviour,

given by the following optimisation problem:

Maximise R ¼ I Xitð Þ � C Xitð Þ
¼
X
it

Xit � wit � Pvþ Bonus gender, % leanit, wcarcassitð Þð Þ

� p0 � Nþ
X
t

Ct � Yt þ
X
it

Cf t � Xit

� �þX
it

kit � Xitð Þ þ K

 !
ð17:2Þ

s.t.

Ni1 ¼ N=
��P��� � 8i 2 P ð17:3Þ

Nitþ1 ¼ Nit � Xitð Þ 8i 2 P, t 2 T\ Tj jf g ð17:4Þ

Xit � Nit þ N 1� hitð Þ 8i 2 P, t 2 T ð17:5Þ
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Xit � Nit � N 1� hitð Þ 8i 2 P, t 2 T ð17:6Þ

N
i
��T�� � X

i
��T�� � 0 8i 2 P ð17:7Þ

XPj j

i¼1

Xit � Cct � Yt 8t 2 T ð17:8Þ

XPj j

i¼1

Xit � wit � Cct � Lw � Yt 8t 2 T ð17:9Þ

Xit � N � dit 8i 2 P, t 2 T ð17:10Þ

hit � dit 8i 2 P, t 2 T ð17:11Þ

dit þ diþ1t � 1þ hiþ1t 8i 2 P\ Pj jf g, t 2 T ð17:12Þ

The objective function (17.2) accounts for income and cost during a fattening

period, involving one batch of fattening pigs. The income, I, is generated by selling
the batch of fattened pigs to the abattoir. The cost, C, is calculated from the

summation of four concepts: purchase of growing pigs, transport to the abattoir,

feed consumption over the fattening period and other costs including the cleaning or

disinfection of facilities. The relevant decision variables are Xit (how many pigs in

the category growth i at week t have to be sent to the abattoir) and Yt representing
the number of trucks needed the week t to perform the transport.

The feasible solutions of the model have to satisfy a set of constraints (17.3–

17.12). It is assumed that a batch of N growing pigs is introduced in the fattening

farm and kept fattening till T weeks as maximum. Animals at the beginning of the

growing process, t¼ 1, have a weight following a normal distribution, W1 ~N(μ1,
σ1). This distribution is partitioned into |P| percentiles representing each one

different growing categories (i2P). By default, at the beginning of the process,

an equal number of pigs in each category are considered (17.3). The truncated

normal (17.1) allows us to derive conveniently the expected live weight of each

category week by week,wti. The model represents the growth and flow of pigs over

time. The model assumes that pigs belonging to specific growing categories (initial

partition of the population) do not change over time. In principle, once deliveries to

the abattoir start, pigs growing to the next week (i.e. Nit+1) are those present in the

current week minus sales to the abattoir (i.e. Nit�Xit). The equality constraint (17.4)

can be relaxed if casualties are considered from week to week. The model does not

impose specific constraints about when pigs have to be sent to the abattoir (17.4). It

is the grid of bonus and penalties paid by the abattoir that regulates implicitly the

opening of the marketing window for fattened pigs. This is so because pigs with a

low weight are penalised and even not accepted by abattoirs. The number of pigs

available to be sent to the abattoir, Xit, is bounded by Nit, i.e. the inventory of pigs in

i-growth category at week t. The binary variable hit is introduced (17.5 and 17.6) to
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detect when pigs in i and (i�1)-growth category at week t are sent to the abattoir,

then hit¼1, otherwise hit¼0. This way, we can represent the rational behaviour of

the farmer: all pigs remaining in the i-growth category at week t has to be sold

before pigs of the lighter growth category (i�1) can be also selected. Hence a

complementary constraint (17.6) is necessary. Note that N could be replaced by any

arbitrary bigger number without affecting the functionality of (17.5 and 17.6).

As AIAO strategy is considered an additional constraint, (17.7) for the last week

of the process has to be set assuring the emptying of the facility. Note that for a

good modelling of the system (17.7) makes necessary to consider a fattening period,

i.e. set T of weeks, big enough to represent the duration of the whole fattening

process, unless T is fixed for management reasons.

The number of pigs in i-growth category at time t sold to the abattoir, Xit, must be

loaded and transported to the abattoir in trucks, Yt, with a limited capacity (17.8). It

is usual to consider capacities between 200 and 240 pigs depending on individual

live weight of the load. A complementary constraint (17.9) can be considered

regarding the load weight capacity of trucks. Then, the total weight of the load,

i.e. the live weight of pigs, has to be considered. Let us note that constraint (17.9)

could be redundant in regular fattening unit when only fattened pigs are delivered to

the abattoir because load capacity of trucks is far enough. A different situation is

met when trucks have to transport adult animals like culled sows or boars from

breeding farms. They are much heavier and this constraint can be relevant for sow

farms, but this consideration is out of the scope of the present study.

The delivery of pigs has to follow several rational rules imposed by the fact that at

present no individual measures of weight are available in most farms. In that case,

the heaviest pigs are the first to be selected for loading a truck and being transported

to the abattoir. Remaining pigs have the chance to keep growing further and being

selected later for the next delivery and so on till the farm is emptied. This aspect is

modelled assisted by binary variables and a set of constraints. Hence, the binary

variable hit has been introduced to detect if two consecutive groups of growth

categories are sending pigs to the abattoir. Another auxiliary binary variable, dit,
was also introduced. It was intended to detect if a group of pigs in i-growth category
at time t is sent or not to the abattoir (17.10). Note that N could be replaced by any

arbitrary bigger number without affecting the functionality of (17.10). We comple-

ment this constraint (17.10) with twomore giving full sense to the binary variable hit.
As result, the introduction of constraints (17.11) and (17.12) provokes that deliveries

of intermediate categories are not feasible, unless all the heavier ones are sent.

17.4 Computational Results

The algebraic modelling language IBM ILOG OPL Studio was used with CPLEX

12.4 as the linear optimisation solver for implementing and solving the different

instances developed for this case study in a laptop computer (Dual-Core i5 CPU at

2.5 GHz and 4Gb RAM). Microsoft Excel has been used for storing data, both input
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parameters and outputs. All the cases were solved in few seconds and results were

reported in a spreadsheet for easy inspection. The case presented here is based on a

typical Spanish fattening farm integrated into a private pig company or integrator

who provides piglets, feedstuff, veterinary care and medicines, technical advice

during the fattening process and regular control over the growth of animals.

The company owns the abattoir where pigs are slaughtered and determines the

pricing grid to reward integrated farmers. Furthermore, the integrator fixes also the

maximum duration of fattening according to the production plans of the company,

including the procurement to the abattoir and the supply of piglets to conform a new

batch to be fattened. Biological parameters related basically with growth and

consumption are referred to a crossbreed of (Large White�Landrace)� Pietrain.

17.4.1 Parameters of a Case Study

Let us consider a batch of pigs being fattened on a farm during a fattening period

under AIAO management. Fattening comprises from the arrival of the first young

pigs to the farm (with pigs weighing around 20 kg) till the week the last pig of the

batch is delivered to the abattoir. Thereafter, the farm can be prepared for another

incoming batch of pigs. The purchase value of a young pig was of 40.55€/pig in

average for 2013 (DARP 2014). The duration of the fattening phase typically ranges

from 14 to 20 weeks resulting in approximately 2 or 3 cycles per year, being T¼ 17

the maximum range selected for this instance. The duration of the fattening period

has to be also fixed according to the breed selected, the achievable market weight

and the specific growing traits. The objective of our model is to determine the

delivering policy, i.e. marketing strategy, that maximises the profit of a batch of

fattened pigs. In our case, we consider a fattening farm with a housing capacity of

N¼ 1,000 pigs. Five groups (two deciles) of 200 pigs (N/jPj) are considered to split
the total population (jPj ¼ 5).

Pig producers are paid for their pigs based on carcass weight and predictions of

fat-free lean. Each abattoir uses a unique grid to establish discounts or premiums,

according to their percent of lean estimates. Pig carcass classification is regulated

across the EU. The SEUROP classification was applied by abattoirs since 1984

(Regulation 3220/84). Later on, the present legislation was updated incorporating

more details to previous regulation on carcass classification and commercial grad-

ing (Commission Regulation (EC) No.1249/2008).

In view of producing uniformly sized lean products, abattoirs specify a bonus

or penalisation of €/kg based on the percentage of lean as quality indicator

(Table 17.1). Other common penalisation applied depends on carcass weight

when it is out of range, the gender of animals (male, female or castrated), live

weight or other traits that the abattoir may consider to fit better pig meat demand.

In the end, bonus or penalisations are applied in order to motivate producers to

deliver pigs in homogeneous groups and offer a homogeneous product to end

customers. The appropriate delivering strategy and the corresponding revenue

will depend on the price grids of the abattoirs (see Table 17.2). Base prices are
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agreed in auctions markets weekly and used by abattoirs being Mercolleida

(http://www.mercolleida.com) the common reference for Spain. The annual

mean in 2013 used for this instance is Pv¼ 1.377€/kg of live pig. Figure 17.1

shows the evolution of the base price during 2013 in Spain that can be considered

as good (i.e. over the mean of recent past historical prices). These figures have

kept the sector out of the general crisis other Spanish economic sectors are

experimenting at present.

A delay in the optimum delivering time of pigs implies an increment in the

feeding cost whilst growth rate is getting worse, with the risk of getting fatter

carcasses. Whether the weight of pigs overtakes specific ranges, they depose too

much fat, i.e. the lean percentage is reduced, and penalisations are applied. Fur-

thermore, a long duration of the fattening phase is neither interesting as the annual

number of batches the farm produces decreases. And so, the annual profit per kg of

meat produced will decrease. Otherwise, an anticipatory delivery generates

penalisations mainly in terms of carcass weight out of range and a waste of better

growing rates and efficient conversion of feed into meat.

A shortcoming of the process is that no objective measure of weight is available

from individual animals and the pig weight is assessed by eye before making a

Table 17.2 Bonus and penalisation of €/kg of carcass is a function of weight and percentage

carcass lean. The base considers a 81 % of carcass weight over live weight

Carcass Bonus S E U R O P

Weight (kg) (€) 0.12 0.07 0.00 �0.07 �0.12 �0.3

50 �0.60 �0.48 �0.53 �0.6 �0.67 �0.72 �0.90

60 �0.40 �0.28 �0.33 �0.4 �0.47 �0.52 �0.70

65 �0.23 �0.11 �0.16 �0.23 �0.30 �0.35 �0.53

67.5 �0.13 �0.01 �0.06 �0.13 �0.20 �0.25 �0.43

70 �0.05 0.07 0.02 �0.05 �0.12 �0.17 �0.35

72.5 �0.04 0.08 0.03 �0.04 �0.11 �0.16 �0.34

75 0.00 0.12 0.07 0.00 �0.07 �0.12 �0.30

80 �0.05 0.07 0.02 �0.05 �0.12 �0.17 �0.35

85 �0.10 0.02 �0.03 �0.10 �0.17 �0.22 �0.40

97.5 �0.02 0.10 0.05 �0.02 �0.09 �0.14 �0.32

102.5 �0.05 0.07 0.02 �0.05 �0.12 �0.17 �0.35

107.5 �0.11 0.01 �0.04 �0.11 �0.18 �0.23 �0.41

Table 17.1 Carcass

classification according

to lean percentage and an

example of bonus applied

by an Spanish abattoir

% lean Classification Bonus (€)

>60 S +0.12

55–60 E +0.07

50–55 U 0.00

45–50 R �0.07

40–45 O �0.12

<40 P �0.30
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decision (Pl�a-Aragonés et al. 2013). This fact makes impossible to select animals

with an intermediate weight because the risk of error is very big. Only after

slaughtering, the abattoir provides the individual measures per pig of relevant traits

(e.g. live weight, carcass weight, lean and fat composition); however, the correla-

tion between relevant variables as live weight, carcass weight and lean percent is

quite high and useful to estimate the percentage of lean of pigs (Castro 2001). In

general, pigs are delivered over a period of few weeks (marketing time window)

using trucks with a maximum capacity of 240 (Cct) pigs and having a cost per trip

of 475€ (Ct). It is of interest to determine the timing of these deliveries near the end

of the fattening phase to maximise expected profit given the natural variability of

growth of the batch. In this context, the growth model of pigs is essential for this

problem. To this respect, we follow the proposed model by Castro (2001) and

derived from experimental data (Fernández et al. 2011) with individual controls for

hybrid pigs selected for meat production. Note that other breeds should require the

calibration of the corresponding growth curve to be used in the proposed model.

