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Preface to Fields Volume

Jerrold Eldon Marsden, an eminent mathematician of our time, passed away on
September 21, 2010, at the age of 68. This volume contains 20 papers presented at
a focus program in honor of Jerry Marsden’s legacy in Geometry, Mechanics, and
Dynamics held in July 2012 at the Fields Institute for Research in Mathematical
Sciences. Marsden helped found the Fields Institute in 1992. It was initially
directed by him, and memorable workshops in honor of his 50th and 60th birthday
celebrations were held there in 1992 and 2002, respectively. Information about
Jerry’s contributions, influence, and personal interactions and an overview of the
Marsden Legacy focus program at Fields are available at http://www.fields.utoronto.
ca/programs/scientific/12-13/Marsden/index.html. Many of Jerry’s research publi-
cations and more information about him may also be found at http://www.cds.
caltech.edu/~marsden/.

No single volume could do justice to the legacy of Jerry Marsden’s research and
his personal influence on the field of Geometric Mechanics, which he helped create.
Many of Jerry’s papers and books have received hundreds of citations; some of them
have received thousands. The legacy of his influence in mathematics, physics, and
computational science, though, is not countable. We miss him dearly.

Waterloo, ON, Canada Dong Eui Chang
London, UK Darryl D. Holm
Saskatoon, SK, Canada George Patrick
Lausanne, Switzerland Tudor Ratiu
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A Global Version of the Koon-Marsden
Jacobiator Formula

Paula Balseiro

Dedicated to the memory of J.E. Marsden

Abstract In this paper we study the Jacobiator (the cyclic sum that vanishes when
the Jacobi identity holds) of the almost Poisson brackets describing nonholonomic
systems. We revisit the local formula for the Jacobiator established by Koon and
Marsden (Rep Math Phys 42:101–134, 1998) using suitable local coordinates and
explain how it is related to the global formula obtained in Balseiro (Arch. Ration.
Mech. Anal. 214(2):453-501, 2014), based on the choice of a complement to the
constraint distribution. We use an example to illustrate the benefits of the coordinate-
free viewpoint.

1 Introduction

The geometric approach to nonholonomic systems was among the many research
interests of J.E. Marsden, and his contributions to this area were fundamental.
A system with nonholonomic constraints can be geometrically described by an
almost Poisson bracket [10, 15, 18], whose failure to satisfy the Jacobi identity,
measured by the so-called Jacobiator, is precisely what encodes the nonholonomic
nature of the system. There is a vast literature on the study of such nonholonomic
brackets and their properties, starting with the early work of Chaplygin [6], see e.g.
[2, 5, 8–12]. An explicit formula for the Jacobiator of nonholonomic brackets,
expressed in suitable local coordinates, was obtained by Koon and Marsden in their
1998 paper [14]. In the present paper, we revisit the Koon-Marsden formula of [14]
and explain how it can be derived from the coordinate-free Jacobiator formula for
nonholonomic brackets obtained in [1].

We organize the paper as follows. In Section 2, we recall the hamiltonian
viewpoint to systems with nonholonomic constraints. For a nonholonomic system

P. Balseiro (�)
Instituto de Matemática, Universidade Federal Fluminense, Rua Mario Santos Braga S/N,
24020-140 Niteroi, Rio de Janeiro, Brazil
e-mail: pbalseiro@vm.uff.br

© Springer Science+Business Media New York 2015
D.E. Chang et al. (eds.), Geometry, Mechanics, and Dynamics, Fields Institute
Communications 73, DOI 10.1007/978-1-4939-2441-7_1
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2 P. Balseiro

on a configuration manifold Q, determined by a lagrangian L W TQ ! R

and a nonintegrable distribution D on Q (the constraint distribution, defining the
permitted velocities of the system), we consider the induced nonholonomic bracket
f � ; � gnh defined on the submanifold M WD Leg.D/ of T �Q, where Leg W T �Q !
TQ is the Legendre transform (see Section 2.2). In Section 2.3 (see Theorem 1)
we recall the global formula for the Jacobiator of f � ; � gnh from [1], which depends
on the choice of a complement W of the constraint distribution D such that
TQ D D ˚ W . As shown in [1], this formula is useful to provide information
about properties of reduced nonholonomic brackets in the presence of symmetries.

In Section 3 we recall the choice of coordinates, suitably adapted to the
constraints, used by Koon and Marsden in [14], and in terms of which their
Jacobiator formula is expressed. We then compare the global and local viewpoints
in Section 4, explaining how one can derive the local Jacobiator formula in [14]
from the coordinate-free formula in [1].

Since the formula in [1] is coordinate free, it can be used in examples without
specific choices of coordinates. We illustrate this fact studying the snakeboard,
following [14, 17]; here the natural coordinates in the problem are not adapted to the
constraints so, in principle, the local formula from [14] cannot be directly applied.

2 Nonholonomic Systems

2.1 The Hamiltonian Viewpoint

A nonholonomic system is a mechanical system on a configuration manifoldQ with
constraints on the velocities which are not derived from constraints in the positions.
Mathematically, it is defined by a lagrangian L W TQ! R of mechanical type, i.e.,
L D � � U where � is the kinetic energy metric and U 2 C1.Q/ is the potential
energy, and a nonintegrable distribution D on Q determining the constraints, see
[3, 7]. If D is an integrable distribution then the system is called holonomic.

In order to have an intrinsic formulation of the dynamics of nonholonomic
systems, let us consider the Legendre transform Leg W TQ! T �Q associated to the
lagrangian L. The Legendre transform is a diffeomorphism since Leg D �[, where
�[ W TQ! T �Q is defined by �[.X/.Y / D �.X; Y /. We denote byH W T �Q! R

the hamiltonian function associated to the lagragian L.
We define the constraint submanifold M of T �Q by M D �[.D/. Note that M

is a vector subbundle of T �Q. We denote by � WM! Q the restriction to M of the
canonical projection �Q W T �Q! Q.

On M we have a natural 2-form ˝M given by ˝M WD ��˝Q where � W M !
T �Q is the inclusion and ˝Q is the canonical 2-form on T �Q. The constraints are
encoded on a (regular) distribution C on M defined, at each m 2M, by

Cm D fv 2 TmM W T �.v/ 2 D�.m/g: (1)
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It was proven in [2] that the point-wise restriction of the 2-form˝M to C, denoted
by ˝MjC, is nondegenerate. That is, if X 2 � .C/ is such that iX˝MjC � 0, then
X D 0. Therefore, there is a unique vector field Xnh on M, called the nonholonomic
vector field, such that Xnh.m/ 2 Cm and

iXnh˝MjC D dHMjC; (2)

where HM WD ��H W M ! R. The integral curves of Xnh are solutions of the
nonholonomic dynamics [2].

In order to write (2) in local coordinates, suppose that the constraint distribution
D is described (locally) by the annihilators of 1-forms �a for a D 1; : : : ; k, that
is D D f.q; Pq/ W �a.q/. Pq/ D 0 for all a D 1; : : : ; kg. If we consider canonical
coordinates .qi ; pi / on T �Q then the constraints are given by

�ai .q/
@H

@pi
D 0; for a D 1; : : : ; k;

and (2) becomes

Pqi D @H

@pi
; Ppi D �@H

@qi
C �a�a;

where �a are functions (called the Lagrange multipliers) which are uniquely
determined by the fact that the constraints are satisfied.

2.2 The Nonholonomic Bracket

Recall that an almost Poisson bracket on M is an R-bilinear bracket f � ; � g W
C1.M/ � C1.M/ ! C1.M/ that is skew-symmetric and satisfies the Leibniz
condition:

ffg; hg D f fg; hg C ff; hgg; for f; g; h 2 C1.M/:

If f � ; � g satisfies the Jacobi identity, then the bracket is called Poisson. The
hamiltonian vector field Xf on M associated to a f 2 C1.M/ is defined by

Xf D f � ; f g (3)

and the characteristic distribution of f � ; � g is the distribution on the manifold M

whose fibers are spanned by the hamiltonian vector fields. If the bracket is Poisson,
then its characteristic distribution is integrable. However, the converse is not always
true.
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From the Leibniz identity it follows that there is a one-to-one correspondence
between almost Poisson brackets f � ; � g and bivector fields � 2V2

.TM/ given by

ff; gg D �.df; dg/; f; g;2 C1.M/: (4)

Let us denote by �] W T �M! TM the map defined by ˇ.�].˛// D �.˛; ˇ/. Then,
using (3), the hamiltonian vector field Xf is also given by Xf D ��].df / and the
characteristic distribution of � is the image of �]. The Schouten bracket Œ�; �	 (see
[16]) measures the failure of the Jacobi identity of f � ; � g through the relation

1

2
Œ�; �	.df; dg; dh/ D ff; fg; hgg C ff; fg; hgg C fg; fh; f gg C fh; ff; ggg (5)

for f; g; h 2 C1.M/. So we refer to the trivector 1
2
Œ�; �	 as the Jacobiator of � ,

which is zero when � is a Poisson bivector.
Coming back to our context, consider a nonholonomic system on a manifold Q

defined by a lagrangianL and a constraint distributionD. Due to the nondegeneracy
of ˝MjC, there is an induced bivector field �nh 2 V2

.TM/ defined at each ˛ 2
T �M by

�]nh.˛/ D X if and only if iX˝MjC D �˛jC: (6)

The characteristic distribution of �nh is the distribution C defined in (1). Since C is
not integrable, �nh is not Poisson.

The bivector field �nh is called the nonholonomic bivector field [10, 15, 18] and
it describes the dynamics in the sense that

�]nh.dHM/ D �Xnh: (7)

By (4), the nonholonomic bivector �nh defines uniquely an almost Poisson bracket
f � ; � gnh on M, called the nonholonomic bracket. From (6) we observe that

ff; ggnh D ˝M.Xf ;Xg/ for f; g 2 C1.M/;

where Xf D ��]nh.df / and Xg D ��]nh.dg/. The nonholonomic vector field (7) is
equivalently defined through the equation Xnh D f � ;HMgnh.

2.3 The Jacobiator Formula

Recall that C is a smooth distribution on M. Choose a complement W of C on TM
such that, for each m 2M,

TmM D Cm ˚Wm: (8)
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Let PC W TM ! C and PW W TM ! W be the projections associated to the
decomposition (8). Since PW W TM ! W can be seen as a W-valued 1-form,
following [1], we define the W-valued 2-form KW given by

KW.X; Y / D �PW.ŒPC.X/; PC.Y /	/ for X; Y 2 X.M/: (9)

Once a complement W of C is chosen, we obtain a coordinate-free formula for
the Jacobiator of the nonholonomic bracket.

Theorem 1 ([1]). The following holds:

1

2
Œ�nh; �nh	.˛; ˇ; 
/

D ˝M.KW.�
]
nh.˛/; �

]
nh.ˇ//; �

]
nh.
//� 


�
KW.�

]
nh.˛/; �

]
nh.ˇ//

�C cyclic: (10)

for ˛; ˇ; 
 2 T �M.

In fact, a more general formula appeared in [1], valid for any bivector field
�B gauge related to �nh. In that context, this formula was used to understand
under which circumstances the reduction of �B by symmetries had an integrable
characteristic distribution (even if it was not Poisson).

We will now show how this formula recovers the coordinate Jacobiator formula
obtained in [14].

3 The Koon-Marsden Adapted Coordinates

In this section we will recall the Koon-Marsden approach to writing the Jacobiator
of a nonholonomic bracket, based on a suitable choice of coordinates of the manifold
Q. After this, we will write the objects presented in Section 2 (such as the 2-forms
˝M and KW, and the bivector �nh) in such local coordinates in order to see the
equivalence between the local and global viewpoints.

We start by recalling the coordinates chosen in [14]. Consider a nonholonomic
system given by a lagrangian L and a nonintegrable distribution D. Let �a for a D
1; : : : ; k be 1-forms that span the annihilator ofD, i.e.,Dı D spanf�ag. The authors
in [14] introduce local coordinates .qi / D .r˛; sa/ on Q for which each 1-form �a

has the form

�a D dsa C Aa˛.r; s/dr˛; (11)

where Aa˛ are functions on Q for ˛ D 1; : : : ; n � k and a D 1; : : : ; k. During
the present paper, we refer to the coordinates .r˛; sa/ such that (11) is satisfied as
coordinates adapted to the constraints.
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These coordinates induce a (local) basis of D given by
˚
X˛ WD @

@r˛
�Aa˛ @

@sa

�
.

We complete the basis fX˛g and f�ag in order to obtain dual basis on TQ and T �Q,
that is

TQ D span

�

X˛;
@

@sa

�

and T �Q D spanfdr˛; �ag:

Let . Qp˛; Qpa/ be the coordinates on T �Q associated to the basis fdr˛; �ag. Since
M D spanf�[.X˛/g � T �Q then

M D f.qi ; Qpa; Qp˛/ W Qpa D Œ�a˛	Œ�˛ˇ	�1 Qpˇ D J ˇa Qpˇg; (12)

where Œ�a˛	 denotes the .k�.n�k//-matrix with entries given by �a˛ D �. @
@sa
; X˛/,

Œ�˛ˇ	
�1 is the inverse matrix associated to the invertible ..n � k/ � .n � k//-

matrix with entries given by �˛ˇ D �.X˛;Xˇ/ and J
ˇ
a are the functions on

Q representing the entries of the matrix Œ�a˛	Œ�˛ˇ	
�1. Therefore, each element

.r˛; saI Qp˛/ represents a point on the manifold M.
In [14] the Jacobiator formula is written in terms of the curvature of an

Ehresmann connection. The local coordinates .r˛; sa/ induce a fiber bundle with
projection given by �.r˛; sa/ D r˛ . Let us call W the vertical distribution defined
by this projection.

The Ehresmann connection A on � W Q D fr˛; sag ! R D fr˛g is chosen in
such a way that its horizontal space agrees with the distribution D. The connection
A is represented by a vector-valued differential form given, at each X 2 TQ, by

A.X/ D �a.X/ @
@sa

: (13)

The curvature associated to this connection is a vector-valued 2-form KW defined
on X; Y 2 X.Q/ by

KW .X; Y / D �A.ŒPD.X/; PD.Y /	/; (14)

where PD W TQ! TQ is the projection to D given by PD.X/ D dr˛.X/X˛.
In coordinates, the curvature KW is given by the following formula [14, Sec. 2.1]:

KW .X; Y / D d�a.PD.X/; PD.Y // @
@sa

;

hence, locally,

d�ajD D Ca
˛ˇdr

˛ ^ drˇjD; (15)
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where Ca
˛ˇ.r; s/ D

@Aaˇ

@r˛
� Ab˛

@Aaˇ

@sb
. Let us define

Ka
˛ˇ D Ca

˛ˇ � Ca
ˇ˛: (16)

For each a D 1; : : : ; k the coefficients Ka
˛ˇ are skew-symmetric and d�ajD D

Ka
˛ˇdr

˛ ^ drˇjD , for ˛ < ˇ. Therefore, if X; NX 2 D then d�a.X; NX/ D Ka
˛ˇv

˛ Nvˇ
where X D v˛X˛ and NX D NvˇXˇ.

Remark 1. Observe that in [14], the 1-forms �a where denoted by !a while KW

was denoted by B and the coefficientsKa
˛ˇ were �Ba

˛ˇ . In this case, for Pq 2 D then

d!b. Pq; � /jD D �Bb
˛ˇ Pr˛drˇjD (observe the correction in the sign with respect to

the equation in [14, Sec. 2.1]).

Finally, in [14, Theorem 2.1] the almost Poisson bracket f � ; � gM describing
the dynamics of a nonholonomic system was written following [18] but in local
coordinates on Q adapted to the constraints (11). That is, f � ; � gM was computed
from the canonical Poisson bracket on T �Q but written in terms of the adapted
coordinates .r˛; sa; Qp˛; Qpa/. As a result, the almost Poisson bracket f � ; � gM on M,
written in local coordinates .r˛; sa; Qp˛/, has the following form [14]

fqi ; qj gM D 0; fr˛; QpˇgM D ıˇ˛ ; fsa; Qp˛gM D �Aa˛; f Qp˛; QpˇgM D Kb
˛ˇJ




b Qp

(17)

4 The Coordinate Version of the Jacobiator Formula

4.1 Interpretation of the Adapted Coordinates

In this section, we will relate the choice of the coordinates proposed in [14] with the
choice of a complement W done in [1] (see (11) and (8), respectively). We will also
connect the curvature (14) with the 2-form (9), and the nonholonomic bivector �nh

with the bracket f � ; � gM given in (6) and (17), respectively.
Consider a nonholonomic system on a manifold Q given by a lagrangian L and

a nonintegrable distributionD. Let us consider local coordinates .r˛; sa/ adapted to
the constraints as in (11).

Lemma 1. The choice of coordinates .r˛; sa/ adapted to the constraints (11),
induce a complementW of D on TQ such that

TQ D D ˚W; where W D span

�
@

@sa

�

: (18)
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The projection PW W TQ ! W associated to the decomposition (18) is
interpreted in [14] as the Ehresmann connectionA (13). In this context we compare
the curvature KW defined in (14) (see [14]) with the W-valued 2-form KW defined
in (9).

Recall that the submanifold M D �[.D/ � T �Q is described by local
coordinates .r˛; saI Qp˛/ (see (12)). Locally T �M is generated by the basis BT �M D
fdr˛; �a; d Qp˛g. During the rest of the paper, when there is no risk of confusion, we
will use the same notation for 1-forms on Q and their pull back to M and T �Q,
(i.e., ��dr˛ D dr˛ and ���a D �a where � WM! Q is the canonical projection).

Since �-projectable vector fields generate TM at each point, we can consider a
complementW of C generated by �-projectable vector fieldsZa such that T �.Za/ 2
W . That is,

C D span

�

X˛;
@

@ Qp˛
�

and W D span

�

Za W T �.Za/ D @

@sa

�

: (19)

Lemma 2. Let W be a complement of C as in (19) where W is the complement of
D induced by the coordinates .r˛; sa/ as in Lemma 1.

.i/ The W-valued 2-form KW and the curvature KW , defined in (9) and (14)
respectively, are related, at each X; Y 2 TM, by KW .T �.X/; T �.Y // D
T �.KW.X; Y //. In local coordinates .r˛; sa/ adapted to the constraints (11),
the following holds:

KWjC D .C a
˛ˇdr

˛ ^ drˇjC/˝Za:

.i i/ Let NW be a different complement of C such that T �.W/ D T �. NW/ D W . For
X; Y 2 � .C/ we have

KW.X; Y /�K NW.X; Y / 2 � .C/:

Proof.

.i/ During this proof and to avoid confusion, we will work with the basis
f��dr˛; ���a; d Qp˛g of T �M, keeping dr˛ and dsa to denote 1-forms on Q.
Let us consider the basis B D fX˛; @

@ Qp˛ ; Zag of TM adapted to C ˚ W

and its dual B� D f��dra; �˛; ���ag where �ˇ.X˛/ D �ˇ.Za/ D 0 and
�ˇ.

@
@ Qp˛ / D ı˛ˇ . Then, for X; Y 2 � .C/,

KW.X; Y / D �PW.ŒX; Y 	/ D ����a.ŒX; Y 	/Za
D d���a.X; Y /Za D d�a.T �.X/; T �.Y //Za:

Therefore, T �.KW.X; Y // D d�a.T �.X/; T �.Y // ˝ @
@sa
D KW .T �.X/;

T �.Y //.
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Finally, since T �.X/; T �.Y / 2 � .D/ (see (1)) and using (15) we obtain

KWjC D .C a
˛ˇ�

�dr˛ ^ ��drˇjC/˝Za:

Using our simplified notation (��dr˛ D dr˛) we obtain the desired formula.
.i i/ Let B and B� be the basis as in item .i/. Consider also NB D fX˛; @

@ Qp˛ ; NZag a

basis of TM adapted to TM D C ˚ NW such that T �. NZa/ D @
@sa

and its dual
NB� D fdr˛; N�˛; �ag, such that N�ˇ.X˛/ D N�ˇ. NZa/ D 0 and N�ˇ. @

@ Qp˛ / D ı˛ˇ .
Then we have that, for X; Y 2 C,

K NW.X; Y / D �P NW.ŒX; Y 	/

D �a.ŒX; Y 	/ NZa D KW.X; Y /C �a.ŒX; Y 	/˝ . NZa �Za/:

Since NZa �Za 2 KerT � � C then KW.X; Y /�K NW.X; Y / 2 C. ut
Remark 2. Note that the coordinates description of KW shows that it is semi-basic
with respect to the bundle projection � W M ! Q, i.e., iXKW D 0 if T �.X/ D 0.
This is in agreement with [1, Prop. 3.1]

In order to write the nonholonomic bivector �nh using (6) but in local coordinates
.r˛; saI Qp˛/ on M we study the local description of the 2-section˝MjC.

The canonical 1-formQ on T �Q is given, in local coordinates .r˛; saI Qp˛; Qpa/,
byQ D Qp˛dr˛C Qpa�˛ . Then, it is straightforward to see that the canonical 2-form
˝Q is written locally as

˝Q D dr˛ ^ d Qp˛ C �a ^ d Qpa � Qpad�a:

Recall that � W M ! T �Q is the natural inclusion, so the pull back of ˝Q to M is
given by

˝M D ��˝Q D dr˛ ^ d Qp˛ C ���a ^ d��. Qpa/� ��. Qpa/d.���a/; (20)

where dr˛ and d Qp˛ are considered as 1-forms on M.
Therefore,

˝MjC D dr˛ ^ d Qp˛ � ��. Qpa/��.d�a/jC
D dr˛ ^ d Qp˛ � J ıa QpıC a

˛ˇdr
˛ ^ drˇjC;

(21)

where in the last equation we use (12) and the coordinate version of d�jD given
in (15). Applying (6) to the 2-form ˝M and C, given in (20) and (19) respectively,
we compute the nonholonomic bivector field �nh on M:

�]nh.dr
˛/ D @

@ Qp˛ ; �]nh.ds
a/ D �Aa˛

@

@ Qp˛ ; �]nh.d Qp˛/ D �X˛ C J ıa QpıKa
˛ˇ

@

@ Qpˇ :

(22)
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Lemma 3. The almost Poisson bracket f � ; � gM given in (17) (see [14, Theo-
rem 2.1]) is the coordinate version of the nonholonomic bracket f � ; � gnh associated
to the bivector field �nh obtained from (6).

4.2 The Jacobiator in Adapted Coordinates

Consider a nonholonomic system on a manifold Q given by a lagrangian L and
a constraint distribution D such that �a , for a D 1; : : : ; k, are 1-forms generating
Dı. Consider local coordinates .r˛; sa/ on Q adapted to the constraints as in (11).
Let .r˛; saI Qp˛/ be the coordinates on the manifold M D �[.D/. By Lemma 3, the
almost Poisson bracket f � ; � gM (17) is the coordinate version of the bivector field
�nh given in (6), and thus Koon-Marsden formula for the Jacobiator can be written
directly with respect to f � ; � gnh.

Theorem 2 ([14, Sec. 2.5]). The Jacobiator of the nonholonomic bracket f � ; � gnh,
in coordinates .ra; saI Qp˛/ on M, is given by the following formula

f Qp
 ; fr˛; Qpˇgnhgnh C cyclic D J ˛b Kb
ˇ
 ;

f Qpˇ; fsa; Qp˛gnhgnh C cyclic D �Ka
˛ˇ � Aa
J 
b Kb

˛ˇ; (23)

f Qp
; f Qp˛; Qpˇgnhgnh C cyclic D Qp�J �a
@Aa


@sb
Kb
˛ˇ C Qp�J �a Ka

ı
J
ı
b K

b
˛ˇ

� Qp�Kb
˛ˇ

�
@J �b
@r

� Aa


@J �b
@sa

�

C cyclic;

with all other combinations equal to zero and where J ˛b , Ka
˛ˇ and Aa˛ are the

functions on Q defined in (12), (16) and (11), respectively.

The next result relates the coordinate formula (23) of the Jacobiator with the
coordinate-free formula given in Theorem 1.

Theorem 3. Let .r˛; sa/ be coordinates on Q adapted to the constraints as in (11)
and let W be the complement of D induced by the coordinates (Lemma 1). The
Koon-Marsden Jacobiator formula (23) for the nonholonomic bracket f � ; � gnh is
the coordinate version of the Jacobiator formula given in Theorem 1 for W any
complement of C as in (19).

Proof. In order to prove the equivalence we write the Schouten bracket Œ�nh; �nh	

using Theorem 1 evaluated on the elements fdr˛; dsa; d Qp˛g.
First, observe that by Remark 2, the 2-form KW defined in (9) is annihilated

by any of the elements �]nh.dr
˛/ or �]nh.ds

˛/ (see (22)). On the other hand, by
Lemma 2.i i/, we have that KW.�

]
nh.d Qp˛/; �]nh.d Qpˇ// D Ka

˛ˇZa, where Za 2 TM
such that T �.Za/ D @

@sa
. Moreover, observe that �a.Zb/ D ı˛ˇ and dr˛.Za/ D 0.
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Therefore, using the coordinate version of ˝M (20) in Theorem 1 we obtain

1

2
Œ�nh; �nh	.dr

˛; d Qpˇ; d Qp
/ D ˝M.KW.�
]
nh.d Qpˇ/; �]nh.d Qp
//; �]nh.dr

˛//

� dr˛.KW.�
]
nh.d Qpˇ/; �]nh.d Qp
///

D J ˛a K
a
ˇ
 ;

1

2
Œ�nh; �nh	.ds

a; d Qp˛; d Qpˇ/ D ˝M.KW.�
]
nh.d Qp˛/; �]nh.d Qpˇ//; �]nh.ds

a//

� dsa.KW.�
]
nh.d Qp˛/; �]nh.d Qpˇ///

D �Kb
˛ˇA

a

J




b �Ka
˛ˇ:

Finally, let Ya WD Za � @
@sa
2 KerT � � C. Then, we have that

1

2
Œ�nh; �nh	.d Qp˛; d Qpˇ; d Qp
/ D ˝M.K

a
˛ˇZa; �

]
nh.d Qp
// � d Qp
.Ka

˛ˇZa/C cyclic

D ˝M.K
a
˛ˇ

@

@sa
; �]nh.d Qp
//C˝M.K

a
˛ˇYa; �

]
nh.d Qp
//

� d Qp
.Ka
˛ˇYa/C cyclic

D ˝M.K
a
˛ˇ

@

@sa
; �]nh.d Qp
//C cyclic

D Qp�J �a
@Aa


@sb
Kb
˛ˇ C Qp�J �a Ka

ı
J
ı
b K

b
˛ˇ

� Qp�Kb
˛ˇ

�
@J �b
@r

�Aa


@J �b
@sa

�

C cyclic:

The Jacobiator on the other combinations of elements of the basis fdr˛; dsa; d Qp˛g
is zero. Thus, the relation (5) implies that the Jacobiator formula in Theorem 1
evaluated in coordinates (11) gives the Koon-Marsden formula (23).

Observe that in this proof we are implicitly using Lemma 2 for W and NW D
span

˚
@
@sa

�
.

Remark 3. From (10) it is straightforward to see that if the 2-form KW is zero
then the bivector �nh is Poisson. On the other hand, it was observed in [14] that
if the curvature KW is zero then the Jacobi identity of f � ; � gnh is satisfied. Using the
equivalence between KW and KW (Lemma 2.i/) we see that both 2-forms are zero
whenD is involutive, i.e., the system is holonomic.

Remark 4 (Symmetries). If the nonholonomic system admits a group of symmetries
G then �nh is G-invariant with respect to the induced (lifted) action on M. As a
consequence, the orbit projection M ! M=G induces a reduced bivector field � nh

red

on M=G describing the reduced dynamics. Let V (respectively V) be the tangent
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space to the orbit of the G-action on Q (respect. on M). If W � V then there is a
unique choice of the complement W contained in V:

W WD .T � jV/�1.W /:

With this choice of W, Theorem 1 induces a formula for the Jacobiator of the
reduced bivector � nh

red (see [1, Sec. 4]).
There are a number of examples of systems verifying that the complement W

induced by the coordinates adapted to the constraints (11) (as in Lemma 1) is vertical
with respect to a G-symmetry, including the vertical rolling disk, the nonholonomic
particle and the Chaplygin sphere, see [1, Sec. 7].

On the other hand, it may happen that a given example is described in coordinates
that are not adapted to the constraints. Then, it is better to use the coordinate free
formula of Theorem 1.

5 Example: The Snakeboard

The snakeboard describes the dynamics of a board with two sets of actuated wheels,
one on each end of the board. A human rider generates forward motion by twisting
his body back and forth, and thus producing a movement on the wheels. This effect
is modeled as a momentum wheel which sits in the middle of the board and is
allowed to spin about the vertical axis. The configuration of the snakeboard is given
by the position and orientation of the board in the plane, the angle of the momentum
wheel and the angles of the back and front wheels. Therefore, the configuration
manifold Q is given by Q D SE.2/ � .��=2; �=2/ � S1 with local coordinates
q D .x; y; �;  ; �/, where .x; y; �/ represents the position and orientation of the
center of the board,  is the angle of the momentum wheel relative to the board and
� is the angle of the front and back wheel as in [17] (for details see [4] and [14]).

The Lagrangian is given by

L.q; Pq/ D m

2
. Px2 C Py2/C mr2

2
P�2 C J0

2
P 2 C J0 P P� C J1 P�2;

wherem the total mass of the board, r is the distance between the center of the board
and the wheels, J0 is the inertia of the rotor and J1 is the inertia of each wheel.

The (nonintegrable) constraint distribution D is given by the annihilator of the
following 1-forms:

�1 D � sin.� C �/dx C cos.� C �/dy � r cos�d�

�2 D � sin.� � �/dx C cos.� � �/dy C r cos�d�:
(24)



A Global Version of the Koon-Marsden Jacobiator Formula 13

Remark 5. The coordinates .x; y; �;  ; �/ on Q are not adapted to the 1-forms of
constraints �1; �2. In [13] a simplified version is considered where, taking � ¤ 0, it
is possible to write the 1-forms of constraints in such a way that .x; y; �;  ; �/ are
adapted coordinates as in (11). In this paper, we will work with the 1-forms given
in (24), so, our coordinates inQ are not adapted to the constraints, even though these
are the coordinates chosen in [14] to study the reduction by the group of symmetries
SE.2/.

The distributionD on Q is given by

D D span

�

X WD @

@ 
; X� WD @

@�
; XS WD �2r cos2 � cos �

@

@x

�2r cos2 � sin �
@

@y
C sin.2�/

@

@�

�

:

We choose the complementW of D generated by fX1;X2g so that �a.Xb/ D ıab
for a; b D 1; 2, that is

W D span

�

X1 WD �1
2

sin � sec�
@

@x
C 1

2
cos � sec�

@

@y
� 1

2r
sec�

@

@�
;

X2 WD �1
2

sin � sec�
@

@x
C 1

2
cos � sec�

@

@y
C 1

2r
sec�

@

@�

�

:

Consider the dual basis BTQ D fX ;X�;XS; X1;X2g and BT �Q D
fd ; d�; ˛S; �

1; �2g where

˛S D � 1
2r

cos � sec2 �dx � 1

2r
sin � sec2 �dy:

Let us denote by .qI v ; v�; vS; v1; v2/ the coordinates on TQ associated with the
basis BTQ while .qI Qp ; Qp�; QpS; Qp1; Qp2/ denote the coordinates on T �Q associated
to BT �Q.

The submanifold M D �[.D/ D spanf�[.X /; �[.X�/; �[.XS/g is defined in
coordinates by

M D f.qI Qp ; Qp�; QpS; Qp1; Qp2/ W Qp1 D � Qp2 D J1.�/ QpS C J2.�/ Qp g; (25)

where

J1.�/ D mr

4.r2m � J0 sin2 �/
sin � sec2 � and J2.�/ D �J1.�/ sin.2�/:
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In order to compute the nonholonomic bivector �nh describing the dynamics, we
write the 2-form˝M and the 2-section˝MjC in our local coordinates. The canonical
1-formQ on T �Q is given by Q D Qp d C Qp�d� C QpS˛S C Qpa�a. Then,

˝Q D d ^ d Qp C d� ^ d Qp� C ˛S ^ d QpS � QpSd˛S C �1 ^ d Qp1
C�2 ^ d Qp2 � Qp1d�1 � Qp2d�2;

Let us consider the basis BT �M D fd�; d ; ˛S; �
1; �2; d Qp�; d Qp ; d QpSg of T �M

(here we are using the same notation for the pullbacks of the forms to M). Recall
that, on M, Qp1 and Qp2 are given by (25) and denoting Ji D Ji .�/ for i D 1; 2 we
obtain

˝M D d ^ d Qp C d� ^ d Qp� C ˛S ^ d QpS � QpSd˛S C J1�1 ^ d QpS C J2�1 ^ d Qp 
C QpSJ

0
1�
1 ^ d� C Qp J 0

2�
1 ^ d� � J1�2 ^ d QpS � J2�2 ^ d Qp (26)

� QpSJ
0
1�
2 ^ d� � Qp J 0

2�
2 ^ d� � .J1 QpS C J2 Qp /.d�1 � d�2/:

On TM consider the dual basis BTM D
n
X ;X�;XS; X1;X2;

@
@ Qp ;

@
@ Qp� ;

@
@pS

o

associated to BT �M. Therefore, we can decompose TM D C˚W such that

C D span

�

X ; X� ; XS ;
@

@ Qp ;
@

@ Qp� ;
@

@pS

�

W D span fX1 ; X2g : (27)

Therefore, using that d�ajC D .�1/a2r cos�˛S ^ d�jC for a D 1; 2 and that
d˛SjC D 2 tan�d� ^ ˛SjC, the 2-section˝MjC is given by

˝MjC D d ^ d Qp C d� ^ d Qp� C ˛S ^ d QpS

� QpS2 tan�d� ^ ˛S C .J1 QpS C J2 Qp /4r cos�˛S ^ d� jC:

Now, we compute the nonholonomic bracket �nh using (6)

�nh D @

@ 
^ @

@ Qp C
@

@�
^ @

@ Qp� CXS ^ @

@ QpS

�. QpS2 tan� C 4r.J1 QpS C J2 Qp / cos�/
@

@ QpS

^ @

@ Qp� : (28)

Therefore, the hamiltonian vector fields are

�]nh.d / D
@

@ Qp ; �]nh.d�/ D
@

@ Qp� ;

�]nh.˛S/ D @

@ QpS

; �]nh.�
i / D 0; �]nh.d Qp / D �

@

@ 
;

(29)
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�]nh.d Qp�/ D �
@

@�
C .2 tan� QpS C 4r cos�.J1 QpS C J2 Qp // @

@ QpS

;

�]nh.d QpS/ D �XS � .2 tan� QpS C 4r cos�.J1 QpS C J2 Qp // @

@ Qp� :

In order to apply Theorem 1 to compute the Jacobiator of �nh we study the W-
valued 2-form KW defined in (9) for W in (27). For X; Y 2 C and using the dual
basis BTM and BT �M we have that

KW.X; Y / D �PW.ŒX; Y 	/ D ��1.ŒX; Y 	/X1 � �2.ŒX; Y 	/X2
D d�1.X; Y /X1 C d�2.X; Y /X2:

Therefore,

KWjC D �2r cos.�/.˛S ^ d� jC/˝ .X1 � X2/: (30)

Finally, we consider the 2-forms˝M and KW, described in (26) and (30) and the
vector fields (29), to obtain, by (10), that

Œ�nh; �nh	.d Qp�; d QpS; d / D 4r cos.�/J2.�/;

Œ�nh; �nh	.d Qp�; d QpS; ˛/ D 4r cos.�/J1.�/

Œ�nh; �nh	.d Qp�; d QpS; �
i / D .�1/i2r cos.�/; i D 1; 2;

(31)

while on other combination of elements the Jacobiator is zero.
This example admits a symmetry given by the Lie group SE.2/, see [14]. The

reduced manifoldM=G is S1�S.��=2;��=2/�R3 and the nonholonomic bivector
field �nh is invariant by the orbit projection � WM!M=G. Thus, on M=G we have
the reduced nonholonomic bivector defined at each ˛ 2 T �.M=G/ by

.� nh
red/

].˛/ D T� �]nh.�
�˛/:

The Jacobiator of the reduced nonholonomic bivector field � nh
red satisfies

Œ� nh
red; �

nh
red	.˛; ˇ; 
/ D T�

�
Œ�nh; �nh	.�

�˛; ��ˇ; ��
/
�

for ˛; ˇ; 
 2 T �.M=G/. So, in our example it is simple to compute the Jacobiator
of � nh

red. Taking into account that, in local coordinates, the orbit projection � W M!
M=G is given by �. ; �; �; x; y; Qp ; Qp�; QpS/ D . ; �; Qp ; Qp�; QpS/, the Jacobiator
of the reduced bivector � nh

red describing the dynamics is given by

Œ� nh
red; �

nh
red	.d Qp�; d QpS; d / D 4r cos.�/J2.�/

while on other elements of T �.M=G/ is zero.
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Just to complete the example we can write, in our coordinates, the reduced
bivector field � nh

red on M=G:

� red
nh D

@

@ 
^ @

@ Qp C
@

@�
^ @

@ Qp� �. QpS2 tan�C4r.J1 QpSCJ2 Qp / cos.�//
@

@ QpS

^ @

@ Qp� :
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Geometry of Image Registration: The
Diffeomorphism Group and Momentum Maps

Martins Bruveris and Darryl D. Holm

Abstract These lecture notes explain the geometry and discuss some of the
analytical questions underlying image registration within the framework of large
deformation diffeomorphic metric mapping (LDDMM) used in computational
anatomy.

1 Introduction

The goal of computational anatomy is to model and study the variability of
anatomical shape. The ideas of computational anatomy originate in the seminal book
“Growth and Form” by D’Arcy Thompson [66].

In a very large part of morphology, our essential task lies in the comparison of related forms
rather than in the precise definition of each; and the deformation of a complicated figure may
be a phenomenon easy of comprehension, though the figure itself have to be left unanalysed
and undefined. This process of comparison [: : :] finds its solution in the elementary use of a
certain method of the mathematician. This method is the Method of Coordinates, on which
is based the Theory of Transformations. [66, p. 1032]

More recently Grenander [25, 26, 28] generalized these ideas to encompass a
diverse collection of real-world situations and formulated the principles of pattern
theory. The following formulation is adapted from [51]:

1. A wide variety of signals result from observing the world, all of which show
patterns of many kinds. These patterns are caused by laws present in the world,
but at least partially hidden from direct observation.

2. Observations are affected by many variables that are not conveniently modelled
deterministically because they are too complex or too difficult to observe.
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3. Patterns can be described as precise pure patterns distorted and transformed by
a limited family of deformations.

To have a specific example in mind, we will consider computational neuroana-
tomy; i.e., the study of the form and shape of the brain [27]. The observations in
this case are the diagnostic tools accessible to the clinician; of particular interest to
us are noninvasive imaging techniques like computed tomography (CT), magnetic
resonance imaging (MRI), functional MRI and diffusion tensor imaging (DTI). The
hidden laws behind the observations are all the processes taking place at cellular,
organ and environmental level, which together influence and form the anatomical
shape of the brain.

To avoid having to model the brain from first principles, we observe instead that
topologically all brains are very similar. If we take the MRI scans of two patients—
volumetric grey-scale images of two brains—then we will be able to deform the
contour surfaces of one image to approximately match the other. The study of shape
and variability of brains within the framework of pattern theory, thus reduces to
estimating the transformations that deform one brain image into an other. Given two
images, the problem of finding this transformation is called the problem of image
registration. One then compares these transformations in order to infer information
about shape and variability.

1.1 Outline of the Notes

The purpose of these lecture notes is to explain the geometry that underlies
image registration within the LDDMM framework and to show how it is used in
computational anatomy. Section 1 introduces the main objectives of computational
anatomy. Section 2 explains the Lie group concepts and Riemannian geometry
underlying the image registration problem. Finally, Sect. 3 sketches some of the
analytical problems that arise in image registration within the LDDMM framework.
The references are not exhaustive. Throughout, we rely on the fundamental texts
[51, 75].

1.2 Image Registration with LDDMM

Mathematically we model a volumetric grey-scale image I as a function
I W R3 ! R and we denote by F .R3/ the collection of all such functions, subject
to certain smoothness assumptions. We model transformations ' as smooth,
invertible maps ' W R

3 ! R
3 with smooth inverses. Such maps are called

diffeomorphisms. Invertibility ensures that tissue is not torn apart or collapsed
to single points. The set of all transformations is denoted by Diff.R3/ and since
it is closed under composition and taking the inverse, it forms a group, called the
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diffeomorphism group. Deforming an image I by the transformation ' corresponds
to the change of coordinates I ı '�1. In the transformed image I ı '�1 the voxel
'.x/ has the same grey-value as the voxel x of the original image.

Given two images I0; I1 2 F .R3/, the first approach to the image registration
problem would be to search for ' 2 Diff.R3/, such that I0 ı '�1 D I1. Two things
can go wrong. First, such a ' may not exist and second, if it exists, it may not be
unique. To address these problems, we can introduce a distance d1.';  / on the set
of transformations and a distance d2.I; J / on the set of images and search for the
minimizer of

argmin
'

d1.Id; '/
2 C 1

�2
d2.I0 ı '; I1/2: (1)

The first term addresses the problem of uniqueness by ensuring that among all the
transformations that deform I0 into I1 we pick the simplest one, by which we mean
the one closest to the identity transformation. The second term allows us to compare
images for which an exact solution to the registration problem does not exist, by
requiring that the transformed image is close but not necessarily equal to I1. Taken
together (1) represents a balance between finding a simple transformation and one
that reproduces the given image. The parameter �2 controls this balance between
simplicity or regularity of the transformation and the registration accuracy.

There are many possible definitions of a distance d1.Id; '/ on the space of
smooth invertible maps. We shall concentrate on the definition used in the large
deformation diffeomorphic metric mapping (LDDMM) approach [10, 47, 49, 67],
which generates the transformation ' D '1 as the flow of a time-dependent vector
field. That is, t 7! 't is a solution to the flow equation

@t't .x/ D ut .'t .x//; '0.x/ D x:

The distance d1.Id; '/ is measured using a norm on the vector field ut ,

d1.Id; '/2 D inf
fut W 'D'1g

Z 1

0

jut j2 dt:

Regarding the distance d2.I; J / on images, the simplest choice is the L2-norm, i.e.
d2.I; J / D jI � J jL2.R3/, which will be used throughout these notes. The problem
of image registration via LDDMM will form the basis of the following discussion.

Definition 1 (Image Registration via LDDMM). Given two images I0; I1 2 V ,
find a time-dependent vector field t 7! ut 2 X.R3/ that minimizes the energy

E.u/ D 1

2

Z 1

0

jut j2 dt C 1

2�2

ˇ
ˇI0 ı '�1

1 � I1
ˇ
ˇ2
L2.R3/

; (2)
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where 't 2 Diff.R3/ is the flow of ut , i.e.

@t't .x/ D ut .'t .x//; '0.x/ D x ;

The vector field t 7! ut and the transformation '1 are the solutions of the image
registration problem.

This is not the only possible approach to image registration. In fact, a large
literature about image registration exists. An overview of the available methods can
be found, e.g. in [29, 36]. The LDDMM method, whilst being computationally more
expensive than others, is among the most accurate [6] registration methods. Here we
will concentrate on the geometric structure of the LDDMM solutions. In particular,
we will sketch some applications in which the geometry behind LDDMM helps
illuminate relationships between anatomical shape and neurological functions.

Data structures other than images can be registered within the LDDMM
framework. These include landmarks [23, 35], curves [17, 24], surfaces [68],
tensor fields [2, 14] or functional data on a manifold [46, 54]. In fact the abstract
formulation of LDDMM in Sect. 2 encompasses all these examples. Instead of the
L2-norm one can use other similarity metrics to measure the distance between
images, e.g. mutual information [39]. The biggest departure from LDDMM would
be to change the way diffeomorphisms are generated. Possible approaches are
stationary vector fields [5], free-form deformations [62], only affine transformations
[34] or demons [65, 69]. Common to all these methods however is the loss of
geometric structure.

1.3 Anatomical Shape and Function

Alzheimer’s disease (AD) is a neurodegenerative disease and is the most frequent
type of dementia in the elderly [19]. Related to AD is mild cognitive impairment
(MCI), an intermediate cognitive state between healthy ageing and dementia.
Although most patients who develop AD are first diagnosed with MCI, not all
of those with MCI will develop AD. There is considerable variability among the
prognoses of patients with MCI: some develop into AD, while others remain
stable, revert back to normal cognitive status or develop other forms of dementia.
It is therefore of interest to find methods of predicting the prognosis of patients
with MCI. One approach is to look for manifestations of AD and MCI in the
anatomical shape and to find connections between anatomical shape and clinical
measures of cognitive status that are used to diagnose and distinguish between AD,
MCI and normal cognitive state (NCS) [73].
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1.3.1 Alzheimer’s Disease and the Shape of Subcortical Structures

In [59] a population .Ij /1�j�383 of 383 subjects, both healthy and diseased, was
registered to a common template Itempl; i.e., for each pair Ij , Itempl a deformation
'j , satisfying Itempl ı '�1

j � Ij , was computed by solving the registration problem
in Def. 1. Seven subcortical structures S1; : : : ; S7 were extracted from each image
and the log-Jacobian f k

j D log
�
detD'j

� j@Sk of the estimated transformation

'j , restricted to the boundary of the structure Sk , was used to measure the
shape variation with respect to the template. These maps f k

j were called “surface
deformation maps”. After performing principal component analysis on these maps
followed by linear regression with the diagnosis (AD, MCI or NCS), it was found for
example that AD and MCI, when compared to NCS is associated with a pronounced
surface inward deformation in areas of the amygdala and the hippocampus and
with a simultaneous outward deformation in the body and inferior lateral ventricles.
These results are in agreement with previous neuroimaging findings and show that
LDDMM can be used to highlight local shape variations related to AD.

1.4 Analysis of Longitudinal Data

A more accurate assessment of disease states can be obtained by comparing two
different scans of one patient, taken at two different times. Let I jb and I jf denote
the baseline scan and the follow-up scan taken a few years later of the j th patient
respectively. Registering I jb to I jf via LDDMM computes a transformation 'j such
that I jb ı '�1

j � I
j
f , and also its generating vector field ujt . Sect. 2 shows that

the entire vector field ujt can be recovered from its value at t D 0 via the Euler-
Poincaré equation on the diffeomorphism group, also called EPDiff and introduced
in equation (13). This means that the initial vector field uj0 can be determined from
the initial deformation momentum, pj . Thus, the shape differences between I jb and
I
j
f are encoded in the deformation momentum pj .

To compare the deformation momenta pj , j D 1; 2; : : : , for a set of different
patients all baseline scans I jb are registered in a second step to a common
template Itempl. Then it is necessary to transport each of the deformation momenta
pj from I

j
b to the common template and thereby obtain the corresponding Qpj . Thus

it is possible to compare the evolution between the baseline and the follow-up scans,
by its nature a very nonlinear object, by comparing the computed momenta Qpj ,
which are elements of a vector space (Figure 1).

Regarding the transport operation several methods have been proposed. From a
geometrical point of view, parallel transport from Riemannian geometry is the most
natural operation and this has been used in [57, 74, 76]. Since computing the parallel
transport of the momentum along geodesics is numerically quite challenging, a first-
order approximation called Schild’s ladder was proposed in [38] as an alternative.
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Fig. 1 The use of parallel transport in a longitudinal study AD. The baseline scan I 1b is registered
to the follow-up scan I 1f via '1t and the baseline scan is registered to the template image Itempl

via  1
t . The deformation '1 is encoded in the initial momentum p1, which is parallel transported

along the path  1
t to Itempl: to obtain Qp1. In this way the changed between baseline and follow-up

scans can be compared across a population of patients

Other methods that depend only on the end-deformation and not on the whole
geodesic path were considered and compared in [20]. From the viewpoint of
applications, there is, as of now, no consensus about which is the most appropriate
method for the transport of deformation momenta.

Longitudinal Study of the Shape of Hippocampi

Parallel transport was used in [56] as the transport method to compare deformations
of the hippocampus in subjects with early AD and healthy controls across a time
span of two years. It was shown that the conversion from normal cognitive function
to early AD in the time span between the baseline scan and the follow-up scan
is associated with an inward deformation of the hippocampal tail. Subjects who
were already diagnosed with AD at the time of the baseline scan on the other hand
exhibited an inward deformation of the whole hippocampal body.

1.5 Propagation of Anatomical Information

Registering two images I0 and I1 via a transformation ' gives us a voxel-to-
voxel correspondence between these two images. Assuming that we are given a
manual segmentation of the template image I0, in which some or all voxels of
I0 are assigned membership to a labelled anatomical structure, we can propagate
this segmentation via ' to the image I1. This is the idea of registration-based or
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atlas-based segmentation, see [15, 22, 48]. To remove the bias inherent in the choice
of the template I0, one can use multi-template registration techniques and replace
I0 with a collection .I jtempl/jD1;:::;N of several manually segmented images. Each

template I jtempl is registered to I1 and the transformation is used to propagate the

segmentation of I jtempl to I1. Now there are N potentially contradicting segmenta-
tions of I1, that have to be combined using some classifier fusion technique, such
as majority voting [4], Bayesian modelling [72] or Markov random fields [21]. For
subcortical structures of the brain, this sort of atlas-based segmentation was shown
to outperform other methods [7]. It is possible to use atlas-based registration with
a variety of image registration methods. However, a study that involved segmenting
brain scans of mice [8] has shown that the choice of the registration method is more
important than the choice of fusion method. Thus in applications where accuracy
is important, LDDMM may be preferred, despite having higher computational cost
than some other registration methods.

Automatic Labelling via Ontologies

In the same spirit, Steinert-Threlkeld et al. [64] combined an ex-vivo scan of the
left ventricle, manually parcellated and labelled, with the LDDMM registration
method and an ontology query language to allow the medical practitioner to
obtain quantitative and qualitative answers to questions like: “In which region was
significant tissue volume expansion observed between systole and diastole?” and
“What was the average rate of expansion per region of interest?” The ability to
automatically answer these questions is a key step toward automating the diagnostic
process.

Patient-Specific Models for Atrial Fibrillation [41]

Atrial fibrillation is a cardiac arrhythmia, characterized by the irregular propagation
of electrocardial waves across the atrium. Advances in late-gadolinium enhanced
MRI, allows the in-vivo localization of fibrotic tissue in the atrium, by diffusion
tensor imaging (DTI). Although the DTI approach does not yet have the necessary
resolution to determine the fibre orientation of the muscle fibres in-vivo, there
already exist atlases with information about fibre orientation, obtained ex-vivo.
Image registration can be used to propagate the fibre orientations from the atlas
to the patient and thus obtain a patient-specific model of the atrium that includes
both locations of fibrotic tissue and orientation of the muscle fibres. The resulting
model can then be used to simulate the propagation of electrocardial waves and to
predict the occurrence of arrhythmia in the patient’s atrium.
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1.6 Other Applications

We cannot hope to give an exhaustive description of all the applications of
LDDMM and its associated geometry to computational medicine in these notes.
Among the omitted topics are: estimating the dimensionality of the anatomical
shape variations [60]; generalizing geodesic regression to the anatomical shape
manifold and computing the mean aging process of the brain across a population
[16]; the use of parallel transport not only for longitudinal studies, but also to
characterize the left-right asymmetry of subcortical structures [58]; applications to
other diseases like schizophrenia [55] or cerebral palsy [18]; addition of functional
data to anatomical shapes [46]. There are also applications outside the medical field
to the study of variations of cell shape [61] and to construct generative models for
cells [53].

2 Geometry of Matching Problems

In order to better see the geometric properties of image registration with LDDMM,
we will first formulate an abstract version of it. As we study this abstract problem,
we will at each step show how it relates to the concrete example of image
registration.

2.1 Abstract Formulation

In the spirit of pattern theory we can formulate image registration as follows: a
group of transformations acts on a space of objects and we are searching for the
transformation that deforms a template object to a target object. The presentation
here follows [12].

Let us model the group of transformations by a Lie group G and the space of
objects by a vector space V . We will in this section assume that both G and V
are finite-dimensional in order to avoid questions about topologies, smoothness and
dual spaces that arise when dealing with infinite-dimensional spaces. The process of
deforming objects I 2 V by transformations g 2 G is modelled by a smooth map

` W G � V ! V; .g; I / 7! g:I:

Note that g:I is simply a notation for `.g; I /, i.e. the object I transformed under
g. Let e 2 G denote the neutral element of the group. We require ` to satisfy the
following axioms

• `.e; I / D I or e:I D I for I 2 V and
• `.g; `.h; I // D `.gh; I / or g:.h:I / D .gh/:I for g; h 2 G and I 2 V ,
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The first axiom tells us that the identity transformation doesn’t change the object
while the second is an associativity axiom and allows us to write simply gh:I for
either g:.h:I / or .gh/:I . Such a map ` is called a left action of the group G on the
vector space V . An in-depth treatment of group actions, beyond what we will need
for our purposes, can be found, e.g. in [43].

Example 2. Consider the rotation group SO.3/ and the vector space R3. The action

` W SO.3/ � R
3 ! R

3; .R; x/ 7! Rx

is given by matrix multiplication. The rules of matrix algebra imply that this is
indeed a left action.

To generate deformations and to measure their “size” or “energy”, we use the
linearization of the Lie group G. The Lie algebra g of G is the tangent space of G
at the identity, i.e. g D TeG. Intuitively g consists of “infinitesimal deformations”.
The following points of view are equivalent:

• Given a smooth curve t 7! ut 2 g of infinitesimal deformations, there exists a
curve t 7! gt 2 G in the group, which is the solution of the differential equation

@tgt D ut gt ; g0 D e:

The curve gt is called the flow or integral curve of ut .
• Given a smooth curve t 7! gt 2 G of deformations, its velocity is @tgt 2 TgtG

and it defines a curve ut WD .@t gt /g
�1
t 2 TeG of infinitesimal deformations.

The curve ut is called the right-trivialized velocity of gt .

To complete the modelling of the matching problem we assume that both the Lie
algebra g and the space V of objects are endowed with inner products h:; :ig and
h:; :iV respectively. The kinetic energy of a curve gt of deformations is measured
via its right-trivialized velocity

EKE.u/ D 1
2

Z 1

0

jut j2g dt ;

where jujg D
phu; uig is the norm induced by the inner product. The inner product

on V will be used to measure the distance between objects. The matching problem
can now we stated as follows.

Definition 3 (Abstract Registration Problem). Given two objects I0; I1 2 V find
a curve t 7! ut 2 g that minimizes the energy

E.u/ D 1
2

Z 1

0

jut j2g dt C 1
2�2
jg1:I0 � I1j2V ; (3)
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where g1 2 G is the endpoint of the flow of ut , i.e.

@tgt D ut gt ; g0 D e:

The transformation g1 then matches I0 to I1.

We defer questions about existence of minimizers to Sect. 3. Our goal now is
to study properties of the minimizing curves ut . In particular, we want to see which
properties of the minimizer are fixed by the group and what features of it are affected
by the choice of the space of objects. We assume all objects to be sufficiently
smooth. Thus, minima of E are also critical points; so we will be interested in
calculating the derivativeDE.u/. In order to do that we need some more tools from
geometry.

2.2 The Adjoint Action

On the group G we fix an element g 2 G and consider the map

conjg W G ! G; conjg.h/ D ghg�1 ;

called conjugation. It satisfies conjg.e/ D e and we denote its tangent map by

Adg WD Te conjg W TeG ! TeG:

This map is called the adjoint representation of G. The following properties of conj
can be easily verified,

conjg ı conjh D conjgh

conjg�1 D �conjg
��1

:

These properties imply the following differential versions,

Adg Adh D Adgh

Adg�1 D �Adg
��1

:

Considered as a map of both variables, the operation Ad W G � g ! g defines a
left action of G on its Lie algebra g. We also see that Ad is a group homomorphism
Ad W G ! GL.g/ between G and the group GL.g/ of invertible linear maps on g.
This property is the reason for the name adjoint representation.
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2.3 The Coadjoint Action

Again keeping g 2 G fixed we consider the linear map Adg W g! g. This map has
a transpose Ad� W g� ! g� in the sense of linear algebra, defined via

D
Ad�

g �; u
E

g��g
D ˝�;Adg u

˛
g��g

;

for � 2 g� and u 2 g. This map Ad� is called the coadjoint representation of G.
Similarly to Ad it satisfies

Ad�
g Ad�

h D Ad�
hg

Ad�
g�1 D

	
Ad�

g


�1
:

Considered as a map of both variables, the map Ad� W G � g� ! g� defines a right
action of G on g�. It is not a left action, because in the associativity rule the order
of the multiplication is changed. To make it into a left action we can consider the
map .g; �/ 7! Ad�

g�1 �. The name coadjoint representation stems from the way of
looking at Ad� as a group antihomomorphism Ad� W G ! GL.g�/.

2.4 Variations of the Flow

Why is this interlude necessary? In order to differentiate the term jg1:I0 � I1j2V
in (3) we need to know how to differentiate g1 with respect to ut , since g1 is defined
as the flow

@tgt D utgt ; g0 D e ;

of ut at time t D 1. This is given in the following lemma, the proof of which is
adapted from [10, 70].

Lemma 4. Let t 7! ut 2 g be a smooth curve and ."; t/ 7! u"t a smooth variation
of this curve. Denote by ıut WD @"j"D0

�
u"t
�

an infinitesimal variation of ut . Then

ıgt WD @"j"D0
�
g"t
� D gt

Z t

0

Adg�1
s
ıus ds:

Proof. For all " we have

@tg
"
t D u"t g

"
t ; g"0 D e:
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Taking the "-derivative of this equality yields the ODE

@t@"j"D0
�
g"t
� D ıutgt C ut ıgt ;

and so we obtain

@t
�
g�1
t ıgt

� D �g�1
t ut gtg

�1
t ıgt C g�1

t .ıutgt C ut ıgt /

D g�1
t ıut gt

D Adg�1
t
ıut :

Now we integrate both sides from 0 to t and multiply by gt from the left to obtain

ıgt D gt
Z t

0

Adg�1
s
ıus ds ;

as required. ut
The second tool we will need to compute the derivative DE.u/ is a map that

describes the relation between the group G and the space V it acts upon. This map
is called the momentum map.

2.5 The Momentum Map

Starting with the action ` W G�V ! V of a Lie groupG on a vector space V , we fix
I 2 V and consider the map `I W G ! V given by `I .g/ D `.g; I /. The derivative
of this map at e 2 G is Te`I W g! TIV and it may be interpreted, if we allow I to
vary, as a vector field on V , i.e. now keep u 2 g fixed and consider

�u W V ! T V; I 7! Te`
I :u: (4)

Thus � W g ! X.V / assigns to each Lie algebra element u a vector field �u on V .
These are called the fundamental vector fields of the G-action. We will also use the
notation �u.I / D u:I .

The tangent bundle T V of V can be identified via T V Š V �V with two copies
of V , the first containing basepoints and the second the tangent vectors. Similarly
we can identify the cotangent bundle T �V with the product T �V Š V � V �. Now
take an element .I; �/ 2 T �V . The pairing

h�; �u.I /iV ��V ;

is linear in u 2 g as can be seen from (4) and thus u 7! h�; �u.I /iV ��V is a
linear form on g or equivalently an element of g�. Denote this element by I ˘ � .
The defining equation for I ˘ � 2 g� is
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hI ˘ �; uig��g D h�; �u.I /iV ��V ;

and ˘ is a map ˘ W T �V ! g�, called the momentum map of the cotangent lifted
action of G on T �V . We shall explain the action of G on T �V in the following
paragraph.

2.6 Momentum Maps in Geometric Mechanics

In geometric mechanics, momentum maps generalize the notions of linear and angu-
lar momenta. For a mechanical system, whose configuration space is a manifoldM
acted on by a Lie group G, the momentum map ˘ W T �M ! g� assigns to each
element of the phase space T �M a generalized momentum I ˘ � in the dual g�
of the Lie algebra. For example, the momentum map for spatial translations is the
linear momentum, and for rotations it is the angular momentum.

One important feature of the momentum map in geometric mechanics is due
to Noether’s theorem. Noether’s theorem states that if the Hamiltonian of the
system under consideration is invariant under the action of G, then the generalized
momentum I ˘ � is a constant of motion. This theorem enables one generate
conservation laws from symmetries. See [33, 40] for more details on momentum
maps and geometric mechanics.

2.7 Tangent and Cotangent Lifted Actions

The action of a Lie groupG on the vector space V is a map ` W G �V ! V . Fixing
an element g 2 G we obtain a map `g W V ! V , which we can differentiate to
obtain T `g W T V ! T V . It can be checked that the map of both variables

T2` W G � T V ! T V ;

is a left action of G on the space T V . Here T2` denotes the derivative of ` with
respect to the second variable. The map T `g W V � V ! V � V , being a derivative,
is linear in the second variable, i.e. for each I the map

TI `g W V Š TIV ! Tg:IV Š V ;

is linear and thus has a transpose

T �
I `g W V � Š T �

g:I V ! T �
I V Š V �:
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This allows us to define the cotangent lifted action of G on the cotangent bundle
T �V Š V � V � via

g:.I; �/ D
	
`.g; I /; T �

g:I `g�1 :�


;

for .I; �/ 2 T �V . Note that the presence of the inverse makes this a left action. The
following lemma shows that the momentum map is equivariant with respect to the
cotangent lifted action.

Lemma 5. For g 2 G, u 2 g, I 2 V and � 2 V � we have

• g:�u.g
�1:I / D �Adg u.I /, and

• g:I ˘ g:� D Ad�
g�1 .I ˘ �/.

Proof. First note that g:�u.g
�1:I / is a slightly informal way to denote g acting on

�u.g
�1:I / via the tangent lifted action; i.e.,

g:�u.g
�1:I / D Tg�1:I `g:�u.g

�1:I /:

To prove the first identity take a curve h.t/ 2 G with h.0/ D e and @tgjtD0 D u.
Via associativity, we have

`.g; h.t/:g�1:I / D `.gh.t/g�1; I / ;

and by differentiating this identity we obtain

Tg�1:I `g:�u.g
�1:I / D Te`I :Adg u

g:�u.g
�1:I / D �Adg u.I /:

For the second identity note that g:I ˘ g:� is a short way of writing

g:I ˘ g:� D ˘ .g:.I; �// D ˘ .g:I; T �
g:I `g�1 :�/ D g:I ˘ T �

g:I `g�1 :� :

Now take any u 2 g and consider the pairing

hg:I ˘ g:�; uig��g D hT �
g:I `g�1 :�; �u.g:I /iV ��V D

D h�; Tg:I `g�1 :�u.g:I /iV ��V D h�; �Ad
g�1 u.I /iV ��V D
D hAd�

g�1 .I ˘ �/ ; uig��g :

This concludes the proof. ut
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2.8 The [-Map

The final piece of notation is the [-map of a vector space associated to an inner
product. On the vector space V the [-map is defined as

[ W V ! V �; hu[; viV ��V D hu; viV ;
where the pairing on the left side is the canonical pairing between V � and V and on
the right side we have the inner product h:; ; iV . Each inner product gives rise to a
[-map and we have two of them in our framework, one on g and one on V . As there is
no risk of confusion between them, we will use the same notation for both. Inspired
by their appearance in physics, the elements u 2 g are called velocities while the
dual objects u[ 2 g� are called momenta.

2.9 Derivative of the Matching Energy

We now have assembled all the tools we need to calculate the derivativeDE.u/.

Theorem 6. Consider the matching energy

E.u/ D 1

2

Z 1

0

jut j2g dt C 1

2�2
jg1:I0 � I1j2V :

Its derivative is given by

DE.u/.t/ D u[t C gtI0 ˘ gtg�1
1 � ; (5)

with � D 1
�2
.g1I0 � I1/[ 2 V � Š T �

g1:I0
V .

Proof. The derivative is a curve t 7! DE.u/.t/ 2 g� and the pairing between
DE.u/ and a variation ıu is given by

hDE.u/; ıui D
Z 1

0

hDE.u/.t/; ıutig��g dt:

From

�

D

�
1

2

Z 1

0

jut j2g dt

�

; ıu

�

D
Z 1

0

hut ; ıutig dt D
Z 1

0

˝
u[t ; ıut

˛
g��g

dt ;

we see that the derivative of the kinetic energy part is simply u[t . Now for the
matching term,

�

D

�
1

2�2
jg1:I0 � I1j2V

�

; ıu

�

D 1

�2
hg1:I0 � I1; ıg1:I0iV ��V D h�; ıg1:I0iV ��V :
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We apply Lem. 4 to express ıg1 via ıu and the we use adjoint operations to
isolate ıu. Consequently, we find

h�; ıg1:I0iV ��V D
�

�; g1:

Z 1

0

Adg�1
t
ıut dt:I0

�

V ��V

D
Z 1

0

D
g�1
1 :�;

	
Adg�1

t
ıut


:I0

E

V ��V dt

D
Z 1

0

D
I0 ˘ g�1

1 :�;Adg�1
t
ıut
E

g��g
dt

D
Z 1

0

D
Ad�

g�1
t

�
I0 ˘ g�1

1 :�
�
; ıut

E

g��g
dt

D
Z 1

0

˝
gt :I0 ˘ gtg�1

1 :�; ıut
˛
g��g

dt:

And thus we obtain the result. ut

2.10 Image Matching

In image matching the group of transformations is taken to be the group Diff.R3/
of diffeomorphisms of R3, i.e., smooth invertible maps ' W R3 ! R

3 with smooth
inverses. The space of objects is F .R3/, the space of real-valued smooth functions
on R

3, and the action is given by

` W Diff.R3/ �F .R3/! F .R3/; .'; I / 7! I ı '�1:

Due to the inverse in the definition, the voxel '.x/ of the transformed image has
the same grey-value as the voxel x of the original image. We will postpone the
discussion of analytical aspects of Diff.R3/ to Sect. 3 and for now assume all objects
are sufficiently smooth for the necessary operations.

Remark 7 (Convenient Calculus). The discussion here can be made rigorous by
considering the group

DiffH1.R3/ D ˚' W Id�' 2 H1.R3/
�

of all diffeomorphisms ', such that Id�' lies in the intersection H1.R3/ of all
Sobolev spaces. The group DiffH1.R3/ is a smooth regular Fréchet-Lie group.
For the space of images we can take either F .R3/ D H1.R3/ functions with
square-integrable derivatives or F .R3/ D C1

c .R
3/ compactly supported functions.

Then the action ` W DiffH1.R3/ � C1
c .R

3/ ! C1
c .R

3/ is smooth in the sense of
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convenient calculus [37] and all the operations described below can be interpreted
in that framework. See [45] for details on diffeomorphism groups with other decay
properties.

The Lie algebra of Diff.R3/ is X.R3/, the space of vector fields on R
3. Given a

time-dependent vector field t 7! ut 2 X.R3/ its flow is defined by the differential
equation

@t't .x/ D ut .'t .x// ; '0.x/ D x; x 2 R
3:

Let us assume that we are given a norm on X.R3/, defined via a positive, self-adjoint
differential operator L as follows,

hu; viL D
Z

R3

u.x/ �Lv.x/ dx: (6)

For example the H1-norm

hu; viH1 D
Z

R3

u.x/ � v.x/C ˛2
3X

iD1
rui .x/ � rvi .x/ dx ;

can be defined via the operator Lu D u � ˛2�u, where the Laplace operator is
understood to act componentwise on u.

The dual space of X.R3/ is the space of distributions. We consider only
the smooth dual, that is the space X.R3/� WD ˚

Lu W u 2 X.R3/
�

generated by
the [-map. As the duality pairing between X�.R3/ and X.R3/ we choose the
L2-pairing, i.e.

h˛; uiX.R3/��X.R3/ D
Z

R3

˛.x/ � u.x/ dx:

Thus we see that the [-map of the h:; :iL-inner product is given by u[ D Lu.
On the space of images we use theL2-inner product hI; J iL2 D

R
R3
I.x/J.x/ dx.

Again we don’t look at the whole dual space, but only at the subspace generated
by functionals of the form I 7! R

R3
�I dx with � 2 F .R3/. Thus the canonical

pairing is given by

h�; I iF .R3/��F .R3/ D
Z

R3

�.x/I.x/ dx:

The [-map in this case is the identity, I [ D I . However the distinction between
F .R3/ and its dual F .R3/� is still important, because Diff.R3/ will act differently
on the two spaces.

The infinitesimal action of u 2 X.R3/ on I 2 F .R3/ can be computed via

�u.I / D @t jtD0't :I ;
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where t 7! 't is a curve with '0 D Id and @t jtD0't D u. Then

�u.I / D @t jtD0
�
I ı '�1

t

� D �rI � u:
This allows us to compute the momentum map

hI ˘ �; uiX.R3/��X.R3/ D h�; �u.I /iF .R3/��F .R3/

D �
Z

R3

�.x/rI.x/ � u.x/ dx

D h��rI; uiX.R3/��X.R3/ :

Thus, in this case, I ˘ � D ��rI .
The last pieces of the geometrical framework are the lifted tangent and cotangent

actions. The action of Diff.R3/ on F .R3/ is linear, i.e. ':.aI C bJ / D a.':I / C
b.':J / and so the tangent action on TF .R3/ Š F .R3/ �F .R3/ coincides with
the action on F .R3/,

':.I; U / D .I ı '�1; U ı '�1/:

In particular we don’t have to keep track of the basepoint. To compute the dual
action on F .R3/� we use the definition

h':�; U iF .R3/��F .R3/ D h�; '�1:U iF .R3/��F .R3/

D
Z

R3

�.x/U.'.x// dx

D
Z

R3

ˇ
ˇdetD'�1.x/

ˇ
ˇ�
�
'�1.x/

�
U.x/ dx

D ˝ˇˇdetD'�1.x/
ˇ
ˇ� ı '�1; U

˛
F .R3/��F .R3/

with � 2 F .R3/� and U 2 F .R3/. Thus the cotangent lifted action is given by

':.I; �/ D �I ı '�1;
ˇ
ˇdetD'�1.x/

ˇ
ˇ� ı '�1� ;

and we see that the objects dual to images transform as densities.
Now we can compute the criticality condition from Thm. 6,

DE.u/.t/ D u[t C 't :I0 ˘ 't'�1
1 :� ;

with � D 1
�2
.'1:I0 � I1/[. To simplify the formulas, let us define 't;1 WD 't ı '�1

1 ,
which denotes the flow of ut from time 1 backwards to t . In general 't;s WD 't ı'�1

s

is the solution of

@t't;s.x/ D ut .'t;s.x// ; 's;s.x/ D x:
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So we have

DE.u/.t/ D Lut � ˇˇdetD'�1
t;1 .x/

ˇ
ˇ
�
� ı '�1

t;1

�r .'t :I0/ ;
and

� ı '�1
t;1 D

1

�2

�
I0 ı '�1

1 � I1
� ı '1 ı '�1

t D

D 1

�2

�
I0 ı '�1

t � I1 ı '1 ı '�1
t

� D 1

�2
.'t :I0 � 't;1:I1/ :

Hence the derivative is given by

DE.u/.t/ D Lut � 1

�2

ˇ
ˇdetD'�1

t;1 .x/
ˇ
ˇ .'t :I0 � 't;1:I1/r .'t :I0/ ;

and critical points of E satisfy

Lut D 1

�2

ˇ
ˇdetD'�1

t;1 .x/
ˇ
ˇ .'t :I0 � 't;1:I1/r .'t :I0/ :

This formula was first derived in [10], where it was used to implement a gradient
descent method for E , which enabled computation of a numerical solution of the
registration problem.

