
Hamel’s Formalism and Variational Integrators

Kenneth R. Ball and Dmitry V. Zenkov

Abstract Hamel’s formalism is a representation of Lagrangian mechanics obtained
by measuring the velocity components relative to a frame that generically is
not induced by configuration coordinates. The use of this formalism often leads
to a simpler representation of dynamics. Utilizing the variational discretization
approach, this paper develops a discrete Hamel’s formalism with applications to
nonholonomic integrators.

1 Introduction

This paper introduces the discrete Hamel formalism along with some of its applica-
tions. Besides being of a pure theoretical interest, this development is motivated by
restoring the concept of ideal constraints in the discrete setting and by an attempt
to better understand structural stability of variational and nonholonomic integrators.
A loss of structural stability has been recently observed in [25, 26, 34].

Hamel’s formalism is a version of Lagrangian mechanics in which the velocity
components are measured relative to a set of independent vector fields on the
configuration space. These vector fields are not associated with configuration
coordinates and therefore do not commute, leading to the so-called ‘bracket terms’
in the equations of motion.

One of the reasons for using Hamel’s formalism is that the Euler–Lagrange
equations written in generalized coordinates, while universal, are not always the
best tool for analyzing the dynamics of mechanical systems. For example, it is
difficult to study the motion of the Euler top if the Euler–Lagrange equations (either
intrinsically or in generalized coordinates) are used to represent the dynamics.
On the other hand, the use of the angular velocity components relative to a
body frame pioneered by Euler [13] results in a much simpler representation of
dynamics. Euler’s approach led to the development of the Euler–Poincaré equations
by Lagrange [24] for reasonably general Lagrangians on the rotation group and by
Poincaré [35] for arbitrary Lie groups (see [27] for details and history). An extension
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of this formalism from Lie groups to arbitrary configuration manifolds was carried
out by Hamel [16]. Hamel’s formalism is especially useful in nonholonomic
mechanics. See e.g. [5, 30, 33] for the history and contemporary exposition of
Hamel’s formalism.

Discrete Lagrangian mechanics is obtained by discretizing Hamilton’s varia-
tional principle. This approach leads to symplectic- and, for systems with symmetry,
momentum-preserving integrators. By discretizing the Lagrange–d’Alembert prin-
ciple, nonconservative forces (see Kane et al. [20] and Marsden and West [28])
and nonholonomic constraints (see Cortés and Martínez [12]) can be incorporated
as well. Recall that, in the continuous-time setting, the dynamics of a Lagrangian
system with nonholonomic constraints may be reformulated as the dynamics of an
unconstrained system by adding the constraint reaction force. See Suslov [37] and
Chetaev [11] for details and precise statements. However, as pointed out in Cortés
and Martínez [12], the discretizations of these two representations, as a rule, are not
the same, which makes the versions of the discrete Lagrange–d’Alembert principle
of [20, 28] and [12] incompatible. In other words, the notion of an ideal constraint
of continuous-time mechanics is not retained by the discretization of Cortés and
Martínez.

Following the variational discretization approach, we develop discrete Hamel’s
formalism by discretizing Hamilton’s principle for Hamel’s equations. The principal
difficulty in extending this program to Hamel’s setting is caused by the bracket
terms, as a discrete analogue of the Jacobi–Lie bracket is known only for left-
or right-invariant vector fields on Lie groups (Moser and Veselov [32], Marsden,
Pekarsky, and Shkoller [29], Bobenko and Suris [6, 7]). In this paper we resolve the
bracket term discretization issue for systems on vector spaces.

When a continuous-time system is discretized, we first select the vector fields that
are used to measure the velocity components, and then set up the discrete variational
principle. In general, the outcome is a somewhat different discrete dynamical system
than the outcome of the usual variational discretization procedure. Remarkably, a
modification of our formalism for systems with nonholonomic constraints resolves,
at least for Chaplygin systems, the ideal constraint issue of Cortés and Martínez.
That is, the discrete Lagrange–d’Alembert principle for Hamel’s equations in
the presence of nonholonomic constraints is identical to the discrete Lagrange–
d’Alembert principle of Kane et al. [20] and Marsden and West [28] written after
replacing the constraints with their reactions.

Our formalism also contributes to the study of structural stability of non-
holonomic integrators. Recently, Lynch and Zenkov [25, 26] discovered that the
nonholonomic integrator of Cortés and Martínez, in general, is not structure-
preserving, as it is capable of changing the dimension and stability of manifolds
of relative equilibria of continuous-time systems. A similar effect was observed in
the holonomic setting in [34]. This lack of structural stability is a serious issue as it
alters the ˛- and !-limit sets, thus making the asymptotic dynamics of the integrator
different from the asymptotic dynamics of the underlying continuous-time system.
Such an integrator, in principle, is not suitable for long-term numerical simulations
of continuous-time nonholonomic systems. Discrete Hamel’s equations are certain
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to preserve the manifolds of relative equilibria and their stability, and thus are a
better candidate for good quality long-term integrators.

The paper is organized as follows: Continuous-time Lagrangian mechanics and
Hamel’s formalism, Hamilton’s variational principle, and discrete mechanics are
reviewed in Sections 2–4. Discrete Hamel’s formalism is introduced in Section 5.
Applications of discrete Hamel’s formalism to nonholonomic mechanics and to
global energy-momentum numerical integration of the spherical pendulum are
exposed in Sections 6 and 7.

2 Lagrangian Mechanics

Lagrangian mechanics provides a systematic approach to deriving the equations
of motion as well as establishes the equivalence of force balance and variational
principles.

2.1 The Euler–Lagrange Equations

A Lagrangian mechanical system is specified by a smooth manifold Q called the
configuration space and a function L W TQ ! R called the Lagrangian. In many
cases, the Lagrangian is the kinetic minus potential energy of the system, with the
kinetic energy defined by a Riemannian metric and the potential energy being a
smooth function on the configuration spaceQ. If necessary, non-conservative forces
can be introduced (e.g., gyroscopic forces that are represented by terms in L that are
linear in the velocity), but this is not discussed in detail in this paper.

In local coordinates q D .q1; : : : ; qn/ on the configuration space Q we write
L D L.q; Pq/. The dynamics is given by the Euler–Lagrange equations

d

dt

@L

@ Pqi D @L

@qi
; i D 1; : : : ; n: (1)

These equations were originally derived by Lagrange [24] in 1788 by requiring
that simple force balance be covariant, i.e. expressible in arbitrary generalized
coordinates. A variational derivation of the Euler–Lagrange equations, namely
Hamilton’s principle (see Theorem 1 below), came later in the work of Hamilton
[17, 18] in 1834/35.