Besides considering specific growth curves, the total feed intake of pigs is also

relevant to calculate the feeding cost and the consumption over time, in particular

for remaining animals in the farm when deliveries to the abattoir start. A unitary

feeding cost of 0.28€/kg of feedstuff is taken into account to calculate the total

feeding cost of a pig sold the t-week cf t
� �

. The distributions over time for live

weight and for the accumulated feed intake are shown in Fig. 17.2.

Load capacity of trucks has to respect European regulation imposing minimum

room per animal depending on live weight and distance. The common practice is

delivering pigs when there are enough in number and within an optimal weight range

to fill a truck. Normally, it ranges from 200 to 240 fattened pigs of about 100 kg.
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Fig. 17.1 Price (€/kg) for pigs in 2013 published in Mercolleida, the main pig auction market in

Spain (DARP 2014)
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17.5 Results

The proposed model with the parameters presented in the previous section was

solved. Reasonable results were obtained under practical point of view as shown in

Table 17.3. The maximum revenue was of 23.744€ or 23.74€/pig or 0.224€/kg of
live weight sold. This result was a 54 % better compared with the delivery of all the

pigs on the last week of the marketing window (15.47€/pig). According to what

was modelled, pigs sent to the abattoir are always the heaviest present on the farm.

Trips to cover the path to the abattoir were 5 in total from which the number of

trucks needed was easily derived. On the other hand, the marketing time window

opened at week 22 and closed at week 25. So, the optimal duration of the fattening

stage was of 16 weeks as maximum (from week 9 to week 25) plus an additional

week for cleaning and drying.

Other complementary results were obtained for extreme situations. For example,

the optimal solution of the problem when the cost of transport was extremely high

was the same as that shown in Table 17.3, and this situation means that the model

already provides the maximum income from the fattened pigs even though when

total cost arises. However, a change was observed when the unitary cost of transport

was reduced enlarging from week 22 to 25 the optimal marketing time window. In

all the cases computed, the mean live weight of pigs sent to the abattoir is around

100 kg, which is a regular practice in Spain.

The abattoir prefers uniformly sized fattened pigs and establishes corresponding

marketing system that penalises carcasses with weights and lean composition

outside a desired range in order to motivate farmers to deliver pigs in homogeneous

batches (Boland et al. 1993). Thus, an additional analysis was performed to observe

the impact of reductions in the live weight variability. A hard reduction was applied

to the standard deviation of live weight at each growth category. In this case, the

delivery of pigs to the abattoir was sending all of them the last week to the abattoir.
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Fig. 17.2 Mean live weight and accumulated feed intake over time, valid for the range of 10–26

weeks of pig lifespan, according to Castro (2001). (a) Mean live weight and �SD. (b) Mean feed

intake and �SD
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In that case, the consideration of different categories of pigs would not have sense

and all the batches are treated as one unity. In this sense, the optimal profit and the

average weight of animals sent to the abattoir were higher as weight distribution

was more concentrated around the mean. A similar result was obtained if no bonus

was considered on pig sales. The optimal policy in that case was to sell all pigs at

week 26 with a similar averaged weight (112 kg) and a profit per batch of 29.53€
per pig. Furthermore, if no price grid is considered, the optimal solution of the

model indicates the trend to deliver fatter and weightier pigs.

The results presented previously correspond to a fattening period of 17 weeks.

As no pigs are sent the last week, it is expected to have the same result even if that

period is limited to 16. However, it could be questioned if a shorter period would be

better. To answer this question, different instances varying the value of T were

calculated as shown in Table 17.4. In addition, as the model calculated only the

revenue per batch, the resulting revenue per day is computed. The farmer intends to

keep producing pigs, not just one batch, so the maximum revenue per day is a more

appropriate criterion to optimise delivering policies. Thus, the maximum revenue

per batch is observed when T� 16, but if we add the time needed for cleaning and

disinfection (on week more), then the maximum revenue per day corresponds to a

T¼ 15, representing a 1 % of improvement. However, there is a 6 % of improve-

ment when going from a T¼ 17 to the one T¼ 16.

17.5.1 General Discussion

The solution proposed by the model can be performed in practice. The selection of

fattened pigs by eye is feasible when the heaviest pigs are the first to be sent to the

abattoir (Pl�a-Aragonés et al. 2013). On the contrary, selecting pigs from one

category not adjacent to another as other authors propose (Khamjan et al. 2013)

would be difficult without individual measures of weight.

Table 17.3 Delivery of pigs

(Xit) when binary variables

h and d are included in the

model

(i, t+ 9) 22 24 25

1 0 0 200

2 0 0 200

3 0 0 200

4 0 100 100

5 100 100 0

Table 17.4 Maximum

revenue per batch and

per day, depending on

the fattening period length

(T) plus 1 extra week for

cleaning

T (weeks)

Revenue (€)

Per batch Per day

17 23.744 188.44

16 23.744 199.53

15 22.558 201.41

14 20.756 197.68
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The optimal marketing time window of 4 weeks is in agreement with practical

recommendations of most companies in Spain. However, compared with other

results in literature, the length of the marketing window differs likely because of

different objective function, growth model and grid of payment (Pl�a-Aragonés
et al. 2013). For instance, Ohlmann and Jones (2011) used transition probabilities

to represent the growth of animals whilst in this paper a specific growth model and

its discretisation is proposed to better estimate herd distribution of live weight over

time and make decisions accordingly. However, the differences are not very big.

The optimal solution when no bonus was considered on pig sales indicated the

trend to deliver fatter and weightier pigs (result not shown). This result is in

agreement with Boland et al. (1993) and Ohlmann and Jones (2011) who stated

that price grids provoke changes in marketing policies. A similar situation is

observed when variability in live weight distribution is reduced (Pl�a-Aragonés
et al. 2013). More variability in live weight provokes a wider marketing window

(Boland et al. 1993), whilst no variability would allow the farmer to deliver all the

animals at a time (the smallest time window).

Different results were reported by Pla et al. (2013) using a similar approach.

These differences are explained in part by the set of parameters and price grid

reflecting the better situation for the pig sector in Spain than before. For instance, at

present, the sector allows the farmer to sell all the pigs and slower growing pigs to

be marketed did not represent a problem. It is known and assumed that the model

proposed incurs errors because we do not have individual measures to allow the

application of the model individually. However, if this was possible, the optimal

delivery of individual pigs to the abattoir could be determined with additional gains.

This has been confirmed by several papers in literature considering individual

measures on live weight and consumption (Kure 1997; Kristensen et al. 2012).

Individual measures would allow the farmer to value more precisely the feed cost

and the expected profit of pigs individually making eventually a more informed

decision. However, the feasibility of these solutions will depend on the practical

means available to select and keep apart these pigs at the moment of loading.

17.6 Conclusions

Modern pig farming is changing and pig farms are becoming more and more

specialised. In addition, whilst the size of pig facilities is increasing, the number

of farms is decreasing. Pig farms have tended to integrate and coordinate their

operations into vertically integrated companies. This integration and coordination

affects the decision-making process at each pig production unit, in particular on

fattening farms. So, this paper presents a mixed-integer linear programming model

description of a fattening pig unit operating under AIAO strategy. The discrete

growth model approach presented assumes flexible growing categories based on a

variable partition of the herd. The results presented confirm preliminary outcomes

found in the literature advocating for the benefit of implementing a price grid to get
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different qualities of carcass. The reduction on variability at the entry of the process

permits to reduce the marketing window of pigs and rises the efficiency of the

process. It is also shown how a time window of 5 weeks delivering animals to

the abattoir suffices to empty the farm and prepare it for the next batch of animals.

The optimal result per batch does not correspond with the optimal result per

day. The latter would imply saving 1 week in the time window and increments

of 5 % in the daily or annual revenue. Summarising, our contribution confirms the

findings of past studies and envisions the importance of future trends relying on

individual measures to avoid inefficiencies related to managing grouped animals.
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Chapter 18

Diet Problems

E. Joannopoulos, F. Dubeau, J.-P. Dussault, and C. Pomar

18.1 Introduction

In its usual form, the diet problem is formulated as a linear program. It has been

introduce for the first time in (Stigler, 1945). It was enlarged with the development

of the simplex algorithm in 1963 and latter in 1990 (Dantzig 1998, 1990). It was

also revisited in (Garille and Gass, 2001). All the models developed in these studies

aim to optimize the unit cost of a diet. In this case, the energy density of the diet is

considered as fixed. Since the animals’ appetite is considered proportional to their

energy requirements, feed consumption is fixed and the modeling is in proportions.

In our study, the proposed models consider the energy density in diets as a decision

variable. We no longer optimize the unitary cost of feeds but the total cost of the

feeds that will be consumed during the entire growing period. We will present

evidence that this approach is more advantageous for farmers. All the models

presented here will be applied to the pig problem.
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18.2 The Feeding Problem: Diet Formulation

A diet is a mixture of available ingredients which provide the required nutrients for

subsistence and growth. The optimal dietary nutrient concentration changes over

time following the animal’s natural patterns of appetite and daily required nutrients.

Because some nutrients (e.g., amino acids, phosphorous, etc.) are expensive,

optimal diets are those minimizing feed cost while providing the amount of

nutrients that are required by animals.

We will consider in this study the problem of formulating optimal diets (mini-

mum cost) for growing-finishing pig operations. We will quantify the animals’

appetite and requirements over time, give the conditions to be met by a diet to be

eligible, and introduce the formulation of several models.

The daily requirements described here and the diet characteristics to make it

eligible had been given using recognized standards. We will base our models on

these standards which can be found in Subcommittee on Swine Nutrition, Com-

mittee on Animal Nutrition, National Research Council (1998).

18.2.1 Elements of the General Problem

The growth period of pigs begins at weaning time and ends at the slaughter time. It

last T days and will be noted D ¼ 1, . . . , Tf g.
Let us assume that we have n available ingredients to formulate a diet, and let

j 2 J ¼ 1, . . . , nf g be the index set of the ingredients. Let xj(t) be the amount

(in kg) of the jth ingredient of the diet at day t 2 T. Thus,x tð Þ 2 ℜn is the diet vector

for day t, and the weight of the diet on day t is

W tð Þ ¼
Xn
j¼1

xj tð Þ: ð18:1Þ

Let cj be the unit cost of the jth ingredient which we assume constant all along

the growth period. The cost of the diet for the day t is given by

z tð Þ ¼
Xn
j¼1

cjxj tð Þ ð18:2Þ

and the total cost over the period D is then

Z ¼
XT
t¼1

z tð Þ ¼
Xn
j¼1

cj
XT
t¼1

xj tð Þ
 !