2.11 Conservation of Momentum

Returning to the general framework let us have a closer look at the equation (5) for
the derivative and the information contained therein. Let ut be a critical point of the
registration problem in Def. 3. Then

u[t D �gt :I0 ˘ gtg�1
1 :� ; (7)

which we can reformulate as

u[t D �Ad�
g�1
t

�
I0 ˘ g�1

1 :�
�

(8)

Ad�
gt

u[t D I0 ˘ g�1
1 :�: (9)

Now note that the right hand side of (9) does not depend on time any more while the
left hand side doesn’t depend on V any more. As the right hand side is independent
of t , we can differentiate the identity to obtain

@t

	
Ad�

gt
u[t


D 0: (10)
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2.12 Differentiating Ad and Ad�

It is time to introduce some more tools from geometry related to the derivatives of
the adjoint and coadjoint representations. Differentiating (10) with respect to u[t is
not a problem, because Ad�

gt
is a linear transformation. What we need to know, is

how to differentiate the expression with respect to gt .
We know from the definition of Ad, that it can be interpreted as a map Ad W

G ! GL.g/. The group GL.g/ of invertible linear transformations of g is also a
Lie group. If dim g D n, then we can identify GL.g/ Š GL.Rn/ with invertible
n � n-matrices. Because invertible matrices form an open subset of all matrices,
the tangent space TeGL.Rn/ at the identity is the space of all matrices. Thus the
Lie algebra ofGL.g/ is gl.g/, the space of all linear transformations of g. Hence the
derivative of Ad at e 2 G is a map

ad WD Te Ad W g! gl.g/; u 7! adu ;

and is called the adjoint representation of g. The map ad figures in the following
differentiation formula.

Lemma 8. Let t 7! gt 2 G be a smooth curve and v 2 g. Then

@t
�
Adgt v

� D ad@t gtg�1
t

Adgt v:

Proof. We obtain this formula by writing

@t jtDt0
�
Adgt v

� D @t jtDt0
	

Adgt g�1
t0

Adgt0 v



D ad@t jtDt0 gt g
�1
t0

Adgt0 v :

ut
However we will need the transposed version of it. For each u 2 g fixed, the

transpose ad�
u is defined by

˝
ad�

u �; v
˛
g��g

D h�; adu vig��g ;

and thus ad� defines a map

ad� W g! gl.g�/:

This map is called the coadjoint representation of g. The transposed version of
Lem. 8 is given in the following lemma.

Lemma 9. Let t 7! gt 2 G be a smooth curve and � 2 g�. Then

@t

	
Ad�

gt
�


D Ad�

gt
ad�
@t gtg

�1
t
�:
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Proof. Take u 2 g and consider

@t hAd�
gt
�; ui D h�; @t Adgt ui

D h�; ad�
@t gt g

�1
t

Adgt ui
D hAd�

gt
ad�
@t gtg

�1
t
�; ui ;

from which the statement follows. ut

2.13 The Euler-Poincaré Equation

Lemma 9 allows us to express equation (10) as,

0 D @t
	

Ad�
gt

u[t


D Ad�

gt
@tu

�
t C Ad�

gt
ad�
@t gtg

�1
t

u[t

D Ad�
gt

	
@tu

�
t C ad�

@t gt g
�1
t

u[t


;

and because Ad�
gt

is invertible we obtain the equation

@tu
[
t D � ad�

ut u[t :

Let us state this result as a theorem.

Theorem 10. Let t 7! ut 2 g be a solution of the registration problem from Def. 3.
Then it satisfies the equation

@tu
[
t D � ad�

ut u[t : (11)

This equation is called the Euler-Poincaré equation on the Lie group G.

Remark 11. The Euler-Poincaré equation is an evolution equation on the dual g�
of the Lie algebra g, independent of I0; I1. Discussion of the history and some
applications of the Euler-Poincaré equation can be found in [31, 40].

Now let us discuss the interplay between the group of transformations and the
objects that are being matched. Let t 7! ut be a solution of the matching problem.
Then ut satisfies the Euler-Poincaré equation, which depends only on the geometry
of the group, as encoded by ad�, and on the chosen metric h:; ; ig via the [-operator.
The Euler-Poincaré equation does not see the space of objects, the action of the
transformation group thereon or the particular objects I0; I1, we are trying to match.
How is this possible? In order to compute ut via the Euler-Poincaré equation we
need to supply initial conditions and these do depend I0; I1, the group action, and
the inner product h:; :iV we chose on V . From (7) we see that
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u[0 D �I0 ˘ g�1
1 :� ; (12)

with � D 1
�2
.g1:I0 � I1/[. So the initial value u[0 depends on the given objects

I0; I1, on the inner product h:; :iV via the [-map and on the group action via the
momentum map.

The momentum map has yet another role to play. It allows us to reduce the
dimensionality of the matching problem. Let us assume that bothG and V are finite-
dimensional. If dimG is much bigger than dimV , then there must be a redundancy
in the action of G on V . The momentum map ˘ W V � V � ! g� tells us that
the initial condition u[0 will lie in the space Im.I0 ˘ :/, whose dimension is at most
dimV . Even more, we see from (7) that for each time t we have u[t 2 Im .gt :I0 ˘ :/.
The same thing happens for infinite dimensional spaces, as we will see in the case
of image matching.

2.14 The EPDiff Equation

To write the Euler-Poincaré equation on the diffeomorphism group we first need to
calculate the operators Ad, ad and ad�. Differentiating the conjugation conj'. / D
' ı  ı '�1 gives

Ad' u D TId.conj'/:u D .D':u/ ı '�1 ;

with ' 2 Diff.R3/ and u 2 X.R3/. Now we differentiate once more, which leads to

adu v D TId
�
' 7! Ad' v

�
:u D Du:v �Dv:u D �Œu; v	 I

where Œu; v	 is the commutator bracket of vector fields. Next we need the coadjoint
action ad�. To compute it, we take m 2 X.R3/� and pair it with adu v as in [31],

hm; adu viL2 D
Z

R3

m � .Du:v �Dv:u/ dx

D
Z

R3

mk@iu
kvi �mk@iv

kui dx

D
Z

R3

mi@kui vk C @i .mkui /vk dx

D hDuT :mCDm:uCm div u; viL2 :

We can thus write the Euler-Poincaré equation on the diffeomorphism group, also
called EPDiff. It has the form

@tmCDm:uCDuT :mC div.u/m D 0 ; m D u[ D Lu: (13)
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The EPDiff equation (13) first appeared in the context of unidirectional propagation
of shallow water waves [13]. In the context of planar image registration, the crests
of the shallow water waves correspond to the contour lines of the image [32].
To improve readability in (13), we have omitted the subscript t for the time-
dependence. For the sake of completeness, we also include the coadjoint action,

Ad�
' m D .detD'/D'T :.m ı '/:

2.15 Momentum Map for Image Matching

The momentum map for the action of Diff.R3/ on the space F .R3/ of images is
I ˘ � D ��rI . Thus (12) tells us that the initial momentum is of the form

Lu0 D .'�1
1 :�/rI0: (14)

As I0 is fixed this means that we only have to look for the initial momenta in the
subspace

Im .I0 ˘ :/ D
˚
PrI0 W P 2 F .R3/

�
;

elements of which are specified using only one real-valued function P , while the
vector field u0 or equivalently the momentumLu0 needs 3 functions. This reduction
strategy was employed in [50, 71] to solve the matching problem by estimating the
initial momentum and using the EPDiff equation to reconstruct the path.

The momentum map also allows for an intuitive interpretation. Equation (14)
tells us that the optimal momentum will point in the direction of the gradient of I0,
that is Lu0 will be orthogonal to the contour lines of I0. Indeed we see from

Lut D 't;1:�r .'t :I0/ ;

that for all times the momentum is orthogonal to the contour lines of the image 't :I0
at time t . A vector field that is parallel to the contour lines will leave the image
constant and since we are interested in deforming the images with the least amount
of energy it is natural that the momentum wants to be orthogonal the contour lines.

2.16 Evolution Equations on T �V

We have seen that the solution ut of the matching problem from Def. 3 can be
expressed via the momentum map

u[t D �gt I0 ˘ gt;1:� ;
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and it satisfies the Euler-Poincaré evolution equation on g�:

@tu
[
t D � ad�

ut
u[t : (15)

The momentum map representation can now be used to reduce the dimensionality
of the problem by writing the evolution equation (15) directly on T �V . Let us define
the variables

It WD gt :I0; Pt WD gt;1:�:

Geometrically we have It 2 V and Pt 2 T �
It
V Š V � so that the pair .It ; Pt /

describes an element of T �V . Computing the time-derivative of It gives

@tIt D @t .gt :I0/ D .@tgt / :I0 D ut gt :I0 D ut :It D �ut .It /:

To simplify the derivation of the evolution equation for Pt we will assume that the
action of G on V is linear, as in the case of image matching. In that case the lifted
actions ofG on T V and T �V do not depend on the basepoint. Take U 2 V Š TIt V
and consider

@t hPt ; U iV ��V D @t hgt;1:�; U iV ��V
D @t

˝
g�1
1 :�; g

�1
t :U

˛
V ��V

D ˝g�1
1 :�;�g�1

t .@tgt / g
�1
t :U

˛
V ��V

D �hPt ; ut :U iV ��V
D ˝�uTt :Pt ; U

˛
V ��V :

The geometrically correct expression, which holds for a general G-action, not just
a linear one, is

@tPt D �T �
It
�ut :Pt :

In case of a linear action the fundamental vector field �ut is linear and thus we can
omit the derivative and write simply uTt for the transpose map T �

It
�ut in the last line

of the calculation above. Thus we obtain the following system of evolution equations
on T �V ,

@tIt D �ut .It /

@tPt D �T �
It
�ut :Pt

u[t D It ˘ Pt :
(16)
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Note that, while we cannot completely avoid computing the vector field ut , it only
needs to be updated at each time step using the variables .It ; Pt / on T �V .

2.17 Evolution Equations for Image Matching

Let us write out the evolution equations in the case of image matching. The action
is linear and the fundamental vector fields are given by

�u.I / D �rI � u:

Now we compute the transpose

hP; �u.I /iF .R3/��F .R3/ D �
Z

R3

P.x/rI.x/ � u.x/ dx

D
Z

R3

div.P u/.x/I.x/ dx

D hdiv.P u/; I iF .R3/��F .R3/ :

Thus the evolution equations have the form

@tIt CrIt � ut D 0
@tPt C div.Ptut / D 0

Lut D �PtrIt :
(17)

See also [77] for a direct derivation and [30] for an explanation and classification of
the cotangent lift momentum maps associated with EPDiff.

2.18 Matching via Initial Momentum

The evolution equations in (17) allow for a reformulation of the matching problem
from Def. 3. Instead of searching for paths t 7! ut 2 g, we see that any solution
of the registration problem is completely determined by the initial momentum
P0 D g�1

1 :� . Thus we can formulate the following equivalent matching problem.

Definition 12 (Registration Problem via Initial Momentum). Given I0; IT 2 V
find P0 2 V � Š T �

I0
V which minimizes

E.P0/ D 1

2
jI0 ˘ P0j2g C

1

2�2
jI1 � ITj2V ;
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where I1 is defined as the solution of

@tIt D �ut .It /

@tPt D �T �
It
�ut :Pt

u[t D It ˘ Pt :

Remark 13. We replaced in the Def. 12 of the registration problem the integral
R 1
0 jut j2g dt over the whole time interval by ju0j2g D jI0 ˘ P0j2g. This is justified,

because if t 7! ut 2 g is a solution of the registration problem from Def. 3, then its
norm jut j2g is constant in time. It is possible to prove this result directly, by using the
evolution equations for .It ; Pt / as follows,

@t jtDt0
�
1

2
jut j2g

�

D h@t jtDt0 .It ˘ Pt/ ; ut0ig��g

D @t jtDt0
˝
Pt ; �ut0

.It /
˛
g��g

D �
D
T �
It0
�ut0
:Pt0 ; �ut0

.It0/
E

g��g
C ˝Pt0 ; TIt0 �ut0

:�ut0
.It0/

˛
g��g

D 0:

In order to find minima for the registration problem from Def. 12, we would need
to compute the derivative of the energy E.P0/ with respect to P0, which would
require us to differentiate the solution I1 with respect to P0. This can be done
using a technique called adjoint equations and is slightly more involved than the
computation of the derivative in Thm. (3). Further details as well as a discussion of
the numerical discretization can be found in [71].

2.19 Interpretation via Riemannian Geometry

Many of the derivations, theorems and properties discussed in this section are
familiar from Riemannian geometry. Let us start with the Euler-Poincaré equation
and discuss why it arises. The registration problem in Def. 3 asks us to find curves
t 7! ut 2 g, that are minima of

E.u/ D 1

2

Z 1

0

jut j2g dt C 1

2�2
jg1:I0 � I1j2V : (18)

How does Riemannian geometry arise here? A Riemannian metric 
 on a manifold
is an inner product on each tangent space that varies smoothly with the basepoint.
On the group G we have an inner product h:; :ig on g D TeG and we can use right-
multiplication to define the following Riemannian metric on the whole group,
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g.Xg; Yg/ WD
˝
Xgg

�1; Ygg�1˛
g
; Xg; Yg 2 TgG: (19)

Let t 7! ut 2 g be a curve and t 7! gt 2 G be its flow, i.e. @tgt D ut gt , g0 D e.
Then (18) is equivalent to

E.g/ D 1

2

Z 1

0


gt .@tgt ; @t gt / dt C 1

2�2
jg1:I0 � I1j2V ;

where we look for the minimum over all curves t 7! gt 2 G with g0 D e. Let
t 7! Qgt be a minimum. Then this curve also must be a minimum of

EKE.g/ D 1

2

Z 1

0


gt .@tgt ; @tgt / dt ;

over the set ft 7! gt W g0 D e; g1 D Qg1g of all curves with fixed endpoints. This
is exactly the definition of a geodesic in Riemannian geometry. That is, the Euler-
Poincaré equation in the general form

@tu
[
t D � ad�

ut
u[t ;

is the geodesic equation for right-invariant metrics on Lie groups. The property used
in Rem. 13, that the norm t 7! jut j2g is constant is also a general result for geodesics
in Riemannian geometry. It can be shown using the Euler-Poincaré equation in the
following way,

@t

�
1

2
jut j2g

�

D ˝@tu[t ; ut
˛
g��g

D ˝� ad�
ut u[t ; ut

˛
g��g

D � ˝u[t ; adut ut
˛
g��g

:

Now we use the property that adu v is antisymmetric, i.e. adu v D � adv u, which
implies adut ut D 0, and conclude that jut j2g is constant in time.

2.20 Riemannian Geometry on V

Let us consider the left action ` W G � V ! V of G on V . Assume for now that the
action is transitive, i.e. for any two I; J 2 V there exists g 2 G such that g:I D J .
Equivalently this means that for any I 2 V the map `I W G ! V is onto. If the
action is not onto, we can restrict ourselves to an orbit G:I D fg:I W g 2 Gg and
proceed as below.

We have an inner product h:; :ig on the Lie algebra, which we can extend to a
right-invariant Riemannian metric 
G on the whole group G via (19). We want to
project this metric to a Riemannian metric 
V on V . Fix I0 2 V and let J 2 V be
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any element. Then we can write J D g:I0 for some g 2 G, not necessarily unique,
due to the transitivity of the action. If U 2 TJV is a tangent vector, we can write
it in the form U D Xg:I0 D Tg`

I0 :Xg with some Xg 2 TgG and again Xg is not
necessarily unique.

Theorem 14. The expression


VJ .U;U / D inf
UDXg:I0


Gg .Xg;Xg/ ; (20)

defines a well-defined Riemannian metric on V that is independent of the choice
of I0.

Proof. Two things need to be proven. First, the expression on the right side must
not depend on g and second we have to show that 
V is independent of I0. As a first
step we note that any Xg 2 TgG is of the form Xg with X 2 g and thus we can
rewrite the condition in the infimum of (20) as

U D Xg:I0 D Xg:I0 D �X.J / ;

as well as


Gg .Xg;Xg/ D 
Gg .Xg;Xg/ D hX;Xig ;

and hence


VJ .U;U / D inf
UDXg:I0


Gg .Xg;Xg/ D inf
UD�X .J /

hX;Xig :

This shows that the metric 
V is independent of both the group element g used to
represent J as well as the choice of I0 and thus everything is proven. ut

Associated to the map `I0 W G ! V is a splitting of the Lie algebra g into
two orthogonal subspaces. Denote by Ver.g/ D �

kerTg`I0
�
g�1 � g the vertical

subspace. In fact Ver.g/ depends only on the element J D g:I0 and can be
described by

Ver.J / D fX 2 g W �X.J / D 0g :

The orthogonal complement of Ver.J / with respect to the inner product h:; :ig is
called the horizontal subspace,

Hor.J / D Ver.J /?:
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For each J 2 V the momentum map gives an identification between TIV and
Hor.J / via

TIU 3 U 7! .I ˘ U [/] 2 Hor.J / ;

where ] W g� ! g denotes the inverse of the [-map. To see that .J ˘U [/] 2 Hor.J /
take any X 2 Ver.J / and look at

hJ ˘ U [;Xig��g D hU [; �X.J /iV ��V D 0:

Surjectivity follows in finite dimensions via dimension counting and is a more
delicate matter in infinite dimensions. The momentum map has the following
property: for each U 2 TJV the element .J ˘ U [/] 2 g realizes the infimum
in (20); i.e.,


J .U;U / D h.J ˘ U [/]; .J ˘ U [/]ig:

The Riemannian interpretation of the matching problem may now be given, as
follows: A solution t 7! ut or t 7! gt of the registration problem is a solution of
the Euler-Poincaré equation (11) and thus a geodesic on the groupG with respect to
the metric 
G . Furthermore the velocity at all times satisfies ut 2 Hor.gt :I0/. Such
geodesics are called horizontal geodesics. It follows from Riemannian geometry
that the projected curve It D gt :I0 is a geodesic with respect to the Riemannian
metric 
V . The set of evolution equations (16) are the geodesic equations on V with
respect to the metric 
V , written in the Hamiltonian form [71].

Let us come back to (1) from the introduction, which described registration as
the minimization of

E.g/ D d1.e; g/2 C 1
�2
d2.g:I0; I1/

2 ;

where d1.:; :/ is a distance function on G and d2.:; :/ a distance function on V .
The LDDMM framework chose d1.:; :/ to be the geodesic distance with respect
to the metric 
G . What the above discussion shows is that we can replace it with
dV .:; :/, the geodesic distance with respect to 
V ; i.e. we can minimize

E.J / D dV .I0; J /2 C 1
�2
d2.J; I1/

2 ;

with d2.:; :/ being some other metric on V .
For further details on the background from Riemannian geometry and the theory

of group actions consult [43]. The Hamiltonian approach to Riemannian geometry,
including the infinite dimensional case is described in [44]. Riemannian metrics
induced by group actions, especially the diffeomorphism group, in the context of
shape matching are discussed in [9, 42].
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3 Existence of Solutions for Image Registration

In this section we want to present a framework that allows us to prove the existence
of minimizers for the image registration problem, that is for the energy

E.u/ D 1

2

Z 1

0

jut j2L dt C 1

2�2
kI0 ı '�1 � I1k2L2 ;

where I0; I1 W R3 ! R are grey-value images, u W Œ0; 1	! X.R3/ a time-dependent
vector field and '1 its flow at time 1.

There are two competing tendencies in the mathematical modelling for image
registration. We want the diffeomorphism group to be an (infinite-dimensional) Lie
group. That is, we want the group operations to be smooth, so that we can rigorously
apply the geometric framework of Sect. 2. In addition, we want the Lie algebra of
the diffeomorphism group with the norm h:; :iL to be a Hilbert space, so that we can
use completeness to show the existence of minimizers. Unfortunately the following
theorem by Omori [52] shows that these two requirements are incompatible.

Theorem 15 ([52]). If a connected Banach-Lie group G acts effectively, transi-
tively and smoothly on a compact manifold, then G must be a finite dimensional
Lie group.

The action of a Lie groupG on a manifoldM is called effective, if

g:x D h:x for all x 2 M implies g D h:
This means that we can distinguish group elements based on how they act on the
manifold. The action of the diffeomorphism group Diff.M/ on the base manifold
M , given by ':x D '.x/ is by definition effective. The theorem thus implies that
the diffeomorphism group of a compact manifold cannot be made into a Banach-Lie
group. For noncompact manifolds the argument is a bit more complicated, but also
follows from results in [52].

Since we cannot have both smooth group operations and a Hilbert space as a Lie
algebra, we will now describe a framework that gives up the structure of a Lie group
to gain completeness. For more detailed exposition and full proofs, we refer to [75].

Since none of the arguments in this section are specific to three dimensions, we
will consider the case of d -dimensional images. Also images are not necessarily
defined on the whole of Rd . So let ˝ � R

d be an open subset of Rd , where the
image I W ˝ ! R is defined. We consider a certain class of spaces of vector fields,
called admissible vector spaces, to serve as the equivalent of a Lie algebra. The
following introduction is taken from [11].

Definition 16. A Hilbert space H , consisting of vector fields on the domain ˝ , is
called admissible, if it is continuously embedded in C1

0 .˝;R
d /, i.e. there exists a

constant C > 0 such that

juj1;1 	 C jujH :
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Here C1
0 .˝;R

d / is the space of all C1-vector fields on ˝ that vanish on the
boundary @˝ and at infinity with the norm

juj1;1 WD sup
x2˝
ju.x/j C

dX

iD1
jrui .x/j:

An admissible vector space H falls into the class of reproducing kernel Hilbert
spaces.

Definition 17. A Hilbert space H , consisting of functions u W ˝ ! R
d is called

a reproducing kernel Hilbert space (RKHS), if for all x 2 ˝ and a 2 R
d the

directional point-evaluation evax W H ! R defined as evax.u/ WD a � u.x/ is a
continuous linear functional.

In this case the relation

hu; K.:; x/ai D a � u.x/; u 2H ; a 2 R
d ;

defines a functionK W ˝ �˝ ! R
d�d , called the kernel of H .

If we denote by L W H ! H � the canonical isomorphism between a Hilbert
space and its dual, then we have the relation

K.y; x/a D L�1.evax/.y/:

In order for the RHKS to be admissible, the kernel K has to satisfy the following
properties:

• K is twice continuously differentiable with bounded derivatives, i.e. K 2
C2.˝ �˝;Rd�d / and jKj2;1 <1.

• K vanishes on the boundary of ˝ � ˝ , i.e. K.x; y/ D 0 whenever x 2 @˝ or
y 2 @˝ .

Further exposition of the theory of RKHS can be found, e.g. in [3, 63].

Example 18. The Sobolev embedding theorem (see e.g. [1, Chapter 6]) states that
for˝ � R

d there is an embedding

HkCm.˝/ ,! Ck.˝/; m >
d

2
;

of the Sobolev space HkCm.˝/ into the space of k-times continuously differ-
entiable functions Ck.˝/. Therefore for m > d

2
C 1, the space Hm.˝/ is an

admissible space. The corresponding kernel is the Green’s function of the operator
L D IdCPm

jD1 .�1/j�j .

We fix an admissible vector space H with kernelK and let u 2 L2.Œ0; 1	;H / be
a time-dependent vector field. In Sect. 2 we assumed the vector fields to be smooth in
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time, but since we want to minimize over the space of time-dependent vector fields,
we work here with the space L2.Œ0; 1	;H / of vector fields that are only square-
integrable in time. This space is a Hilbert space with the inner product given by

hu; viL2H D
Z 1

0

hut ; vt i2H dt:

We want to define the flow 't of the vector field u, as before via the differential
equation

@t't D ut ı 't ; '0.x/ D x: (21)

If ut were smooth or at least continuous in time, we could apply standard existence
theorems for ODEs. Note that the theorem of Picard-Lindelöf requires vector fields
that are continuous in time and Lipschitz continuous in space. In our case ut is
continuously differentiable in space, but only square-integrable in time. We have
the following result concerning the existence and uniqueness of a flow for such a
vector field.

Theorem 19. Let H be an admissible space and u 2 L2.Œ0; 1	;H / a time-
dependent vector field. Then (21) has a unique solution ' 2 C1.Œ0; 1	 � ˝;˝/,
such that for each t 2 Œ0; 1	, the map 't W ˝ ! ˝ is a C1-diffeomorphism of ˝ .

Proof. See [75, Appendix C.2] for the existence of a solution and [75, Thm. 8.7] for
properties of 't . ut

For matching purposes we will work with all diffeomorphisms that can be
obtained as flows of such vector fields. Define the groupGH to be

GH WD
˚
'1 W 't is a solution of (21) for some u 2 L2.Œ0; 1	;H /

�
: (22)

It can be equipped with the following distance, which is modelled after the geodesic
distance on Riemannian manifolds,

dH . 0;  1/
2 D inf

u2L2.Œ0;1	;H /

�Z 1

0

jut j2H dt W  1 D  0 ı 'u
1

�

: (23)

The set GH has the following properties

Theorem 20. Let H be an admissible space and GH defined via (22). Then

• GH is a group.
• (Trouvé) The function dH is a distance on GH and .GH ; dH / is a complete

metric space.
• For each  0; 1 2 GH there exists u 2 L2.Œ0; 1	;H / realizing the infimum

in (23), i.e. dH . 0;  1/ D jujL2H .
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Proof. See [75, Thm. 8.14] for a proof that GH is closed under group operations,
see [75, Thm. 8.15] for the completeness of dH and see [75, Thm. 8.20] for the
existence of a minimum. ut

Note that we have not said anything about the structure of GH as a manifold or
a Lie group. In an informal way the space H acts as a “Lie algebra” of the “Lie
group” GH , but all the statements of Sect. 2 are to be interpreted only formally in
this framework.

The main advantage of working with admissible spaces and the groupGH is the
following theorem.

Theorem 21. Let H be an admissible space and I0; I1 2 L2.˝/. Then there exists
a minimizer for the registration energy

E.u/ D 1

2

Z 1

0

jut j2H dt C 1

2�2
kI0 ı '�1 � I1k2L2 ; (24)

i.e. there exists Qu 2 L2.Œ0; 1	;H / such that E.Qu/ D infu2L2.Œ0;1	;H / E.u/.

Proof (Sketch). Let us introduce the notation U.'/ D 1
2�2
kI0 ı '�1 � I1k2L2 . This

allows us to write E.u/ D 1
2
juj2

L2H
C U.'1/. Consider a minimizing sequence

un 2 L2.Œ0; 1	;H /, such that E.un/ ! infuE.u/. As the functional U.:/
is bounded from below, the sequence .un/n2N is bounded in the Hilbert space
L2.Œ0; 1	;H /. Since bounded sets in Hilbert spaces are weakly compact, we can
extract a subsequence, again denoted by .un/n2N, that converges weakly to some Qu.
What remains to show now is that this Qu is indeed the minimizer. The inequality
infuE.u/ 	 E.Qu/ is trivial and it remains to show the converse.

From

hun; Qui 	 junjL2 jQujL2

we see by passing to the lim inf that jQujL2 	 lim infn!1junjL2 . Concerning U.'n1 /
we will use the following property:

If un ! Qu weakly in L2.Œ0; 1	;H /; then U.'n1 /! U. Q'1/:

This implication can be split up into two steps.

1. Let un ! Qu weakly. Then the sequence .'n1 /n2N of flows satisfies

• 'n1 ! Q'1 and .'n1 /
�1 ! Q'�1

1 uniformly on compact sets and
• the sequence .jD'nj1/n2N is bounded.

2. Under the above conditions on the sequence . Q'n1 /n2N of flows, we have conver-
gence U.'n1 /! U. Q'1/.
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The proof for the first step is a combination of [75, Thm. 8.11] and Gronwall’s
lemma [75, Thm. C.8]. An explicit proof for the second step can be found in [11,
Thm. 2.7]. Putting all pieces together we get

E.Qu/ D 1
2
jQuj2

L2H
C U. Q'1/

	 lim inf
n!1

1
2
junj2

L2H
C lim

n!1U.'n1 / D lim
n!1E.un/

	 inf
u2L2

E.u/ ;

Hence Qu is a minimizer. ut
To make the connection back to the general framework, we will show that, if the

images I0; I1 are sufficiently smooth, then the minimizer will also be smooth, both
in space and in time. Thus the smooth geometric framework on Sect. 2 retains some
use. It may not be sufficient to show existence of a minimizer or its properties, but if
existence has been established, the minimizer does reside in the smooth framework.

Theorem 22. Let H be an admissible space. Let I0 2 C1
0 .˝/ and I1 2 C0.˝/.

Then the minimizer u of the registration energy (24) satisfies

Lut D 1

�2

ˇ
ˇdetD'�1

t;1 .x/
ˇ
ˇ
�
I0 ı '�1

t � I1 ı '�1
t;1

�r �I0 ı '�1
t

�
;

and the equation

Lut D Ad�
'�1
t
Lu0: (25)

Proof. See [75, Thm. 11.5] and [75, Thm. 11.6]. ut
We did encounter equation (25) in the smooth setting as well in the form (10).

Now however we see that the right hand side is differentiable in t , because 't ,
being the solution of a differential equation, is differentiable in t and so is ut .
Differentiating (25) with respect to t leads to the EPDiff equation (13). Finally we
can state the following theorem, which brings us back to the smooth framework.

Theorem 23. Let H be an admissible space with ˝ D R
3. Then H1.R3;R3/ �

H and DiffH1.R3/ � GH . If I0; I1 2 C1
c .R

3/, then the minimizer t 7! ut of (24)
from Thm. 21 satisfies

u 2 C1.Œ0; 1	;H1.R3;R3//:

This theorem closes the loop between the geometric and analytic settings for
image registration.
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Abstract We study higher-degree generalizations of symplectic groupoids, referred
to as multisymplectic groupoids. Recalling that Poisson structures may be viewed as
infinitesimal counterparts of symplectic groupoids, we describe “higher” versions of
Poisson structures by identifying the infinitesimal counterparts of multisymplectic
groupoids. Some basic examples and features are discussed.

1 Introduction

Multisymplectic structures are higher-degree analogs of symplectic forms which
arise in the geometric formulation of classical field theory much in the same way that
symplectic structures emerge in the hamiltonian description of classical mechanics,
see [17, 21, 26] and references therein. This symplectic approach to field theory was
explored in a number of Marsden’s publications, which treated (as it was typical
in Marsden’s work) theoretical as well as applied aspects of the subject, see e.g.
[18, 19, 30, 31]. Multisymplectic geometry (as in [8, 9]) also arises in other settings,
such as the study of homotopical structures [35], categorified symplectic geometry
[2], and geometries defined by closed forms [28].
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Poisson structures are generalizations of symplectic structures which are central
to geometric mechanics1 and permeate Marsden’s work. A natural problem in
multisymplectic geometry is the identification of “higher” analogs of Poisson
structures bearing a relation to multisymplectic forms that extends the way Poisson
geometry generalizes symplectic geometry. In this note we discuss one possible
approach to tackle this issue.

Our viewpoint relies on the relationship between Poisson geometry and objects
known as symplectic groupoids [11, 37]. This relationship is part of a generalized
Lie theory in which Poisson structures arise as infinitesimal, or linearized, counter-
parts of symplectic groupoids, in a way analogous to how Lie algebras correspond
to Lie groups. In order to find higher analogs of Poisson structures the route we
take is to first consider higher-degree versions of symplectic groupoids, referred
to as multisymplectic groupoids, and then to identify the geometric objects arising
as their infinitesimal counterparts. Recalling that symplectic groupoids are Lie
groupoids equipped with a symplectic structure that is compatible with the groupoid
multiplication, in the sense that the symplectic form is multiplicative (see (5) below),
multisymplectic groupoids are defined analogously, as Lie groupoids endowed with
a multiplicative multisymplectic structure. Our identification of the infinitesimal
objects corresponding to multisymplectic groupoids builds on the infinitesimal
description of general multiplicative differential forms obtained in [1, 4].

For a manifold M , our “higher-degree” analogs of Poisson structures can be
conveniently expressed (in the spirit of Dirac geometry [12]) in terms of subbundles

L � TM ˚^kT �M (1)

satisfying suitable properties, including an involutivity condition with respect to the
“higher” Courant-Dorfman bracket on the space of sections of TM ˚^kT �M (see
e.g. [22, Sec. 2]). Related geometric objects have been recently considered in the
study of higher analogs of Dirac structures in [38] (see also [36]). But, as it turns
out, the higher Poisson structures that arise from multisymplectic groupoids are not
particular cases of the higher Dirac structures of [38] (for example, comparing with
[38, Def. 3.1], the higher Poisson structures (1) considered here are not necessarily
lagrangian subbundles, though always isotropic). An alternative characterization
of these objects, more in the spirit of the bivector-field description of Poisson
structures, is presented in Prop. 3.

Another perspective on higher Poisson structures relies on the view of Poisson
structures as Lie brackets on the space of smooth functions of a manifold. A natural
issue in this context is finding an appropriate extension of the Poisson bracket
defined by a symplectic form (see (4)) to multisymplectic manifolds. This problem
involves notorious difficulties and much work has been done on it, see e.g.
[16, 25, 35]. The approach to higher Poisson structures in this note follows a
different path and does not address any of the issues involved in the algebraic study
of higher Lie-type brackets.

1For example, in the description of the interplay between hamiltonian dynamics and symmetries
[29], and in the transition from classical to quantum mechanics [7].
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The paper is structured as follows. We review Poisson structures and their
connection with symplectic groupoids in Section 2. In Section 3 we recall the basics
of multisymplectic forms. The main results are presented in Section 4, in which we
introduce multisymplectic groupoids and identify their infinitesimal counterparts. In
Section 5 we give different descriptions of these objects and explain some of their
properties, while examples are discussed in Section 6.

As one should expect, higher Poisson structures naturally arise in connection
with symmetries in multisymplectic geometry. This aspect of the subject is not
treated here, though we hope to explore it, as well as its relations with field theory, in
future work. Parallel ideas to those in this note can be also carried out in the context
of polysymplectic geometry, see [24, 32].

2 Poisson Structures and Symplectic Groupoids

We start by recalling a few different viewpoints to Poisson structures.
A Poisson structure on a smooth manifold M is Lie bracket f � ; � g on C1.M/

which is compatible with the pointwise product of functions via the Leibniz rule:

ff; ghg D ff; gghC ff; hgg; f; g; h 2 C1.M/: (2)

The Leibniz condition (2) implies that f � ; � g is necessarily defined by a bivector
field � 2 � .^2TM/ via

�.df; dg/ D ff; gg; f; g 2 C1.M/:

This leads to the alternative description of Poisson structures onM as bivector fields
� 2 � .^2TM/ satisfying Œ�; �	 D 0, where Œ � ; � 	 is the Schouten-Nijenhuis
bracket on multivector fields. (The vanishing of Œ�; �	 accounts for the Jacobi
identity of f � ; � g.) We denote Poisson manifolds by either .M; �/ or .M; f � ; � g/.

Symplectic manifolds are naturally equipped with Poisson structures. Given a
symplectic manifold .M;!/, and denoting by Xf the hamiltonian vector field
associated with f 2 C1.M/ via

iXf ! D df; (3)

the Poisson bracket on M is given by

ff; gg D !.Xg;Xf /: (4)

A more recent perspective on Poisson structures, which is the guiding principle
of this note, relies on another type of connection between Poisson structures and
symplectic manifolds. It is based on the fact that Poisson geometry fits into a
generalized Lie theory, naturally expressed in terms of Lie algebroids and groupoids,
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see e.g. [11]. In this context, Poisson manifolds are seen as infinitesimal counterparts
of global objects called symplectic groupoids [37], analogously to how Lie algebras
are regarded as infinitesimal versions of Lie groups. We will briefly recall the main
aspects of the theory.

Let G � M be a Lie groupoid (the reader can find definitions and further details
in [7]). We use the following notation for its structure maps: s, t W G ! M for the
source, target maps, m W G s�tG ! G for the multiplication map,2 � W M ,! G for
the unit map, and inv W G ! G for the groupoid inversion. We will often identify
M with its image under � (the submanifold of G of identity arrows).

A differential form ! 2 ˝r.G / is called multiplicative if it satisfies

m�! D pr�
1! C pr�

2!; (5)

where pri W G s�tG ! G , i D 1; 2, is the natural projection onto the i -th factor.3

A symplectic groupoid is a Lie groupoid G � M equipped with a multiplicative
symplectic form ! 2 ˝2.G /. In this case, condition (5) is equivalent to the graph of
the multiplication mapm being a lagrangian submanifold of G �G �G , where G is
equipped with the opposite symplectic form �!. Symplectic groupoids first arose
in symplectic geometry in the context of quantization (see e.g. [3, Sec. 8.3]) but turn
out to provide a convenient setting for the study of symmetries and reduction [34].

In order to explain how symplectic groupoids are related to Poisson structures,
recall that a Lie algebroid is a vector bundle A ! M equipped with a bundle map
� W A! TM , called the anchor, and a Lie bracket Œ � ; � 	 on � .A/ such that

Œu; f v	 D f Œu; v	C .L�.u/f /v;

for u; v 2 � .A/; f 2 C1.M/. Lie algebroids are infinitesimal versions of Lie
groupoids: for a Lie groupoid G � M , its associated Lie algebroid is defined
by A D ker.ds/jM , with anchor map d tjA W A ! TM and Lie bracket on
� .A/ induced by the Lie bracket of right-invariant vector fields on G . Much of
the usual theory relating Lie algebras and Lie groups carries over to Lie algebroids
and groupoids, a notorious exception being Lie’s third theorem, i.e., not every Lie
algebroid arises as the Lie algebroid of a Lie groupoid (see [13] for a thorough
discussion of this issue).

The first indication of a connection between Poisson geometry and Lie alge-
broids/groupoids is the fact that, if .M; �/ is a Poisson manifold, then its cotangent
bundle T �M !M inherits a Lie algebroid structure, with anchor map given by

�] W T �M ! TM; �].˛/ D i˛�; (6)

2Here the fibred product G s�tG D f.g; h/ 2 G � G j s.g/ D t.h/g represents the space of
composable arrows.
3For a function f 2 ˝0.G / D C1.G /, condition (5) becomes f .gh/ D f .g/ C f .h/, i.e., it
says that f is a groupoid morphism into R (viewed as an abelian group).
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and Lie bracket on � .T �M/ D ˝1.M/ given by

Œ˛; ˇ	 D L�].˛/ˇ �L�].ˇ/˛ � d.�.˛; ˇ//: (7)

The precise relation between Poisson structures and symplectic groupoids is as
follows. First, given a symplectic groupoid .G � M;!/, its space of units M
inherits a natural Poisson structure � , uniquely determined by the fact that the target
map t W G ! M is a Poisson map (while s W G ! M is anti-Poisson); moreover,
denoting by A the Lie algebroid of G , there is a canonical identification between A
and the Lie algebroid structure on T �M induced by � , explicitly given by

� W A �! T �M; �.u/ D iu!jTM :

Here we view TM as a subbundle of T G jM via � WM ,! G , so that we can write

T G jM D TM ˚ A: (8)

In other words, the Lie groupoid G integrates the Lie algebroid T �M defined by � .
Conversely, given a Poisson manifold .M; �/ and assuming that its associated

Lie algebroid is integrable (i.e., can be realized as the Lie algebroid of a Lie
groupoid4), then its s-simply-connected integration G � M inherits a symplectic
groupoid structure [27]. (As shown in [10], one can obtain G by means of an infinite-
dimensional Marsden-Weinstein reduction.)

The upshot of this discussion is that Poisson manifolds are the infinitesimal
versions of symplectic groupoids.

Some of the prototypical examples of symplectic groupoids are traditional phase
spaces in mechanics. For example, any cotangent bundle T �Q, equipped with its
canonical symplectic form, is a symplectic groupoid over Q with respect to the
groupoid structure given by fibrewise addition of covectors; in this case, source
and target maps coincide, both being the bundle projection T �Q ! Q, and
the corresponding Poisson structure on Q is trivial: � D 0. A more interesting
example is given by the cotangent bundle of a Lie group G. In this case, besides
the symplectic groupoid structure over G that we just described, T �G is also a
symplectic groupoid over g�, where g denotes the Lie algebra of G. The groupoid
structure

T �G � g�

is induced by the co-adjoint action ofG on g� (see e.g. [34]); source and target maps
are given by the momentum maps for the cotangent lifts of the actions ofG on itself
by left and right translations, while the corresponding Poisson structure on g� is just
its natural Lie-Poisson structure. The fact that the target map is a Poisson map may

4See e.g. [37] for a nonintegrable example and [14] for a discussion of obstructions to integrability.
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be viewed as the Lie-Poisson reduction theorem (see e.g. [29, Sec. 13.1]), another
one of Marsden’s favorite topics. The correspondence between Poisson structures
and symplectic groupoids extends much of the theory relating g� and T �G to more
general settings.

3 Multisymplectic Structures

A multisymplectic structure [8, 9] on a manifold M is a differential form
! 2 ˝kC1.M/ which is closed and nondegenerate, in the sense that iX! D 0

implies that X D 0, for X 2 � .TM/. Equivalently, the nondegeneracy condition
says that the bundle map

!] W TM ! ^kT �M; X 7! iX!; (9)

is injective. As in [2, 35], we refer to a multisymplectic form of degree k C 1

as a k-plectic form. Hence a 1-plectic form ! is a usual symplectic structure, in
which case the map (9) is necessarily surjective; note that the wedge powers !r ,
r D 2; : : : ; dim.M/, are natural examples of higher degree multisymplectic forms.
For completeness, we briefly recall some other examples, see e.g. [9].

For a manifold Q, the total space of the exterior bundle ^kT �Q carries a
canonical k-plectic form !can, generalizing the canonical symplectic structure on
T �Q. Indeed, there is a “tautological” k-form � on ^kT �Q given by

��.X1; : : : ; Xk/ D �.dp.X1/; : : : ; dp.Xk//;

where p W ^kT �Q ! Q is the natural bundle projection, � 2 ^kT �Q, and Xi ,
i D 1; : : : ; k, are tangent vectors to ^kT �Q at �. Then

!can D d� (10)

is a k-plectic form on ^kT �Q. These k-plectic manifolds are closely related to the
multi-phase spaces in field theory (see e.g. [18, 21] and references therein).

Other examples of k-plectic manifolds include .k C 1/-dimensional orientable
manifolds equipped with volume forms. An important class of 2-plectic manifolds
is given by compact, semi-simple Lie groups G, equipped with the Cartan 3-form
H 2 ˝3.G/, i.e., the bi-invariant 3-form uniquely defined by the condition
H.u; v;w/ D hu; Œv;w	i, where u, v, w 2 g and h � ; � i is the Killing form
(see e.g. [2, 9]). Hyper-Kähler manifolds are examples of 3-plectic manifolds: if
!1, !2, !3 are the three Kähler forms on a hyper-Kähler manifoldM , then the form
!1 ^ !1 C !2 ^ !2 C !3 ^ !3 2 ˝4.M/ is 3-plectic [9, 28].

In physical applications (such as quantization), an important issue concerns the
identification of an appropriate analog of the Poisson bracket (4) on a k-plectic
manifold .M;!/; there is an extensive literature on this problem, see [8, 16, 25, 35].
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As a starting point, one usually considers forms ˛ 2 ˝k�1.M/ for which there
exists a (necessarily unique) vector field X˛ such that iX˛! D d˛; such forms are
called hamiltonian. Then, on the space of hamiltonian .k � 1/-forms, one defines
the bracket

f˛; ˇg D iX˛ iXˇ!; (11)

which is a direct generalization of the Poisson bracket (4) when k D 1. This
skew-symmetric bracket turns out to be well defined on the space of hamiltonian
.k � 1/-forms, but the Jacobi identity usually fails (see e.g. [8, 35]):

f˛; fˇ; 
gg C f
; f˛; ˇgg C fˇ; f
; ˛gg D �diX˛ iXˇ iX
!: (12)

Much work has been done to deal with this “defect” on the jacobiator of (11),
either by forcing its elimination or by somehow making sense of it. One approach
relies on noticing that closed .k � 1/-forms are automatically hamiltonian, so one
can consider the quotient space of hamiltonian forms modulo closed forms (see e.g.
[8]); the bracket (11) descends to this quotient and, since the right-hand side of (12)
is exact, the quotient inherits a genuine Lie-algebra structure.5 By using multivector
fields, one can also consider hamiltonian forms of other degrees and show that these
Lie algebras fit into larger graded Lie algebras. A more recent approach, see [2, 35],
shows that, without taking quotients (so as to force the vanishing of the jacobiator),
the bracket (11) on hamiltonian forms can be naturally understood in terms of
structures from homotopy theory; namely, this bracket is part of a Lie k-algebra
(a special type of L1-algebra). A missing ingredient in these generalizations of
the Poisson bracket (4) is a corresponding analog of the Leibniz rule (2). For a
discussion in this direction, see e.g. [23, 25].

Just as symplectic manifolds are particular cases of Poisson manifolds, one could
wonder about the analog of Poisson manifolds in multisymplectic geometry. As
recalled in Section 2, the Leibniz rule is central for the general definition of a
Poisson structure. So, as indicated by the previous discussion on Poisson brackets
on k-plectic manifolds, it is not evident how to define such analogs in terms
of algebraic/Lie-type structures on spaces of forms. A different, more geometric,
perspective to this problem will be discussed next.

5In the case of exact k-plectic manifolds, a different way to eliminate the jacobiator defect is
presented in [16], based on a modification of the bracket (11) using the k-plectic potential.
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4 Multisymplectic Groupoids and Their Infinitesimal
Versions

We start with a straightforward generalization of symplectic groupoids to multi-
symplectic geometry: A multisymplectic groupoid is a Lie groupoid equipped with
a multisymplectic form that is multiplicative, in the sense of (5). We will also use the
terminology k-plectic groupoid when the multisymplectic form has degree k C 1.

Recalling that Poisson structures arise as infinitesimal versions of symplectic
groupoids, as briefly explained in Section 2, we will now identify the infinitesimal
objects corresponding to multisymplectic groupoids.

Let G � M be an s-simply-connected Lie groupoid, let A ! M be its Lie
algebroid, with anchor map � W A ! TM . The following result is established
in [1, 4]: there is a 1-1 correspondence between closed, multiplicative forms
! 2 ˝kC1.G / and vector-bundle maps � W A ! ^kT �M (covering the identity
map onM ) satisfying:

i�.u/�.v/ D �i�.v/�.u/; (13)

�.Œu; v	/ D L�.u/�.v/ � i�.v/d.�.u//; (14)

for u; v 2 � .A/. Such maps� are called (closed) IM .kC1/-forms (where IM stands
for infinitesimally multiplicative). Using (8), one can write the explicit relation
between ! and � as

iXk : : : iX1�x.u/ D !x.u; X1; : : : ; Xk/; (15)

for u 2 Ajx and Xi 2 TM jx, x 2M .
We now discuss a slight refinement of this result taking into account the

nondegeneracy condition of multisymplectic forms. We will need a few properties
of multiplicative forms on Lie groupoids, all of which follow from (5). If ! is a
multiplicative form on G , then the following holds:

��! D 0; inv�! D �!; (16)

and

iur ! D t��.u/; 8u 2 � .A/; (17)

where ur is the vector field on G determined by u 2 � .A/ via right translations;
see [6, Sec. 3] for the proofs of these identities (the proofs there work in any degree,
though the statements refer to 2-forms). Using the second equation in (16) and (17),
we also obtain

iul ! D �s��.u/; (18)

where ul D inv�.ur / (note that this vector field coincides with the one defined by
left translations of u D d inv.u/ 2 � .ker.d t/jM/).
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Proposition 1. A closed, multiplicative form !kC1.G / is nondegenerate if and only
if its corresponding IM form � W A! ^kT �M satisfies

1. ker� D f0g,
2. .Im.�//ı D fX 2 TM j iX�.u/ D 0 8u 2 Ag D f0g.
Proof. Assume that ! is nondegenerate, and let us verify that .1/ and .2/ hold. If
u 2 ker�, then (by (17)) iu! D t��.u/ D 0, so u D 0 and .1/ follows. Let now
X 2 .Im.�//ıjx , x 2 M . Then iuiX! D �iX t��.u/ D t�iX�.u/ D 0 for all
u 2 Ajx. We claim that this implies that iX! D 0, so that X D 0 by nondegeneracy,
and hence .2/ holds. To see that, it suffices to check that iZk : : : iZ1 iX! D 0

for arbitrary Zi 2 T G jx , i D 1; : : : ; k. Using (8), we write Zi D Xi C ui , for
Xi 2 TM jx and ui 2 Ajx . Expanding out iZk : : : iZ1 iX! using multilinearity, we
see that the term iXk : : : iX1 iX! vanishes by the first condition in (16), and all the
other terms vanish as a consequence of the fact that iuiX! D 0 8u 2 A.

Conversely, suppose that .1/ and .2/ hold, and let X 2 TgG be such that
iX! D 0. Then

iur iX! D 0 D �iX.t��.u//

for all u 2 � .A/, which means that d t.X/ 2 .Im.�//ı, so d t.X/ D 0 by .2/. Hence
X is tangent to the t-fiber at g, and we can find v 2 � .A/ so that inv�.vr /jg D
vl jg D X . By (18), at the point g we have

iX! D ivl ! D �s��.v/;

so iX! D 0 implies that �.v/ D 0, hence v D 0 by .1/, and X D vl jg D 0.

It follows that the infinitesimal counterpart of a k-plectic groupoid is a closed IM
.k C 1/-form � W A ! ^kT �M additionally satisfying conditions (1) and (2) of
Prop. 1. A natural terminology for the resulting object is IM k-plectic form. In this
paper, we will alternatively refer to them as higher Poisson structures of degree k, or
simply k-Poisson structures (being aware that this may clash with the terminology
for different objects in the literature). Before giving different characterizations of
k-Poisson structures and examples, we briefly explain how 1-Poisson structures are
the same as ordinary Poisson structures.

4.1 The Case k D 1

For a bundle map � W A ! T �M , note that condition .1/ in Prop. 1 says that � is
injective, while .2/ says that � is surjective. It follows that a 1-Poisson structure is
a bundle map � W A ! T �M satisfying (13), (14) (i.e., a closed IM 2-form), and
that is an isomorphism.
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Note that given a Poisson structure � on M , if we consider the associated Lie
algebroid A D T �M , see (6) and (7), it is clear that

� D id W A! T �M (19)

is a 1-Poisson structure. It turns out that any 1-Poisson structure is equivalent6 to one
of this type. To justify this claim, it will be convenient to view Poisson structures
from the broader perspective of Dirac geometry [12].

Let us consider the bundle TM WD TM ˚ T �M ! M equipped with the non-
degenerate, symmetric fibrewise bilinear pairing h � ; � i given at each x 2M by

h.X; ˛/; .Y; ˇ/i WD ˇ.X/C ˛.Y /; (20)

for X; Y 2 TxM; ˛; ˇ 2 T �
x M , and with the Courant-Dorfman bracket ŒŒ � ; � 		 W

� .TM/ � � .TM/! � .TM/,

ŒŒ.X; ˛/; .Y; ˇ/		 WD .ŒX; Y 	;LXˇ � iY d˛/: (21)

Poisson structures on M are equivalent to subbundles L � TM satisfying

(d1) L D L?, i.e., L is lagrangian with respect to h � ; � i,
(d2) L \ TM D f0g,
(d3) ŒŒ� .L/; � .L/		 � � .L/.
Condition (d1) is equivalent to L being isotropic, i.e., L � L?, and the dimension
condition rank.L/ D dim.M/. Using the exact sequence

L \ TM ! L! T �M

induced by the natural projection pr2 W TM ! T �M , we see that (d2) is equivalent
to saying that L projects isomorphically onto T �M . It follows that conditions (d1)
and (d2) can be alternatively written as

(d10) L � L?,
(d20) pr2jL W L! T �M is an isomorphism.

Given a subbundle L � TM , conditions (d10) and (d20) are equivalent to L being
the graph of a skew-adjoint bundle map T �M ! TM ; such maps are always of the
form ˛ 7! i˛� , where � is a bivector field. The involutivity condition (d3) amounts
to Œ�; �	 D 0.

6We say that two IM .kC 1/-forms �1 W A1 ! ^kT �M and �2 W A2 ! ^kT �M are equivalent
if there is a Lie-algebroid isomorphism � W A1 ! A2 such that�2ı� D �1; these are infinitesimal
versions of isomorphism of Lie groupoids preserving multiplicative forms.
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Let � W A! T �M be a 1-Poisson structure, and let us consider the bundle map

.�; �/ W A! TM; (22)

where � W A ! TM is the anchor. Since � is an isomorphism, the map (22)
is injective, and its image is a subbundle L � TM satisfying (d20). Note that
condition (13) for � amounts to condition (d10) for L, while (14) becomes (d3).
It follows that L represents a Poisson structure on M , explicitly given by

�.˛; ˇ/ D i�.��1.˛//ˇ; ˛; ˇ 2 T �M:

It is clear from (14) that � W A! T �M is an isomorphism of Lie algebroids, where
T �M has the Lie-algebroid structure induced by � (as in (6) and (7)), showing the
equivalence between � and the 1-Poisson structure (19) associated with � .

As we see next, one has a similar interpretation of general k-Poisson structures
in terms of higher Courant-Dorfman brackets (as in [22, Sec. 2]), leading to objects
closely related to those studied in [38].

5 Descriptions of k-Poisson Structures

Let us consider the vector bundle

TM.k/ WD TM ˚^kT �M I

we denote by pr1 W TM.k/ ! TM and pr2 W TM.k/ ! ^kT �M the
natural projections. The same expressions as in (20) and (21) lead to a symmetric
^k�1T �M -valued pairing h � ; � i on the fibres of TM.k/ and a bracket ŒŒ � ; � 		 on
� .TM.k//, that we will keep referring to as the Courant-Dorfman bracket.

Given a subbundle L � TM.k/, we keep denoting by L? its orthogonal relative
to h � ; � i; note that, for k > 1, it may happen that L? does not have constant rank
(see Section 6). We will keep calling L isotropic if L � L?, and involutive if its
space of sections � .L/ is closed under ŒŒ � ; � 		. For a subbundle D � ^kT �M , we
let

Dı WD fX 2 TM j iX˛ D 08˛ 2 Dg

be its annihilator.
Whenever L � TM.k/ is an isotropic and involutive subbundle, it inherits a Lie-

algebroid structure with anchor map pr1jL W L ! TM and Lie bracket ŒŒ � ; � 		j� .L/
on � .L/. In particular, it follows that the distribution

pr1.L/ � TM (23)
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is integrable and its integral leaves (the “orbits” of the Lie algebroid) define a
singular foliation on M , see [15, Sec. 8.1]. One may also directly check that

pr2jL W L! ^kT �M (24)

is a closed IM k-form. Since ker.pr2jL/ D L \ TM and

.pr2.L//
ı D L? \ TM 
 L \ TM;

it is clear that (24) is a k-Poisson structure if and only if

L? \ TM D f0g: (25)

By considering the bundle map (24), we will think of any isotropic, involutive
subbundle L � TM.k/ satisfying (25) as a k-Poisson structure. It turns out that
all k-Poisson structures on M are of this type.

Proposition 2. Any k-Poisson structure � W A ! ^kT �M is equivalent to a
subbundle L � TM.k/ that is isotropic, involutive, and satisfies (25).

Proof. Let � W A ! ^kT �M be a k-Poisson structure. The bundle map .�; �/ W
A ! TM is an isomorphism onto its image (due to condition .1/ in Prop. 1),
which is a subbundle L � TM.k/ that is isotropic, involutive, and satisfies (25)
(as a result of (13), (14) and condition .2/ in Prop. 1, respectively). It is clear that
.�; �/ W A! L is an isomorphism of Lie algebroids, which establishes the desired
equivalence.

We conclude that the infinitesimal versions of k-plectic groupoids can be seen as
isotropic, involutive subbundlesL � TM.k/ satisfying (25). Note that the condition
L D L? (see (d1)) may not hold for k > 1 (we will see simple examples in
Section 6); in the case k D 1, the condition L? \ TM D .pr2.L//

ı D f0g implies
that pr2.L/ D T �M , so that L D L?.

Another characterization of k-Poisson structures, closer in spirit to the descrip-
tion of Poisson structures via bivector fields, is as follows.

Proposition 3. There is a one-to-one correspondence between subbundles
L � TM.k/ as in Prop. 2 and pairs .D; �/, where D � ^kT �M is a subbundle
and � W D ! TM is a bundle map (covering the identity) satisfying the following
conditions: (a) Dı D f0g, (b) i�.˛/ˇ D �i�.ˇ/˛, for ˛; ˇ 2 D, and (c) the space
� .D/ is involutive with respect to the bracket (c.f. (7))

Œ˛; ˇ	� WD L�.˛/ˇ � i�.ˇ/d˛ D L�.˛/ˇ �L�.ˇ/˛ � d.i�.˛/ˇ/; (26)

and � W � .D/! � .TM/ preserves brackets.

Proof. Given a k-Poisson structure L � TM ˚ ^kT �M , note that pr2jL W L !
^kT �M is injective (since ker.pr2jL/ D L \ TM � L? \ TM D f0g). Setting
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D D pr2.L/ and � D pr1 ı .pr2jL/�1, we see that L D f.�.˛/; ˛/ j ˛ 2 Dg.
Then (25) is equivalent to condition .a/, while .b/ means that L is isotropic. The
involutivity of L is equivalent to condition .c/.

For k D 1, as previously remarked,D D T �M (as a result of .a/), while .b/ says
that � D �], for a bivector field � . The involutivity condition in .c/ is automatically
satisfied, and the bracket-preserving property is equivalent to the Poisson condition
Œ�; �	 D 0 (see e.g. [5, Lem. 2.3]).

For a k-Poisson structure defined by .D; �/ as in Prop. 3, D acquires a Lie alge-
broid structure with bracket (26) and anchor �, in such a way that pr2jL W L! D is
an isomorphism of Lie algebroids. In terms of .D; �/, the singular foliation on M
determined by the k-Poisson structure (see (23)) is given by the integral leaves of
the distribution �.D/ � TM . Moreover, each leaf O inherits a .k C 1/-form ! by

!.Y0; Y1; : : : ; Yk/ D iYk : : : iY1˛; (27)

where Yi 2 �.D/jO D TO , and ˛ 2 D is such that Y0 D �.˛/; indeed, property .b/
in Prop. 3 assures that ! is well defined. One may also verify, using .c/ in Prop. 3,
that ! is closed. For k D 1, one recovers the symplectic foliation that underlies any
Poisson structure and completely determines it. However, for k > 1, it is no longer
true that the leafwise closed .k C 1/-forms are nondegenerate, nor that a k-Poisson
structure is uniquely determined by them, see Remark 1 (c.f. [38, Prop. 3.8]).

The description of k-Poisson structures in Prop. 3 also makes the notion of
morphism of k-Poisson manifolds more evident: if .Di ; �i / is a k-Poisson structure
on Mi , i D 1; 2, then a map � W M1 ! M2 is a k-Poisson morphism if, for all
x 2 M1, ��.D2j�.x// � D1jx and d�.�1.��˛// D �2.˛/, for all ˛ 2 D2j�.x/.

6 Some Examples and Final Remarks

We now give some examples of k-Poisson structures. The first two examples are
from [38].

Example 1. Let ! 2 ˝kC1.M/ be a k-plectic form. Then its graph

L D f.X; iX!/; X 2 TM g � TM.k/

satisfies L D L? and is involutive (as a consequence of ! being closed, see [38,
Prop. 3.2]). Also, L? \ TM D L \ TM D ker.!/ D f0g by nondegeneracy.
In terms of Prop. 3, D D Im.!]/ and � D .!]/�1 W D ! TM . So, just as any
symplectic structure is a Poisson structure, any k-plectic form is a particular type
of k-Poisson structure. A k-plectic groupoid integrating this k-Poisson structure is
the pair groupoidM �M , with k-plectic structure p�

1 ! � p�
2 ! where pi , i D 1; 2,

denote the two natural projections fromM �M to M .
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Considering a k-plectic groupoid G � M with the k-Poisson structure of
Example 1, one may use (17) to check that the target map t W G ! M is a k-
Poisson morphism, extending the well-known property of symplectic groupoids,
see Section 2.

We saw in Section 4.1 that Poisson bivector fields are the same as 1-Poisson
structures. Other types of higher Poisson structures are obtained from top-degree
multivector fields as follows.

Example 2. Let � 2 � .^kC1TM/ be a multivector field of top degree, i.e.,
k D dim.M/� 1. Then its graph

L D f.i˛�; ˛/ j ˛ 2 ^kT �M g � TM.k/

is isotropic and involutive – and, besides Poisson bivector fields, these are the only
examples of non-zero multivector fields whose graphs have these properties, see
[38, Prop. 3.4]. Also, since pr2.L/ D ^kT �M , it is clear that pr2.L/

ı D L? \
TM D f0g, so L is a k-Poisson structure. The foliations defined by these k-Poisson
structures are usually singular: leaves are either open subsets ofM or singular points
(where � vanishes). The restriction of � to each open leaf is nondegenerate, and the
induced .k C 1/-forms ! on these leaves (see (27)) are the volume forms dual to
� , i.e., they are defined by i.i˛�/! D ˛;8˛ 2 ^kT �

x M . The groupoids integrating
these k-Poisson structures have been mostly studied when dim.M/ D 2 (so � is a
bivector field), see [20, 33].

The fact that the particular k-Poisson structures of Examples 1 and 2 are
infinitesimal versions of k-plectic groupoids was observed in [38, Prop. 3.7].

In the preceding examples, the bundleL always satisfied L D L?. For examples
where this condition fails, consider subbundles

L � ^kT �M � TM.k/: (28)

These are automatically isotropic and involutive. Note that

L? D Lı ˚^kT �M; and L? \ TM D Lı:

SoL is a k-Poisson structure as long asLı D f0g, andL ¨ L? as long asL is prop-
erly contained in ^kT �M . A k-plectic groupoid integrating it is L itself, viewed as
a vector bundle (with groupoid structure given by fibrewise addition), equipped with
the k-plectic form given by the pullback of the canonical multisymplectic form on
^kT �M (see (10)); the fact that this pullback is nondegenerate boils down to the
condition L? \ TM D Lı D f0g.
Example 3. For L D ^kT �M , note that Lı D f0g (and hence L is a k-Poisson
structure on M ) if and only if dim.M/ � k.

Example 4. Let � be a nondegenerate k-form on M , and let L � ^kT �M be the
line bundle generated by �,
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Ljx D fc�x j c 2 Rg; x 2 M:

Then Lı D ker.�/ D 0, so L is a k-Poisson structure.

Remark 1. Note that all k-Poisson structures of the type (28) determine the same
foliation, the leaves of which are the points of M .

A general observation is that one can take direct products of k-Poisson structures:
if L1 and L2 are k-Poisson structures on M1 and M2, respectively, we define their
product by

L WD f.X C Y; ˛ C ˇ/ j .X; ˛/ 2 L1; .Y; ˇ/ 2 L2g � TM ˚^kT �M;

where M D M1 � M2 and we simplify the notation by identifying forms on Mi

with their pullbacks to M via the projections. One may directly verify that L is a
k-Poisson structure on M . Moreover, if .Gi � Mi; !i / is a k-symplectic groupoid
integratingLi , i D 1; 2, the direct product G1 �G2 � M1 �M2 (equipped with the
k-plectic form !1 C !2) is a k-plectic groupoid that integrates L. The following is
a concrete example.

Example 5. Let .M;!/ be a k-plectic manifold, and let N be a manifold with
dim.N / � k. Then the subbundle

L D f.X; iX! C ˛/ j X 2 TM; ˛ 2 ^kT �N g � T .M �N/˚^kT �.M �N/

is a k-Poisson structure on M � N (c.f. [38, Thm. 3.12]), the direct product of
the k-plectic form on M with the k-Poisson structure L D ^kT �N on N (see
Example 3). The leaves of L are M � ftg, t 2 N , with induced .k C 1/-form (as
in (27)) given by !.

The next observation illustrates that k-Poisson structures become more rigid than
Poisson structures when k > 1.

Remark 2. Let M and N be as is Example 5, let f 2 C1.N /, and consider the
smooth family !t D f .t/!, t 2 N , of k-plectic forms on M . For k D 1, this
family defines a Poisson structure on M � N , uniquely determined by the fact that
its symplectic leaves are .M � ftg; !t /. A higher generalization of this Poisson
structure is given by the (isotropic) subbundle L � T .M � N/˚ ^kT �.M � N/
defined by

Lj.x;t/ D f.X; iX!t C ˛/ j X 2 TxM; ˛ 2 ^kT �
t N g:

As it turns out, for k > 1, one may verify that such L is involutive if and only if
df D 0, i.e., f is (locally) constant.

We finally mention another product-type operation for multisymplectic mani-
folds leading to higher Poisson structures that are not multisymplectic.
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Example 6. Let .Mi ; !i / be a ki -plectic manifold, i D 1; 2. Let M D M1 �M2

and ! D !1 ^ !2 2 ˝k1Ck2C2.M/ (we keep the simplified notation of identifying
forms on Mi with their pullbacks to M via the projectionsM !Mi ). Then

L D f.X; iX!/ D .X; .iX!1/ ^ !2/ j X 2 TM1g � TM ˚^k1Ck2C1T �M

can be checked to be a .k1 C k2 C 1/-Poisson structure. Its leaves are of the form
M1 � fyg, for y 2 M2, and the induced .k1 C k2 C 2/-form on each leaf is zero.
An integrating k-plectic groupoid is given by the direct product of the pair groupoid
M1 � M1 (see Example 1) and the trivial groupoid over M2, endowed with the
multiplicative .k1 C k2 C 2/-form given by .p�

1 !1 � p�
2 !1/ ^ !2.
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The Topology of Change: Foundations
of Probability with Black Swans

Graciela Chichilnisky

Abstract Classic probability theory treats rare events as ‘outliers’ that are disre-
garded and underestimated. In a moment of change however rare events can become
frequent, and frequent events rare. We postulate new axioms for probability theory
that require a balanced treatment of rare and frequent events, based on what we
call “the topology of change”. The axioms extend the foundation of probability to
integrate rare but potentially catastrophic events or black swans: natural hazards,
market crashes, catastrophic climate change and episodes of species extinction.
The new results include a characterization of a family of purely finitely additive
measures that are—somewhat surprisingly—absolutely continuous with respect to
the Lebesgue measure. This is a new development from an earlier characterization of
probability measures implied by the new axioms, which where countably additive
measures created in Chichilnisky (2000), Wiley, Chichester (2002), Chichilnisky
(2009, 2009a). The results are contrasted to the axioms of Kolmogorov (1933/1950),
De Groot (1970/2004), Arrow (1971), Dubins and Savage (1965), Savage (1972),
Von Neumann and Morgernstern (1944), and Hernstein and Milnor.

1 Introduction

Classic probability theory treats rare events as ‘outliers’ and often disregards them.
This is an unavoidable shortcoming of classic theory and has been known for some
time. It conflicts with observations about the distribution of rare events in natural and
human systems, such as earthquakes and financial markets. It is now known that the
shortcoming originates from the axioms created by Kolmogorov [21] to provide a
foundation for probability theory [1, 7, 8]. It turns out that the same phenomenon
that underestimates rare events leads classic probability theory to underestimate the
likelihood of change. In a situation of change, events that are rare become frequent
and frequent events become rare. By ignoring rare events we tend to underestimate
the possibility of change. In a slight abuse of language it could be said that classic
probability theory leads us to ‘ignore’ change. The change we refer to includes rare
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events of great importance that should not be underestimated, for example black
swans such as catastrophic climate change and major episodes of species extinction.

Sensitivity to change is a topological issue at its core. It measures how likelihoods
change with changes in measurements or observations. If we are sensitive to change
our responses change in harmony with the signals. To disregard change means
that our response “needle” is either insensitive to, or at odds with, the observed
signals. In mathematical terms this is all about continuity of the response and as
such it is defined and measured by topology. In a recent discovery it was found
that an important continuity axiom of classic probability theory is responsible
for its insensitivity to rare events. De Groot (1970, 2004) calls this axiom SP4,
Arrow called it “monotone continuity” (Arrow (1971), and similar continuity
axioms appear in the work of Hernstein and Milnor, see Chichilnisky [6–8]). The
continuity that these axioms provide is coarse, and it was shown to be responsible
for insensitivity to rare events [9] (Chichilnisky (2009, 2009a)). In that sense classic
axioms lead to insensitivity about the likelihood of change. A single continuity
axiom explains why classic probability theory is insensitive to rare events and why
it ignores change.

To overcome this limitation, new axioms for probability theory were created that
balance the treatment of rare and frequent events, based on a more sensitive notion
of continuity or a ‘finer’ topology—and new types of probability distributions have
been identified as emerging from the new axioms [7, 8]. In order to be sensitive to
rare events, the new axioms have to use a different continuity criterion, a topology
finer than that implicit in axiom SP4 or in the “monotone continuity” axiom, both
of which involve averages. The new topology is about extremes not averages, and
it is appropriately called “the topology of change” because it is more sensitive to
the measurement of rare events that are often at stake in a situation of change.
This topology is the sup norm topology on L1 that, while new in this area,
has been used earlier by Debreu [14] to formalize Adam Smith’s theorem on the
Invisible Hand, and in [7, 8] to axiomatize choice under uncertainty. The sup norm
provides a finer notion of continuity than “monotone continuity” and SP4. This
sensitivity tallies with the experimental evidence of how people react to rare events
[9, 22]. Using the topology of change, the new axioms of probability theory extend
the classic foundations of probability, treating rare and frequent events in a more
balanced fashion and providing a more balanced view on the likelihood of change.

The article provides new results in this framework, as follows. We introduce
the Swan Axiom, a new axiom that is based on continuity in the topology
of change. We show how the old and the new topologies differ, namely how
continuity in the sense of monotone continuity and SP4 does not imply continuity
in the topology of change and how this changes the probability distributions from
countably additive to a combination of countably additive and purely finitely
additive measures. We also identify a new family of purely finitely additive
measures that is continuous with respect to the “topology of change”. Somewhat
surprisingly, we show that the change in topology—from probability distributions
that satisfy Monotone Continuity to those who satisfy the topology of change—
does not necessarily give rise to discontinuity with respect to the Lebesgue measure
on R; such as ‘delta functions’ nor to measures with “atoms”. Indeed the new
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results presented in this article show the opposite: each of the measures in the
family we provide of purely finitely additive measures satisfying the new axioms
is absolutely continuous with respect to the Lebesgue measure. Therefore the
notion of continuity that derives from the new axioms does not imply atoms nor
assigns positive weights to sets of Lebesgue measure zero. These new results
tally with the earlier characterization of probabilities measures satisfying the new
axioms as combinations of purely finitely additive and countably additive measures,
[7–9] Chichilnisky (2008). We contrast the new measures with the those defined
by Kolmogorov [21], De Groot [15], Arrow [2], Dubins and Savage [17], Savage
(1954), Von Neumann Morgernstern (1954), and Hernstein and Milnor (1972).
Finally we show that the new results rather than contradicting classic theory can be
seen as an extension of it. The new theory of probability offered here is an extension
of the old since the probability distributions implied by the new axioms coincide
with classic countably additive distributions when the sample is populated only by
frequent events. As already stated in general the new probability measures consist
of a convex combination of countable and finitely additive measures with strictly
positive elements of both which, in practical terms, assign more weight to black
swans than do normal distributions, and predict more realistically the emergence
of change and generally the incidence of ‘outliers’.1 When applied to decision
theory under uncertainty, this gives rise to a new type of rationality that changes and
updates Bayesian updating rules and also Von Neumann Morgernstern foundations
of game theory [5, 7, 9] (Chichilnisky, 2010, 2011), appearing to coincide with
observations [22] of how the brain makes decisions using both the amigdala and
the cortex (LeDoux 1996).