Let q.t/, a � t � b, be a smooth curve in Q. A variation of the curve q.t/ is
a smooth map ˇ W Œa; b� � Œ�"; "� ! Q that satisfies the condition ˇ.t; 0/ D q.t/.
This variation gives rise to the vector field

ıq.t/ D @ˇ.t; s/

@s

ˇ
ˇ
ˇ
ˇ
sD0

(2)

along the curve q.t/.
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Theorem 1. The following statements are equivalent:

(i) The curve q.t/, where a � t � b, is a critical point of the action functional

Z b

a

L.q; Pq/ dt

on the space of curves in Q connecting qa to qb on the interval a � t � b,
where we choose variations of the curve q.t/ that satisfy the condition ıq.a/ D
ıq.b/ D 0.

(ii) The curve q.t/ satisfies the Euler–Lagrange equations (1).

We point out here that this principle assumes that a variation of the curve q.t/
induces the variation ı Pq.t/ of its velocity according to the formula

ı Pq.t/ WD d

dt
ıq.t/:

For more details and a proof, see e.g. [2, 27], and Theorem 2 below.

3 Lagrangian Mechanics in Non-coordinate Frames

In this section we discuss the continuous-time Hamel formalism and a relevant
variational principle, following the exposition of [5].

3.1 The Hamel Equations

In many cases the Lagrangian and the equations of motion have a simpler structure
when the velocity components are measured against a frame that is not necessarily
induced by system’s local configuration coordinates. An example of such a system
is the rigid body.

Let q D .q1; : : : ; qn/ be local coordinates on the configuration space Q and
ui 2 TQ, i D 1; : : : ; n, be smooth independent local vector fields on Q defined in
the same coordinate neighborhood hereafter denoted U . In certain cases, some or all
of ui can be chosen to be global vector fields on Q. The components of ui relative
to the coordinate-induced basis @=@qj are written as  j

i ; that is,

ui .q/ D  
j
i .q/

@

@qj
;

where i; j D 1; : : : ; n.
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Let � D .�1; : : : ; �n/ 2 R
n be the components of the velocity vector Pq 2 TQ

relative to the frame u.q/ D .u1.q/; : : : ; un.q//, i.e.,

Pq D u.q/ � �; (3)

where, by definition,

u.q/ � � WD �iui .q/: (4)

When convenient, we reverse the order of factors in (4), i.e., we assume that

u.q/ � � D � � u.q/:

The Lagrangian of the system written in the local coordinates .q; �/ on the velocity
phase space TQ reads

l.q; �/ WD L.q; u.q/ � �/: (5)

The coordinates .q; �/ are a Lagrangian analogue of non-canonical variables in
Hamiltonian dynamics.

Given two elements �; � 2 R
n, define the antisymmetric bracket operation

Œ � ; � �q W Rn � R
n ! R

n by

u.q/ � Œ�; ��q D �

u.q/ � �; u.q/ � ��;

where Œ � ; � � is the Jacobi–Lie bracket of vector fields on Q. That is, Œ�; ��q consists
of the components of Œui �i ; uj �j �.q/ relative to the frame u1; : : : ; un.

Therefore, each tangent space TqU is isomorphic to the Lie algebra Wq WD
.Rn; Œ � ; � �q/, and the tangent bundle T U is diffeomorphic to a Lie algebra bundle
over U .

The dual of Œ � ; � �q is, by definition, the operation Œ � ; � ��q W Wq � W �
q ! W �

q

given by

hŒ�; ˛��q ; �i WD h˛; Œ�; ��qi:

Define the structure functions caij .q/ by the equations

Œui .q/; uj .q/� D caij .q/ua.q/;

i; j; a D 1; : : : ; n. These quantities vanish if and only if the vector fields ui .q/,
i D 1; : : : ; n, commute.
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Viewing ui as vector fields on TQ whose fiber components equal 0, one defines
the directional derivatives ui Œl � for a function l W TQ ! R in a usual way. It is
straightforward to show that

ui Œl � D  
j
i

@l

@qj
:

For a frame u D .u1; : : : ; un/, define uŒl � by the formula

uŒl � D .u1Œl �; : : : ; unŒl�/:

The evolution of the variables .q; �/ is governed by the Hamel equations

d

dt

@l

@�j
D caij �

i @l

@�a
C uj Œl �; (6)

coupled with equation (3). If ui D @=@qi , equations (6) become the Euler–Lagrange
equations (1). Equations (6) were introduced in [16] (see also [33] and [5] for details
and some history).

3.2 Hamilton’s Principle for Hamel’s Equations

The variational derivation of Hamel’s equations in this section mostly follows [5].
We refer the readers to [27] for the related history of the development of variational
principles for the Euler–Lagrange, Euler–Poincaré, and Hamel equations, and to [1]
for the Hamilton–Pontryagin principle for the Hamel equations.

Theorem 2 (Zenkov, Bloch, and Marsden [5]). Let L W TQ ! R be a
Lagrangian and l be its representation in local coordinates .q; �/. Then, the
following statements are equivalent:

(i) The curve q.t/, where a � t � b, is a critical point of the action functional

Z b

a

L.q; Pq/ dt (7)

on the space of curves in Q connecting qa to qb on the interval Œa; b�, where
we choose variations of the curve q.t/ that satisfy ıq.a/ D ıq.b/ D 0.

(ii) The curve q.t/ satisfies the Euler–Lagrange equations

d

dt

@L

@ Pq D @L

@q
:
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(iii) The curve .q.t/; �.t// is a critical point of the functional

Z b

a

l.q; �/ dt (8)

with respect to variations ı� , induced by the variations

ıq D u.q/ � � � ui .q/�
i ; (9)

and given by

ı� D P� C Œ�; ��q:
1 (10)

(iv) The curve .q.t/; �.t// satisfies the Hamel equations

d

dt

@l

@�
D
�

�;
@l

@�

��

q

C uŒl �

coupled with the equations Pq D u.q/ � � � �iui .q/:

For the early development of these equations see [35] and [16].

Proof. The equivalence of (i) and (ii) is proved by computing the variation of the
action functional (7):

ı

Z b

a

L.q; Pq/ dt D
Z b

a

�
@L

@q
ıq C @L

@ Pq ı Pq
�

dt D
Z b

a

�
@L

@q
� d

dt

@L

@ Pq
�

ıq dt:

Recall that we denote the components of ıq.t/ relative to the frame u.q.t// D
.u1.q.t//; : : : ; un.q.t/// by �.t/ D .�1.t/; : : : ; �n.t//; that is,

ıq.t/ D u.q.t// � �.t/ � ui .q.t//�
i .t/:

To prove the equivalence of (i) and (iii), we first compute the quantities ı Pq and
d.ıq/=dt. Using the definition (2) of the field ıq, one concludes that

ıua.q.t// D @ua.ˇ.t; s//

@s

ˇ
ˇ
ˇ
ˇ
sD0

D � � uŒua� D ıqŒua� � �bubŒua�: (11)

Similarly,

d

dt
ub.q.t// D PqŒub� D � � uŒub� � �auaŒub�:

1If Q is a Lie group, this formula is derived in Bloch, Krishnaprasad, Marsden, and Ratiu [4].
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Next,

ı Pq D ıu.q.t// � �.t/C u.q.t// � ı�.t/;
d.ıq/

dt
D du.q.t//

dt
� �.t/C u.q.t// � P�.t/:

Equivalently, in coordinates,

ı Pq D ı
�

�i .t/ui .q.t//
	 D ı�i .t/ui .q.t//C �i .t/

@ui
@qj

ıqj ;

d.ıq/

dt
D d

dt

�

�i .t/ui .q.t//
	 D P�i .t/ui .q.t//C �i .t/

@ui
@qj

Pqj :

Since ı Pq D d.ıq/=dt, we obtain

u.q.t// � �ı�.t/ � P�.t/	 D �i .t/�j .t/
�

ui .q.t//Œuj .q.t//� � uj .q.t//Œui .q.t//�
	

D �i .t/�j .t/Œui .q.t//; uj .q.t//� � �

u.q.t// � �.t/; u.q.t// � �.t/�;

which implies formula (10).
To prove the equivalence of (iii) and (iv), we use the above formula and compute

the variation the functional (8):

ı

Z b

a

l.q; �/ dt D
Z b

a

�
@l

@q
ıq C @l

@�
ı�

�

dt

D
Z b

a

�

� � uŒl �C @l

@�


 P� C Œ�; ��q.t/

��

dt

D
Z b

a

�

uŒl �C
�

�;
@l

@�

��

q.t/

� d

dt

@l

@�

�

� dt:

The latter vanishes if and only if the Hamel equations are satisfied. ut

3.3 Remarks on the Frame Selection

As discussed in [2, 3], and [5], constraints and symmetry naturally define subbundles
of the velocity phase space TQ. For underactuated mechanical systems, the
controlled directions define a subbundle of the momentum phase space T �Q. It
may be beneficial to select a frame in such a way that suitable subframes of the
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frame and its dual span the mentioned subbundles. Such frames lead to a simpler
representation of dynamics and clarify the structure of the mechanical system under
consideration (subsystems, interconnections, etc.).

4 Discrete Mechanics

A discrete analogue of Lagrangian mechanics can be obtained by discretizing
Hamilton’s principle; this approach underlies the construction of variational inte-
grators. See Marsden and West [28], and references therein, for a more detailed
discussion of discrete mechanics.

A key notion is that of the discrete Lagrangian, which is a mapLd W Q�Q ! R

that approximates the action integral along an exact solution of the Euler–Lagrange
equations joining the configurations qk; qkC1 2 Q,

Ld.qk; qkC1/ � ext
q2C.Œ0;h�;Q/

Z h

0

L.q; Pq/ dt;

where C.Œ0; h�;Q/ is the space of curves q W Œ0; h� ! Q with q.0/ D qk , q.h/ D
qkC1, and ext denotes extremum.

In the discrete setting, the action integral of Lagrangian mechanics is replaced by
an action sum

Sd .q0; q1; : : : ; qN / D
N�1X

kD0
Ld .qk; qkC1/;

where qk 2 Q, k D 0; 1; : : : ; N , is a finite sequence in the configuration space.
The equations are obtained by the discrete Hamilton principle, which extremizes
the discrete action given fixed endpoints q0 and qN . Taking the extremum over
q1; : : : ; qN�1 gives the discrete Euler–Lagrange equations

D1L
d.qk; qkC1/CD2L

d.qk�1; qk/ D 0 (12)

for k D 1; : : : ; N � 1. Here and below, DiF denotes the partial derivative of the
function F with respect to its i th input. Equations (12) implicitly define the update
map ˚ W Q �Q ! Q �Q, where ˚.qk�1; qk/ D .qk; qkC1/ and Q �Q replaces
the velocity phase space TQ of continuous-time Lagrangian mechanics.

In the case thatQ is a vector space, it may be convenient to use .qkC1=2; vk;kC1/,
where qkC1=2 D 1

2
.qk C qkC1/ and vk;kC1 D 1

h
.qkC1 � qk/, as a state of a discrete
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mechanical system. In such a representation, the discrete Lagrangian becomes a
function of .qkC1=2; vk;kC1/, and the discrete Euler–Lagrange equations read

1
2

�

D1L
d.qk�1=2; vk�1;k/CD1L

d.qkC1=2; vk;kC1/
	

C 1
h

�

D2L
d.qk�1=2; vk�1;k/ �D2L

d.qkC1=2; vk;kC1/
	 D 0:

These equations are equivalent to the variational principle

ıSd D
N�1X

kD0

�

D1L
d .qkC1=2; vk;kC1/ ıqkC1=2 CD2L

d .qkC1=2; vk;kC1/ ıvk;kC1

	 D 0; (13)

where the variations ıqkC1=2 and ıvk;kC1 are induced by the variations ıqk and are
given by the formulae

ıqkC1=2 D 1
2

�

ıqkC1 C ıqk
	

; ıvk;kC1 D 1
h

�

ıqkC1 � ıqk
	

:

The discrete Hamel formalism introduced below may be interpreted as a generaliza-
tion of the representation (13) of discrete mechanics.

5 Discrete Hamel’s Equations

In the rest of the paper we assume that Q is a vector space. Start with a sequence
of configurations fqkgNkD0. Given a parameter � 2 Œ0; 1�, define the points qkC� WD
.1 � �/qk C �qkC1 for each 0 � k � N � 1. The velocity components relative to
the frame u.q/ at qkC� are denoted �k;kC1 D .�1k;kC1; : : : ; �nk;kC1/. Similar to [8, 22],
the phase space for the suggested discretization of Hamel’s equation is the tangent
bundle TQ. In local coordinates .q; �/ on TQ, the discrete Lagrangian ld W TQ !
R reads ld D ld .qkC� ; �k;kC1/. To discretize a continuous-time system, we suggest
the following procedure:

(i) Select a frame u.q/ and identify the continuous-time Lagrangian l.q; �/, as
in (5).

(ii) Construct the discrete Lagrangian using the formula

ld .qkC� ; �k;kC1/ D hl.qkC� ; �k;kC1/:

The action sum then is

sd D
N�1X

kD0
ld .qkC� ; �k;kC1/; (14)

which is an approximation of the action integral (8) of the continuous-time system.
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Given � 2 Œ0; 1�, define �kC� by the formula

�kC� D .1 � �/�k C ��kC1: (15)

The quantities �k , �kC1, and �kC� will be used below to establish the discrete
analogues of the variation formulae (9) and (10).

Define the discrete conjugate momentum by

�k;kC1 WD D2l
d .qkC� ; �k;kC1/: (16)

Below, we use the notations

ukC� WD u.qkC� /; ldkC� WD ld .qkC� ; �k;kC1/; u
�

ld
�

kC� WD u
�

ld
�

.qkC� ; �k;kC1/;

etc.