: ð18:3Þ
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For its growth, it is assumed here that pigs have daily digestible energy require-

ments and that these requirements are mean driver for its daily feed intake. Under

this assumption, pigs will eat the available feeds until the energy requirements are

met. In this context, let E(t) be the required digestible energy, in kilocalories (kcal),
to be supplied at day t by feeds to ensure the optimal growth of the pig. If ej is
the energy content (kcal/kg) of the jth ingredient, the diet x(t) must satisfy the

following equation

Xn
j¼1

ejxj tð Þ ¼ E tð Þ: ð18:4Þ

We say that a diet of weight W(t) with an energy E(t) has an energy density e(t), in
kilocalories per kilogram, given by

e tð Þ ¼ E tð Þ
W tð Þ : ð18:5Þ

The diet should also supply minimum quantities of amino acids. Let IAA be the

set of amino acids and AAi(t) be the daily minimal amount of the ith amino acid

required at day t. Let aai,j be the amount of the ith digestible amino acid per

kilogram of the jth ingredient. Thus, the diet must verify:

Xn
j¼1

aai, jxj tð Þ � AAi tð Þ: ð18:6Þ

Moreover, some nutrients must appear in the diet in minimal amounts without

exceeding maximum quantities. Let IB be the set of all these nutrients and Bmin
i (t)

and Bmax
i (t) be the minimum and maximum intakes of the ith nutrient of type at

day t. If ai,j is the ith nutrient intake in 1 kg of the jth ingredient, we must have

Bmin
i tð Þ �

Xn
j¼1

ai, jxj tð Þ � Bmax
i tð Þ: ð18:7Þ

The animal’s intake capacity is restricted each day, so we need to add a

constraint on the weight of diet to swallow at day t. This maximal limit is given

by Wmax(t), and we must have

W tð Þ � Wmax tð Þ: ð18:8Þ

Other types of constraints on the ingredients and nutrients are imposed to obtain

a diet of good quality. We consider two of them. The first type of constraints

concerns the importance, in proportion, of some ingredients in the diet. Some

proportions of ingredients must not exceed minimum or maximum thresholds set
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in advance at day t or even be in fixed proportion in the diet. Let Jp be the set of

these ingredients and pmin
j (t) and pmax

j (t) be the minimum and maximum proportions

of the jth ingredient in the diet. Thus, we have the following constraint:

pmin
j tð Þ � xj tð Þ

W tð Þ � pmax
j tð Þ: ð18:9Þ

The second type of constraints concerns pairs of nutrients for which the ratio of

their intake in the diet is between a minimum and a maximum value at day t. Let I2R
be this set of pairs of nutrients and rmin

i1, i2
tð Þ and rmax

i1, i2
tð Þ be the minimum and

maximum ratios of nutrient inputs i1 and i2. So we have

rmin
i1, i2

tð Þ �
Xn

j¼1
ai1, jxj tð ÞXn

j¼1
ai2, jxj tð Þ

� rmax
i1, i2

tð Þ: ð18:10Þ

Considering the needs and diet characteristics, let us define by SV(t) the set of

feasible diets at day t. A diet x tð Þ 2 ℜn is feasible at day t, i.e., x tð Þ 2 SV tð Þ, if and
only if it satisfies the following conditions:

SV tð Þ

xj tð Þ � 0 j 2 J ¼ 1; . . . ; nf gð ÞXn
j¼1

ejxj tð Þ ¼ E tð Þ
Xn
j¼1

aai, jxj tð Þ >¼ AAi tð Þ i 2 IAAð Þ

Bmin
i tð Þ �

Xn
j¼1

ai, jxj tð Þ � Bmax
i tð Þ i 2 IBð Þ

pmin
j tð Þ � xj tð ÞXn

j�1

xj tð Þ
� pmax

j tð Þ j 2 Jp
� �

rmin
i1, i2

tð Þ �

Xn
j¼1

ai1, jxj tð Þ

Xn
j¼1

ai2, jxj tð Þ
� rmax

i1, i2
tð Þ i1; i2ð Þ 2 I2R

� �

Xn
j¼1

xj tð Þ � Wmax tð Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð18:11Þ

A diet x tð Þ 2 SV tð Þ of weight W tð Þ ¼
Xn

j¼1
xj tð Þ has its own energy density

e tð Þ ¼ E tð Þ
W tð Þ. This energy density might change for different diets in SV(t); it is not

a predetermined quantity. For a diet in this set SV(t), we say that we have a variable
energy density diet.
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If we a priori fix the energy density e(t) of a kilogram of diet, we will give the

quantity (in kg) W tð Þ ¼ E tð Þ
e tð Þ of diet to animals. Considering the weight constraint

(18.8), this fixed energy density must satisfy the following inequality:

e tð Þ � E tð Þ
Wmax tð Þ ¼ emin tð Þ: ð18:12Þ

In this case, let us write y tð Þ ¼ y1 tð Þ, . . . , yn tð Þð Þ 2 ℜn where yj(t) represent the
proportion of the jth ingredient in the diet at day t. We write y tð Þ 2 Δn where

Δn ¼ y 2 Rn
��yj � 0 j 2 Jð Þ and

Xn

j¼1
yj ¼ 1

n o
. It is necessary that the

selected proportion vector y(t) gives a feasible diet x tð Þ ¼ W tð Þy tð Þ ¼ E tð Þ
e tð Þ y tð Þ, in

other words x tð Þ 2 SV tð Þ, or equivalently y tð Þ 2 e tð Þ
E tð Þ S

V tð Þ. The set of feasible

proportions with a fixed energy density e(t) is defined by

SF t, e tð Þð Þ ¼ Δn \ e tð Þ
E tð Þ S

V tð Þ:
Thus, y tð Þ 2 SF t, e tð Þð Þ if and only if y(t) satisfies the following conditions:

SF t, e tð Þð Þ

Δn

yj tð Þ � 0Xn
j¼1

yj tð Þ ¼ 1

8><
>: j 2 J ¼ 1; . . . ; nf gð Þ

Xn
j¼1

ejyj tð Þ ¼ e tð Þ
Xn
j¼1

aai, jyj tð Þ >¼ AAi tð Þ
E tð Þ e tð Þ i 2 IAAð Þ

Bmin
i tð Þ
E tð Þ e tð Þ �

Xn
j¼1

ai, jyj tð Þ �
Bmax
i tð Þ
E tð Þ e tð Þ i 2 IBð Þ

pmin
j tð Þ � yj tð Þ � pmax

j tð Þ j 2 Jp
� �

rmin
i1, i2

tð Þ �

Xn
j¼1

ai1, jyj tð Þ

Xn
j¼1

ai2, jyj tð Þ
� rmax

i1, i2
tð Þ i1; i2ð Þ 2 I2R

� �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð18:13Þ

In this case we say that the diet x(t), with an a priori fixed energy content e(t), is a
fixed energy density diet.

18.2.2 Minimal Cost Diet

We will consider the two types of diets described above: the variable and the fixed

energy density diets and their consequences on the formulation of minimal cost

diets.
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First, consider the variable energy density diet. We look for a feasible variable

energy density diet at minimal cost. This is an optimal solution of the following

mathematical program:

PV tð Þ zV tð Þ ¼ min
x tð Þ

Xn
j¼1

cjxj tð Þ

subject to x tð Þ 2 SV tð Þ
:

8><
>: ð18:14Þ

The problem for all the growing period will be noted PV, and the optimal total cost

for the whole period is

ZV ¼
X
t2D

zV tð Þ: ð18:15Þ

Next we consider the fixed energy density diet. On day t we look for the minimal

unit cost of a diet that has a given and fixed energy density e(t) satisfying the

inequality (18.12). This is an optimal solution of the following mathematical

program:

PF t; e tð Þð Þ zFu t; e tð Þð Þ ¼ min
y tð Þ

Xn
j¼1

cjyj tð Þ

subject to y tð Þ 2 SF t; e tð Þð Þ
:

8><
>: ð18:16Þ

The daily cost is given by

zF t; e tð Þð Þ ¼ W tð ÞzFu t; e tð Þð Þ: ð18:17Þ

As for the variable energy density problem, the problem for the whole growing

period will be denoted PF(e), and the optimal total cost is

ZF ¼
X
t2D

zF t; e tð Þð Þ: ð18:18Þ

18.2.3 The Multiphase Formulation

Although it is mathematically possible to solve the optimal diet problem for each

day during the growing period, we obtain a diet plan not useful in practice because

of physical limitations of feed transportation and storage capacity. A technique used

by the swine industry to overcome these limitations is then to feed pigs in phases. A

feeding phase is a time interval during which pigs are fed with the same diet. In our

formulation models, this diet should be feasible for each day of the phase to ensure

that pigs will always eat all the required nutrients to express their full potential for

growth. We partition the duration of growth by introducing K phases (1�K� T ).
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We take an increasing sequence of time 0 ¼ t0 < t1 < � � � < tK�1 < tK ¼ T and

define the kth phase by the set Dk ¼ tk�1 þ 1, . . . , tkf g for k¼ 1, . . ., K. The length
of a phase is given by ΔDk ¼ tk � tk�1. If ΔDk¼ 1 for all k, it is a daily feeding

phase program andDk ¼ tkf g. For each phase k, the diet chosen should provide the
total energy required during the phase. This energy is given by

E kð Þ ¼
Xtk

t¼tk�1þ1

E tð Þ: ð18:19Þ

To distinguish phase quantities from daily ones, we use bar symbol for phases.

So �E(k) represent the energy requirement for the phase k and E(t) represent the
energy requirement for the day t.

For the variable energy density problem, we look for a diet

x kð Þ ¼ x1 kð Þ, . . . , xn kð Þð Þ 2 ℜn which provides the total energy of the phase �E(k).

The total weight of this diet isW kð Þ ¼
Xn

j¼1
xj kð Þ. For each day t 2 Dk, we give to

the pigs the quantity x tð Þ ¼ E tð Þ
E kð Þ x kð Þ which must be feasible on day t and especially

must satisfy energy needs. Hence, for all t 2 Dk, x tð Þ ¼ E tð Þ
E kð Þ x kð Þ 2 SV tð Þ or

equivalently x kð Þ 2 E kð Þ
E tð Þ S

V tð Þ. So, we define the set of feasible diets for the phase

k by S
V
kð Þ ¼ \

t2Dk

E kð Þ
E tð Þ S

V tð Þ.

Therefore, x kð Þ 2 S
V
kð Þ if and only if x kð Þ satisfy the following conditions:

S
V
kð Þ

xj kð Þ � 0 j 2 Jð ÞXn
j¼1

ejxj kð Þ ¼ E kð Þ
Xn
j¼1

aai, jxj kð Þ � eaeai kð ÞE kð Þ i 2 IAAð Þ

ebmin
i kð ÞE kð Þ �

Xn
j¼1

ai, jxj kð Þ � ebmax
i kð ÞE kð Þ i 2 IBð Þ

epmin
j kð Þ � xj kð ÞX n

j¼1
xj kð Þ

� epmax
j tð Þ j 2 JPð Þ

ermin
i1, i2

kð Þ �
Xn

j¼1
ai1, jxj kð ÞXn

j¼1
ai2, jxj kð Þ

� ermax
i1, i2

kð Þ i1; i2ð Þ 2 I2R
� �

Xn
j¼1

xj kð Þ � eWmax kð ÞE kð Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð18:20Þ

where we have used the definitions and notations given in Table 18.1.
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For each phase, the problem is to find a variable energy density diet x kð Þ by

solving the following mathematical program:

P
V
kð Þ zV kð Þ ¼ min

x kð Þ

Xn
j¼1

cjxj kð Þ

subject to x kð Þ 2 S
V
kð Þ

8><
>: : ð18:21Þ

As zV kð Þ is the feeding cost for the phase k, the total feeding cost for the overall

growing period using K phases is given by

Z
V
Kð Þ ¼

XK
k¼1

zV kð Þ: ð18:22Þ

This problem using K feeding phases for the overall growing period will be noted

P
V
Kð Þ. Let us remark that P

V
Tð Þ reduces to PV a daily-phase program.