The article is organized as follows. First we show how the standard notion
of continuity or topology that is used in classic probability theory—“monotone
continuity” as defined by Arrow [2], and in Hernstein and Milnor 1972,
[15]—implies countably additive measures that are by nature insensitive to rare
events and hence to change: these probability measures assign a negligible weight
to rare events, no matter how important these may be, treating such events as
outliers, [9, 10]. On the other hand the purely finitely additive measures defined by
Dubins and Savage (1972) assign no weight to frequent events, which is equally
troubling, as illustrated in the Appendix. Our new axiomatization for probability
theory is shown through a representation theorem (Chichilnisky 2008) to balance
the two approaches and to extend both, requiring sensitivity to rare as well as to
frequent events. This as we saw requires a notion of continuity that is defined with
respect to a finer topology that is sensitive to rare as well as to frequent events, the
topology of change. The results presented here highlight the classic role of topology
and continuity, which have always been at the core of the axioms of probability
theory [2, 25].

1The theory presented here explains also Jump-Diffusion processes (Chichilnisky 2012), the
existence of ‘heavy tails’ in power law distributions, and the lumpiness of most of the physical
systems that we observe and measure.
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2 The Mathematics of Uncertainty

Uncertainty is described by a distinctive and exhaustive set of events represented
by sets fU˛g whose union describes a universe U . An event is identified with its
characteristic function �U W U ! R.2 The relative likelihood or probability
of an event3 is a real number W.U / that measures how likely it is to occur. The
probability of the universe is 1 and that of the empty set is zero. Classic axioms for
subjective probability (respectively likelihoods) were introduced by Kolmogorov
[21], see Savage (1954) and De Groot [15]. The relative likelihood or probability of
two disjoint events is the sum of their probabilities:W.U1[U2/ D W.U1/CW.U2/
when U1 \U2 D ;. This corresponds to the definition of a probability as a measure
on a family (��algebra) of measurable sets of U .4

A measure is a continuous linear function that assigns to each event U a
real number. The space of events can therefore be identified with the space of
characteristic functions, which are measurable and essentially bounded functions.
When U D R; the characteristic functions are in L1.R/; the space of Lebesgue
measurable and essentially bounded real valued functions on R, which we endow
with the “topology of change”, defined as the sup norm on the space of functions
f W R ! R; namely k f kD ess supR j f .x/ j. Recall that the functions
in L1 are defined a.e. with respect to the Lebesgue measure on R, and each is
absolutely continuous with respect to the Lebesgue measure on R. Since measures
are continuous real valued functions on L1; they are by definition in the dual space
of L1 , denotedL�1, namely in the space of all continuous real valued functions on
L1. A measure � therefore satisfies the usual conditions (1) �.A [ B/ D �.a/C
�.B/ if A and B are disjoint, and �.¿/ D 0. A countably additive measure is an
element of L�1 that satisfies in addition (2) �.

P
Ai/ D P

i �.Ai/ i D 1; : : :1;
when the sets Ai are disjoint pairwise. A purely finitely additive measure is an
element of L�1 that satisfies condition (1) but not condition (2); therefore for a
purely finitely additive measure there are cases where the measure of an infinite
sequence of disjoint sets is not the sum of the sequence of their measures. The
space of all purely finitely additive measures is denoted PA.

It is well known that L�1 D L1 C PA where L1 is the space of integrable
functions onR with respect to the Lebesgue measure; this is a classic representation
theorem by Yosida (1974), Yosida and Hewitt (1952), Chichilnisky (2000). Indeed,
each countably additive measure can be represented by an integrable continuous
function on L1 .R/ namely a function g W R ! R in L1.R/; where the repre-
sentation takes the form �.A/ D R

A g.x/dx. This representation does not apply
to purely finitely additive measures.5 A vanishing sequence of events fE˛gD1;2::: is

2�U .x/ D 1 when x 2 U and �U .x/ D 0 when x … U .
3In this article for simplicity we make no difference between probabilities and relative likelihoods.
4This is Savage’s (1972) definition of probability, see also Kadane and O’Hagan (1995).
5Savage’s probabilities can be either purely finitely additive or countably additive. In that sense
they include all the probabilities in this article. However this article will exclude probabilities that
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defined as one satisfying 8˛; E˛C1 � E˛ and \1̨D1E˛ D ; a.e. The following
two continuity axioms were introduced in [25], see also Arrow (1971), Hernstein
and Milnor (Chichilnisky 2009a) and DeGroot (1970–2004), in each case for the
purpose of ensuring countable additivity:

Axiom 1 (Monotone Continuity Axiom (MC)) For every vanishing sequence of
events fE˛gD1;2::: the probabilityW.Ei/ ! 0 as i !1.

In words, this axiom requires that the probability of the sets along a vanishing
sequence goes to zero. For example consider the decreasing sequence made of
infinite intervals of the form .n;1/ for n D 1; 2::. This is a vanishing sequence.
Monotone continuity implies that the likelihood the sets of this sequence of events
goes to zero even though all its sets are unbounded and essentially identical. A
similar example can be constructed with a decreasing sequence of bounded sets,
.�1=n; 1=n/ for n D 1; 2 : : : ; which is also a vanishing sequence as it is a
decreasing sequence and their intersection is a single point f0g W observe that the
set consisting of a single point f0g is almost everywhere (a.e.) equal to the empty
set on R, and that the events in this section are always defined a.e. with respect to
the Lebesgue measure of R.6

Axiom 2 (De Groot’s Axiom SP4
7) If A1 � A2 � : : : is a decreasing sequence

of events and B is some fixed event that is less likely than Ai for all i; then the
probability or likelihood of the intersection \1

i Ai is larger than the probability or
likelihood of the event B .

The following proposition establishes that the two axioms presented above,
Monotone Continuity and SP4, are equivalent and that both imply countable
additivity:

Proposition 1. A relative likelihood (or probability measure) satisfies the Mono-
tone Continuity Axiom if and only if it satisfies Axiom SP4, and each of the two
axioms implies countable additivity of the corresponding relative likelihood.

Proof. Assume that Axiom SP4 is satisfied. When the intersection of a decreasing
(nested) vanishing sequence of events fAi g is empty namely \iAi D ; and the
set B is less likely to occur than every set Ai , then the subset B must be as
likely as the empty set, namely its probability must be zero. In other words, if B
is more likely than the empty set, then regardless of how small is the set B , it is
impossible for every set Ai to be as likely as B . Equivalently, the probability of the

are either purely finitely additive, or those that are countably additive, requiring elements of both,
and therefore our characterization of a probability is strictly finer than that Savage’s (1954), and
different from the view of a measure as a countably additive set function in [15].
6An equivalent definition of Monotone Continuity is that for every two events E1 and E2 in
fE˛gD1;2:::with W.E1/ > W.E2/, there exists N such that altering arbitrarily the events E1 and
E2 on a subset Ei ; where i > N; does not alter the probability or relative likelihood ranking of the
events, namely W.E 0

1/ > W.E
0

2/ where E 0

1 and E 0

2 are the altered events.
7See [15].



80 G. Chichilnisky

sets that are far away in the vanishing sequence fAigmust go to zero. Therefore SP4
implies Monotone Continuity (MC). Reciprocally, assume MC is satisfied. Consider
a decreasing sequence of events Ai and define a new sequence by subtracting from
each set the intersection of the family, namelyA1 �\1

i Ai ; A2 �\1
i Ai ; : : :. Let B

be a set that is more likely than the empty set but less likely than every Ai . Observe
that the intersection of the new sequence is empty, \iAi � \1

i Ai D ; and since
Ai � AiC1 the new sequence is, by definition, a vanishing sequence. Therefore
by MC limi W.Ai � \1

i Ai / D 0. Since W.B/ > 0; B must be more likely than
Ai � \1

i Ai for some i onwards. Furthermore, Ai D .Ai � \1
i Ai / [ .\1

i Ai /

and .Ai � \1
i Ai / \ .\1

i Ai / D ;, so that W.Ai/ > W.B/ is equivalent to
W.Ai � \1

i Ai /CW..\1
i Ai / > W.B/. Observe that W.\1

i Ai / < W.B/ would
contradict the inequality W.Ai/ D W.Ai � \1

i Ai /CW..\1
i Ai / > W.B/; since

as we saw above, by MC, limi W.Ai � \1
i Ai / D 0; and W.Ai � \1

i Ai / C
W..\1

i Ai / > W.B/. It follows that W.\1
i Ai / > W.B/, which establishes De

Groots’s Axiom SP4. Therefore Monotone Continuity is equivalent to De Groot’s
Axiom SP4. A proof that each of the two axioms implies countable additivity is in
[2, 15, 25].

The next section shows that the two classic axioms, Monotone Continuity and
SP4, are biased against or neglect rare events, no matter how important these may be.

3 Rare Events and Change

The axioms presented in this article originate from Chichilnisky [5, 7, 8], except
for one new axiom—the Swan Axiom—that is introduced here and represents the
essence of the new probability theory. Below we explain how the Swan Axiom
relates to standard theory and its connection with Godel’s incompleteness theorem
and the Axiom of Choice that are at the foundation of Mathematics.

To explain how the new theory intersects with standard probability or relative
likelihood, we compare the results presented here with Savage’s (1972) axiomati-
zation of probability measures as finitely additive measures, as well as with [2, 25]
classic work that is based instead on countably additive measures. Savage (1972)
axiomatizes subjective probabilities as finitely additive measures representing the
decision makers’ beliefs, an approach that can ignore frequent events as shown
in the Appendix. To overcome this, Villegas and Arrow [2, 25] introduced their
additional continuity axiom (‘Monotone Continuity’) that ensures as we saw above
the countably additivity of the measures. However this requirement of monotone
continuity has unusual implications when the subject is confronted with rare events.
A practical example it discussed below: it predicts that in exchange for a couple
of cents, one should be willing to accept a small risk of death, a possibility that
Arrow himself described as ‘outrageous’ [2, p. 48 and 49]. The issue of course is
the “smallness” of the risk or “how rare is the risk”, and here is where topology
enters. Monotone continuity has a low bar for smallness while the sup norm has
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a higher bar as we shall see below. This article defines a realistic solution, and
it implies that for some very large payoffs and in certain special situations, one
may be willing to accept a small risk of death—but not in others. This means
that Monotone Continuity holds in some cases but not in others, a possibility that
leads to the axiomatization proposed in this article, which is the logical negation of
Monotone Continuity—one that is consistent with recent experimental observations
for example those reported in Chanel and Chichilnisky [9, 10].

This section explains in what sense standard probability theory is biased
against—or disregards—rare events. The next section defines new axioms for
relative likelihood or probabilities, and compares them with the classic axioms. In
this section the definitions and results are given for a general measure space of
events; the definitions are refined below when the events are Borel measurable sets
in the real line R.

Definition 1. A probability W is said to be biased against rare events or
insensitive to rare events when it neglects events that are ‘vanishing’ according
to the definition provided in Section 3 above. Formally, a probability is insensitive
to rare events when given two events A and B and any vanishing sequence of events
.Ej /; 9 N D N.f; g/ > 0; such that W.A/ > W.B/, W.A0/ > W.B 0/ 8 A0; B 0
satisfyingA0 D A andB 0 D B a.e. onEc

j � R when j > N .8 As already discussed
this implies a bias against the likelihood of change.

Proposition 2. A probability satisfies Monotone Continuity if and only if it is biased
against rare events and underestimates the likelihood of change.

Proof. [7] Chichilnisky (2000).

Corollary 1. Countably additive probabilities are biased against rare events and
underestimate change.

Proof. It follows from Propositions 1 and 2 and Chichilnisky [7].

Proposition 3. Purely finitely additive probabilities are biased against frequent
events.

Proof. See Appendix.

The following example illustrates the role of Monotone Continuity and SP4 in
introducing a bias against rare events. The best way to explain the role of Monotone
Continuity is by means of the example provided by Kenneth Arrow, Arrow [2,
p. 48 and 49] . He explains that if a is an action that involves receiving one cent,
b is another that involves receiving zero cents, and c is a third action involving
receiving one cent and facing a small probability of death, then Monotone Continuity
requires that the third action involving death and one cent should be preferred to
the action with zero cents when the probability of death is small enough. One
accepts a small chance of death in exchange for one cent. Even Arrow says ‘this

8Here Ec denotes the complement of the set E , A0 D A a.e. on Ec
j , A0 \Ec

j D A\Ec
j a.e.
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may sound outrageous at first blush. . . ’ [2, p. 48 and 49]. Outrageous or not,
Monotone Continuity (MC) leads to neglect rare events that involve change with
major consequences, like death. It can be said that death is a black swan: this is the
content of Proposition 2 above.

4 New Axioms for Probability Theory: The Topology
of Change

This section presents the new axiomatic foundation for probability theory that is
neither biased against rare nor against frequent events [7, 8].

The new axioms for probability—or relative likelihoods—are as follows:

Axiom 3 Probabilities are additive and continuous in the topology of change.

Axiom 4 Probabilities are unbiased against rare events.

Axiom 5 Probabilities are unbiased against frequent events.

Additivity is a natural condition and continuity captures the notion that ‘nearby’
events are thought as being similarly likely to occur; this property is important
to ensure that ‘sufficient statistics’ exist and it is based on a finer topology than
Monotone Continuity—the sup norm of L1 that we called the “topology of
change”. Axiom 3 defines continuity with respect to a finer topology Axioms 4
and 5 together are equivalent to the Swan Axiom defined in the previous section,
which is required to avoid a bias against rare and frequent events as shown in
Section 3. The concept of continuity bears further elaboration. Topology provides
the notion of what is meant by ‘nearby’; different topologies define different notions
of ‘nearby’ and therefore different notions of what is meant by ‘continuity.’ For
example, ‘nearby’ was defined in [25] and [2] as follows: two events are close or
nearby when they differ on a small set—thus reducing the problem to determine
what is a small set. As stated in Arrow [2, p. 48]: “An event that is far out on a
vanishing sequence is ‘small’ by any reasonable standards” [2, p. 48] . As the sets
.n;1/ are all similar, there is no reason why they become “small” for large enough
n, according to Villegas and Arrow.

To overcome the bias against rare events, we introduce a new axiom that is the
logical negation of MC: this means that sometimes MC holds and other times it does
not. We call this the Swan Axiom, and is stated formally below:

Axiom 6 (Swan Axiom) There exist vanishing sequences of sets fUig�namely,
8i; UiC1 � Ui and \Ui D ¿� where the limit of the measures �.Ui / as i !1 is
not zero.

Observe that in some cases the measures of the sets in a vanishing family may
converge to zero and in other cases they do not. In words, this axiom is the logical
negation of Monotone Continuity and can be equivalently described as follows:
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“There exist eventsA andB withW.A/ > W.B/, and for every vanishing sequence
of events fE˛gD1;2::: an N > 0 such that altering arbitrarily the events A and B
on the set Ei; where i > N; alters the probability ranking of the events, namely
W.B 0/ > W.A0/; where B 0 and A0 are the altered events.”

Proposition 4. A probability that satisfies the Swan Axiom is neither biased against
rare events, nor biased against frequent events.

Proof. This is immediate from the definition.

Example: To illustrate how this axiom works in practice consider an experiment
where the subjects are offered a certain amount of money to choose and ingest a
pill at random from a pile of pills that contains one pill that causes death [3, 4].
Experimentally, it is observed that in some cases people accept a sum of money and
choose a pill provided the pile is large enough—namely when the probability of
death is small enough—thus satisfying the Monotone Continuity axiom and in the
process determining a statistical value for their lives. But there are also cases where
the subjects will not accept to choose any pill, no matter how large is the pile. Some
people refuse a payment if it involves a small probability of death, no matter how
small the probability may be [3, 4]. This conflicts with the Monotone Continuity
axiom, as explicitly presented by Arrow [2]. Our Axiom provides a reasonable
resolution to this dilemma that is realistic and consistent with the experimental
evidence. It implies that there exist catastrophic outcomes such as the risk of death,
so terrible that one is unwilling to face a small probability of death to obtain one
cent versus half a cent, no matter how small the probability may be. According to
our Swan Axiom, no probability of death may be acceptable when only one cent and
half a cent are involved. Our Axiom also implies that in other cases there may be a
small enough probability that the lottery involving death may be acceptable, or that
the payoff is large enough to justify the small risk. This is a possibility discussed
by Arrow [2], where he explains that for large payoffs (for example, one billion US
dollars), one may be willing to accept a small probability of death. In other words:
sometimes one is willing to take a risk of death with a small enough probability of
a catastrophe, and in other cases one is not. This is the content of the Swan Axiom.

We saw in Proposition 2 that the notion of continuity defined by Villegas
and Arrow—namely Monotone Continuity—conflicts with the Swan Axiom and
neglects rare events. Indeed Proposition 1 shows that countably additive measures
are biased against rare events. On the other hand, Proposition 3 and the Example in
the Appendix show that purely finitely additive measures can also be biased, in this
case against frequent events. A natural question is whether it is possible to eliminate
simultaneously both biases. The following theorem addresses this issue:

Theorem 1. A probability that satisfies the Swan Axiom is neither biased against
frequent nor against rare events. The resulting measures are neither purely finitely
additive nor countably additive. They are a strict convex combinations of both.

Proof. The next Section contains a proof of Theorem 1 and provides examples when
the events are Borel sets in R or within an interval .a; b/ � R.
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Theorem 1 establishes that neither Savage’s approach, nor Villegas’ and Arrow’s
approaches, satisfy the three new axioms stated above. These three axioms require
more than the additive probabilities of Savage, since purely finitely additive
probabilities are finitely additive and yet they must be excluded here; at the same
time the axioms require less than the countably additivity of Villegas and Arrow,
since countably additive probabilities are biased against rare events. Theorem 1
above shows that a strictly convex combination of both does the job.

Theorem 1 shows how the Swan Axiom resolves the bias problem against
frequent and rare events, but it does not by itself prove the existence of likelihoods
that satisfy all three axioms. What is missing is an appropriate definition of ‘nearby’,
namely of topology and continuity, that does not conflict with the Swan Axiom. The
following shows that this can be achieved.

We now specialize the space of measurable sets so they are Borel measurable
subsets of the real line R; and consider the Lebesgue measure on R. In this context
a probability or likelihood function W W L1 ! R is called biased against rare
events, or insensitive to rare events when it neglects events that are small according
to a probability measure � on R that is absolutely continuous with respect to the
Lebesgue measure. Formally:

Definition 2. A probability is insensitive to rare events when given two events f
and g; 9" D ".f; g/ > 0; such that W.f / > W.g/ , W.f 0/ > W.g0/8f 0; g0
satisfying f 0 D f and g0 D g a.e. on A � R and �.Ac/ < ". Here Ac denotes the
complement of the set A.

Definition 3. A probability or likelihood function W W L ! R is said to be
insensitive to frequent events when given any two events f; g; 9".f; g/ > 0 such
that W.f / > W.g/, W.f 0/ > W.g0/8f 0; g0 satisfying f 0 D f and g0 D g a.e.
on A � R and �.Ac/ > 1 � ":
Definition 4. W is called sensitive to rare (or frequent) events when it is not
insensitive to rare (or frequent) events.

Below we identify an event with its characteristic function, so that events are
contained in the space of bounded real valued functions on the universe space U ,
L1.R/; and endow this space with the sup norm rather than with the notion of
smallness and continuity defined by Arrow and Villegas as described above. In this
case the probability or likelihood W W L1.U / ! R is taken to be continuous
with respect to the sup norm. Events are elements of the Borel measurable sets
of the real line R or an interval .a; b/, they are identified with the characteristic
functions, denoted f; g etc, and ‘continuity’ is based on a topology used earlier in
Debreu [14]and in Chichilnisky [7–10], the sup norm k f kD ess sup

x2R
j f .x/ j.

This is a sharper and more stringent definition of closeness than the one used by
Villegas and Arrow, since an event can be small under the Villegas-Arrow definition
but not under ours, see the Appendix for examples. The difference in the use of
topologies as shown below achieves sensitivity to rare events. To simply notation, a
probability that satisfies the classic axioms in De Groot [15] is from now on called
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a standard probability, and is therefore countably additive. As already mentioned,
a classic representation result is that for any event f 2 L1 a standard (countably
additive) probability has the form W.f / D R

R
f .x/:�.x/d�; where � 2 L1.R/ is

an integrable function.
The next step is to show existence and characterize all the likelihoods or

probability distributions that satisfy the 3 new axioms. The following three axioms
are identical to the three axioms above, specialized to the case at hand, Borel sets
of R, and measures in L1 with the topology defined by the sup norm on L1.R/;
which we called “the topology of change”

Axiom 7 W W L1 ! R is linear and continuous.

Axiom 8 W W L1 ! R is sensitive to frequent events.

Axiom 9 W W L1 ! R is sensitive to rare events.

The first and the second axiom agree with classic theory (except for the choice
of topology) and standard likelihoods satisfy them. The third axiom is new.

Lemma 1. A standard probability satisfies Axioms 7 and 8, but it is biased against
rare events and therefore does not satisfy Axiom 9.

Proof. Consider W.f / D R
R
f .x/�.x/dx;

R
R
�.x/dx D K <1. Then

W.f /CW.g/ D
Z

R

f .x/�.x/dxC
Z

R

g.x/�.x/dx D
Z

R

f .x/Cg.x/:�.x/dx D W.f Cg/;

and therefore W is linear. It is continuous with respect to the L1 norm k f k1DR
R
j f .x/ j �.x/d� because k f k1< " implies

W.f / D
Z

R

f .x/:�.x/dx 	
Z

R

j f .x/ j :�.x/dx 	 "
Z

�.x/dx D "K:

Since the sup norm is finer than the L1 norm, continuity in L1 implies continuity
with respect to the sup norm [18]. Thus a standard probability satisfies Axiom 1.
It is obvious that for every two events f; g, with W.f / > W.g/; the inequality
is reversed namely W.g0/ > W.f 0/ when f 0 and g0 are appropriate variations of
f and g that differ from f and g on sets of sufficiently large Lebesgue measure.
Therefore Axiom 2 is satisfied. A standard probability is however not sensitive to
rare events, as shown in Chichilnisky [7–10, 13] (Chichilnisky 2008).

5 Existence and Representation Theorems

Theorem 2. There exists a probability distribution or likelihood function W W
L1 ! R satisfying the new Axioms 7, 8, and 9. A probability distribution satisfies
Axioms 7, 8, and 9 if and only if there exist two continuous linear functions on L1
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denoted �1 and �2; and a real number �; 0 < � < 1; such that for any observable
event f 2 L1 the likelihood

W.f / D �
Z

x�R

f .x/�1.x/dx C .1 � �/�2.f / (1)

where �1 2 L1.R;�/ defines a countably additive measure on R and where �2 is a
purely finitely additive measure.

Proof. This result follows from the representation Theorem in Chichilnisky [7, 8].

Corollary 2. Absent rare events, a probability that satisfies Axioms 7, 8, and 9 is
consistent with classic axioms and yields a countably additive measure.

Proof. Axiom 9 is an empty requirement when there are no rare events while, as
shown above, Axioms 7 and 8 are consistent with standard relative likelihood.

6 Heavy Tails and Families of Purely Finitely
Additive Measures

This section presents new results adding to the introduction of the Swan Axiom 6
defined in Section 4 above: it examines the different notions of continuity, how
heavy tails originate from the new axioms and defines a family of purely finitely
additive measures that are each absolutely continuous with respect to the Lebesgue
measure on R.

A main difference introduced by the new axioms is the use of a finer topology—
the “topology of change”, which is the sup norm on L1, and defines the continuity
properties of probability distributions. In the classic axioms a probability distri-
bution is continuous if it satisfies Monotone Continuity or equivalently SP4. Here
the continuity required is with respect to the topology of change, which is a finer
topology: the following example explains the difference that this makes on the
concept of continuity of probability distributions:

6.1 Contrasting Monotone Continuity and the Topology
of Change

Different topologies define different approaches to ‘continuity’. Consider the family
fEig where Ei D Œi;1/, i D 1; 2; : : :. This is a vanishing family because 8i Ei �
EiC1 and

T1
iD1 Ei D ¿. Consider now the events f i .t/ D K > 0 when t 2 Ei

and f i.t/ D 0 otherwise, and gi .t/ D 2K when t 2 Ei and gi .t/ D 0 otherwise.
Then for all i; supEi j f i .t/�gi .t/ jD K . In the sup norm topology this implies that
f i and gi are not ‘close’ to each other, as the difference f i � gi does not converge
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to zero. No matter how far along we are along the vanishing sequence Ei the two
events f i ; gi differ by at least the number K . Yet since the events f i ; gi differ
from f � 0 and g � 0 respectively only in the set Ei; and fEig is a vanishing
sequence, for large enough i they are as ‘close’ as desired according to Villegas-
Arrow’s definition of ‘nearby’ events.

6.2 Heavy Tails

The following illustrates the additional weight that the new axioms assign to rare
events; in this example in the form of ‘heavy tails’ (e.g. [7]. The finitely additive
measure �2 appearing in the second term in (1) can be illustrated as follows. On the
subspace of events with limiting values at infinity, L01 D ff�L1 W limx!1.x/ <
1g; define �2.f / D limx!1 f .x/ and extend this to a function on all of L1
using Hahn Banach’s theorem. The difference between a standard probability and
the likelihood defined in (1) is the second term �2, which focuses all the weight at
infinity. This can be interpreted as a ‘heavy tail’ namely a part of the distribution
that is not part of the standard density function �1 and gives more weight to the sets
that contain terminal events namely sets of the form .x;1/.

6.3 The Family PA of Purely Finitely Additive Measures on R

This section provides a new family of purely finitely additive measures that
are absolutely continuous with respect to the Lebesgue measure, and studies its
properties [16, 23].

Definition 5. An open neighborhood of a real number x 2 R has the standard
meaning under the usual topology of the line R. An ‘open neighborhood of 10 is
defined to be a set of the form fx 2 R W x: > r for r 2 Rg: As already stated, the
word “essentially” means a.e. with respect to the Lebesgue measure on R that has
been used to define the space L1:

We now define a property on measures in the space L�1 W
Definition 6 (Property (P)). A measure in L�1 is said to satisfy Property .P / at x
if it assigns measure zero to any set that is essentially contained in the complement
of an open neighborhood of x: A measure in L�1 is said to satisfy Property .P / at
1; if it assigns measure 0 to any measurable set that is essentially contained in the
complement of an open neighborhood of1 as defined above: A measure is said to
satisfy Property .P / if it satisfies Property .P / either at1 or at any x 2 R:
Lemma 2. A measure satisfying property .P /is always purely finitely additive.
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Proof. Consider first the case where the measure has property .P / at1: Define a
countable family of disjoint sets F D fA1;A2 : : :g recursively as follows: A1 D
fx W �1 < x < 1g and for all n;An D fx W �n < x < ng � An�1: Observe
that each set An has measure zero, since by assumption � satisfies property .P /;
and that each of the sets in the family F is bounded. The sets in the family F
are also disjoint by construction. If � was countably additive, then we should have
�.[F / D �.[1

nD1An/ D
P1

nD1 �.An/ D 0: Yet the measure of the union of
the countable family F is not 0, because [F D R; the entire real line, so that
�.[F / D 1. Therefore� fails to be countably additive on the countable and disjoint
family F: Since by definition � is a measure, and it fails to be countably additive, it
must be a purely finitely additive measure.

A similar argument can be given for the case where the measure has property
.P / at a finite number x 2 R: Define now F D fAngnD1;2;:::recursively as follows:
A1 D Œx � 1; xC 1	c where the super-index c denotes the complement of a set, and
for all n � 1;An D Œx�1=n; xC1=n	c �An�1: Observe that each set in the family
F has measure 0: The union of the family is not the whole space as before—since
the point fxg is not in the unionI yet the entire space minus fxg should have the same
measure than the space as a whole, because by definition a measure is a continuous
linear function on L1, the space of measurable and essentially bounded functions
with the Lebesgue measure on R, which means that the measure must provide the
same value to functions in L1 that are essentially equal, in the sense of differing
only in a set of Lebesgue measure 0: The characteristic functions of two measurable
sets differing in a set of measure zero, must therefore be are assigned the same value
by a measure, so the union of the family F must be assigned the same measure as
the entire space, namely�.[F / D 1: Therefore the measure� fails to be countably
additive, and since it is a measure it must be purely finitely additive.

Observe that in Lemma 1 the same argument applies for a measure that has
property .P / at x for a finite x 2 R; or one that has property .P / at f1g: The
“test” family F is defined similarly in both cases, where for a finite x;A1 D fx W
�� < x < "g; and An D fx W �n < x < ng � An�1: The only difference in the
argument arises from the fact that, for a finite fxg, the union of the family [F is
not all of R, but rather R � fxg. But R � fxg is essentially the same as R in the
Lebesgue measure used to define L1.

Lemma 3. Using Hahn-Banach’s theorem it is possible to define purely finitely
additive measures on R.

Proof. Lemma 1 started from assuming the existence of a measure in L�1 that
satisfies property .P / at 1: Using Hahn Banach’s theorem we now define the
desired measure, namely a continuous linear function h from L1 to R, and show
that it satisfies .P / at1: Therefore by Lemma 1, the function h is a purely finitely
additive measure, as we wished to prove.

Consider the subspace CL1 of all functions f in L1 that are continuous and
have an essential limit at1. CL1 is a closed linear subspace of the Banach space
L1: On the subspace CL1 define the function h.f / D ess limx!1 f .x/. By
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construction the function h is well defined on CL1I this function is continuous,
linear and has norm 1. The function h can therefore be extended by using Hahn-
Banach’s theorem to all of L1; as a continuous, linear function that preserves the
norm of h. Since h has norm 1 the extension is not the zero function. Call this
extension h as well; by construction, h 2 L�1. Therefore by definition, the extended
function h defines a measure. Now observe that h W L1 ! R satisfies Property
.P / since when applied to characteristics functions of bounded sets, it assigns to
them measure zero. A similar argument can be replicated to show the existence of
purely finite measures that satisfy property .P / at any x 2 R:

We have mentioned that it is not possible to construct or represent a purely
finitely additive measure on R the same way as one constructs or represents a
countably additive measure on R: This is not surprising since the Hanh-Banach
Theorem that is used to define a purely finitely additive measure in Lemma 2 is
itself not constructible. The next and last section show the connection between the
new axioms for probability (or relative likelihoods) presented here, the Axiom of
Choice and Godel’s [19] work.

7 The Axiom of Choice and Godel’s Incompleteness Theorem

There is a connection between Axioms 3, 4, and 5 presented here and the Axiom
of Choice that is at the foundation of mathematics [19]. The Axiom of Choice
postulates that there exists a universal and consistent fashion to select an element
from every set.

The best way to describe the situation is by means of an example, see also [12,
18, 27, 28] and [20].
Example: Representing a purely finitely additive measure.

Define a measure � as follows: for every Borel measurable setA � R; �.A/ D 1
if A � fx W x > a; for some a 2 Rg, and otherwise �.A/ D 0. Then � is not
countably additive, because the family of countably many disjoint sets fVi giD0;1;:::
defined as Vi D .i; i C 1	

S
.�i � 1;�i 	, satisfy Vi

T
Vi D ¿ when i ¤ j;

and
1S
iD0

Vi D
1S
iD0
.i; i C 1	

S
.�i � 1;�i 	 D R; so that �.

1S
iD0

Vi / D 1;while

1P
iD0

�.Vi / D 0;which contradicts countable additivity. Since the contradiction arises

from assuming that � is countably additive, � must be purely finitely additive.
Observe that � assigns zero measure to any bounded set, and a positive measure
only to unbounded sets that contain a ‘terminal set’ of the form

fx 2 R W x > a for some a 2 Rg:

One can define a function onL1 that represents this purely finitely additive measure
� if we restrict our attention to the closed subspace L01 of L1 consisting of those
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functions f .x/ in L1 that have a limit when x ! 1; by the formula �.f / D
limx!1 f .x/, as in Lemma 3 of the previous section. The function �.:/ can be
seen as a limit of a sequence of delta functions whose support increases without
bound. The problem is now to extend the function � to another defined on the entire
space L1: This could be achieved in various ways but as we will see, each of them
requires the Axiom of Choice.

One can use Hahn - Banach’s theorem [18] to extend the function � from the
closed subspace L01 � L1 to the entire space L1 preserving its norm. However,
in its general form Hahn - Banach’s theorem requires the Axiom of Choice [18].
Alternatively, one can extend the notion of a limit to encompass all functions in L1
including those with no standard limit. This can be achieved by using the notion of
convergence along a free ultrafilter arising from compactifying the real line R as in
Chichilnisky and Heal [12]. However the existence of a free ultrafilter also requires
the Axiom of Choice.

This illustrates why the attempts to construct purely finitely additive measures
that are representable as functions on L1, require the Axiom of Choice. Since
our criteria require purely finitely additive measures, this provides a connection
between the Axiom of Choice and our axioms for relative likelihood. It is somewhat
surprising that the consideration of rare events that are neglected in standard
statistical theory conjures up the Axiom of Choice, which is independent from the
rest of mathematics [19].
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Appendix

Example: A Probability that is Biased Against Frequent Events

Consider W.f / D lim infx�R.f .x//. This is insensitive to frequent events of
arbitrarily large Lebesgue measure [18] and therefore does not satisfy Axiom 2.
In addition it is not linear, failing Axiom 1.

Example: The Dual Space L�
1 Consists of Countably Additive

and Finitely Additive Measures

The space of continuous linear functions on L1 is the ‘dual’ of L1; and is denoted
L�1. It has been characterized e.g. in Yosida [27, 28]. L�1 consists of the sum of
two subspaces .i/L1 functions g that define countably additive measures � on R
by the rule �.A/ D R

A

g.x/dx where
R

R

j g.x/ j dx < 1 so that � is absolutely

continuous with respect to the Lebesgue measure, and .i i/ a subspace consisting
of purely finitely additive measure. A countable measure can be identified with
an L1 function, called its ‘density,’ but purely finitely additive measures cannot be
identified by such functions.

Example: A Finitely Additive Measure that is Not
Countably Additive

See Example in Section 7.
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Chaos in the Kepler Problem
with Quadrupole Perturbations

Gabriela Depetri and Alberto Saa

Abstract We use the Melnikov integral method to prove that the Hamiltonian flow
on the zero-energy manifold for the Kepler problem perturbed by a quadrupole
moment is chaotic, irrespective of the perturbation being of prolate or oblate type.
This result helps to elucidate some recent conflicting works in the physics literature
based on numerical simulations.

1 Introduction

The Kepler two-body problem has been a splendid inspiration for physicists and
mathematicians for the last three centuries (see, for instance, Chapter 9 of [1]).
Many works, in particular, have been devoted to the study of the onset of chaos
in the perturbed Kepler problem (see, for a recent review, [2] and the references
therein). For astronomical and astrophysical applications, it is natural to consider the
weak field approximation in which the gravitational field of a body is decomposed
into a multipole expansion. The original Kepler problem corresponds to the case
where only the first expansion term, the monopole, is present. The next term in
the expansion, the dipole term, is known to give origin to integrable motion, see
Chapter 7 of [3] and Section 2 below. The quadrupole term is usually considered
as the simplest perturbation to the Newtonian potential which could lead to
chaotic motion in the Kepler problem (see, for instance, [4]). By employing the
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usual cylindrical coordinates .r; z; �/ around the gravitational center, the simplest
quadrupole perturbation to the Newtonian potential reads

U.r; z/ D � ˛p
r2 C z2

� q
2

2z2 � r2
.r2 C z2/5=2

; (1)

where ˛ and q stands for, respectively, the monopole intensity (proportional to the
total gravitational mass) and the quadrupole intensity. The cylindrical coordinates
are assumed to be adjusted to the quadrupole direction. Two qualitative distinct
cases can be distinguished for the potential (1). Oblate deformations, as those ones
of rotating deformed bodies, correspond to q < 0, whereas prolate deformations,
as cigar-like mass distributions, to q > 0. The study of the integrability of a test
body motion under action of the potential (1) is a long standing problem, with
substantially relevance to astronomy and astrophysics [5].

In [4], a numerical study of bounded trajectories is reported suggesting that the
motion under prolate perturbations would be indeed chaotic while, on the other
hand, oblate perturbations would correspond to an integrable case. Such conclusion
would be rather puzzling since it is known that, for disk-like perturbation (which
could be understood as extreme oblate perturbations), bounded oblique orbits are
known to be chaotic [6, 7]. This qualitative difference for the cases q > 0 and
q < 0 is attributed in [4] to some qualitative differences in the saddle points of
the effective potential, but it is also known that such kind of local argument leads
typically to conditions that are not sufficient neither necessary to the appearance
of chaos in theses systems [8]. More recently, a new numerical study suggesting
that the oblate perturbations would also give origin to bounded chaotic orbits has
appeared [9]. Here, we explore these conflicting results by applying the Melnikov
integral method [10] for the parabolic orbits [11] (the zero-energy manifold) of (1).
We prove the quadrupole perturbations effectively give rise to chaotic motion on the
zero-energy manifold, irrespective of the perturbation being of prolate .q > 0/ or
oblate .q < 0/ type.

2 The Melnikov Conditions

The Hamiltonian associated to the motion of a test body of unit mass under the
action of the potential (1) is given by

H D 1

2

�
p2r C p2z

�C L2z

2r2
C U.r; z/; (2)

where .r; pr / and .z; pz/ stands for the usual canonical cylindrical coordinates and
Lz is the (conserved) angular momentum around the z axis. The Hamiltonian H is
itself a conserved quantity and the integrability of the Hamiltonian flow governed
by (2) corresponds to the celebrated problem of the existence of the third isolating
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conserved integral of motion [5]. In order the write the quadrupole perturbation
in (2) conveniently, let us introduce the new variables .R; �/

�
r D R cos �;
z D R sin �;

(3)

which leads to

H D H0 C qW1.R/C qW2.R; �/; (4)

where

H0 D 1

2

�

p2R C
p2�
R2

�

C L2z

2R2 cos2 �
� ˛

R
; (5)

with .R; pR/ and .�; p� / standing for the usual canonical coordinates, and

� q

R3
C 3q cos2 �

2R3
� qW1.R/C qW2.R; �/: (6)

Notice that the perturbation (6) corresponds to the case ˇ D 3 considered in [2], but
the unperturbed Hamiltonian (5) is indeed different. Without loss of generality, let
us assume hereafter that ˛ D 1. Notice that a dipole perturbation would give rise to
a Hamiltonian (4) with W1 D 0 and W2 D R�2 sin � , which indeed corresponds to
a particular case of the integrable case discussed in the Section 48 of [3].

In order to compute the Melnikov integrals [10] for the Kepler problem with
quadrupole perturbations, we will adopt the integral method adapted for parabolic
orbits presented in [11]. To this purpose, we need to obtain the equivalent of the
homoclinic orbit of our problem. The total energy and the total angular momentum
are the conserved quantities of our system,

H0 D
PR2
2
C G2

2R2
� 1

R
; (7a)

G2 D R4 P�2 C L2z

cos2 �
; (7b)

and from the expressions above, we have

dR
q
2
�
H0 C 1

R

�� G2

R2

D ˙dt; (8a)

1

R2
dR

q
2
�
H0 C 1

R

� � G2

R2

D d�
q

G2 � L2z
cos2 �

; (8b)
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From (7a), we see that the minimum value ofR withH0 D 0 satisfies G2 D 2Rmin.
We are interested in the parabolic orbits and, hence, substituting H0 D 0 in (8a)
and (8b) and performing the integration, we have

˙ t D
p
2

3

�

R � Rmin
2

�p
R �Rmin C const; (9a)

1

4A
ln

ˇ
ˇ
ˇ
ˇ
AC sin �

A� sin �

ˇ
ˇ
ˇ
ˇC const D arctan

s
R

Rmin
� 1; (9b)

where A D
q

1 � L2z
G2

. Notice that, from (7b), one has that 0 < A 	 1.
Inverting (9a), we have the expression R.t/ of the homoclinic orbit, but this is

not necessary to our purposes. Also, adjusting the constant in (9b) so thatR D Rmin
for � D 0, we have the following expression for R.�/

R.�/ D Rmin sec2

1

4A
ln

ˇ
ˇ
ˇ
ˇ
AC sin �

A� sin �

ˇ
ˇ
ˇ
ˇ

�

: (10)

From (10), it is clear that R.�/ is an even function and that the parabolic orbit can
be parametrized with ��� < � < ��, where R.��/ D1, which leads to

sin �� D A tanhA�: (11)

The Melnikov conditions to detect integrability of a Hamiltonian system of the
type (2) corresponds to the existence of simple zeros for the quantities [11]

M1.�0/ D
Z 1

�1
fH0;W2gdt; M2.�0/ D

Z 1

�1
fG;W2gdt; (12)

where the integrals are taken over the zero-energy manifold. For each value of A,
this is a two-dimensional manifold parametrized as R D R.t � t0/ and # D .t �
t0/C �0, with arbitrary t0 and �0. We see that

M1.�0/ D �
Z 1

�1


PR @W2

@R
C P@W2

@�

�

dt D �W2

ˇ
ˇ
ˇ
ˇ

tD1

tD�1
C
Z 1

�1
@W2

@t
dt D 0;

(13)
and, with some trigonometry, that

M2.�0/ D � 3

8Rmin
ŒI1 cos.2�0/C I2 sin.2�0/	 ; (14)
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Fig. 1 The integral (16) for different values of A. Notice that I2 D 0 only for A D 0 and for
A D 1, the latter corresponding to Lz D 0 and, thus, to the case ˇ D 3 considered in [2]

where, after changing the integration variable,

I1 D
Z ��

���

sin.2�/

R.�/
d�; I2 D

Z ��

���

cos.2�/

R.�/
d�: (15)

Since R.�/ is an even function, we have I1 D 0. Finally, the non identically zero
contribution to the Melnikov integral comes from the integral

I2 D 1

Rmin

Z ��

���

cos.2�/ cos2

1

4A
ln

ˇ
ˇ
ˇ
ˇ
AC sin �

A� sin �

ˇ
ˇ
ˇ
ˇ

�

d�; (16)

where �� is given by (11). Is is enough to prove that I2 ¤ 0 for some value of
A to establish that M2.�0/ given by (14) has (infinitely many) simple zeros, which
implies the absence of the extra conserved integral of motion and, consequently, that
the motion is indeed chaotic, irrespective of the sign of the perturbation parameter q.
Figure 1 depicts the integral (16) as a function of A, and we can check that one has
indeed I2 ¤ 0 for 0 < A < 1.

3 Final Remarks

By using the Melnikov integral method adapted for parabolic orbits [11], we prove
that the Hamiltonian flow on the zero-energy manifold for the Kepler problem
perturbed by a quadrupole moment is chaotic, irrespective of the perturbation being
of prolate or oblate type. This result favors, in this way, the numerical results
obtained in [9], which are in conflict with those ones presented in [4].
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Groups of Diffeomorphisms and Fluid Motion:
Reprise

David G. Ebin

Abstract Following Ebin and Marsden (Ann Math 92(1):102–163, 1970) we
provide a concise proof of the well-posedness of the equations of perfect fluid
motion. We use a construction which casts the equations as an ordinary differential
equation on a non-linear function space.

1 Introduction

In 1970 Marsden and the present author published [4], which became an influential
paper. According to Google Scholar it is Marsden’s second most cited paper and the
present author’s most cited paper. Also it was translated into Russian and published
in the Soviet journal Matematika [5] with additional comments and references.

The paper follows the work of [1] and [7] and provides the necessary analytical
structure for both.

The main theorem of [4] is the well-posedness of the equations of motion of a
perfect (incompressible, homogeneous and inviscid) fluid, but the proof there given
is somewhat circuitous and rather long. In the present article we provide a shorter
more direct approach.

2 Construction of Equations

One can describe fluid motion as a curve in the group of diffeomorphisms of a region
that is filled with fluid. We take the region to be a closed Riemannian manifold. Call
it M . Then �.t/ WM !M will be the curve of diffeomorphisms. For each x 2 M ,
�.t/.x/ will be the position at time t of that fluid particle which at time zero was
at x.
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The energy of the fluid moving by �.t/ is

E .t/ D 1

2

Z

M

h P�.t/; P�.t/i�

where P� is the time derivative of �, h ; i is the Riemannian metric and � is the
volume element defined by the metric. Using Hamilton’s principle we require that
the actual fluid motion be a stationary curve of

R b
a
E .t/dt in the sense that if �.t; s/

is a one-parameter family of curves with �.t/ D �.t; 0/, for t 2 Œa; b	; and s 2
.��; �/ and with @s�.a; s/ D @s�.b; s/ D 0 then

@s

Z b

a

E .t; s/ dt jsD0 D 1

2
@s

Z b

a

Z

M

h P�.t; s/; P�.t; s/i�dt jsD0 D 0 (1)

But since equation (1) must hold for all variations �.t; s/ we find that:

@s

Z b

a

h P�.t; s/.x/; P�.t; s/.x/i dt jsD0 D 0 (2)

for each x 2 M , so from equation (2) we find that the curve t ! �.t/.x/ is a
geodesic in M . Thus we might think that fluid particles move along geodesics.
However since our fluid is incompressible the curve �.t/ must consist of diffeo-
morphisms which preserve the volume element. Hence we have the additional
requirement:

�.t; s/�.�/ D � (3)

and with this (1) has a different consequence as we now explain.
P�.t; s/.x/ and @s�.t; s/.x/jsD0 are both tangent vectors at �.t; s/.x/. We will

call them v.t/.�.t; s/.x// and w.t/.�.t; s/.x// respectively. Then differentiating (3)
with respect to t and s, we get:

Lv.t/.�/ D 0 and Lw.t/.�/ D 0 (4)

where L denotes the Lie derivative. But since � is the volume element of the
Riemannian metric we find that Lu.�/ D div.u/� for any vector field u so we
get div v.t/ D div w.t/ D 0. As is well known, a vector field u can be decomposed
into its solonoidal and gradient parts; that is, u D vCrf where rf is the gradient
of some function f and div v D 0. We also note that:

Z

M

hv;rf i� D �
Z

M

f div v � D 0
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so the decomposition gives summands which are orthogonal with respect to the L2

inner product on vector fields. We will call the projection onto these summands P
andQ, so P u D v andQu D rf .

Starting from (1), integrating by parts and using ��.�/ D � and letting v.t/ and
w.t/ be defined as above, we get:

Z b

a

�Z

M

h@tv Crvv;wi�
�

dt D 0 (5)

where r is the covariant derivative defined by the Riemannian metric. Since (5)
must hold for any divergence free w.t/, this implies that for each t ,

Z

M

h@tv.t/Crv.t/v.t/;w.t/i� D 0 (6)

and (6) in turn implies that @t vCrvv must be the gradient of a function. Following
convention we shall call it �rp, so @t vCrvv D �rp. Alternatively we can write
P.@tv Crvv/ D 0, and since v and therefore @t v are divergence free, we get

@t v C P.rvv/ D 0

or

@tv Crvv D Q.rvv/ (7)

3 Function Spaces

We shall solve (7) by showing how it can be construed as an ordinary differential
equation on an infinite dimensional manifold, so we now proceed to construct the
manifold. First we note that the group of smooth diffeomorphisms of M can be
given a manifold structure as follows: Given � 2 D we consider the linear space of
vector fields over �. It is

T�D D fu WM ! TM j� ı u D �g

where � W TM ! M is the tangent bundle of M . Then if � is sufficiently near � in
D we get for each x 2 M a unique minimal geodesic 
x from �.x/ to �.x/. Letting
u.x/ be the tangent vector to 
x at �.x/ we get u 2 T�D . Furthermore if exp W
TM ! M is the exponential map of M , then exp ıu D �. Thus composition with
exp gives a bijection between a neighborhood of zero in T�D and a neighborhood
of � in D . We take this bijection to be a chart about � in D . If �1 and �2 are two
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elements of D , we get a smooth transition from one chart to another because exp is
a smooth function. Also with these charts the tangent space of D at � is naturally
identified with T�D .

We now have a manifold structure forD , but the spaces T�D have aC1 topology
which comes from an infinite set of norms and thus is not a Banach space. Hence
the basic theorems of differential analysis (i.e., the inverse function theorem or the
convergence of Picard iteration for ordinary differential equations) do not hold.
To surmount this difficulty, we enlarge our space by requiring only finitely many
derivatives. We shall use the Hs topology requiring that derivatives up to order s
be in L2 and calling the resulting space D s . The Hs topology is given by an inner
product on each T�D s as follows: For ˛; ˇ 2 T�D s there exist u;w 2 TidD s such
that ˛ D u ı � and ˇ D w ı �. We define

.˛; ˇ/s WD
sX

kD0

Z

M

hrku;rkwi ı ��

where rk is the kth order covariant derivative.
The Sobolev imbedding theorem tells us that theHs topology is stronger that the

Ck topology if s > n=2 C k where n is the dimension of the manifold. We shall
require that s be greater than n=2C1 so that the topology is stronger than C1. In this
case D s is included in the group of all C1 diffeomorphisms and it is a group as well
(see [2] for details). We proceed to look at volume preserving diffeomorphisms.

Let D� D f� 2 D j��.�/ D �g and let D s
� be itsHs extension. Consider the map

 W D s ! Hs�1.�n/

defined by  .�/ D ��.�/. which takes a diffeomorphism into an n-form.

Z

M

 .�/ D
Z

M

��.�/ D
Z

�.M/

� D
Z

M

�

so the range of  is included in

Hs�1
� .�n/ D f� 2 Hs�1.�n/j

Z

M

� D
Z

M

�g:

This is clearly an affine subspace of Hs�1.�n/ of codimension one.
The derivative of  at the identity of D s is Tid W TidD s ! Hs�1.�n/, given

by Tid .u/ D Lu.�/ D div.u/�. The tangent space to Hs�1
� .�n/ is

Hs�1
0 .�n/ D f� 2 Hs�1.�n/j

Z

M

� D 0g
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Given a � in this tangent space we can solve

�f D �=�
for an HsC1 function f . Then Tid .rf / D �f� D �. Hence Tid is surjective.
Similarly for any � 2 D s , we can write an element of T�D s as uı�where u 2 TidD s .
Then a direct calculation shows that

T� .u ı �/ D ��.Lu.�// D div.u/ ı � ��.�/:

In this case given � as above, we find u 2 TidD s such that div u D .�=��.�//ı��1.
Then T� .u ı �/ D � as before.

Thus we have shown that for any � 2 D s
� and any � 2 Hs�1

0 .�n/, there exists
˛ 2 T�D s such that T� .˛/ D �. It follows that  W D s ! Hs�1

� .�n/ is a
submersion so  �1.�/ D D s

� is a submanifold of D s . Furthermore the tangent
space to D s

� at each � is the null-space of T� W T�D s ! Hs.�n/. Thus
T�D s

� D fu ı �j div.u/ D 0g.

4 Proof of Well-Posedness

We shall show that (7) can be construed as a second order o.d.e. on D s
�. We can

write (7) as an equation in �.t/ if v.t/ is defined by P� D v ı � 2 T�D s
�. Then

R� D .@tv Crvv/ ı � so (7) becomes R� D Q.rvv/ ı �, which is:

R� D .Q.r P�ı��1 P� ı ��1// ı � (8)

We write this as:

R� D Z.�; P�/ (9)

a second order o.d.e. on D s
�.

If we can show that Z is a smooth function, well-posedness will follow
automatically from the fundamental theorem of o.d.e.’s.

To study (9) we will find it useful to introduce additional notation. Given any
differential (or pseudo-differential) operator L on sections of a vector bundle over
M and given � 2 D s we define L� by

L�f D L.f ı ��1/ ı �
L� is easily seen to be smooth in �. In fact if �.s/ is a curve in D s and d

ds
� D w ı �

then

d

ds
.L�/ D Œrw; L	�

where [ , ] denotes the commutator. Thus d
ds
.L�/ has the same order as L.
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We introduce the projection operator Q� W T�D s ! T�D s defined by Q�.˛/ D
.Q.˛ı��1//ı�. Taking the union ofQ� over all � 2 D s , we get QQ W TD s ! TD s ;
that is, QQ is defined on the whole tangent bundle of D s .

We recall that at � D id , Q.u/ is just the gradient part of u, so Q.u/ D
r��1 div u. Since the null-space of� is the constant functions,��1 is defined only
up to an additive constant. However r kills constant functions so r��1 is uniquely
defined. Clearly Q� D .r��1/� div�. Thus with our new notation we get:

Z.�; P�/ D .r��1/�.div.rvv/ ı �/
where v D P� ı ��1.

But since P� 2 T�D s
�, we get div v D 0. Hence .divrv/v D Œdiv;rv	v. Thus

we get:

Z.�; P�/ D .r��1/�Œdiv;rv	� P� (10)

The“sub-�” operators are smooth in � as we have seen. Œdiv;rv	, being a commuta-
tor of first order operators is also first order and r��1 has order minus one. Thus
the composition is of order zero, so it is a bounded operator fromHs toHs . We see
in (10) that it is linear and therefore smooth in P�. However v also depends on P� and
�, since it is defined as P� ı ��1. We must check that this dependence is also smooth.
To do this we introduce a new variable z to isolate the v dependence. We compute
Œdiv;rv	�z for some Hs vector field z. using local coordinates we get:

Œdiv;rv	�z D @i . P�j ı ��1/@j .zi ı ��1/ ı �C @k.� k
ij ı ��1 P�i ı ��1zj ı ��1/ ı �

for some smooth functions � k
ij and with repeated indices summed. This expression

is smooth in .�; P�/ as a function fromHs toHs�1 since it involves first derivatives.1

Following it by .r��1/� makes it smooth from Hs to Hs . Thus Z.�; P�/ is smooth
so (8) is a smooth o.d.e. on D s

�.
Therefore given �.0/ D id and P�.0/ 2 TidD s

� we get an interval .�Tb; Te/ (with
Tb and Te positive or infinite) and a unique smooth curve � W .�Tb; Te/ ! D s

�

which satisfies (8). Furthermore the curve depends smoothly on P�.0/.

5 Further Remarks

1. The same analysis holds in the case thatM is a manifold with smooth boundary,
including the important case of a bounded domain in Rn. Since each �.t/ is
a diffeomorphism, it leaves the boundary set-wise invariant and one gets the
condition:

h P�.t/.x/; �.�.t/.x/i D 0

1Alternatively we could avoid detailed calculation by noting that Œdiv�;rv	�z D � d
dt
.div�.t//z

which is smooth since div� is smooth in �.
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on the boundary, where � is the normal to the boundary. We also need a boundary
condition for �rp D Q.rvv/. But h@tv; �i D hP.rvv/; �i, so we must have
h�rp; �i D hrvv; �i. Thus ��p D div.rvv/ as before and p also has a
Neumann boundary condition. Note that hrvv; �i D �hv;rv�i so the boundary
condition does not involve derivatives of v.

2. The same technique of solving an o.d.e. on an Hs function space can be used to
solve for geodesics on groups of diffeomorphisms which preserve a symplectic
form [3] or a contact form [6]. Ebin and Preston [6] also contains physical
applications, namely geostrophic and quasigeostrophic flows, and the Vlasov
or Vlasov-Maxwell equations provide an application for the symplectic case.
See [8].

3. The system of equations:

@tv Crvv D �rp div v D 0

involves derivatives in both time and space, so it was not thought to be amenable
to o.d.e. methods. The general feeling was that if one wrote it in the form
@tu D L.u/, then L would have to involve spatial derivatives and therefore could
not take Hs into Hs . Using the variables .�; P�/ we got a system of order zero so
an o.d.e. approach was possible. Because of this the appearance of [4] was met
with a good deal of surprise and even some suspicion.

References

1. Arnol’d, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses
applications a l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

2. Ebin, D.G.: The manifold of Riemannian metrics. In: Proceedings of Symposia in Pure
Mathematics, vol. 15, pp. 11–40. AMS, Providence (1970)

3. Ebin, D.G.: Geodesics on the symplectomorphism group. Geom. Funct. Anal. 22(1), 202–212
(2012)

4. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid.
Ann. Math. 92(1), 102–163 (1970)

5. Russian translation of Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of
an incompressible fluid. Ann. Math. 92(1), 102–163 (1970). Matematika 17(6), 111–146 (1973)

6. Ebin, D.G., Preston, S.C.: Riemannian geometry on the quantomorphism group. Arnold Math
Journal, DOI 10.1007/540598-014-0002-2 (2014)

7. Marsden, J., Abraham, R.: Hamiltonian mechanics on Lie groups and hydrodynamics. In:
Proceedings of Symposia Pure Mathematics, vol. 16, pp. 237–244 (1970)

8. Marsden, J.E., Weinstein, A.: The hamiltonian structure of the Vlasov equations. Physica D 4,
394–406 (1982)



Dual Pairs for Non-Abelian Fluids

François Gay-Balmaz and Cornelia Vizman

Abstract This paper is a rigorous study of two dual pairs of momentum maps
arising in the context of fluid equations whose configuration Lie group is the group
of automorphisms of a trivial principal bundle, generically called here non-abelian
fluids. It is shown that the actions involved are mutually completely orthogonal,
which directly implies the dual pair property.

1 Introduction

It is well-known that the flow of the Euler equations of a perfect fluid can be formally
interpreted as a geodesic on the group of volume preserving diffeomorphisms of
the fluid domain, relative to an L2 Riemannian metric, [1]. This result has been
at the origin of many developments of the methods of symmetry and reduction
for the study of incompressible fluids, their Clebsch variables and vortices, as
initiated in [33]. For instance, in [33] Marsden and Weinstein discovered a pair
of momentum maps associated to the Euler equations that geometrically justifies
the existence of Clebsch canonical variables for ideal fluid motion and explains
the Hamiltonian structure of point vortex solutions in terms of the (Lie-Poisson)
Hamiltonian structure of the Euler equations. As claimed in [33], and rigorously
shown in [11], this pair of momentum maps forms a dual pair in the sense that the
Lie group associated to each of the momentum maps acts transitively on the level set
of the other momentum map. In order to obtain such a result, it has been necessary
to restrict each of the acting Lie groups to its commutator subgroup and to centrally
extend these subgroups. This gives rise to the quantomorphism group as a central
extension of the group of Hamiltonian diffeomorphisms, and to the Ismagilov
central extension of the group of exact volume preserving diffeomorphisms.
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A pair of momentum maps has also been described for PDEs associated to
geodesics on the group of (non necessarily volume preserving) diffeomorphisms, the
so-called EPDiff equations, by Holm and Marsden in [22]. One of the momentum
maps provides singular solutions of the PDE (e.g. for the H1 metric, as it does
for the peakon solutions of the Camassa-Holm equations [4]), whereas the other
momentum map provides a constant of motion for the collective dynamics of these
singular solutions, by the Noether Theorem. It has been shown in [11] that these
momentum maps also form a dual pair.

Since the seminal result of Arnold, the geometric formulation via diffeomor-
phism groups and the associated methods of symmetry and reduction have been
developed in order to apply to a large class of equations arising in hydrodynamics,
such as compressible fluid and magnetohydrodynamics in [34]. More recently, it
has been observed [7–9] that several models of complex fluids and (possibly non-
abelian Yang-Mills) charged fluids require the use of the group of automorphisms
of a principal bundle as configuration Lie group (or its volume preserving version),
instead of a group of diffeomorphisms. In this case, the base of the principal bundle
is the fluid domain, whereas its structure group is given by the order parameter
group in the case of complex fluids, or by the symmetry Lie group of the underlying
Yang-Mills theory in the case of charged fluids. We refer to Theorem 3.3 in [9]
for a summary of the geometric formulation of several models of non-abelian fluids.
We refer to [2, 3, 27] and reference therein, for further information about the physics
literature on non-abelian fluids.

The simplest situation, which is also the case of interest for this paper, corre-
sponds to geodesic equations on the automorphism group of a principal bundle
(referred to as EPAut equations) or on its volume preserving subgroup (referred
to as EPAutvol equations). Examples are provided by the equations of motion of
a non-abelian charged perfect fluid moving under the influence of a fixed external
Yang-Mills field, which describe the geodesic flow of the Kaluza-Klein L2 metric
on the group of volume preserving automorphisms [7]. As explained in [14],
other examples treated in the literature can be seen as geodesic equations on the
automorphism group of a trivial principal bundle. These are the two-component
Camassa-Holm equations [5, 29], its modified version considered in [24] and its
higher dimensional and anisotropic versions studied in [23]. In [23, 24], the modified
versions were also shown to admit singular solutions given by a momentum map.

A pair of momentum maps explaining geometrically the above singular solutions
has been considered in [14] in the general context of the EPAut equations on
arbitrary principal bundles. In particular, it was found that these momentum maps
are associated to the actions of two groups of automorphisms on a manifold of
equivariant embeddings, thereby extending, from the EPDiff to the EPAut case, the
momentum map setting developed in [22].

Concerning the volume preserving situation (i.e. the EPAutvol case), a pair of
momentum maps has been found in [14] that extends the dual pair for the ideal fluid
found in [33]. Interestingly, the proper definition of one of the momentum maps
needs the introduction of new infinite-dimensional Lie groups, such as the group of
special Hamiltonian automorphisms and the group of Vlasov chromomorphisms,
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defined in [14]. In this case, one of the momentum maps yields a Clebsch
representation that extends the classical Clebsch representation for ideal fluid to
the non-abelian case, whereas the other momentum map recovers, as a particular
case, the expression of the Klimontovich particle solution of the Yang-Mills Vlasov
equations.

Dual Pairs of Momentum Maps

Let us briefly recall the definition of a dual pair in the finite dimensional context, as
formalized in [38]. Let .M;!/ be a finite dimensional symplectic manifold and let
P1; P2 be two finite dimensional Poisson manifolds. A pair of Poisson mappings

P1
JL � .M;!/ JR�! P2

is called a dual pair if kerT JL and kerT JR are symplectic orthogonal complements
of one another, i.e. .kerT JL/! D kerT JR. In infinite dimensions, due to the
weakness of the symplectic form, one has to impose both identities [11]

.kerT JL/! D kerT JR and .kerT JR/! D kerT JL: (1)

In many cases of interest, and this will be the case in the present paper too,
the Poisson maps J1 and J2 are momentum mappings arising from the commuting
Hamiltonian actions of two Lie groups H and G on M . We assume that both
momentum maps are equivariant, so that they are Poisson maps with respect to the
Lie-Poisson structure on the dual Lie algebras h� and g�:

h� JL � .M;!/ JR�! g�: (2)

In this case the dual pair conditions (1) become g!M D h!!M and h!M D g!!M , because
kerT JR D g!M and kerT JL D h!M .

The actions are said to be mutually completely orthogonal [30] if the G-orbits
and theH -orbits are symplectic orthogonal to each other. In infinite dimensions we
need again two identities

gM D h!M and hM D g!M : (3)

These can be rewritten as gM D kerT JL and hM D kerT JR, which means that the
infinitesimal actions of g resp. h on level sets of momentum maps JL resp. JR are
transitive.

In finite dimensions the mutually completely orthogonality identities (3) are
equivalent to the fact that (2) is a dual pair. In the infinite dimensional case,
the mutually complete orthogonality property (3) implies the dual pair property, but
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the converse is not true. A counterexample is provided by the dual pair associated to
perfect free boundary fluids, as shown in [13]. In fact, both dual pair conditions (1)
follow from just one of the conditions (3).

Dual pair structures arise naturally in classical mechanics. For example, in [31]
(see also [6, 16] and [26]) it was shown that the concept of dual pair of momentum
maps can be useful for the study of bifurcations in Hamiltonian systems with
symmetry. More recently, it was shown in [12] how the rigorous dual pair property
of the ideal fluid momentum maps can be used to describe a new class of infinite
dimensional coadjoint orbits of the Hamiltonian group.

Plan of the Paper

The goal of the present paper is to show that the pairs of momentum maps found
in [14] in the context of the EPAut and EPAutvol equations, form two dual pairs. In
the infinite dimensional situation, this means that both the equalities .kerT J1/! D
kerT J2 and .kerT J2/! D kerT J1 are true [11], since the equivalence between
these equalities no longer holds in the infinite dimensional situation. In fact, we will
show the stronger result that the actions are mutually completely orthogonal, in the
sense that the orbits of one action are symplectic orthogonal to the orbits of the other
action, and vice versa.

The plan of the paper is the following. In Section 2, we recall the expression
of the Euler-Poincaré equations on the automorphism group of a principal bundle
(the EPAut equations) in the case when the principal bundle is trivial. Then after
reviewing the pair of momentum maps associated to the EPDiff equations [22],
we will recall some facts concerning the pair of momentum maps associated to the
EPAut equations [14]. These momentum maps will be shown in Section 3 to arise
from mutually completely orthogonal actions and, therefore, to form a dual pair. In
Section 4, we recall the expression of the Euler-Poincaré equations on the group
of volume preserving automorphisms of a trivial principal bundle (the EPAutvol

equations) and review from [14] some facts about the associated pair of momentum
maps. We will then focus on a particular case relevant for the Yang-Mills Vlasov
equations, arising when the total space of one of the principal bundles is a cotangent
bundle. Finally, in Section 5 we show, still in this particular case and when the
bundles are trivial, that the pair of momentum maps associated to the EPAutvol arise
from mutually completely orthogonal actions and is therefore a dual pair.

2 The EPAut Equations and Momentum Maps

In this section we recall the expression of the Euler-Poincaré equations on the
automorphism group of a principal bundle (the EPAut equations) in the case when
the principal bundle is trivial, and we review some facts concerning the associated
pair of momentum maps.
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2.1 The Automorphism Group and Euler-Poincaré Equations

The automorphism group A ut.P / of a right principal bundle � W P ! M , with
structure group O , consists of all O-equivariant smooth diffeomorphisms of P . Any
automorphism Q' 2 A ut.P / induces a smooth diffeomorphism ' of the baseM , by
the condition � ı Q' D ' ı � . The diffeomorphisms of M that can be obtained this
way form the subgroup Diff.M/ŒP 	 � Diff.M/ of diffeomorphisms preserving the
isomorphism class of P . It is a subgroup which contains the identity component of
Diff.M/, so it consists of connected components of Diff.M/. We will denote by
aut.P / the Lie algebra of A ut.P /. It consists of all O-equivariant smooth vector
fields on P .

When the bundle P is trivial, i.e. P ' M � O ! M , the group of all
automorphisms of P is isomorphic to the semidirect product group

A ut.P / ' Diff.M/sF .M;O/;

where F .M;O/ denotes the group of smooth O-valued functions defined on M .
Let us recall that the group structure of the semidirect product reads

.'1; a1/.'2; a2/ D .'1 ı '2; .a1 ı '2/a2/:

To a couple .'; a/ 2 Diff.M/sF .M;O/, is associated the automorphism

.x; g/ 2M �O 7! .'.x/; a.x/g/ 2M �O: (4)

The Lie algebra of the automorphism group is isomorphic to the semidirect product
Lie algebra aut.P / ' X.M/sF .M; o/, where o is the Lie algebra of the structure
group O , X.M/ denotes the space of smooth vector fields on M , and F .M; o/
denotes the Lie algebra of smooth o-valued functions defined on M .

Euler-Poincaré Equations, EPDiff, and EPAut

LetG be a Lie group with Lie algebra g and consider a rightG-invariant Lagrangian
L W TG ! R defined on the tangent bundle TG ofG. Let ` W g! R be the reduced
Lagrangian associated toL, that is `.�/ D L.g; Pg/, with � D Pgg�1. By applying the
process of Lagrangian reduction, the Euler-Lagrange equations for L are equivalent
to the Euler-Poincaré equations for `,

@t
ı`

ı�
C ad�

�

ı`

ı�
D 0;

see e.g. [32] for a detailed exposition. When G D Diff.M/, these equations
are called the EPDiff equations, see [22]. Similarly, when G D A ut.P /, these
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equations will be called the EPAut equations. In the following Proposition we give
the EPAut equations in the case when P is a trivial principal bundle. We refer to
[36, 37], for the geodesic case and to [14] for the general case.

Proposition 1 (The EPAut Equations on a Trivial Bundle [14]). Consider a
reduced Lagrangian ` W X.M/sF .M; o/ ! R and identify the dual Lie algebra
with the space˝1.M/˝Den.M/�F .M; o�/˝Den.M/ by using the L2 pairing,
where Den.M/ denotes the space of densities onM . Then the EPAut equations are

8
ˆ̂
<

ˆ̂
:

@

@t

ı`

ıu
C £u

ı`

ıu
C ı`

ı�
�d� D 0

@

@t

ı`

ı�
C £u

ı`

ı�
C ad�

�

ı`

ı�
D 0;

(5)

where .u; �/ 2 X.M/sF .M; o/ and the operator £u denotes the Lie derivative
acting on tensor densities.

In the special case M D S1 and G D S1, for suitable Lagrangians, we obtain
the two component Camassa-Holm equation [5] and the modified two-component
Camassa-Holm equation [24]. Equations for complex and nonabelian fluids are
obtained from the Euler-Poincaré equations (5) by extending them to include
advected quantities or/and coupling them with the Euler-Lagrange equations for
the Yang-Mills fields. We refer to [15, 19–21] for the description of the noncanonical
Hamiltonian structures and to [7–9] for the Lagrangian and Hamiltonian reductions
approaches.

Remark 1 (Manifold Structures). In this paper, all the (finite dimensional) mani-
folds involved are smooth, Hausdorff, and paracompact (to admit partition of unity).
All the maps considered are smooth (i.e. C1). All the manifolds are assumed to
have no boundary.

The space of smooth functions defined on a compact manifold is a Fréchet
manifold in a natural way. The space of embeddings is an open subset of this Fréchet
manifold, hence a Fréchet manifold itself [28].

2.2 A Pair of Momentum Maps for the EPAut Equations

Review of the EPDiff Case

Let S and M be two manifolds with dimS 	 dimM . Suppose that S is compact
and carries a volume form �S . As explained in Remark 1, the space Emb.S;M/

of embeddings of S into M is a Fréchet manifold. Recall from [22] that the pair
of momentum maps associated to the EPDiff equation is obtained by considering
the cotangent lifted action of the groups Diff.S/ and Diff.M/ on the manifold
Emb.S;M/:

X.M/� JL � T � Emb.S;M/
JR�! X.S/�: (6)
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Note that the tangent space TQ Emb.S;M/ consists of vector fields VQ W S ! TM

covering the embedding Q. Since a volume form �S has been fixed, the cotangent
space T �

Q Emb.S;M/ can be identified with the space of 1-forms PQ W S ! T �M
covering Q.

The left momentum map

JL.PQ/ D
Z

S

PQ.x/ı.m �Q.x//�S

provides the formula for singular solutions of the EPDiff equations, whereas the
right momentum map

JR.PQ/ D PQ �TQ

provides a Noether conserved quantity for the (collective) Hamiltonian dynamics of
these singular solutions in terms of the canonical variable PQ 2 T � Emb.S;M/.
Here TQ W TS ! TM denotes the tangent map to the embedding Q.