Theorem 3. The sequence
�

qkC� ; �k;kC1
	 2 TQ satisfies the discrete Hamel

equations

1
h

�

�k�1;k � �k;kC1
	C �u

�

ld
�

k�1C� C .1 � �/u�ld �
kC�

C �
�

�k�1;k; �k�1;k
��
qk�1C�

C .1 � �/��k;kC1; �k;kC1
��
qkC�

D 0 (17)

if and only if

ısd D ı

N�1X

kD0
ld .qkC� ; �k;kC1/ D 0;

where

ıqkC� D u.qkC� / � �kC� ; (18)

ı�k;kC1 D 1
h

�

�kC1 � �k
	C �

�k;kC1; �kC�
�

qkC�
: (19)

Here �0 D �N D 0; and �kC� is defined in (15), k D 0; : : : ; N � 1.

In order to obtain a complete system of equations, one supplements (17) with a
discrete analogue of the kinematic equation Pq D u.q/ � � . There is a certain freedom
in doing that. For now, we assume this discrete analogue to be

�qk

h
D ukC� � �k;kC1:

We will use a different discretization of the kinematic equation to construct an
integrator for the spherical pendulum in Section 7.
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In the coordinate form, the discrete Hamel equations and the formulae for
variations read

1
h

�

�k�1;kIj � �k;kC1Ij
	C �uj

�

ld
�

k�1C� C .1 � �/uj
�

ld
�

kC�

C �caij .qk�1C� /�ik�1;k�k�1;kIa C .1 � �/caij .qkC� /�ik;kC1�k;kC1Ia D 0;

and

ıqikC� D  i
b.qkC� /�bkC� ;

ı�bk;kC1 D 1
h

�

�bkC1 � �bk
	C cbij .qkC� / �ik;kC1�

j

kC� ;

respectively.

Remark. Unlike the continuous-time case, the formulae for variations (18) and (19)
cannot be derived in a manner presented in the proof of Theorem 2. The situation
here is somewhat similar to the issue encountered and resolved by Chetaev in his
work [10] on the equivalence of the Lagrange–d’Alembert and Gauss principles for
systems with nonlinear nonholonomic constraints. Recall that Chetaev’s approach
was to define variations in such a way that the two principles become equivalent.

Proof. Using formulae (18) and (19) and computing the variation of the action
sum (14), one obtains

ısd D
N�1X

kD0
D1l

d .qkC� ; �k;kC1/ ıqkC� CD2l
d .qkC� ; �k;kC1/ ı�k;kC1

D
N�1X

kD0

D

D1l
d
kC� ; ukC� � �kC�

E

C
D

D2l
d
kC� ; .�kC1 � �k/=hC �

�k;kC1; �kC�
�

qkC�

E

D
N�1X

kD1

D
1
h
.�k�1;k � �k;kC1/; �k

E

C
D

u
�

ld
�

kC� C �

�k;kC1; �k;kC1
��
qkC�

; .1 � �/�k C ��kC1
E

D
N�1X

kD1

D
1
h
.�k�1;k � �k;kC1/; �k

E

C
D

�u
�

ld
�

k�1C� C .1 � �/u�ld �
kC� ; �k

E

C
D

�
�

�k�1;k; �k�1;k
��
qk�1C�

C .1 � �/��k;kC1; �k;kC1
��
qkC�

; �k

E

:
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Thus, vanishing of ısd for arbitrary �k; k D 1; : : : ; N � 1, is equivalent to discrete
Hamel’s equations (17). ut

The formulae for variations (18) and (19) in the discrete setting are motivated
by the following observations. First, recall that in the continuous-time setting the
formula (10) for ı� follows from the formula

ı.u � �/ � d

dt
.u � �/ D 0: (20)

A discrete analogue of ı.u � �/ is relatively straightforward to obtain. Indeed, using
the formula

ıqkC� D ukC� � �kC� � ukC� � �.1 � �/�k C ��kC1/
	

and the interpretation of the operator ı as a directional derivative, just like in
formula (11), one obtains

ıukC� D �

�kC� � uŒu�
	

kC� ;

and therefore

ı.ukC� � �kC1/ D ıukC� � �k;kC1 C ukC� � ı�k;kC1

D ukC� � ı�k;kC1 C �

�kC� � u
�

�k;kC1 � u
�	

kC� :

However, a discrete analogue of the formula d
dt .u � �/ is not immediately available,

as the operation of time differentiation is not intrinsically present in the discrete
setting. A workaround that we suggest is to view the transition from qk to qkC1 as a
motion along a straight line segment at a uniform rate:

qkC� D .1 � �/qk C �qkC1; 0 � � � 1; (21)

so that qkC� D qk when � D 0 and qkC� D qkC1 when � D 1. Since the time step
is h, the analogue of continuous-time velocity is �qk=h. From (21),

�qk

h
D 1

h

dqkC�
d�

;

leading to an interpretation of the operator

1

h

d

d�

as a discrete analogue of time differentiation of continuous-time mechanics.
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The discrete analogue of the term d
dt .u � �/ thus is

1

h

d

d�

�

ukC� � �kC�
	 D 1

h

dukC�
d�

� �kC� C ukC� � 1
h

d�kC�
d�

D ukC� � 1
h

d�kC�
d�

C �

�k;kC1 � u
�

�kC� � u
�	

kC�

D ukC� � �kC1 � �k
h

C �

�k;kC1 � u
�

�kC� � u
�	

kC� :

Summarizing, the discrete analogue of (20) reads

ukC� � ı�k;kC1 D ukC� � �kC1 � �k
h

C �

u � �k;kC1; u � �kC�
�

qkC�
;

which implies formula (19) for variation ı� .

6 Hamel’s Formalism and Nonholonomic Integrators

In this section we study some of the structure-preserving properties of discrete
Hamel’s formalism in the presence of velocity constraints.

6.1 The Lagrange–d’Alembert Principle

Assume now that there are velocity constraints imposed on the system. We confine
our attention to constraints that are homogeneous in the velocity. Accordingly, we
consider a configuration space Q and a distribution D on Q that describes these
constraints. Recall that a distribution D is a collection of linear subspaces of the
tangent spaces of Q; we denote these spaces by Dq � TqQ, one for each q 2
Q. A curve q.t/ 2 Q is said to satisfy the constraints if Pq.t/ 2 Dq.t/ for all t .
This distribution is, in general, nonintegrable; i.e., the constraints are, in general,
nonholonomic.2

Consider a Lagrangian L W TQ ! R. The equations of motion are given by the
following Lagrange–d’Alembert principle.