When we choose to fix the energy density of the diet at ē(k) during the phase k, it

must satisfy W tð Þ ¼ E tð Þ
e kð Þ � Wmax tð Þ for all t 2 Dk, and we have

e kð Þ � emin kð Þ ¼ max
t2Dk

emin tð Þ ¼ max
t2Dk

E tð Þ
Wmax tð Þ : ð18:23Þ

In this case, we are looking for proportions y kð Þ ¼ y1 kð Þ, . . . , yn kð Þð Þ 2 Δn with

energy density e kð Þ ¼
Xn

j¼1
ejyj kð Þ. For each day t, we provide the quantity W tð Þ

¼ E tð Þ
e kð Þ of diet to the pig, the daily diet is determined by x tð Þ ¼ W tð Þy kð Þ ¼ E tð Þ

e kð Þ y kð Þ.
Therefore, we must have x tð Þ 2 SV tð Þ for all t 2 Dk; i.e.,

y kð Þ 2 e kð Þ
E tð Þ S

V tð Þ 8t 2 Dkð Þ: ð18:24Þ

Then let us define set of feasible proportions by

S
F
k; e kð Þð Þ ¼ Δn \

\
t2Dk

e kð Þ
E tð Þ S

V tð Þ: ð18:25Þ

Table 18.1 Definitions and notations

Definitions Notations Definitions Notations

maxt2Dk

AAt tð Þ
E tð Þ ¼ ããi(k) maxt2Dk

pmin
j tð Þ ¼ epmin

j kð Þ
mint2Dk

Wmax tð Þ
E tð Þ ¼ eWmax kð Þ mint2Dk

pmax
j tð Þ ¼ epmax

j kð Þ

maxt2Dk

Bmin
i tð Þ
E tð Þ ¼ ebmin

i kð Þ maxt2Dk
rmin
i1, i2

tð Þ ¼ ermin
i1, i2

kð Þ

mint2Dk

Bmax
i tð Þ
E tð Þ ¼ ebmax

i kð Þ mint2Dk
rmax
i1, i2

tð Þ ¼ ermax
i1, i2

kð Þ
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Therefore, y kð Þ 2 S
F
k; e kð Þð Þ if and only if y kð Þ satisfy the following

conditions:

S
F
k; e kð Þð Þ

yj kð Þ � 0 j 2 Jð ÞXn
j¼1

yj kð Þ ¼ 1

Xn
j¼1

ejyj kð Þ ¼ e kð Þ
Xn
j¼1

aai, jyj kð Þ � eaeai kð ÞE kð Þ i 2 IAAð Þ

ebmin
i kð ÞE kð Þ �

Xn
j¼1

ai, jyj kð Þ � ebmax
i kð ÞE kð Þ i 2 IBð Þ

epmin
j kð Þ � yj kð ÞXn

j¼1
yj kð Þ

� epmax
j tð Þ j 2 JPð Þ

ermin
i1, i2

kð Þ �
Xn

j¼1
ai1, jyj kð ÞXn

j¼1
ai2, jyj kð Þ

� ermax
i1, i2

kð Þ i1; i2ð Þ 2 I2R
� �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

:

ð18:26Þ

Then the problem is to solve

P
F
k, e kð Þð Þ zFu k; e kð Þð Þ ¼ min

y kð Þ

Xn
j¼1

cjyj kð Þ

subject to y kð Þ 2 S
F
k; e kð Þð Þ

8><
>: : ð18:27Þ

The feeding cost during the phase k is given by

zF k; e kð Þð Þ ¼ W kð ÞzFu k; e kð Þð Þ ð18:28Þ

where W kð Þ ¼ E kð Þ
e kð Þ. The feeding cost for the overall growth period is

Z
F
Kð Þ ¼

Xn
j¼1

zF k; e kð Þð Þ: ð18:29Þ

This problem using K phases during the growing period will be noted P
F
K; eð Þ. Let

us note that P
F
Teð Þ coincide with PF(e) for e ¼ e.

18 Diet Problems 405



18.2.4 Modeling with Premixes

Pig production with 2- and 3-phase feeding periods are today frequently used by the

swine industry because of the transportation and storage cost of using more feeds

during the growing period. The development of feeding systems that allow blend

feeding and the automatic distribution of two premixes that, combined in variable

ratios, could meet the requirements of pigs throughout their growing period allow

for significant reductions of feeding costs and nutrients’ excretion. We call in this

study premix a proportion vector, known or unknown, of ingredients used to make

a unit of mix. In what follow, we consider two premixes (A and B) such that

A ¼ A1; . . . ;Anð Þ � 0Xn
j¼1

Aj ¼ 1 and

B ¼ B1; . . . ;Bnð Þ � 0Xn
j¼1

Bj ¼ 1

8><
>:

8><
>: ; ð18:30Þ

i.e., A,B 2 Δn. The unit costs of these premixes are given by

cA ¼
Xn
j¼1

cjAj and cB ¼
Xn
j¼1

cjBj: ð18:31Þ

Similarly, the energy densities are

eA ¼
Xn
j¼1

ejAj and eB ¼
Xn
j¼1

ejBj: ð18:32Þ

In the variable energy density diet problem, we are looking for a premix

combination x kð Þ ¼ αkAþ βkB where αk � 0 and βk � 0 and such that x kð Þ is a

feasible diet for the phase k. For the phase k, the weight of the diet is

W kð Þ ¼ αk þ βk, its total energy is E kð Þ ¼ αkeA þ βkeB, and its energy density is

given by

e kð Þ ¼ E kð Þ
W kð Þ ¼

αkeA þ βkeB
αk þ βk

2 min eA; eBf g; max eA; eBf g½ �: ð18:33Þ

On day t 2 Dk, we provide the quantityW tð Þ ¼ E tð Þ
e kð Þ ¼ E tð Þ

E tð ÞW kð Þof diet. This quantity
is determined to satisfy the energy needs as well as amino acids and minerals needs.

Thus, the daily diet is

x tð Þ ¼ W tð Þ
W kð Þ x kð Þ ¼ E tð Þ

E kð Þ x kð Þ ¼ E tð Þ
E kð Þ αkAþ βkBð Þ: ð18:34Þ
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The cost of this diet is

zV k;A;Bð Þ ¼
Xn
j¼1

cjxj kð Þ
Xn
j¼1

cj αkAj þ βkBj

� �
¼ αk

Xn
j¼1

cjAj þ βk
Xn
j¼1

cjBj;

ð18:35Þ

and the total feeding cost during the overall growth period is given by

Z
V
K; A, Bð Þ ¼

XK
k¼1

zV k; A, Bð Þ ¼
XK
k¼1

αk

 !
cA þ

XK
k¼1

βk

 !
cB: ð18:36Þ

We consider two types of premixes: known or so-called fixed premixes and

unknown or so-called variable premixes.

If premixes are known and fixed, we have an optimization problem for each

phase k given by

P
V
k; Af , Bf
� � zV k;Af ;Bf

� � ¼ min
αk, βk

αkcAf þ βkcBf

subject to
αk � 0, βk � 0

x kð Þ ¼ αkA
f þ βkB

f 2 S
V
kð Þ

�
8>>><
>>>: ð18:37Þ

For this problem, we must use two known premixes to ensure that the problem has a

solution for each phase. The problem during the overall growth period will be noted

P
V
K; Af , Bf
� �

.

In the case of variable (unknown) premixes, as the premixes are part of the optimi-

zation problem and they appear in each phase, we cannot decompose the problem.

Thus, we have a global problem that considers all phases at once. Our problem is then

to find Av, Bv 2 Δn and scalars αk � 0 and βk � 0 for k ¼ 1, . . . ,K which

give feasible diets for each phase and minimize the total feeding cost during the overall

growth period. Thus, we have the following problem:

P
V
G K;Av;Bvð Þ

Z
V
G K;Av;Bvð Þ ¼ min

α, β,Av,Bv

XK
k¼1

αk

 !
cAv þ

XK
k¼1

βk

 !
cBv

subject to

Av 2 Δn,B
v 2 Δn

and for k ¼ 1, . . . ,K
αk � 0, βk � 0

x kð Þ ¼ αkA
v þ βkB

v 2 S
V
kð Þ

8>><
>>:

8>>>>>>><
>>>>>>>:

: ð18:38Þ

The decision variables of this problem are α, β,Av andBv, and a product of two of

them appears in the objective function. Thus, this is not a linear problem but a

bilinear problem.
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If we are using the fixed energy density diet problem, we are looking for a

combination of two premixes y kð Þ ¼ αkAþ βkB in which αk þ βk ¼ 1 αk � 0, and

βk � 0 such that y kð Þ is a feasible proportion in phase k. In this case, considering the
feasibility constraint for the k combinations y kð Þ, we set the energy density

eA ¼ eB ¼ e, and we have e kð Þ ¼ e for each k¼ 1, . . ., K.

The unit cost of this diet is zFu k;A;Bð Þ ¼ αkcA þ βkcB, and the cost during the

phase k is zF k;A;Bð Þ ¼ W kð ÞzFu k;A;Bð Þ ¼ W kð Þ αkcA þ βkcBð Þ where W kð Þ ¼ E kð Þ
e kð Þ.

The total cost during the overall growth period is given by

Z
F
K;A;Bð Þ ¼

XK
k¼1

zF k;A;Bð Þ ¼
XK
k¼1

W kð Þαk
 !

cA þ
XK
k¼1

W kð Þβk
 !

cB : ð18:39Þ

If premixes are known, we have the following problem to solve

P
F
k; e kð Þ;Af ,Bf
� � zFu k;Af ;Bf

� � ¼ min
αk, βk

αkcAf þ βkcBf

subject to
αk � 0, βk � 0, αk þ βk ¼ 1

y kð Þ ¼ αkA
f þ βkB

f 2 S
F
k; e kð Þð Þ

�
8>>><
>>>: : ð18:40Þ

The problem during the overall growth period will be noted P
F
K; e;Af ;Bf
� �

.

In the case of variable premixes, we consider the following problem:

P
F
G K; e kð Þ,Av,Bvð Þ

Z
F
G K;Av;Bvð Þ ¼ min

α, β,Av,Bv

XK
k¼1

W kð Þ αkcAv þ βkcBvð Þ

Subject to

Av 2 Δn,B
v 2 Δn

and for k ¼ 1, . . . ,K
αk � 0, βk � 0, αk þ βk ¼ 1

y kð Þ ¼ αkA
v þ βkB

v 2 S
F
k; e kð Þð Þ

8>><
>>:

8>>>>>>><
>>>>>>>:

:

ð18:41Þ

Remark 1 All the previous problems were linear problems. This is not the case for

the two problems, P
V
G K;Av;Bvð Þ and P

F
G K; e kð Þ,Av,Bvð Þ, which are bilinear and

non-convex problems due to the simultaneous optimization of the α ’ s, β ’ s, A
and B.

18.2.5 Global Comparison

Some relationships between the costs of the several problems can be highlighted.

The following partially ordered graph summarizes these relationships.
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We remark that the feasible set of these problems are described by a similar

graph, replacing “�” by “�.” For example, the optimal solution to the fixed energy

density diet problem using fixed premixesP
F
K;Af ;Bf
� �

is a feasible solution to the

fixed energy density diet problem using variable premixesP
F
K;Av;Bvð Þ and also to

the variable energy density diet problem using fixed premixes P
V
K;Af ;Bf
� �

.

Another example, the optimal solution to the fixed energy density problem using

phases P
F
K; e kð Þð Þ, is only a feasible solution to the variable energy density

problem using the same number of phases P
V
Kð Þ.