These expressions of the momentum maps are obtained from the following
general formula. Let G be a Lie group acting on a manifold Q, and consider
the cotangent lifted action of G on T �Q. Then this action admits the equivariant
momentum map J W T �Q! g� given by

hJ.˛q/; �i D h˛q; �Q.q/i; ˛q 2 T �Q; � 2 g; (7)

where �Q is the infinitesimal generator of the action ofG onQ associated to the Lie
algebra element �. Recall that the momentum map J verifies the condition dJ� D
i�T�Q

˝can, where ˝can is the canonical symplectic form, �T �Q is the infinitesimal
generator of the G-action on T �Q, and J� W T �Q ! R is the function defined by
J�.˛q/ WD

˝
J.˛q/; �

˛
. By equivariance, J is a Poisson map relative to the canonical

symplectic form on T �Q and the Lie-Poisson structure on g�.

Momentum Maps for the EPAut Equations

In [14], a pair of momentum maps analogue to (6) has been constructed for
the EPAut equations. It is obtained by considering two principal O-bundles
�S W PS ! S and �M W PM ! M , and the cotangent lifted action of the automor-
phism groups A ut.PS/ and A ut.PM / on the manifold QKK WD EmbO.PS ; PM /
of all smooth O-equivariant embeddings of PS into PM :

aut.PM /
� JL � T � EmbO.PS ; PM/

JR�! aut.PS/
�: (8)

We assume that both S and O are compact, so PS is compact too and QKK is a
Fréchet manifold (see Remark 1).
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When both PS and PM are trivial principal bundles, we have the identification

QKK ' Emb.S;M/ �F .S;O/; (9)

see Lemma 3.7 in [14]. In a similar way with (4), the equivariant embedding
associated to a pair .Q; 
/ 2 Emb.S;M/�F .S;O/ is the map .x; g/ 2 S �O 7!
.Q.x/; 
.x/g/ 2 M � O . The tangent space T
F .S;O/ consists of functions
v
 W S ! TO covering 
 and the cotangent space T �


 F .S;O/ consists of functions
�
 W S ! T �O covering 
 .

We now recall from [14] the expression of the cotangent momentum maps in the
case of trivial bundles.

2.2.1 Left Action Momentum Map

The left action of A ut.M�O/ ' Diff.M/sF .M;O/ 3 .'; a/ onQKK 3 .Q; 
/
is defined by

.'; a/.Q; 
/ WD .' ıQ; .a ıQ/
/: (10)

Given a Lie algebra element .u; �/ 2 X.M/sF .M; o/, the infinitesimal generator
associated to the left action (10) reads .u; �/QKK .Q; 
/ D .u ı Q; .� ı Q/
/. By
applying formula (7) with g D X.M/sF .M; o/, we get the expression

hJL.PQ; �
 /; .u; �/i D hPQ;u ıQi C h�
 ; .� ıQ/
i;

so that the momentum map JL W T �QKK ! X.M/� �F .M; o/� reads

JL
�
PQ; �


� D
�Z

S

PQı.x �Q/�S ;
Z

S

�


�1ı.x �Q/�S

�

; (11)

where X.M/� and F .M; o/� denote the distributional dual spaces.

2.2.2 Right Action Momentum Map

The right action of A ut.S �O/ D Diff.S/sF .S;O/ 3 . ; b/ onQKK 3 .Q; 
/
is defined by

.Q; 
/. ; b/ WD .Q ı  ; .
 ı  /b/: (12)

Given a Lie algebra element .v; �/ 2 X.S/sF .S; o/, the infinitesimal generator
reads .v; �/QKK .Q; 
/ D .TQ�v; T 
 �vC 
�/, where 
� 2 T
F .S;O/ denotes the
left translation of � by 
 . By applying the cotangent momentum map formula (7) to
g D X.S/sF .S; o/, we get
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hJR.PQ; �
 /; .v; �/i D hPQ; TQ � vi C h�
 ; T 
 � vC 
�i;

so that the momentum map JR W T �QKK ! X.S/� �F .S; o/� reads

JR
�
PQ; �


� D �PQ�TQC �
 �T 
; 
�1�

�
; (13)

where we note that, as opposed to JL in (11), JR takes values in the regular dual.

Remark 2. Both momentum maps are equivariant, since they are momentum maps
for cotangent lifted actions. In particular they are formally Poisson maps for the Lie-
Poisson bracket on Lie algebra duals. Note that the definition of Poisson brackets
leads to several difficulties in the infinite dimensional case, this is why the above
property only holds at a formal level. In the next section we will show that these
momentum maps form a dual pair. Even if the Poisson properties only hold at a
formal level, the dual pair property can be rigorously verified, as in [11].

3 The Dual Pair Property of the EPAut Momentum Maps

As shown in [11], the EPDiff momentum maps (6) introduced in [22] form a
dual pair when restricted to the open subset T � Emb.S;M/� of T � Emb.S;M/,
consisting of one-forms on M along S which are everywhere non-zero on S , i.e.
PQ.x/ ¤ 0 for all x 2 S . Note that T � Emb.S;M/� is invariant under the actions
of both Diff.S/ and Diff.M/.

The pair of EPAut momentum maps (8) was introduced in [14]. We shall now
show the dual pair property for these EPAut momentum maps in the case of trivial
bundles, that is, with momentum maps given by (11) and (13).

3.1 Cotangent Lifted Actions

Let T �Q�
KK denote the open subset of T �QKK consisting of pairs .PQ; �
 / with the

property that for any x 2 S , the pair .PQ.x/; �
 .x// 2 T �
Q.x/M � T �


.x/O is non-
zero. Note again that T �Q�

KK is invariant under the actions of both A ut.S � O/
and A ut.M �O/.

We compute below the explicit form of the cotangent lifted actions of the
automorphism groups on T �Q�

KK , that we will need in order to prove the dual pair
property.
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3.1.1 Left Cotangent Action

The formula for the cotangent lifted action ofA ut.M�O/ D Diff.M/sF .M;O/
on T �QKK is

.'; a/ � .PQ; �
 / D
�
T �'�1 � �PQ � h�

�1; ıla ıQi� ; .a ıQ/�


�
; (14)

where ıla D a�1da 2 ˝1.M; o/ denotes the left logarithmic derivative
of a 2 F .M;O/, and therefore ıla ı Q is a section of the vector bundle
Q�.T �M/˝ o! S . Indeed, using the expression of the tangent lift of
the action (10) given by

.'; a/ � .VQ; v
 / D
�
T ' �VQ; .a ıQ/v
 C .Ta �VQ/


�
;

one computes the cotangent lifted action (14) as follows. Using the expression of
the inverse in the semidirect product .'; a/�1 D .'�1; a�1 ı '�1/, we have

h.'; a/ � .PQ; �
 /; .V'ıQ; v.aıQ/
 /i D
˝
.PQ; �
 /; .'

�1; a�1 ı '�1/ � .V'ıQ; v.aıQ/
 /
˛

D ˝PQ; T '
�1 �V'ıQ

˛

C ˝�
 ; .a�1 ıQ/v.aıQ/
 C .T .a�1 ı '�1/ �V'ıQ/.a ıQ/

˛

D ˝PQ; T '
�1 �V'ıQ

˛C ˝�

�1; .Ta�1.T '�1 �V'ıQ//.a ıQ/;
˛

C ˝.a ıQ/�
 ; v.aıQ/

˛

D ˝T �'�1 � �PQ C h�

�1; ır .a�1/ ıQi� ; V'ıQ
˛C ˝.a ıQ/�
 ; v.aıQ/


˛

D ˝T �'�1 � �PQ � h�

�1; ıla ıQi� ; V'ıQ
˛C ˝.a ıQ/�
 ; v.aıQ/


˛
;

which shows (14). We used in the last step the relation ır .a�1/ D �ıla between left
and right logarithmic derivatives, where the right logarithmic derivative is defined
by ıra D .da/a�1 2 ˝1.M; o/.

3.1.2 Right Cotangent Action

The formula for the cotangent lifted action of A ut.S � O/ D Diff.S/sF .S;O/
on T �QKK reads

.PQ; �
 / � . ; b/ D
�
.PQ ı  / Jac ; .�
 ı  /b Jac 

�
; (15)

where Jac denotes the Jacobian of  relative to the volume form �S , i.e.  ��S D
Jac �S . Indeed, from the expression of the tangent lift of the action (12) given by

.VQ; v
 / � . ; b/ D .VQ ı  ; .v
 ı  /b/
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one computes the cotangent lifted action (15) as follows.

h.PQ; �
 / � . ; b/; .VQı ; v.
ı /b/i
D h.PQ; �
 /; .VQı ; v.
ı /b/ � . �1; b�1 ı  �1/i
D hPQ; VQı ı  �1i C h�
 ; .v.
ı /bb�1/ ı  �1/i
D h.PQ ı  / Jac ; VQı i C h.�
 ı  /b Jac ; v.
ı /bi;

which shows (15).

3.2 Transitivity Results

In order to prove the dual pair property, we shall show the stronger result that the
actions of A ut.M � O/ and A ut.S � O/ on T �Q�

KK are mutually completely
orthogonal.

We will use the following lemma (Lemma 4.2 in [11]), detached from the proof
of Proposition 3 in [17].

Lemma 1. Let .M; g/ be a Riemannian manifold and N � M a submanifold. Let
E be the normal bundle TN? viewed as a tubular neighborhood of N in M , with
the identification done by the Riemannian exponential map. Then any section � 2
� .T �M jN / vanishing on TN , when restricted to TN?, defines a smooth function
h 2 F .E/, linear on each fiber, whose differential along N satisfies .dh/jN D
�.as sections of T �M jN /.

The first transitivity result is shown in the following proposition.

Proposition 2. The groupA ut.M �O/ acts infinitesimally transitively on the level
sets of the momentum map JR given in (13) restricted to T �Q�

KK .

Proof. The left action .'; a/.Q; 
/ D .' ı Q; .a ı Q/
/ of A ut.M � O/ on
QKK is transitive on connected components. This can be seen as follows. Given
.Q1; 
1/ and .Q2; 
2/ in the same connected component of QKK , by the transitivity
of the action of Diff.M/ on connected components of Emb.S;M/ [18], we find a
diffeomorphism ' such that Q2 D ' ıQ1. By a standard argument using a partition
of unity, it is possible to extend 
2 ı 
�1

1 2 F .S;O/ in a smooth way to a smooth
function a 2 F .M;O/ along the embedding Q1.

Consider two pairs .PQ; �
 / and .P0
Q0 ; �

0

 0/ in the same level set of JR, so that

PQ �TQC �
 �T 
 D P0
Q0 �TQ0 C �0


 0 �T 
 0 and 
�1�
 D .
 0/�1�0

 0 : (16)

The left action of A ut.M �O/ being transitive on connected components ofQKK ,
we can focus on the action of the isotropy group of .Q; 
/ on the cotangent fiber
over .Q; 
/. Hence we assume that both pairs have the same foot point .Q; 
/, so
that the identities above become

PQ �TQ D P0
Q � TQ and �0


 D �
 :
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The two objects that characterize the JR level set of .PQ; �
 / over .Q; 
/ are

˛ WD PQ �TQ 2 ˝1.S/ and � WD �

�1 2 F .S; o�/:

Because the embedding Q is fixed, we can move the objects to the submanifold
N D Q.S/ of M . We will denote by the same letters their push-forward by
the diffeomorphism Q W S ! N , namely ˛ 2 ˝1.N / and � 2 F .N; o�/.
We also identify T �

Q Emb.S;M/ D � .Q�T �M/ with � .T �M jN /, via the
diffeomorphism Q. We consider the affine subspace

�˛.T
�M jN / WD fP 2 � .T �M jN / W PjTN D ˛g � � .T �M jN /;

whose directing linear subspace is given by the space of sections of the conormal
bundle to the submanifoldN of M

�0.T
�M jN / D fP 2 � .T �M jN / W PjTN D 0g:

We define an open subset of �˛.T �M jN / by

�˛.T
�M jN /� WD fP 2 � .T �M jN / W PjTN D ˛ and P.x/ ¤ 0;8 x 2 ��1.0/g:

The isotropy group of .Q; 
/ is a semidirect product group,

A ut.M � O/.Q;
/ D DiffN .M/sFN .M;O/; (17)

where DiffN .M/ denotes the subgroup of diffeomorphisms of M that fix the
submanifold N D Q.S/ of M pointwise and FN .M;O/ WD fa W M !
O j a.x/ D e;8x 2 N g. Its isotropy Lie algebra of .Q; 
/ is the semidirect product
XN .M/sFN .M; o/, where XN .M/ denotes the Lie algebra of vector fields onM
that vanish on N , the Lie algebra of DiffN .M/, and FN .M; o/ WD f� W M ! o j
�.x/ D 0;8 x 2 N g, the Lie algebra of FN .M;O/.

The isotropy group acts by (14) on the cotangent fiber over .Q; 
/, so it preserves
the second component

.'; a/ � .PQ; �
 / D
�
T �'�1 � �PQ � h�

�1; ıla ıQi� :�


�
: (18)

Its restriction to the level sets of JR can be seen an action on �˛.T �M jN /� :

.'; a/ �P D �P � h�; .ıla/jN i
� ı .T '�1/jN : (19)

We notice that .ıla/jTN D ıl .ajN / D ıle D 0 for all a 2 FN .M;O/ and
T '�1jTN D idTN for all ' 2 DiffN .M/, so we have indeed an action on
�˛.T

�M jN /� .
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The infinitesimal action of the isotropy Lie algebra XN .M/sFN .M; o/ on
�˛.T

�M jN /� is obtained by differentiating the action (19):

.u; �/�˛.T �M jN /� .P/ D �P ı .ru/jN � h�; .d�/jN i; (20)

where we used the fact that the differential at the identity of the logarithmic
derivative map ıl W F .M;O/! ˝1.M; o/ is d W F .M; o/! ˝1.M; o/.

The transitivity result we have to prove can now be rephrased as infinitesimal
transitivity of the action (20). This means to show that, given P 2 �˛.T �M jN /� ,
for every P 0 2 �0.T �M jN / there exists .u; �/ 2 XN .M/sFN .M; o/ such that

P 0 D �P ı .ru/jN � h�; .d�/jN i: (21)

For this we proceed as in [11]. We fix a Riemannian metric on M and denote by
r, ], and k k the Levi-Civita covariant derivative, the sharp operator, and the norm
associated to the Riemannian metric, respectively. We also fix an inner product on
the (finite dimensional) Lie algebra o with induced norm k k (both on o and on o�)
and induced isomorphism ] W o� ! o.

Since P and � cannot vanish simultaneously, the function kPk2 C k�k2 is non-
zero everywhere on N , so we can consider the section

� WD P 0

kPk2 C k�k2 2 �0.T
�M jN /:

Lemma 1 can be applied to the restriction of � to the normal bundle over the
submanifold N � M (viewed as a tubular neighborhood of N ) because the
restriction of � to TN vanishes. We thus obtain from � a function f on the normal
bundle, linear on each fiber, with the property that the differential of f along N is
�, i.e. .df /jN D � as sections of T �M jN . Using the tubular neighborhood ofN we
build a smooth function onM , identical to f on a neighborhood ofN , also denoted
by f . In particular f vanishes on N since � clearly vanishes on the zero section of
T �M jN .

From this function f we define the pair .u; �/ 2 XN .M/ �FN .M; o/ by u WD
�f eP] and � WD �f e�], where eP] 2 X.M/ is an arbitrary smooth extension of
P] W N ! TM and e�] 2 F .M; o/ is an arbitrary smooth extension of �] W N ! o,
both obtained by a standard argument using a partition of unity.

The computation �.ru/jN D .f reP]/jN C ..df /eP]/jN D .df /jNP] D �P]

implies that

�P ı .ru/jN D P ı .�P]/ D kPk2
kPk2 C k�k2 P

0:
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On the other hand �.d�/jN D .f de�]/jN C ..df /e�]/jN D .df /jN�] D ��]

implies that

�h�; .d�/jN i D h�; ��]i D k�k2
kPk2 C k�k2 P

0:

By adding them we get (21), which ensures the infinitesimal transitivity of the
action (20) of XN .M/sFN .M; o/ on �˛.T �M jN /� .

The next Proposition is the analogue of Proposition 2 but for the right action and
the left momentum map.

Proposition 3. The group A ut.S � O/ acts transitively on level sets of the
momentum map JL given in (11) restricted to T �Q�

KK .

Proof. Suppose that .PQ; �
 / and .P0
Q0 ; �

0

 0/ lie in the same level set of JL, i.e.

JL.PQ; �
 / D JL.P0
Q0 ; �

0

 0/. We thus have

Z

S

PQ � .X ıQ/�S D
Z

S

P0
Q0 � .X ıQ0/�S

and
Z

S

�


�1.f ıQ/�S D

Z

S

�0

 0.


0/�1.f ıQ0/�S ;

] for all X 2 X.M/ and all f 2 F .M; o/.
These identities ensure that the embeddings Q and Q0 have the same image:

Q.S/ D Q0.S/. In order to prove this, we fix x0 2 S . If PQ.x0/ ¤ 0, then from
the first equality we obtain that Q.x0/ 2 Q0.S/. Indeed, if this is not the case,
then we can find X with compact support K D suppX such that K 3 Q.x0/ and
K \Q0.S/ D ¿. Such an X can also be chosen such that

R
S

PQ � .X ı Q/�S ¤ 0,
whereas we always have

R
S

P0
Q0 � .X ı Q0/�S D 0. This is in contradiction with the

hypothesis. If PQ.x0/ D 0, then, by the definition of T �Q�
KK , �
.x0/ ¤ 0. Then

also �
.x0/
.x0/�1 ¤ 0 and we use the second identity with the same argument as
above, to get Q.x0/ 2 Q0.S/. Doing this for all x0 2 S proves that Q.S/ � Q0.S/
and, similarly, that Q0.S/ � Q.S/.

Since Q.S/ D Q0.S/, there exists  2 Diff.S/ such that Q0 D Q ı  . Plugging
this into the first identity above and using a change of variables, we get

Z

S

PQ � .X ıQ/�S D
Z

S

.P0
Q0 ı  �1/ � .X ıQ/ Jac �1 �S ;

for all X 2 X.M/. We know that Jac �1 D Jac�1
 ı �1, so P0

Q0 D .PQ ı  / Jac ,
the first component of (15).
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Let b D .
�1 ı  /
 0 2 F .S;O/, so 
 0 D .
 ı  /b, which we plug into the
second identity above to get

Z

S

�


�1.f ıQ/�S D

Z

S

�0

 0b

�1.
�1 ı  /.f ıQ ı  /�S

D
Z

S

	
.�0

 0b

�1/ ı  �1



�1.f ıQ/ Jac �1 �S :

Since f ı Q is arbitrary in F .S; o/, we get �
 D
	
.�0

 0b

�1/ ı  �1



Jac �1 . This

means that �0

 0 D .�
 ı  /b Jac , the second component of (15).

From the preceding propositions we obtain that the commuting actions of
A ut.M � O/ and A ut.S � O/ are mutually completely orthogonal. We thus get
the following result.

Theorem 1. The momentum maps (11) and (13) associated to the EPAut equations,
form a dual pair:

Recall that the momentum map JL provides the formula for possible singular
solutions of the EPAut equations on M [14]. Being equivariant, JL is a formally
Poisson map relative to the canonical symplectic form on T � EmbO.S�O;M�O/�
and the Lie-Poisson structure on aut.M � O/�. This ensures that the parameteri-
zation of the singular solutions in terms of PQ and �
 are Clebsch variables in the
sense of [33]. The dual pair property tells us that A ut.S �O/ is the gauge group of
that Clebsch representation. Since JR is A ut.S �O/-invariant, it follows that JR is
a Noether conserved quantity for the canonical dynamics of these singular solutions.

Whereas the map JL is a geometric object that is always well-defined, it
is not always true that the corresponding EPAut equations admit these singular
solutions. This happens only for a certain class of Hamiltonians h for which the
expression h ı JL is well-defined. Such a class includes the modified Camassa-
Holm equation [24] together with its higher dimensional and anisotropic versions
studied in [23]. It is interesting to mention that while it is well known that the
strong solutions of these EPAut equations are described by geodesics of a right-
invariant metric on A ut.M � O/, the singular solutions also admit a geodesic
interpretation. Indeed, this follows from a general result in [10] (see Theorem 2.5),
that the singular solutions given by JL are described by geodesics t 7! .Q.t/; 
.t//
on a A ut.M � O/-orbit in EmbO.S � O;M � O/�, relative to the normal metric
associated to the right-invariant metric on A ut.M � O/.



122 F. Gay-Balmaz and C. Vizman

Being equivariant, the momentum map JR also yields Clebsch variables for the
EPAut equation on S . The dual pair property again ensures that A ut.M �O/ is the
gauge group the Clebsch representation.

4 The Incompressible EPAut Equation
and Momentum Maps

In this section we recall the expression of the Euler-Poincaré equations on the group
of volume preserving automorphisms of a trivial principal bundle (the EPAutvol

equations) and review from [14] some facts about the associated pair of momentum
maps. We will then focus on a particular case relevant for the Yang-Mills Vlasov
equations, arising when the total space of one of the principal bundles is a cotangent
bundle (the so called Yang-Mills phase space).

4.1 The Group of Volume Preserving Automorphisms

Let � W P !M be a principalO-bundle and suppose thatM is orientable, endowed
with a Riemannian metric g. Let �M be the volume form induced by g.

The group A utvol.P / consists, by definition, of the automorphisms of the
principal bundle P which descend to volume preserving diffeomorphisms of the
base manifold M with respect to the volume form �M . Its Lie algebra, denoted
by autvol.P / consists of equivariant vector fields such that their projection to M is
divergence free.

Remark 3 (Kaluza-Klein Metric and Induced Volume). Given a principal connec-
tion A 2 ˝1.P; o/ on P and an inner product � on o, one defines the Kaluza-Klein
Riemannian metric on P as

�.Up; Vp/ D g.T �.Up/; T �.Vp//C �.A .Up/;A .Vp//; Up; Vp 2 TpP:
The induced volume form �P on P is given by

�P D ���M ^A �det� ;

where A � det� denotes the pullback by the connection A W TP ! o of the
canonical determinant form induced by � on o. Supposing that � is Ad-invariant,
the Kaluza-Klein metric � and the volume form �P induced by � are O-invariant.
Given ' 2 A ut.P /, we have the equivalence

' 2 A utvol.P /, '��P D �P ;

see Lemma 4.1 in [14]. As a consequence, the Lie algebra autvol.P / coincides with
the Lie algebra of equivariant divergence free vector fields with respect to �P .
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When the principal bundle is trivial, i.e. � W P ' M � O ! M , the group
A utvol.P / is isomorphic to the semidirect product group

A utvol.P / ' Diffvol.M/sF .M;O/;

where Diffvol.M/ acts on F .M;O/ by composition on the right. Its Lie algebra is
the semidirect product Lie algebra autvol.P / ' Xvol.M/sF .M; o/. Using the L2

pairing associated to the volume form �M , we identify the dual as

autvol.P /
� ' Xvol.M/� �F .M; o/� D ˝1.M/=dF .M/�F .M; o�/:

The Euler-Poincaré equations on the automorphism group A utvol.P / (the EPAut vol

equations) take the following form when P is a trivial principal bundle.

Proposition 4 (The EPAutvol Equations on a Trivial Principal Bundle [14]).
Consider a reduced Lagrangian ` W Xvol.M/sF .M; o/! R. Then the associated
EPAutvol equations are

8
ˆ̂
<

ˆ̂
:

@

@t

ı`

ıu
C £u

ı`

ıu
C ı`

ı�
�d� D �dp

@

@t

ı`

ı�
C ad�

�

ı`

ı�
C d

�
ı`

ı�

�

�u D 0;
(22)

where .u; �/ 2 Xvol.M/sF .M; o/ and the operator £u denotes the Lie derivative
acting on one-forms. The first equation is written in ˝1.M/ and p 2 F .M/

denotes the pressure, determined from the incompressibility condition div u D 0.

We refer to [14] for the description of the EPAutvol equations on an arbitrary
principal bundle.

4.2 Review of the Ideal Fluid Case

The pair of momentum maps associated to the Euler equations discovered in [33]
justifies geometrically the existence of Clebsch canonical variables for ideal fluid
motion and explains the Hamiltonian structure of point vortex solutions in terms of
the Hamiltonian structure of the Euler equations. As claimed in [33], and rigorously
shown in [11], this pair of momentum maps forms a dual pair.

Given a compact volume manifold .S; �/ and a symplectic manifold .M;!/, the
pair of momentum maps arise from the commuting symplectic actions of the groups
Diffsymp.M/ and Diffvol.S/ on the Fréchet manifold Emb.S;M/ endowed with the
symplectic form

N!.f /.uf ; vf / WD
Z

S

!.f .x//.uf .x/; vf .x//�S :
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In order to get Hamiltonian actions it is needed to replace these groups by the
subgroups Diffham.M/ and Diffex.S/ of Hamiltonian and exact volume preserving
diffeomorphisms, respectively. Furthermore, in order to have equivariance, required
from the dual pair properties, it is needed to consider central extensions of these
groups, given by the group of quantomorphisms (central extension of Diffham.M/)
and the Ismagilov central extension of Diffex.S/, respectively [11].

In the particular case when the symplectic form is exact, ! D �d� , one can stay
with the whole group Diffvol.S/ (instead of Diffex.S/) and the central extension is
not needed. Another simplification arises in this case, since the quantomorphism
group can be written as a topologically trivial extension of Diffham.M/, with the
help of a group 2-cocycle B [25],

B.'1; '2/ WD
Z '2.m0/

m0

�
� � '�

1 �
�
; '1; '2 2 Diffham.M/;

extension denoted by Diffham.M/ �B R.

4.2.1 The Right Action Momentum Map

The natural action of the group Diffvol.S/ on Emb.S;M/ is Hamiltonian with
equivariant momentum map JR.f / D Œf ��	, where ! D �d� . Here the dual
of Xvol.S/ is identified with the quotient space ˝1.S/=d˝0.S/. If in addition
H1.S/ D 0, then this dual can be identified with the space d˝1.S/ of vorticities,
and the right momentum map becomes JR.f / D �f �!, [33].

Lemma 2. Diffham.M/ acts transitively on connected components of level
sets of the right leg momentum map JR W Emb.S;M/ ! ˝1.S/=d˝0.S/,
JR.f / D Œf ��	.

Proof. The transitivity of the action of Diffham.M/ on connected components of
level sets of JR follows from the transitivity of the action of Xham.M/ on level sets
of JR, since the constructions can be performed smoothly depending on a parameter.
We start again with an arbitrary vector field vf onM along f such that Tf JR � vf D
Œf �£vf �	 D 0. There exists a function Nh 2 C1.S/ whose differential is d Nh D
�f �ivf d� . We extend it to a function h1 2 C1.M/ such that Nh D h1 ıf . Now the
1-form ˇ on M along S defined by

ˇ D dh1 ı f C ivf .d� ı f / 2 � .f �T �M/

vanishes on vectors tangent to f .S/ � M . By Lemma 4.2 from [11] we find h2 2
C1.M/ such that ˇ D dh2 ı f . It follows that d.h1 � h2/ ı f D �ivf d� D ivf !,
so vf D Xh1�h2 ı f 2 Xham.M/Emb.f /.



Dual Pairs for Non-Abelian Fluids 125

4.2.2 The Left Action Momentum Map

The Lie algebra of the quantomorphism group is the central extension C1.M/ of
the Lie algebra of Hamiltonian vector fields

h 2 C1.M/ 7�! Xh 2 Xham.M/; iXh! D dh:

Its dual can be identified with the space of compactly supported densities Denc.M/,
so the infinitesimally equivariant left leg momentum map is JL.f / D f��, [33].

Lemma 3 ([11]). Diffvol.S/ acts transitively on level sets of the left leg momentum
map JL W Emb.S;M/! Denc.M/.

Proof. Let f1; f2 2 Emb.S;M/ such that JL.f1/ D JL.f2/. Then we have

Z

S

.h ı f1/� D
Z

S

.h ı f2/�; h 2 C1.M/: (23)

A first consequence is that the two embeddings have the same image in M , so there
exists  2 Diff.S/ such that f2 D f2 ı  . We rewrite the identity (23) as

R
S.h ı

f2/ 
�� D R

S.h ı f2/� for all h ı f2 2 C1.S/, and we deduce  �� D �. We
found  2 Diffvol.S/ such that f2 D f1 ı .

The group of volume preserving diffeomorphisms Diffvol.S/ and the quantomor-
phism group Diffham.M/�B R have mutually completely orthogonal actions on the
manifold of embeddings Emb.S;M/, so

is a dual pair.

4.3 A Pair of Momentum Maps for the EPAutvol Equations

The above setting for the ideal fluid equations has been developed in [14] for the
EPAutvol equations as follows.

Let �S W PS ! S be a principal O-bundle and consider another principal
O-bundle�M W PM !M such thatPM carries an exact symplectic form! D �d� ,
where � 2 ˝1.PM / is O-invariant. Assume that both S and O are compact, hence
PS is compact too. As above, we endow PS with the O-invariant volume form
�PS D ���S ^ A � det� , where � is an Ad-invariant inner product on o and A a
principal connection on PS .
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The space of O-equivariant embeddings from PS into PM , denoted by QKK D
EmbO.PS ; P /, is a Fréchet manifold because PS is compact (see Remark 1).
We endow the manifoldQKK with the symplectic form N! given by

N!.f /.uf ; vf / WD
Z

PS

!.f .p//.uf .p/; vf .p//�PS :

The function under the integral is O-invariant, so the right hand side can be written
as an integral over S . The local triviality of the bundle PS ! S ensures the non-
degeneracy of N!.

We describe below the momentum maps associated to the EPAutvol equa-
tions. In this context, the manifold Emb.S;M/ and the groups Diffvol.S; �/

and Diffham.M/ �B R of the ideal fluid case will be replaced by the manifold
EmbO.PS ; PM /, the group A utvol.PS/ of volume preserving automorphisms, and
the group V Chrom.PM/ of Vlasov chromomorphisms, respectively.

4.3.1 Left Action Momentum Map

Let us denote by A utham.PM / WD A ut.PM /\ Diffham.PM / the group of
Hamiltonian automorphisms of PM whose Lie algebra autham.PM/ consists of
O-equivariant Hamiltonian vector fields on PM . This group acts symplectically by
composition on the left on EmbO.PS ; PM / and admits a momentum which is not
equivariant and hence not Poisson. As in [11], in order to obtain an equivariant
momentum map, we have to consider the central extension of A utham.PM/ by the
cocycle

B.'1; '2/ WD
Z '2.p0/

p0

�
� � '�

1 �
�
; '1; '2 2 A utham.PM/; (24)

where the integral is taken along a smooth curve connecting the point p0 with the
point '2.p0/. The cohomology class of B is independent of the choice of the point
p0 and the one-form � such that �d� D !, see Theorem 3.1 in [25]. As shown in
[14], in order to obtain an equivariant momentum map, one needs to consider the
subgroupA utham.PM / of A utham.PM /, whose Lie algebra consists of Hamiltonian
vector fields associated to O-invariant Hamiltonian functions on .PM ; !/.

This group is referred to as the group of special Hamiltonian automorphisms.
Its central extension V Chrom.PM/ WD A utham.PM / �B R is called the Vlasov
chromomorphism group since it is the configuration Lie group for Yang-Mills
Vlasov plasmas in chromohydrodynamics. The Lie algebra of V Chrom.PM/ is
isomorphic to the space of functions onM whose Lie bracket is given by the reduced
Poisson bracket on M D PM=O obtained by reduction of the symplectic Poisson
bracket on .PM ; !/. We refer to [14] for more details regarding the definition of
these groups.
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The group V Chrom.PM/ acts symplectically on the left on the symplectic
manifold .EmbO.PS ; P /; N!/ and admits the momentum map

JL W EmbO.PS ; PM /! F .M/� D FO.PM /
�; hJL.f /; hi D

Z

PS

Qh.f .p//�PS ;
(25)

where h 2 F .M/ and Qh D h ı �M 2 FO.PM /. Since the function p 7! Qh.f .p//
on PS is O-invariant, it defines a function on S , and we have in fact an integral
over S . By abuse of notation, we can write

JL.f / D
Z

S

ı.n� f .p//�S 2 F .M/�:

Remark 4 (Special Hamiltonian Automorphisms). It is interesting to recall here that
the group Diffham.M;!/ is of central importance in Hamiltonian mechanics, since
it contains the flows of Hamiltonian systems on the symplectic manifold .M;!/.
In the same way, the group A utham.PM ; !/ of special Hamiltonian automorphisms,
where PM !M is a O-principal bundle and the symplectic form ! is O-invariant,
is the corresponding group in the case of Hamiltonian systems with symmetries.
It contains the flows of Hamiltonian systems with O-symmetries.

An important example in this context are Wong’s equations for a nonabelian
charged particle in a fixed Yang-Mills field. They arise as a Hamiltonian system on
.PM ; !/ D .T �P;˝can/, where P ! Q is a O-principal bundle over the physical
space Q of the particle, see [35].

4.3.2 Right Action Momentum Map

The group A utvol.PS/ acts symplectically on the right on the symplectic manifold
.EmbO.PS ; P /; N!/ and admits the momentum map

JR W EmbO.PS ; PM /! autvol.PS/
� D ˝1

O.PS/=dFO.PS/; JR.f / D Œf ��	:
(26)

The identification autvol.PS/
� D ˝1

O.PS/=dFO.PS/ is made by using the duality
pairing induced by the duality pairing

h˛;Xi WD
Z

PS

˛.X/�PS (27)

between aut.PS/ and aut.PS/
� D ˝1.PS/. Note that in (27) the function ˛.X/ is

O-invariant since bothX and ˛ are equivariant, so it induces a function on S so that
the duality pairing can be rewritten as an integral over S with respect to �S .
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4.3.3 The Pair of Momentum Maps

In summary, we have the following pair of momentum maps associated to the
EPAutvol equation

Being equivariant, the momentum maps JL and JR are Poisson maps and hence
yield Clebsch variables for the Lie-Poisson systems on F .M/� and the EPAutvol

equations on PS , respectively. Note that the Lie-Poisson system on F .M/� is a
Vlasov system whose Poisson bracket is not symplectic but is the reduced Poisson
bracket on M D PM=O . The momentum map JL provides the expression of
singular solutions for this Lie-Poisson system.

When PM D T � NP , where NP is itself a O-principal bundle, this system is
related to Yang-Mills Vlasov equation and in this case JL can be identified with
the single particle solution, which is of central importance for the theory of Yang-
Mills charged fluids, [15]. This particular setting will be considered in the following
section.

Note also that, since both momentum maps are invariant under the action of
the group associated to their partner momentum map, they also provide Noether
conserved quantities for these Clebsch variables. The dual pair property that will
be shown below will allow us to identify the gauge groups of these Clebsch
representations.

4.4 Yang-Mills Phase Space

We now consider the special case when the total space of the principal bundle �M W
PM ! M is the cotangent bundle of another principal bundle N� W NP ! NM . We
endow PM D T � NP with the canonical symplectic form˝ NP D �d NP and we let O
act on T � NP by cotangent lift. Thus we have PM D T � NP ! M D T � NP=O . This
particular choice is motivated by the example of the Yang-Mills Vlasov equation,
as mentioned in [14], in which case N� W NP ! NM is the principal bundle of the
Yang-Mills theory involved. If moreover N� W NP ' NM � O ! M is a trivial O-
bundle, then we have PM D T � NM � T �O and M D T � NM � o�, so that the
left momentum map (25) takes value in the space F .T � NM � o�/� of Yang-Mills
Vlasov distributions. Note that in this case �M W PM !M is also a trivial principal
O-bundle, since we have the equivariant diffeomorphism

� W T � NM � T �O ! �
T � NM � o�� � O; �.˛q; ˛g/ D

�
.˛q; ˛gg

�1/; g
�
: (28)
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If the bundle �S W PS ' S � O ! S is also trivial, then we have the identification

QKK D EmbO.PS ; T
� NP/ ' Emb.S; T � NM � o�/ �F .S;O/ (29)

(see Lemma 3.8 in [14]). More precisely, to the equivariant embedding f W S�O !
T � NM � T �O , f .x; g/ D �

PQ.x/; �
 .x/g
�
, where PQ W S ! T � NM and �
 W S !

T �O , we associate the pair ..PQ; �/; 
/ 2 Emb.S; T � NM � o�/ �F .S;O/, where
� WD �



�1 W S ! o�. Note also that, since the bundle PS is trivial, we have
�PS D �S ^det� . Choosing the Ad-invariant inner product � such that Vol.O/ D 1,
we have �PS D �S ^ �O , where �O is the Haar measure on the compact group O .

The pair of momentum maps (26) and (25) becomes

Notice that the Lie bracket on F .T � NM � o�/ is the reduced Poisson bracket
given here by

ff; ggM D ff; ggT � NM C ff; ggC; f; g 2 F .T � NM � o�/;

where the first term denotes the canonical Poisson bracket on T � NM and the second
term is the Lie-Poisson bracket on o�,

ff; ggC.�/ D
�

�;


ıf

ı�
;
ıg

ı�

��

; f; g 2 C1.o�/:

It is obtained by Poisson reduction of the canonical Poisson bracket on T �. NM �O/.
The expression of these momentum maps were obtained in [14]. For later use,

we provide below some details concerning their derivation.

4.4.1 Left Action Momentum Map

By specifying formula (25) to our case, we can write the left momentum map as

JL W EmbO.S � O; T � NM � T �O/! FO.T
� NM � T �O/� D F .T � NM � o�/�;

where, for h 2 F .T � NM � o�/, Qh D h ı �M 2 F .T � NM � T �O/ and f .x; g/ D
..PQ.x/; �
 .x/g/,

hJL.f /; hi D
Z

S�O

Qh.PQ.x/; �
 .x/g/�PS D
Z

S

h
�
PQ.x/; �
 .x/
.x/

�1��S :
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Formally, using the identification f D ..PQ; �/; 
/ given in (29), this can be
written as

JL.PQ; �; 
/ D .PQ; �/��S : (30)

4.4.2 Right Action Momentum Map

By specifying formula (26) to our case, we can write the momentum map of the
right action as

JR W EmbO.S �O; T � NM � T �O/! autvol.S �O/� D ˝1
O.S � O/=dF .S/

JR.f / D Œf � NP 	 D Œf �. NM CO/	;

where  NP ,  NM , O are the canonical one-forms on T � NP , T � NM , T �O ,
respectively.

The identification of Xvol.S/sF .S; o/ with the Lie algebra autvol.S � O/
of invariant divergence free vector fields on S � O , namely .u; �/.x; g/ D
.u.x/; �.x/g/, provides an identification of their duals: .Xvol.S/sF .S;O//� D�
˝1.S/=dF .S/

��F .S; o�/ with autvol.S �O/� D ˝1
O.S �O/=dF .S/, via the

map .Œ˛	; �/ 7! Œ.˛; �/	, where .˛; �/.vx; �g/ D ˛.vx/C �.x/.�gg�1/.
We now show that in terms of the identification f D ..PQ; �/; 
/ in (29), the

right momentum map has the expression

JR..PQ; �/; 
/ D
	�

P�
Q NM C h�; ır
i

�
;Ad�


 �


2 �˝1.S/=dF .S/

� �F .S; o�/:
(31)

Knowing that �
 D �
 , the first component ˛ 2 ˝1.S/ of f � NP reads

˛.vx/ D .f �. NM CO//.vx; 0e/ D P�
Q NM.vx/C ��


 O.vx/;

for all vx 2 TxS . Using the definition of the canonical one-formO , we have

.��

 O/.vx/ D

˝
�
.x/; Tx.� ı �
/ � vx

˛ D h�.x/
.x/; Tx
 � vxi D h�; ır
i .vx/;

where � W T �O ! O .
Given ˇ 2 T �O , we denote by `ˇ W O ! T �O the orbit map defined by

`ˇ.g/ D ˇg. For the second component � 2 F .S; o�/ of f � NP we compute for
all � 2 o:

h�.x/; �i D .f � NP /.0x; �/ D O.T `�
 .x/.�// D
˝
�
.x/; .T � ı T `�
 .x//.�/

˛

D ˝�
.x/; 
.x/�
˛ D h
.x/�1�
 .x/; �i;
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where we used the identity .T � ı T `ˇ/.�/ D �.ˇ/�, valid for all ˇ 2 T �O . Hence
we obtain � D 
�1�
 D 
�1�
 D Ad�


 � . By combining the above formulas we
get the desired expression (31).

Note that whenH1.S/ D 0, then the dual space
�
˝1.S/=dF .S/

��F .S; o�/ is
isomorphic to the space d˝1.S/ �F .S; o�/ and we can write the first component
of the momentum map as a vorticity as follows

JR..PQ; �/; 
/ D
	
�P�

Q˝ NM � .�
/�˝O ;Ad�

 �


;

where ˝ NM D �d NM and ˝O D �dO are the canonical symplectic forms on
T � NM and T �O , respectively.

5 The Dual Pair Property of the EPAutvol Momentum Maps

In this section we will focus on the particular case of the Yang-Mills phase space
described in Section 4.4. We assume that the principal bundles are trivial, i.e. PM D
T � NP , NP ' NM�O , PS ' S�O , so the commuting actions of the groupsA utvol.S�
O/ and A utham.T

� NM � T �O/ on the symplectic manifoldQKK become

.�; 
/ � . ; b/ D .� ı  ; .
 ı  /b/;  2 Diff.S/; b 2 F .S;O/

.'; a/ � .�; 
/ D .' ı �; .a ı �/
/; ' 2 Diff.T � NM � o�/; a 2 F .T � NM � o�;O/;

for .�; 
/ 2 QKK ' Emb.S; T � NM � o�/ � F .S;O/ (see (29)). The associated
momentum maps have been described in (30) and (31).

In the next two propositions, we shall show the transitivity results needed to
obtain the dual pair property of these momentum maps. We will use the following
Lemma, a direct generalization of the corresponding formula on Lie groups, i.e.
when the manifold NM is absent, see e.g. Proposition 13.4.3. in [32].

Lemma 4. Let Qh 2 F .T � NM � T �O/O and let h 2 F .T � NM � o�/ be the function
defined by Qh.˛m; ˛g/ WD h.˛m; ˛gg

�1/. Then the Hamiltonian vector field X Qh on
T � NM � T �O , pushed forward to .T � NM � o�/ � O by the right trivialization �
from (28), reads

�
��X Qh

�
.˛m; �; g/ D

��

Xh� .˛m/;� ad�
ıh˛m
ı�

�

�

;
ıh˛m
ı�

g

�

;

where h� W T �M ! R is defined by h�.˛m/ WD h.˛m; �/, h˛m W o� ! R is defined
by h˛m.�/ WD h.˛m; �/, andXh� denotes the Hamiltonian vector field associated to
h� on T � NM .

Proposition 5. The group A utham.T
� NM � T �O/ acts infinitesimally transitively

on the level sets of the momentum map JR given in (31).
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Proof. Recall that the Lie algebra of A utham.T
� NM�T �O/ consists of Hamiltonian

vector fields X Qh associated to O-invariant Hamiltonian functions Qh 2 F .T � NM �
T �O/O . Given f D .�; 
/ D ..PQ; �/; 
/ 2 QKK , and using Lemma 4 above, the
infinitesimal action reads

.X Qh/QKK .�; 
/ D
�	
Xh� ı PQ;� ad�

ıh
ı� ı� �



;

�
ıh

ı�
ı �
�




�

: (32)

We shall now write the derivative of the momentum map JR (31) at .�; 
/ 2
QKK in direction .v�; u
 / 2 T.�;
/QKK . Note that we have v� D .vPQ ; v� /, where
vPQ W S ! T .T � NM/ is a smooth map covering PQ W S ! T � NM and v� W S ! o�
is a smooth map, and u
 W S ! TO is a smooth map covering 
 W S ! O . In
particular u

�1 2 F .S; o/. Using the expression (34) of the differential of the
right logarithmic derivative map ır W F .S;O/ 7! ˝1.S; o/ shown in Lemma 5
below, we obtain the expression

T.�;
/JR � .v�; u
 /
D
	
ŒP�

Q£vPQ
 NM C had�

u
 
�1 � C v� ; ır
i C h�;d.u

�1/i	;Ad�

 .ad�

u
 
�1 � C v�/



2 ˝1.S/=dF .S/ �F .S; o�/ D autvol.S � O/�:

In order to obtain the transitivity result, we have to show that any vector .v�; u
 /
in the kernel of T.�;
/JR can be obtained from an infinitesimal generator of the left
A utham.T

� NS � T �O/-action. More precisely, for any vector .v�; u
 / 2 T.�;
/QKK

with ad�
u
 
�1 � C v� D 0 and such that P�

Q£vPQ
 NM C h�;d.u

�1/i is an exact

1-form on S , there exists h 2 F .T � NM � o�/ such that

vPQ D Xh� ı PQ; v� D � ad�
ıh
ı� ı� �; u
 D

�
ıh

ı�
ı �
�


:

Define j WD u

�1 2 F .S; o/, so that we have u
 D j
 and v� D � ad�
j � .

We will show that there exists h 2 F .T � NM � o�/ such that

j D ıh

ı�
ı �: (33)

To achieve this we use the fact that P�
Q£vPQ

 NM Ch�;dj i is exact, hence there exists
h0 2 F .S/ such that P�

QivPQ
d NM C hd�; j i D dh0. By a standard argument using

a partition of unity, we extend in a smooth way the function h0 to a function h1 2
F .T � NM � o�/ via the embedding � W S ! T � NM � o�, i.e. such that h0 D h1 ı �.
Then we consider the 1-form

� WD .dh1/ ı �� ivPQ
.d NM ı PQ/� j�
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on T � NM � o� along S , where j� is the 1-form on T � NM � o� along � with first
component zero and second component given by j W S ! o D o��.

The form � vanishes on T .�.S//, the tangent space to the submanifold �.S/ of
T � NM � o�. From Lemma 1, there exists a function h2 2 F .T � NM � o�/ such that
� D .dh2/ı�. The function h WD h1�h2 satisfies .dh/ı� D ivPQ

.d NM ıPQ/Cj�,
therefore it verifies (33) as desired.

From (33) we obtain u
 D . ıh
ı�
ı �/
 and v� D � ad�

ıh
ı� ı� � . Moreover, .dh�/ ı

PQ D ivPQ
.d NM ıPQ/, hence vPQ D Xh� ıPQ. Thus we have shown that any .v�; u
 /

in the kernel of T.�;
/JR can be written as (32) for some h W T � NM � o� ! R.

Lemma 5. The differential of the right logarithmic derivative

ır W F .M;O/! ˝1.M; o/; ır
 D .d
/
�1;

at the point 
 2 F .M;O/ in direction u
 2 � .
�TO/ is

d
 ır .u
/ D d.u

�1/C adu
 
�1 ır
: (34)

Proof. By taking the derivative of the identity ır .
 0
/ D ır
 0 C Ad
 0 ır
 , relative
to 
 0 at 
 0 D e in direction � D u

�1, one obtains

d
 ır .u
 / D deır .u

�1/C adu
 
�1 ır
:

The lemma follows now from the formula deır .�/ D d� for all � 2 F .M; o/.

Proposition 6. The group A utvol.S � O/ acts transitively on the level sets of the
momentum map JL given in (30).

Proof. We need to show that given two embeddings .�1; 
1/; .�2; 
2/ 2 EmbO.S �
O; T � NM � T �O/ in the same level set of JL, there exists a volume preserving
automorphism . ; b/ 2 A utvol.S �O/, such that .�2; 
2/ D .�1 ı  ; .
1 ı  /b/.

The equality JL.�1; 
1/ D JL.�2; 
2/ reads
R
S
.h ı �1/�S D

R
S
.h ı �2/�S , for

all functions h 2 F .T � NS � o�/, so the embeddings �1 and �2 have the same image
in T � NM � o�. Therefore, there exists a unique diffeomorphism  of S such that
�2 D �1 ı  .

It follows that the volume form �S WD . �1/��S satisfies .�2/��S D .�1/��S ,
i.e.

R
S
.hı�1/�S D

R
S
.h ı �2/�S D

R
S
.hı�1/�S for all h 2 F .T � NS�o�/. Because

�1 and �2 are embeddings, we conclude that �S D �S , so  ��S D �S and  is a
volume preserving diffeomorphism of S .

By defining the map b WD .
�1
1 ı  /
2 2 F .S;O/, we obtain that the

automorphism . ; b/ 2 A utvol.S � O/ satisfies .�2; 
2/ D .�1 ı  ; .
1 ı  /b/ D
.�1; 
1/ � . ; b/, as required.

From the two transitivity results above, we obtain that the actions are mutually
completely orthogonal and hence we get the following result.
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Theorem 2. The momentum maps (30) and (31) associated to the actions of the
groups A utham.T

� NM �T �O/�B R and A utvol.S �O/ on EmbO.S �O; T � NM �
T �O/, form a dual pair for the EPAut vol equations

6 Conclusion and Future Works

In this paper, we have shown that the pairs of momentum maps associated to the
EPAut equations and its incompressible version arise from mutually completely
orthogonal actions and are therefore dual pairs. We have obtained this result for the
case of trivial principal bundles. For the incompressible situation we have restricted
our study to the physical relevant case of the Yang-Mills phase space. Further studies
will be necessary in order to show the same results without these restrictions.
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The Role of SE.d/-Reduction for Swimming
in Stokes and Navier-Stokes Fluids

Henry O. Jacobs

Abstract Steady swimming appears both periodic and stable. These characteristics
are the very definition of limit cycles, and so we ask “Can we view swimming
as a limit cycle?” In this paper we will not be able to answer this question in
full. However, we shall find that reduction by SE.d/-symmetry brings us closer.
Upon performing reduction by symmetry, we will find a stable fixed point which
corresponds to a motionless body in stagnant water. We will then speculate on the
existence of periodic orbits which are “approximately” limit cycles in the reduced
system. When we lift these periodic orbits from the reduced phase space, we
obtain dynamically robust relatively periodic orbits wherein each period is related
to the previous by an SE.d/ phase. Clearly, an SE.d/ phase consisting of nonzero
translation and identity rotation means directional swimming, while non-trivial
rotations correspond to turning with a constant turning radius.

1 Introduction

Many engineers have a justifiable predilection for coordinate-based descriptions of
the world. However, the use of coordinate-free descriptions is consistently leveraged
in Jerry Marsden’s work to gain insights which would otherwise have been clouded
by the complexities which coordinates bring with them. For example, proving
anything non-trivial about the inviscid fluid equations

@tu
i C uj @j ui C @ip D 0; @iu

i D 0; u 2 X.Rd / (1)

is notoriously difficult. However, with the publication of [3] differential geometers
were permitted to substitute (1) with a right-trivialized geodesic equation on a Lie
group (i.e. an Euler-Poincaré equation). In particular, if one was willing to use
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geometry, one could study inviscid fluids without the need to invoke (1) directly!
Only three years later, the proof of local existence-uniqueness was realized by David
Ebin and Jerry Marsden using these coordinate-free notions [11].

In studying swimming in the mid-Reynolds regime, one is confronted with
coupling a solid body to a Navier-Stokes fluid. It is just as true today as it was
in 1966 that the Navier-Stokes equations are difficult to work with. A very modest
extension of [3] allows us to view fluid-structure problems as forced Lagrangian
systems on principal bundles [22]. In this paper, we will use this geometric
characterization of fluid-structure interaction to study swimming in viscous flows.
We will use these geometric tools to explore the question: Can we reasonably
interpret swimming as a limit cycle? Unfortunately, we will not be able answer this
question in full. However, we will be able to clarify the crucial role which SE.d/-
symmetry will play in the final answer. A limit-cycle interpretation of swimming
is valuable because it would conform with an existing body of knowledge derived
from laboratory and computer experiments. Moreover, this simple characterization
of swimming could be of interest to control engineers who desire to use passive
mechanisms to achieve robust behavior with simple open-loop control algorithms.

1.1 Main Contributions

We will understand the system consisting of a body immersed in a fluid as a
dissipative system evolving on a phase space P . One observes that the system is
invariant with respect to the group of isometries of Rd , i.e. the special Euclidean
group SE.d/. This observation suggests that one can describe the system evolving
on the quotient manifold ŒP 	 D P

SE.d/ . Given this reduction, the main contributions
of this paper are:

• Under reasonable assumptions on the Lagrangian and the viscous frictions, we
will prove the existence of an asymptotically stable point for the dynamics in ŒP 	.

• We will illustrate how relative limit cycles are produced by exponentially stable
equilibria in finite-dimensional dynamical systems under sufficiently small time-
periodic perturbations.

• For sufficiently small time-periodic internal body forces, we will speculate on
the existence of loops in ŒP 	 which approximately satisfy the dynamics.

• We illustrate how loops in ŒP 	 are lifted to paths in P , where each period is
related to the previous by a rigid rotation and translation.

1.2 Background

There exists a substantial body of knowledge in the form of computational and
biological experiments which are consistent with the hypothesis that swimming
could be interpreted as a limit cycle. For example, experiments involving tethered
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Fig. 1 An in-vitro EMG recording of a lamprey spinal chord in “fictive swimming” [46]

dead fish immersed in a flow behind a bluff body suggest an ability to passively
harvest energy from the surrounding vorticity of the flow. The same studies also
provide a relevant example of oscillatory behavior as a stable state for an unactuated
system [6]. Moreover, in living fish, periodic motor neuron actuation has been
recorded directly and periodic internal elastic forces have been approximated via
linear elasticity models [40]. Finally, the notion of central pattern generators,1 has
become widely accepted among biologists studying locomotion [10, 15, 18]. In
particular, a central pattern generator for lamprey swimming has been identified and
EMG readings have been recorded in-vitro to verify that the swimming mechanism
does not rely solely on feedback [46] (see Figure 1). These experiments and
observations from biology suggest that passive mechanisms might play a significant
role in understanding swimming.

Additionally, numerical experiments involving rigid bodies with oscillating
forces suggest that uniform motion (i.e. flapping flight) is an attracting state for
certain pairs of frequencies and Reynolds numbers [2, 48]. Closer to what will be
demonstrated here, numerical simulations of a 2-dimensional model of a lamprey
at high (but not infinite) Reynolds numbers illustrate swimming as an emer-
gent phenomenon arising asymptotically from time-periodic internal body forces.
Trajectories of this system converge to cyclic behavior after very few oscillations
when starting from rest [44] see (Figure 2). A similar study was carried out to
understand the difference between periodic control forces and prescribed kinematics
in [47]. Here, regular periodic behavior was observed for both. Moreover, the
prescribed kinematic swimmers were unable to swim in the inviscid regime due to
time-reversibility, while coherent locomotion was consistently observed for both the
forced and prescribed kinematic swimmers at Re D 70; 140; 350; 560; 700. Finally,
after the initial submission of this article, a series of numerical experiments to
test this “limit-cycle hypothesis” were performed for n-linked swimmers. Here, the
authors viewed swimming as analogous to the emergence of limit cycles in a forced-
damped harmonic oscillator in what they refer to as the “forced-damped-oscillation
framework.” The numerical experiments consisted of placing an n-linked chain with

1Central patter generators (CPGs) are neural networks which produce time-periodic signals.
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Fig. 2 A plot taken from [44] of the horizontal velocity, U , and vertical velocity, V , of n-linked
swimmers with time-periodic internal body forces

Fig. 3 A vorticity isosurface
of an n-linked swimmer
courtesy of [7]

an elastic restoring force on the joint angles into a Navier-Stokes fluid using the
immersed body method. The results consistently suggested that the dynamics admit
a stable relative limit cycle [7] (Figure 3).

In this paper we will approach the problem of fluid-structure interaction in
Navier-Stokes fluids as an instance of Lagrangian reduction by symmetry [9].
Recent work based upon a modest generalization of [3] has accomplished this
reduction by viewing the configuration space of fluid-structure interaction as a
Diffvol.�b0/-principal bundle, where Diffvol.�b0/ is the diffeomorphism group
for the reference-domain of the fluid [22]. In particular, the standard equations
of motion for a passive body immersed in a Navier-Stokes fluid can be seen as
dissipative Lagrange-Poincaré equations. Following Professor Marsden’s tradition
of giving credit to Jean le Rond d’Alembert for his formulation of the Lagrange-
d’Alembert principle, it would be fair to label the equations of motion for a body
immersed in a Navier-Stokes fluid as an instance of Lagrange-Poincaré-d’Alembert
equations. Just as [3] allowed geometers to replace the coordinate-based description
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of an Euler fluid with an Euler-Poincaré equation, [22] will serve as a sanity check
for us, and allow us to replace the equations for a Navier-Stokes fluid coupled to an
elastic solid with a Lagrange-Poincaré-d’Alembert equation.

It is worth noting that the constructions to be presented in this paper are
different from those typically employed in applications of differential geometry to
fluid-structure interaction. In the low Reynolds regime, one frequently encounters
geometric constructions initially articulated in [41]. Similarly, in the potential
flow regime, a similar set of constructions was described in [28]. Both of these
constructions lead to a number of insights in aquatic locomotion at extreme
Reynolds numbers [12, 24–27, 38]. Principal connections are crucial for these
constructions, but interpolating between these extreme Reynolds regimes has proven
difficult. In particular, there will be absolutely no principal connections in this
paper. Moreover, in the inviscid regime vorticity shedding does not occur. Yet,
vorticity shedding plays a fundamental role for biolocomotion in the middle and
high Reynolds swimming [45]. An expansion of geometric mechanics to the Navier-
Stokes regime is one goal of this paper.

1.3 Conventions and Notation

All objects and morphisms will be assumed to be sufficiently smooth. Moreover, we
will not address the existence or uniqueness of solutions for fluid-structure systems
and all algebraic manipulations will be interpreted formally. If M is a smooth
manifold then we will denote the tangent bundle by �M W TM !M , and the tangent
lift of a map f WM ! N will be denoted Tf W TM ! TN . The set of vector fields
on M will be denoted X.M/ and the set of time-periodic vector fields on M will
be denoted X.M/S

1
. A deformation of a vector field X 2 X.M/ is a continuous2

sequence of vector fieldsX" 2 X.M/ parametrized by a real parameter " 2 R which
takes values in a neighborhood of 0 2 R and is such that X0 D X . Given that X.M/

is contained in X.M/S
1
, we can consider time-periodic deformations of vector fields

as well. The flow of a vector-field,X , (perhaps time-dependent) will be denoted by
˚X
t . Lastly, given any map f WM ! N , the map f �1 W f .M/ � N ! Set.M/ is

the set-valued map defined by f �1.n/ D fm 2M jf .m/ D ng.

2 Limit Cycles

Let M be a finite-dimensional Riemannian manifold with norm k � k W TM ! R.
We can use the norm to define the notion of exponential stability. Informally, an
exponentially stable equilibrium is an equilibrium for which nearby trajectories are

2We view X.M/ as a Fréchet vector space.
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attracted to at an exponential rate. Formally, we say an equilibrium is exponentially
stable if the spectrum of the linearized system lies strictly in the left half of
the complex plane. However, the following (and equivalent) definition will be of
greater use.

Definition 1. Let x� 2 M be an equilibrium of the vector field X 2 X.M/.
Let TX 2 X.TM/ be the tangent lift of X . We call x� an exponentially stable
equilibrium if there exists a � < 0 such that

d

dt
kv.t/k < �kv.0/k; 8t > 0

where v.t/ is a solution curve of TX .

If one prefers to view exponential stability in terms of flows, we can use the
Riemannian distance metric d W M � M ! R. Then, an exponentially stable
equilibrium x� 2 M of a vector field X 2 X.M/ is an equilibrium where there
exists a neighborhood U � M containing x� such that for any integral curve x.t/
with x.0/ 2 U the equation

d.x.t/; x�/ < e�td.x.0/; x�/; 8t > 0

holds for some � < 0.
A special property of exponentially stable equilibria is what some control

theorists call robustness [49] and what some dynamical systems theorists call
persistence [13, 14, 19]. Let X" 2 X.M/ be a deformation of the vector field
X 2 X.M/. Given an exponentially stable point x� 2 M of X , we can assert
the existence of exponentially stable equilibria of X" for sufficiently small ". This
robustness of behavior can be vastly generalized by considering normally hyperbolic
invariant manifolds.

Definition 2 (Normally Hyperbolic Invariant Manifold3). Let N � M be a
compact invariant submanifold of the vector field X 2 X.M/, and let ˚X

t be the
flow of X . We call N a normally hyperbolically invariant manifold if there exists a
T˚t -invariant splitting TNM � TN ˚ Es ˚ Eu and rates �s < �� < 0 < � < �u

such that

kT˚X
t .v/k 	 C � e�jt jkvk; 8v 2 TN; t 2 R (2)

kT˚X
t .v/k 	 Cu � e�utkvk; 8v 2 Eu; t 	 0 (3)

kT˚X
t .v/k 	 Cs � e�s tkvk; 8v 2 Es; t � 0 (4)

for some constants C;Cu; Cs > 0. If Eu has trivial fibers, then we call N an
exponentially stable invariant manifold.

3This definition was taken from the introduction of [13] and is equivalent to the definition used
in [19].
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Now that we are equipped with the definition of a normally hyperbolic invariant
manifold, we can state the persistence theorem (a.k.a. Fenichel’s theorem).

Theorem 1 (See Theorem 1 of [14] or Section 4 of [19]). Let X" 2 X.M/ be
a deformation of X 2 X.M/ and let N � M be a compact normally hyperbolic
invariant manifold of X . Then for sufficiently small " > 0 there exists a normally
hyperbolic invariant manifold, N" � M of X" which is diffeomorphic to N and
contained in a neighborhood of N .

We will not need Theorem 1 in its full generality because we will only be
concerned with a special instance of normally hyperbolic invariant manifolds. In
particular, we will be concerned with exponentially stable limit cycles.

Definition 3 (Exponentially Stable Limit Cycle). An exponentially stable invari-
ant manifold which is homeomorphic to S1 is called an exponentially stable limit
cycle.

We can alternatively define an exponentially stable limit cycle using the distance
metric d W M � M ! R. Given a periodic trajectory x�.t/, the orbit � is
an exponentially stable limit cycle if there exists a neighborhood U of � and a
contraction rate � < 0 such that

d.x.t/; � / 	 e�td.x.0/; � / 8t > 0

for all solution curves x.t/ with x.0/ 2 U . In any case, a direct corollary of
Theorem 1 is the persistence of exponentially stable limit cycles. That is to say:

Corollary 1. Let � be an exponentially stable limit cycle of X 2 X.M/ and let
X" 2 X.M/ be a deformation of X . Then for sufficiently small " > 0 there exists an
exponentially stable limit cycle �" of X" which is in a neighborhood of � .

Given a time-periodic vector field Y 2 X.M/S
1
, we can consider the autonomous

vector field on the time-augmented phase space M � S1 given by Y � @� 2 X
.M � S1/. In particular, the vector field Y � @� corresponds to the autonomous
dynamical system

P� D 1; Px D Y.x; �/:

If the vector field Y � @� admits an exponentially stable limit cycle .x.t/; �.t// 2
M �S1, then �.t/ WD t mod 2� and x.t/ is 2�-periodic. This observation justifies
the following definition.

Definition 4. Let Y 2 X.M/S
1
. Given a periodic solution curve x.t/ 2 M , we call

the orbit � WD x.S1/ a non-autonomous exponentially stable limit cycle if � � S1
is an exponentially stable limit cycle for Y � @� .

Given the definition of a non-autonomous exponentially stable limit cycle, we can
specialize Corollary 1 to the case of time-periodic dynamical systems. In particular,
we arrive at:
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Proposition 1. Let x� 2 M be an exponentially stable equilibrium of X 2 X.M/

and let X" 2 X.M/S
1

be a time-periodic deformation of X . Then for sufficiently
small " > 0 the vector field X" admits a non-autonomous exponentially stable limit
cycle in a neighborhood of x�.

Proof. Because x� is an exponentially stable equilibrium of X , we can see that
.x�; �/ for � 2 S1 is a solution curve of X � @� with orbit fx�g � S1. In particular,
fx�g � S1 is an exponentially stable limit cycle with a contraction rate �s equal
to the contraction rate of x� in the dynamical system defined by Px D X.x/.
By Corollary 1, the vector field X" � @� 2 X.M � S1/ also exhibits a limit
cycle, .x".�/; �/, in a neighborhood of fx�g � S1. This means that x".�/ is a non-
autonomous exponentially stable limit cycle for X" in a neighborhood of x�. ut
The significance of Proposition 1 is that we can time-periodically deform systems
with exponentially stable equilibria to produce non-autonomous exponentially
stable limit cycles.

Example 1. Consider the equations of motion for a perturbed linear damped mass-
spring system,

d

dt


x

y

�

D


y

�x � y
�

C "


0

sin.t/

�

: (5)

We see that for " D 0, the system admits an exponentially stable point .x; Px/ D
.0; 0/. When " > 0, the non-autonomous limit cycle of Proposition 1 emerges.
Typical trajectories of the system for " D 0; 1 are shown in Figures 4 and 5.

Fig. 4 A trajectory of (5) with " D 0
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Fig. 5 A trajectory of (5) with " D 1

3 Relative Limit Cycles

In this section we will consider dynamical systems with Lie group symmetries. Let
G be a Lie group which acts on M by a left action. The G-orbit of a point x 2 M
is the set Œx	 WD fg � xjg 2 Gg � G �x. We denote the quotient space by ŒM 	 WD
fŒx	 W x 2 M g and we call the map � W x 2 M 7! G � x 2 ŒM 	 the quotient
projection. If the action of G is free and proper, then the quotient projection is a
smooth surjection and the triple .M; ŒM 	; �/ is a fiber bundle known as a principal
G-bundle [1, Proposition 4.1.23].

We now present the natural notions ofG-invariance for function onM . Note that
for any Œf 	 2 C1.ŒM 	/, we can define the smooth function Œf 	 ı � 2 C1.M/.
Moreover, Œf 	 ı � is G-invariant because

Œf 	 ı �.g � x/ D Œf 	.G � .g � x// D Œf 	.G �x/ D Œf 	 ı �.x/:

Conversely, for a G-invariant function f 2 C1.M/, we see that f .G � x/ D f .x/.
Noting that the left-hand side of this equation involves the application of f to a
G-orbit, we have apparently found a function Œf 	 2 C1.ŒM 	/ such that
Œf 	 ı � D f . In other words, the set of G-invariant functions on M is identifiable
with the set of smooth function on ŒM 	.

This G-invariance for functions on M extends to G-invariant vector fields. We
do this by extending the action on M to an action on TM by the tangent lift. In
particular, the action of g on a point v D dx

dt
2 TM is given by
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g � v WD d

dt

ˇ
ˇ
ˇ
ˇ
tD0

.g �x.t//:

In this case, we call X 2 X.M/ a G-invariant vector field if

g �X.x/ D X.g �x/ 8g 2 G; x 2 M: (6)

Moreover, the flow˚X
t isG-invariant as well. For ifX isG-invariant and x.t/ 2M

is a solution curve, then

d

dt
.g �x.t// D g � Px.t/ D g �X.x.t// D X.g �x.t//:

Thus, g �x.t/ is a solution and so g ı ˚X
t D ˚X

t ı g.

Proposition 2. If X 2 X.M/ is G-invariant then there exists a unique vector field
ŒX	 2 X.ŒM 	/ such that T� �X D ŒX	 ı � . Moreover, the flow of ŒX	 is �-related
to the flow of X . In other words, the diagrams

are commutative.

Given a pair X 2 X.M/ and ŒX	 2 X.ŒM 	/ which satisfies (6), we call ŒX	 the
reduced vector field andX the unreduced vector field. This correspondence between
X and ŒX	 allows us to discuss relative periodicity.

Definition 5 (Relative Periodicity). Let X 2 X.M/ be a G-invariant vector field
on the G-principal bundle � W M ! ŒM 	. Let ŒX	 2 X.ŒM 	/ be the reduced vector
field. The orbit of a solution curve x.t/ of X is called a relatively periodic orbit if
�.x.t// is a periodic orbit of ŒX	.

A remarkable characteristic of relative periodic orbits is the following.

Proposition 3. Let X 2 X.M/ be a G-invariant vector field. If x.t/ is a relative
periodic orbit of period T , then there exists some g 2 G such that x.T / D g �x.0/.
Moreover, x.kT / D gk �x.0/ for each k 2 Z.

We call the element g 2 G of Proposition 3 the phase shift of the periodic orbit
�.x.t//. To hint at the relevance of this concept to locomotion, we should mention
that if G D SE.d/, the phase shift implies that the system undergoes regular and
periodic changes in position and orientation. We now seek to study exponentially
stable manifestations of relative periodicity. This brings us to the notion of a relative
limit cycle.
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Definition 6. An orbit x.t/ 2M of a G-invariant vector field X 2 X.M/ is called
a relative exponentially stable limit cycle if �.x.t// is an exponentially stable limit
cycle for the reduced vector field ŒX	. Finally, if Y 2 X.M/S

1
is G-invariant with

reduced vector field ŒY 	 2 XS1.ŒM 	/, then we call the orbit of a trajectory x.t/ 2M
a non-autonomous exponentially stable relative limit cycle if �.x.t// 2 ŒM 	 is a
non-autonomous exponentially stable limit cycle.

Proposition 4. Let X 2 X.M/ be G-invariant, and let ŒX	 2 X.ŒM 	/ be the
reduced vector field of X . Let � � ŒM 	 be a limit cycle of ŒX	. Then there exists an
open neighborhood U of ��1.� / � M wherein each point is attracted towards a
relative limit cycle contained in ��1.� /.

Before we provide the proof of this proposition, it is useful to illustrate the
following lemma which relates the distance metric on M with the natural distance
metric on ŒM 	.

Lemma 1. If the Riemannian metric onM is G-invariant, then the distance metric
d W M � M ! R is G-invariant as well. The function on ŒM 	 � ŒM 	 given by
Œd 	.Œx	; Œy	/ WD d.G �x;G �y/ is a metric and satisfies the equality d.x;G �y/ D
Œd 	.Œx	; Œy	/.

Equipped with Lemma 1, we are now ready to prove Proposition 4.

Proof (Proof of Proposition 4). Let ŒU 	 be a neighborhood of � . Then U D
��1.ŒU 	/ � M is an open set as well, since � is continuous. Therefore, given an
arbitrary x 2 U , we see by Lemma 1 that d

dt
.d.x; ��1.� /// D d

dt
.d.�.x/; � // <

�d.�.x/; � / D �d.x; ��1.� //. Thus, the solution is attracted towards ��1.� /.
However, ��1.� / is foliated by relative limit cycles. ut

Later we will want to see how time-periodic perturbations generate stable and
relatively periodic behavior. This motivates us to state the following proposition.

Proposition 5. Let X 2 X.M/ be G-invariant and let ŒX	 2 X.ŒM 	/ be the
reduced vector field of X . Let q� be an exponentially stable equilibria of ŒX	. If
X" 2 X.M/S

1
is a time-periodicG-invariant deformation of X , then for sufficiently

small " > 0 the vector field X" admits a non-autonomous exponentially stable
relative limit cycle.