2Constraints are nonholonomic if and only if they cannot be rewritten as position constraints.
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Definition 1. The Lagrange–d’Alembert equations of motion for the system are
those determined by

ı

Z b

a

L.q; Pq/ dt D 0;

where we choose variations ıq.t/ of the curve q.t/ that satisfy ıq.a/ D ıq.b/ D 0

and ıq.t/ 2 Dq.t/ for each t 2 Œa; b�.
This principle is supplemented by the condition that the curve q.t/ itself satisfies
the constraints. Note that we take the variation before imposing the constraints; that
is, we do not impose the constraints on the family of curves defining the variation.
This is well known to be important to obtain the correct mechanical equations (see
[23] and [3] for discussions and references).

6.2 Ideal Constraints

As discussed in e.g. Suslov [37] and Chetaev [11], it is assumed in classical
mechanics that the constraints imposed on the system can be replaced with the
reaction forces. This means that after the forces are imposed on the unconstrained
system, the constraint distribution becomes a conditional invariant manifold of the
forced unconstrained Lagrangian system whose dynamics on this invariant manifold
is identical to that of the constrained system.

Definition 2. Constraints (either holonomic or nonholonomic) are called ideal if
their reaction forces at each q 2 Q belong to the null space Dı

q � T �
q Q of Dq .

As shown in Suslov [37] and Chetaev [11], the reaction forces of ideal constraints
are defined uniquely at each state .q; Pq/ 2 TQ.

In summary, for a system subject to ideal constraints, the forced dynamics is
equivalent to the Lagrange–d’Alembert principle. We refer the reader to books
[37] and [11] for a more detailed exposition and history of the concept of ideal
constraints.

6.3 The Constrained Hamel Equations

Given a system with velocity constraints, that is, a Lagrangian L W TQ ! R and
constraint distribution D, select the independent local vector fields

ui W Q ! TQ; i D 1; : : : ; n;
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such that Dq D spanfu1.q/; : : : ; um.q/g, m < n. Each Pq 2 TQ can be uniquely
written as

Pq D u.q/ � �D C u.q/ � �U ; (22)

where u.q/ � �D is the component of Pq along Dq and u.q/ � �U is the complementary
component. Similarly, each a 2 T �Q can be uniquely decomposed as

a D aD � u�.q/C aU � u�.q/;

where aD � u�.q/ is the component of a along the dual of Dq , where aU � u�.q/ is
the complementary component, and where u�.q/ 2 T �Q � � � � � T �Q denotes the
dual frame of u.q/. Using the decomposition (22), the constraints read

� D �D or �U D 0: (23)

Similar to (22), we write

ıq D u.q/ � � D u.q/ � �D C u.q/ � �U :

Recall that ıq.t/ 2 Dq.t/, which is equivalent to

� D �D or �U D 0: (24)

The Lagrange–d’Alembert principle in combination with (24) proves the following
theorem:

Theorem 4. The dynamics of a system with velocity constraints is represented by
the constrained Hamel equations

�
d

dt

@l

@�
�
�

�D;
@l

@�

��

q

� uŒl �

�

D
D 0; �U D 0;

coupled with the kinematic equation

Pq D u.q/ � �D:

The constrained Lagrangian is the restriction of the Lagrangian to the constraint
distribution. Thus, using Hamel’s formalism, the constrained Lagrangian reads

lc
�

q; �D
	 D l

�

q; �D; 0
	 � l.q; �/j�UD0:
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It is straightforward to check that an alternative form of the constrained Hamel
equations is

d

dt

@lc

@�D
�
��

�D;
@l

@�

��

q

�

D
� uDŒlc� D 0; �U D 0: (25)

6.4 Continuous-Time Chaplygin Systems

As an important special case, consider commutative Chaplygin systems, which are
nonholonomic systems with a commutative symmetry group H , dimH D n � m,
and subject to the condition that at each q 2 Q the tangent space TqQ is the direct
sum of the fiber of the constraint distribution and the tangent space to the orbit
OrbH.q/ of H through q:

TqQ D Dq ˚ TqOrbH.q/: (26)

To avoid technical difficulties, assume that the group H acts freely and properly on
the configuration spaceQ, so that � W Q ! Q=H is a principal fiber bundle, where
� is the projection. Elements of Q=H and H are denoted x and s, respectively.

Following [3], define an Ehresmann connection by requiring that Dq and
TqOrbH.q/ are the horizontal and vertical spaces at q 2 Q, respectively. These
spaces are denoted Hq and Vq .

In other words, the nonholonomic kinematic constraints provide an Ehresmann
connection on the principal bundle � W Q ! Q=H . Under the assumptions made
above, the equations of motion drop to the reduced space D=H , which in this special
case is the same as T .Q=H/.

Recall that an Ehresmann connection A on a bundle Q is a vertical-valued one-
form that is a projection; i.e., Aq W TqQ ! Vq is a linear map for each q 2 Q and
A.v/ D v for all v 2 Vq . In the bundle coordinates .x; s/ introduced above, the
form A reads

A D !a
@

@sa
; where !a.q/ D Aa˛.x/ dx˛ C dsa; (27)

where ˛ D 1; : : : ; m and a D m C 1; : : : ; n. Recall also that the horizontal space
Hq D kerAq , so that TqQ D Hq ˚ Vq , in full agreement with (26).

The curvature of A is the vertical-valued two-form defined by

B.X; Y / D �A.ŒhorX; horY �/;
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where horX and horY are the horizontal parts of the vectors X; Y 2 TqQ. In the
bundle coordinates .x; s/,

B.X; Y / D Ba
˛ˇX

˛Y ˇ
@

@sa
;

where

Ba
˛ˇ D @Aa˛

@rˇ
� @Aaˇ

@r˛
:

Recall that the constrained Lagrangian is the restriction of the Lagrangian onto
the constraint distribution: Lc D LjD. For Chaplygin systems, L and Lc naturally
reduce to the functions on TQ=H and D=H , respectively. In the bundle coordinates
.x; s/, this simply means that L is independent of s,3 i.e., L D L.x; Px; Ps/, and the
constrained Lagrangian reads

Lc.x; Px/ D L.x; Px;�A.x/ Px/:

The equations of motion for Chaplygin systems,

d

dt

@Lc

@ Px � @Lc

@x
D
�
@L

@Ps ; i Px B


; (28)

or, in coordinates,

d

dt

@Lc

@ Px˛ � @Lc

@x˛
D � @L

@Psa B
a
˛ˇ Pxˇ;

˛; ˇ D 1; : : : ; m, a D m C 1; : : : ; n, were first derived, through a coordinate
calculation, by Chaplygin in [9]. They are called the Chaplygin equations.