18.3 An Example: Data from the Québec Context

To illustrate the formulations presented in the preceding section, we use data from

the Canadian context. We assumed that the growing and finishing period in pigs

takes T¼ 111 days, and body weight goes from 20 to 130 kg. The set D described

above is D¼ {1, . . ., 111}. The main need of animals is energy. An animal eat to

satisfy his energy requirements (Whittemore & Fawcett 1976; van Milgen

et al. 2008), and so it will eat more of a diet with a low energy density and less

of a diet with a high energy density. In this study, the feed is formulated to satisfy or

exceed the needs estimated by nutritionists. Thus, the animal’s growth will not be

affected by the feeding.

18.3.1 Ingredient Cost and Technical Coefficients

In order to compare the feeding costs in commercial conditions, the formulations

described above used 16 ingredients listed in the Table 18.2 with their

corresponding variables used in the models. The prices are the average of those

recorded by a food manufacturer (Breton Food, Inc, Saint-Bernard, QC, Canada)

from November 2011 to October 2012. All costs in this study are expressed in

$CAD. Ingredients’ composition values used in this study are those from NRC

(Subcommittee on Swine Nutrition, Committee on Animal Nutrition, National
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Research Council 1998). All these data and the minimal and maximal proportion of

each ingredient, constant throughout the period, are collected in Table 18.3.

Two kinds of phosphorus appear in Table 18.3, total phosphorus and available

phosphorus. The last one is part of the other and will be used in the nutrient

constraint. Total phosphorus will be used in the calcium/phosphorus ratio

constraint.

18.3.2 Growth Model

Daily requirements are estimated based on NRC (Subcommittee on Swine Nutri-

tion, Committee on Animal Nutrition, National Research Council 1998). The

energy requirement increases during the growth period (Fig. 18.1). The maximal

amount of feed intake is given by the formula Wmax tð Þ ¼ max
E tð Þ
3, 400 ; 0:111�
n

p tð Þ0:803gwhich is the maximum between the required quantity with energy density

equals to 3,400 kcal/kg and the formula 0:111� p tð Þ0:803 given by Black

et al. (1986), in which p(t) is the weight of the animal on day t. This maximal

quantity of feed intake increases over all the growth period as well as the energy

requirement (Fig. 18.1).

The appetite that limits feed intake grows faster than the energy requirement, so

that the minimal energy density of a diet is a decreasing function of time (Fig. 18.2).

The requirements of amino acids are increasing during the first half and decreas-

ing during the second half of the growing period. The needs of other nutrients are

Table 18.2 Variables

associated with ingredients
Associated variable Ingredient

X1 DL-methionine

X2 Hard wheat

X3 Calcium carbonate

X4 Sodium chloride

X5 Meat meal

X6 Animal fat

X7 L-lysine HLC

X8 L-threonine

X9 L-tryptophan

X10 Corn

X11 Barley

X12 Dicalcium phosphate

X13 Premix

X14 Wheat shorts

X15 Canola meal

X16 Soybean meal
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increasing during the growth period. The behavior of all the amino acids belonging

to the set IAA¼ {lysine, threonine, methionine, methionine + cystine, tryptophan,

isoleucine, valine, leucine, phenylalanine, phenylalanine + tyrosine, histidine, argi-

nine, NEAA} is similar to the lysine. Also, the behavior of the minerals, which

belong to the set IB¼ {sodium, calcium, available phosphorus, nitrogen}, is similar

to the calcium (Fig. 18.3).

When they are expressed in g/kcal, all the requirements are decreasing

(Fig.18.4). This is the form in which they appear in the problems with phases or

premixes.

Three nutrients are lower and/or upper bounded. Two of the three nutrients are

not upper bounded. The last one must not exceed 2.5 g in 1 kg of the diet. Thus, we

can summarize in the three equations:

Bmax
Na tð Þ ¼ 2:5W tð Þ Bmax

Ca tð Þ ¼ þ1 Bmax
Pav tð Þ ¼ þ1

In our case, the set JP of the ingredients which are restricted in the diet

corresponds to the set J of all the ingredients. If an ingredient has no lower

Fig. 18.1 Evolution of the energy requirement E(t) and the intake capacity Wmax(t)

Fig. 18.2 Evolution of the minimal energy density in the diet emin(t)
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bound, we impose its lower bound to be equal to 0. As well, if an ingredient has no

upper bound, the maximal proportion of this ingredient will be 1.

The ratio constraints only concern, in our case, the calcium/total phosphorus

ratio, so we have J2R¼{(calcium, total phosphorus)}. The lower and upper bounds

for this ratio are constant along the whole period, and we have

rmin
Ca,Ptot tð Þ ¼ 1 and rmax

Ca,Ptot tð Þ ¼ 1:5

18.3.3 Modeling with Phases

Concerning the feeding with phases, we will impose that all phases have the same

length. If this is not possible, the longest phases will be placed at the end. For

example, to feed with 4 phases, we will have 1 phase of 27 days and next 3 phases of

28 days.

Fig. 18.4 Behavior of amino acid requirements
AAi tð Þ
E tð Þ and nutrient needs

Bmin
i tð Þ
E tð Þ expressed in g/kcal

during the overall growth period

Fig. 18.3 Behavior of daily amino acid requirements AAi(t) and daily mineral needs Bmin
i (t)

during the overall growth period
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When we feed animals with phases, the most restrictive value for each nutrient

during the phase as defined in Table 18.1 must be considered. In the case of the pigs,

the most restrictive value corresponds to the first day of the phase for each nutrient.

18.3.4 Comparison and Discussion

In this part, we compare the models described in Sect. 18.2. The optimization was

realized to minimize the feeding cost. However, we also look for the environmental

impact, particularly phosphorus and nitrogen excretions. The results are reported in

Table 18.4.

Each problem will be compared to the current situation in the industry which

corresponds to the problem P
F
3; 3400ð Þ, the asterisk marked problem in

Table 18.4.

Thus, using a variable energy density diet without premixes, i.e., a different diet

in each phase, and feeding animals in 3 phases, corresponding to the problemP
V
3ð Þ,

decrease cost by 5 %, while nitrogen and phosphorus excretions increase, respec-

tively, by 7.5 % and 11 % (Table 18.4, Fig. 18.5). The use of a daily-phase feeding

Table 18.4 Feeding costs and phosphorus and nitrogen intake and excretion of the several models

Number

of phases K Cost ($/pig)
P intake

(kg/pig)

P excreted

(kg/pig)

N intake

(kg/pig)

N excreted

(kg/pig)

P
V
Kð Þ

3 103.07 1.579 1.371 6.787 4.691

111 100.62 1.526 1.318 6.313 4.217

P
F
K; 3400ð Þ

3a 108.68 1.445 1.273 6.462 4.366

111 107.02 1.342 1.134 5.763 3.667

P
V
K;Af ,Bf
� �

3 104.39 1.563 1.355 6.821 4.725

111 103.51 1.542 1.334 6.685 4.589

P
V
G K;Av,Bvð Þ

3 104.29 1.615 1.407 7.007 4.911

111 102.38 1.530 1.322 6.591 4.495

P
F
K; 3400;Af ,Bf
� �

3 108.82 1.456 1.248 6.509 4.413

111 107.55 1.391 1.183 6.063 3.967

P
F
G K; 3400;Av,Bvð Þ

3 108.82 1.456 1.248 6.503 4.407

111 107.29 1.349 1.141 5.827 3.731
aCurrent situation in the swine industry
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program, corresponding to the optimal solution of the problemP
V
111ð Þ, contributes

even more to the cost decreasing. Indeed, in this case, feeding costs decrease by

7.5 % and nitrogen excretion by 3.5 %. By contrast, phosphorus excretion increases

by 11 % (Table 18.4, Fig. 18.5). The cost decreasing is mainly due to the energy

density of the diet. When the energy density of the diet decreases, the unit cost is

also reduced. Despite the increase of the consumption, the daily cost is always

lower than the currently feeding system. We expected the feeding costs decrease

with the relationships that we determined above in the comparison graph.

As also expected, feeding animals with a daily phases but with fixed energy

density ( P
F
111; 3400ð Þ ) contributes to reduce feeding costs by 1.5 %. The

excretions also reduced by 8 % concerning the phosphorus and by 16 % regarding

nitrogen excretions (Table 18.4, Fig. 18.5).

These feeding plans are optimal but impossible to implement in practice. Indeed,

if animals are fed with different diet every day, the storage costs will increase

significantly. That is whywe used two premixes. This method allows to feed animals

with a different mix every day without increasing the storage cost. When we are

talking about fixed premixes, premix A correspond to the optimal mixture of the first

day of the feeding, and premix B correspond to the optimal mixture of the first day of

the last phase. From now on, we consider Af and Bf to be determined in this way.

So, the use of a variable energy density feeding system with two fixed premixes,

and three (P
V
3;Af ;Bf
� �

) or daily phases (P
V
111;Af ;Bf
� �

), is interesting compared

to the current situation because it reduce the feeding cost by 4 % and 5 %,

respectively. However, these feeding plans are less interesting than the optimal

Fig. 18.5 Evolution of the feeding cost per day
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solution of the problem P
V
3ð Þ. These two solutions increase the feeding cost by

about 1 %.

The use of a 3-phase feeding program with premixes ( P
V
3; Af ,Bf
� �

,

P
V
G 3; Av, Bvð Þ, PF

3; 3400;Af ;Bf
� �

, and P
F
G 3; 3400; Av, Bvð Þ) is not interesting.

Whatever the problem (fixed or variable energy density diet problem) and the

premixes used (fixed or variable premixes), the use of premixes increases the feeding

cost compared to the same problem without using premixes (PV(3) or PF(3)).

On the other side, the use of variable premixes allows us to reduce the feeding

cost by 6 % using daily phases (P
V
G 111; Av, Bvð Þ), compared to the current situation

(Table 18.4, Fig. 18.5). Nonetheless, this solution has a problem; phosphorus and

nitrogen excretions are increased (phosphorus, 7 %; nitrogen, 3 %).

Whether we use fixed or variable energy density formulations, the use of

variable premixes further reduces the cost when compared to Af and Bf. Thus, the

use of variable premixes in the fixed energy density model with daily phases (PF
G

(111; 3400; Av,Bv)) reduces feeding cost by 1 %. In this case, nitrogen and

phosphorus excretions are also reduced by 10 % concerning the phosphorus and

14.5 % concerning the nitrogen.

To conclude, the most compatible with production practices feeding plan

concerning costs is to feed animals according to the variable energy density

model using daily phase and variable premixes. The drawback of this formulation

is the environmental impact. Indeed, phosphorus and nitrogen excretions are

significantly increased. The problem should be solved using a multi-criteria

model, which optimizes cost and excretions of the diet proposed in (Dubeau

et al. 2011).
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Chapter 19

Markov Decision Processes to Model
Livestock Systems

Lars Relund Nielsen and Anders Ringgaard Kristensen

19.1 Introduction

Mathematical models for livestock farming systems have been used since the

1950s. Examples of techniques used include deterministic optimization such as

linear programming (for an early example, see Fisher and Schruben 1953) and

dynamic programming (with White 1959, as one of the first applications to live-

stock farming) as well as stochastic models based on Monte Carlo simulation

(e.g. Sørensen et al. 1992) and Markov decision processes (MDPs).
The nature of livestock systems differ from other industrial systems. Compared

to, e.g., modeling the state of a machine, modeling the state of, e.g., a cow is more

complex. First, the traits of an animal is harder to estimate and animals like humans

differ, i.e., the variance between animals is much higher and it is harder to

determine which state the animal is in. Second, livestock systems have a cyclic

nature. In most cases an animal is inserted into the herd and after some cyclic

periods (lactations, parity, feeding cycle) replaced with a new animal. Decisions

regarding which cycle and when to replace the animal within the cycle have to be

taken. Finally, often the supply of animals is not unlimited, e.g., a cow cannot be

replaced if we do not have a heifer available. These three characteristics have also

been referred to as the uniformity, reproductive cycle, and availability features of

livestock systems (Ben-Ari et al. 1983).