Proof. Let ŒX"	 2 X.ŒM 	/S
1

be the reduced vector field corresponding to X" for
each ". We can then verify that ŒX"	 is a deformation of ŒX	. By Proposition 1,
the vector field ŒX"	 admits a non-autonomous exponentially stable limit cycle for
sufficiently small ". It follows that X" must admit non-autonomous exponentially
stable relative limit cycles. ut



148 H.O. Jacobs

Example 2. Consider the system on R
3 given by

d

dt

2

4
x

y

z

3

5 D
2

4
y

�x � y
y � x2 � xy

3

5C "
2

4
0

sin.t/
cos.t/

3

5 : (7)

We see that this system is invariant under translations in the z-coordinate. This is
a .R;C/-symmetry and the quotient projection is given by �.x; y; z/ D .x; y/.
The reduced vector field is given by equation (5). By Proposition 5, (7) must admit
relative limit cycles for sufficiently small " > 0. Moreover, as the symmetry of
the system is along the z-axis, by Proposition 3 each period of the relative limit
cycle should be related to the previous period by a constant vertical shift. Typical
trajectories for " D 0; 1 are depicted in Figures 6 and 7

Example 2 illustrates how a .R;C/-symmetry lead to a system with a stable non-
autonomous relative limit cycle wherein each period was related to the previous
by a constant translation along the z-axis. The goal of this article is to characterize
swimming as a stable non-autonomous relative limit cycle with respect to an SE.d/-
symmetry wherein each period is related to the previous by a constant translation
and rotation of space. In order to do this, we must express fluid-structure problems
in a geometric formalism. In particular, we will follow the constructions of [22] to
do this, using the Lagrange-d’Alembert formalism.

Fig. 6 A trajectory of (7) with " D 0
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Fig. 7 A trajectory of (7) with " D 1

4 Lagrange-d’Alembert Formalism

In this section, we review the Lagrange-d’Alembert formalism for simple mechani-
cal systems. If Q is equipped with a Riemanian metric, h � ; � iQ W TQ˚ TQ! R,
then it is customary to consider Lagrangians of the form

L.q; Pq/ D 1

2
h Pq; PqiQ � U.q/; (8)

where U W Q ! R. We call a Lagrangian of this form a simple mechanical
Lagrangian. For simple mechanical Lagrangians, and external force fields F W
TQ! T �Q, the Lagrange-D’Alembert equations take the form

D Pq
Dt
D rU.q/C ] .F.q; Pq// ; (9)

where D
Dt

is the Levi-Cevita covariant derivative, rU is the gradient of U , and
] W T �Q ! TQ is the sharp operator induced by the Riemannian metric [1,
Proposition 3.7.4]. It is notable that (9) is equivalent to the Lagrange-d’Alembert
variational principle

ı

Z T

0

L.q; Pq/dt D
Z T

0

hF.q; Pq/; ıqidt

with respect to variations ıq with fixed end points [35, Chapter 7]. We denote the
vector field associated to (9) by XTQ 2 X.TQ/, and its flow is given by ˚TQ

t .
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5 Fluid-Structure Interaction

In this section, we will place fluid structure-interactions in the Lagrange-d’Alembert
formalism. Specifically, we will understand a body immersed in a fluid as a simple
mechanical Lagrangian system with a dissipative force field, in the sense of (9). This
is commonly referred to as the “material description” in fluid mechanics. Moreover,
we will reduce the system by a particle relabeling symmetry, so that the fluid is
described in the “spatial description” via the Navier-Stokes equations. Finally, we
will identify ‘frame-invariance’ (a.k.a objectivity) as a left SE.d/-symmetry.

5.1 Navier Stokes Fluids in the Lagrange-d’Alembert
Formalism

In this paper, we seek to understand swimming in the mid-Reynolds regime. Specif-
ically this entails invoking the Navier-Stokes equations with non-zero viscosity. It
was discovered in [3] that the Navier-Stokes equations with zero viscosity could be
handled in the Euler-Poincaré formalism. Moreover, it is mentioned in [4, Chapter 1,
section 12] that the Navier-Stokes equations can be viewed in this framework with
the simple addition of a dissipative force. In this section, we will describe this
formulation of the Navier-Stokes equations.

Consider the manifold R
d with the standard flat metric and volume form

dx D dx1 ^ � � � ^ dxd . One can consider the infinite-dimensional Lie group of
volume-preserving diffeomorphisms, Diffvol.R

d /, where the group multiplication
is simply the composition of diffeomorphisms.4 The configuration of a fluid
flowing on R

d relative to some reference configuration is described by an element
' 2 Diffvol.R

d /. Given a curve 't 2 Diffvol.R
d /, one can differentiate it to obtain

a tangent vector P't D d
dt
't 2 T Diffvol.R

3/. One can interpret P' as a map from
R
d to TRd by the natural definition P'.x/ D d

dt
't .x/. Therefore, a tangent vector,

P' 2 T Diffvol.R
d /, over a diffeomorphism ' 2 Diffvol.R

d / is simply the smooth
map P' W Rd ! TRd , such that �

Rd ı P' D ' where �
Rd W TRd ! R

d is the tangent
bundle projection. Moreover, P'ı'�1 is a smooth divergence-free vector field on R

d .
We call P' the material representation of the velocity, while P' ı '�1 2 Xvol.R

d / is
the spatial representation. The Lagrangian, L W T .Diffvol.R

d // ! R, is the kinetic
energy of the fluid,

L.'; P'/ WD 1

2

Z

Rd

k P'.x/k2dx:

4This is a pseudo Lie group. We will assume that all diffeomorphisms approach the identity as
kxk ! 1 sufficiently rapidly for all computations to make sense. In particular, the existence
of a Hodge-decomposition for our space is important. Sufficient conditions for our purposes are
provided in [8] and [43].
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One can derive the Euler-Lagrange equations on Diffvol.R
d / with respect to the

Lagrangian L to obtain the equations of motion for an ideal fluid. However, this
Lagrangian exhibits a symmetry.

Proposition 6 ([3]). The LagrangianL is symmetric with respect to the right action
Diffvol.R

d / on T Diffvol.R
d /.

Moreover, it is simple to verify the proposition:

Proposition 7. The action of Diffvol.R
d / on T Diffvol.R

d / is free and proper. The
quotient space T Diffvol.R

d /=Diffvol.R
d / D Xdiv.R

d / and the quotient projection
is the right Maurer-Cartan form,

� W .'; P'/ 2 T Diff.Rd / 7! u D P' ı '�1 2 Xdiv.R
d /:

This symmetry is referred to as the particle relabeling symmetry. As a result of
this symmetry, Proposition 2 suggests that we can write equations of motion on
Xdiv.R

d /. It was the discovery of [3] that these equations could be written as

@tuC u � ru D �rp; div.u/ D 0;

which one will recognize as the inviscid fluid equations. Moreover, if we define the
linear map, f� W Xvol.R

d /! X�
vol.R

d / given by

hf�.u/;wi D �
Z

Rd

�u.x/ �w.x/dx;

then we derive the Lagrange-D’Alembert equations by lifting f� (via the right
Maurer-Cartan form) to obtain a force field F W T .Diffvol.R

3//! T �.Diffvol.R
3//.

If we do this, then reduction by Diffvol.R
3/ yields a spatial velocity field, u.t/, which

satisfies the Navier-Stokes equations

@tuC u � ru D �rp � ��u; div.u/ D 0:

5.2 Solids

Let B be a compact manifold with boundary @B and volume form d volB. Let
Emb.B/ denote the set of embeddings of B into R

d . Finally, let SE.d/ denote the
set of isometries of Rd .

We view each b 2 Emb.B/ as a map b W B ,! R
d , while viewing z 2 SE.d/ as

a map z W Rd ! R
d . We can compose these maps to obtain a new map z ı b WB ,!

R
d , which itself embeds B into R

d . That is to say, the assignment b 7! z ı b is a
left action of SE.d/ on Emb.B/. It is elementary to observe that this action is free
and proper, and makes Emb.B/ into an SE.d/-principal bundle. The configuration
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manifold for the body is given by a SE.d/-invariant submanifold B � Emb.B/
(possibly finite-dimensional). Therefore, the quotient space ŒB	 D B

SE.d/ is a smooth

manifold and �BŒB	 W B ! ŒB	 is a SE.d/-principal bundle as well. We call ŒB	 the
shape-space, following [36].

The Lagrangian for the body,LB W TB ! R, will be that of a simple mechanical
system. The reduced-potential energy will be given by a function ŒU 	 W ŒB	 ! R,
and the potential energy is defined as U WD ŒU 	 ı �BŒB	. Equivalently, we may define
U W B ! R first, with the assumption that we choose something which is SE.d/-
invariant.

To define the kinetic energy, we must first understand the tangent bundle TB �
T Emb.B/. By applying the dynamic definition of tangent vectors, we can derive
that a .b; Pb/ 2 T Emb.B/must be a pair of maps, b 2 Emb.B/ and Pb WB ,! TRd ,
such that Pb.x/ is a vector over b.x/ for all x 2 B. Moreover, a .b; Pb/ 2 TB is an
element of T Emb.B/ tangential to B � Emb.B/. We see that for each z 2 SE.d/,
we can consider the map T z W TRd ! TRd , and we define the action of z on TB by
the assignment .b; Pb/ 2 TB 7! .z ı b; T z ı Pb/ 2 TB . This defines a free and proper
left SE.d/ action on TB so that TB is an SE.d/-principal bundle. We will assume
the existence of an SE.d/-invariant Riemannian metric h � ; � iB W TB ˚ TB ! R,
and that the kinetic energy is K.b; Pb/ D 1

2
h.b; Pb/; .b; Pb/iB .

Finally, without any dissipation, our solid body could “jiggle” forever due to
conservation of energy. To amend this, we will include a dissipative force given by
a fiber-bundle map, FB W T ŒB	! T �ŒB	, such that the storage function

hFB.vŒb	/; vŒb	i W T ŒB	! R (10)

is convex on each fiber of T ŒB	 and reaches a maximum at zero where it vanishes.
For example, a negative definite quadratic form would be admissible. Such a force
has the effect of dampening the rate of change in the shape of the body, but it will
not dampen motions induced by the action of SE.d/. In other words, we assume
that a jiggling body eventually comes to rest with some shape smin 2 ŒB	 by the
dissipation of energy.

Example 3. Consider a two-link body in R
2. The configuration manifoldB consists

of rigid embeddings of the two links into R
2 such that the embeddings respect the

constraint that the links are joined at the hinge (see Figure 8). In particular, B is
isomorphic to a subset of S1�S1�R2 if we let the tuple .�1; �2; x; y/ 2 S1�S1�R2
denote a configuration where �1; �2 2 S1 are the angles between the links and the
x-axis, while .x; y/ 2 R

2 is the location of the hinge. Under this identification, the
action of an element .�;X; Y / 2 SE.2/ on .�1; �2; x; y/ 2 B is given by

.�;X; Y / �

0

B
B
@

�1

�2
x

y

1

C
C
A D

0

B
B
@

� C �1
� C �2

cos.�/x � sin.�/y CX
sin.�/x C cos.�/y C Y

1

C
C
A :
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Fig. 8 A diagram of the swimmer from Example 3

Under this action, we find that the shape space is ŒB	 D S1 and that the quotient
projection from B to ŒB	 is given by �BŒB	.�1; �2; x; y/ D �1 � �2. In other words,
the shape of the body is described by the interior angle of the hinge. Finally, we
may consider a potential energy derived from a linear spring between the hinges
given by U.�1; �2; x; y/ D k

2
.�1 � �2 � N�/2 for some constant equilibrium interior

angle N� 2 S1. It should be evident that this potential energy is SE.2/-invariant. The
kinetic energy of the i th body is

Ki D Ii

2
P�2i C

Mi

2

�
Œ Px � sin.�i / P�i 	2 C Œ Py C cos.�i / P�i 	2

�
;

whereMi and Ii are the mass and rotational inertial of the i th body, respectively. The
Lagrangian is thereforeLB D K1CK2�U . Lastly, the force FB D P�2d�2� P�1d�1
provides an SE.2/-invariant elastic friction force. The effect of FB is to dampen
changes in the interior angle � D �2 � �1. In particular, � parametrizes the shape
space of this body, and so FB can be said to dampen changes in shape.

Example 4. The theory of linear elasticity assumes B to be a Riemannian manifold
with a mass density � 2 Vn

.B/ and metric h � ; � iB W TB ˚ TB ! R. Here, the
configuration manifold is B D Emb.B/ and the potential energy is

U.b/ D 1

2

Z

b.B/

trace
�
ŒI � Cb	T � ŒI � Cb	

�
b�d volB;

where Cb is the push-forward of the metric h � ; � iB by b WB ,! R
d , a.k.a. the right

Cauchy-Green strain tensor. The SE.d/-invariant kinetic energy, K W TB ! R, is
given by

K.b; Pb/ D 1

2

Z

B
k Pb.x/k2�.x/dx:
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This Lagrangian yields the standard model of linear elasticity and is known to be
SE.d/-invariant, a.k.a. objective [34]. As we can not easily coordinate B in this
example, we cannot expect to easily obtain a concrete description of the shape
space, ŒB	. Nonetheless, by the SE.d/-invariance of U , there must exist a function
ŒU 	 W ŒB	! R such that U D ŒU 	 ı �BŒB	.
The above examples are merely instances of possible models we may choose for
the body. Identifying a physical model of the solid body is a necessary precondition
for understanding the effect of internal body forces on the system. In particular,
this is the approach taken in [44] and [7]. To quote [44], “the motion of the body
emerges as a balance between internal muscular force and external fluid forces.” The
emphasis on the importance of the internal mechanics of the swimming body can
become fairly sophisticated. These sophisticated solid-mechanical concerns can be
important for understanding the role of passive mechanisms in biomechanics. For
example, fibered structures can exhibit a “counter-bend phenomena” in which an
increased curvature in one region of a structure yields a decrease elsewhere in ways
which aide swimming [16]. These advanced topics will not be addressed here, but
we recall them only to put this work in a proper context.

5.3 Fluid-Solid Interaction

Let B, B , LB, FB be as described in the previous section. Given an embedding
b 2 B , let �b denote the set

�b D closure
˚
R
dnb .B/� :

The set �b is the region which will be occupied by the fluid given the embedding
of the body b. If the body configuration is given by b0 2 B at time 0 and b 2 B
at time t , then the configuration of the fluid is given by a volume-preserving
diffeomorphism from �b0 to �b , i.e. an element of Diffvol .�b0 ;�b/. Given a
reference configuration b0 2 B for the body, we define the configuration manifold as

Q WD f.b; '/ j b 2 B; ' 2 Diffvol .�b0 ;�b/g:

One should note that the manifold Q has some extra structure. In particular, the
Lie group G WD Diffvol.�b0 / represents the symmetry group for the set of particle
labels, and acts onQ on the right by sending

.b; '/ 2 Q 7! .b; ' ı  / 2 Q

for each  2 G and .b; '/ 2 Q. Given this action, the following proposition is
self-evident.
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Proposition 8. The projection �QB W Q ! B defined by �QB .b; '/ D b makes Q
into a principalG-bundle over B .

Now we must define the Lagrangian. To do this, it is useful to note that the
system should be invariant with respect to particle relabelings of the fluid, and so
the Lagrangian should be invariant with respect to the right action of G on TQ
given by

.b; Pb; '; P'/ 2 TQ 7! .b; Pb; ' ı  ; P' ı  / 2 TQ

for each  2 G. As a result, we can define a Lagrangian on the quotient space
TQ=G. Incidentally, this quotient space is much closer to the space typically
encountered in fluid-structure interaction.

Proposition 9 (Proposition 2 of [22]). The quotient space TQ=G can be identified
with the set

P WD f.b; Pb; u/ j .b; Pb/ 2 TB;
u 2 Xdiv.�b/;

u.b.x// D Pb.x/;8x 2 @Bg: (11)

Under this identification, the quotient map �
TQ

=G W TQ ! P is given by

�
TQ

=G .b;
Pb; '; P'/ D .b; Pb; P' ı '�1/. Moreover, P is naturally equipped with the

bundle projection �.b; Pb; u/ D b and the vector bundle structure .b; Pb1; u1/ C
.b; Pb2; u2/ D .b; Pb1 C Pb2; u1 C u2/, for all .b; Pb1; u1/; .b; Pb2; u2/ 2 ��1.b/ and all
b 2 B .

Proof. Observe that �TQ=G .v ı  / D �TQ=G .v/ for all  2 G and v 2 TQ. Therefore,

�
TQ

=G maps the coset v �G to a single element of P . Conversely, given an element

.b; Pb; u/ 2 P , we see that .�TQ=G /
�1.b; Pb; u/ is the set of element in .b; Pb; '; P'/ 2 TQ

such that u D P' ı '�1. However, this set of elements is just the coset v �G, where
v is any element such that �TQ=G .v/ D .b; Pb; u/. Thus, �TQ=G induces an isomorphism

between TQ=G and P . Additionally, we can check that �TQ=G .v C w/ D �TQ=G .v/C
�
TQ

=G .w/ and �.�=G.v// D �Q.v/ �G. Therefore, the desired vector bundle structure
is inherited by P as well, and �=G becomes a vector bundle morphism. Finally, the

map �.b; Pb; u/ D .b; Pb/ is merely the map T�QB W TQ ! TB modulo the action
of G. That is to say, � ı �TQ=G D T�QB . This equation makes � well-defined because

�
Q
G is G-invariant. ut

As a guide for the reader, we provide the following commutative diagram.
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Note that the fluid velocity component u 2 Xdiv.�b/ for a .b; Pb; u/ 2 P may
point in directions transverse to the boundary of the fluid domain �b . This reflects
the fact that the boundary is time-dependent. The condition Pb.x/ D u.b.x// on
the boundary states that the boundary of the body moves with the fluid, and is the
mathematical description of the no-slip condition.

We now define the reduced Lagrangian ` W P ! R by

`.b; Pb; u/ D LB.b; Pb/C 1

2

Z

�b

ku.x/k2dx:

This induces the standard Lagrangian

L WD l ı �TQ=G W TQ! R; (12)

which is a simple mechanical Lagrangian consisting of the kinetic energy of the
fluid and body minus the potential energy of the body described in Section 5.2.
Moreover,L is G-invariant by construction.

Additionally, we wish to add a viscous force on the fluid, F� W TQ ! T �Q.
Given a coefficient of viscosity, �, we can define the reduced viscous friction force
field f� W P ! P � by

hf�.b; vb; u/; .b;wb;w/i D �
Z

�b

�u.x/ �w.x/dx;

and define the unreduced force F� W TQ! T �Q by

hF�.v/;wi D hf�.�=G.v//; �=G.w/i:

We finally define the total force on our system to be

F D F� C .FB ı T�QB /; (13)

where FB is the dissipative force on the shape of the body mentioned in §5.2. This
total force F descends via �=G to a reduced force F=G W P ! P � where P � is the
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dual vector bundle to P . The reduced force is given explicitly in terms of f� and
FB by F=G D f� C .FB ı �/. One can verify directly from this expression that
hF.v/;wi D hF=G.�=G.v//; �=G.w/i.

We now introduce a consequence which follows from the G-invariance of F
and L.

Proposition 10. Let XTQ 2 X.TQ/ denote the Lagrange-d’Alembert vector field,

and let ˚
XTQ
t W TQ ! TQ denote the flow map associated with the Lagrangian

L W TQ! R and the force F W TQ! T �Q. Then there exists a vector field XP 2
X.P / and a flow map ˚XP

t W P ! P which are �TQ=G -related to XTQ and ˚
XTQ
t .

Proof. Let q W Œ0; t 	 ! Q be a curve such that the time derivative .q; Pq/ W Œ0; t 	 !
TQ is an integral curve of the Lagrange-d’Alembert equations with initial condition
.q; Pq/.0/ and final condition .q; Pq/.t/. Then the Lagrange-d’Alembert variational
principle states that

ı

Z t

0

L..q; Pq/.�//d� D
Z t

0

hF..q; Pq/.�/; ıq.�/id�

for all variations of the curve q. � / with fixed endpoints. Note that for each  2 G,
the action satisfies

R t
0
L..q; Pq/.�/d� D R t

0
L..q; Pq/.�/ ı  /d� , and the variation on

the right hand side of the Lagrange-d’Alembert principle is

Z t

0

hF..q; Pq/.�//; ıq.�/id� D
Z t

0

hF=G.�=G..q; Pq/.�/; �=G.ıq.�//id�

D
Z t

0

hF..q; Pq/.�/ ı  /; ıq.�/ ı  id�:

Therefore, we observe that

ı

Z t

0

L..q; Pq/.�/ ı  /d� D
Z t

0

hF..q; Pq/.�/ ı  /; ıq.�/ ı  id�

for arbitrary variations of the curve q. � / with fixed end points. However, the
variation ıq ı  is merely a variation of the curve q ı  . � / because

ıq.�/ ı  D @

@�

ˇ
ˇ
ˇ
ˇ
�D0

.q.�; �/ ı  /;

and if q.�; �/ is a deformation of q.�/, then q.�; �/ ı is a deformation of q.�/ ı 
by construction. Therefore,

ı

Z t

0

L..q; Pq/.�/ ı  /d� D
Z t

0

hF..q; Pq/.�/ ı  /; ı.q ı  /id�
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for arbitrary variations of the curve q ı  with fixed end points. This last equation
states that the curve .q; Pq/ ı  satisfies the Lagrange-d’Alembert principle. Thus,
the flow ˚

XTQ
t is G-invariant, as is the vector field XTQ. By Proposition 2, there

exists a �TQ=G -related flow and vector field on TQ=G. By Proposition 9, we obtained

the desired vector field XP 2 X.P /, and its flow ˚
XP
t W P ! P . ut

Now that we know there exists a flow on P , one can ask for the equations of
motion.

Proposition 11. The flow map of P mentioned in Proposition 10 for the
Lagrangian L and force F is identical to the flow of the Lagrange-Poincaré-
d’Alembert equation:

ut C u � ru D �rp � ��u

D Pq
Dt
CrU.q/ D ].F.q; Pq/C F@B/;

where F@B W P ! T �B is the force that the fluid exerts on the body in order to
satisfy the no-slip boundary condition.

Proof. This is Theorem 4.2 of [22] paired with (9). Roughly speaking, one can
obtain these equations of motion by performing Lagrange-Poincaré-d’Alembert
reduction following [9]. This involves choosing a principal connectionA W TQ! g.
The spatial velocity field is reconstructed by u D h".b; Pb; '/ C '�A.b; Pb; '; P'/,
where h" is the horizontal lift. ut

5.4 Reduction by Frame Invariance

Consider the group of isometries of R
d denoted SE.d/. Each z 2 SE.d/ sends

.b; Pb; u/ 2 TQ=G to .z.b; Pb/; z�u/ 2 P , where z�u 2 Xdiv.�zıb/ is the push-
forward of the fluid velocity field u 2 X.�b/. This action is free and proper on P
so that the projection �PŒP 	 W P ! ŒP 	, where ŒP 	 WD P

SE.d/ is a principal bundle
[1, Prop 4.1.23]. Additionally, SE.d/ acts by vector-bundle morphisms, which
are isomorphisms on each fiber. Therefore, ŒP 	 inherits a vector-bundle structure
from P .

Proposition 12. There exists a unique vector-bundle projection Œ� 	 W ŒP 	 ! ŒB	

and a map Œ�	 W ŒP 	! T ŒB	 such that Œ� 	 ı �PŒP 	 D � and Œ�	 ı �PŒP 	 D �.

Proof. We see that �.z � �/ D z � �.�/ for any z 2 SE.d/ and � 2 P . Applying the
above formula to an SE.d/-orbit of P , i.e. a member of ŒP 	, maps to an SE.d/-orbit
of B , i.e. a member of ŒB	. Thus the map Œ� 	 W ŒP 	 ! ŒB	 is well-defined by the
condition � D Œ� 	 ı Œ � 	. The same argument makes the map Œ�	 W ŒP 	! T ŒB	. The
vector-bundle structure on ŒP 	 can be observed directly. ut
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As everything in sight is SE.d/-invariant, it is not surprising that we can express
reduced equations of motion on ŒP 	.

Proposition 13. There exists a vector field XŒP 	 2 X.ŒP 	/ and a flow-map ˚ŒP 	
t W

ŒP 	! ŒP 	 which is �PŒP 	-related to XP and ˚XP
t .

Proof. Let q W Œ0; T 	 ! Q be a curve such that the time derivative .q; Pq/ W
Œ0; T 	 ! TQ is an integral curve of the Lagrange-d’Alembert equations with
initial condition .q; Pq/0 and final condition .q; Pq/T . Then the Lagrange-d’Alembert
variational principle states that

ı

Z T

0

L.q; Pq/dt D
Z T

0

hF.q; Pq/; ıqidt

for all variations of the curve q. � / with fixed endpoints. Note that for each  2 G
and z 2 SE.d/, the action satisfies

R T
0 L.q; Pq/dt D

R T
0 L.z � .q; Pq/ ı  /dt and the

virtual-work is

Z T

0

hF.q; Pq/; ıqidt D
Z T

0

hF=G.z ��=G.q; Pq/; z ��=G.ıq/idt

D
Z T

0

hF.z � .q; Pq/ ı  /; z � ıq ı  idt :

Therefore we observe that

ı

Z T

0

L.z � .q; Pq/ ı  /dt D
Z T

0

hF.z � .q; Pq/ ı  /; z � ıq ı  idt

for arbitrary variations of the curve q. � / with fixed end points. However, the
variation z � ıq ı  is merely a variation of the curve z � q ı  . � /. Therefore,

ı

Z T

0

L.z � .q; Pq/ ı  /dt D
Z T

0

hF.z � .q; Pq/ ı  /; ı.z � q ı  /idt

for arbitrary variations of the curve z � q ı with fixed end points. This last equation
states that the curve z � .q; Pq/ ı satisfies the Lagrange-d’Alembert principle. Thus,
˚
TQ
T .z � .q; Pq/0 ı / D z �˚TQ

T .q; Pq/ ı . Since  2 G was arbitrary, we may apply
˚
TQ
T to the entire coset z � .q; Pq/ �G to find ˚TQ

T .z � .q; Pq/ �G/ D z �˚TQ
T .q; Pq/ �G.

This map from G-cosets to G-cosets is the defining condition for ˚P
T . Therefore,

the last equation states that˚P
T .z � �/ D z �˚P

T .�/, where � D �TQ=G ..q; Pq/0/. In other

words,˚P
T is SE.d/-invariant. Therefore, by Proposition 2 the theorem follows. ut
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6 Asymptotic Behavior

It is commonplace to assume that the asymptotic behavior of a simple mechanical
system with dissipation approaches a state of minimum energy. In this section, we
will verify that the asymptotic behavior of the Lagrangian system described in the
previous section tends towards the minimizers of the elastic potential energy, U .

Proposition 14. Assume the LagrangianL of (12) and the external force F of (13).
Let q W Œ0;1/! Q be a curve such that the time derivative .q; Pq/ W Œ0;1/! TQ

is an integral curve of the Lagrange-d’Alembert equations for the LagrangianL and
the force F . Then the !-limit set of .q; Pq/. � / is contained in the set dU�1.0/ WD
f.q; 0/ 2 TQ j dU.q/ D 0g.
Proof. The energy is the functionE W TQ! R given by

E.q; Pq/ WD hFL.q; Pq/; Pqi �L.q; Pq/:

Given any Lagrangian system on a Riemannian manifold where the Lagrangian is
the kinetic energy minus the potential energy, the time derivative of the generalized
energy under the evolution of the Lagrange-d’Alembert equations is given by
PE D hF. Pq/; Pqi. In this case, we find

PE.q; Pq/ D hFB. Pb/; Pbi C hF�.q; Pq/; .q; Pq/i:

However, by (10), this is a convex function on each fiber of TQ in a neighborhood of
the zero-section. Therefore the !-limit of .q; Pq/. � /, denoted M! , must be a subset
of the zero section of TQ. Moreover, the Lagrange-D’Alembert equations state

D Pq
Dt
D �rU.b/C ].F.q; Pq//;

where ] W T �Q ! TQ is the sharp map associated the metric on Q. However,
F.q; Pq/ D 0 when Pq D 0, which is the case for points in M! . Thus, the vector field
on M! must satisfy

D Pq
Dt
D �rU.b/:

However, M! is an invariant set. Therefore, the Lagrange-d’Alembert vector field
must be tangential to M! . As M! is contained in the zero-section of TQ, the
second derivative of q.t/ must vanish in order to remain in the zero section.
Thus, we find D Pq

Dt
D 0 on M! which implies rU D 0 on M! . That is to say,

M! � dU�1.0/. ut
Corollary 2. Let ŒU 	 W ŒB	 ! R be the unique function on the shape-space of
the body such that ŒU 	.Œb	/ D U.b/ for all b 2 B . Assume that ŒU 	 has a unique
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minimizer smin 2 ŒB	, and let .smin/
0
" 2 ŒP 	 denote the element of the zero section

of Œ� 	 W ŒP 	 ! ŒB	 above smin 2 ŒB	. If .q; Pq/ W Œ0;1/ ! TQ is an integral curve
of the Lagrange-d’Alembert equations, then Œ�	.t/ D Œ�=G.q; Pq.t//	 must approach
.smin/

0
" 2 ŒP 	. If the flow of the Lagrange-d’Alembert equations is complete, this

means that .smin/
0
" is a global (weakly) hyperbolically stable fixed point for the

vector field XŒP 	.

Proof. In Proposition 14, we showed that solutions approach points within the set
dU�1.0/ asymptotically. This implies that the dynamics on ŒP 	 must approach
dŒU 	�1.0/ asymptotically. However, there is only one such point. ut

In the next section, we will periodically perturb this stable equilibria to obtain a
loop in ŒP 	.

Example 5. Consider the swimmer of Example 3 and Figure 8. Corollary 2 asserts
that the state where the swimmer and the water is stationary and �1 � �2 D N� is
asymptotically stable.

7 Swimming

In order to understand swimming, let us consider a time-periodic internal body
force, Fswim W T ŒB	 � S1 ! T �ŒB	. Such a force should be designed to model
the time-periodic activation of muscles in a fish, or control forces for an underwater
vehicle. This force can be lifted via the map �BŒB	 ı �QB W Q ! ŒB	 to obtain a
G;SE.d/-invariant invariant force onQ. The addition of this time periodic force on
Q alters the Lagrange-d’Alembert equations linearly by the addition of aG;SE.d/-
invariant time-periodic vector field Xswim. To consider small perturbations, we can
consider scaling this time-periodic force by a real parameter " 2 R

C, so that
the Lagrange-d’Alembert vector field is now given by the time-periodic vector
field XTQ;" D XTQ C "Xswim 2 X.TQ/S

1
. This deformed vector-field is also

G;SE.d/-invariant; thus, there exists a reduced vector fields XP;" 2 X.P /S
1

which
is �QP -related to XTQ;� , and a vector field XŒP 	;" 2 X.ŒP 	/S

1
which is �PŒP 	-related to

XP;". The vector field XŒP 	;" is a time-periodic deformation of XŒP 	. As XŒP 	 admits
an asymptotically stable point by Corollary 2, we are reasonably close to being able
to prove the existence of a SE.d/-relative limit cycle for XP;" for small " > 0.

Desideratum: For sufficiently small " > 0, the vector-field XŒP 	;" admits a non-
autonomous exponentially stable limit cycle. Moreover, XP;" admits stable relative
limit cycle.

If we were to assume Proposition 5 held for infinite-dimensional dynamical
systems, then as XŒP 	;" is a deformation of XŒP 	 we could deduce that XP;" admits
a non-autonomous exponentially stable limit cycle for sufficiently small " > 0. As
a result, this would imply XP;� admits SE.d/-relative limit cycles which are �PŒP 	-
related to the limit cycle in ŒP 	.
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Unfortunately, we are unable to do this because Proposition 5 is limited to
finite-dimensional manifolds and vector fields with exponentially stable points. The
vector-field XŒP 	 is on an infinite-dimensional space where we have only proven
asymptotic stability. We will not overcome this difficulty; however, we are at least
able to speculate on how to deal with this. For example, there does exist extensions
of normal hyperbolicity and persistence to infinite-dimensional dynamical systems
on a Hilbert manifold [5, 23]. Alternatively, we could consider finite-dimensional
models for fluid-structure interaction, such as the immersed boundary method [39].
In the next section, we will informally speculate on this latter approach.

7.1 Analytic Concerns and Approximate Relative Limit Cycles

Up until now, the paper has been fairly rigorous and complete. This start of this
section marks the end of this theorem-proof formalism. Instead, we provide a more
speculative discussion on how one can overcome the challenges to obtaining relative
limit cycles in P .

There are two issues of concern. The first is the lack of a “spectral gap” with
respect to the equilibrium associated to smin 2 ŒB	. That is to say, it is not
immediately obvious if there exists a convergence bound � > 0 with respect to
smin, as is required in order to use Theorem 1 and its offspring, Proposition 5. It
is possible that there does not exist any such �. For simple mechanical systems,
� is related to the spectrum of the Rayleigh dissipation function. In our case, this
spectrum includes the spectrum of the Laplace-operator on a non-compact domain,
which does not contain a spectral gap!

The second issue is the non-completeness of ŒP 	. AsQ is an infinite-dimensional
Fréchet manifold, so is ŒP 	. This is a concern because both Theorem 1 and
Proposition 5 require completeness in order to provide an existence-uniqueness
result. There do exist generalizations of Theorem 1 to infinite-dimensional Banach
manifolds, but not Fréchet manifolds [5, 23].

Therefore, using the persistence theorem directly will not allow us to assert the
existence of a relative limit cycle on P . Perhaps other methods besides normal
hyperbolicity theory could be employed, but this would be an exploration for
another paper.

However, we can consider an option which is morally the converse of an idea
illustrated in [23], wherein discrete approximations are invoked. There exists a
number of finite-dimensional models for the space P used by engineers to study
fluid-structure interaction. It is fairly common to approximate the fluid velocity
field on a finite-dimensional space and model the solid using a finite element
method (e.g. [39]). Let us call this finite-dimensional space Pdiscrete. Moreover, one
can usually act on Pdiscrete by SE.d/ by simply rotating and translating the finite
elements and the grid. If the model on Pdiscrete converges as the time step and spatial
resolution go to zero, then we could reasonably restrict ourselves to methods which
dissipate energy at a rate which is quadratic and positive definite in the state velocity.



The Role of SE.d/-Reduction for Swimming in Stokes and Navier-Stokes Fluids 163

This is not too much to expect, as a good method ought to converge.5 By the same
arguments as before, the dynamics will exhibit hyperbolically stable equilibria on
the quotient space ŒPdiscrete	 D Pdiscrete

SE.d/ . Upon adding a periodic perturbation to the
dynamics on ŒPdiscrete	, one could apply Proposition 5 directly to assert the existence
of a non-autonomous exponentially stable relative limit cycle 
discrete.t/ 2 Pdiscrete.
In particular, by Proposition 3, 
discrete.t/ must satisfy


discrete.t/ D zbtc � 
discrete.t � btc/

for some z 2 SE.d/, where btc D supfk 2 Z W k 	 tg. If the model on Pdiscrete

converges, then there exists a trajectory in 
.s/ 2 P which is well-approximated by

discrete.t/, over a single time period, by the definition of “convergence.” Then, the
equation 
.t/ D zbtc � 
.t � btc/ would hold up to numerical error. In other words,
the immersed body would move in an approximately relatively periodic fashion,
reminiscent of swimming.

8 Conclusion and Future Work

It is widely observed that steady swimming is periodic, and this observation inspired
the question, “Is it possible to interpret swimming as a limit cycle?” In this paper,
we have illustrated the crucial role played by SE.d/-reduction in answering this
question. Moreover, we have posed a possible answer, accurate up to the spatial
discretization error of a numerical method. The existence of these hypothetical
relative limit cycles would provide robustness to mechanisms of locomotion, and
conform with behavior observed in real systems [2, 7, 29, 30, 44, 47]. Given the
complexity of fluid-structure interaction, it is not immediately clear that one could
expect such orderly behavior. This potential orderliness could be exploited in a
number of applications.

1. Robotics and Optimal Control The interpretation of swimming as a limit cycle
may permit a non-traditional framework for controller design. For example, if
our control forces are parametrized by a space C , then we may consider the set
of loops, loop.C /. The limit cycle hypothesis would imply the existence of a
subsetW � loop.C / and a map � W W ! loop.ŒP 	/ which outputs the periodic
limit cycle in ŒP 	, resulting asymptotically from the time-periodic control signals
in W . Given � , we may define a control cost functional on W based upon a
reward function on loop.ŒP 	/. As such a cost functional would only respond
to the asymptotic behavior of the system, one could surmise that it would not
overreact to transient dynamics.

5The immersed boundary method [39] and smooth-particle hydrodynamics [17, 32] are both
candidates.
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2. Transient Dynamics Although trajectories may approach a limit cycle, the
transient dynamics are still important. The transient dynamics would re-orient
and translate the body before orderly periodic behavior takes effect. Therefore, if
one desires to create locomotion through periodic control inputs, one should try
to get onto a limit cycle quickly in order to minimize the duration where transient
dynamics dominate.

3. Pumping In the current setup, one could consider a reference frame attached to
the body. In this reference frame, “swimming” manifests as fluid moving around
the body in a regular fashion. This change in our frame of reference describes
pumping.

4. Passive Dynamics This paper does not address the dual problem. By the dual
problem, we mean: “Given a constant fluid velocity at infinity, what periodic
motion (if any) will a tethered body approach as time goes to infinity?” In this
dual problem, the motion of the body is given first, and parameters such as
the period of the limit cycle are emergent phenomena. In particular, the dual
problem of a flapping flag immersed in a fluid with a constant velocity at infinity
has received much attention in the applied mathematics community (see [42]
and references therein). Here, it is generally not the case that a limit cycle will
emerge, and the system is capable of admitting chaos.

5. Other types of locomotion The notion that walking may be viewed as a limit
cycle is fairly common [20, 33, 37]. Moreover, it is conceivable that flapping
flight is a limit cycle as well [31]. However, for both of these systems, SE.3/
symmetry is broken by the direction of gravity. Because of this, it is not
immediately clear that one can import the methods used here to understand
flapping flight and terrestrial locomotion. However, perhaps this is merely
a challenge to be overcome. In particular, these systems still exhibit SE.2/
symmetry. For the case of 2D bipedal walkers, we have an R-symmetry and the
stability problems due to falling will not manifest. Here, one can find limit cycles
using regularized models of the ground [21].
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Lagrangian Mechanics on Centered Semi-direct
Products

Leonardo Colombo and Henry O. Jacobs

Abstract There exist two types of semi-direct products between a Lie groupG and
a vector space V . The left semi-direct product, G Ë V , can be constructed when G
is equipped with a left action on V . Similarly, the right semi-direct product,G Ì V ,
can be constructed when G is equipped with a right action on V . In this paper, we
will construct a new type of semi-direct product, G ‰ V , which can be seen as
the ‘sum’ of a right and left semi-direct product. We then parallel existing semi-
direct product Euler-Poincaré theory. We find that the group multiplication, the Lie
bracket, and the diamond operator can each be seen as a sum of the associated
concepts in right and left semi-direct product theory. Finally, we conclude with a
toy example and the group of 2-jets of diffeomorphisms above a fixed point. This
final example has potential use in the creation of particle methods for problems on
diffeomorphism groups.

1 Introduction

It is no secret that the use of symmetry and a preference for algebraic simplicity
pervaded much (if not all) of Jerry’s intellectual endeavours. Certainly one of these
algebraic structures would be semi-direct products, which pepper his research in the
form of rigid bodies, complex fluids, plasmas [12, 13], the KdV equation [14], and
the heavy top [8].

In this paper we will investigate a new semi-direct product which is inspired by a
careful analysis of the second order jet groupoid. To begin, letG be a Lie group and
V be a vector space on which G acts by a left action. Given these ingredients, we
may form the Lie groupGËV , which is isomorphic to G�V as a set, but equipped
with the composition
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.g; v/ � Ë.h;w/ D .g �h; g �wC v/; 8.g; v/; .h;w/ 2 G Ë V:

A standard example of a system which evolves on a left semi-direct product is the
heavy top, where G D SO.3/ and V D R

3. In contrast, if G acts on V by a right
action, we may form the right semi-direct productGÌV defined by the composition

.g; v/ � Ì.h;w/ D .g � h;wC v �h/:
A standard example of a system whose configurations describe a right semi-direct
product is a fluid with a vector-valued advected parameter [8]. In any case, it seems
natural to surmise that the composition law

.g; v/ �‰.h;w/ D .g �h; g �wC v �h/ (1)

yields a new type of semi-direct product. The first result of this article is that (1)
is a valid composition law in some circumstances, and we call the corresponding
Lie group a centered semi-direct product. This group is not completely novel in
the sense that it is isomorphic to a left semi-direct product with respect to the left
action v 7! g � v �g�1 through the group homomorphism .g; v/ 7! .g; v �g�1/.
Simultaneously, this group is isomorphic to a right semi-direct product as well.1

Nonetheless, it is still fascinating to observe the consequence of this symmetric
formulation of the group structure.

The second result is that the second order Taylor expansions (or second
order jets) of diffeomorphisms over a fixed point form a centered semi-direct
product. The main motivation behind understanding this example is to allow us to
develop particle-based methods for complex fluid simulation and image registration
algorithms.

1.1 Background

The semi-direct product is a standard tool used in the construction of new Lie groups
and plays an interesting role in geometric mechanics when the normal subgroup
is interpreted as an advected parameter. A standard example is the modeling of
the ‘heavy-top’, wherein the axis of rotation is described by R

3 and is advected
by the action of SO.3/. In other words, the configuration space for the heavy top
can be described as the left semi-direct product SO.3/ Ë R

3 [8]. Another standard
example is the modeling of liquid crystals, in which we consider the right semi-
direct product SDiff.M/ÌV . In this case, SDiff.M/ is the set of volume-preserving
diffeomorphisms of a volume manifold M , and V is a vector space of maps from
M into some Lie algebra and SDiff.M/ acts on V by pullback [5, 6]. Of course, the
tangent bundle of a Lie group, TG, is isomorphic to a left semi-direct productGËg
by left-trivializing the group structure of TG. Additionally, TG is isomorphic to a

1This observation was pointed out to us by Peter Michor.
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right semi-direct product G Ì g when the group structure of TG is right trivialized
[1, section 5.3]. Thus, we see that this method of constructing groups can be found
in a number of instances. In this article, we introduce a new type of semi-direct
product which extends the existing semi-direct product theory.

A motivating example will be a desire to understand the second order jet-
groupoid of a manifold M [10, section 12]. As will be illustrated in Section 1.3,
an isotropy group of the second order jet groupoid exhibits a group structure which
can be written as a centered semi-direct product. A thorough understanding of
the jet groupoid can be useful for the creation of new particle-based methods
wherein the particles carry jet data in addition to position and velocity data. One
advantage of such a particle method is the possibility for a discrete form of Kelvin’s
circulation theorem [9]. Building such particle methods can be useful in scenarios in
which one desires to work with the material representation of a fluid. For example,
the free energy of liquid crystal is a function of the gradient of a director field
advected by the fluid. Computing this advection requires the use of second order
jet data and therefore a small portion of the material representation of the fluid
is invoked [5, 6]. Additionally, the use of jet data can be useful in the realm of
image registration algorithms in the field of medical imaging. In particular, it is
common to use the material representation of the EPDiff equations to implement the
Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework [2, 4].
In particular, “Landmark LDDMM” discretizes the EPDiff equation using particle
methods [15]. A version of Landmark LDDMM wherein the particles can carry
higher order jet data is described in [16]. Thus, keeping track of jet data may play
a significant role in the construction of particle-based integrators for fluid modeling
and medical imaging algorithms.

1.2 Main Contributions

In this paper, we accomplish a sequence of goals, each building upon the previous.
In particular:

1. In Section 2, we define a new type of semi-direct product that we dub a centered
semi-direct product.

2. In Proposition 4, we derive the Lie algebra of a centered semi-direct product and
its associated structures.

3. In Section 3, we develop the Euler-Poincaré theory of centered semi-direct
products in parallel with the existing theory of semi-direct product reduction [8].

4. In Section 4, we describe the centered semi-direct product Euler-Poincaré
equations for a few examples. We present one toy example before presenting
the theory for an isotropy group of the second order jet groupoid.

Combined, these items allow for a computationally tractable algebraic under-
standing of second order jets and perhaps open the door to applications which were
previously overlooked by geometric mechanicians.
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1.3 A Motivating Example

Let Diff.M/ denote the diffeomorphisms group of a manifoldM . For a fixed x 2M
we may define the isotropy subgroup

Iso.x/ D f' 2 Diff.M/ j '.x/ D xg:

Let ' 2 Iso.x/ and note that Tx' is a linear automorphism of the vector-spaceTxM .
In particular:

Proposition 1. The functor “Tx” is a group homomorphism from Iso.x/ to
GL.TxM/.

Proof. Clearly Iso.x/ and GL.TxM/ are both Lie groups. Let '; 2 Iso.x/. Then
Tx' ı Tx D Tx.' ı  /. ut

This observation has implications for computation for the following reason: By
definition, Tx' approximates ' in a neighborhood of x 2 M . Thus, if one desired
to model a continuum with activity at x, then Tx' carries some of the crucial data
to do this task. In particular, this is computationally tractable as the dimension of
GL.TxM/ is equal to .dimM/2.

However, the group GL.n/ only captures the linearization of a diffeomorphism.
If we desire to capture some of the nonlinearity then we might consider looking into
the second jet of these diffeomorphisms (see Figure 1). We can do so by considering
the functor T Tx . Let ' 2 Iso.x/ so that T Tx' is a map from T .TxM/ to T .TxM/.
However, TxM is a vector-space so that T .TxM/ � TxM � TxM . The second
component represents the vertical component and the isomorphism between T TxM
and TxM � TxM is given by the vertical lift

Fig. 1 Depicted is a
diffeomorphism with a trivial
second order jet (i.e. a linear
transformation) and
diffeomorphism with a
nontrivial second order jet
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v".v1; v2/ D d

d�

ˇ
ˇ
ˇ
ˇ
�D0

.v1 C �v2/:

We can therefore represent T Tx' as .Tx';A'/ where A' W TxM � TxM ! TxM

is the symmetric .1; 2/ tensor

Akij D
@2'k

@xi@xj
.x/ (2)

where 'k is the kth component of '. In other words, upon choosing a Riemannian
metric to induce an coordinate system at x we obtain the 1–1 correspondence

T Tx' $ .A1; A2/

where A1 D @'i

@xj
and A2 is given by (2). If we denote the set of rank .1; 2/-

tensors on TxM which are symmetric in the covariant indices by S 1
2 .x/, then this

correspondence is given by a map

� W J 2
ˇ
ˇx
x
.Diff.M//! GL.TxM/ �S 1

2 .x/

where J 2
ˇ
ˇx
x
.Diff.M// is the group of second order Taylor expansions about x of

diffeomorphisms which send x to itself (these are called second order jets). This
allows us to write the Lie group structure of J 2

ˇ
ˇx
x
.Diff.M// as a type of semi-

direct product. In particular:

Proposition 2. If we represent T Tx' and T Tx as .A1; A2/ and .B1; B2/ where

A1 D Tx';B2 D Tx ;A2 D @2'k

@xi @xj
, and B2 D @2 k

@xi @xj
, then T Tx' ı T Tx �

T Tx.' ı  / is given by the composition

.A1; A2/ ı .B1; B2/ D .A1 ı B1;A1 ı B2 C A2 ı .B1 � B1//:

Proof. We find that

@

@xi
.'k ı  / D @'k

@xl
� @ 

l

@xi
ı  

and the second derivative is

@

@xj

@

@xi
.'k ı  / D @

@xj

�
@'k

@xl
� @ 

l

@xi
ı  

�

D
�
@2'k

@xl@xm

@ l

@xi

@ m

@xj
C @'k

@xl

@2 l

@xi @xj

�

ı  :
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Noting that  .x/ D x we can set

A1 D @'k

@xl

ˇ
ˇ
ˇ
ˇ
x

; A2 D @2'k

@xi @xj

ˇ
ˇ
ˇ
ˇ
x

B1 D @ k

@xl

ˇ
ˇ
ˇ
ˇ
x

; B2 D @2 k

@xi @xj

ˇ
ˇ
ˇ
ˇ
x

and rewrite the equations in the form

@

@xi
.'k ı  / D A1 �B1

@

@xj

@

@xi
.'k ı  / D A1 �B2 C A2 ı .B1 � B1/:

Therefore, if we define the composition

.A1; A2/ � .B1; B2/ WD .A1 �B1;A1 �B2 C A2 ı .B1 � B1//

on the manifold GL.TxM/ �S 1
2 , then � W J 2

ˇ
ˇx
x
.Diff.M// ! GL.TxM/ �S 1

2

is a Lie group isomorphism by construction. ut
We see that the composition law of Proposition 2 is of the form described in

equation (1). In this paper, we will condense the composition law for second order
jets to the algebraic level and study (1) in the abstract Lie group setting. Of course,
one would naturally like to consider diffeomorphisms which are not contained in
Iso.x/. However, this extension brings us into the realm of Lie groupoid theory and
will need to be addressed in future work.

2 A Centered Semi-direct Product Theory

In this section, we will discover a new type of semi-direct product. We will outline
the necessary ingredients for the construction of such a Lie group and we will derive
the corresponding structures on the Lie algebra.

2.1 Preliminary Material on Lie Groups

Let G be a Lie group with identity e 2 G and Lie algebra g. In this section we will
establish notation and recall relevant notions related to Lie groups and Lie algebras.
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2.1.1 Group Actions

Let V be a vector space. A left action of G on V is a smooth map �L W G � V ! V

for which:

�L.e; v/ D v and �L.g; �L.h; v// D �L.gh; v/; 8g; h 2 G;8v 2 V:

As using the symbol ‘�L’ can become cumbersome and since we will only need a
one left Lie group action in a given context, we will opt to use the notation g � v WD
�L.g; v/: Finally, the induced infinitesimal left action of g on V is

� � v WD d

d�

ˇ
ˇ
ˇ
�D0 exp.� � �/ � v; 8� 2 g; v 2 V:

Similarly, a right action of G on V is the smooth map �R W V �G ! V for which:

�R.v; e/ D v and �L.�L.v; g/; h/ D �L.v; gh/; 8g; h 2 G;8v 2 V:

Again, we will primarily use the notation v �g WD �R.v; g/ for right actions.
The induced infinitesimal right action of g on V is given by

v � � D d

d�

ˇ
ˇ
ˇ
�D0v � exp.� � �/ ; 8� 2 g; v 2 V

Lastly, we say that the left action and the right action commute if

.g � v/ � h D g � .v � h/

for any g; h 2 G and v 2 V .

2.1.2 Adjoint and Coadjoint Operators

In this section we will recall the “AD;Ad; ad”-notation used in [7]. For g 2 G we
define the inner automorphism AD W G�G ! G as AD.g; h/ � ADg.h/ D ghg�1.
Differentiating AD with respect to the second argument along curves through the
identity produces the Adjoint representation ofG on g denoted Ad W G�g! g and
given by

Adg.�/ D d

d�

ˇ
ˇ
ˇ
ˇ
�D0

�
ADg.exp.��//

� D g � � �g�1;

for g 2 G and � 2 g. Differentiating Ad with respect to the first argument along
curves through the identity produces the adjoint operator ad W g � g! g given by
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ad� .�/ D d

d�

ˇ
ˇ
ˇ
ˇ
�D0

.Adexp.��/.�// D � � � � � � �:

The ad-map is an alternative notation for the Lie bracket of g in the sense that

ad.�; �/ � ad�.�/ � Œ�; �	:

For each � 2 g the map ad� W g ! g is linear and therefore has a formal dual
ad�
� W g� ! g� which we call the coadjoint operator. Explicitly, ad�

� is defined by
the relation

had�
� .�/; �i D h�; ad� .�/i (3)

for each � 2 g and � 2 g�.

2.2 Centered Semi-direct Products

In this section, we will construct a semi-direct product which can be thought of as a
‘sum’ of a right semi-direct product and a left semi-direct product.

Proposition 3. Let G be a Lie group which acts on a vector-space V via left and
right group actions. Then, the productG � V with the composition law

.g1; v1/ � .g2; v2/ WD .g1g2; g1 � v2 C v1 �g2/ (4)

is a Lie group if and only if the left and right actions of G commute.

Proof. It is clear that G � V is a smooth manifold and that the composition law (4)
is a smooth map. We must prove that this composition makes G � V a group.

• That the composition map (4) produces another element ofG�V can be observed
directly. Thus ‘closure’ is satisfied.

• The identity element is given by .e; 0/ 2 G�V where e 2 G is the identity ofG.
• The inverse element of an arbitrary .g; v/ 2 G � V is .g�1;�g�1vg�1/ where
g�1 is the inverse of g 2 G:

• Given three elements of G � V we find

.g1; v1/ � ..g2; v2/ � .g3; v3// D .g1; v1/ � .g2g3; g2 � v3 C v2 � g3/
D .g1g2g3; g1 � .g2 � v3 C v2 � g3/C v1 � .g2g3//
D ..g1g2/g3; .g1g2/ � v3 C g1 � .v2 �g3/C .v1 � g2/ �g3/ :
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By the commutativity of the group actions we may equate the above line with:

D ..g1g2/g3; .g1g2/ � v3 C .g1 � v2/ �g3 C .v1 � g2/ �g3/
D ..g1g2/g3; .g1g2/ � v3 C .g1 � v2 C v1 �g2/ �g3/
D ..g1g2/; g1 � v2 C v1 �g2/ � .g3; v3/
D ..g1; v1/ � .g2; v2// � .g3; v3/:

Thus, the associative property is satisfied.

Moreover, all maps in sight including the inverse map are smooth. In conclusion we
see that G � V with the composition (4) defines a Lie group. Moreover, if the left
and right actions of G on V do not commute, then we can observe that associativity
is violated. ut
Definition 1. Given commuting left and right representations of a group G on a
vector space V , the Lie group G � V with the composition (4) is denoted G ‰ V

and called the centered semi-direct product of G and V:

It customary to denote the left semi-direct product using the symbol Ë and the
right semi-direct product via the symbol Ì. We justify our use of the symbol ‰
in that the concept of centered semi-direct product is merely a ‘sum’ of a left and
a right semi-direct product. The formula ‰D Ì C Ë can be used as a heuristic
throughout the paper. In particular, this heuristic applies to the Lie algebra.

Proposition 4. Let G ‰ V be a centered-semi direct product Lie group. The Lie
algebra g‰ V is given by the set g � V with the Lie bracket

Œ.�1; v1/; .�2; v2/	‰ D
�
Œ�1; �2	g; .�1 � v2 C v1 � �2/ � .�2 � v1 C v2 � �1/

�
; (5)

for �1; �2 2 g; v1; v2 2 V .

Proof. Firstly, it is simple to verify that the tangent space at the identity, .e; 0/ 2
G � V , is g � V . To derive the Lie bracket, we will derive the ad-map via the Ad
and AD-maps. For .g; v/; .h;w/ 2 G ‰ V we find

AD.g;h/.h;w/ D .gh; v �hC g �w/ � .g�1;�g�1 � v � g�1/

D .ADg.h/; v � hg�1 C g �w �g�1 �ADg.h/ � v � g�1/:
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If we substitute .h;w/ with the �-dependent curve .exp.� � �2/; � � v1/ we can
calculate the adjoint operator, Ad W .G ‰ V / � .g‰ V /! g‰ V: Given by

Ad.g;v/.�2; v2/ D d

d�

ˇ
ˇ
ˇ
ˇ
�D0

AD.g;v/.exp.� � �1/; � � v1/

D .Adg.�2/I v � �2g�1 C g � v2 � g�1 � Adg.�2/ � v �g�1/:

If we substitute .g; v/ with the t-dependent curve .exp.t�1/; tv2/ we can differenti-
ate with respect to t to produce the adjoint operator ad W .g ‰ V / � .g ‰ V / !
g‰ V . Specifically, the adjoint operator is given by

ad.�1;v1/.�2; v2/ D
d

dt

ˇ
ˇ
ˇ
tD0.Ad.exp.t � �1/;t � v1/.�2; v2//

D d

dt

ˇ
ˇ
ˇ
tD0.g�2g

�1; v � �2g�1 � g�2g�1 � v �g�1 C g � v2 � g�1/

D .ad�1.�2/; �1 � v2 C v1 � �2 � �2 � v1 � v2 � �1/
D .Œ�1; �2	g; .�1 � v2 C v1 � �2/ � .�2 � v1 C v2 � �1//:

Noting that the ad-map is merely an alternative notation for the Lie bracket
completes the proof. ut

We complete this section by defining operations designed to express interaction
terms between momenta in V and momenta in G in mechanical systems.

Definition 2. The heart operator ~ W g � V � ! V � is defined by

h�~˛; viV WD h˛; � � v � v � �iV : (6)

The diamond operator, } W V � V � ! g�, is defined as

hv}˛; �ig WD h˛; v � � � � � viV : (7)

The diamond operator can be seen as the sum of a diamond operator of a left
semi-direct product and that of a right semi-direct product [8]. If we view G ‰ V

as a Lie group and take the corresponding Line variations then the heart operator
and diamond operator comes into play. However, if we restrict the variations so that
V acts as an advected parameter, only the diamond operator is present. We will
elaborate on both these options in the next section.
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3 Euler-Poincaré Theory

The Euler-Lagrange equations on a Lie group, QG, can be expressed by a vector
field over T QG. If the Lagrangian is QG-invariant then the equations of motion are
QG-invariant as well and the evolution equations can be reduced. While the unreduced

system evolves by the Euler-Lagrange equations on T QG, the reduced dynamics
evolve on the quotient T QG= QG. However, T QG= QG is just an alternative description
of the Lie algebra Qg and so the reduced equations of motion can be described on
Qg where we call them the Euler–Poincaré equations. This reduction procedure is
summarized by the commutative diagram:

To be even more specific. A Lagrangian L W T QG ! R is said to be (right)
QG-invariant if

L.. Qg; PQg/ �h/ D L. Qg; PQg/
for all h 2 QG. If L is QG-invariant, then L is uniquely specified by its restriction
` D LjQg W Qg ! R. The Euler-Poincaré theorem states that the Euler-Lagrange
equations

d

dt

�
ıL

ı PQg
�

� ıL
ı Qg D 0

on T QG are equivalent to the Euler-Poincaré equations and reconstruction formula

d

dt

�
ı`

ı Q�
�

D � ad�
Q�

�
ı`

ı Q�
�

; Q� WD PQg � Qg�1:

A review of Euler-Poincaré reduction is given in [11, Ch 13] while a specialization
to the case of semidirect products with advected parameters is described in [8]. In
this section we will specialize the Euler-Poincaré theorem to the case of centered
semi-direct products by setting QG D G ‰ V .

To begin let us compute how variations of curves in the group induce variations
on the trivializations of the velocities to the Lie algebra. Studying such variations
will allow us to transfer the variational principles on the group to variational
principles on the Lie algebra.



178 L. Colombo and H.O. Jacobs

Proposition 5. LetG ‰ V be a centered semi-direct product and consider a curve
.g; v/.t/ 2 G ‰ V . Let .�g.t/; �v.t// WD . Pg.t/; Pv.t// � .g.t/; v.t//�1 2 g ‰ V be
the right trivialization of . Pg; Pv/.t/. An arbitrary variation of .g; v/.t/ is given by

.ıg; ıv/.t/ D .�g; �v/.t/ � .g; v/.t/ 2 T.g;v/.t/.G ‰ V /;

where .�g; �v/.t/ 2 g ‰ V . Given such a variation, the induced variation on
.�g; �v/ is given by

.ı�g; ı�v/ D . P�g � ad�g �g; P�v C .�g�v C �v�g/ � .�g�v C �v�g// (8)

D d

dt
.�v; �v/� Œ.�g; �v/; .�g; �v/	‰:

Proof. For any Lie group, QG, and any curve Qg.t/ 2 QG, the variation of Q�.t/ WD
PQg.t/ � Qg�1.t/ induced by the variation ı Qg.t/ D Q�.t/ � Qg.t/ is ı Q� D PQ� � Œ Q�; Q�	. For
matrix groups see [11, Theorem 13.5.3] and [3] for the general case. If we set QG D
G ‰ V and use the bracket derived in Proposition 4 then the theorem follows. ut

Now that we understand the relationship between variations of curves in G ‰ V

and the induced variations in g ‰ V we can state the Euler-Poincaré theorem for
centered semi-direct products.

Theorem 1. Let L W T .G ‰ V / ! R be (right) G ‰ V -invariant, and let
` W g‰ V ! R be its reduced Lagrangian. Let .g; v/.t/ 2 G ‰ V and denote the
right trivialized velocity by .�g; �v/.t/ WD . Pg; Pv/.t/ � .g; v/.t/�1. Then the following
statements are equivalent:

(i) Hamilton’s principle holds. That is,

ı

Z t1

t0

L.g.t/; Pg.t/; v.t//dt D 0 (9)

for variations of .g; v/.t/ with fixed endpoints.
(ii) .g; v/.t/ satisfies the Euler-Lagrange equations for L.

(iii) The constrained variational principle

ı

Z t1

t0

`.�g.t/; �v.t//dt D 0 (10)

holds on g � V for variations of the form

.ı�g; ı�v/ D . P�g � ad�g �g; P�v C �g�v � �v�g C �v�g � �g�v/; (11)

where .�g; �v/.t/ is an arbitrary curve in g ‰ V which vanishes at the
endpoints.
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(iv) The Euler-Poincaré equations

d

dt

�
ı`

ı�g

�

C ad�
�g

�
ı`

ı�g

�

C �v} ı`
ı�v
D 0; d

dt

�
ı`

ı�v

�

C �g~ ı`
ı�v
D 0

hold on g‰ V .

Proof. The equivalence (i) and (ii) holds for any configuration manifold and so, in
particular it holds in this case.

Next we show the equivalence (iii) and (iv). We compute the variations of the
action integral to be

ı

Z t1

t0

`.�g.t/; �v.t//dt D
Z t1

t0

D ı`

ı�g
; ı�g

E
C
D ı`

ı�v
; ı�v

E
dt

D
Z t1

t0

D ı`

ı�g
; P�g � ad�g �g

E

C
D ı`

ı�v
; P�v C �g�v � �v�g C �v�g � �g�v

E
dt

and applying integration by parts and equation (3) we find

D
Z t1

t0

D
� d

dt

�
ı`

ı�g

�

� ad�
�g

�
ı`

ı�g

�

; �g

E
C
D
� d

dt

ı`

ı�v
; �v

E

C
D ı`

ı�v
; �g�v � �v�g

E
C
D ı`

ı�v
; �v�g � �g�v

E
dt

C
D ı`

ı�g
; �g

Eˇ
ˇ
ˇ
t1

t0
C
D ı`

ı�v
; �v

Eˇ
ˇ
ˇ
t1

t0

D
Z t1

t0

D
� d

dt

�
ıl

ı�g

�

� ad�
�g

�
ı`

ı�g

�

�
�

�v} ı`
ı�v

�

; �g

E

C
D
� d

dt

�
ı`

ı�v

�

� �g~ ı`
ı�v

; �v

E
dt:

By noting that .�g; �v/.t/ is arbitrary on the interior of the integration domain, the
result follows.

Finally, we show that (i) and (iii) are equivalent. TheG�invariance of L implies
that the integrands in (9) and (10) are equal. However, by Proposition 5 all the
variations of .g; v/.t/ with fixed endpoints induce, and are induced by, variations
.ı�g; ı�v/.t/ 2 g ‰ V of the form given in equation (11). Conversely if (i) holds
with respect to arbitrary variations .ıg; ıv/, we define
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.�g; �v/.t/ D .ıg; ıv/ � .g; v/�1;

to produce the variation of .�g; �v/ given in equation (11). ut
Remark 1. There is a left invariant version of theorem (1) in which .�g; �v/ WD
.g; v/�1 � . Pg; Pv/ and L is left G ‰ V -invariant. In this case the Euler-Poincaré
equations take the form

d

dt

�
ı`

ı�g

�

� ad�
�g

�
ı`

ı�g

�

� �v} ı`
ı�v
D 0;

d

dt

�
ı`

ı�v

�

� �g~ ı`
ı�v
D 0:

Remark 2. There is a version of semi-direct product mechanics wherein the vector-
space V is a set of advected parameters as in [8]. In this case we impose the
holonomic constraint

Pv D Pg � v C v � Pg

and the set of admissible variations in g‰ V become

ı�g D P�g � Œ�g; �g	; ıv D �g � v C v � �g:

If we do this, the ~-term is removed and ı`
ıv

equation is replaced with a holonomic
constraint. In particular we find that

d

dt

�
ı`

ı�g

�

˙ ad�
�g

�
ı`

ı�g

�

˙ �v} ı`
ı�v
D 0 (12)

dv

dt
D �g � v C v � �g: (13)

where we use a plus sign for right trivialization and a minus sign for left
trivialization.

4 Examples

In this section we will present two examples of Euler-Poincaré equations on
centered semidirect products. This first is a toy example designed to illustrate how
computations of the diamond and heart operators can be done in practice. The
second example is concerns second order jets as described in Section 1.3.
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4.1 A Toy Example

Consider the group GL.n/ and let Mat.n/ denote the vector space of n � n real
matrices. Noting that GL.n/ acts on Mat.n/ by left and right multiplication, we can
define the composition law on the Lie groupGL.n/ ‰ Mat.n/ by:

.A; v/ � .B;w/ D .AB;AwC vB/:
Moreover, we can identify gl�.n/with gl.n/ and Mat.n/� with Mat.n/ by the matrix
trace pairing hA;Bi D trace.ATB/. This allows us to calculate the heart operator
~ W gl.n/ �Mat.n/� ! Mat.n/ as

hA~w; vi D hw; A � v � v �Ai
D trace

�
wT .A � v � v �A/�

D trace
�
wT � .A � v/ � wT .v �A/�

D trace
�
.wT �A/v � .A �wT / � v�

D trace
�
.wT �A �A �wT / � v�

D trace
�
.AT w � w �AT /T � v�

D hATw � wAT ; vi
Therefore,

A~w D ATw � wAT :

By a similar calculation, diamond operator is found to be

v}w D vT w� wvT ;

and the coadjoint action on GL.n/ is given by

ad�
A.˛A/ D AT �˛A � ˛A �AT :

Now, we have all the ingredients to write the Euler-Poincaré equations. Given
a reduced Lagrangian ` W gl.n/ ‰ Mat.n/ ! R we may denote the reduced
momenta by

� D ı`

ı�
; 
 D ı`

ıv
:

where .�; v/ 2 gl.n/‰ Mat.n/. The Euler-Poincaré equations can be written as

P� D .�T � � ��T /C vT 
 � 
vT
P
 D �T 
 � 
�T :
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4.2 An Isotropy Group of a Second Order Jet Groupoid

In Proposition 1 we illustrated how the second order jets of diffeomorphisms of
the stabilizer group of a point x 2 M is identifiable with a centered semidirect
product. In particular, if dim.M/ D n we can consider the group GL.n/ ‰ S 1

2 ,
where S 1

2 is the set of .1; 2/-tensors which are symmetric in the covariant indices.
For the moment we shall consider the larger space of all .1; 2/-tensors denoted T 1

2 .
If we let e1; : : : ; en 2 R

n be a basis with dual basis e1; : : : ; en 2 .Rn/� we can write
an arbitrary element of T 1

2 as

T D T ijkei ˝ ej ˝ ek:

The left action of GL.n/ on T 1
2 is

g �T WD T ijk.g � ei /˝ ej ˝ ek � T ijkgli el ˝ ej ˝ ek

while the right action is

T �g WD T ijkei ˝ .gT � ej /˝ .gT � ek/:

Clearly these actions commute, and so we may form the centered semidirect product
Lie group GL.n/‰ T 1

2 .
Let us now focus on the Lie algebra. The Lie algebra gl.n/ is equivalent to T 1

1

and the Lie bracket is then given in the bases ei ˝ ej by

Œ�; �	 D .�ik�kj � �ik�kj /ei ˝ ej ;

where � D �ij ei ˝ ej and � D �ij ei ˝ ej . We can use the dual basis ei ˝ ej to see

that the coadjoint action of � on � D �ji ei ˝ ej is given by

ad�
� � D .�jk�ki � �ki �jk /ei ˝ ej :

By differentiation we see that the infinitesimal left and right actions of gl.n/ on T 1
2

are given by

� �T D T ijk�li el ˝ ej ˝ ek

T � � D T ilk
h
ei ˝ .�jl � el /˝ ek C ei ˝ ej ˝ .�kl � el /

i

D .T ilk�lj C T ijl �lk/ei ˝ ej ˝ ek:

If we choose an arbitrary element ˛ 2 .T 1
2 /

� � T 2
1 given by

˛ D ˛jki ei ˝ ej ˝ ek



Lagrangian Mechanics on Centered Semi-direct Products 183

we find that

h˛; � � T i D .˛jkl �li /T ijk D .˛lki T jlk/�ij
h˛; T � �i D .˛lki �jl C ˛jli �kl /T ijk D .˛jkl T lik C ˛kjl T lki /�ij :

Therefore the heart operator is given by

�~˛ D .�li ˛jkl � ˛lki �jl � ˛jli �kl /ei ˝ ej ˝ ek

and the diamond operator is

˛}T D .˛jkl T lik C ˛kjl T lki � ˛lki T jlk/ei ˝ ej :

Given a reduced Lagrangian ` W gl.n/ ‰ T 1
2 ! R we can denote � D ı`

ı�
and


 D ı`
ıT

. In terms of the basis ei ˝ ej and ei ˝ ej ˝ ek we may write the (right)
Euler-Poincaré equations as:

P�ji D ˛lki T jlk C �jk�ki � �ki �jk � ˛jkl T lik � ˛kjl T lki
PT ijk D �li ˛jkl � ˛lki �jl � ˛jli �kl :

By restricting T 1
2 to the subspace S 1

2 , we can obtain a Lie group which models
second order jets of diffeomorphisms as demonstrated in Proposition 2. This
example provides a first step towards the creation of higher-order, spatially accurate
particle methods [9, section 4]. Moreover, the data of second order jets is necessary
for the advection of quantities seen in complex fluids in which the advected
parameters depend on gradients of the flow [5, 6]. Therefore, the structures described
here may prove useful in the construction of particle-based integrators for complex
fluids as well.