Following [30], we now obtain equations (28) using Hamel’s formalism. Recall
that connection (27) is defined by the constraint distribution. Equivalently, the
constraints read

Ps C A.x/ Px D 0:

Associated with the constraint distribution are the vector fields

u˛ D hor @x˛ D @x˛ � Aa˛@sa and ua D @sa : (29)

3For a noncommutative symmetry group, L depends on .s; Ps/ through the combination s�1 Ps.
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Using this frame,

Pq D Px˛u˛ C .Psa C Aa˛ Px˛/ua;

˛ D 1; : : : ; m, a D mC 1; : : : ; n, or, equivalently,

�D D Px; �U D Ps C A.x/ Px; Pq D uD � �D C uU � �U ;

and

l.x; �/ D L
�

x; �D; �U � A.x/�D	 ; lc
�

x; �D
	 D L

�

x; �D;�A.x/�D	 :
(30)

Evaluating the Jacobi–Lie brackets of the fields (29), one obtains

Œu˛; uˇ� D
 

@Aa˛
@xˇ

� @Aaˇ

@x˛

!

@

@sa
� Ba

˛ˇ

@

@sa
; Œu˛; ua� D Œua; ub� D 0;

which implies

��

�D;
@l

@�

��

q

�

D
D
�
@L

@Ps ; i Px B


;

and thus (28) are just the constrained Hamel equations (25). Recall that B is the
curvature of the form A.

An important remark is that, from Chaplygin’s prospective, equations (28)
are the Euler–Lagrange equations on the configuration space Q=H subject to a
nonconservative force

�
@L

@Ps ; i Px B


:

This force may be interpreted as a shape component of the constraint reaction.
Another important remark is that Px˛ in the classical literature are viewed as

the reduced configuration velocities, whereas from the point of view of Hamel’s
formalism Px˛ represent the velocity components along the non-commuting fields
u˛ , ˛ D 1; : : : ; m.

6.5 Discrete Nonholonomic Systems

Discrete nonholonomic systems (nonholonomic integrators) were introduced by
Cortés and Martínez in [12].
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Let Q be a configuration space. According to Cortés and Martínez, a discrete
nonholonomic mechanical system on Q is characterized by:

(i) A discrete Lagrangian Ld W Q �Q ! R;
(ii) A constraint distribution D on Q;

(iii) A discrete constraint manifold Dd � Q �Q which has the same dimension
as D and satisfies the condition .q; q/ 2 Dd for all q 2 Q.

The dynamics is given by the following discrete Lagrange–d’Alembert principle
(see [12]):

N�1X

kD1




D1L
d.qk; qkC1/CD2L

d.qk�1; qk/
�

ıqk D 0; ıqk 2 Dqk ; .qk; qkC1/ 2 Dd :

As pointed out in [14, 15], the discrete constraint manifold should be carefully
selected when a continuous-time nonholonomic system is discretized. For the details
on the properties of discrete nonholonomic systems we refer the reader to papers
[12, 14, 15, 31]. In a recent paper [22], a somewhat different approach to discretizing
nonholonomic systems has been suggested.

Cortés and Martínez also study the dynamics of discrete Chaplygin systems. In
particular, given a continuous-time Chaplygin system, they discretize the Euler–
Lagrange equations with constraint reactions, and conclude that, in general,
the resulting discrete system is inconsistent with the outcome of their discrete
Lagrange–d’Alembert principle. In other words, the concept of ideal constraints
is not acknowledged by their discretization procedure.

Lynch and Zenkov [25, 26] proved that the discrete dynamics defined by
the Lagrange–d’Alembert principle of Cortés and Martínez may lack structural
stability. For example, it is possible for the discretization of a continuous-time
Chaplygin system to change the dimension and/or stability of manifolds of relative
equilibria of the said continuous-time system.

Below, we shall show that a different definition of the discrete
Lagrange–d’Alembert principle exists that is free of the aforementioned issues.
In particular, the dimension and stability of manifolds of relative equilibria are kept
intact if this new version of the Lagrange–d’Alembert principle is utilized.

6.6 Hamel’s Formalism for Discrete Nonholonomic Systems

Recall that the Lagrange–d’Alembert principle for continuous-time nonholonomic
systems assumes that the variation of action is carried out before imposing the
constraints. The outcome is the constrained Hamel equations, as discussed in
Section 6.3. In a similar manner, we accept that the dynamics of a discrete non-
holonomic system is determined by the discrete Lagrange–d’Alembert principle,
obtained by first taking the variation of the discrete action (14) using variations (18)
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and (19) subject to the discrete analogue of (24), and then imposing the discrete
constraints. We emphasize that the definition of the discrete Lagrange–d’Alembert
principle given here is not the same as the definition of Cortés and Martínez
reproduced in Section 6.5.

In the continuous-time setting, the constraints are represented by formula (23).
We thus suggest that, under the same assumptions on the frame selection as in
Section 6.3, the discrete constraints are

�k;kC1 D �Dk;kC1 or �Uk;kC1 D 0:

The discrete analogue of (24) is

�k D �Dk or �Uk D 0:

Arguing like in Section 6.3, one proves the discrete analogue of Theorem 4:

Theorem 5. The dynamics of a discrete system with velocity constraints is given by
the constrained discrete Hamel equations

1
h

�

�k�1;k � �k;kC1
	

D C �

�u
�

ld
�

k�1C� C .1 � �/u�ld �
kC�

	

D

C �

�
�

�Dk�1;k; �k�1;k
��
qk�1C�

C .1 � �/��Dk;kC1; �k;kC1
��
qkC�

	

D D 0; (31)

where �k;kC1 is given by formula (16).

Of a special interest is the value � D 1=2, in which case one verifies that the order
of approximation of (31) is 2.

6.7 Discrete Chaplygin Systems

Given a continuous-time Chaplygin system, we construct its discretization by
utilizing the discrete Hamel formalism. Using the frame (29) and the continuous-
time Lagrangians (30) introduced in Section 6.4, the discrete Lagrangian and the
discrete constrained Lagrangian read

ld .xkC� ; �k;kC1/ D hl.xkC� ; �k;kC1/;

ldc
�

xkC� ; �Dk;kC1
	 D ld

�

xkC� ; �Dk;kC1
	 � hlc

�

xkC� ; �Dk;kC1
	

:

The dynamics is then given by equation (31), with

.�k;kC1/D D D2l
d
c

�

xkC� ; �Dk;kC1
	 � D2l

d .xkC� ; �k;kC1/j�U
k;kC1

D0

and �k;kC1 defined as in (16).
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We now convert the dynamics into a discrete analogue of the Chaplygin
equations (28). Following the general discretization procedure, we obtain the
formulae

�Dk;kC1 D �xk=h; �Uk;kC1 D �sk=hC A.xkC� /�xk=h:

Then, invoking (30), it is straightforward to see that

ld .xkC� ; �k;kC1/ D hl.xkC� ; �k;kC1/

D hL
�

xkC� ; �Dk;kC1; �Uk;kC1 � A.xkC� /�Dk;kC1
	

(32)

and

ldc
�

xkC� ; �Dk;kC1
	 D ld

�

xkC� ; �Dk;kC1
	 D hlc

�

xkC� ; �Dk;kC1
	

D hLc
�

xkC� ; �Dk;kC1
	 D hLc.xkC� ; �xk=h/

D hL.xkC� ; �xk=h;�A.xkC� /�xk=h/; (33)

where L.x; Px; Ps/ is the Lagrangian of the continuous-time Chaplygin system. From
formulae (32), (33), and (29), one obtains