Livestock farming is often sequential in nature. For instance at a specific time

instance the decision on whether or not to replace an animal is based on observed
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information and expectation about the future. At the next decision epoch updated

information is available and the decision choice is re-evaluated. Since random

variation is a core property of a livestock system, MDPs have often been used to

model livestock decision problems over the last decades (see Kristensen 1994, for

an overview). At a specified point in time, the decision maker observes the state of a

system and makes a decision. The decision and the state of the process produce two

results: the decision maker receives an immediate reward (or incurs an immediate

cost), and the system evolves probabilistically to a new state at a subsequent

discrete point in time. At this subsequent point in time, the decision maker faces

a similar problem. However, the observed state may be different from the previ-

ously observed state. The goal is to find a policy of decisions (dependent on the

observation of the state) that maximizes, for example, the expected discounted

reward.

In the MDP the state of the animal is defined by a set of state variables, each

representing a trait relevant for the livestock system under consideration, e.g. for a

dairy cow state variables could be milk yield level, lactation number, days in milk,

reproductive status etc. It is assumed that the value of the state variable belongs to a

finite set of levels/classes that represent the value of the trait. Often a trait is

continuous and must be discretized into a set of levels. If we consider a realistic

number of levels we may face the problem known as the “curse of dimensionality”:

the number of possible states grows exponentially with the number of state vari-

ables (the state space is often formed as the cartesian product of the number of

levels of each of the state variables). This is one of the major drawbacks of using a

MDP to model a livestock system.

Hierarchical MDPs (HMDPs) are an attempt to decompose the state space and to

reduce the number of states in the MDP. The model is a series of finite time MDPs

built together into one MDP called the founder process. As a result, the age of the

animal can be omitted in the state space compared with an ordinary MDP model.

Moreover, it takes into account that the production is cyclic. When a replacement

occurs, not just a regular state transition takes place but rather the process (life cycle

of the replacement animal) is restarted. HMDPs were first considered by

Kristensen (1988) assuming two levels in the HMDP. Later, Kristensen and

Jørgensen (2000) extended the methodology to multi-level HMDPs such that

MDPs can be built together at multiple levels. Note that an HMDP is an infinite-

stage MDP with parameters defined in a special way, but nevertheless in accor-

dance with all usual rules and conditions relating to such processes. The basic idea

of the hierarchic structure is that stages of the process can be expanded to the

so-called child processes, which again may expand stages further to new child

processes leading to multiple levels. Even though that HMDPs may help to reduce

the number of state variables, the curse of dimensionality is still a problem.

In most papers an MDP is used to model a single animal and its successors

(single-component). Hence herd constraints (heifers, feed, milk-quota, etc.) are not

taken into account. To represent the whole herd a multi-component MDP has to be

considered as discussed in Ben-Ari and Gal (1986) and Kristensen (1992).

The multi-component model is based on single-component MDPs representing a
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single animal and its future successors. However, the model is far too large for

optimization in practice. Therefore, the need for an approximate method emerged,

and a method called parameter iteration was introduced by Ben-Ari and Gal (1986)
and later modified by Kristensen (1992) to whom reference is made for details. To

the authors’ knowledge the parameter iteration method has only been applied under

a constraint of a limited supply of heifers (Kristensen 1992).

The state of an MDP must be directly observable. Since the state in the model

represents the present traits of the animal in question, this means that the traits are

assumed to be well defined and directly observable. This is not always the case.

Traits of an animal vary no matter whether we are considering the milk yield of a

dairy cow or the litter size of a sow. Moreover, it is not obvious to what extent the

observed trait is a result of a permanent property of the animal or a temporary

random fluctuation. Most often the observed value is the result of several permanent

and random effects. This problem can be solved by modeling the trait as a stochastic

process and embedding the parameters of the process into the MDP instead of the

observed value of the trait. The technique is referred to as Bayesian updating. As
observations are done, the Bayesian approach is used to increase the knowledge on

the true value of the trait. The technique was first used in practise by Kennedy and

Stott (1993) for milk yield and has been described in detail by Kristensen (1993)

and generalized in Nielsen et al. (2011).

For an MDP to be valid theMarkov propertymust be fulfilled. It implies that the

state space at any decision epoch (or stage) must contain sufficient information for

determination of the probability distribution of the state to be observed at next

decision epoch. In a straight forward formulation of a decision problem this is rarely

the case, and various tricks must be used in order to make the process Markovian.

The most common trick is to include memory variables in the state space (for

instance the milk yield of previous lactation(s) in dairy cow models). This approach

has been used in numerous models in practice. A more elaborate approach is to use

Bayesian updating to estimate latent traits (for instance an abstract milk yield

capacity of a dairy cow) as observations are done over time.

The objective of this chapter is to review the increasing amount of papers using

MDPs to model livestock farming systems and provide an overview over the recent

advances within this branch of research. Moreover, theory and algorithms for

solving both ordinary and hierarchical MDPs are given and possible software for

solving MDPs are considered. The chapter provides and updated overview com-

pared to the latest survey (Kristensen 1994) which is almost 20 years old. The

authors have tried to include all peer-review articles using MDPs to model livestock

systems which resulted in more than 80 papers in total. Some very old applications

(mainly from the 1960s and 1970s) have been omitted in the overview. Most of

those early applications were deterministic, and some of them were published in

research reports which are not available online. Readers who are interested in those

papers are referred to Kennedy (1986) who gives an overview of applications until

the early 1980s.
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The chapter is organized as follows. In Sect. 19.2 a short introduction to ordinary

MDPs and hierarchical MDPs is given and algorithms for optimizing the process

are described. Next, a survey over papers using MDPs applied to cattle farming

problems is given in Sect. 19.3. Dairy production is the most successful area on

which MDPs have been applied. The chapter is continued in Sect. 19.4 with a

survey over papers within the area of pig production. Finally, a few papers which

lies outside these two areas are considered in Sect. 19.5. Software for solving both

ordinary and hierarchical MDPs are discussed in Sect. 19.6. At last conclusions and

directions for future research are discussed in Sect. 19.7.

19.2 Methodology

We briefly introduce the methodology of MDPs and describe the different algo-

rithms which can be used to find an optimal policy under different criteria. Many

papers using MDPs to solve livestock problems consider a stochastic process where

the length of a stage is not constant. This is actually an extension of the MDP

methodology (where a constant stage length is assumed), referred to as a semi MDP

(Tijms 2003). However, due to the use of the term MDP instead of a semi MDP in

the past we will stick to this. Indeed, throughout the rest of the paper we will use the

term MDP for both ordinary and hierarchical (semi) MDPs and explicit write

ordinary or hierarchical if needed.

19.2.1 Finite-Horizon Markov Decision Processes

We consider an ordinary finite-horizon MDP with N stages. At stage n the

system occupies a state belonging to the finite set of system states Sn. Given
that the decision maker observes state s2 Sn at stage n, he must choose an action
a from the set of finite allowable actions As, n generating an immediate reward
ras nð Þ. Let tas nð Þ denote the expected length of stage n, i.e., the time until the

system evolves probabilistically to a new state (decision epoch) and βas nð Þ the

corresponding discount rate of the stage. Note that if α denotes the interest rate

per time unit, and the stage length is L, then the discount factor is exp(�αL) if

we assume continuous compounding or 1=ð1þ αÞL if we assume periodic

compounding. Let pasŝ nð Þ denote the transition probabilities of observing state

ŝ 2 Snþ1 at stage n + 1 given state s and action a.
A policy δ is a function that assigns to each state s a fixed action a¼ δ(s), i.e., a

policy provides the decision maker with a plan of which action to take given stage

and state. Under a given policy we write ras nð Þ, tas nð Þ and pasŝ nð Þ as rδs nð Þ, tδs nð Þ and
pδsŝ nð Þ, respectively.
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Let Xn denote the state of the system at the n’th decision epoch. Under a finite

time-horizon the total expected discounted reward criterion may be relevant when

consider livestock problems:

hðδÞ ¼ 
XN

n¼1

rδXn
nð Þ
Yn�1

i¼1

βδXi
ið Þ

 !
, ð19:1Þ

where the product is the total discount factor need to discount the reward at

stage n back to stage 1. Moreover, if no discounting is used (α¼ 0), then (19.1)

calculates the total expected reward. It is assumed that no decision is taken at decision

epochN, i.e., a deterministic dummy actionaN ¼ δðXNÞ is taken. The rewardraNXN
Nð Þ is

often referred to as the terminal or salvage reward.
Having introduced the notation for an MDP, we are also able to give a formal

definition of the Markov property mentioned in the introduction. The Markov

property is satisfied in an MDP if and only if

PaðXnþ1jXnÞ ¼ PaðXnþ1jXn, . . . ,X1Þ¼ paXnXnþ1
,8n < N,Xn 2 Sn, a 2 AXn,n, ð19:2Þ

where Pa denotes the probability function under the decision a. In words it means

that the state at next stage is only allowed to depend on the present state and action.

Any other historical information is of no relevance. It is essential for the correctness

of the results from an MDP that this property is satisfied.

An optimal policy maximizing (19.1) can be found using the following Bellman
equations, Bellman (1957):

vn sð Þ ¼ max
a2As,n

ras nð Þ þ βas nð Þ
X

ŝ2Snþ1

pasŝ nð Þvnþ1 ŝð Þ
( )

n < N

raNs Nð Þ n ¼ N

8
><

>:
, ð19:3Þ

where vn(s) is the total expected discounted reward in state s at stage n under the

optimal policy until the process terminates. Equation (19.3) shows that the optimal

policy can be found by analyzing a sequence of simpler inductively defined single-

stage problems. This is often referred to as value iteration.

19.2.2 Infinite-Horizon Markov Decision Processes

A situation where the stage of termination is unknown (or at least far ahead) is

usually modeled using an infinite planning horizon (N¼1). Given that the process

is time homogeneous, i.e., the states and actions are independent of stage number

and the policy stationary (constant over stages), we can drop the index n from the
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notation given in Sect. 19.2.1. Criterion (19.1) can still be considered (now an

infinite sum) and will converge toward a fixed value when increasing N if discount

rates are less than one.

Let Z(t) denote the total reward incurred until time t and assume that the MDP is

unichain (see Tijms 2003 for a formal definition). As an alternative criterion we

may consider the average reward per time unit:

gðδÞ ¼ lim
t!1

ZðtÞ
t

¼
P
s2S

πδs r
δ
s

P
s2S

πδs t
δ
s

ð19:4Þ

where πδs are the limiting state probabilities or equilibrium distribution probabilities
given policy δ. Other criteria such as the average reward per physical output can
also be considered and are defined as in (19.4) by redefining tas as the physical output
instead. For instance, Nielsen et al. (2004) maximize the average reward per steer.

Furthermore, if all stages have equal length the denominator of (19.4) equals one

and (19.4) reduces to the well-known formula for an ordinary MDP.

Various optimization techniques can be used to find the optimal policy such as

value iteration, policy iteration, and linear programming. We will restrict ourselves

to the first two here since linear programming has only been used in two of the

papers reviewed.

Value iteration can be used to approximate the optimal policy. It has been used

in the majority of papers since it is relatively straightforward to implement the

algorithm. Moreover, the algorithm is good for solving large-scale MDP problems

since there is no need for solving a large set of equations simultaneously. However,

the number of iterations is problem dependent and typically increases in the number

of states of the problem under consideration. The value iteration algorithm is given

in Fig. 19.1. The algorithm is initialized in Step 0 where a pre-specified small

accuracy number ε is chosen. Next, we use the recursive equations to update vs nð Þ,
which under criterion (19.1) denotes the total expected discounted reward in

state s with n periods left and a terminal cost of vs 0ð Þ. Under criterion (19.4) the

recursive equation is based on a data transformation method (see Tijms 2003).