5 Conclusion

In this paper, we have presented a variant of traditional semi-direct products, dubbed
centered semi-direct products, and we have illustrated the associated Euler-Poincaré
theory. The diamond operator, the group multiplication, and the Lie bracket can all
be seen as sums of the associated concepts for left and right semi-direct products. As
a result, the Euler-Poincaré theory associated with centered semi-direct products can
also be seen as a sum of the left and right invariant Euler-Poincaré theories for semi-
direct products. Presently, many of these constructions remain fairly theoretical.
However, an isotropy group of the second order jet groupoid can be seen as
a centered semi-direct product. This has potential applications in simulation of
complex fluids. We hope this paper provides a stepping stone towards realizing this
application.
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Vortices on Closed Surfaces

Stefanella Boatto and Jair Koiller

Dedicated to the memory of Jerry Marsden

Abstract It was recognized, since the seminal papers of Arnold (Ann Inst Grenoble
16:319–361, 1966) and Ebin-Marsden (Ann Math Ser 2 92(1):102–163, 1970),
that Euler’s equations are the right reduction of the geodesic flow in the
group of volume preserving diffeomorphisms. In 1983 Marsden and Weinstein
(Physica D 7:305–323, 1983) went one step further, pointing out that vorticity
evolves on a coadjoint orbit on the dual of the infinite dimensional Lie algebra
consisting of divergence free vectorfields. Here we pursue a suggestion of that paper,
namely, to present an intrinsic Hamiltonian formulation for a special coadjoint orbit,
which contains the motion of N point vortices on a closed two dimensional surface
S with Riemannian metric g. Our main results reformulate the problem on the plane,
mainly C.C. Lin’ s works (Lin, Proc Natl Acad Sci USA 27:570–575; Lin, Proc
Natl Acad Sci USA 27:575–577, 1941) about vortex motion on multiply connected
planar domains. Our main tool is the Green function Gg.s; so/ for the Laplace-
Beltrami operator of .S; g/, interpreted as the stream function produced by a unit
point vortex at so 2 S . Since the surface has no boundary, the vorticity distribution!
has to satisfy the global condition

’
S
! ˝ D 0, where˝ is the area form. Thus the

Green function equation has to include a background of uniform counter-vorticity.
As a consequence, vortex dynamics is affected by global geometry. Our formulation
satisfies Kimura’s requirement (Kimura, Proc R Soc Lond A 455:245–259, 1999)
that a vortex dipole describes geodesic motion. A single vortex drifts on the surface,
with Hamiltonian given by Robin’s function, which in the case of topological
spheres is related to the Gaussian curvature (Steiner, Duke Math J 129(1):63–86,
2005). Results on numerical simulations on flat tori, the catenoid and in the triaxial
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ellipsoid are depicted. We present a number of questions, intending to connect point
vortex streams on surfaces with questions from the mathematical mainstream.

1 Introduction and Main Results

A natural motivation to study vortex flows on curved surfaces is the atmospheric
circulation on Earth and the flow on the oceans [202], and, more generally, the
planetary atmospheres epitomized by Jupiter’s great red spot [125, 134]. In addition,
since the mid 1990s there is a growing interest coming from condensed matter and
atomic physics, specially liquid crystals, superfluids and Bose-Einstein condensates
[66, 148, 201].

The aim of this paper is to describe, in coordinate free fashion, how N point
vortices sj of strengths �j move on a closed (compact, boundaryless, orientable)
surface S with Riemannian metric g. The main results were announced in [17]
and [109]. Our main tool is the Green function of the Laplace-Beltrami operator,
G.s; so/, interpreted as the stream function produced by a unit point vortex at so 2 S
with a background uniform counter vorticity field.

A vortex core is a small round disk (in the metric sense), with a very high
value of vorticity on an ocean of low countervorticity. The problem of proving the
long time stability of vortex cores on surfaces is of great importance. One possible
complication, as indicated in (2) below, is that the core will tend to drift along
the surface due not only to curvature but also due to nonlocal effects.

This problem is way beyond our powers, but we are optimistic that analysts can
give a positive answer for surfaces in the same positive way that it was obtained in
the planar case in the 1980s, see [206, 207].1 Heuristically, we call the attention that
what physicists call the “core energy desingularization method” ([71], 1997) should
also work on surfaces, because of the nature of the singular behavior of Green’s
function near the diagonal:

G.s; so/  1

2�
logd.s; so/; as s ! so: (1)

Here d.s; so/ is the distance function of the metric.
In particular, we argue that a single vortex so must move on a closed surface

obeying the Hamiltonian system .˝g;Rg/, governed by the desingularization Rg
(called Robin’s function)

Rg.so/ D lim
s!so

Gg.s; so/� 1

2�
logd.s; so/: (2)

˝g is the area form of g.2

1There is an earlier preprint by Wan, Marsden, Ratiu and Weinstein, [208]
2Metrics such that the Robin function is constant may be called “hydrodynamically neutral”.
C. Ragazzo (personal communication) is characterizing this new type of canonical metrics.
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We show that pairs of opposite point vortices satisfy Kimura’s requirement [103]:
two infinitesimally close ones follow geodesic motion. The study of long time
stability of symmetric vortex structures in the plane has just recently attracted the
analyst’s interest (see e.g. [35]). This question on surfaces seems quite challenging.

1.1 Marsden and Weinstein: Vortices as Coadjoint Orbits

Instrumental for this essay is Marsden and Weinstein 1983 remarkable paper
(“Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids” [135])
interpreting a vorticity field as an element of the dual of TIdDiffvol, the Lie algebra
of divergence free vector fields. In hindsight this Marsden-Weinstein paper is a
natural continuation of Arnold’s seminal paper [3]. They show that vorticity evolves
on a coadjoint orbit by the usual rules of Geometric Mechanics. They exhibit the
corresponding KAKS bracket and the reduced Hamiltonian. In Section 7 of [135]
there is an observation outlining the construction of the symplectic structure for
point vortices on a two-dimensional Riemannian manifold.

“The usual Hamiltonian equation of N vortices in just the restriction of the standard
Euler equation Lie-Poisson Hamiltonian description to a particular coadjoint orbit, with
the (infinite) self-energy terms ignored. We did this in R2 but the description also works for
bounded domains or curved surfaces.”

Indeed, our symplectic form (11) in S � � � � � S ,

˝collective.s1; � � � ; sN / D
NX

`D1
�`˝.s`/;

follows immediately from the general expression for the reduced symplectic form,
as outlined in [135], p. 317 for the planar case. Our Hamiltonian (10)

H D
X

1�i<j�N
�i�jGg.si ; sj /C

NX

`D1

1

2
�2` Rg.s`/

is also straightforward. The general expression for the reduced Hamiltonian in the
coadjoint orbit appears in p. 311 of [135], namely equation .Hvorticity/

H D
Z

.!;��1!/dvol: (3)
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where

.��1!/.�/ D
Z

G.�; a/!.a/dvol.a/;

G being the Green function of the Laplace-Beltrami operator on the manifold. The
nonlocal nature of vortex equations on surfaces3 comes from the inversion��1.

Taking for the vorticity ! a sum of generalized functions with delta singularities
(necessarily containing a background countervorticity in the case of closed surfaces)
our Hamiltonian follows naturally: the cross terms are given by the Green function
at the pairs �i�jG.si ; sj / while the self contribution, after the “infinite self energy’
removed, is given by Robin’s function (2) at the vortices.

1.2 Green Functions

Green functions for the Laplace Beltrami operators are at the core of our paper.
In [135] the fundamental role of Green functions is implicit in the ��1 operator on
equation (Hvorticity), and explicitly used on Section 8.

Green functions should be in the basic toolkit of Geometric Mechanicists. The
Green function of the Laplace-Beltrami operator is the keystone of Geometric
Analysis. In pure mathematics, they are at the heart of the spectral theory, with
ramifications on Riemann surfaces (automorphic functions and analytic number
theory).

In the applied side, Green functions are instrumental for computational geometry
and manifold learning. Jerry Marsden has leaded the geometric mechanics approach
to discrete exterior calculus (joint work with Desbrun, Hirani, and Leok). Green
functions are of fundamental importance for singular solutions of EPDiff equations,
and for the Lagrangian averaged Euler equations (works of Marsden with Holm,
and Ratiu).

Uniformization theory provides for each closed Riemann surface S , a “concrete”
realization having a metric of constant curvature. For constant curvature metrics,
explicit expressions for the Green functions are known for genus 0 (the sphere) and
genus 1 (torus of any modulus). Computing Green functions (and their associated
Robin functions) on genus � 2 surfaces for metrics with curvature K � �1 is still
in its infancy [5]. It is clear by SO.3/ symmetry that Robins’s function is a constant
in the case of a sphere (computed by J. Steiner, [191]). It may seem surprising at
first sight, but it is also constant for any flat torus (of arbitrary modular parameter).

A beautiful theory about Robin’s function and spectral invariants of conformal
classes of metrics was started by K. Okikiolu [153–155]. In short, vortex equations
on surfaces belong to mainstream mathematics!

3We thank Boris Khesin for this fundamental observation.
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1.3 Contributions of Jerry Marsden to Vortex Systems

Marsden advocated that Geometric Mechanics must go hand and hand with Analysis
since his Annals of Mathematics paper with Ebin [64]. Here’s a short sample of his
many collaborations with Ratiu, Montgomery, Lewis and Holm: [93, 94, 94, 122,
123, 136, 138, 139]. Joint work with Ratiu and Raugel in the 1990s about the passage
from three to two dimensions is also notable.

In the last 15 years, among his diversified interests, the dynamics of point vortices
scientific was a subject of collaboration with many authors of several generations,
and we mention just a few, apologizing for the omissions4: with Pekarsky and
Shkoller [137, 158], for stability of point vortices on a sphere and with Rowley
[178] for symplectic integrators; with Shashikanth, Burdick, Kelly, Kanso and
Vankerhaver for vortex-structure interactions [184, 185, 204].

1.4 Vortex History on a Capsule

Circa 340 B.D. Aristoteles described typhoons in his Metereologica. Vorticity is
clearly recognized in Leonardo da Vinci drawings. Descartes envisaged vortices as
a possible mechanism for planet’s dynamics in the solar system [7]. W.Thomson
(also known as Lord Kelvin) and J.J. Thomson used vortices as a possible atomic
theory [199]. This theory persisted for over 40 years until it was discarded after
Rutherford’s 1912 experiments—but some say that string theory is a revival.

Helmholtz’ “Wirbel” paper (short for Über integrale der hydrodynamischen
gleichungen welche den Wirbelbewegungen entsprechen, [87], 1858) came out a
century after Euler’s Principes généraux du mouvement des fluides ([67, 68], 1757)5

where vorticity first appeared in mathematical form.6

Eighteen years later Kirchhoff presented the equations for point vortices in the
plane (Vorlesungen, [105], chapter XX, p. 259, eq. (14)):

mj

dx1

dt
D @P

@yj
; mj

@y1

@t
D � @P

@xj
; P D

X 1

�
mimj log �ij (4)

(nowadays instead ofm, vortex strengths are denoted by � or � =2� , 1=� is omitted,
andH replaces P ).

4Jerry was just starting an ambitious project with Shadden and Dabiri on the interplay of vorticity
with Lagrangian coherent structures [182, 183], a theme that is now flourishing.
5See historical appraisals on the special issue Euler Equations: 250 Years On in Physica D, [69].
6See [30] and [150] for excellent treatises and [1, 2, 16, 140, 209] for recent reviews.
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This is a Hamiltonian system .˝;H/, where the symplectic form is the
combination of planar areas weighted by the vorticities,

˝system D
X

j

�j dxj ^ dyj : (5)

For arbitrary multiply connected planar domains D � C, only in 1941 the
correct Hamiltonian was found by Chia-Chiao Lin [126, 127], extended version
in [128]. These papers were based on his thesis under Theodore von Kármán.7

1.5 Point Vortices on Curved Surfaces: Current Status

The modern study of vortices on surfaces starts with Bogomolov ([24], 1977)
and Kimura and Okamoto ([104], 1987) with papers on the (round) sphere. The
latter explicitly advocates the role of Green’s function of the Laplace-Beltrami
operator (in 1999 Kimura also presented the equations on the hyperbolic plane
[103]). Many years before, however, vortex equations on the sphere were derived
independently by I. Gromeka, a mathematician in Kazan [77], and by Ernst
Zermelo,8 in Göttingen [219].

Point vortex dynamics on surfaces, specially on the sphere, is becoming an
active field of research. Among others, see for example: Aref et al. [1, 2], Polvani
and Dritschel [162], Kidambi and Newton [99, 100], Borisov and al. [27–29, 31],
Newton et al. [151, 152], Sulière and Tokieda [188], Montaldi et al. [144], Tronin
[200]. For perturbative analysis, see Castilho and Machado [39] and Hwang and
Kim [96, 101, 102].

Regarding existence of configurations of relative equilibria, see for example Lim,
Montaldi and Roberts [124]; the linear stability analysis in the plane has a long
history, see Havelock [85], Dritschell [62]. More recently, Kurakin [115, 116] and
Cabral and Schmidt [38] extended the study to linear and nonlinear stability of a
ring with a central vortex. They show how the Dirichlet criterion (weak Lyapunov
theorem) is fundamental in this study.

A new line of research on linear and non-linear stability of relative equilibria
and rings of vortices on surfaces of revolution. Follows a very incomplete list
(we apologize for many omissions) of recent work (other papers will be also
referenced in the sequel): Pekarski and Marsden [158], G. Patrick [157], Boatto
and Cabral [15], Cabral et al. [37, 38], Laurent-Polz [118, 119], Boatto [14], Boatto
and Simó [18], G. Roberts [175], Lim et al [124].

7C.C. Lin became an important applied mathematician at MIT and was president of SIAM
1973–1974 (http://www.math.mit.edu/people/profile?pid=155).
8Zermelo started as an applied mathematician! His 1899 Habilitation thesis on hydrodynamics
was praised by no less than by Hilbert [63]. We thank Alexey Borisov and Ivan Mamaev for this
information.

http://www.math.mit.edu/people/profile?pid=155
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In his thesis A, Regis [169], using our techniques, started a study on the vortex
dynamics on the triaxial ellipsoid. Numerical simulations indicate that the vortex
pair system is nonintegrable, in contrast with the geodesic flow.

Doubly periodic arrays of vortices (flat tori) have been already studied by
Stremler and Aref [193] and more recentlyby Stremler [192]. The two vortex system
is integrable on any flat tori (the vortex linear impulse, although not globally defined,
can be thought of a second integral). The three vortex system is integrable in the
special case of total zero vorticity.

In his thesis, H. Viglioni [205] studied the dependence of the dynamics of two
vortices on flat tori on the modular parameter (the modular parameter is defined
by the angle between the sides of a fundamental parallelogram, and the proportion
between them, see Section 4.1). For two vortices, the relative dynamics follows the
level sets of the Green function, which is quite sensitive to the modular parameter.
The full bifurcation diagram of the system in terms of the modular parameter was
determined, and some striking phenomena were found.

Vortex systems on closed surfaces with genus greater or equal than two, obtained
from the Poincaré disk modulo a discrete Moebius group, are uncharted territory.

1.6 Bose-Einstein Condensates on Surfaces

An experimental physicist could describe a BEC as a kind of “molasses made of
bosons”. All the bosons in the system will occupy the ground state of the trap, near
the zero temperature, forming a giant wave function.9 Quantum mechanical effects
on Bose-Einstein Condensates are described by the Gross-Pitaevskii equation [159],
which is similar to the Ginzburg-Landau equation used earlier in superconductivity.
Both lead to point vortex equations much the same way as Euler’s.

In magneto-optical traps (MOT, a technique developed by W. Ketterle that gave
him the Nobel prize), atoms coming on a beam are slowed down by a laser counter
beam and captured on a cloud. After collecting a large number of atoms, the lasers
are turned off and a large magnetic field is turned on to confine the atoms magnet-
ically. As they cool down they form Bose-Einstein condensates. The experimental
methods allow full control over vortex creation and manipulation and observation
techniques can track their dynamics. The atomic cloud can be manipulated by
various techniques. They can be strongly compressed in one direction, leading to
a two-dimensional condensate. There also techniques to transport condensates over
other surfaces.

In early experiments, vortex crystals were observed all with the same quantized
vorticity. Recently vortex pairs have been produced by passing a laser beam on the
condensate [66, 147, 148]. From our perspective, it is also exciting that 2d toroidal
traps are available for BECs experiments. Hopefully experimental techniques will
allow to produce any desired surface geometry (with any genus!).

9For a recent review of cosmological BECs, see [174].



192 S. Boatto and J. Koiller

Among other technological possibilities, BECs are one of the leading choices in
attempts to materialize quantum computation [86].

Remark 1. If a BEC could factorize big numbers [36], one hopes that the Riemann
zeta function could somehow be lurking behind and appear in the theory. As it
is well known, the approach Hilbert and Polya suggest to Riemann hypothesis is
to find a direct connection between the notrivial zeros of Riemann’s zeta function
with the spectrum of some quantum mechanical problem. It is well known that the
distribution of the spectrum of the Laplacian for geodesics on negative curvature
surfaces has similar features of the distribution of zeros of �.z/ [12, 13, 33].
As we will show, the vortex pair system contains the geodesic problem as a limit.

1.7 Organization of the Paper

Our main results are presented in Section 2. They represent a geometrization of C.C.
Lin’s theorems. Proofs are outlined in Section 3. In Section 4 we review the available
analytical and numerical tools for the computation of Green functions. Examples
of vortex pair systems are given in Section 5. In Section 6 we present a heuristic
discussion on the role of Green functions, with emphasis on Prandtl-Batchelor’s
theorem. In Section 7 we present suggestions for further research. In the concluding
Section 8, we summarize what we believe is new here.

In the Appendix, we present, in an elementary way, the geometric jargon around
Poisson’s equation which allows to recover the velocity field from the vorticity
distribution. Intended for the benefit of readers that are not in the field of Geometric
Mechanics, it is just a “baby” version of the general setting presented in [135].

We present some examples of the application of our formalism. Vortex pairs
systems on surfaces of revolution are integrable teo degrees of freedom Hamiltonian
systems with a S1 symmetry. We provide in Section 5 some examples for the S1

reduction. A numerical simulation of a vortex pair in the catenoid is compared
with the geodesic system. Numerical simulations of the vortex pair system on a
triaxial ellipsoid were performed in A. Regis thesis [169]. We present here some of
their Poincaré sections, that indicate that the vortex pair is a nonintegrable KAM
perturbation of Jacobi’s geodesic problem. Some figures from H. Viglioni’s thesis
about the vortex dynamics of the flat torus were also generously offered.

2 Main Theorems

Recall that the Laplace-Beltrami operator�g D div grad on a Riemannian manifold
.M; g/ is self-adjoint, negative definite with respect to the inner product

hf; gi D
Z

M

fg dvol:
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Following Kate Okikiolu [153], in the case of a two dimensional surface S
without boundary, the Green function G D G.S;g/ of �g is characterized by the
following properties (see Flucher and Gustafsson [71] for multiply connected planar
regions):

Definition 1.

�g G.s; so/ D � 1

Area.S/
C ı.s; so/;

G.s; so/� logd.s; so/=2� bounded;
Z

S

G.p; q/˝.q/ D 0; G.s; so/ D G.so; s/:

(6)

Here d.s; so/ is the geodesic distance with respect to the metric g, and˝ is the area
form. G is the kernel of the integral operator that solves Poisson’s equation, i.e.,

��1!.s/ D
Z

S

G.s; r/!.r/˝.r/: (7)

Definition 2. Robin’s function.

R.so/ D lim
S!so

G.s; so/� logd.s; so/=2� (8)

G.s; so/ is smooth outside the diagonal, where it diverges logarithmically. To make
a duo with Robin, we propose to the following

Definition 3. Batman’s function.

B.s1; s2/ D 1

2
.R.s1/CR.s2//� .G.s1; s2/� logd.s1; s2/=2�/ : (9)

Note that B is O.d.s1; s2/2/. It seems to be a yet unexplored object in geometric
function theory.

Our main result is consistent with earlier works by C. C. Lin [126–128] and
Flucher and Gustafsson [71]. It can be seen as a mere geometrization of them.

Theorem 1 (Boatto and Koiller [17], 2008). The Hamiltonian in S � : : : � S for
N vortices is

H D
X

1�i<j�N
�i�jGg.si ; sj /C

NX

`D1

1

2
�2` Rg.s`/ (10)
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with symplectic form given by the weighted combination of the area forms

˝collective.s1; � � � ; sN / D
NX

`D1
�`˝.s`/: (11)

An insight for the collective motion could be as follows.
Each vortex moves on the global stream, but with its own term regularized.

It carries a “personal clock”, that ticks according to the area form, in its current
location.

Corollary 1 (Vortex Drift). A single vortex moves according to

Pso D sgradR.so/; (12)

where sgrad means the symplectic gradient, also denoted by J r, J being the
rotation by ninety degrees in the tangent plane.

The intuition is that the “rest of the universe”, S � so, conspires to impinge its
collective reaction on so, forcing it to drift: eppur si muove!

Physicists derived heuristically an interpretation for the solution of Poisson’s
equation with right hand side equal to the curvature, see [201], but its usefulness
seems to be limited to genus zero. The precise result is remarkable:

Theorem 2 (J. Steiner [191]). For any metric g on S2, with Gaussian curva-
ture Kg ,

Rg.s/ D 1

2�
��1
g ŒKg.s/� 4�	C 1

Ag.S/
trace��1

g (13)

Remark 2. Jean Steiner calls attention that for genus � 1 the difference between
Robin’s function Rg.s/ and 1

2�
��1
g .Kg/.s/ is no longer a constant. See eq. (8) in

[191] for g D 1, and Theorem 5 there. The fluctuation terms do not have a simple
geometric interpretation.

The case of a pair of opposite vortices is specially important.

Corollary 2 (Vortex Pair Equations). For a vortex pair the phase space is S �S ,
and the symplectic form is

˝pair D �.˝.s1/�˝.s2//; (14)

where ˝ is the area form on S and the difference is taken on the pullback to S � S
of the projections. The Hamiltonian can be rewritten as

H D �2 .� logd.s1; s2/=2� CB.s1; s2// : (15)
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Remark 3. Near the diagonal the dominant term is � logd.s1; s2/=2� . For points
distant from the diagonal it is better to use the direct format

H D ��2
�

�G.s1; s2/C R.s1/CR.s2/
2

�

: (16)

Vortex dipoles have been found in Bose-Einstein condensates, [66, 148].

Using Gauss coordinates, we will prove that the vortex pair dynamics satisfies
the requirement (or, if one prefers, the conjecture) suggested by Kimura [103]:

Theorem 3. Kimura’s requirement. A vortex dipole (a pair of infinitesimally close
opposite vortices) describes geodesic motion.

As Kimura beautifully wrote, vortex pairs are “curvature checkers”.

Theorem 4 (Conformal Metrics). Consider two metrics in the conformal class of
S , related by a conformal factor h, i.e., Qg D h2g and˝Qg D h2˝g. The Hamiltonian
for the vortex system in the metric Qg can be obtained from the Hamiltonian in the
metric g by adding two terms:

QH D H � 1

4�

NX

`D1
�2` log.h.s`// � �

QA.S/
NX

`D1
�` �

�1
g h

2.s`/; � D
NX

`D1
�`: (17)

The last term in (17) vanishes when the sum of the vorticities is zero.

Remark 4. From the operational point of view, when considering a surface that is a
conformal deformation, say, of the unit sphere S2 � <3 as a reference surface, the
above identification is interpreted as follows (see M. do Carmo [60], Section 4.2).
Let F W S2 ! QS � <3 the conformal map, g and Qg be respectively the metrics
induced in S2 and QS by the euclidian metric h; i in <3. The conformal factor is
defined by

h Qv1; Qv2i D h2.s/ hv1; v2i

where Qvi D dF.s/ � vi ; i D 1; 2, where s is the representative point in the reference
sphere S2. This was done for the triaxial ellipsoid in A. Regis thesis [169].

We thank Waldecir Bianchini for Figure 1.

Remark 5. Vortices with mass. Introducing impurities in the fluid is relevant due
specially to current interest in Bose-Einstein condensates [8]. Columns of electrons
on a parallel magnetic field have analogous equation of motion. For mathematical
background, see [32, 110, 166]). For small masses, these systems exhibit slow-
fast Hamiltonian phenomena [149]. See [168] for these phenonema on particles
on a strong magnetic field. Let each sj have a mass mj besides its vorticity �j ,
contributing with a kinetic energy 1

2mj
hpsj ; psj i, where the bracket denotes the

induced inner product in T �S via the Legendre transform of g.
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Fig. 1 The vortex dynamics in QS is pulled back to S via a conformal map F . All the calculations
for vortex systems in QS are made in the reference surface S . The symplectic form pulls back to
˝Qg D h2.s/˝g . The new Hamiltonian is given by (17) where H is the Hamiltonian for the vortex
dynamics on S with the original metric g and symplectic form ˝g

Theorem 5. Vortices with mass. The dynamics in T �.S � : : : :�S/ is described by
the Hamiltonian system

H D
X 1

2mj

hpsj ; psj i C
X

i<j

�i�j G.si ; sj /C
NX

`D1

1

2
�2`Rg.s`/ (18)

˝collective D ˝can C
X

j

�j˝.sj / (19)

where ˝can D 00P dpj ^ dsj 00 is the canonical 2-form of T �.S � : : : � S/.
Remark 6. Due to the logarithmic singularity of the Green function the N-vortex
system (10, 11) is not defined at the diagonals in S � � � � � S . Blow up with time
regularization studies are in need here.

3 Outline of the Proofs

3.1 Theorem 1 : Main Theorem

It it remarkable that the presence of ��1! in (3) brings forward at the same time,
the Green function in the cross terms and Robin’s function for the self terms in the
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Hamiltonian after removing the infinite self energy. Thus, from the point of view
of glittering Geometric Mechanics, the argument presented in Section 1.1 should
suffice. We declare Theorem 1 proved.

We must make a caveat, though. Even in the planar case, point vortex dynamics
are considered by analysts as a “mathematical playground”, and as such recognized
by H. Aref [1]. Jerry Marsden analyst’s side would propose to scrutinize at least
some of the procedures to remove the infinite self energy in the plane, in order
to see what could be used for surfaces. The core energy method is described by
Flucher and Gustafsson as an “heuristic way of deriving a finite conserved quantity
from an infinite energy. The guess obtained in this way can be verified a posteriori”.
They applied it for vortex problems on planar domains [71].

We assert that this procedure should work on surfaces as well. Consider a small
Gauss system of normal coordinates around so. The gradient gradd.s; so/ is a unit
vector along the geodesic ray. The symplectic gradient sgradd.s; so/ is obtained
by composition with J and is therefore tangent to the geodesic circles. Its flow
leaves the geodesic disks invariant. The same is true for any function of the distance
For logd.s; so/ the vectors rotate with speed inversely proportional to d.s; so/.
The kinetic energy confined in this blob diverges logarithmically.

The infinity can be removed (in physicists jargon, renormalized) provided only
a small quantity of kinetic energy crosses the boundary of a geodesic disk in finite
time. We invoke [71]: energy diffusion “can be neglected in the limit as the radius
of the ball tends to zero”, Section 5). This is true precisely due to the fact that
G.s; so/ � d.s; so/=2� is bounded.

A related view is to ask for how long do regions of concentrated vorticity of
Euler’s PDE subsist. In the plane it was shown in the 1980s (by different methods)
that small nearly circular vortex cores remains stable for a long time. Besides the
works by Wan, Marsden, Ratiu and Weinstein and Wan and Pulvirenti mentioned
before, see Tang, [197], and Constantin [42] and Iftimie et al. [97]; for recent work
see Sideris [186]).

3.2 Theorem 4: Conformal Transformations of the Domain

Let Qg D h2g. How do the vortex problems on .S; g/ and .S; Qg/ relate? The
symplectic form deforms as ˝ ! h2˝ . In order to find the new Hamiltonian in
terms of the old one, we need transformation formulas both for the Green and Robin
functions.

Note that Green’s function GQg.s; so/ for the Laplace-Beltrami operator on a
closed surface is not conformally invariant. It must change, because the notion of
background uniform vorticity is area dependent (except, obviously, when it is zero).
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Fortunately, transformation formulas for Green and Robin functions are known:

Proposition 1 ([153]).

QG.s; so/ �G.s; so/ D � 1QA
	
��1
g h

2.s/C��1
g h

2.so/


C 1

QA2
Z

S

h2��1
g h

2 ˝

(20)

QR.s/ D R.s/� 1

2�
h� 2

QA�
�1
g h

2.s/C 1

QA
Z

S

h2��1
g h

2˝ (21)

Proof of Theorem 4. Recall that a map F W .S; g/ ! . QS; QS/ between two
Riemannian manifolds is conformal when

Qg.dFs � vs; dFs �ws/ D h2.s/g.vs;ws/: (22)

We identify QS with S via F , in other words, we use S to parametrize QS . With this
point of view, we are inducing a new metric QgF .vs;ws/ in S such that QgF D h2g.
The new symplectic form in S is ˝ ! h2˝ .

We can get the Hamiltonian for the vortex system with the conformally changed
metric after some simple algebra using (20) and (21). It is remarkable that the sum
of the vorticities comes up in the last term.

QH D H � 1

4�

NX

`D1
�2` log.h.s`//� �

QA
NX

`D1
�`�

�1h2.s`/; � D
NX

`D1
�`: (23)

Proof of Proposition 1 (Following [154]). The trick is average over Q̋ twice using
the “axioms” of Green’s function. Consider the functions

G.s; so/�G.s; s1/ D E.sI so; s1/; QG.s; so/� QG.s; s1/ D QE.sI so; s1/:

Both QE and E are harmonic up to (C) and (�) log singularities at so and s1 so they
differ by a constant c. To find this constant we do the˝.s/ D h2.s/˝.s/ average of

QE �E D . QG.s; so/ � QG.s; s1//� .G.s; so/ �G.s; s1// D c:

The first two terms drop out while the last two give

��1h2.s1/ ���1h2.so/ D c QA:

Hence

. QG.s; so/� QG.s; s1// � .G.s; so/�G.s; s1// D ��1h2.s1/= QA���1h2.so/= QA:



Vortices on Closed Surfaces 199

Again, average this expression, but now over˝.s1/. We get

QG.s; so/ QA�0�G.s; so/ QAC��1h2.s/ D
Z

S

��1h2.s1/h2.s1/˝.s1/= QA���1h2.so/:

This gives the transformation formulas G ! QG. The transformation formula
R! QR follows by taking the limit s ! so in

QG.s; so/� log. Qd.s; so//
2�

D � QG.s; so/�G.s; so/
�C

C
�

G.s; so/� logd.s; so/

2�

�

� log. Qd.s; so/=d.s; so//
2�

:

This completes the proof of Proposition 1.

3.3 Proof of Kimura’s Conjecture on Dipole Motion

The Hamiltonian for a vortex pair (with opposite vorticities) writes as

H D� �2 logd.s1; s2/

2�
C �2B.s1; s2/; (24)

B.s1; s2/ D

R.s1/CR.s2/

2
�
�

G.s1; s2/ � logd.s1; s2/

2�

��

: (25)

Let � D O.�/ and initial conditions d.s1.0/; s2.0// D O.�/. Kimura’s conjectured
that as � ! 0 the vorticity pair tends to move along a geodesic path.

Proof. Consider the truncated system where we take only the first term in (24). This
yields a very simple system of ODEs,

Ps1 D �� sgrads1 logd.s1; s2/; Ps2 D � sgrads2 logd.s1; s2/: (26)

Since initially 1=d.s1; s2/ D O.��1/ and we took � D O.�/, we expect this
equation to represent the dominant O.1/ dynamics; in fact, the perturbation is at
leastO.�2/. (B.s1; s2/ D O.�2/). In order to show that (26) leads to geodesic motion
as �! 0, we use Gauss coordinates [60, 194]

ds2 D du2 CG.u; v/dv2; G.0; v/ D 1; @

@u juD0
G.u; v/ D 0: (27)

All the u-curves (making v D const:) are geodesics, but only the central v-curve (for
u D 0) is guaranteed to be a geodesic. That is the curve we are focusing in. Take an
so corresponding to an arbitrary v value on that central geodesic with u � 0. In the
.u; v/ coordinates, s1.0/ D .��; v/ and s2.0/ D .�; v/.
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Invoking Gauss’ lemma, we see that at t D 0; Ps1;2 will be tangent to v-curves.
Indeed, is the Gauss coordinate system, we have

Pv1.0/ D �=2� 1
p
G.��; v/ ; Pv2.0/ D �=2�

1
p
G.�; v/

; Pu1.0/ D Pu2.0/ D O.�/:
(28)

For the complete system (with the Batman contribution restored) in the limit as
�! 0 (27), with � D 2�, we get

Pv1.0/ D Pv2.0/ D 1CO.�/; Pu1.0/; Pu2.0/ D O.�/: (29)

For the latter we used that @
@u juD0G.u; v/ D 0. Since v was arbitrary, this concludes

the proof.

In Section 7 we present a more elaborate proof. The geodesic system will be
viewed as a compactification of the vortex system along the diagonal of S � S . For
that purpose, a mapping will be constructed from a neighborhood of the diagonal to
a neighborhood of the zero section of T �S .

4 Are Green Functions Computable?

As a preliminary step for the next section on examples, we present a discussion
about the computation of Green functions. Let z D x C iy the complex parameter
on the universal cover of S , the euclidian plane, the sphere or the hyperbolic plane.
For the universal covers, the Green functions are (see Kimura [103] for details).

i/ GE.z; zo/ D 1

2�
log jz� zoj .euclidian plane/ (30)

ii/ GH.z; zo/ D 1

2�
log.tanhdH.z; zo/=2/ .hyperbolic plane/ (31)

iii/ GSph.s; so/ D 1

2�
log.sin dS.s; so/=2/ .sphere/ (32)

where dS and dH are respectively, the spherical and hyperbolic distances
For an open Riemann surfaces such as the cylinder, the Green function can be

easily computed (in closed form) by summing the GE.z; zo/ over all the replicas of
zo (one on every strip). The resulting Green function is [65]

Gcyl D 1

4�
log.cosh.x � xo/ � cos.� � �o//: (33)

Thanks for Crowdy and Marshall, Green functions for multiply connected planar
regions reached an algorithmic stage, see [50–56].
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For deformed spheres (genus zero), the fact that there is just one conformal
class, and J. Steiner’s result (Theorem 2) makes their vortex dynamics amenable
to theoretical and numerical experimentation.

4.1 Genus 1 Surfaces

The complex structure is defined by a fundamental polygon with generators !1 D
.1; 0/ and !2 D � D .a; b/; b > 0. More precisely, C=G where G is a group of
translations with generators !1; !2 with Im.!2=!1/ > 0. Given G0 generated by
!0
1; !

0
2 the quotients are conformally equivalent if and only if the ratios � D !2=!1

and � 0 D !0
2=!

0
1 are related by an unimodular transformation

� 0 D .a� C b/=.c� C d/; a; b; c; d 2 Z; ad � bc D 1:

The modular surface is therefore M D fIm � > 0g=SL.2;Z/. Green functions
for the flat metrics, with � as a parameter, can be constructed explicitly, using elliptic
functions. See (34) below, and details in [130].

It is known that any given complex structure on genus 1 tori can be physically
realized on R3 (a problem posed by Felix Klein10), see e.g. [73]. The transformation
formulas between Green functions in the same conformal class (Proposition 1) pave
the way for families of vortex problems on (genus 1) tori.

For all flat tori, due to the dependence ofG on z�w, Robin’s function is constant.
Therefore, a single vortex so will not drift. In Figures 2, 3, 4, and 5, courtesy of
Humberto Viglioni, level lines of Green functions of several flat tori are depicted.
The level lines of G.s; so/ represent the path of a marker s.

Theorem 6. Green function for the flat tori [129, 130].
Consider a torus T D C=L, where L is the lattice generated by 1 and � D

aC bi; b > 0. Let q D e�i� so jqj D e��b < 1: Up to a constant C.�/, the Green
function G.z;w/ for the Laplace operator on T is given by

G.z;w/ D � 1

2�
ln j�1.z� w/j C 1

2b
.Im.z � w//2 C C.�/: (34)

where the theta function �1.zI �/ is the exponentially convergent series

�1.zI �/ D 2
1X

nD0
.�1/n q.nC1=2/2sin..2nC 1/�z/; z D x C iy: (35)

10We do not know if there is an algorithm to identify the complex structure and the conformal
factor of a given embedded genus 1 surface.
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Fig. 2 Representation, at the complex plane, of the level curves for Green’s function on a flat
torus T WD C=�.!1; !2/, where �.!1; !2/ is the lattice generated by !1, represented by a dashed
arrow, and !2, by a solid arrow. The black circles represent the vortex position. The singularities
of Green’s function are saddles and centers, in general 3 inside a fundamental domain. There are
5 singularities for exceptional values of the modular parameter � D !2=!1 . These � values form
1-parameter families, which are invariant under biholomorphisms. Courtesy of H. Viglioni

Fig. 3 Main exceptional case
[130]: periods 1 and
� D e�i=3. Note the 5 critical
points. The level lines of
G.s; so/ represent the path of
a marker s. Courtesy of H.
Viglioni [205]

The Green functions have always three critical points (not counting the vortex):
one of them corresponding to the vertices of the fundamental domain, and the other
two are the half periods. In [130] it is shown that there are special 1-parameter
families (parametrized by the modular parameter �) with an extra pair of singu-
lar points. Viglioni [205] described the structure of these families inside the modular
surface. The � values where these 1-parameter families meet correspond to even
very exceptional situations, namely, where the extra pair of singular points are born
(or die). Subtle phenomena take place, yet to be fully explored.
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Fig. 4 Values of the modular parameter yielding degeneracies of Green’s function at a half-period
of the lattice. Two more centers emerge from a degenerated one which changes into a saddle. The
infinite repetition is due to the invariance under the action of the modular group. Courtesy of H.
Viglioni

4.2 Green’s Function on Flat Tori; Constancy
of Their Associated Robin’s Function

We now explain why for constant curvature metrics the self drift to Robin’s
function occurs only if the genus of the surface is � 2. For the round sphere
it is obvious. A closed Riemann surface of genus � 1 can be represented by a
fundamental domain on the universal cover. Therefore, an n-vortex system on S can
be represented by n vortices on the fundamental domain and their “clones” on every
image domain. The Green function GS;go of the constant curvature metric in S is
formally given by a Poincaré series, where we also subtract, on every domain, the
background countervorticity (with intensity equal to the inverse of the area).

The dependence ofG on z�w immediately brings as a consequence that Robin’s
function is a constant. It is interesting to see why this does not happen for higher
genus. We now give a simple direct proof.
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Fig. 5 Diagram in the parameter space � D a C bi; b > 0; of homoclinic and heteroclinic
connexions between half-periods in a normalized lattice �.1; �/. This diagram is invariant under
the action of SL.2;Z/. Courtesy of H. Viglioni

Let G .z;w/ the Green’s function for the hyperbolic Laplacian on the Poincaré
disk D or, equivalently, in the upper half plane, see (30) for the explicit expression.
Let H a discrete Fuchsian subgroup of Moebius transformations, and S D D=H

the compact Riemann surface endowed with the canonical metric of curvature �1.
Let F a fundamental domain. The following formula for the automorphic Green

function is attributed to Poincaré:

GS.z;w/ D
X

g2H



G .z; g �w/ � 1

areaF

Z

F

G .z; g � �/ dA.�/
�

(36)

Note that one needs to discount the background countervorticity to make the sum
converge. Let now �t the flow of a Killing field for the hyperbolic metric in the
universal cover D. We substitute
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GS.�t .z/; �t .w// D
X

g2H



G .�t .z/; g�t .w// � 1

areaF

Z

F
G .�t .z/; g � �/ dA.�/

�

:

The last term can be replaced by
R
F G .z; g � �/ dA.�/ but we are in trouble with the

term in red. Since the Moebius transformation group is non commutative, in general

G .�t .z/; g�t .w// ¤ G .�t .z/; �t .gw//. D G .z; gw/ /

(In passing, this is a hand waving proof that there cannot exist Killing fields for
genus� 2. In MathOverflow one can find a much better argument by R. Bryant11).

4.3 Genus � 2 Constant Curvature and Other
Canonical Metrics

Helen Avelin obtained explicit expressions for the resolvent of the Laplace-Beltrami
operator for surfaces of constant negative curvature obtained by tesselations of the
Poincaré disk by certain Fuchsian groups, [5, 6]. However, as far as we know, there
is no direct way to connect the resolvent (which contains a spectral parameter �) to
the Green function (6).

The subject is therefore in its infancy. Hopefully it will mature to the point that
closed form expressions could be provided for the Green functions (6) associated to
any element in Teichmüller space. The study of Green functions for other canonical
metrics (Mandelstam, Arakelov, Bergman) is also in its infancy, but see recent work
by Alexey Kokotov and collaborators for conical-flat metrics on polyhedral surfaces
([111, 112] and references therein).

4.4 Discrete Computational Geometry

This is a fast growing area. In his Ph.D. thesis Hirani [92] presents discrete
analogues for the differential operators on surfaces. Discrete Green functions are
studied in [196], discrete Riemann surfaces in [142].

Among other relevant references we mention work by Desbrun and collaborators,
[59, 143] and Polthier’s group [90, 160, 161]. See also [10, 19, 20, 61, 213, 214] For
recent advances on numerical conformal mappings of surfaces, we refer specially to
the work by S.-T. Yau and his collaborators in computer graphics, [41, 58, 80, 98,
131, 217, 218], and the recent book [81].

11http://www.mathoverflow.net/questions/122438/compact-surface-with-genus-geq-2-with-
killing-field.

http://www.mathoverflow.net/questions/122438/compact-surface-with-genus-geq-2-with-killing-field
http://www.mathoverflow.net/questions/122438/compact-surface-with-genus-geq-2-with-killing-field
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Green functions for the Laplace Beltrami operator are of interest not only in
geometry, physics, probability and stochastic processes (including recent appli-
cations for finances). For instance, there is growing interest in machine learning
community, see [10, 11, 181].

5 Examples

5.1 Surfaces of Revolution: Momentum Map and Reduction

In this section and the next, we summarize some results for vortex pairs presented
in [109]. Let

X D .h.z/ cos.�/; h.z/ sin.�/; z/

a surface of revolution. The metric is

ds2 D h2.z/d�2 C .1C .dr=d z/2/d z2: (37)

Gauss advocated changing to uniformizing coordinates .x; �/ where x D x.z/ is
given by a quadrature

h2.z/ D .1C .dh=d z/2/.dh=dx/2; (38)

so that

ds2 D h2.z.x//.d�2 C dx2/: (39)

The momentum map corresponding to the �-symmetry is given by

J D
Z x2

x1

h2.x/dx: (40)

For Marsden-Weinstein’s reduction [135], one needs to solve (40) for x2 D
x2.x1; J /, usually a transcendental equation (see below for examples).

The reduced symplectic form is obtained from ˝ D h2.x1/d�1 ^ dx1 �
h2.x2/d�2 ^ dx2 simply by making �2 D 0. In reduced coordinates .x1; ˛/, where
˛ D �1 � �2, the result is

˝red D h2.x1/d˛ ^ dx1: (41)

The reduced 1-dof Hamiltonian is given by

Hred D ��2G.x1; x2.x1; J /; ˛/ � �2 1
4�

.logh.x1/C logh.x2.x1; J /// ; (42)
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which allows us to draw directly the trajectories Hred D h in the reduced plane
.x1; ˛/. To get the time parametrization, one must solve

h2.x1/ Px1 D �@Hred=@˛; h2.x1// P̨ D @Hred=@x1: (43)

The final reconstruction is given by a quadrature. Since x2.t/ D x2.x1.t/; J /;

we get

�2.t/ D �2.0/C
Z t

to

1

h2.x2.t//
@H=@x2j.x1.t/;˛.t/;x2.t//; �1.t/ D �2.t/C ˛.t/:

(44)

5.1.1 Cone

Here r.z/ D az. The uniformizing coordinates are .x; �/ with

z D exp.bx/; b D a=
p
1C a2: (45)

The momentum map is

J D a2

2b
.exp.2bx2/ � exp.2bx1// : (46)

In this case it is simple to solve for x2 as a function of x1 and J .

5.1.2 Torus

We consider the torus of revolution in <3. The standard parametrization is given by

X.u; �/ D ..R2 CR1 cos u/ cos�; .R2 CR1 cos u/ sin�;R1 sin u/; (47)

with metric

ds2 D .R2 CR1 cos u/2d�2 CR1du2: (48)

We must find u D u.x/ such that .R2 CR1 cos u/2 D R21.du=dx/2. One gets

x D
Z u 1

aC cos.u0/
du0; a D R2=R1:

yielding

x D 2 arctan

 
.a � 1/ tan .1=2 u/
p
.aC 1/ .a � 1/

!
1

p
.aC 1/ .a � 1/ : (49)
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For R2 D R1 get a simpler expression

x D tan .1=2 u/ :

The conformal factor is

h2.x/ D R21.du=dx/2 D 4R21
1C x2 (50)

and the integral of motion is

J D 4R21
Z �2

�1

1

.1C �2/2 d� D R
2
1.P.x2/� P.x1// (51)

with

P D 2 x

1C x2 C 2 arctan .x/ : (52)

No explicit solution seems to be directly available for the transcendental equation
yielding x2 as a function of x1 and J .

5.1.3 Catenoid

The underlying Green function is (33). Its parametrization is given by

X.x; �/ D .cos.�/ cosh.x/; sin.�/ cosh.x/; x/; ds2 D cosh2.x/.d�2 C dx2/:
(53)

Here

J D 1

2
Œ .sinh.2x2/C x2/� .sinh.2x1/C x1/	 (54)

The geodesic problem can be solved with elliptic functions [167]. But for the vortex
systems, the transcendental equation

x C sinh.2x/ D a: (55)

requires defining a new special function as a preliminary step towards analytically
solving (43). Figs. 6 and 7 illustrate “Kimura’s trinity” (shorthand for the trace of
the pair of vortices and the geodesic in the middle).

The study of polygonal configurations of vortices in surfaces of revolution and
their stability, in the lines of [120, 121] is in order.
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Fig. 6 Geodesic and vortex pairs on the catenoid, indistinguishable

Fig. 7 Close up. The
geodesic path between two
close opposite vortices is
revealed. We may call such
structure a Kimura trinity

5.2 Vortex Pair Equations for Metrics g on S 2

Any metric g in the sphere S2 is conformal to the standard constant curvature metric
go, g D h2go. The symplectic form in S2 � S2 is given by

˝pair D �
�
h2.s1/˝o.s1/ � h2.s2/˝o.s2/

�
(56)

where ˝o is the area form of the sphere. The vortex pair Hamiltonian on a surface
of genus zero is given by (omitting a 2� factor)

H D� 1
2

log
�
h.s1/h.s2/js1 � s2j2

� D

D�
�

log js1 � s2j C 1

2
logh.s1/C 1

2
logh.s2/

� (57)
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where j j is the euclidian distance. The equations of motion are therefore

Ps1 D 1

h2.s1/

�
s1 � s2
js1 � s2j2 �

1

2
s1 � gradh.s1/

�

(58)

Ps2 D 1

h2.s2/

�
s1 � s2
js1 � s2j2 C

1

2
s2 � gradh.s2/

�

:

5.3 Triaxial Ellipsoid

Numerical simulations for a vortex pair in the triaxial ellipsoid were presented in the
doctoral thesis of Adriano Regis [169]. As expected, nearby vortex pairs envelop
geodesics. However, Poincaré sections suggest chaotic behavior for sufficiently
distant initial positions. Near the diagonal of S � S the behavior seems a typical
KAM type perturbation of the geodesic flow (see Figures 8, 9, and 10).

In order to obtain the equations of motion, in view of (58), one needs a conformal
map from the standard sphere to the triaxial ellipsoid (with the induced euclidian
metric). Such maps were constructed by Schering [180] in 1857, see also [46, 145].
Regis and Castilho opted to make a fresh start, following a suggestion in [109]. They
take conformal quadric coordinates on the ellipsoid and sphero-conical coordinates
on the sphere. The key point is to adjust the parameters in such a way that the images
of octants on each surface cover the same rectangle in the plane.

The map is given in terms of two elliptic integrals and two inversions. The four
ellipsoid umbilical points of the ellipsoid (see [194], Section 2.8) correspond to
four special points in the sphere. The coordinate lines on both surfaces have similar
distributions and reach the boundaries of an octants perpendicularly, so that can be
continued to the contiguous ones.

Below a sample of A. Regis simulations.

Fig. 8 Geodesic and nearby
vortex pair on the 1-6-9
ellipsoid. Courtesy of
Adriano Regis
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Fig. 9 Poincaré sections in
the 1-4-9 ellipsoid. Courtesy
of A. Regis. For details,
see [169]

Fig. 10 Poincaré sections in the 1-4-9 ellipsoid. .u2; v2/ representation. Courtesy of A. Regis

6 Heuristics for the Laplace Beltrami Green Function

Hydrodynamically,G.s; so/ is the stream function produced by a unit vortex at so. In
the electrostatic interpretation,G.sI so/ is the potential at s created by a positive unit
point charge at so, on a conductor with a uniformly distributed background negative
charge. A test particle s with positive but negligible charge on the field generated by
a unit charge will move according to

Ps D gradG.sI so/; s ¤ so: (59)
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while a fluid particle (marker) s on the flow generated by an unit strength bound
vortex so will move according to

Ps D sgradG.sI so/; s ¤ so: (60)

We leave the following question for experimentalists. Can the Laplace Beltrami
Green function be observed on surface fluid flows? More precisely, due to a small
viscosity, vorticity is shed from the boundary. Will a steady state configuration
eventually form, containing concentrated (opposite) vortices? Or will the counter-
vorticity become homogeneously distributed?

In the spirit of Felix Klein’s “Kaffeelöffel” [108] (reviewed in Saffman [179],
chapter 6), we make the following gedanken experiment. A two dimensional fluid,
initially at rest, occupies the whole area of a closed surface S . All of a sudden, a
“turbine” (a geodesic disk whose boundary has some blades) is placed at a given
point so and turned on.

Our ansatz is that, together the vortex at so, the counter vorticity will distributed
homogeneously on the whole surface.12

6.1 Prandtl-Batchelor Theorem

Geophysical fluid dynamicists observe that in the presence of viscosity, vorticity
tends to homogenize in atmospheric flows with closed streamlines [170].

This is the content of Prandtl-Batchelor theorem [9]. The proof, as presented e.g.
in Childress ([40], Section 8.5), carries over ipsis-literis to curved surfaces. It is just
a matter of introducing differential geometric invariant notation (see the Appendix),
and was essentially already done in [215].

For historical information on Prandtl-Batchelor and some new results, see [203].
Batchelor’s paper appeared in the inaugural volume of J. Fluid Mechanics. It seems
that he was unaware of Prandtl’s observation in ([163], 1905), the very paper that
started boundary layer theory. Fig. 11 is taken from that famous paper.

Remark 7. We cannot sufficiently stress Jerry Marsden’s enthusiasm in connecting
himself and associates to real applications. He had a noble predecessor. As scientific
leader in Göttingen, it was Klein that brought Prandtl over from Hannover [21]. The
importance Felix Klein, as a promoter of applied mathematics, is perhaps not fully
known by the mathematics community. With all due respect, the Klein project of the
International Mathematical Union13 could benefit from the outlook Klein had, as a
“pure” mathematician, on Applied Mathematics. Klein himself divulged Geometric
Mechanics in his two volumes on the Top, and of course, his Erlangen program is
Geometric Mechanics!

12Vorticity is an area related concept. The area element of S will governs this homogenization. In
geometric terminology, vorticity is a two-form. See the Appendix for details.
13http://www.mathunion.org/icmi/other-activities/klein-project/introduction/.

http://www.mathunion.org/icmi/other-activities/klein-project/introduction/
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Fig. 11 Figure 4 of Prandtl
[163], p. 488. The vortex
sheet shed at the left tip of an
edge moving down roll
clockwise. If several of these
edges are assembled as a
watermill, then the shed
vortices have opposite
vorticity

6.2 Riemann Surfaces: Three Point Green Functions

The case where
P
�j D 0 has a special feature: the stream function for a marker

particle does not depend on the choice of metric in its conformal class. Only the
time parametrization does. This results from

Qg D h2g ) �Qg D h�2�g:

which is a special property for two dimensions: Laplace-Beltrami operators in the
same conformal class annihilate the same functions.

Denote by GS D GS.sI so; s1/ be the three points Green function for S viewed
just as a Riemann surface. It is the unique (up to a constant) real harmonic
function for s 2 S , that has a (C) logarithmical singularity at so and a (�)
logarithmical singularity at s1. The existence of such Green functions GS can be
taken as the starting point for closed Riemann surfaces theory (see e.g. Weyl [211],
II.13, potential arising from a doublet source). Using fluid mechanics analogies to
introduce the idea of a Riemann surface was the viewpoint of F. Klein [107] (see
also [190]).

Definition 4. A doublet, or dipole, is the stream function of two infinitesimally
close vortices of opposite circulation, the strength being suitably related to their
distance so that the limit exists. In the plane, the stream function is proportional to
cos.�/=r .

On the other hand, by a vortex pair we have in mind two point vortices of
opposite circulation at a finite distance.

Proposition 2. The Green function Gs can be obtained form the Laplace-Beltrami
Green function for any metric in the conformal class.

GS.sI so; s1/ D Gg.sI so/ �Gg.sI s1/ (61)
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Conversely, if the three point Riemann surface Green function is known and an area
form is chosen,

Gg.sI so/ D 1

A.S/

“

S

GS.sI so; s1/˝.s1/: (62)

6.3 When the Total Vorticity Vanishes: Divisors

In Riemann surfaces theory, a 2-point divisor is a meromorphic function with
two poles, each of order one. In Felix Klein’s interpretation its complex integral
represents a (complex) stream function for a perfect fluid on a Riemann surface.
Taking real and complex parts one gets either a pair of source-sink ot a pair of
opposite bound vortices. We fix a distinguished point s* and add a combination of
N two point divisors where one of the poles is s*. Let the others be fs1; � � � ; sN g. We
adjust the weights (vorticities) so that at s* the singularity disappears (this entails to
have the sum of the vorticities equal to zero).14

If
PN

iD1 �i D 0, then the following is the stream function governing the motion
of a marker particle in the flow determined by bound vortices:

 .s/ D  conformal.s/ D
NX

jD1
�j G.sI sj ; s�/ (63)

where s� is an arbitrary chosen point in S (which turns out to be a regular point since
the residue there vanishes). Irrespective of the metric in the class, the background
vorticity in (63) is zero except at the poles sj . The choice of s� is irrelevant precisely
because

PN
iD1 �i D 0.

A key point in our paper is that, even for zero total vorticity, the Laplace-
Beltrami Green functions must appear as soon as the primaries are set free to
move (we then call the collection fs1; � � � ; sN g a “moving divisor”). This is because
the desingularization procedure requires using Gg.s; so/, even when the sum of
the vorticities is zero. For one reason, the Riemann surface three point Green
function is not symmetric with respect to its arguments. This already precludes using
GS.sI sj ; s�/ for a Hamiltonian formulation.

It is striking is that all this is implicit in Marsden-Weinstein’s Hamiltonian (3).
At any rate, for any vortex problem in which the background vorticity vanishes,
things simplify somewhat. The simple rule from [84] holds:

14A priori the flow of a marker has no intrinsic time. Time depends on choosing a metric in the
conformal class of the complex structure. This is unavoidable, since we are doing incompressible
hydrodynamics, so an area form must be present.
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Proposition 3. Let Qg D h2g. In a zero vorticity background, in order to find the
Qg-metric regularized stream function for the motion of a vortex, subtract log.h/=2�
from its g-regularized stream function.

Proof. We have

 reg.so/ D lim
s!so

 conformal.s/� logd.s; so/=2�:

Observe that, upon changing the metric, that

log. Qd.s; so// D log

 

d.s; so/
Qd.s; so/
d.s; so/

!

 log.d.s; so//C logh.so/ for s near so:

In particular, under a conformal transformation, C.C. Lin’s additional term in the
Hamiltonian [127] for Jordan domains is readily interpreted via Proposition 3. Let
f W .D; S; g/! . QD; QS; Qg/ a conformal map between two Jordan domains,

Qg.df .s/ � u; df .s/ � v/ D h2.s/ g.u; v/: (64)

Proposition 4. Let GD.sI so/ be the hydrodynamical Green function for a Jordan
domainD . Then:

QG QD.Qs; Qso/ D GD.sI so/ (65)

The regularized Green function receives the correction

Qg.so/ D g.so/ � log.h/

2�
: (66)

Note that the sign in equation (4.6) of [84] seem to need a correction from + to -.

7 Suggestions for Research

7.1 Numerical Experimentation and Visualizations

Theory and computation will come together to implement numerical methods for
vortex dynamics on curved surfaces. While closed form expressions for Green
function of the Laplace-Beltrami operator of constant curvature metrics will require
further advances in automorphic function theory (specially for genus �2), in prac-
tice this step has already been achieved in computational geometry. We indicated
some references in Section 4.4 and work on discrete exterior calculus started by
Marsden and Desbrun.
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Specialized symplectic integrators can be constructed on the reference sphere
for conformal metrics. Families of tori embedded in R3 are also at hand for
numerical experimentation. For instance, in the Clifford tori family, flat rectangular
tori are embedded in S3 � R4 in the standard way and then projected to R3 via
stereographic projection. The conformal factor to the corresponding flat metric in
their class can thus be explicitly obtained. More generally, one can attempt to do
vortex dynamics in Clifford, Wilmore, Hopf and Lagrangian minimal tori.

7.2 Contour Dynamics

Starting with Zabusky and collaborators [164, 216], contour dynamics in the plane is
an active subject, see e.g. [43, 57] for recent work. Choosing an appropriate class of
vorticity functions is an important mathematical problem. Numerically, even if one
starts with a smooth ! the time evolution of the system (82, 85) may reach a stand-
off by the appearance of singularities, at least numerically. Starting with sharply
defined islands of high (positive and negative) vorticity, in time, vortex patches blend
or develop structures resembling filaments.

Can one develop theory and experimentation for contour dynamics on surfaces?
Are there new stable structures besides the elliptical rotating spots in the sphere?

7.3 Physical Experiments

In Section 6.1 we asked if the Green function for the Laplace Beltrami Green
function could be experimentally observed. One may consider a soap film over
a sphere, and stir the flow by a small rotating grooved disk. Conceivably it will
shed vortices of opposite circulations to the rotating disk. Will the shed vorticity be
homogenized by viscosity? Or will turbulent behavior persist? Will contervorticity
concentrate and vortices of opposite circulations appear?

7.4 Symplectomorphism Between S � S and T �S

and Kimura’s Question

In two dimensions, “center-arrow coordinates” .so; v/ 2 TS 7! .s1; s2/ 2 S �S are
defined via the exponential map,

s1 D exp.so;�Jv=2/; s2 D exp.so; J v=2/ (67)
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where J is the rotation in the tangent plane by �=2. Composed with the Legendre
transformation between .so; v/ 2 TS and .so; p/ 2 T �S , we get a map between
a neighborhood of the zero section of T �S and a neighborhood of the diagonal on
S � S . The latter carries the symplectic form ˝S�S D ˝1 �˝2, while the former
carries the canonical symplectic structure ˝T�S .

What is the relationship between them? Introduce a blow up parameter � and
make v ! �v. Using local coordinates, it is not hard to see that upon pullback, we
get a deformation of the canonical symplectic structure,

˝S�S D �2˝T �S CO.�4/: (68)

What is the O.�4/ term?

7.5 Elaboration on Kimura’s Conjecture

The relation between the canonical symplectic form ˝T �S in T �S and the vortex
symplectic form ˝S�S is a remarkable fact, and represents another proof of
Kimura’s conjecture, since the leading term of the Hamiltonian is the logarithm
of the distance.

Finding the next term in the deformation expansion (in terms of local geometric
quantities) is one of the steps to write the first correction term of vortex pair
equations with respect to the geodesic problem.

The other required step (the expansion of the Hamiltonian in parameter �) will
be now described.

7.6 Expansions for Green and Batman Functions
Near the Diagonal

The analysis of the Laplacian operator on manifolds is often undertaken with the
help of the heat kernel [75, 78, 79, 177],

H.t; s1; s2/ D
X

n�o
exp.��t/�n.so/�n.s1/ (69)

where f �n g is a normalized eigenbasis of the Laplace-Beltrami operator. The
asymptotic behavior of the heat kernel near the diagonal can be studied both for
short times and for long time using methods such as Hadamard parametrix.

The Green function for the Laplace-Beltrami can be expressed as

G.s1; s2/ D
Z 1

0

H.t; s1; s2/ dt D
X

n�o

1

�n
�n.so/�n.s1/ (70)
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In terms of center-arrow coordinates, Batman’s function (9) is an even on �, starting
with the quadratic term: B.so; �v/ D O.�2/. Is it possible obtain the “off-diagonal”
expansion of G and B as a series in �, whose coefficients are local, geometric
quantities computed at so?

7.7 Integrability and Chaos: Vortex Dynamics in the Large

As we just discussed, in order to represent the vortex pair dynamics as an O.�2/
perturbation of the geodesic system (see corollary 2), it suffices to find the first term
of the Batman function expansion, and the first correction term to˝T�S . It is known
that the geodesic system is integrable on Liouville surfaces.

From the preceding, the vortex pair system seems to be in general a KAM
perturbation. Apply Melnikov methods [95, 141, 176, 212] near homoclinic surfaces
(degenerate invariant tori) of the geodesic system, for instance in the triaxial
ellipsoid. Study “vortex billiards”, the degenerate triaxial ellipsoid where the
smaller axis vanishes.

Liouville metrics [25, 26] require genus 0 or 1. It is well known that geodesic
systems are nonintegrable on all surfaces of negative curvature (genus � 2). It
should be not hard to show that vortex systems are also nonintegrable for genus
� 2. Are there metrics without S1 symmetry on spheres or genus 1 tori for which
the vortex pair system is integrable?

Suppose the initial conditions for the vortices are at such a finite distance so that
the logarithmical term and the Batman term in the Hamiltonian are of the same order
of magnitude. How close the vortex can come together? How far from each other
can they get? How is the long time behavior of the vortex pair system? Have the
conjugate and the cut locus (for the metric) a role in the vortex pair system?

7.8 Higher Dimensions

The statement of Theorem 1 makes sense for a compact Kahler manifold Mn. For
instance, Calabi-Yau manifolds are important objects in mathematical physics. Is
this generalization of (10) in line with ODEs representing singular solutions from
established field theories? As to deformations of symplectic forms, the following
is well known to grupoid experts. A deformation of ˝T�S can be constructed for
S being any Poisson manifold using the theory of symplectic groupoids and of
integration of Lie algebroids [45, 47, 48] and it has the property that the projection
T*S to S yields a symplectic realization [49, 210]. In our case, S is already
symplectic and the corresponding symplectic groupoid is S � S with the difference
of the area forms.
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7.9 Domains in a Riemann Surface: Schottky-Klein
Prime Functions

Green functions for domains conformal to a multiply connected planar region are
often classified into two types [71]. First type are motivated by electrostatics, where
one takes G D 0 on all boundaries, possibly with different circulations around
each of them. Second kind, or modified Green functions are more commonly used
in hydrodynamics. One prescribes zero circulation around the boundaries, except at
one of them; the values of GD D const: on the boundaries may differ, one of them
being normalized to 0. As we mentioned in Section 4, Crowdy and Marshall brought
to “implementational fruition” the task of obtaining Green functions in canonical
planar domains, specially with the help of Schottky-Klein prime functions [53]. For
recent work of prime functions on tori, see [76].

7.10 Schottky Doubles

In another tack, let SD D D C D of a Jordan domain D, it is a symmetric
Riemann surface. Consider metrics on SD such that the reflection is an isometry.
If at initial time each vortex on D corresponds to a symmetric one in D, with
opposite vorticity, then the configuration remains symmetric for all time. N-vortex
motion on D is the restriction of the corresponding 2N vortex motion on SD . This
Schottky double construction is reminiscent of Thomson’s image vortex method.
The difference from planar regions is that here the domain may have “handles”. In
a similar vein, we may consider involutions on Riemann surfaces, [34, 44, 83, 156],
both orientation preserving or reversing. The “naive rule” in Proposition 3 suffices
in the case of a Jordan domainsD � S , even if the sum of the vorticities inD is non
zero. This is because the extended 2N vortex system on SD D D CD (for which
the vorticity sum is zero). The image structure is preserved under the dynamics.

Are there methods to obtain hydrodynamical Green functions on arbitrary Jordan
domainsD of Riemann surfaces S?

7.11 Blow Up and Regularization of Collisions

Unlike celestial mechanics, merging of vortex patches is not a catastrophic event.
Thus it makes sense to implement blow up/regularization of point vortex collisions.
See [88, 89, 91] for recent work on collisions of three and four vortex systems on the
plane. Ernesto Lacomba [117] has also incorporated sources/sinks in the dynamics
of point vortices in the plane. One should study these questions in the setting of
curved surfaces.
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7.12 Topological Methods: Compactifications

In the case of two opposite vortices, coordinates can be symmetrized, since
interchanging them yields the same trajectory (time reversed). Together with a
compactification of S � S � diagonal one obtains a field of directions in a quotient
compact topological space. Some algebraic geometry and topology references are
[22, 23, 72], for compactified, symmetrized products of N copies of a topological
space minus the diagonals. See [74] for recent applications to robotics. The shape
and orientation of the way the points approach each other is taken into account.
This would pave the way for topological methods to study the dynamics (also in the
presence of Lie group symmetries, see e.g. [106]).

7.13 Relation with Teichmuller Theory

For deforming surfaces, the complex structure changes in time (only for disks and
topological spheres it does not, in view of the Riemann mapping theorem). How to
account for this in the corresponding time dependent vortex equations?

7.14 Dynamics of Markers Around a Primary

A marker is governed by the 1 1/2 degrees of freedom system with Hamiltonian
G.s; so.t//, where so D so.t/ is a solution of (12). Hence chaotic solutions for a
marker are expected even for a flow determined by one vortex, since the latter in
general has a drift motion on the surface.

7.15 Quantization of Vortex Systems

Is there a way to quantize the vortex pair system on the compactification of S �
S � diagonal? Quantizing geodesic motion on .S; g/ leads to the spectrum of the
Laplace-Beltrami operator. As geodesics are limits of vortex pair systems one may
wonder if is there a way to connect the latter to the Hilbert-Polya approach. Can a
Bose Einstein condensate be realized on a two dimensional surface with prescribed,
arbitrary geometry [187]?
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7.16 Hard Analysis Questions

7.16.1 Thin Domains

How three dimensional flows squeezed between two nearby surfaces reduce to
two dimensions? The case of a spherical shell was studied by Jerry Marsden in
collaboration with Tudor Ratiu and Geneviève Raugel [136, 138]. As the transversal
length goes to zero, are there extra terms due to the extrinsic curvatures of
the surface, or due to non homogeneities (e.g. the container having nonuniform
transversal length)?

7.16.2 Properties of Robin Functions

Electrostatics motivates finding the critical points ofG.sI so/ (as a function of s with
so fixed). Recently two interesting studies were published, [65, 130]. Revisit them
for R.s/ instead of G.sI so/ on surfaces with variable curvature.

7.16.3 Core Energy Desingularization

Does the geometry of the surface entail novel effects in the long time behavior
of vortex cores? As a single near circular vortex patch drifts on the surface,
will the curvature change affect its stability? How about other relevant PDEs,
such as Ginzburg-Landau and Gross-Pitaevskii,15 that also lead to vortex type
equations? A few additional references: [133] for Euler’s equations, [165, 189] for
the Ginzburg-Landau, [70] for Gross-Pitaevskii equations.

8 Final Remarks

Taking Marsden and Weinstein’s 1983 seminal paper [135] as a guide, we showed
how vortex equations can be written for all metrics on the conformal class of a
Riemann surface. Our work geometrizes C.C. Lin’s approach for planar domains
using Green functions to construct the Hamiltonian. To justify using Robin’s
function to remove the infinite self energy at a vortex, we observed that Flucher
and Gustaffson’s core energy desingularization extends to curved surfaces, since
the singularity involves logd.s1; s2/. The transformation rules of Laplace-Beltrami
Green functions (a lemma on J. Steiner thesis under K. Okikiolu) allowed us to
extend, to closed surfaces, C.C. Lin’s transformation formulas under conformal
maps.

15See the appraisal by Terry Tao in http://www.terrytao.wordpress.com/2009/11/26/from-bose-
einstein-condensates-to-the-nonlinear-schrodinger-equation/.

http://www.terrytao.wordpress.com/2009/11/26/from-bose-einstein-condensates-to-the-nonlinear-schrodinger-equation/
http://www.terrytao.wordpress.com/2009/11/26/from-bose-einstein-condensates-to-the-nonlinear-schrodinger-equation/
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8.1 Comparison with Hally’s Work [84]

Hally worked on (local) isothermal coordinates, under a simplifying hypothesis, that
the surface is topologically equivalent to a Jordan domain (a multiply connected
planar domain). Curiously, he proceeds in the end of the paper to apply the results
to surfaces of revolution.

• Hally seems not to take advantage of the Green function for the Laplace
Beltrami operator. In fact he states that “for surfaces topologically similar to
the sphere : : : it is impossible to have a single point of isolated vorticity. Rather,
there is a constraint that the sum of all vortex strengths must vanish.”

• The starting point of Hally’s derivation is equation (3.1), which is proposed on
heuristic grounds. In (3.2), one of the terms of (3.2) is attributed to the (self)
“velocity induced by the curvature of the surface of flow.”

However, that expression is not intrinsically defined and cannot be associated
to curvature, as it depends only on first derivatives of the metric.

• In the derivation, Hally also introduces a regular complex potential �� (it is
not clear how to find it) to take into account the external influences (e.g. other
vortices). He says: “In the case of a closed surface with no boundaries these also
include the effects of the vortex at infinity.” Instead, we encoded everything in
the (nonlocal nature of) the operator��1

g .
Remarkably, as it often the case with physicists’ derivations, for Jordan

domains Hally’s equations of motion are correct. We believe that our approach
allows to explain his heuristics. The self contribution is encoded in Robin’s
function R. In our work, a key aspect is the transformation rules between Green
functions.

8.2 What We Believe is New in This Paper

• We called the attention that the self term (Robin’s function) has been slightly
overlooked, since for the round sphere it is ia constant. For genus g � 2 or
metrics with variable curvature, Theorem 1 posits a self contribution, governed
by Robin’s function.

• Somehow mystically for genus � 2 the self term exists even when the curvature
is constant (K � �1). For a single vortex this phenomenon could be described
as “motion due to topology” or a “relativity principle”.

• The extra term in Theorem 4, which is present when there is a background
vorticity:

�

QA.S/
NX

`D1
�` �

�1
g h

2.s`/; � D
NX

`D1
�`:
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It seems not to have been captured in previous studies.
• Conceptually, why the use of Green’s function of the Laplace Beltrami for the

vortex interaction is mandatory, even when the sum of the vorticities vanishes
and there is no background vorticity.

• Practical: calling attention to advantages of the coordinate free approach. For
instance, if one desires to study vortices around islands on a sphere, eg. [82, 195],
it is enough to conformally map it to a planar region, and apply Theorem 4. When
polygonal rings of vortices on a spheroid are considered, one can consider either
a compensating constant background vorticity, or a concentrated compensating
vortex at a pole. Results for the two cases are very different [14].
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Appendix: Complex, Metric and Symplectic Geometry
of Two-Dimensional Hydrodynamics

This Appendix intends to present the differential geometry jargon for readers outside
the field of Geometric Mechanics. This is a “baby” version of the differential
geometric language of [135]. We denote by S a two dimensional closed (compact
boundaryless) orientable manifold, endowed with a Riemannian metric g, and
D � S a Jordan domain (a region with compact closure whose boundary consists
of a finite number of connected components each diffeomorphic to a circle).

16http://www.im.ufrj.br/lella/Nvortex.html.
17https://www.fields.utoronto.ca/programs/scientific/12-13/Marsden/.
18http://www.ics.org.ru/eng.
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Perfect Flows in R2

Given a velocity field in the plane u D .u1; u2/, its vorticity field, ! is

! Oz D r � u D @u1=@y � @u2=@x: (71)

In incompressible flows, the velocity field verifies

r �u D 0: (72)

In the plane the incompressible condition entails that the velocity field u D . Px; Py/
can be written as a Hamiltonian system

u D �@�
@y
; v D @�

@x
; (73)

where  is the stream function. If the flow is also irrotational, r � u D 0 (except
for singularities concentrated at points), then the stream function is harmonic up to
these special points. The singularities are vortices, sinks or sources.