�k;kC1 D D2l
d .xkC� ; �k;kC1/;

.�k;kC1/D D D2l
d
c

�

xkC� ; �Dk;kC1
	

D hD2Lc
�

xkC� ; �Dk;kC1
	 D hD2Lc.xkC� ; �xk=h/;

.�k;kC1/U D D3l
d
�

xkC� ; �Dk;kC1; �Uk;kC1
	

D hD3L
�

xkC� ; �Dk;kC1; �Uk;kC1 � A.xkC� /�Dk;kC1
	

D hD3L.xkC� ; �xk=h;�sk=h/:

Next, since we utilize the frame (29) just like in the continuous-time setting, the
formula


�

�Dk;kC1; �k;kC1
��
qkC�

�

D
D
D

�k;kC1; i�D
k;kC1

BqkC�

E

D
D

.�k;kC1/U ; i�D
k;kC1

BqkC�

E

D ˝

.�k;kC1/U ; i�xk=h BqkC�

˛

D ˝

hD3L.xkC� ; �xk=h;�A.xkC� /�xk=h/; i�xk=h BqkC�

˛

is established with an aid of the arguments of Section 6.4. To keep the formulae
shorter, we write the latter expression as

˝

hD3L; i�xk=h B
˛

kC� :
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Finally,

�

uŒld �.qkC� ; �k;kC1/
	

D D D1l
d
�

xkC� ; �Dk;kC1
	

D D1l
d
c

�

xkC� ; �Dk;kC1
	 D hD1Lc.xkC� ; �xk=h/:

Summarizing, the dynamics of the discrete Chaplygin system reads

1
h

�

.D2Lc/kC� � .D2Lc/k�1C�
	 D �.D1Lc/k�1C� C .1 � �/.D1Lc/kC�

C �
˝

D3L; i�xk�1=h B
˛

k�1C� C .1 � �/˝D3L; i�xk=h B
˛

kC� ; (34)

where .DiLc/kC� WD DiLc.xkC� ; �xk=h/: Remarkably, the discrete Chaplygin
equations (34) are identical to the discretization of continuous-time Chaplygin
equations (28) viewed as forced Euler–Lagrange dynamics. For more details on this
latter discretization of the Chaplygin equations see [12] and [26].

6.8 Stability

In this section we link up stability of relative equilibria of Chaplygin systems with
structural stability of nonholonomic integrators.

Consider a commutative Chaplygin system characterized by the Lagrangian L
and constraint distribution D, as discussed in Section 6.4. Assume that the dynamics
of the Chaplygin system (28) is invariant with respect to the action of a commutative
group G on Q=H .4 Often such a situation is the result of the original system being
invariant with respect to the semidirect productGsH of the groupsG andH . The
elements of the groupG are denoted g, and we assume that the action ofG onQ=H
is free and proper, so thatQ=H has the structure of a principal fiber bundle with the
structure group G. Thus, locally, there exist the bundle coordinates x D .r; g/ on
Q=H .

Under certain assumptions (see e.g. [21] and [39]), the dynamics has a manifold
(whose dimension equals dimG) of relative equilibria. These relative equilibria are
the solutions of (28) that in the bundle coordinates .r; g/ read

r D re; Pg D 	e:

As established in Karapetyan [21], some of these relative equilibria may be partially
asymptotically stable. Karapetyan justifies stability using the center manifold
stability analysis, which, for nonholonomic systems under consideration, reduces

4The general noncommutative setting is not studied in this paper and will be the subject of a future
publication.
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to verifying that the nonzero spectrum of linearization of (28) at the relative
equilibrium of interest belongs to the left half-plane.5

Partially asymptotically stable relative equilibria are a part of the !-limit set of
dynamics (28). Similarly, relative equilibria that become partially asymptotically
stable after the time reversal are a part of the ˛-limit set of dynamics (28).

It is important for a long-term numerical integrator to preserve the manifold of
relative equilibria and their stability types. Indeed, if the limit sets of an integrator
are different from the limit sets of the continuous-time dynamics, this integrator will
not adequately simulate the continuous-time dynamics over long time intervals.

As shown in [25, 26], the discrete Lagrange–d’Alembert principle of Cortés and
Martínez may produce discretizations that fail to preserve the manifold of relative
equilibria. For instance, it may change the dimension of this manifold, thus changing
the structure of the limit sets. Informally, the origin of this effect can be explained
as follows: The discrete Lagrange–d’Alembert principle of Cortés and Martínez is
capable of introducing reactions that correspond to non-ideal constraints. A typical
example would be a reaction force with a dissipative component, whose discrete
counterpart causes the aforementioned changes of relative equilibria.

A relative equilibrium of a discrete Chaplygin system (34) with commutative
symmetry is a solution

rk D const; �gk D const:

Assume now that � D 1=2 in equations (34). Let h > 0 be the time step.

Theorem 6 (Lynch and Zenkov [25, 26]). Discretization (34)6 preserves the
manifold of relative equilibria of the continuous-time Chaplygin system; that is,
rk D re , �gk D h	e is a relative equilibrium of the discretization (34) if and only
if r D re , Pg D 	e is a relative equilibrium of the continuous-time system. The
conditions for partial asymptotic stability of the equilibria of the continuous-time
system and of its discretization are the same.

Summarizing, the discrete Lagrange–d’Alembert principle proposed in this
paper ensures the necessary conditions for structural stability of the associated
nonholonomic integrator.

5The stability analysis of relative equilibria of nonholonomic systems has a long history, starting
form the results of Walker [38] and Routh [36]; see [39] for some of this history and for the energy-
momentum method for nonholonomic systems.
6Equations (34) were derived in [25, 26] without the use of the discrete Hamel formalism.
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7 The Spherical Pendulum

Here we outline the results of Zenkov, Leok, and Bloch [40] on the applications
of the discrete Hamel formalism to the energy-momentum-preserving integrator for
the spherical pendulum.

7.1 The Spherical Pendulum as a Degenerate Rigid Body

Consider a spherical pendulum whose length is r and mass is m. We view the
pendulum as a point mass moving on the sphere of radius r centered at the origin
of R3. The development here is based on the representation

P� D � � � Cmg � � a; (35)

P� D � � � (36)

of pendulum’s dynamics; that is, the pendulum is viewed as a rigid body rotating
about a fixed point. This rigid body is of course degenerate, with the inertia tensor
I D diagfmr2;mr2; 0g. Here � is the angular velocity of the pendulum, � is its
angular momentum, � is the unit vertical vector (and thus the constraint k�k D 1

is imposed), and a is the vector from the origin to the center of mass, which for the
pendulum is its bob, all written relative to the body frame. Throughout the rest of
the paper, the boldface characters represent three-dimensional vectors. The kinetic
and potential energies of the pendulum are

K D 1
2
h�; �i � 1

2
hI �; �i; U D mgh�; ai � mgr
3;

and the Lagrangian reads

l.�;�/ D 1
2
hI �; �i �mgh�; ai: (37)

This Lagrangian is invariant with respect to rotations about � , and therefore the
vertical component of the spatial angular momentum is conserved.