This is repeated until the stopping condition is met (Step 3).

Note that if ε is sufficiently small and the same policy is found during several

iterations, we may be rather sure that the optimal policy has been found. However,

there is no guarantee but for practical purposes the deviation will have no

Fig. 19.1 Value iteration algorithm for an infinite-horizon ordinary MDP
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significance. Under criterion (19.4) the stopping criterion ensures that

0 � ðg∗ � gðδÞÞ=g∗ � ε, where g∗ denotes the optimal value to (19.4), i.e., the

average reward per time unit gðδÞ 2 mn,Mn½ � is at most 100ε% away from the

optimal average reward per time unit. Finally observe that if the time between each

decision epoch is constant (tas ¼ 1 and βas ¼ β ), then the recursive formulas in

Table 19.1 reduces to the well-known formulas for an ordinary MDP. During the

years more advanced variants of value iteration algorithms have been developed

which provide faster convergence and better stopping conditions. The interested

reader is referred to Tijms (2003) and Puterman (1994) for details.

Policy iteration unlike value iteration finds an optimal policy in a finite number

of steps. The algorithm is robust in the sense that in general it converges very fast,

the number of iterations are independent of the number of states and varies typically

between 3 and 15 (Tijms 2003). However, to use the algorithm jSj linear equations
must be solved simultaneously which may be computational costly for large state

spaces. The policy iteration algorithm is given in Fig. 19.2. In Step 0 an arbitrary

policy is chosen and in Step 1 the set of equations is solved. Under criterion (19.1)

vs denotes the total expected discounted reward of a process starting in state s and
running over an infinite number of stages. Under criterion (19.4) vs is the relative

value compared to state ŝ. The difference between the relative value of two states

denotes the amount we are willing to pay for stating in the state with the highest

relative value. In Step 2 we update the current policy. This is repeated until a better

policy can not be found (Step 3). Finally, observe that if the time between each

decision epoch is constant (tas ¼ 1 and βas ¼ β), then the recursive formulas in Table

19.2 reduce to the well-known formulas for an ordinary MDP. For more advanced

variants of the policy iteration algorithm see Puterman (1994).

Table 19.1 Equations and expressions to be used in the value iteration algorithm

Criterion Step 1—recursive equation Step 3—condition

(19.1)
vs nð Þ ¼ max

a2As

ras þ
X

ŝ2S
βas p

a
sŝv

δ
ŝ n� 1ð Þ

( )
Mn � ε

(19.4)
vs nð Þ ¼ max

a2As

ras
tas
þ ð1� τ

tas
Þvs n� 1ð Þ þ τ

tas

X

ŝ2S
pasŝv

δ
ŝ n� 1ð Þ

( )
0 � Mn � mn � εmn

Fig. 19.2 Policy iteration algorithm for an infinite-horizon ordinary MDP
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19.2.3 Hierarchical MDPs

Hierarchical MDPs are an attempt to decompose the state space and reduce the

number of states in the MDP. The approach also provide a more intuitively way of

modeling the stochastic process. Moreover, it reduces the number of equations

which must be solved simultaneously under policy iteration. We consider hierar-

chical MDPs with multiple levels also referred to as multi-level hierarchic Markov

processes. A hierarchical MDP is an infinite stage MDP with parameters defined in

a special way, but nevertheless in accordance with all usual rules and conditions

relating to such processes. The basic idea of the hierarchic structure is that stages of

the process can be expanded to a so-called child processes which again may expand

stages further to new child processes leading to multiple levels.

A stage in a process with three levels is illustrated in Fig. 19.3. The infinite

horizon process at level 0 is named the founder process and is the only process in

the structure which is not the child of a parent process. Each node corresponds to a

state at different levels and stages. A child process (oval box) is a finite horizon

Table 19.2 Equations and expressions to be used in the policy iteration algorithm

Criterion

Step 1 Step 2

Equations Unknowns Expression

(19.1) vs ¼ rδs þ
P
ŝ2S

βδs p
δ
sŝvŝ,8s 2 S v1, . . . , vjSj rδs þ

P
ŝ2S

βδs p
δ
sŝv

δ
ŝ

(19.4) vs ¼ rδs � gtδs þ
P
ŝ2S

pδsŝvŝ,8s 2 S, vŝ ¼ 0 v1, . . . , vjSj, g rδs � tδsgðδÞ þ
P
ŝ2S

pδsŝv
δ
ŝ

child process

child process
child process

child process

child process

Decision
epoch n n + 1

L
e
v
e
l
 
0

L
e
v
e
l
 
1

L
e
v
e
l
 
2

Fig. 19.3 Illustration of a stage in a hierarchial MDP. Level 0 indicates the founder level, and the

nodes indicate states at the different levels and stages. A child process (oval box) represents a finite
horizon MDP and is uniquely defined by a given state and action of its parent process (the specific

link/edge from the parent to the child). Links at the last stage of a process illustrate the possible

transitions back to the parent process when the child process ends
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MDP and is uniquely defined by a given stage, state, and action of its parent process

(the specific link/edge from the parent to the child). For each finite horizon process

an initial probability distribution of the states at stage 1 is assumed, i.e., a fictitious

stage 0 with only one state and one action is added to the model. As a result given

a state and action at the parent level a transition to the child process can be

represented deterministically (edges in Fig. 19.3). Moreover, a set of terminal

probabilities are given representing the transition probabilities back to the parent

process when the last stage ends (the links from the last stage in the child in Fig. 19.3).

Note that a finite horizon process at level l> 0 is uniquely defined by a sequence

of stages, states, and actions ρ ¼ ðs0, a0, n1, s1, a1, . . . , nl�1, sl�1, al�1Þ and at level

0 we only have the infinite horizon founder process which we will denote ρ0. We

will use the notation in Sects. 19.2.1 and 19.2.2 given a specific process ρ; however,
an action a is not necessarily identical to an action as it is usually defined in

an MDP. In addition to the selection of a specific process we also have to choose

which policy to follow during its child processes.

Let δρ denote an expanded policy of process ρ, i.e., a function that assigns to each
state s a fixed action a¼ δρ(s), i.e., an expanded policy provides the decision maker

with a plan of which action to take given stage and state in the parent process and all

its child processes. Then the reward r
δρ
s nð Þ, expected length t

δρ
s nð Þ, discount factor

βδρs nð Þ, and transition probabilities p
δρ
sŝ nð Þ can be calculated recursively by

processing the child processes from the lowest levels and upward toward the parent

process ρ. Hence an expanded value iteration can be applied. Under the total
expected discounted reward criterion (19.1) and given a set of terminal rewards,

the optimal policy δρ of a finite horizon process can be found by recursively

applying value iteration (19.3) from the lowest levels and upward toward the parent

process ρ. The same holds when considering the average reward per time unit
criterion (19.4) where we must solve the following recursive equations:

vn sð Þ ¼ max
a2As,n

ras nð Þ � gtas þ
X

ŝ2Snþ1

pasŝ nð Þvnþ1 ŝð Þ
( )

n < N

raNs Nð Þ n ¼ N

8
><

>:
, ð19:5Þ

Note that an additional average reward g must be chosen together with the terminal

values. For further details see Kristensen and Jørgensen (2000).

We can also apply a single iteration of expanded value iteration to the founder

process to determine all the parameters needed to solve the set of equations when

considering policy iteration. A hierarchical policy iteration algorithm can now be

formulated in Fig. 19.4. It combines policy iteration at the founder level and value

iteration at the other levels. First some initial values are chosen in Step 0 and

the expanded policy and the parameters of the founder process are calculated. Next

the linear equations at the founder level are solved in Step 1 and used as terminal

values in the expanded value iteration in Step 2. If no new policy is found the

algorithm stops in Step 3.
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19.3 MDP Models Applied to Cattle Farming

This section gives an overview of MDPs applied to cattle farming problems.

Around 60 papers describing more than 40 different models were found in this

area. Table 19.3 summarizes the models by listing their structure in terms of the

number of levels (the value 1 indicates an ordinary MDP), the criterion of optimal-

ity, the state variables with number of levels/classes, stage lengths with maximum

number of stages, decisions being optimized, application area, and supplementary

information. Each row in the table corresponds to a model and reference to the

paper(s) describing it is given in the first column. It should be noticed that it is not

always clear whether a paper should be classified as describing a new model

(by further developing an existing model) or it should be classified as just an

application of an existing model.

Only decision models are included in the survey. Simple Markov chain models

are not mentioned even though they are, of course, closely related to MDPs since an

MDP with a predefined policy is a Markov chain. Examples of such, not included,

Markov chain models are Giordano et al. (2012), Cabrera (2012), Allore

et al. (1998), Noordegraaf et al. (1998), as well as Jalvingh et al. (1993a,b, 1994).

Many of the models mentioned in the survey are by the authors themselves

presented as dynamic programming models and the term Markov decision process

is seldom mentioned. Dynamic programming exists in a deterministic version and a

stochastic version, and particularly the stochastic version is identical to the MDP

concept described in this chapter. Very often, however, the use of the term dynamic

programming implies that the optimization method is value iteration. The deter-

ministic version is also compatible with an MDP, but such models are degenerate in

the sense that for any stage n, state s, and action a there exists a state s0 at stage
n + 1 where pa

ss0 ¼ 1. Accordingly, we have for any state ŝ 6¼ s
0
that pasŝ ¼ 0.

In a book Kennedy (1986) reviewed dynamic programming applications to

agriculture until the early 1980s. As a main rule, models mentioned in that book

are omitted, but for the most important application area, which is dairy cow

replacement, also models mentioned by Kennedy (1986) are included. The main

reason is that the study by Giaever (1966) is so important that it would be

preposterous to omit it.

Fig. 19.4 Hierarchical policy iteration algorithm for an hierarchical MDP
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The vast majority of papers and models address problems related to dairy cows.

A few models consider growing cattle (the review by Kennedy 1986, contains

several very early applications to growing cattle). Nielsen et al. (2004) and Nielsen

and Kristensen (2007) consider the raising of steers and Pihamaa and Pietola (2002)

study the effect of beef cattle management under agricultural policy reforms in

Finland. Also management of heifers (Mourits et al. 1999a,b) has been studied. All

models are defined at the individual animal level and since all of them also basically

consider the replacement problem, they reflect a chain of animals successively

replacing each others over a finite or infinite time horizon. They therefore all have

the action “Replace” as an option. The alternative to replacement is, of course, to

keep the animal, and many models only have “Keep” as an alternative to “Replace”

Many models describing cows and heifers also have an “Inseminate” action, and the

models optimizing raising of steers and heifers have actions defining the feeding

level in some sense.

The first models published until the mid-1980s were ordinary MDPs solved by

value iteration over a number of stages typically aiming at approximating an infinite

horizon. The criterion of optimality was typically maximization of expected

discounted reward, which is still today the most commonly used criterion.

The concept of hierarchical MDPs was described by Kristensen (1988), and over the

following years it has been increasingly used in cattle models. In total, 11 of the

models mentioned in Table 19.3 are hierarchical. Most of the recent hierarchical

models have been implemented in the MLHMP software system developed by

Kristensen (2003). The technique has made it possible to handle even very large

models with millions of states like Demeter et al. (2011), Nielsen et al. (2010), and

Houben et al. (1994). The introduction of hierarchical models also implies that policy

iteration has become a common optimization technique (for the founder process).