The vorticity field of an isolated unit point-vortex in the plane is given by
!.sI so/ D ı.z�zo/. It forces test-particles to move on circular orbits with velocities
proportional to the inverse of the distance. The stream function is

G.z; zo/ D 1

2�
logd.z; zo/;

where z D .x; y/, zo D .xo; yo/ and d.z; zo/ D
p
.x � xo/2 C .y � yo/2.

It provides the kernel to solve Poisson’s equation. Namely, when the vorticity
field ! is given, one can recover the stream function via

 .z/ D ��1!.z/ D
“

G.z; z0/ !.z0/˝.z0/ (74)

where ˝ D dA D dx ^ dy is the area-form. See e.g. Malchioro and Pulvirenti
[133], Majda and Bertozzi [132], for regularity assumptions.

Complex Geometry of Surfaces

The underlying Riemann surface structure of a surface S with a metric g is given by
the atlas of Laplace-Beltrami isothermal coordinates. In two dimensions all metrics
are automatically Kahler.
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Complex geometry keeps the notion of angle between tangent vectors (thus the
rotation operator J by 90 degrees of tangent vectors is well defined), but neglect
lengths and areas. Teichmuller theory describes the possible complex structures
on S .

Symplectic geometry, on the other hand, keeps the notion of area but neglects
angles. Within a fixed complex geometry, varying the area forms produce the
conformal class of Riemannian metrics compatible with that complex structure.

The uniformization theorem provides to each complex structure on S a canonical
metric of constant curvature,19 but there are other canonical metrics on a Riemann
surface. In Mandelstam metrics the curvature is concentrated at isolated points, and
can be used with triangulations of S . The Abel-Jacobi map embeds S on a complex
torus with euclidian metric. This map induces in S the Arakelov metric and the
related Bergman metric, see, e.g., [146].

Meromorphic Differentials and Direction Fields

Incompressible 2d hydrodynamics requires of an area form besides the complex
structure. It is remarkable that only the complex structure is needed if one is
interested just in the unparameterized trajectories of a marker particle, in the flow
generated by a set of bound vortices with zero total vorticity. Changing a metric
conformally, the speed of the marker will vary according to the conformal factor,
but the physical path remains the same. Thus for the path of a marker on a flow
determined by bound vortices, with zero total vorticity, one needs only the complex
structure.20

Studying primitives of Abelian differentials is at the root of Riemann surface
theory. In recent years pure mathematicians have started to explore the pair of
oriented lines fields corresponding to meromorphic differentials.21

Representing the target Riemann sphere as the extended complex plane, it is more
usual among fluid dynamicists to have the periods of the primitive in the real part �.
The complex part is called the stream function. Combined they form the so-called
complex velocity potential

F D � C i .dF D a meromorphic differential/: (75)

19Interestingly, in two dimensions the Ricci flow keeps the metric in its conformal class.
20The texts by Felix Klein’s ([107], 1882) and Springer [190] use hydrodynamical analogies to
motivate the concept of meromorphic differentials and divisors on Riemann surfaces. However, it
seems that Riemann used only analogies from electrostatics, see [171–173, 198]).
21Their interest is in the interval exchange properties and ergodic properties associated to these two
flows, see eg. [113].
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Hodge Theory in 2 Dimensions

Given a metric g D h ; i compatible with the complex structure, consider the
gradient and symplectic gradient operators grad (usually denoted r), sgrad WD
J ı grad (also denoted r?),

d�.�/ D hgrad�; �i D ˝.sgrad.�/; �/: (76)

There is a “baby Hodge theory” in two dimensions: identify functions with two-
forms via f $ f˝ and vectorfields with 1-forms via v$ ! D hv; �i.

With a metric we can view a meromorphic differential as a vectorfield. Let C be
a closed curve enclosing a domain homeomorphic to a disk D � S . Orient C such
that the frame n; t is positive, where t is the unit tangent vector and n points to the
exterior ofD. Let v be a vectorfield. The familiar formula in the plane

I

C

hv; ni ds D
“

D

div.v/˝ (77)

makes perfect sense on a surface. The coordinate free definition of the divergence
operator, sending vectorfields to functions, can be given as follows (applying
Stokes’ theorem):

d hJ.v/; �i D div.v/˝: (78)

Perfect Flows on Surfaces: Vorticity and Poisson’s Equation

Incompressible hydrodynamics means: div.v/ D 0 except for sources or sinks. On a
compact surface S their divergences must add to zero. In potential flow v D �grad�
for a velocity potential �, which in general is a multivalued function (in the Riemann
surface sense).

The circulation
H
C
hv; tids of v around a closed curveC D @D is of fundamental

importance. The vorticity distribution forms the “sinews and muscles of fluid
motion” (Küchemann [114]). Vortices are singularities that generate circulation.
If the surface has nontrivial topology there exist perfect flows with nonzero
circulations around the homology generators. The circulation on the boundary of
a simply connected domain without internal singularities vanishes.

The Laplace operator is � D div ı grad. It is a negative definite self-adjoint
operator with respect to hf; gi D R

M
fg˝ . The potential function of a perfect flow

satisfies�� D 0 (except on the singularities). As we mentioned above, its conjugate
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harmonic function is called the stream function. Combined they form the velocity
potential.22

The velocity field v is tangent to the level lines of the stream function , and can
be described symplectically from  via

d D ˝.v; �/ , v D sgrad. / D �grad.�/: (79)

Summarizing: velocity potentials and stream functions are harmonic up to singular-
ities and/or multivaluedness; the complex function theory of S is in the background
of 2d-hydrodynamics. A metric is not required for the path of a marker particle
under the influence of bound singularities.

Using Stokes’ theorem the line integral can be transformed into a double integral,

I

C

hv; tids D
I

C

hJ.v/; J.t/ids D
I

C

hJ.v/;�nids D �
“

D

div.J v/˝

But J.v/ D J.J grad / D �grad . Hence

I

C

hv; tids D
“

D

� ˝: (80)

Hence the coordinate free definition of the surface rotational or vorticity distribution
! D rotv is

d hv; �i D rot.v/˝: (81)

See [4] (definition 9.5 on p. 46 and (11.1–2) on p. 56) or [135] (Sections 4
and 6) for the corresponding definitions in higher dimensions. Two dimensional
hydrodynamics is governed by Poisson’s equation. If  is the stream function, it is
easy to see from the definitions in the previous section that

� D ! where
“

S

!˝ D 0: (82)

Lemma 1. On a closed surface (of arbitrary genus) the source term must average
to zero.

“

S

! ˝ D 0: (83)

22Due to the historical influence of British fluid mechanicists, in planar domains with the euclidian
metric flows due to complex potentials are defined as �F 0.z/.
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Proof.
’
S !˝ D

’
S � dS D

’
S r �r dS D

H
@Shr ; nids D 0, since there is

no boundary. Alternatively, take a small curveC enclosing a diskD. The circulation
of the velocity field can be computed as the double integral of the vorticity on D
and minus that integral on S �D.

Lemma 2. In two dimensions vorticity is a “material property”

Lv! D @!

@t
C hv; grad!i D 0: (84)

Since v D sgrad , this translates into

@!

@t
D f ;!g D f��1!; !g (85)

where f ; g is the Poisson tensor associated to the area form in S .
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The Geometry of Radiative Transfer

Christian Lessig and Alex L. Castro

Abstract We present the geometry and symmetries of radiative transfer theory.
Our geometrization exploits recent work in the literature that enables to obtain
the Hamiltonian formulation of radiative transfer as the semiclassical limit of a
phase space representation of electromagnetic theory. Cosphere bundle reduction
yields the traditional description over the space of positions and directions, and
geometrical optics arises as a limit case when the amount of energy that is
transported is disregarded. It is also shown that, in idealized environments, radiative
transfer is a Lie-Poisson system with the group of canonical transformations as
configuration space and symmetry group.

1 Introduction

Radiative transfer describes the transport of electromagnetic energy in macroscopic
environments, classically when polarization effects are neglected [37]. The theory
originates in work by Bouguer [6, 7] and Lambert [22] in the 18th century where
light intensity and its measurement were first studied systematically, cf. Fig. 1.
In the 19th and early 20th century the theory was then extended to include
transport and scattering effects [9, 26, 42, 43]. To this day, however, radiative
transfer is a phenomenological theory with a mathematical formulation that still
employs the concepts introduced by Lambert in the 18th century—and this despite
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Fig. 1 Early research in radiometry as illustrated by Rubens (from [22])

the importance of the theory in a multitude of fields, such as medical imaging,
remote sensing, computer graphics, atmospheric science, climate modelling, and
astrophysics.

In the following, we will explain the physical foundations of radiative transfer in
media with varying refractive index and we study the geometry of the theory and its
symmetries; an overview is provided in Fig. 2. Following recent advances in applied
mathematics, semi-classical analysis is employed to lift classical electromagnetic
theory from configuration space Q � R

3 to phase space T �Q. By restricting
the dynamics on T �Q to a non-zero energy level and considering the short
wavelength limit one obtains a transport equation for polarized light, and further
only considering the energy that is transported and neglecting polarization leads
to radiative transfer theory in a Hamiltonian formulation. Our derivation shows
that the central quantity of radiative transfer theory is the phase space light energy
density ` 2 Den.T �Q/ and that radiance, which plays this role in the classical
formulation, is meaningful only in the context of measurements, the setting Lambert
considered when he introduced the concept [22]. With the Hamiltonian formulation
of radiative transfer on 6-dimensional phase space T �Q Š R

3 � U , the classical
5-dimensional description over the space of positions and directions is obtained
when the conservation of frequency is exploited. The associated symmetry enables
the reduction of the dynamics from the cotangent bundle T �Q to the cosphere
bundle S�Q D .T �Qnf0g/=RC and time evolution is then described by contact
dynamics. Fermat’s principle, the Lagrangian formulation of geometrical optics,



The Geometry of Radiative Transfer 241

Fig. 2 Overview of the physical foundations and the geometric structure of radiative transfer
theory. Semi-classical analysis yields a description of Maxwell’s equations on phase space T �Q

where the electromagnetic field F D .E;H/T is represented by the Wigner transform W " and
dynamics are governed by a matrix-valued analogue of the Moyal bracket ff ; ggMB. When the
short wavelength limit is considered, this leads to a transport equation for polarized light with the
2 � 2 matrix density W 0

a being formed by the classical Stokes parameters. When polarization is
also neglected, W 0

a becomes the scalar light energy density ` 2 Den.T �Q/ whose dynamics are
governed by the Poisson bracket. The classical five dimensional formulation of radiative transfer is
obtained using cosphere bundle reduction with the light frequency being the associated conserved
quantity. When radiative transfer is considered globally and the light energy density `t at time t
forms a configuration of the system, radiative transfer becomes a Lie-Poisson system for the group
Diffcan.T

�Q/ of canonical transformations

is obtained from the Hamiltonian formulation of radiative transfer through a non-
canonical Legendre transform when energy transport is neglected. From our point
of view, geometric optics is thus a special case of radiative transfer theory. When
radiative transfer is considered from a global perspective with the light energy
density `t 2 Den.T �Q/ at time t as a configuration of the system, the configuration
space of the theory becomes the group Diffcan.T

�Q/ of canonical transformation.
Radiative transfer has then a Lie-Poisson structure and the associated symmetry
is the conservation of light energy density along trajectories in phase space. This
provides a modern rationale for the classical law of “conservation of radiance along
a ray” [36]. It also reveals a surprising similarity to Kelvin’s circulation theorem in
ideal fluid dynamics.
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2 A Modern Formulation of Radiative Transfer Theory

Following recent work in the literature, in this section we will describe how the
Hamiltonian formulation of radiative transfer arises as the asymptotic limit of
Maxwell’s equations and we will also study the geometry and symmetries of the
system.

2.1 Derivation

From the scale hierarchy of electromagnetic radiation in physics it is apparent that
radiative transfer has to arise at the short wavelength limit of Maxwell’s equations,
Hamilton’s equations for electromagnetic field theory [29, p. 24]. Nonetheless, the
exact correspondence was open for more than 200 years and still in the 1990s
Mandel and Wolf [27] lamented that “in spite of the extensive use of the theory
of radiative energy transfer, no satisfactory derivation of its basic equation from
electromagnetic theory has been obtained up to now”.1 Recent work in applied
mathematics [15, 16, 41, 47, 48] fills this gap and in the following we will summarize
a rigorous derivation of radiative transfer theory from Maxwell’s equations.

In a source free regionQ � R
3, Maxwell’s equations are given by [5]

@

@t

�
E
H

�

D
 
0 � 1

"
r�

1
�
r� 0

!�
E
H

�

(1a)

div.E/ D 0 div.H/ D 0 (1b)

where " W Q ! R and � W Q ! R are the electric permittivity and magnetic
permeability, respectively, and E and H represent the electric and magnetic fields;
in the following it will be understood that these fields are divergence free. By
introducing F D .E;H/T , Eq. 1 can be written as

PF DM F (2)

and we will denote M as the Maxwell operator.2 The classical observable of
electromagnetic theory is the energy density E .q; t/, given by

E .q; t/ D kFk2";� D
"

2
kEk2 C �

2
kHk2: (3)

1The first derivation of geometric optics from Maxwell’s equations goes back to Sommerfeld and
Runge [44], cf. [5, Chapter III] for historical details. Derivations of geometrical optics do not
provide long time transport equations for the light energy density, cf. also [49].
2Eq. 2 is closely related to the spacetime formulation of electromagnetic theory with F being the
components of the Faraday 2-form F D E ^ dt C B , cf. [14, Sec. 3].
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We are interested in the transport of the energy density E .q; t/ in macroscopic
environments. To describe this regime mathematically we introduce the scale
parameter

" D �=dn: (4)

In Eq. 4, � is the wavelength of light and dn the average distance over which the
refractive index n D p" � W Q ! R varies, cf. [34, Chapter 22.5]. In macroscopic
environments one has � � dn and asymptotically these can thus be studied by
letting " ! 0. In the following, we will often write F", E " etc. to make the
dependence of variables on the scale parameter explicit.

The classical approach to study short wavelength asymptotics is the Wenzel-
Kramers-Brillouin (WKB) approximation.3 However, this ansatz is limited in that
solutions are only well defined until caustics form, at which point the approximation
becomes multi-valued, and that the initial conditions must satisfy the WKB form
u".q; t/ D a.q; t/ eiS.q;t/=". Additionally, Maxwell’s equations describe the time
evolution of the field F, while we are interested in the limit " ! 0 of the energy
density E ".q; t/ that depends quadratically on the field. This provides a serious
obstruction for any approach to determine the transport of the limit energy density
E 0.q; t/ [45].

The limitations of classical approaches to describe the transport of the limit
energy density E 0.q; t/ can be circumvented by lifting electromagnetic theory to
phase space T �Q and studying the short wavelength limit there [16, 41]. The
electromagnetic field F can be lifted to T �Q using the Wigner transform [16, 52],
yielding a 6 � 6 matrix densityW "ŒF	 whose components are given by

W "ŒF	"ij .q; p/ D
1

.2�/3

Z

Q

eip � r F"i .q �
"

2
r/F"j .q C

"

2
r/ dr: (5)

The lift of the Maxwell operator M" to phase space is provided by its matrix-
valued symbolm".q; p/ which can formally be expanded asm".q; p/ D m0.q; p/C
"m1.q; p/C "2m2.q; p/C � � � . Time evolution on phase space is described by

PW " D �ffW ";m"ggMB (6)

whereW " � W "ŒF	 and ff ; ggMB is a matrix-valued “Moyal bracket” [16, Eq. 6.12].
Expanding this bracket one obtains

PW " D 1

"
ŒW ";m"	 � 1

2i
.fW ";m"g � fm";W "g/CO."/ (7)

3It is by now well known that the WKB approximation goes back to work by Liouville and Green
in the first half of the 19th century.
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where f ; g is commonly denoted as a matrix-valued “Poisson bracket”4; it is not a
Poisson bracket in the formal sense and we will return to this point in Sec. 4. In
contrast to the scalar Moyal bracket where the commutator in the first term vanishes
by the commutativity of multiplication in the algebraF .T �Q/, in the matrix-valued
case care is needed that the first term does not diverge as " ! 0. This divergence
can be circumvented by restricting dynamics to the eigenspaces of the Maxwell
symbolm". The diagonally identical symbol matrix is then in the ideal of the matrix
algebra and the appropriately restricted commutator ŒW ";m"	 hence vanishes; this
is the matrix-valued analogue of the Bohr-Sommerfeld quantization condition [25].
The eigenvalues of the Maxwell symbol are given by [41]

�0 D 0 �1 D c

n.q/
kpk �2 D � c

n.q/
kpk; (8)

each having multiplicity two. Only �1 and �2 have physical significance, cor-
responding to forward and backward propagation in time. We will denote the
projection onto the eigenspace associated with �a by˘a, with a 2 f1; 2g. Projecting
the Wigner distributionW " onto the ath eigenspace and taking the limit "! 0 yields

W 0
a D ˘aW

0˘a D 1

2


I CQ U C iV
U � iV I �Q

�

dq dp: (9)

The parameters I;Q;U; V in Eq. 9 are the Stokes parameters for polarized light.
This provides much physical intuition for the projected limit Wigner distribution
W 0
a . From Eq. 7 one obtains for the time evolution of W 0

a that [16]

PW 0
a D ˘a

˚
W 0
a ; �a

�
˘a C

�
W 0
a ;˘am

1˘a

� D ˚W 0
a ; �a

�C �W 0
a ; F

0
a

�
(10)

where F 0
a D Œ˘a; f�a;˘ag	 C ˘am

1˘a and, as before, m1 is the first order term
in the formal expansion of the symbol m" in the order parameter ". Intuitively,
the “Poisson bracket”

˚
W 0
a ; �a

�
describes the transport of the polarized radiation

W 0
a on phase space while the commutator

�
W 0
a ; F

0
a

�
is responsible for the change

in polarization during transport, we will again come back to this in Sec. 4.
Classical radiative transfer is a scalar theory and does not consider polarization. For
unpolarized light the Stokes parameters satisfy Q;U; V D 0. The matrix density
W 0
a is then completely described by its trace, representing the intensity I of the

radiation. We thus define the light energy density as

` D tr .W 0
i / D L .q; p/ dq dp 2 Den.T �Q/: (11)

It follows from Eq. 10 that the transport of ` 2 Den.T �Q/ is described by

P̀ D � f`;H g (12)

4The matrix-valued “Poisson bracket” is computed by performing matrix multiplication with scalar
multiplication replaced by the usual Poisson bracket, see for example [50, Appendix A].
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with the HamiltonianH 2 F .T �Q/ being the eigenvalue �a, that is

H.q; p/ D ˙ c

n.q/
kpk: (13)

The light energy density ` 2 Den.T �Q/ is related to the limit electromagnetic
energy density E .q/ 2 Den.Q/ by the fiber integral

lim
"!0

E ".q; t/ D
Z

T �

q Q

` D
Z

T �

q Q

L .q; p; t/ dp (14)

and ` 2 Den.T �Q/ can be understood as an angularly resolved form of the
electromagnetic energy density. Hence, the light energy density ` 2 Den.T �Q/
together with Eq. 12 provide the sought after system to describe the transport of
the limit energy density E 0.q; t/. Eq. 12 describes the transport of electromagnetic
energy in macroscopic environments to good approximation, as is evidenced by the
success of radiative transfer in a wide range of fields.

2.2 Cosphere Bundle Reduction for Radiative Transfer

Eq. 12 describes radiative transfer theory as a Hamiltonian system on 6-dimensional
phase space T �Q Š R

3�Q. In the literature, however, the theory is usually defined
over the 5-dimensional space of “positions and directions”. The two descriptions
are related through the symmetry associated with the well known conservation of
frequency during transport. The Hamiltonian in Eq. 13 is homogeneous of degree
one in the momentum, H.q; ˛p/ D ˛H.q; p/, for ˛ 2 R

C, and, moreover,
momentum and light frequency are proportional. This suggests that the symmetry
group associated with the conservation of frequency is .RC; � / acting on the fibers
T �
q Q bym˛.q; p/ D .q; ˛ p/. As is well known [2, Appendix 4], the quotient space

for this action is given by the cosphere bundle

S�Q D �T �Qnf0g� =RC (15)

and for a Hamiltonian of degree one dynamics on T �Q drop to a contact Hamil-
tonian flow along the Reeb vector field on S�Q [39]. The cosphere bundle S�Q,
identified with the sphere bundle S2Q using the standard metric in R

3, provides
a modern interpretation for the classical space of “positions and directions”, and
the homogeneity of the Hamiltonian explains why such a description on S�Q is
possible, despite the Hamiltonian character of the system that seemingly requires a
description on an even dimensional space.
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2.3 Radiative Transfer as a Lie-Poisson System

A central result in classical radiative transfer theory is the “conservation of radiance
along a ray” [18]. The symmetry associated with this conservation law becomes
apparent when the light energy density `t at time t , globally over all T �Q, is
considered as one configuration of the system. Time evolution can then be described
by the pullback `t D ��

t `0 along the map �t W T �Q ! T �Q that is generated by
the flow of the Hamiltonian vector field XH defined by Eq. 13, and when XH is
defined globally the set of all such maps �t forms the infinite dimensional Lie group
Diffcan.T

�Q/ of canonical transformations [11]. With respect to the initial light
energy density `0 all physically valid configurations `t can then be described by
an element �t in Diffcan.T

�Q/ and the group becomes the configuration space of
radiative transfer. We thus have that radiative transfer is a Lie-Poisson system for
Diffcan.T

�Q/, cf. Fig. 3.
The Lie-Poisson structure for the group Diffcan.T

�Q/ was first studied by
Marsden and coworkers in the context of plasma physics [30]. The Lie algebra g of
Diffcan.T

�Q/ are infinitesimal canonical transformations, that is g Š XHam.T
�Q/,

and by identifying the Hamiltonian vector fields with the generating Hamiltonian
functions, g Š F .T �Q/, the dual Lie algebra g� becomes Den.T �Q/.5 With
g� Š Den.T �Q/, it is natural to consider the light energy density ` as an
element in g�. The time evolution of ` is then described by coadjoint action
Diffcan.T

�Q/ � g�C ! g�C in the Eulerian representation and infinitesimally this
is given by [24, Sec. 3.3]

P̀ D ad�
ıH
ı`

` D ad�
H` D �f`;H g I (16)

Fig. 3 The structure of Lie-Poisson systems. Classical examples of such systems are the rigid
body, where the Lie group is SO.3/ with a left invariant Hamiltonian, and the ideal Euler fluid,
where the Lie-group is the group Diff�.Q/ of volume preserving diffeomorphisms with a right
invariant Hamiltonian [1, 11]

5We disregard here some technical details in the construction of the dual Lie algebra. See for
example [24, Chapter 2.3.5.3].
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Table 1 Correspondence between ideal fluid dynamics and ideal radiative
transfer. The fluid velocity is denoted by v 2 Xdiv.Q/ and ! 2 ˝2.Q/ is the
fluid vorticity

Fluid dynamics Radiative transfer

Lie group Diff�.Q/ Diffcan.T
�Q/

Lie algebra Xdiv.Q/ XHam.T
�Q/

Dual Lie algebra ! 2 ˝2.Q/ ` 2 Den.T �Q/

Coadjoint action P! D �£v! P̀ D �£XH `

Classical conservation law Kelvin’s theorem Conservation of radiance

indeed, that the Poisson bracket describes infinitesimal coadjoint action ad� W g �
g� ! g� for Diffcan.T

�Q/ is an a posterior justification for considering the group
as the configuration space for ideal radiative transfer [30, Sec. 6]. In Eq. 16, H �
H Œ`	 is the field Hamiltonian

H Œ`	 D
Z

T �Q

`.q; p/H.q; p/ dq dp (17)

which is the density weighted integral of the “single particle” HamiltonianH.q; p/
in Eq. 13. With the light energy density as an element in the dual Lie algebra,
it follows immediately from the general theory of Lie-Poisson systems that the
momentum map JR is the convective light energy density and that this quantity is
conserved [29, Theorem 11.4.1], cf. Fig. 3.6 By the change of variables theorem, this
can be interpreted as conservation of light energy density along trajectories in phase
space and it provides a modern formulation and justification for “conservation of
radiance along a ray” in the classical literature. Interestingly, with the Lie-Poisson
structure a close formal analogy between ideal radiative transfer and ideal fluid
dynamics exists, cf. Table 1.

Next to the transport on T �Q, the time evolution of radiative transfer can also
be understood as a functional analytic flow on the space of light energy densities.
By identifying the Hamiltonian vector field XH with an anti-self-adjoint operator,
Stone’s theorem [28, Theorem 6.2.18.3] enables us to describe radiative transfer as

`t D ��
t `0 D Ut `0 (18)

where Ut is a unitary operator. Such a functional analytic representation of the
action of an infinite dimensional diffeomorphism group is often referred to as
Koopmanism [21], cf. also [32, Chapter 8.4]. An interesting aspect of Eq. 18 is that
it provides a rigorous basis for the operator formulation of radiative transfer that
can be found in the classical literature, see for example [10]. Eq. 18 also provides
a natural starting point to include scattering effects, for example at surfaces, that do
not have a geometric but a well known functional analytic description.

6A direct proof can be found in [24, Chapter 3.3].
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3 Some Connections to the Classical Formulations

In this section, we will relate our geometric formulation of radiative transfer to
classical radiometry and geometrical optics.

3.1 Classical Radiometry

To relate the phase space light energy density ` 2 Den.T �Q/ to radiance,
the central quantity in the classical formulation of radiative transfer, we have to
consider measurements, the question Lambert was studying when he introduced the
concept [22]. Measurements determine the flux of light energy density, for example
through the sensor of a camera. Mathematically, this flux can be determined using
the transport theorem of tensor calculus [32, Theorem 8.1.12]. One then obtains that
the energy E flowing through a 2-dimensional surface M in a time interval Œt1; t2	
is given by

E D
Z t2

t1

Z

T�M

iXH ` D
Z t2

t1

Z

M

c

n.q/

Z

T�

q M

L .q; p/ . Np �n.q// dAd Np dt (19)

where Np is a unit vector, n.q/ the surface normal of M at q, and T �
q M the positive

half-space of T �
q Q as defined by n.q/ [24, Chapter 3.2.6]. When the light energy

density is parameterized in spherical coordinates, an infinitesimal measurement can
be written as

L .q; Np; �/ . Np �n/ dAd Np D n� .L .q; Np; �/ Np dAd Np d�/ (20)

and when no measurement surface, and hence no normal n, is fixed one thus has for
an infinitesimal measurement that

� D L .q; Np; �/ dA? d Np d� (21)

where dA?. Np/ D Np dA is the standard area form for a surface orthogonal to
the flow direction Np. The differential 2-form � 2 ˝2.Q/ provides a modern
interpretation of classical radiance. The cosine term .p �n/, which is prevalent in the
classical literature but usually only justified heuristically [36], can then be obtained
rigorously through the pullback of� onto a surface with normal n. We refer to [24]
for the derivation of other concepts of classical radiometry such as vector irradiance.

Remark 1. In the past, it has often been overlooked that radiance is meaningful only
in the context of measurements while the quantity that genuinely is transported in
radiative transfer is the phase space light energy density ` 2 Den.T �Q/. This has
led to considerable confusion even in recent literature [3].
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Fig. 4 Non-canonical Legendre transform relating radiative transfer to geometrical optics given
by Fermat’s principle

3.2 Radiative Transfer and Geometrical Optics

A question rarely considered in the classical literature on radiative transfer is the
relationship of the theory to geometrical optics. The connection can be established
by considering the Legendre transform of Fermat’s principle. As is well known,
directly performing the transform for the LagrangianL D n.q/ leads to a vanishing
Hamiltonian [20]. Following Arnold [2],7 instead of length, given by L D n.q/,
we shall hence consider the geometrical energy of a light path, given by OL D
n2.q/. This Lagrangian can be interpreted as corresponding to a diagonal metric
gij D n2.q/=c2 ıij and the associated geodesic flow is equivalently described by
the Hamiltonian OH D gij Opi Opj [19, p. 51] where Op is the canonical momentum
which is related to the kinetic momentum by p D ! Op. Reverting the transition
from path length to path energy, and including the factor of ! corresponding to
energy we obtain for the Hamiltonian again Eq. 13. If we trace the diagram in Fig. 4
backwards, we see that, from the point of view of radiative transfer, geometrical
optics is a limiting case when the amount of energy that is transported is disregarded.

4 Discussion and Open Questions

Our geometric formulation of radiative transfer and the identification of the Lie
group structures that underlie the known conservation laws clarifies and unifies
earlier work in the literature. Additionally, the use of tensor calculus overcomes
the limitations of the current formulation, for example when measurements are
considered, and it improves over earlier attempts that employed vector calculus [17]
and measure theory [38] to obtain a modern mathematical foundation for radiative
transfer.8 The derivation of radiative transfer from electromagnetic theory that was
presented in Sec. 2 largely follows recent work in applied mathematics [16, 41],

7We were told this idea goes back at least to Riemann.
8The status and shortcomings of many classical derivations of radiative transfer theory were
recently summarized by Mishchenko [33].
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which can be seen as a refinement of earlier but little known results in plasma
physics.9 Our presentation emphasized geometric aspects of the argument and it
completed the connection to the classical formulations in the literature [3, 16, 41].
Nonetheless, the structures that underlie many aspects of the derivation remain
currently unclear. In the following, we will collect some preliminary results on how
to fill these gaps.

Additional insight into the derivation in Sec. 2 can be obtained by considering a
density matrix formulation of electromagnetic theory before the phase space lift. In
quantum mechanics, the density matrix for a pure state  is defined by � D  ih 
and it represents the projection operator onto the one dimensional subspace spanned
by  .10 One of the advantages of this formulation is that it provides a faithful
representation of the projective Hilbert space CP

n that serves as the configuration
space of quantum mechanics, cf. [29, Chapter 5.4.3].11 The density matrix for the
electromagnetic field is known as the mutual coherence matrix [27, 54] and there
typically defined as12

Pij .q; t; Nq; Nt/ D Fi .q; t/ F �
j . Nq; Nt /: (22)

Analogous to the situation in quantum mechanics, the trace tr .P / of the density
matrix, for .q; t/ D . Nq; t/, is proportional to the quadratic observable, the
electromagnetic energy density E .q; t/ [40]. Neither Eq. 22 nor the trace have an
apparent geometric interpretation. However, we know from Eq. 3 that the energy
density is given by E D kFk2";�. Using the Faraday 2-form F D E ^ dt C B this
can be written as

E .q; t/ D hhF;F ii";� D F ^ ?";�F (23)

where ?";� is the Hodge dual induced by considering the electric permittivity and
magnetic permeability as part of the metric. By definition of the wedge product, this
is equivalent to

E .q; t/ D A.F ˝ ?";�F / (24)

9See [37] and references therein and [53]. In theoretical optics, various alternative names are
employed for the Wigner transform, cf. [4].
10The density matrix was introduced in a famous paper by von Neumann [35] to study statistical
ensembles of states, an aspect we will not consider here but which is closely related to the questions
considered in statistical optics, cf. [27].
11This representation of CPn is the prototypical example of a C�- or von Neumann algebra.
12In the statistical optics literature one typically considers statistical averages of the field
components, which we omit here. This is the analogue of the probabilistic superposition of pure
states in quantum mechanics.
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Fig. 5 Young’s experiment: coherent electromagnetic radiation passes through the double slit
formed by q1 and q2 and through interference forms the intensity pattern on the screen on the
right

where A is the anti-symmetrization map [32, Defnition 7.1.3]. As can be shown by a
straightforward computation, the anti-symmetrization in Eq. 24 is, in flat spacetime,
equivalent to taking the trace of F˝ F. We hence indeed have

E .q; t/ D A.F ˝ ?";�F / D tr .F˝ F/: (25)

It appears that F ˝ ?";�F provides a mathematically and physically more natural
definition of the density matrix. The non-locality in the definition in Eq. 22 can
be understood by considering interference phenomena such as those arising in the
classical Young’s interference experiment, cf. Fig. 5. There, interference arises from
the superposition of the fields at the pinholes, and the interference fringes, and hence
the intensity of the electromagnetic field, can be described through the nonlocal
coherence matrix P.q; t; Nq; t/, see [54]. It needs to be studied if this idea can be
made rigorous by considering the time dependence for F in Eq. 25 and exploiting
that Ft D UtF0 where Ut is a unitary operator.

As in the case of the Schrödinger equation, differentiating the definition of the
local density matrix with respect to time using the Leibniz rule and inserting Eq. 2
in the resulting expression yields PP D �ŒP;M 	 where Œ ; 	 denotes the matrix
commutator. As is well known [13, 55], under the semiclassical symbol calculus the
commutator becomes the Moyal bracket on phase space, and, at least formally, it can
be shown that the Wigner transform is the symbol of the density operator. Using the
density matrix and its time evolution equation provides thus a more natural transition
from Maxwell’s equations on configuration space to Moyal bracket dynamics on
phase space.

For the Schrödinger equation, the model problem in semiclassical analysis, the
representation theory of the Heisenberg group plays a central role, as is evident
from the Stone-von Neumann theorem, which, roughly speaking, states that all
formulations of quantum mechanics are essentially unitarily equivalent. From the
point of view of the Heisenberg group, the short wavelength limit is the group



252 C. Lessig and A.L. Castro

contraction that yields the symplectic group. A question of interest to us is to
understand which role the Heisenberg group plays for the asymptotic limit discussed
in this paper. Interesting work in this context is for example those by Landsman [23]
who discusses connections between Lie-Poisson reduction and quantization using
the Heisenberg group.

Quite curious in the derivation in Sec. 2 are the matrix-valued “Moyal” and
“Poisson” brackets that arise for example in Eq. 7 and Eq. 10. These brackets are
known in the physics literature, e.g. [46, Chapter 16.3] [50, Appendix A], and they
also appear in the microlocal and semiclassical analysis literature, cf. [16]. However,
to our knowledge they have not been studied from a geometric point of view. One
approach to generalize the Poisson bracket to the matrix-valued case is to consider

Pf D �ff;H g D �£XH f (26)

in which case the right hand side has a natural extension for arbitrary tensors. For a
matrix A, that is a .1; 1/ tensor, one then obtains

PA D �£XHA D �fA;H g C ŒA; NH	 (27)

where the “Poisson bracket” for the matrix A is defined as before, as a component
wise bracket, and NH is the Hessian “matrix” of the Hamiltonian, that is the matrix of
second partial derivatives. Eq. 27 has the same form as Eq. 10 although it is currently
not clear to us under which conditions NH coincides with the first order term m1 of
the symbol. For the situation where also the generator of the dynamics is matrix-
valued, the connection between the symbol of an operator and the dispersion matrix,
which is well understood from a physical point of view, seems to play a key role,
cf. [41]. Preliminary work in the literature that considers matrix-valued quantization
from a geometric perspective is [8, 12, 25], although to our knowledge no complete
picture exists at the moment.

An interesting open question is also the transition from Maxwell’s equations
to radiative transfer in spacetime, the natural setting of electromagnetic theory.
Although no general theory of covariant Poisson brackets in spacetime exists, for the
special case of Maxwell’s equations a bracket is known [31]. Moreover, the Faraday
2-form plays from the outset an important role in our derivation and semiclassical
analysis naturally considers spacetime operators, cf. [55]. A derivation in this setting
might also help to understand how the structure of electromagnetic theory manifests
itself at the short wavelength limit and how the symmetries of radiative transfer
theory arise.

Despite many connections, microlocal and semiclassical analysis are currently
rarely considered in geometric mechanics. We believe this is an area ripe for further
investigations. For example, in many situations microlocal analysis also allows the
description of a Hamiltonian system on phase space T �Q through an equivalent
partial differential equation on configuration space Q. We believe that this provides
additional insight into the plasma-to-fluid map [30] and might allow to generalize
the result. It would also be interesting to explore how existing results, for example
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for the Maxwell-Vlasov system [30] or Euler-Yang-Mills fluids, cf. [14], can be
reformulated when electromagnetic theory is describes on phase space.

Although the Hamiltonian formulation of radiative transfer has been known in
plasma physics for a long time [37], it has so far not been appreciated in other
communities. We belief that the 5-dimensional formulation of radiative transfer that
is prevalent in the literature, and which is incompatible with a Hamiltonian descrip-
tion that necessitates an even dimensional phase space, led to much confusion on
the subject. Our reduction of the 6-dimensional Hamiltonian system to a contact
Hamiltonian system on the cosphere bundleS�Q clarifies this relationship. The Lie-
Poisson structure of radiative transfer mirrors those of other systems in statistical
mechanics whose time evolution is describes by the Vlasov equation [30], [51].
Nonetheless, since radiative transfer is rarely written in the form of Eq. 12 it was
surprising to us that the classical law of conservation of radiance arises from a Lie-
Poisson structure. Similarly, the structural similarities between ideal fluid dynamics
and ideal light transport in Table 1 seem, from the point of view of the classical
literature, quite remarkable.

5 Conclusion

This work owes much to Jerry Marsden, to his encouragement, and to his writings.
Jerry told us that if there is a geometric formulation of radiative transfer then it is
worth developing it. We always reminded ourselves of this when nothing seemed to
fit together. Jerry’s writings also repeatedly provided us a life line and they made
geometric mechanics accessible to us.
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A Soothing Invisible Hand: Moderation
Potentials in Optimal Control

Debra Lewis

Abstract A moderation incentive is a continuously differentiable control-dependent
cost term that is identically zero on the boundary of the admissible control region,
and is subtracted from the ‘do or die’ cost function to reward sub-maximal control
utilization in optimal control systems. A moderation potential is a function on
the cotangent bundle of the state space determining Hamiltonian boundary value
problems with solutions satisfying the control-parametrized Hamiltonian dynamics
determined by an associated moderation incentive in accordance with Pontryagin’s
Maximum Principle. A multi-parameter family of moderation incentives for
control-affine systems with quadratic control constraints possesses simple, readily
calculated moderation potentials. An elementary planar projectile problem with
controlled velocity illustrates the influence of the moderation incentive on the
optimal trajectory.

1 Introduction

When modeling a conscious agent, the constant cost function of a traditional time
minimization problem can be interpreted as representing a uniform stress or risk
throughout the task, while more general cost functions model varying stresses
and risks that depend on the current state and control values. Implementation of
agent limitations via cost terms may be more natural—particularly for biological
systems—than a possible/impossible dichotomy, in which constraints are explicitly
incorporated in the state space. For example, consider the classic ‘falling cat’
problem, in which a cat is suspended upside down and then released. (See, e.g.,
[7, 12, 14].) Marey [12] gave a qualitative description of the self-righting maneuver,
supported by high-speed photographs: the cat rotates the front and back halves of
its body, altering the positions of its head and limbs to adjust its moments of inertia,
causing the narrowed half to rotate significantly faster than the thickened half, with
zero net angular velocity. Kane and Scher [7] introduced a simple mathematical
model of a cat, consisting of a pair of coupled rigid bodies, and showed that
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self-righting with zero angular momentum is possible without alteration of the
moments of inertia of the two halves of the body. To rule out the mechanically
efficient but fatal solution in which the front and back halves simply counter-rotate,
resulting in a 360ı twist in the ‘cat’, Kane and Scher imposed a no-twist condition in
their model. The resulting dynamical system has a natural and elegant formulation as
an optimal control system [14]. However, actual cats can and do significantly twist
their bodies, and splay or tuck their limbs; the images in [7] generated using the
mathematical model and superposed on photographs of an actual cat significantly
underestimate the relative motion between the front and back halves of the body.1

Replacing the no-twist condition with a deformation-dependent term in the cost
function that discourages excessively large relative motions allows more realistic
motions.

The optimal control values for a purely state-dependent cost function lie on the
boundary, if any, of the admissible control regions. In some situations, the optimiza-
tion problem can be restricted to the boundary of the admissible region and solved
using geometric optimization and integration methods (see, e.g., [8, 10, 11, 19]). If
geometric methods are not available or desirable, penalty functions can be used to
construct algorithms on an ambient vector space that respect the boundary due to the
prohibitive (possibly infinite) expense of crossing the boundary; see, e.g., [3, 5], and
references therein. For some state- and control-dependent cost functions, trajectories
approaching the boundary of the admissible control region are so extravagant that
the boundary can safely be left out of the mathematical model. However, a close
approach to the boundary of the admissible region may be appropriate when making
the best of a bad situation. Consider again the situation of the dropped cat: the cat
is presumably eager to change its orientation before striking the ground—a typical
cat can right itself when dropped from heights of approximately 1 m. Selection of
an appropriate cost function is essential; a very high price for near-maximal control
values may yield excessively leisurely solutions, while very low costs may result in
near-crisis responses in almost all situations. Modeling a system using a family of
cost functions parametrized by moderation or urgency can reveal qualitative features
of optimal solutions that are not readily seen using a single cost function.

In time minimization problems, the time required to complete the maneuver
is obviously not specified a priori. In more general situations, in which the cost
function is a non-constant function of state and/or control values, the duration is still
allowed to vary unless specified as fixed.2 When applying Pontryagin’s Maximum
Principle, a necessary condition for optimality is that either the Hamiltonian equal

1It should be noted that the ultimate goal of Kane and Scher’s investigation was the development
of maneuvers that would allow astronauts to alter their orientation without grasping fixed objects
while in zero gravity [6]. The no-twist condition is very reasonable for a spacesuit-clad human—the
collarbone (not present in cats or many other quadrupeds) limits rotation of the shoulders relative
to the hips, facilitating bipedal motion, and the bulky suit further limits bending and twisting.
2Problems in which the duration is to be determined are given pride of place in Pontryagin et al.
[16]: “Let us note that (for fixed x0 and x1) the upper and lower limits, t0 and t1. . . are not fixed
numbers, but depend on the choice of control u.t / which transfers the phase point from x0 to x1
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zero or the control lie on the admissible control region boundary, unless the time
for execution of the task is fixed [16]. Shifting the Hamiltonian by a constant
leaves the evolution equations unchanged, but can significantly influence the optimal
trajectories via the initial conditions; hence careful selection of the constant term in
a non-constant cost function is crucial in the analysis of optimal control problems. In
[9] we considered cost functions combining a purely state-dependent term modeling
a do-or-die, ‘whatever it takes’ approach and a control- (and possibly state-)
dependent term equaling zero on the boundary of the admissible control region;
the resulting decreased cost on the interior of the control region resulting from the
control-dependent term can be interpreted as an incentive rewarding sub-maximal
control efforts. We introduced two families of control cost terms. One family was
modeled on a quadratic control cost (see, e.g., [2, 4, 13], and references therein),
shifted so as to equal zero on the boundaries of the admissible regions; the other,
the elliptical moderation incentives, yields optimal controls that can be constructed
using a combination of lifts and projections (see Figure 4 and the remark at the end
of Section 3).

Optimal control on nonlinear manifolds has received significant attention in
recent years, particularly situations in which the controls can be modeled as
elements of a distribution within the tangent bundle of the state manifold, cor-
responding to (partially) controlled velocities. See, e.g. [4, 15, 17, 18], and refer-
ences therein. Pontryagin’s Maximum Principle on manifolds involves Hamiltonian
dynamics with respect to the canonical symplectic structure on the cotangent bundle
T �S of the state space S . We extend the notion of a moderation incentive
to control systems on manifolds and develop general conditions under which
moderation incentives determine a unique optimal control value for each point in
the cotangent bundle of the state space.

One of the advantages of a quadratic ‘kinetic energy’ control cost for systems
with admissible control regions is that the optimal control value is straightforward
to compute—it can be computed directly as a non-parametrized Hamiltonian system
on T �S . However, if the admissible control regions are bounded, a quadratic
cost term can lead to non-differentiable controls. We construct a multi-parameter
family of moderation incentives for affine nonlinear control systems with admissible
control regions determined by quadratic forms, and determine the optimal control
values for the associated cost functions. For all but one value of one of the
parameters, this family yields differentiable optimal controls on the interior of the
admissible control region. The upper limit of one of the parameter ranges determines
generalizations of the shifted quadratic cost, with continuous controls that fail to be
differentiable on the boundary of the admissible control regions. The lower limit,
which is not attained, yields controls equal to those determined by a traditional
logarithmic penalty function.

(these limits are determined by the relations x.t0/ D x0 and x.t1/ D x1).” appears on page 13; the
treatment of fixed time problems is deferred to page 66.
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Using the optimal controls for the incentives described above, we can construct
functions, which we call moderation potentials, on the cotangent bundle of the state
space such that solutions of Pontryagin’s synthesis problem obey the associated
Hamiltonian dynamics. Thus, rather than work with a family of parametrized
Hamiltonians, we can find feedback laws generating trajectories determined by
a traditional canonical Hamiltonian system. The moderation potentials for the
multi-parameter family of moderation incentives constructed here have a relatively
simple form. Some members of the family have particularly simple, geometrically
meaningful, expressions.

We illustrate some of the key features of the moderated control problems
using a simple two-dimensional controlled velocity problem: a vertically launched
projectile is guided towards a fixed target; the speed is bounded by a function r
of the horizontal component of the position. The optimal velocity and launch point
are to be determined. The cost function is a combination of a term depending only
on the horizontal component of the projectile’s position models risk from ground-
based defense of the target and a ‘moderating’ function of the control. We explore
the behavior of the solutions of the synthesis problem as the parameters in the cost
function determining the defense strength and level of moderation are varied.

2 Constants Matter: Moderation Incentives

We first establish notation and context: We assume that the set S of possible states
is a smooth manifold (possibly with boundary), and consider control problems with
state variable z 2 S and control u in the state-dependent admissible control region
Az for z. The set

A WD f.z; u/ W z 2 S and u 2 Azg

of admissible state/control pairs is assumed to be a topological manifold (typically
with boundary). The evolution of the state variable is determined by a controlled
vector field X . Specifically, Pz D X.z; u/ for some continuous map X W A ! TS
satisfying X.z; u/ 2 TzS for all .z; u/ 2 A . (Here TS denotes the tangent
bundle of the state space S , and TzS denotes the fiber of over z in TS . See, e.g.
[1, 4].) The control problem is to find a duration tf and piecewise continuous curve
.z; u/ W Œ0; tf 	 ! A satisfying the boundary conditions z.0/ D z0 and z.tf / D zf ,
with piecewise continuously differentiable state component z. The optimal control
problem with instantaneous cost function C W A ! R is to find all solutions
minimizing the total cost

Z tf

0

C.z.t/; u.t//dt

over the set of all solutions of the control problem. The fixed time problem is defined
analogously, but tf is specified.
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Given a purely state-dependent cost function OC W S ! R, we construct the cost
function C W A ! R by subtracting a control-dependent term QC.z; u/ from the
unmoderated cost OC.z/. Altering the cost by a constant influences the solutions of
the optimization problem via the condition that the Hamiltonian equal zero along
a solution of the synthesis problem if the optimal control lies in the interior of the
admissible control region. To guide the selection of the control-dependent function
QC , we regard that term as an incentive for sub-maximal control investment, rather

than a penalty. This motivates the condition that QC.z; u/ D 0 if u 2 @Az.

Definition 1. Given an admissible space A , QC 2 C 1.A ; Œ0;1// is a moderation
incentive for A if for all z 2 S , u 2 @Az implies QC.z; u/ D 0.

If there are continuous functions q W A ! Œ0; 1	 and ˚ W S � Œ0; 1	 ! R with
˚�1.0/ D S � f1g such that for every z 2 S , @Az D fu 2 Az W q.z; u/ D 1g and
s 7! ˚.z; s/ is a decreasing function, then QC.z; u/ WD ˚.z; q.z; u// is a monotonic
moderation incentive for A and q.

The following example illustrates the influence of shifting the cost function of
an optimal control system for which the final time is not fixed. We consider a two
dimensional system with controlled velocities. Starting from the horizontal axis,
with vertical initial velocity, the goal is to hit a target .xf ; yf /. We assume that the
projectile starts to the right of the target and consider a non-increasing unmoderated
position-dependent cost term OC W Œxf ;1/! R

C depending only on the horizontal
component of the position, modeling risk due to ground-based defense of the target,
combined with a control- (and possibly position-) dependent moderation term.
Given the final height yf , we seek smooth trajectories .x; y/ W Œ0; tf 	 ! R

2

satisfying y.0/ D Px.0/ D 0, x.tf / D xf , and y.tf / D yf . Neither the launch
point .x0; 0/ nor final time tf are given. We have direct control over the velocity,
with the constraint that the speed of the projectile never exceeds one.

We consider a pair of two-parameter families of cost functions, differing only by
a constant. One parameter, c, scales a purely position-dependent term; the second,
�, scales a control-dependent term. One family yields inflexible solutions—the
solution path is entirely determined by the boundary conditions, while the speed
is simply rescaled by the ratio of the two parameters. The other family, in which the
parameter � scales a moderation incentive, has solutions for which the optimal path
and speed both depend nontrivially on the parameters c and �. A generalization
of this problem is analyzed in Section 5. Here we simply summarize some of the
key features of this system—our intent is only to remind the reader that analogous
choices can have a profound influence on the solutions of optimal control systems
if the final time tf is not specified a priori, and hence should be systematically
selected.

The cost functions

Cke.x; y; Px; PyI�/ WD �

2
k. Px; Py/k2 C c

2 x2
and Cmi. � I�/ WD Cke. � I�/C 1 � �

2

(1)
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Fig. 1 Solutions of the vertical take-off targeting problem for sample target positions .xf ; 2/, cost
function Cmi, and defense strengths c. Blue: c D 1

2
, red: c D 3

2
; left: xf D 1, right: xf D 3. Dots

indicate projectile position at times t D j

2
, j 2 N; colored lines indicate the traces of solutions

for � D 1C c

2 x2f
, the minimum value of � determining smooth solutions; solid grey lines indicate

those for � D 2, the maximum value of � yielding an everywhere non-negative cost function. All
solutions for the cost function Cke lie on the grey curves

differ only by a constant, and the solutions for both cost functions trace out segment
of ellipses with principal axes

p
1 � .xf =x0/2 and yf =x0, but there are important

differences in the behavior of the solutions (See Figure 1).
The Hamiltonian associated to Cke in the application of Pontryagin’s Maximum

Principle equals that of a point mass with mass � and potential energy � c
2 x2

; the
constant difference between Cke and Cmi influences the initial position and velocity
through the condition that the Hamiltonian equal zero on an optimal trajectory
unless the control lies on the boundary of the admissible control region.

• An optimal solution for Cke traces an arc of a circle centered at the origin. The
parameters c and � influence the solution only through the rescaling of the speed
by
p
c=�.

• The starting point x0 for an optimal solution for Cmi depends nontrivially on both
c and �; specifically,

x20 D b
2 C

r
	
b
2


2 C a d where a D x2f C y2f ; d D c
2�� ; b D x2f � d:

x0 and tf are increasing functions of�. The cost is non-negative onRC iff� 	 2.
Since smooth solutions satisfying the control constraint 1 � Px2 C Py2 exist only
if 1C c

2 x2f
	 � 	 2, we must have x2f � c

2
. The projectile follows a circular arc

for the maximum moderation value � D 2.
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3 Affine Nonlinear Control Systems and Ellipsoidal
Admissible Control Regions

In [9] we introduced the notion of a moderation incentive for control systems in
which both the state space and control regions were subsets of R

n and R
k , and

focused on the situation n D k. We now extend that strategy to nonlinear manifolds
and introduce a family of moderation incentives for systems in which the admissible
control regions Az are the unit balls with respect to state-dependent norms. The
optimal controls for these incentives are rescalings of the image of the auxiliary
variable (now an element of the cotangent bundle of the state manifold) under a
mapping determined by the norms.

Definition 2. Given a family of positive-definite quadratic forms Qz on R
k such

that z 7! Qz is C 1, we will say that a control problem with admissible region

A WD ˚.z; u/ 2 S �R
k W Qz.u/ 	 1

�

has ellipsoidal control regions.

If there are continuous vector fields f and gj , j D 0; : : : ; k, on S such that

Pz D X.z; u/ D f .z/C˙k
jD1uj gj .z/;

the system is said to be affine nonlinearly controlled, or control-affine; f is the drift
vector field. (See, e.g., [4, 18].)

Given a control-affine system with ellipsoidal control regions, for each z 2 S ,
let Lz and hh ; iiz denote respectively the invertible symmetric linear map and inner
product on R

k satisfying

Qz.u/ D
˝
u; L�1

z u
˛

and hhu; viiz D
˝
u; L�1

z v
˛

for all u 2 R
k . Define the mapsMz W Rk ! TS , � W T �S ! R

k , and ` W T �S !
Œ0;1/ by

Mzu WD ˙k
jD1uj gj .z/; �. z/ WD Lz.M

�
z  z/;

and

`. z/
2 WD Qz.�. z// D  z � .X.z; �. z// � f .z//:

Here T �S denotes the cotangent bundle of S ; see, e.g., [1, 4]. Finally, define the
map
� W `�1.RC/! R

k by

�. z/ WD 1
`. z/

�. z/ 2 @Az:
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Proposition 1. Consider a control-affine system with ellipsoidal control regions.
Let F 2 C 0.S �Œ0; 1	; Œ0;1// be a function satisfying F�1.0/ D S �f0g and such
that x 7! F.z; x/ is increasing and differentiable on .0; 1/, with limx!1

@F
@x
.z; x/ <

1, for every z 2 S . Given p � 1, define x W S �R
C � Œ0; 1	! R by

x.z; `; s/ WD ` s C F .z; 1 � sp/ : (2)

If there is a function � on S � R
C such that for every .z; `/ 2 S � R

C, s 7!
x.z; `; s/ achieves its maximum exactly at �.z; `/, then the moderation incentive

QC.z; u/ WD F
	

z; 1 �Qz.u/
p
2



(3)

has optimal control value

�. z/ WD
�
�. z/ �. z/ if `. z/ ¤ 0
0 if `. z/ D 0 (4)

at  z 2 T �S .

Proof. Fix  z 2 T �S . Define QF z W Az ! R by

QF z.u/ WD  z � .X.z; u/� f .z//C F
	

z; 1 �Qz.u/
p
2



;

and x z W Œ0; 1	! R by x z.s/ WD x.z; `. z/; s/.

If �. z/ D 0, QF z.u/ D F
	

z; 1 �Qz.u/
p
2



, which achieves its maximum at

u D 0.
We now show that if �. z/ ¤ 0, then QF z takes its maximum on the line segment

fs �. z/ W 0 	 s 	 1g;

and hence, since QF z.s �. z// D x z.s/, the maximum of QF z coincides with the
maximum of x z . The restriction of QF z to the interior of A is differentiable, with
gradient

r QF z.u/ D �. z/ � p @F
@x

	
z; 1 �Qz.u/

p
2



Qz.u/

p
2 �1:

Hence if �. z/ ¤ 0, any critical point of QF z in the interior of A has the form
u D s �. z/ for s 2 .0; 1/ satisfying

`. z/

p
D sp�1 @F

@x

	
z; 1 �Qz.s �. z//

p
2



D sp�1 @F

@x
.z; 1 � sp/ : (5)
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Note that if �. z/ ¤ 0, and hence `. z/ ¤ 0, then s satisfies (5) iff s is a critical
point of x z .

Since F.z; 0/ D 0 implies that F
	

z; 1 �Qz.u/
p
2



D 0 for u 2 @Az,

max
u2@Az

QF z.u/ D max
Qz.u/D1

hh�. z/; uiiz :

Hence a standard Lagrange multiplier argument shows that the restriction of QF z to
@Az achieves its maximum, `. z/ D x z.1/, at �. z/.

Finally, QF z.0/ D F.z; 1/ D x z.0/.

Remark 1. If (4) is the optimal control for a moderation incentive of the form (3),
with scaling factor � , and � 2 C 0.S ;RC/, then

QC�.z; u/ WD �.z/ F
	

z; 1 �Qz.u/
p
2




is a moderation incentive with scaling factor obtained by replacing `. z/ with
`�. z/ WD `. z/

�.z/ in (4).

A moderation incentive is required to take the value zero on the boundary of the
admissible control regions, but is not required to have a finite derivative there. If
the derivative of the incentive is unbounded as the control u approaches @Az, the
optimal control lies in the interior of Az.

Lemma 1. If F W S � Œ0; 1	! Œ0;1/ satisfies F�1.0/ D S � f0g, and for every
z 2 S the function x 7! F.z; x/ is C 2 on .0; 1/, with decreasing positive derivative
satisfying

lim
x!0

@F

@x
.z; x/ D1;

then s 7! x.z; `; s/ given by (2) achieves its maximum at a unique point s�.z; `/ 2
.0; 1/ if p > 1, or if p D 1 and Fz is strictly decreasing.

The associated map � W `�1.RC/! .0; 1/ given by �. z/ WD s�.z; `. z// is C 1.

Proof. Setting y D 1 � sp and c D `. z/

p
> 0, (5) takes the form c.1 � y/ 1p�1 D

@F
@x
.z; y/, with unique solution y.c/ 2 .0; 1/. The map s 7! sp�1 @F

@x
.z; 1 � sp/ has

a C 1 strictly positive derivative on .0; 1/. Hence the Implicit Function Theorem
implies that the map � determined by (5) is C 1 on `�1.RC/.

We now define a family of monotonic moderation incentives for control-affine
systems with ellipsoidal control regions. These incentives generalize the moderation
incentives introduced in [9]. The dogleg parameters ˛ 2 .0; 1	 and p � 1 can be
interpreted as tuning the overall shape of the control response curve, while the state-
dependent moderation strength function � 2 C 0.S ;RC/ scales the instantaneous
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control cost. (Use of the term ‘dogleg’ is motivated by the shape of the response
curve for values of ˛ near 1; varying these parameters alters the abruptness of the
dogleg bend. See Figures 2 and 3.)

Theorem 1. Given 0 < ˛ 	 1 	 p, excluding ˛ D 1 D p, and � 2 C 0.S ;RC/,

QC˛;p.z; uI�/ D �.z/
p ˛

	
1 �Qz.u/

p
2


˛
(6)

is a monotonic moderation incentive for A .
If 0 < ˛ < 1, the unique optimal control parameter (4) for QC˛;p has the scaling

�˛;p. zI�/ D ��1
˛;p.`�. z//; (7)

where �˛;p W Œ0; 1	! Œ0;1/ and `� W T �S ! Œ0;1/ are given by

�˛;p.s/ WD sp�1 .1 � sp/˛�1 and `�. z/ WD `. z/

�.z/
:

If ˛ D 1 < p, then

�1;p. zI�/ WD min
n
`�.z/

1
p�1 ; 1

o
(8)

is the optimal scaling.

Proof. For 0 < ˛ 	 1, F˛.x/ WD 1
˛
x˛ is differentiable, with decreasing positive

derivative, on .0; 1	. For 0 < ˛ < 1, limx!0 F
0̨.x/ D 1, so the rescaling of F˛ by

�.z/
p

satisfies the conditions of Lemma 1.

Fig. 2 Plots of ��1
˛;p

�
`�
�

for different values of the dogleg parameters ˛ and p. Purple: ˛ D 99
100

;

blue: ˛ D 3
4
; red: ˛ D 1

2
; orange: ˛ D 1

4
; gray: limiting case ˛ ! 0. Left: p D 2. Right:

p D 1:01; 1:5; 2; 2:5; 5; convexity for small values of s increases with p (the approximate step
function in the right hand graph is associated to ˛ D 99

100
, p D 1:01)
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Fig. 3 Plots of ��1
˛;p

	
`�

˛ p



for different values of the dogleg parameters ˛ and p. Purple: ˛ D

99
100

; blue: ˛ D 3
4
; red: ˛ D 1

2
; orange: ˛ D 1

4
; brown: ˛ D 1

20
. Left: p D 2. Right: p D

1:01; 1:5; 2; 2:5; 5

The case ˛ D 1 < p requires a direct application of Proposition 1, since F 0
1 � 1.

In this case,

x z.s/

�.z/
D `�. z/ s C 1

p
.1 � sp/

is the restriction of a polynomial to Œ0; 1	. If `�. z/ 	 1, the maximum of x z

coincides with that of the polynomial, which occurs at s D `�. z/. If `�. z/ � 1,
the maximum occurs at one of the endpoints; since

x z.0/ D
�.z/

p
< `. z/ D x z.1/;

x z achieves its maximum of `. z/ at 1 in this case.

3.1 Special Cases: ˛ D 1, ˛ ! 0, and 1
˛

D p

For some special values of the parameters ˛ and p, simple closed form expressions
for the optimal scaling �˛;p exist (Figure 3).

The dogleg parameter values ˛ D 1, p D 2 correspond to the quadratic control
cost used in the projectile problem in Sect. 2. Note that when ˛ D 1, the optimal
scaling is not differentiable at @Az.

The limit lim˛!0
QC˛;p is not well-defined, but

�0;p.s/ WD lim
˛!0

�˛;p.s/ D sp�1

1� sp D �
d
ds

ln
	
.1 � sp/ 1p
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is well-defined and invertible on Œ0; 1/. In particular, the optimal scaling associated
to the logarithmic control cost

C.z; u/ D � 1
2

ln.1 �Qz.u//

is ��1
0;2.`�. z//. Thus the controls determined by the family QC˛;2 determine a

homotopy between optimal controls determined by a ‘kinetic energy’ control cost
and a logarithmic control cost. (Logarithmic penalty functions are widely used in
the engineering literature to enforce inequality constraints.)

In the case ˛ D 1
p
< 1, we can explicitly invert � 1

p ;p
:

� 1
p ;p
. zI�/ D

�
1C `�. z/

�q�� 1
p for

1

p
C 1

q
D 1; (9)

and hence the optimal control is

� 1
p ;p
. zI�/ D `. z/

q�2

.�.z/q C `. z/q/
1
p

�. z/

if �. z/ ¤ 0.

Remark 2. When the drift field is trivial, the optimal control for 1
˛
D p D 2 has the

following geometric interpretation:

�1
2
;2
. z/ D �. z/

k.�. z/; �.z//kQz

;

where k.u; t/k2Q D Q.u/C t2 is the norm on R
kC1 induced by a quadratic form Q

on R
k . Thus �1

2
;2
. z/ is the control component of the projection of .�. z/; �.z//

onto the k kQz
unit ball in R

kC1. (See Figure 4.) We will further investigate the
moderated controls for ˛ p D 1, particularly that for p D 2, in future work.

Fig. 4 The optimal control for 1
˛

D p D 2 implemented as lift into control–moderation space,
followed by projection onto the unit sphere, then projection back into control space. Black solid
arrows: �. z/; black dashed: .�. z/; �.z//; red dashed: .�. z/;�.z//k.�. z/;�.z//kQz

; red solid: �. z/k.�. z/;�.z//kQz
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4 Moderation Potentials and the Synthesis Problem

Pontryagin’s Maximum Principle relates optimal control to Hamiltonian dynamics:
if the state space S is an n-dimensional subset of R

n, then a solution .z; u/ W
Œ0; tf 	 ! A � R

n � R
k of the control problem minimizing the total cost has

an associated curve � W Œ0; tf 	 ! R
n such that .z; �/ satisfies Hamilton’s equations

for the time-dependent Hamiltonian

Ht.Qz; �/ WD �TX.Qz; u.t// � C.Qz; u.t//;

and

Ht.z.t/; �.t// D max
u2Az.t/

�
�.t/T X.z.t/; u/� C.z.t/; u/� :

(See [16] for the precise statement and proof of the Maximum Principle.) Pontrya-
gin’s optimality conditions are necessary, but not sufficient. Their appeal lies in
their constructive nature—well-known results and techniques for boundary value
problems and Hamiltonian dynamics can be used to construct the pool of possibly
optimal trajectories. This construction is referred to as the synthesis problem in [16];
we will use that terminology here.

The generalization of Hamilton’s equations to a nonlinear state manifold S
utilizes the canonical symplectic structure on the cotangent bundle T �S of the
state manifold. (See, e.g., [4] for additional background and discussion.) We now
introduce the formulation of the synthesis problem that will be used here. Given
our focus on systems with state-dependent admissible control regions, we impose
the condition that the parametrized Hamiltonians be extensible to neighborhoods
of possibly optimal values, so as to guarantee that the time-dependent Hamiltonian
vector field is defined on a neighborhood of the current state z even when the control
is on the boundary @Az of that state’s admissible control region.

Given that the admissible control regions can vary with the state variable, we
explicitly require that the vector field X and cost term C with fixed control value be
extensible to neighborhoods of the points of interest. Let � W T �S ! S denote
the canonical projection, with ��1.z/ D T �

z S ,

P WD f. z; u/ W .�. z/; u/ 2 A g;

and P1 W A ! S denote projection onto the first factor. Given H 2 C 1.T �S ;R/,
let XH denote the Hamiltonian vector field determined by H and the canonical
symplectic structure on T �S . Define the Hamiltonian H W P ! R and � W
T �S ! R by

H. z; u/ WD  z �X.z; u/� C.z; u/ and �. z/ WD max
u2Az

H. z; u/:

(10)
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Definition 3. If for every . z; u�/ 2 P satisfying H. z; u�/ D �. z/ there is a
neighborhoodV of z such that the restrictions of X. � ; u�/ and C. � ; u�/ to V are
restrictions to V \ P1.A / of C 1 maps on V , then X and C are synthesizable.

A curve .�; �/ W Œ0; tf 	!P satisfying

P�.t/ D XHt .�.t// and Ht.�.t// D �.�.t//

for the local time-dependent Hamiltonians Ht. z/ WD H. z; �.t// determined by
synthesizable X and C is a solution of the synthesis problem determined by X , C
and the boundary data z0 D �.�.0// and zf D �.�.tf // if H0.�.0// D 0.

If .�; �/ satisfies the all of the above conditions except the condition that
H0.�.0// D 0, then .�; �/ is a solution of the fixed time synthesis problem of
duration tf .

We will focus on finding solutions of the synthesis problem, and will not formu-
late general conditions under which such solutions are in fact global optimizers.

One of the advantages of the quadratic ‘kinetic energy’ control cost terms
frequently used in geometric optimal control for systems with controlled velocities
and unbounded admissible control regions is that the optimal control value is
straightforward to compute—it is simply the inverse Legendre transform of  z—
and hence the synthesis problem can be approached directly as a non-parametrized
Hamiltonian system on T �S . However, if the admissible control regions are
bounded, a ‘kinetic energy’ cost term can lead to non-differentiable controls. (See,
e.g. [9].) We now identify conditions under which a control-dependent cost function
determines solutions of the synthesis problem corresponding to solutions of a
traditional Hamiltonian system on T �S .

Nondegeneracy of the symplectic structure guarantees that two Hamiltonian
vector fields agree at  z iff  z is a critical point of the difference of the corre-
sponding Hamiltonians. For fixed  z 2 T �S , we can define h z 2 C 1.Az;R/ by
h z.u/ WD H. z; u/. If H is C 1 and h z achieves its maximum at a point u� in the
interior A o

z of the admissible control region Az at z, then u� is a critical point of
h z . It follows that ifH is C 1 and there is a C 1 map � such thatH. � ; �. � // D �
and �. z/ 2 A o

z for every  z 2 T �S , then

d.� �H. � ; u�//. z/.w z/ D dH. z; u�/.0; d z�.w z// D dh z .u�/.d z�.w z// D 0

for u� D �. z/ and all w z 2 T zT
�S .

If there is a C 0 map � such that H. � ; �. � // D �, but � is not everywhere
differentiable, or can take values on the boundaries of the admissible control region,
then the above argument is not applicable, but we may still be able to replace the
parametrized HamiltoniansH. � ; u�/ with the function �.

The solution of the synthesis problem can be simplified given a feedback law that
allows replacement of the control-parametrized Hamiltonian with a conventional
autonomous Hamiltonian on the cotangent bundle T �S . We now show that
the moderation incentives QC˛;p have such control laws. The key concerns are



A Soothing Invisible Hand: Moderation Potentials in Optimal Control 271

formulation of relatively simple expressions for the Hamiltonians and verification of
the differentiability of the Hamiltonian on the boundaries of the admissible control
regions.

Proposition 2. If

1. X and C are synthesizable,
2. � given by (10) is C 1,
3. � W Œ0; tf 	 ! T �S is a solution of the canonical Hamiltonian system with

Hamiltonian �, and
4. there is a curve u W Œ0; tf 	!P such that .�.t/; u.t// 2P and

H.�.t/; u.t// D �.�.t// and d.H. � ; u.t// � �/.�.t// D 0

for 0 	 t 	 tf ,

then .�; u/ is a solution of the fixed time synthesis problem of duration tf determined
by X , C , and the boundary data z0 D �.�.0// and zf D �.�.tf //.

If, in addition, H.�.0// D 0, then � determines a solution of the synthesis
problem.

Proof. For each t 2 Œ0; tf 	, synthesizability of X and C implies that there is a
neighborhood Vt of �.�.t// such that Ht WD H. � ; �.t// 2 C 1.��1.Vt //. 0 D
d.��Ht/.�.t// implies

P�.t/ D X�.�.t// D XHt .�.t//

and

Ht.�.t// D H.�.t/; �.t// D �.�.t//

for 0 	 t 	 tf . Hence .�; �/ is a solution of the fixed time synthesis problem. If the
Hamiltonian is identically zero along the trajectory, then .�; �/ is a solution of the
synthesis problem.

Definition 4. If

1. QC is a moderation incentive,
2. the pair X and � QC is synthesizable,
3. � given by (10) for C D � QC is C 1

4. there is a unique map � 2 C 0.T �S / such that

a. graph.�/ �P ,
b. H. � ; �. � // D �, and
c. for every  z 2 T �S ,  z is a critical point of � �H. � ; �. z//,

then we will say that � is a moderation potential for QC and X .
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It follows immediately from Proposition 2 and Definition 4 that if � is a
moderation potential for synthesizable X and QC , OC 2 C 1.S /, and � W Œ0; tf 	 !
T �S is a solution of Hamilton’s equations for the Hamiltonian � � OC ı � , then
.�; � ı�/ is a solution of the synthesis problem determined byX , C D OC ıP1� QC ,
and the boundary data z0 D �.�.0// and zf D �.�.tf //. If, in addition,
H.�.0// D OC.�.�.0///, then � determines a solution of the synthesis problem.

We now show that moderation potentials exist for the family of moderation incen-
tives constructed in Theorem 1. For some subfamilies, the moderation potentials
have particularly simple expressions.

Theorem 2. The moderation incentives (6) have moderation potentials

�˛;p. zI�/ WD a0. z/C �.z/ O�˛;p.`�. z//; (11)

where a0. z/ WD  z � f .z/ is the contribution of the drift field,

O�˛;p.r/ WD r s

�

1C 1
˛ p

�
r s1�˛ p

� 1
˛�1

�ˇ
ˇ
ˇ
ˇ
sD��1

˛;p.r/

(12)

if 0 < ˛ < 1, and

O�1;p.r/ WD
(

1
p
C 1

q
rq r < 1

r r � 1 ; where 1
p
C 1

q
D 1: (13)

Proof. Setting r D `�. z/ for notational simplicity, Theorem 1 implies that

�˛;p. z/� a0. z/

�.z/
D s r C 1

˛ p
.1 � sp/˛

ˇ
ˇ
ˇ
ˇ
sD��1

˛;p.r/

: (14)

For 0 < ˛ < 1, we can simplify this expression as follows:

r D �˛;p.s/ D sp�1 .1� sp/˛�1

implies that

.1 � sp/˛ D �r sp�1� ˛
˛�1 :

Substituting this into (14) and regrouping terms yields (12).
In the case ˛ D 1,

s 7! r s C 1
p
.1 � sp/ (15)
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is the restriction of a polynomial to Œ0; 1	. The maximum of the polynomial (15)

occurs at r
1

p�1 ; hence if r < 1, the maximum is

r
1C 1

p�1 C 1
p

	
1 � r p

p�1



D 1

p
C
	
1 � 1

p



r

p
p�1 :

If 1 	 r , the maximum occurs at one of the endpoints; since 1
p
< 1, in this case (15)

achieves its maximum of r at 1.