There are two independent components in the vector equation (35). We empha-
size that the representation (35) and (36) of the dynamics of the pendulum, though
redundant, eliminates the use of local coordinates on the sphere, such as spherical
coordinates. Spherical coordinates, while being a nice theoretical tool, introduce
artificial singularities at the north and south poles. That is, the equations of motion
written in spherical coordinates have denominators vanishing at the poles, but this
has nothing to do with the physics of the problem and is solely caused by the
geometry of the spherical coordinates. Thus, the use of spherical coordinates in
calculations is not advisable.



502 K.R. Ball and D.V. Zenkov

Another important remark is that the length of the vector � is a conservation law
of equations (35) and (36), and thus adding the constraint k�k D 1 does not result in
a system of differential-algebraic equations. The latter are known to be a nontrivial
object for numerical integration.

Equations (35) and (36) may be interpreted in a number of ways. In the above,
we viewed them as the dynamics of a degenerate rigid body. Since the moment of
inertia relative to the direction of the vector a is zero, the third component of the
body angular momentum vanishes,

�3 D @l

@�3
D 0;

and thus there are only two nontrivial equations in (35). Thus, one needs five
equations to capture the pendulum dynamics. This reflects the fact that rotations
about the direction of the pendulum have no influence on the pendulum’s motion.

The dynamics then can be simplified by setting

�3 D 0; (38)

which leads to an interpretation of equations (35) and (36) as the dynamics of the
heavy Suslov top7 with a rotationally-invariant inertia tensor and constraint (38).

Summarizing, the dynamics becomes

P� D mg� � a; P� D � � �; h�; ai D 0: (39)

These equations are in fact the constrained Hamel equations, the reconstruction
equation, and the constraint, written in the redundant configuration coordinates
� D .
1; 
2; 
3/; see [40] for details. Recall that the length of � is the conservation
law, so that the constraint k�k D 1 does not need to be imposed, but the appropriate
level set of the conservation law has to be selected.

Our discretization is based on this point of view, i.e., the discrete dynamics
will be written in the form of discrete Hamel’s equations. The discrete dynamics
will posses the discrete version of the conservation law k�k D const, so that the
algorithm should be capable, in theory, of preserving the length of � up to machine
precision.

7.2 Variational Discretization for the Spherical Pendulum

The integrator for the spherical pendulum is constructed by discretizing equa-
tions (39).

7See [33, 37], and [2] for the Suslov top.
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Let the positive real constant h be the time step. Applying the mid-point rule
to (37), the discrete Lagrangian is computed to be

ld .�k;kC1;�kC1=2/ D h
2
hI �k;kC1; �k;kC1i � hU.�kC1=2/:

Here �k;kC1 D .�1k;kC1; �2k;kC1; 0/ is the discrete analogue of the angular velocity

� D .�1; �2; 0/ and �kC1=2 D 1
2
.�kC1 C �k/. The discrete dynamics then reads

1
h
I ��k;kC1 � �k�1;k

	 D mg
�

�kC1=2 C �k�1=2
	 � a; (40)

1
h

�

�kC1=2 � �k�1=2
	 D 1

2

�

�kC1=2 C �k�1=2
	 � 1

2

�

�k;kC1 C �k�1;k
	

: (41)

We reiterate that there is a certain flexibility in setting up the discrete analogue (41)
of the continuous-time reconstruction equation (36). Our choice may be justified in
a number of ways, one of them being energy conservation by the discrete dynamics.

The structure-preserving properties of the proposed integrator for the spherical
pendulum are summarized in the following theorem.

Theorem 7 (Zenkov, Leok, and Bloch [40]). The discrete spherical pendulum
dynamics (40) and (41) preserves the energy, the vertical component of the spatial
angular momentum, and the length of � .

We refer the readers to [40] for the proof and details.

7.3 Simulations

Here we present simulations of the dynamics of the spherical pendulum using the
integrator constructed in Section 7.2. For simulations, we select the parameters of
the system and the time step to be

m D 1 kg; r D 9:8 m; h D :2 s:

The trajectory of the bob of the pendulum with the initial conditions

�10 D :6 rad=s; �20 D 0 rad=s; (42)


10 D :3 m; 
20 D :2 m; 
30 D �
q

1 � �


1
0

	2 � �


2
0

	2
m (43)

is shown in Figure 1a. As expected, it reveals the quasiperiodic nature of pendulum’s
dynamics.

Figure 1b shows pendulum’s trajectory that crosses the equator. This simulation
demonstrates the global nature of the algorithm, and also seems to do a good job of
hinting at the geometric conservation properties of the method.
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Fig. 1 Trajectories of the pendulum calculated with the Hamel integrator. (a) Pendulum’s
trajectory on S2 for initial conditions (42) and (43). (b) Pendulum’s trajectory on S2 that crosses
the equator

0

a b

2000 4000 6000 8000 10000

1. × 10−14

1. × 10−15

0 2000 4000 6000 8000 10000

5. × 10−15

−5. × 10−15

Fig. 2 Numerical properties of the Hamel integrator for the pendulum. (a) Preservation of the
length of � . (b) Conservation of energy

Theoretically, if one solves the nonlinear equations exactly, and in the absence of
numerical roundoff error, the Hamel variational integrator should exactly preserve
the length constraint and the energy. In practice, Figure 2a demonstrates that
k�k stays to within unit length to about 10�14 after 10,000 iterations. Figure 2b
demonstrates numerical energy conservation, and the energy error is to about
5 � 10�15 after 10,000 iterations. Indeed, one notices that the energy error tracks the
length error of the simulation, which is presumably due to the relationship between
the length of the pendulum and the potential energy of the pendulum. The drift
in both appear to be due to accumulation of numerical roundoff error, and could
possibly be reduced through the use of compensated summation techniques.

For the comparison of the Hamel integrator with simulations using the general-
ized Störmer–Verlet method and the RATTLE method see [40]. We point out here
that the energy error for the Hamel integrator is smaller than those of the Störmer–
Verlet and RATTLE methods.
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8 Conclusions

This paper introduced the discrete Hamel formalism and demonstrated its utility in
nonholonomic mechanics. Future work will include further study of the properties
of this formalism, as well as the development of discrete Hamel’s formalism on
manifolds in general, and on Lie groups and homogeneous spaces as important
special cases. It would be also interesting to relate the discrete Hamel formalism
to the results of Iglesias et al. [19].
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