When it comes to state variables, the models include age of the animal as a state

variable. For dairy cows it is typically measured by lactation number and often also

stage of lactation. Also the reproductive state (typically measured by month of

conception or length of calving interval) and the milk yield level are usually

included in the dairy cow models. In the beginning the health status was not

included in the models, but starting with Stott and Kennedy (1993), Kennedy and

Stott (1993), and Houben et al. (1994) mastitis has often been included in the state

space. In recent years (Bar et al. 2008a,b; Cha et al. 2011; Heikkila et al. 2012)

mastitis has been studied intensively. Also other diseases have occasionally been

included (Cha et al. 2010; Grohn et al. 2003; Heikkila et al. 2008).

When comparing state variables across models it is important to remember that

in hierarchical models some of the state variables are typically implicitly given by

stage number. This is typically the case for properties like age (lactation number

and lactation stage for dairy cows) and/or season. Thus, in hierarchical models it is

most often not necessary to include state variables for such properties because they

are given by the model structure. Hence, the same problem formulated as a

hierarchical model will typically have fewer state variables than if it had been

formulated as an ordinary MDP.

Stage lengths (for hierarchical models at the most detailed level) vary from one

day as in Kalantari and Cabrera (2012), Nielsen et al. (2010) to typically a lactation
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period in many early models. Geographically, the largest number of models

(12) describe US conditions, but also models for UK conditions (8), Dutch condi-

tions (6), Danish (4), and Finish conditions (4) are common. Two models describe

MDPs developed for New Zealand, two for Ireland, two for Canada, and for each of

the countries Iran, Costa Rica, France, and Israel one model has been developed.

Very few papers actively discuss how to satisfy the Markov property, but in

many papers it is obvious that the problem is considered (in other papers it is

ignored). The preferred method for (approximate) fulfilment of the Markov prop-

erty has been by use of memory variables where milk yield of previous lactation is

remembered. This tradition goes back to van Arendonk (1985b) and has been

continued in many subsequent models using that model as a basis (see the “Misc”

column of Table 19.3). The same approach was used by Kristensen (1987, 1989).

The main drawback of memory variables is that they contribute considerably to the

curse of dimensionality. This was realized already by Giaever (1966) who instead

defined milk yield as a weighted index of all lactations until now. He showed how it

was possible to define the weight coefficients of the index in such a way that the

Markov property was not violated. Also McArthur (1973) defined an index which in

his case was a simple average of lactation yields. Thus, the state space was reduced,

but the Markov property was not satisfied.

Another approach used in several models is to express the milk yield as partly

resulting from a permanent property of the cow. This approach was used by

Kristensen (1987, 1989) (as a supplement to the memory variable also included).

In the models developed at Cornell University (Bar et al. 2008a,b; Cha

et al. 2010, 2011) the permanent property was the only approach used to satisfy

the Markov property. All the models mentioned are hierarchical MDPs which are

particularly well suited for handling permanent traits. Nevertheless, Harris (1990)

seems to have used a similar principle in an ordinary MDP.

When the principles of Bayesian updating was described by Kristensen (1993)

and (independently) applied by Kennedy and Stott (1993) a new tool became

available for model builders. Instead of memory variables, the Bayesian updating

focuses on estimating an abstract latent milk yield capacity of a cow based on all
observed milk yield records. It was, however, not until the models by Nielsen

et al. (2010) and Demeter et al. (2011) that it was implemented as a main feature.

In other application areas (Kristensen and Søllested 2004a,b; Lien

et al. 2003; Verstegen et al. 1998) it was used earlier.

19.4 MDP Models Applied to Pig Farming

Table 19.4 summarizes MDPs applied to pig farming along the same guidelines as

for the cattle applications in Table 19.3. A total of 17 papers describing 12 different

models were identified. As with the cattle models only decision models are included

implying that simple Markov chain models are excluded. Examples of such not

included Markov chain models are Jalvingh et al. (1992a,b) and Pla et al. (2003).
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Analogously to the many dairy cow replacement models in the previous section

a total of six sow replacement models were found. The remaining papers (6) address

problems related to production of finishers. Also the pig models are in some sense

replacement models, but unlike the cattle models there are also examples of MDPs

defined at group level. Thus, Kristensen et al. (2012) model a pen, and Toft

et al. (2005) as well as Kure (1997a,b,c) model a batch of finishers. There are,

however,alsoexamplesoffinishermodels (Jørgensen1993;Glenn1983;Niemi2006)

defined at individual animal level. The sow models are all defined at individual

animal level.

Decisions considered in the sow models are in addition to “Keep” and “Replace”

also insemination method and number of inseminations to accept before culling for

infertility. In finisher models decisions are the marketing policy and, some times,

the feeding level. As concerns the optimization method the first models published

were ordinary MDPs based on value iteration optimizing expected reward or

expected discounted reward. Later hierarchical models became the norm with the

deterministic model by Niemi (2006) as an exception. Also for the hierarchical pig

models the preferred software tool has been the MLHMP system described by

Kristensen (2003).

In all models the age of the animal(s) is included either as a state variable or

indirectly through the stage number in hierarchical models. In the sow models litter

size is often included either directly or through Bayesian updating of a latent litter size

potential as in Kristensen and Søllested (2004a,b) and Rodriguez et al. (2011). Also,

the number of unsuccessful inseminations is sometimes directly or indirectly (through

the model structure) taken into account. One model by Rodriguez et al. (2011)

included a weak sow index defined by clinical observations in the state space.

Stage lengths vary from one day as in Niemi (2006) to a reproduction period

(parity) in several models. Geographically, the largest number of models

(7) describe Danish conditions, but also models for Dutch, UK, Spanish, and Finish

conditions are found.

As concerns the Markov property, the approach has been the same as with

dairy models. Dutch models (Huirne and Hardaker 1998; Huirne

et al. 1988, 1991, 1993) used memory variables (2 or 3 previous litter sizes).

Later models (Jørgensen 1992; Kristensen and Søllested 2004a,b; Kristensen

et al. 2012; Rodriguez et al. 2011) used Bayesian updating.

19.5 MDP Models Applied to Other Areas

Even though most models have been developed for applications within cattle and

pig production, a few papers within other applications exist in the literature.

Table 19.5 summarizes MDPs applied to other areas within livestock

farming along the same guidelines as in the tables for cattle and pig applications

(Tables 19.3 and 19.4). A total of five papers were identified. In addition to those
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listed in the table, Kennedy (1986) reviews a number of very early applications to

laying hens, broilers, and sheep.

Verstegen et al. (1998) used an MDP as a tool for comparing different manage-

ment information systems performance against the optimal decisions found by the

MDP and van Asseldonk et al. (1999) used an MDP to optimize which IT solutions

to implement on farm. The remaining papers focus on food and mouth disease

(FMD) (Ge et al. 2010a,b) and how to compute an adaptive control strategy of an

animal disease among a set of farms (Viet et al. 2012). Decisions considered in the

models are “Keep”, “Replace”, if the farm should investment in a certain IT

solution, vaccination strategy, and different FMD control options.

Due to the various applications state variables differ much. Examples are IT

investment status, epidemic situation, infected and month, etc. Stage lengths vary

from one day as in Ge et al. (2010a) to a year (van Asseldonk et al. 1999). Two

papers use ordinary MDPs based on value iteration optimizing expected discounted

reward and three papers use hierarchical models, with two implemented using the

MLHMP software (Kristensen 2003).

The models by Ge et al. (2010a,b) use Bayesian updating to estimate the disease

spread properties of the FMD virus causing the FMD outbreak, and Verstegen

et al. (1998) use Bayesian updating to estimate the properties of hypothetical

projects.

19.6 Software for Solving MDP Models

The value iteration algorithm for ordinary MDPs is relatively easy to implement

and most papers have implemented the algorithm using various programming

languages. The policy iteration is harder to implement since we have to invert a

matrix when solving the set of linear equations. That is probably the reason that

most studies reported in literature have used the more straightforward value itera-

tion algorithm. In a few cases software packages in MATLAB1 have been used to

perform policy iteration (Heikkila et al. 2008, 2012). Linear programming can also

be used to find optimal policies but have only been used in two papers

(Cabrera 2010; Yates and Rehman 1998).

When considering hierarchical MDPs implementation becomes harder due to the

nested structure of the processes. Fortunately a general software system MLHMP

for construction, editing, and optimization of Markov decision processes ranging

from finite time ordinary MDPs to hierarchical MDPs has been developed by

Kristensen (2003). MLHMP is implemented in Java2 with the possibility of build-

ing models as plug-ins. Moreover, it can handle all the criteria mentioned in this

paper. MLHMP has been used to solve almost all hierarchical MDPs in the

1MathWorks Inc. http://www.matlab.com.
2Oracle http://www.java.com/.
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literature. Recently, a package “Markov decision processes (MDPs) in R”

(Nielsen 2011) has been developed for model building in R.3 It is based on a C++

implementation for fast execution of policy and value iteration and can be used to

solve both ordinary and hierarchical MDPs under all criteria.

19.7 Conclusions and Directions for Further Research

In this chapter MDPs have been considered to model livestock systems. Livestock

farming problems are often sequential in nature and hence MDPs are suitable as a

modeling tool.

A total of approximately 80 papers using a MDP for modeling the livestock

system have been reviewed with the first paper dating back to 1966 and the last

paper in 2012. Only decision models are included in the survey, i.e., simple Markov

chain models are not mentioned even though they are, of course, closely related to

MDPs. Most papers have been considered within dairy and some within pig

production; however, MDPs have also been applied to other areas.

The papers may be divided into two categories, namely, papers using MDPs as a

tool for evaluating different herd effects, e.g., different reproductive programs

(Kalantari and Cabrera 2012) and papers formulating MDP models which may be

embedded into a management decision support system (DSS), e.g., a model for

slaughter pig marketing (Kristensen et al. 2012).

The first category is mainly used by researchers as an evaluation tool and giving

advise to the industry. Several of the most advanced recent models are in this

category. Thus, the models by Bar et al. (2008a,b) and Cha et al. (2011) use the

models to estimate the costs of clinical mastitis in dairy cows and evaluate the

treatment and prevention options, and Demeter et al. (2011) use their model to

estimate the long-term consequences of different breeding strategies in dairy cows.

It is expected that many models developed in the future will belong to this category.

The aim of models in the second category is that they ultimately should be used

within the DSS on farm. However, the actual use of such models on farm has been

limited. Reasons for this may be that MDPs require access to good data for

estimating the many parameters needed in the model. Moreover the estimation

process may be cumbersome and error-prone. As a result there have been a growing

focus on using on-farm biosensors for retrieving data and algorithms for data

filtration and parameter estimation based on Bayesian updating as in Nielsen

et al. (2010) for a dairy cow replacement model. An example from pig production

is the work by Bono et al. (2012) where important litter size parameters to be used

in a sow replacement models are automatically and dynamically estimated from

herd registrations and fed into the replacement model. Furthermore, the states of the

individual sows are automatically identified so that the optimal decision can be

3R Development Core Team http://www.R-project.org/.
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returned by the optimization model. Providing direct links from data is crucial if

MDP models should be applied within farms since the parameter settings may be

quite different among farms.

Another issue is violated herd constraints. MDP models often are applied at

animal level and given replacement it is assumed that a new animal is available. As

a result MDP models have to be coordinated with other information streams and

other models used in the farm DSS. This calls for further research.

Due to the large number of state variables there is a trend in using hierarchical

MDPs, since here state variables such as lactation number and lactation stage are

implicitly given by the model structure. Hence, the same problem formulated as a

hierarchical model will typically have fewer state variables than if it had been

formulated as an ordinary MDP. Moreover, finding the optimal policy using policy

iteration is often faster.

Finally, the number of state variables may be so large that models may face the

curse of dimensionality. This calls for research in models which finds an approx-

imate good policy using techniques such as approximate dynamic programming

(Powell 2011).
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