Direct utilization of conservation of the Hamiltonian H can simplify the
analysis of the synthesis problem in many situations. However, when numerically
approximating solutions of Hamiltonian systems, discretion must be used when
combining conservation laws with discretization to avoid artificial accelerations and
related errors. We now focus on explicit use of the conservation law, not to endorse
it as a general purpose strategy, but to emphasize the role of the specific value of
the Hamiltonian in determining solutions satisfying given boundary conditions. The
following results play a pivotal role in our analysis of the projectile problem in
Section 5.

We can express the optimal scalings for the moderation incentives QC˛;p as
functions O�˛;p of

�.zIh/ WD
OC.z/C h
�.z/

; (16)

where h denotes the difference of the Hamiltonian and the drift potential a0 at  z.

Proposition 3. The optimal scaling for the moderation incentive QC˛;p and associ-
ated Hamiltonian (21) satisfies

�˛;p. zI�/ D O�˛;p.�.zIH. z/ � a0. z///;

where O�˛;p W R! .0; 1/ and �˛;p W .0; 1/! R are given by

O�˛;p.�/ D
	
1 � ��1

˛;p.�//

 1
p

and �˛;p.w/ WD w˛�1
	
1C

	
1
˛ p
� 1



w



(17)

if 0 < ˛ < 1 	 p, and

O�1;p.�/ D

8
<̂

:̂

�
p � � 1
p � 1

� 1
p

1
p
	 � < 1

1 � � 1
(18)

if p > 1.
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Proof. If 0 < ˛ < 1 and �. z/ ¤ 0, (7) and (16) imply that

O�˛;p.�˛;p.�˛;p. zI�/// D �.z; h/: (19)

The composition O�˛;p ı �˛;p can be simplified as follows. Substituting

�˛;p.s/s
1�˛ p D s.1�˛/p .1 � sp/˛�1 D .s�p � 1/˛�1

into (12) and regrouping terms yields

O�˛;p.�˛;p.s// D �˛;p.s/ s
	
1C 1

˛ p
.s�p � 1/




D .1 � sp/˛�1 sp
	
1C 1

˛ p
.s�p � 1/




D .1 � sp/˛�1 	 1
˛ p
C
	
1 � 1

˛ p



sp



D �˛;p .1� sp/ :

�˛;p is strictly decreasing for 0 < ˛ 	 1, and hence is invertible. Solving (19) for
�˛;p. zI�/ yields (17).

If ˛ D 1 < p, then (13) implies

O��1
1;p.�/ D

8
<

:

	
q
	
� � 1

p



 1
q

if � < 1

� if � � 1
; where 1

p
C 1

q
D 1:

Substituting `�. z/ D O��1
1;p.�/ in (8) and simplifying yields (18).

In the case ˛ D 1
p

, the moderation potential and optimal scaling are particularly
simple. We will make use of the following expressions in Section 5 when analyzing
generalizations of the projectile example from Section 1.

Corollary 1. If ˛ D 1
p
< 1, then

� 1
p ;p
. zI�/ � a0. z/ D k.`. z/; �.z//kq D .`. z/

q C �.z/q/ 1q ;

where 1
p
C 1

q
D 1, and

O� 1
p ;p
.�/ D .1 � ��q/

1
p : (20)
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Proof. Setting q D p

p�1 and substituting ˛ D 1
p

and (9) into (12) yields

O� 1
p ;p
.r/ D r s .1C r�q/j

sD.1Cr�q /
�
1
p
D r .1C r�q/

1
q D .rq C 1/ 1q :

Hence

� 1
p ;p
. z/� a0. z/ D �.z/ O� 1

p ;p
.`�. z// D �.z/

�
`�. z/

q C 1� 1q D .`. z/
q C �.z/q/ 1q :

(20) follows immediately from (17).

5 Vertical Take-Off Projectile with Controlled Velocity

To illustrate some features of moderation potentials, we return to the two dimen-
sional projectile system with controlled velocities briefly considered in Section 2,
generalizing the cost functions and admissible control regions. This system’s
features were chosen so that application of Pontryagin’s Maximum Principle yields
an integrable Hamiltonian system—we can express the height of the projectile
and the elapsed time as definite integrals of functions of the horizontal position.
Further specialization yields situations in which these definite integrals have closed
form expressions in terms of elliptic integrals or logarithms, facilitating comparison
of solutions with different moderation incentives, admissible control regions, and
targets. In particular, we shall see that the solutions change in a highly nontrivial way
as the level set of the Hamiltonian containing the solution changes; this illustrates
the essential difference between the synthesis problem, for which solutions must lie
in the zero level set, from the fixed time synthesis problem, for which the appropriate
level set is determined in part by the time constraint.

We first briefly review the projectile problem from Section 2 and describe the
generalizations considered here. The task is to hit a target .xf ; yf /, starting from
an unspecified position .x0; 0/ on the horizontal axis to the right of the target, with
vertical initial velocity; the state space is S D I � R for a closed interval I � R

C
of the form Œxf ;1/ or Œxf ; xmax	. The velocity is the control, i.e. . Px; Py/ D u.

The admissible control region A.x;y/ associated to .x; y/ 2 S is the closed
ball of radius r.x/ centered at the origin for a given function r 2 C 0.I;RC/.
The unmoderated position-dependent cost term OC 2 C 1.I;RC/ is a function of
the horizontal component of the position. The moderation incentives have the form
�.x/ QC˛;p for � 2 C 0.I;RC/ satisfying �.x/ < p ˛ OC.x/ for all x 2 I , ˛ and p as
in Section 4.

We identify T �S with S �R
2, and write  z D ..x; y/;  /. We abuse notation,

in the interest of reminding the reader of the invariance of key constructs, denoting
quantities depending on the state variables as depending on x, rather than the pair
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.x; y/, and dropping the base point from  z. The quadratic form determining the
admissible control regions takes the form

Qx.u/ D r.x/�2 kuk2 I

hence Lx D r.x/ , and �. / D r.x/ is simply a rescaling of  . In particular,
the vertical take-off condition is equivalent to the requirement that  z.0/ be vertical.

Our hypotheses were chosen so as to yield an integrable system: a pair of scalar
conservation laws allow us to express  as a function of x and thus reduce the
synthesis problem to a first order ODE solvable by quadrature. In Proposition 3 we
showed how conservation of the Hamiltonian can be used to express the optimal
scaling as a function of the state variables and the value of the Hamiltonian. The
Hamiltonian

H.x; / D �˛;p..x;  /I�/ � OC.x/; (21)

for the projectile system is independent of y (the moderation potential �˛;p is given
by (11)); hence it follows from Noether’s Theorem that the second component of
 is a constant of the motion for the canonical Hamiltonian system determined by
H . (See, e.g. [1, 4].) We now show that the additional conserved quantity of this
system can be used to determine the optimal control in terms of x and the value h
of the Hamiltonian. The resulting evolution equation can be solved explicitly only
in special situations, but implicit solutions expressing y and t as definite integrals
depending on x can be formulated as follows.

Proposition 4. Let x0 2 I and h 2 R satisfy �.x0Ih/ 2 O�˛;p.RC/ for 0 < ˛ <

1 	 p or ˛ D 1 < p. Define n˛;p. � Ih/ W Œxf ; x0	 ! R
C and w˛;p. � Ih/ W

Œxf ; x0	
2 ! R

C by

n˛;p.xIh/ WD
�.x/ O��1

˛;p.�.xIh//
r.x/

and w˛;p.x; x0Ih/ WD
�
n˛;p.x0Ih/
n˛;p.x; h/

�2
:

If n˛;p. � Ih/ has a strict minimum at x0, then

y˛;p.xI x0; h/ WD
Z x0

x

d�
p

w˛;p.x0; �Ih/ � 1
(22)

and

t˛;p.xI x0; h/ WD
Z x0

x

d�

r.�/ O�˛;p.�Ih/
p
1 � w˛;p.�; x0Ih/

(23)

for xf 	 x < x0 implicitly determine the state variables of a solution in the level
set H�1.h/ of the Hamiltonian system determined by (21).
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Proof. Invertibility of O�˛;p follows from the identity

O�˛;p.�˛;p.s// D �˛;p .1 � sp/

and the invertibility of �˛;p and �˛;p . Thus `�. z/ D O��1
˛;p.�.zIh// and hence

k k D `. /

r.x/
D �.x/`�. /

r.x/
D n˛;p.xIh/

along a solution ..x; y/;  / lying in H�1.h/ of the canonical Hamiltonian system
determined by H .

The initial condition Px.0/ D 0 implies that  .0/ D .0;  2/; since  2 ¤ 0

is constant and n˛;p.xIh/ has a strict minimum at x0, it follows that  is always
nonzero and that  1 equals zero only when t D 0. Hence

 

k k D
1

k k
�

�
q

k k2 �  22 ;  2
�

D
0

@�
s

1 � k .0/k
2

k k2 ;
k .0/k
k k

1

A : (24)

(The signs are determined by the conditions xf < x0 and yf > 0, which imply that
Px is negative and Py is positive.)

It follows that there are functions y˛;p.xI x0; h/ and t˛;p.xI x0; h/ such that if
X˛;p.xI x0; h/ denotes the value of the Hamiltonian vector field determined by (21)
at the point .x; y˛;p.xI x0; h/, then

y 0̨
;p.xIx0; h/ D

X˛;p.xIx0; h/2
X˛;p.xIx0; h/1 D �

s
w˛;p.x; x0I h/

1 � w˛;p.x; x0Ih/ D �
1

p
w˛;p.x0; xIh/ � 1

;

and hence (22) holds. Analogously,

t 0̨ ;p.xI x0; h/ D
1

X˛;p.xI x0; h/1
implies (23).

Remark 3. If we introduce the angle �˛;p.xI x0; h/ WD sin�1pw˛;p.xI x0; h/, with
�˛;p.xI x0; h/ 2

�
�
2
; �
�
, then (24) implies that  has polar coordinates

.n˛;p.xI x0; h/; �˛;p.xI x0; h//

at .x; y/ and

y 0̨
;p.xI x0; h/ D tan �˛;p.xI x0; h/:
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However, we have found it more convenient in specific calculations to work
with w˛;p .

Proposition 4 provides implicit equations for solutions of the Hamiltonian system
with Hamiltonian (21). Such trajectories qualify as solutions of the synthesis
problem only if additional conditions on the parameters x0 and h are satisfied.

Synthesis problem. The projectile must strike the target and the solution curve
must lie in the zero level set of the Hamiltonian. Hence the initial position x0
determines a solution of the synthesis problem ” y˛;p.xf I x0; 0/ D yf .

Fixed time synthesis problem. The projectile must strike the target at the specified
time tf . Hence the initial position x0 and Hamiltonian value h determine a
solution of the time tf synthesis problem ” y˛;p.xf I x0; h/ D yf and
t˛;p.xf I x0; h/ D tf .

Remark 4. Given x0 and h such that y˛;p. � I x0; h/ and t˛;p. � I x0; h/ are well-
defined on Œxf ; x0	 and y˛;p.xf I x0; h/ D yf , one can, of course, a posteriori specify
t˛;p.xf I x0; h/ as the desired duration, thereby obtaining a solution of the corre-
sponding fixed time optimal control problem. However, if there is a family of pairs
.x0; h/ determining solutions of different durations that all strike the target and only
one of these solutions will be implemented, some criterion for selecting that solution
must be established.

5.1 ˛ D 1
2
, p D 2, and Constant �

r

The expressions for y˛;p and t˛;p as functions of x take a particularly simple form
if ˛ D 1

2
, p D 2, and � is proportional to the function r specifying the radii of the

admissible control regions.

Corollary 2. If �
r

is constant on I and �.xIh/ < 1 for xf 	 x < x0, define

v.x0; h/ WD
p
1 � �.x0Ih/�2

and

Qy.xI x0; h/ WD
Z x0

x

d�
r	

�.�Ih/
�.x0Ih/


2 � 1
(25)

for xf 	 x < x0. Then

y1
2 ;2
.xI x0; h/ D v.x0; h/ Qy.xI x0; h/ (26)
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and

t 1
2 ;2
.xI x0; h/ D

Z x0

x

d�

r.u/

r

1 �
	
�.x0Ih/
�.�Ih/


2
:

Proof. O��1
1
2
;2
.�/ D

p
1 � �2 and �

r
D constant imply that

w 1
2 ;2
.x0; xIh/ D

0

B
@

O��1
1
2
;2
.�.xIh//

O��1
1
2
;2
.�.x0Ih//

1

C
A

2

D 1 � �.xIh/2
1 � �.x0Ih/2 D

�
�.xIh/
�.x0Ih/

�2
� 1

1 � �.x0Ih/�2 C 1:

Analogously,

1 � w 1
2 ;2
.x; x0Ih/ D

1 �
�
�.x0Ih/
�.xIh/

�2

1 � �.xIh/�2 D
1 �

�
�.x0Ih/
�.xIh/

�2

O�1
2 ;2
.xIh/2 :

Substituting these expressions and p D q D 2 into (22) and (23) yields (26).
The vertical component of the velocity at position .x; y.x// is given by

y0
1
2 ;2
.x/

t 01
2 ;2
.x/
D v.x0; h/r.x/

v
u
u
u
u
t

1 �
	
�.x0Ih/
�.xIh/


2

	
�.xIh/
�.x0Ih/


2 � 1
D v.x0; h/r.x/�.x0Ih/

�.xIh/ :

Corollary 2 reveals several distinctive features of this special situation.

• The relationship between t and x does not depend on the value of the constant
ratio �

r
.

• The function Qy determines the optimal solution of the unmoderated problem,
corresponding to � � 0, with initial velocity on the boundary of the admissible
control region.

• The relationship between y and x depends on the ratio �

r
only via the scaling

factor v.x0; h/.
• x0 determines a trajectory with energy h passing through the point .xf ; yf / iff
.1; yf / lies on the positive quadrant of the ellipsoid with principal axes �.x0Ih/
and Qy.xf I x0; h/.
If �.x0I 0/ and Qy.xf I x0; 0/ determine a family of non-intersecting ellipsoids

parametrized by x0, then the synthesis problem with target .xf ; yf / has a unique
solution for each admissible value of the ratio �

r
, with initial position .x0; 0/ and
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initial velocity .0; v.x0; 0/�.x0//, for the unique value of x0 such that the ellipse
with principal axes �.x0I 0/ and Qy.xf I x0; 0/ passes through .1; yf /.

We now further specialize, considering the position-dependent cost term OC.x/ D
c
2 x2
C 1 and admissible control region radius functions r.x/ D 1

x
or r.x/ D 1. In

these cases we can explicitly express Qy and t as functions of x in terms of logarithms
(for �.x/ D 1

x
) or elliptic integrals (for �.x/ � 1). We present the solutions only

for h D 0, corresponding to solutions of the synthesis problem; the expressions for
nonzero h are similar, but involve somewhat messier coefficients.

If we set �.x; x0/ WD
r	

c
2 x0


2 � x2, then

Qy.xI x0; 0/ D
�
c

2 x0
C x0

��

ln

�

�.x; x0/C
q
x20 � x2

�

� ln �.x0; x0/

�

and

2 t 1
2 ;2
.xI x0; 0/ D

�
c

2 x0
C x0

�

Qy.xI x0; 0/� �.x; x0/
q
x20 � x2

if r.x/ D 1
x

.
Trajectories for some representative values of c, �

r
, xf , and x0, with r.x/ D 1

x

and yf D 1, are shown in Figure 5. Note that the more moderate the strategy,
the further x0 is from the target and the slower the initial ascent. Trajectories with
moderation factor near the maximum allowable value show a slow, nearly vertical
early phase, executed in relatively ‘safe’ territory (i.e. a subinterval of I on which
OC takes relatively small values) followed by a rapid, nearly horizontal late phase;

those with low moderation factor launch closer to the target and rapidly pursue a
more rounded path. Note that for this system, changes in the moderation factor �

r

result in relatively small changes in the optimal trajectory until �

r
is close to the

maximum value.
The moderation factor does not correspond simply to increased or reduced

sensitivity to risk, but influences the approach to reducing risk—a more moderate
solution takes more time and travels a longer path overall, but in doing so, is able
to devote most of its (constrained) speed to nearly horizontal motion when moving
through the high-risk zone near the target. The differences as the moderation factor
is changed are smaller if the risk is lower, either due to a smaller value of the risk
factor c or to relatively large xf , resulting in relatively small variation in risk from
x0 to xf .

If we let EE and EF denote the incomplete elliptic integrals of the first and second
kind, and define

Q
˙.uI k/ WD EF .sin�1 uI k/˙ EE.sin�1 uI k/; k.x0/ WD �
�

1C 4x20
c

�

;
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OC.xf /

and


˙.xI x0/ WD x0
	
Q
˙
	
x
x0
I k.x0/



� Q
˙.1I k.x0//



;

then

Qy.xI x0; 0/ D 
�.xI x0/
1C 1

OC.x0/
and 2 t 1

2 ;2
.xI x0; 0/ D 
C.xI x0/C 1

k.x0/

�.xI x0/

if r � 1.
Trajectories for some representative values of c, �

r
, xf , and x0, with r.x/ � 1 and

yf D 1, are shown in Figure 6. As before, the more moderate the strategy, the further
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x0 is from the target and the slower the ascent. However, since the admissible control
region is the unit ball for all values of x, there is less variation in the speed along
any given solution and in the paths of the different solutions. All of the trajectories
trace follow paths that are nearly, but not exactly, elliptical.

5.2 ˛ D 1, p D 2, and Constant �

r

We now consider the parameters values and cost functions (1) used in Section 2:
Cmi D QC1;2. � ; �/ � OC for OC as above and constant �, and Cke D Cmi � 1 C
�

2
. Thus solutions of the synthesis problem for Cke correspond to solutions of an

appropriate fixed time synthesis problem for Cmi. We derive the solutions of the
synthesis problem for a general OC (depending only on x) and Hamiltonian value h,
before specializing to Cmi.

When ˛ D 1 and p D 2, the condition that the instantaneous cost be positive
everywhere imposes the inequality �.xI 0/ > 1

2
, and (18) takes the form

O��1
1;2.�/ D

�p
2 � � 1 if 1

2
	 � < 1

� if � � 1 (27)

and

O�1;2.xIh/ D min
np

2 �.xIh/� 1; 1
o
:

For simplicity, we consider only trajectories such that either 1
2
	 �.xIh/ 	 1 for

xf 	 x 	 x0 or 1 	 �.xIh/ for xf 	 x 	 x0; determining more general solutions
involves patching together solutions of these kinds. Equation (27) implies that

w1;2.xI x0; h/ D

8
ˆ̂
<

ˆ̂
:

2 �.x0Ih/ � 1
2 �.xIh/� 1 if 1

2
	 �.x0Ih/ < �.xIh/ 	 1

�
�.x0Ih/
�.xIh/

�2
if 1 	 �.x0Ih/

for constant �
r

.
If 1 	 �.x0Ih/, comparing (22) to (25) and (23) to (26) shows that in this

situation

y1;2.xIx0; h/ D Qy.xIx0; h/ D
y 1
2 ;2
.xIx0; h/
v.x0I h/ and t1;2.xIx0; h/ D t 1

2 ;2
.xIx0; h/:
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If 1
2
	 �.xIh/ 	 1 for xf 	 x 	 x0, then

y1;2.xI x0; h/
O�1;2.x0Ih/ D t1;2.xI x0; h/ D

Z x0

x

d�
p
2.�.�Ih/� �.x0Ih//

:

If we further specialize to the case OC.x/ D 1C c
2 x2

, r � 1, then

t1;2.xI x0; h/ D
s
x20 � x2
�.x0/

and O�1;2.x0Ih/ D �.x0/C 2.1Ch/
�
� 1

for �.x0/ WD c

�x20
;

where � denotes the constant value of the moderation factor. It follows that the
projectile paths are segments of ellipses centered at the origin. We can easily express
z D .x; y/ explicitly as a function of t in this case:

z1;2.t Ih/ D
�q

x20 � �.x0/t2; O�1;2.x0Ih/t
�

:

Setting h D 0 yields the state information of the synthesis problem for Cmi, while
setting h D �

2
� 1 gives the corresponding information for Cke.

Remark 5. The graphs of y1;2. � I x0; h/ are very nearly elliptical if 1 	 �.x0Ih/,
but do not exactly coincide with segments of ellipses.
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Abstract In this paper, we introduce local expressions for discrete Mechanics. To
apply our results simultaneously to several interesting cases, we derive these local
expressions in the framework of Lie groupoids, following the program proposed by
Alan Weinstein (Fields Inst Commun 7:207–231, 1996). To do this, we will need
some results on the geometry of Lie groupoids, as, for instance, the construction
of symmetric neighborhoods or the existence of local bisections. These local
descriptions will be particularly useful for the explicit construction of geometric
integrators for mechanical systems (reduced or not), in particular, discrete Euler-
Lagrange equations, discrete Euler-Poincaré equations, discrete Lagrange-Poincaré
equations: : : These topics are closely related with a part of Marsden’s work. In
addition, the results contained in this paper can be considered as a local version
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1 Introduction

The use of geometrical methods in the study of dynamical systems (discrete or
continuous) starts by searching for geometrical structures invariant with respect
to the given dynamics (see [1]). It turns out the various such structures emerge
naturally for classical mechanical systems, as for instance, symplectic or Poisson
structures, together with various bundle structures. Another geometrical feature that
is common to all such systems is the presence of symmetries either because there is a
redundant or extra information in the description of the system or because the system
possesses an intrinsic invariance. To actually solve them, it is necessary in most
occasions to use numerical methods. Recently, a new breed of ideas in numerical
analysis have come that incorporates the geometry of the systems into the analysis
and that allows accurate and robust algorithms with lower spurious effects than the
traditional ones (see [12] and references therein). Our approach employs the theory
of discrete Mechanics and variational integrators [22, 30] to derive an integrator
for the dynamics preserving some of the geometry of the original system. All this
theory of discrete mechanics and their corresponding integrators have been quickly
developed in the last twenty years mainly by Jerrold Marsden in Caltech, with the
collaboration of students, postdocts and collaborators. Marsden and coworkers not
only have studied from a geometrical perspective these new family of methods, but
they have also explored concrete applications as, for instance, robotic simulation,
spacecraft mission design, computer vision, fluid simulations, animation, between
many others (see [7–11, 15, 16]).

One of the reasons for this formidable range of applications of variational
integrators comes from their easy adaptability to different classes of mechanical sys-
tems: forced or dissipative systems, holonomically constrained systems, explicitly
time-dependent systems, systems with frictional contact, nonholonomic dynamics,
multisymplectic field theories among others (see [13, 14, 17, 18, 22, 23, 27, 28]).

From Jerrold Marsden we have learn to appreciate the importance of symmetry
in the study of dynamical systems and, also of course, in discrete dynamics. In
this sense, with our contribution in honor to J.E. Marsden we will follow his
program, trying to emphasize the role of symmetry in discrete variational integrators
using the unifying point of view given by the Lie groupoid theory. The study
of discrete Mechanics on Lie groupoids was proposed by A. Weinstein in [29].
This setting is general enough to include discrete counterparts of several types
of fundamental equations in Mechanics as for instance, standard Euler-Lagrange
equations for Lagrangians defined on tangent bundles [1], Euler-Poincaré equations
for Lagrangians defined on Lie algebras [24, 25], Lagrange-Poincaré equations for
Lagrangians defined on Atiyah bundles, etc. Such discrete counterpart is obtained
by discretizing the continuous Lagrangian to the corresponding Lie groupoid and
then applying a discrete variational derivation of the discrete equations of motion.
As simple examples, for a given differentiable manifold Q, the discrete version of
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the tangent bundle TQ is the product manifold Q �Q, equipped with the pair Lie
groupoid structure; for a given Lie groupG, the discrete version of its Lie algebra g
is the Lie groupG.

A Lie groupoidG is a natural generalization of the concept of a Lie group, where
now not all elements are composable. The product g1g2 of two elements is only
defined on the set of composable pairs G2 D f.g; h/ 2 G � G jˇ.g/ D ˛.h/g
where ˛ W G �! M and ˇ W G �! M are the source and target maps over a
base manifoldM . Moreover, in a Lie groupoid we have a set of identities playing a
similar role that the identity element in group theory. The infinitesimal counterpart
of the notion of a Lie groupoid is the notion of a Lie algebroid �AG W AG ! M ,
in the same way as the infinitesimal counterpart of the notion of a Lie group is the
notion of a Lie algebra, or in other words, the discrete version of a Lie algebroid is
a Lie groupoid.

In [21] we have elucidated the geometrical framework for discrete Mechanics
on Lie groupoids. In that paper, we found intrinsic expressions for the discrete
Euler-Lagrange equations, and we have introduced the Poincaré-Cartan sections,
the discrete Legendre transformations and the discrete evolution operator in both
the Lagrangian and the Hamiltonian formalism. The notion of regularity has been
completely characterized and we have proven the symplecticity of the discrete
evolution operators. The applicability of these developments has been stated in
several interesting examples, in particular for the case of discrete Lagrange-Poincaré
equations. In fact, the general theory of discrete symmetry reduction directly follows
from our results.

The main objective of this paper is to obtain local expressions for the different
objects appearing in discrete Mechanics on Lie groupoids. For this proposal, it is
necessary to introduce symmetric neighborhoods of a Lie groupoid. A symmetric
neighborhood is an open neighborhood of one point in the manifold of the identities
which is “natural” with respect to the structure maps of the Lie groupoid, in the sense
of Proposition 1. Using the coordinates associated to a symmetric neighborhood we

may write the local expressions of left and right invariant vector fields,
 �
X and

�!
X

associated to a section X 2 � .�AG/ of the associated Lie algebroid. Now, as we
have deduced in [6], the discrete Euler-Lagrange equations for a discrete Lagrangian
Ld W G ! R are

 �
X.gk/.Ld / ��!X.gkC1/.Ld / D 0 ; .gk; gkC1/ 2 G2 :

Therefore, from this expression, we easily obtain the local expression of the discrete
Euler-Lagrange equations associated to a discrete Lagrangian Ld W G ! R, the
discrete Legendre transformations and we locally characterize the regularity of the
discrete problem.

An interesting point is that when using symmetric neighborhoods we are
implicitly assuming that the discrete flow is well defined on this neighborhood.
However, this is not the more general situation since, in principle, the point gk and
its image gkC1 under the discrete flow may be far enough in such a way both are not
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included in the same symmetric neighborhood. In order to tackle this problem we
will use bisections of the Lie groupoid which permits to translate neighborhoods of
two composable elements gk and gkC1 to a symmetric neighborhood at the identity
point ˇ.gk/ D ˛.gkC1/.

The organization of the paper is as follows. In Section 2 we recall some
constructions and results on discrete Mechanics on Lie groupoids which will be
used in the next sections. In Section 3, we will obtain a local expression of the
discrete Euler-Lagrange equation for a discrete Lagrangian function on a symmetric
neighborhood in the Lie groupoid where it is defined. In addition we will discuss the
existence of local discrete Euler-Lagrange evolution operators in such a symmetric
neighborhood. Moreover, several interesting examples are considered. The existence
of general local discrete Euler-Lagrange evolution operators is studied in Section 4.
For this purpose, we will use bisections on the Lie groupoid. The paper ends with
our conclusions and a description of future research directions.

2 Groupoids and Discrete Mechanics

2.1 Lie Groupoids

In this Section, we will recall the definition of a Lie groupoid and some generalities
about them are explained (for more details, see [4, 20]).

A groupoid over a setM is a setG together with the following structural maps:

• A pair of maps ˛ W G ! M , the source, and ˇ W G ! M , the target. Thus, an
element g 2 G is thought as an arrow from x D ˛.g/ to y D ˇ.g/ in M

The maps ˛ and ˇ define the set of composable pairs

G2 D f.g; h/ 2 G �G=ˇ.g/ D ˛.h/g:

• A multiplication m W G2 ! G, to be denoted simply by m.g; h/ D gh, such
that

– ˛.gh/ D ˛.g/ and ˇ.gh/ D ˇ.h/.
– g.hk/ D .gh/k.
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If g is an arrow from x D ˛.g/ to y D ˇ.g/ D ˛.h/ and h is an arrow from y

to z D ˇ.h/ then gh is the composite arrow from x to z

• An identity map " WM ! G, a section of ˛ and ˇ, such that

– ".˛.g//g D g and g".ˇ.g// D g.

• An inversion map i W G ! G, to be denoted simply by i.g/ D g�1, such that

– g�1g D ".ˇ.g// and gg�1 D ".˛.g//.

A groupoidG over a set M will be denoted simply by the symbol G � M .
The groupoidG � M is said to be a Lie groupoid ifG andM are manifolds and

all the structural maps are differentiable with ˛ and ˇ differentiable submersions.
If G � M is a Lie groupoid then m is a submersion, " is an immersion and i is
a diffeomorphism. Moreover, if x 2 M , ˛�1.x/ (resp., ˇ�1.x/) will be said the
˛-fiber (resp., the ˇ-fiber) of x.

On the other hand, if g 2 G then the left-translation by g 2 G and the right-
translation by g are the diffeomorphisms

lg W ˛�1.ˇ.g// �! ˛�1.˛.g// I h �! lg.h/ D gh;
rg W ˇ�1.˛.g// �! ˇ�1.ˇ.g// I h �! rg.h/ D hg:

Note that l�1g D lg�1 and r�1
g D rg�1 .

A vector field QX on G is said to be left-invariant (resp., right-invariant) if it
is tangent to the fibers of ˛ (resp., ˇ) and QX.gh/ D .Thlg/. QXh/ (resp., QX.gh/ D
.Tgrh/. QX.g///, for .g; h/ 2 G2.

Now, we will recall the definition of the Lie algebroid associated with G.
We consider the vector bundle � W AG ! M , whose fiber at a point x 2 M

is AxG D V".x/˛ D Ker.T".x/˛/. It is easy to prove that there exists a bijection
between the space � .�/ and the set of left-invariant (resp., right-invariant) vector
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fields on G. If X is a section of � W AG ! M , the corresponding left-invariant

(resp., right-invariant) vector field on G will be denoted
 �
X (resp.,

�!
X ), where

 �
X.g/ D .T".ˇ.g//lg/.X.ˇ.g///; (1)

�!
X .g/ D �.T".˛.g//rg/..T".˛.g//i /.X.˛.g////; (2)

for g 2 G. Using the above facts, we may introduce a Lie algebroid structure
.ŒŒ � ; � 		; �/ on AG, which is defined by

 ����
ŒŒX; Y 		 D Œ �X ; �Y 	; �.X/.x/ D .T".x/ˇ/.X.x//; (3)

for X; Y 2 � .�/ and x 2 M . Note that

����!
ŒŒX; Y 		 D �Œ�!X ;�!Y 	; Œ

�!
X ;
 �
Y 	 D 0; (4)

T i ı �!X D � �X ı i; T i ı �X D ��!X ı i; (5)

(for more details, see [5, 20]).

2.2 Discrete Euler-Lagrange Equations

Let G be a Lie groupoid with structural maps

˛; ˇ W G !M; " WM ! G; i W G ! G; m W G2 ! G:

Denote by � W AG !M the Lie algebroid of G.
A discrete Lagrangian is a functionLd WG ! R. Fixed g 2 G, we define the set

of admissible sequences with values in G:

C N
g D f.g1; : : : ; gN / 2 GN = .gk; gkC1/ 2 G2 for k D 1; : : : ; N � 1

and g1 : : : gN D gg:

An admissible sequence .g1; : : : ; gN / 2 C N
g is a solution of the discrete Euler-

Lagrange equations if

0 D
N�1X

kD1

h �
X k

�
gk/.Ld / ��!Xk

�
gkC1/.Ld /

i
; for X1; : : : ; XN�1 2 � .�/:
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For N D 2 we obtain that .g; h/ 2 G2 is a solution if

 �
X .g/.Ld / ��!X.h/.Ld / D 0

for every section X of AG.

2.3 Discrete Poincaré-Cartan Sections

Given a Lagrangian function Ld WG ! R, we will study the geometrical properties
of the discrete Euler-Lagrange equations.

Consider the vector bundle

�� W P �G D Vˇ ˚ V˛ ! G

where V˛ (respectively, Vˇ) is the vertical bundle of the source map ˛ W G ! M

(respectively, the target map ˇ W G !M ). Then, one may introduce a Lie algebroid
structure on �� W P �G D Vˇ ˚ V˛ ! G. The anchor map �P

�G W P �G D
Vˇ ˚ V˛ ! TG is given by

�P
�G.Xg; Yg/ D Xg C Yg; for .Xg; Yg/ 2 Vgˇ ˚ Vg˛

and the Lie bracket ŒŒ � ; � 		P �G on the space � .�� / is characterized by the following
relation

ŒŒ.
�!
X ;
 �
Y /; .
�!
X 0;
 �
Y 0/		P � G D .������!ŒŒX;X 0		;

 ����
ŒŒY; Y 0		/; (6)

for X; Y;X 0; Y 0 2 � .�/ (see [21]).
Now, define the Poincaré-Cartan 1-sections �

Ld
;C

Ld
2 � ..�� /�/ as follows

�
Ld
.g/.Xg; Yg/ D �Xg.Ld /; C

Ld
.g/.Xg; Yg/ D Yg.Ld /; (7)

for each g 2 G and .Xg; Yg/ 2 Vgˇ ˚ Vg˛.
If d is the differential of the Lie algebroid �� W P �G D Vˇ˚V˛! G we have

that dLd D C
Ld
��

Ld
and so, using d2 D 0; it follows that dC

Ld
D d�

Ld
. This

means that there exists a unique 2-section ˝Ld D �dC
Ld
D �d�

Ld
, that will be

called the Poincaré-Cartan 2-section. This 2-section will be important for studying
symplecticity of the discrete Euler-Lagrange equations.

Let X be a section of the Lie algebroid � W AG ! M . Then, one may consider
the sections X.1;0/ and X.0;1/ of the vector bundle �� W P �G D Vˇ ˚ V˛ ! G

given by

X.1;0/.g/ D .�!X.g/; 0g/; X.0;1/.g/ D .0g; �X.g//; for g 2 G:
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Moreover, if g 2 G, fX
g (respectively, fY�g) is a local basis of � .�/ in an open
subset U (respectively, V ) of M such that ˛.g/ 2 U (respectively, ˇ.g/ 2 V ) then
fX.1;0/


 ; Y
.0;1/
� g is a local basis of � .�� / in ˛�1.U /\ ˇ�1.V / and

˝Ld .X
.1;0/

 ; Y .1;0/� / D ˝Ld .X

.0;1/

 ; Y .0;1/� / D 0; (8)

and

˝Ld .X
.1;0/

 ; Y .0;1/� / D �Y�.�!X
.Ld // D �!X
. �Y�.Ld //: (9)

(for more details, see [21]).

2.4 Discrete Lagrangian Evolution Operator

We say that a differentiable mapping � W G �! G is a discrete flow or a discrete
Lagrangian evolution operator for Ld if it verifies the following properties:

– graph.�/ � G2, that is, .g; �.g// 2 G2, 8g 2 G.
– .g; �.g// is a solution of the discrete Euler-Lagrange equations, for all g 2 G,

that is,

 �
X.g/.Ld /� �!X.�.g//.Ld / D 0 (10)

for every section X of AG and every g 2 G:

2.5 Discrete Legendre Transformations

Given a discrete Lagrangian Ld WG ! R we define two discrete Legendre
transformations F

�Ld W G �! A�G and F
CLd W G �! A�G as follows (see

[21])

.F�Ld /.h/.v".˛.h/// D �v".˛.h//.Ld ı rh ı i/; for v".˛.h// 2 A˛.h/G; (11)

.FCLd/.g/.v".ˇ.g/// D v".ˇ.g//.Ld ı lg/; for v".ˇ.g// 2 Aˇ.g/G: (12)

Remark 1. Note that .FCLd /.g/ 2 A�̌
.g/G and .F�Ld/.h/ 2 A�̨

.h/G. Further-
more, if fX
g (respectively, fY�g) is a local basis of � .�/ in an open subset U such
that ˛.h/ 2 U (respectively, ˇ.g/ 2 V ) and fX
g (respectively, fY �g) is the dual
basis of � .��/; it follows that

F
�Ld .h/ D �!X
.h/.Ld /X


.˛.h//; F
CLd.g/ D �Y �.g/.Ld /Y

�.ˇ.g//:
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2.6 Discrete Regular Lagrangians

A Lagrangian Ld W G ! R on a Lie groupoid G is said to be regular if the
Poincaré-Cartan 2-section ˝Ld is symplectic on the Lie algebroid �� W P �G �
Vˇ ˚G V˛! G, that is, ˝Ld is nondegenerate (see [21]).

Using (9), we deduce that the Lagrangian Ld is regular if and only if for every
g 2 G and every local basis fX
g (respectively, fY�g) of � .�/ on an open subset U
(respectively, V ) of M such that ˛.g/ 2 U (respectively, ˇ.g/ 2 V ) we have that

the matrix
�!
X
.
 �
Y�.Ld // is regular on ˛�1.U /\ ˇ�1.V /.

In [21], we have proved that the following conditions are equivalent:

• Ld W G ! R is a regular discrete Lagrangian function.
• The Legendre transformation F

�Ld is a local diffeomorphism.
• The Legendre transformation F

CLd is a local diffeomorphism.

Moreover, if Ld W G ! R is regular and .g0; h0/ 2 G2 is a solution of the
discrete Euler-Lagrange equations for Ld then there exist two open subsets U0 and
V0 of G, with g0 2 U0 and h0 2 V0; and there exists a (local) discrete Lagrangian
evolution operator �Ld W U0 ! V0 such that:

• �Ld .g0/ D h0;
• �Ld is a diffeomorphism and
• �Ld is unique, that is, if U 0

0 is an open subset of G, with g0 2 U 0
0 and � 0

Ld
W

U 0
0 ! G is a (local) discrete Lagrangian evolution operator then � 0

Ld
jU0 \ U 0

0 D
�Ld jU0 \ U 0

0.

3 Discrete Euler-Lagrange Equations: Symmetric
Neighborhoods

3.1 Symmetric Neighborhoods

First, we prove the following result

Proposition 1. Let U be an open subset of G and x0 2 M be a point such that
".x0/ 2 U . There exists an open subset W � U of G with ".x0/ 2 W and such
that

1. ".˛.W // � W and ".ˇ.W // � W ,
2. i.W / D W , and
3. m..W �W / \G2/ � U .

The open subset W is said to be a symmetric neighborhood associated to U and x0.
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Proof. The multiplication map mWG2 ! G is continuous, so that we may choose
an open subset W1 of G such that ".x0/ 2 W1 andm..W1 �W1/\G2/ � U . Since
the identity map "WM ! G is also continuous, we deduce that there exists an open
subset V 0 of M such that x0 2 V 0 and ".V 0/ � W1. Thus, if we consider the open
W2 of G given by W2 D W1 \ ˛�1.V 0/ \ ˇ�1.V 0/, then it is clear that ".x0/ 2 W2

and moreover it is easy to prove that ".˛.W2// � W2 and ".ˇ.W2// � W2, and also
m..W2 �W2/ \ G2/ � U . Finally, if we take W D W2 \ i.W2/ it follows that W
satisfies the three above mentioned conditions.

3.2 Local Coordinate Expressions of Structural Maps

On a symmetric neighborhood of a point it is easy to get local coordinate expressions
for the structure maps of the Lie groupoid G. We consider a point x0 2 M and a
local coordinate system .x; u/, defined in a neighborhoodU � G of ".x0/, adapted
to the fibration ˛WG ! M , i.e. if the coordinates of g 2 U are .xi ; u
 / then the
coordinates of ˛.g/ 2 M are .xi /. We can moreover assume that the identities
correspond to elements with coordinates .x; 0/. The target map ˇ defines a local
function b as follows: if the coordinates of g are .x; u/, then the coordinates of ˇ.g/
are b.x; u/. Note that b.x; 0/ D x. Two elements g and h with coordinates .x; u/
and .y; v/ are composable if and only if y D b.x; u/. Hence local coordinates for
G2 are given by .x; u; v/.

To obtain a local description for the product, we consider a symmetric neighbor-
hood W associated to x0 and U . If two elements g; h 2 W with coordinates .x; u/
and .y; v/ respectively, are composable then y D b.x; u/, and the product gh has
coordinates .x;p.x; u; v// for some smooth function p. We will write

.x; u/ � .y; v/ D .x;p.x; u; v//: (13)

The relation ˇ.gh/ D ˇ.h/, for .g; h/ 2 G2, imposes the restriction b.y; v/ D
b.x;p.x; u; v//, i.e.

b.b.x; u/; v/ D b.x;p.x; u; v//: (14)

The property g".ˇ.g// D g, for g 2 W , is locally equivalent to the equation
p.x; u; 0/ D u; while the property ".˛.g//g D g is locally equivalent to the
equation p.x; 0; v/ D v. Therefore

p.x; u; 0/ D u; p.x; 0; v/ D v: (15)
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Associativity .gh/k D g.hk/ imposes the further relation

p.x;p.x; u; v/;w/ D p.x; u;p.y; v;w// with y D b.x; u/. (16)

In what follows we will use the following functions defined in terms of b.x; u/
and p.x; u; v/,

�i
 .x/ D
@bi

@u

.x; 0/

L
�.x; u/ D
@p


@v�
.x; u; 0/

R
�.x; v/ D
@p


@u�
.x; 0; v/:

(17)

We will also take into account that

@p


@u�
.x; u; 0/ D ı
�

@2p


@u�@u�
.x; u; 0/ D 0

@p


@v�
.x; 0; v/ D ı
�

@2p


@v�@v�
.x; 0; v/ D 0;

(18)

which follow from (15). The only relevant second order derivatives are given by

C

��.x/ �

@2p


@u�@v�
.x; 0; 0/� @2p


@v�@u�
.x; 0; 0/: (19)

From the definition of L
� and R
� it follows that

C

��.x/ D

@L


�

@u�
.x; 0/ � @L



�

@u�
.x; 0/

D @R


�

@v�
.x; 0/ � @R



�

@v�
.x; 0/:

(20)

On the other hand, if i W G ! G is the inversion we have that

i.x; u/ D .b.x; u/; �.x; u//

and the condition i.".x// D ".x/, for all x 2 M , implies that

�.x; 0/ D 0:
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Moreover, using that p.x; u; �.x; u// D 0, we deduce that

@p


@u�
.x; u; �.x; u//C @��

@u�
.x; u/

@p


@v�
.x; u; �.x; u// D 0:

Thus, from (18), we obtain that

@�


@u�
.x; 0/ D �ı
�: (21)

3.3 Invariant Vector Fields

The local expression for left- and right-translations are easy to obtain. For g0 2
W � G the left translation lg0 is the map lg0 W˛�1.ˇ.g0// ! ˛�1.˛.g0//, given
by lg0g D g0g. If g0 has coordinates .x0; u0/, then the elements on the ˛-fiber
˛�1.ˇ.g0// have coordinates of the form .b.x0; u0/; v/, and the coordinates of lg0g
are .x0;p.x0; u0; v//. We will write

l.x0;u0/.b.x0; u0/; v/ D .x0;p.x0; u0; v//: (22)

Similarly, for h0 2 W � G the right translation map rh0 Wˇ�1.˛.h0// !
ˇ�1.ˇ.h0//, is defined by rh0g D gh0. If h0 has coordinates .x0; u0/, then the
elements on the ˇ-fiber ˇ�1.˛.h0// have coordinates of the form .x; u/ with the
restriction b.x; u/ D x0, and the coordinates of rh0g are .x;p.x; u; u0//. We will
write

r.x0;u0/.x; u/ D .x;p.x; u; u0//: (23)

A left-invariant vector field is of the form
 �
X .g/ D T".ˇ.g//lg.v/ for v 2

kerT".ˇ.g//˛. To obtain a local basis of left-invariant vector fields we can take
the local coordinate basis e
 D @

@u
 j".ˇ.g// of kerT".ˇ.g//˛. Thus, for g 2 G with
coordinates .x; u/, we have

 �e
 .g/ D T".ˇ.g//lg
�
@

@u


ˇ
ˇ
ˇ
".ˇ.g//

�

D @p�

@v

.x; u; 0/

@

@u�

ˇ
ˇ
ˇ
g
D L�
 .x; u/

@

@u�

ˇ
ˇ
ˇ
.x;u/

:

(24)

Similarly, a right-invariant vector field can be written in the form
�!
X.g/ D

T".˛.g//rg.v/ for v 2 kerT".˛.g//ˇ. To obtain a local basis of right-invariant vector
fields we first have to look for a basis of the vector space kerT".˛.g//ˇ. From the
definition of the functions �i
 , it follows easily that the vectors f
 D �i


@
@xi
� @

@u


are in kerT".˛.g//ˇ, and moreover they are related to the vectors e
 by the inversion
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map, that is T i.e
/ D f
 . It follows that a basis of right invariant vector fields is
given by

�!e
 .g/ D T".˛.g//rg
�

��i

@

@xi

ˇ
ˇ
ˇ
".˛.g//

C @

@u


ˇ
ˇ
ˇ
".˛.g//

�

D ��i
 .x/
@

@xi

ˇ
ˇ
ˇ
g
C
�

��i
 .x/
@p�

@xi
.x; 0; u/C @p�

@u

.x; 0; u/

�
@

@u�

ˇ
ˇ
ˇ
g

D ��i
 .x/
@

@xi

ˇ
ˇ
ˇ
g
CR�
 .x; u/

@

@u�

ˇ
ˇ
ˇ
g
;

(25)

where as before .x; u/ are the coordinates for g 2 G. Note that, from (15), we

deduce that
@p�

@xi
.x; 0; u/ D 0.

3.4 The Lie Algebroid of G

The Lie algebroid of G is defined on the vector bundle � WE ! M with fiber at the
point x 2 M given by Ex D kerT".x/˛. A local basis of sections of E is given by
the coordinate vector fields e
 .x/ D @

@u
 j".x/. The anchor is the map �WE ! TM

defined by �.a/ D T".x/ˇ.a/, where x D �.a/. In local coordinates, if a D y
e
 .x/
then �.a/ D �i
 .x/y


 @
@xi

ˇ
ˇ
ˇ
x
. The bracket is defined in terms of the bracket of left-

invariant vector fields. A simple calculation shows that Œ �e
 ; �e�	 D C�

�
 �e � , with C�


�

given by (19), from where we get �e
 ; e�� D C�

�e� .

3.5 Discrete Euler-Lagrange Equations

Consider now a discrete Lagrangian function Ld . A composable pair .g; h/ 2 G2
satisfies the Euler-Lagrange equations for Ld if

 �
X.g/.Ld / D �!X .h/.Ld / for every section X of E . (26)

If both g and h are on the same symmetric neighborhoodW , with coordinates .x; u/
for g and .y; v/ for h, we can apply the local results above and we readily get the
coordinate expression of the Euler-Lagrange equations

L�
 .x; u/
@Ld

@u�
.x; u/C �i
 .y/

@Ld

@xi
.y; v/ � R�
 .y; v/

@Ld

@u�
.y; v/ D 0 (27)

y D b.x; u/; (28)

where the second equation takes into account that ˇ.g/ D ˛.h/.
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Assume that we have a solution .g0; h0/ 2 G2 of the Euler-Lagrange equations.
To analyze the existence of solution of the Euler-Lagrange equations for elements
.g; h/ 2 G2 near .g0; h0/, we can apply the implicit function theorem. In the
application of such a theorem, the relevant matrix Œ.FLd/



�	
;�D1;:::;m is the following

.FLd/


�.x; u/ D�i�.x/

@2Ld

@xi @u

.x; u/� @R

�
�

@u

.x; u/

@Ld

@u�
.x; u/C

� R��.x; u/
@2Ld

@u�@u

.x; u/: (29)

Proposition 2. Let .y0; v0/ be the coordinates of the point h0. The following
statements are equivalent.

• The matrix .FLd/˛ˇ.y0; v0/ is regular.
• The Poincare-Cartan 2-section˝Ld is non-degenerate at the point h0.
• The map F

�Ld is a local diffeomorphism at h0.

Any of them implies the following: There exist open neighborhoods X0 � W and
Y0 � W of g0 and h0 such that if g 2 X0 then there is a unique �.g/ D h 2
Y0 satisfying that the pair .g; h/ is a solution of the Euler-Lagrange equations for
Ld . In fact, the map � W X0 ! Y0 is a local discrete Euler-Lagrange evolution
operator.

Proof. We first notice that the local expression of the map F
�
Ld

is

.F�
Ld
/.x; u/ D

�

x;��i
 .x/
@Ld

@xi
.x; u/CR�
 .x; u/

@Ld

@u�
.x; u/

�

:

The differential of this local function at the point h � .y0; v0/ is of the form


In 0

� �FLd.y0; v0/
�

from where the equivalence of the first and the third assertions immediately follows.
For the second we just take a local basis of sections fe
g of E , defined in

a neighborhood of x0 and associated to the ˛-vertical vector fields @
@u
 , and we

compute the value of ˝Ld on the associated basis fe.1;0/
 ; e
.0;1/

 g. From (8) and (9) it

follows that ˝Ld .h0/ is regular if and only if the matrix

˝
�.y0; v0/ D ˝Ld .e
.1;0/

 ; e.0;1/� /.h0/ D  �e�.�!e
 .Ld //.h0/



The Local Description of Discrete Mechanics 299

is regular. From the expressions (24) and (25) this matrix is

˝
�.y0; v0/ D �L��
@

@u�

�

�i

@Ld

@xi
�R�


@Ld

@u�

�

.y0; v0/

D �L��
�

�i

@2Ld

@xi@u�
� @R

�



@u�
@Ld

@u�
� R�


@2Ld

@u�@u�

�

.y0; v0/

D �L��.y0; v0/.FLd/�
 .y0; v0/:

It follows from (24) that the matrix L��.y0; v0/ is regular. Thus, we get that the
regularity of the matrix .FLd/�
 .y0; v0/ is equivalent to the regularity of ˝Ld .h0/.

Finally, let �� be the left-hand side of the discrete Euler-Lagrange equations (27)
once the equation (28) has been used

��.x; u; v/ D L
�.x; u/
@Ld

@u

.x; u/C �i�.b.x; u//

@Ld

@xi
.b.x; u/; v/C

� R
�.b.x; u/; v/
@Ld

@u

.b.x; u/; v/: (30)

We want to study the existence of solution of the discrete Euler-Lagrange equations
��.x; u; v/ D 0 in a neighborhood of the point .x0; u0; v0/, where .x; u/ are the
data and v is the unknown. Applying the implicit function theorem we have to study
the regularity of the matrix @��

@v

.x0; u0; v0/. A straightforward calculation shows that

this matrix is just

@��

@v

.x0; u0; v0/ D .FLd/
�.y0; v0/ with y0 D b.x0; u0/,

from where our last assertion readily follows.

Remark 2. Suppose that h0 2 ".M/. Then, h0 has local coordinates .y0; 0/.
Moreover, from (17) and (18), it follows that the matrix L
�.y0; 0/ is the identity
matrix. Therefore, we deduce that the matrix˝
�.y0; 0/ is, up to the sign, the matrix
.FLd/

�

 .y0; 0/ (see the proof of Theorem 2 in Section 4.2).

In general the Euler-Lagrange equations are understood as the equations deter-
mining h � .y; v/ from the already known data g � .x; u/, as we did in the proof of
the above theorem. However, we can also try to solve these equations backwards to
obtain .x; u/ from .y; v/. Instead of applying again the implicit function theorem to
the system of equations (27) and (28) we can rewrite the equations in a different
coordinate system, adapted to the fibration ˇ, as follows. On the open subset
NU D i.U / we consider the local coordinates . Nx; Nu/ defined as . Nx; Nu/ D .x; u/ ı i ,

where i is the inversion map in the groupoid. Since ˇ ı i D ˛, we have that these
new coordinates are adapted to the submersion ˇ and we can proceed as in the
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previous case. In these coordinates, a basis of the left-invariant and right-invariant
vector fields is

 �e
 . Nx; Nu/ D ��i
 . Nx/
@

@ Nxi
ˇ
ˇ
ˇ
. Nx;Nu/ CR

�

 . Nx; Nu/

@

@Nu�
ˇ
ˇ
ˇ
. Nx;Nu/ ; (31)

�!e
 . Nx; Nu/ D L�
 . Nx; Nu/
@

@Nu�
ˇ
ˇ
ˇ
. Nx;Nu/ : (32)

3.6 Examples

We present here some illustrative examples.

3.6.1 Pair or Banal Groupoid

We consider as a first example the pair (banal) groupoid G D M �M , where the
structural maps are

˛.x; y/ D x; ˇ.x; y/ D y; ".x/ D .x; x/; i.x; y/ D .y; x/;
m..x; y/; .y; z// D .x; z/:

The Lie algebroid of G is isomorphic to the standard Lie algebroid �M W TM !
M , therefore the pair groupoid is considered as the discrete phase space for
discretization of Lagrangian functionsL W TM ! R.

Let x0 2M and a local coordinate system .xi / defined on a neighborhood V 0 of
x0. Then U D V 0 � V 0 is obviously a symmetric neighborhood. For a fixed h > 0,
an associated coordinate system adapted to the ˛-projection is

xi .x1; x2/ D xi .x1/ and ui .x1; x2/ D xi .x2/ � xi .x1/
h

:

Obviously the identities correspond to the elements .xi ; 0/ in this coordinate system
and ˛.x; u/ D x and ˇ.x; u/ D x C hu. On the other hand, the composition of two
elements .x; u/ and .x C hu; v/ is .x; u C v/. Therefore p.x; u; v/ D u C v. The
inversion map is now i.x; u/ D .x C hu;�u/.

If we take the natural local coordinate basis
˚
@
@ui
j".x1/

�
of kerT".x1/˛ then

 ��
@

@ui
D @

@ui

��!
@

@ui
D �h @

@xi
C @

@ui
:
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Therefore, the discrete Euler-Lagrange equations are

@Ld

@ui
.x; u/C h@Ld

@xi
.y; v/ � @Ld

@ui
.y; v/ D 0

y D x C hu:

The discrete Lagrangian is regular if the matrix

h
@2Ld

@xi @uj
.x; u/ � @2Ld

@ui @uj
.x; u/

is non singular.

Example 1. As a concrete simple example, consider the continuous Lagrangian
LWR2n ! R:

L.x; Px/ D 1

2
PxTM Px � V.x/

(with M a constant symmetric invertible matrix). A typical discretization for the
lagrangian is, for instance,

Ld.x; u/ D h

2
uTM u� hV.x C h

2
u/:

Then, the discrete Euler-Lagrange equations are:

M
v � u

h
D �1

2

�
@V

@x
.x C h

2
u/C @V

@x
.y C h

2
v/

�

y D x C hu;

which leads us the classical implicit midpoint rule.
If on the other hand, we take the discretization

Ld.x; u/ D h

2
.L.x; u/C L.x C hu; u//

D h

2
uTM u� h

2
.V.x/C V.x C hu// ;

then the corresponding discrete Euler-Lagrange equations are:

M
v � u

h
D �@V

@x
.y/

y D x C hu;

which is a representation of the Störmer-Verlet method.



302 J.C. Marrero et al.

Remark 3. The previous description corresponds to the choice of a symmetric
neighborhood adapted to the fibration ˛ WM �M !M . In previous literature (see
for instance [2, 18]) the authors introduce retraction maps, that is, a smooth mapping
R from the tangent bundle TM onto M with the following properties Rx.0x/ D x

and, T0xRx D idTxM , with the canonical identification T0xTxM � TxM . In our
setting we can think in these retraction maps as local identifications of the ˛-
fiber near of the identity with the tangent space to the base manifold. In the next
subsection, we will use the retractions maps to locally identify the Lie groupoid
with its associated Lie algebroid.

3.6.2 Lie Groups

Another interesting example corresponds to the case of Lie groups. In this case, we
consider a Lie groupG as a groupoid over one pointM D feg, the identity element
of G. The structural maps are

˛.g/ D e; ˇ.g/ D e; ".e/ D e; i.g/ D g�1; m.g; h/ D gh; for g; h 2 G:

The Lie algebroid associated with G is just the Lie algebra g D TeG of G.
Near the identity, it is interesting to regard the elements g 2 G as small dis-

placements on the Lie group. Thus, it is possible to express each term through a Lie
algebra element that can be regarded as the averaged velocity of this displacement.
This is typically accomplished using a retraction map � W g ! G which is an
analytic local diffeomorphism around the identity such that �.�/�.��/ D e, where
� 2 g (see [3]). Thereby � provides a local chart on the Lie group.

Given a retraction map � its right trivialized tangent d�� W g ! g and is inverse
d��1
� W g! g are defined for all � 2 g as follows

T��.�/ D Ter�.�/
�
d��.�/

� � d��.�/ �.�/;

T�.�/�
�1..Ter�.�//�/ D d��1

� .�/:

The retraction map allows us to transport locally the Lie group structure on an
open symmetric neighborhood of G to a local �-dependent Lie group structure
on the Lie algebra g defined on a local neighborhood V of 0 2 g. We will write
�.h�/Dg for an enough small time step h > 0 such that h� 2 V � g.

Now, on the Lie algebra it is easy to consider local coordinates because it is a
vector space. In consequence, fixing a basis fe
g of g, we induce coordinates .u
 /
on g.

In these coordinates, a basis of left- and right-invariant vector fields is

 �e
 .�/ D T�.h�/�
�1.�.h�/e
 / D d��1

h� .Ad�.h�/e
 /

�!e
 .�/ D T�.h�/�
�1.e
�.h�// D d��1

h� .e
 /;
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where � 2 g. Given a Lagrangian l W g ! R, we deduce that the discrete Euler-
Poincaré equations are:

 �e
 .�k/.l/ ��!e
 .�kC1/.l/ D 0;

or, alternatively, as discrete Lie-Poisson equations [24, 25]:

Ad�
�.h�k/

�k � �kC1 D 0;

where

�k D .d��1
h�k
/�
@l

@�
.�k/ :

Example 2. As an example of retraction map we will consider the Cayley transform
which is one of the most computationally efficient parametrizations of a Lie group.
The Cayley map cay W g! G is defined by cay.�/ D .e� �

2
/�1.eC �

2
/ and is valid

for a general class of quadratic groups as for instance SO.n/, SE.n/ or Sp.n/ (see
[12]). Its right trivialized derivative and inverse are given by

dcay� � D .e� �
2
/�1 � .eC �

2
/�1

dcay�1
� � D .e� �

2
/ � .eC �

2
/:

In this case it is possible to write more explicitly the Lie-Poincaré equations.
In fact, we have that

 �e
 .�/ D .eC h�

2
/ e
 .e � h�

2
/

�!e
 .�/ D .e � h�
2
/ e
 .eC h�

2
/;

with � 2 so.3/. Therefore, the discrete Euler-Poincaré equations are:

0 D h.eC h�k

2
/ e
 .e� h�k

2
/;
@l

@�
.�k/i

�h.e� h�kC1
2

/ e
 .eC h�kC1
2

/;
@l

@�
.�kC1/i

D he
 � h
2
Œe
 ; �k	 � h

2

4
�ke
�k;

@l

@�
.�k/i

�he
 C h

2
Œe
 ; �kC1	 � h

2

4
�kC1e
�kC1;

@l

@�
.�kC1/i:
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As a concrete example, we consider the case of the group SO.3/, using the
Cayley transformation and fixing the standard basis of its Lie algebra so.3/:

e1 D
0

@
0 0 0

0 0 �1
0 1 0

1

A ; e2 D
0

@
0 0 1

0 0 0

�1 0 0

1

A ; e3 D
0

@
0 �1 0
1 0 0

0 0 0

1

A :

Thus, the elements �k , �kC1 in g will have coordinates .xk; yk; zk/ and
.xkC1; ykC1; zkC1/, respectively, in this fixed basis. This allows us to write the
previous discrete Euler-Poincaré equations as follows:

0 D
�

1C h2x2k
4

�
@L

@x

ˇ
ˇ
ˇ
ˇ
k

C
�
h2xkyk

4
C hzk

2

�
@L

@y

ˇ
ˇ
ˇ
ˇ
k

�
�
hyk

2
� h

2xkzk
4

�
@L

@z

ˇ
ˇ
ˇ
ˇ
k

�
 

1C h2x2kC1
4

!
@L

@x

ˇ
ˇ
ˇ
ˇ
kC1

C
�
hzkC1
2
� h

2xkC1ykC1
4

�
@L

@y

ˇ
ˇ
ˇ
ˇ
kC1
�
�
hykC1
2
C h2xkC1zkC1

4

�
@L

@z

ˇ
ˇ
ˇ
ˇ
kC1

0 D
�
h2xkyk

4
� hzk

2
C
�
@L

@x

ˇ
ˇ
ˇ
ˇ
k

C
�

1C h2y2k
4

�
@L

@y

ˇ
ˇ
ˇ
ˇ
k

C
�
hxk

2
C h2ykzk

4

�
@L

@z

ˇ
ˇ
ˇ
ˇ
k

�
�
hzkC1
2
C h2xkC1ykC1

4

�
@L

@x

ˇ
ˇ
ˇ
ˇ
kC1

�
 

1C h2y2kC1
4

!
@L

@y

ˇ
ˇ
ˇ
ˇ
kC1
C
�
hxkC1
2
� h

2ykC1zkC1
4

�
@L

@z

ˇ
ˇ
ˇ
ˇ
kC1

0 D
�
hyk

2
C h2xkzk

4

�
@L

@x

ˇ
ˇ
ˇ
ˇ
k

�
�
hxk

2
� h

2ykzk
4

�
@L

@y

ˇ
ˇ
ˇ
ˇ
k

C
�

1C h2zk
4

�
@L

@z

ˇ
ˇ
ˇ
ˇ
k

C
�
hykC1
2
� h

2xkC1zkC1
4

�
@L

@x

ˇ
ˇ
ˇ
ˇ
kC1

�
�
hxkC1
2
C h2ykC1zkC1

4

�
@L

@y

ˇ
ˇ
ˇ
ˇ
kC1
�
�

1C h2zkC1
4

�
@L

@z

ˇ
ˇ
ˇ
ˇ
kC1

;

where L W R3 ! R is defined by L.x; y; z/ D l.xe1 C ye2 C ze3/.
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3.7 Transformation or Action Lie Groupoid

The theory of Lie groupoids covers other interesting examples that are useful for
the construction of variational integrators for different mechanical systems. This
is the case of transformation or action Lie groupoids. Let QG be a Lie group and
� W M � QG ! M , .x; Qg/ 2 M � QG 7! x Qg; a right action of QG on M . Consider the
Lie groupoidG DM � QG overM with structural maps given by

˛.x; Qg/ D x; ˇ.x; Qg/ D x Qg; ".x/ D .x; Qe/;
m..x; Qg/; .x Qg; Qg0// D .x; Qg Qg0/; and i.x; Qg/ D .x Qg; Qg�1/: (33)

where Qe is the identity on QG. The Lie groupoid G is called the action or
transformation Lie groupoid. Its associated Lie algebroid is the action algebroid
pr1 W M � Qg ! M where Qg is the Lie algebra of Lie group QG (see [21] for
details about the Lie algebroid structure). We have that � .pr1/ Š fN� W M !
Qg j N� is a smooth mappingg. In particular, if � 2 Qg then � defines a constant section
C� W M ! Qg of pr1 W M � Qg ! M : C�.x/ D .x; �/ for all x 2 M . It is possible
to check that the corresponding left- and right-invariant vector fields on G are (see
[21]):

 �
C �.x; Qg/ D .0x; �� . Qg//; �!

C �.x; Qg/ D .��M .x/;�!� . Qg//; (34)

for .x; Qg/ 2 G D M � QG and where �M is the infinitesimal generator of the right
action � WM � QG !M associated with �.

Let Ld W G D M � QG ! R be a discrete Lagrangian. Then, a composable pair
..xk; Qgk/; .xk Qgk; QgkC1// 2 G2 is a solution of the discrete Euler-Lagrange equations
for Ld if

 �
C �.xk; Qgk/.Ld /� �!C �.xk Qgk; QgkC1/.Ld / D 0; for all � 2 g:

Given a retraction map � W Qg ! QG, we can transport the Lie group structure on an
open symmetric neighborhood of Qe in QG to an open neighborhood of 0 in Qg as in
Subsection 3.6.2. Moreover, if x0 2 M , we may assume, without loss of generality,
that this neighborhood acts on an open neighborhood U of the point x0 2 M . Thus
if Q� 2 Qg the flow ˚Q�M of the fundamental vector field Q�M associated with this local
action is given by

˚Q�M .t; x/ D x exp QG.t.h Q�//
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for t 2 R and x 2 U . Therefore, as in the previous section, fixed a basis fe
g of Qg,
we induce a basis of left- and right-invariant vector fields

 �
Ce
 .x; Q�/ D .0; d��1

hQ� .Ad�.hQ�/e
 //
�!
Ce
 .x; Q�/ D .�h.e
 /M .x/; d��1

hQ� .e
//;

where Q� 2 Qg and x 2 U . Given a Lagrangian l W M � Qg ! R, we deduce that the
discrete Euler-Lagrange equations are:

0 D d��1
hQ�k .Ad�.hQ�k/e
 /.lxk / � d��1

hQ�kC1
.e
 /.lxkC1

/C h.e
 /M .xkC1/.lQ�kC1
/;

xkC1 D xk�.h Q�k/ ;

where for every Q� 2 Qg (resp., x 2 M ) we denote by lQ� (resp., lx) the real function
on M (resp., on Qg) given by lQ�.y/ D l.y; Q�/ (resp., lx. Q�0/ D l.x; Q�0/).

Example 3. As a typical example of a discrete system defined on a transformation
Lie groupoid consider a discretization of the heavy top [19, 21, 26]. This system is
modelled on the transformation Lie algebroid � W S2�so.3/! S2 with Lagrangian

Lc.�;˝/ D 1

2
˝ � I˝ �mgd � � e;

where ˝ 2 R
3 ' so.3/ is the angular velocity, � is the direction opposite to the

gravity and e is a unit vector in the direction from the fixed point to the center of
mass, all them expressed in a frame fixed to the body. The constantsm, g and d are
respectively the mass of the body, the strength of the gravitational acceleration and
the distance from the fixed point to the center of mass. The matrix I is the inertia
tensor of the body.

We will also use the Cayley transformation on SO.3/ to describe the discrete
Euler-Lagrange equations for the heavy top. We have that

 �
Ce
 .�; �/ D

�

0; .eC h�

2
/ e
 .e � h�

2
/

�

�!
Ce
 .�; �/ D

�

h� e
 ; .e� h�
2
/ e
 .eC h�

2
/

�

;

with

� D
0

@
0 �˝3 ˝2

˝3 0 �˝1

�˝2 ˝1 0

1

A ;

fe
g the standard basis on SO.3/ and � 2 S2.
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Therefore, the discrete Euler-Lagrange equations are:

0 D h.eC h�k

2
/ e
 .e � h�k

2
/;
@.Lc/�k
@�

.�k/i

�h.e� h�kC1
2

/ e
 .eC h�kC1
2

/;
@.Lc/�kC1

@�
.�kC1/i

Ch�kC1e
 � @.Lc/�kC1

@�
.�kC1/

�kC1 D �k cay .h�k/;

or, in other terms

0 D I1.˝1/k

�

1C h2.˝1/
2
k

4

�

C I2.˝2/k

�
h2.˝1/k.˝2/k

4
C h.˝3/k

2

�

�I3.˝3/k

�
h.˝2/k

2
� h

2.˝1/k.˝3/k

4

�

� I1.˝1/kC1

 

1C h2.˝1/
2
kC1

4

!

CI2.˝2/kC1
�
h.˝3/kC1

2
� h

2.˝1/kC1.˝2/kC1
4

�

�I3.˝3/kC1
�
h.˝2/kC1

2
C h2.˝1/kC1.˝3/kC1

4

�

Chmgd.ZkC1e2 � YkC1e3/

0 D I1.˝1/k

�
h2.˝1/k.˝2/k

4
� h.˝3/k

2
C
�

C I2.˝2/k

�

1C h2.˝2/
2
k

4

�

CI3.˝3/k

�
h.˝1/k

2
C h2.˝2/k.˝3/k

4

�

� I1.˝1/kC1

�
h.˝3/kC1

2
C h2.˝1/kC1.˝2/kC1

4

�

�I2.˝2/kC1

 

1C h2.˝2/
2
kC1

4

!

C I3.˝3/kC1

�
h.˝1/kC1

2
� h2.˝2/kC1.˝3/kC1

4

�

Chmgd.XkC1e3 �ZkC1e1/

0 D I1.˝1/k

�
h.˝2/k

2
C h2.˝1/k.˝3/k

4

�

� I2.˝2/k

�
h.˝1/k

2
� h2.˝2/k.˝3/k

4

�

CI3.˝3/k

�

1C h2.˝3/k

4

�

C I1.˝1/kC1

�
h.˝2/kC1

2
� h2.˝1/kC1.˝3/kC1

4

�

�I2.˝2/kC1

�
h.˝1/kC1

2
C h2.˝2/kC1.˝3/kC1

4

�

� I3.˝3/kC1

�

1C h2.˝3/kC1

4

�

�hmgd.XkC1e2 � YkC1e1/

0 D .XkC1; YkC1;ZkC1/� .Xk; Yk;Zk/.e � h�k

2
/�1.e C h�k

2
/
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where �k D .Xk; Yk;Zk/ 2 R
3 with X2

k C Y 2k CZ2
k D 1, e D .e1; e2; e3/ and

�k D
0

@
0 �.˝3/k .˝2/k

.˝3/k 0 �.˝1/k
�.˝2/k .˝1/k 0

1

A ;

Remark 4. Our approach also admits other interesting examples. For instance,
assume that we have a discrete system modeled by a discrete Lagrangian Ld W
M � M � G ! R which is an approximation of a continuous Lagrangian
L W TM � g! R. This Lagrangian typically appears as reduction of a G-invariant
Lagrangian function QL W T .M �G/! R (see [21], for the general case). Of course
we can combine the techniques exposed in Subsections 3.6.1 and 3.6.2 to obtain a
local description of the corresponding discrete Euler-Lagrange equations in terms
of the continuous Lagrangian L.

4 Bisections and Discrete Euler-Lagrange Evolution
Operators

One of the main limitations of the techniques exposed in Section 3 is that we need
to work in a neighborhood of the identities of the Lie groupoidG. Using an enough
small time stepping we can guarantee that the evolution of the evolution operator
for a discrete Lagrangian takes values on the chosen symmetric neighborhood, even
it is possible to adapt the time stepping to make it happen. Another possibility is
to use the notion of bisections on Lie groupoids. As we will see it will allow us to
consider points far from the identities completing our local description of discrete
Mechanics.

We consider now the general case of a solution .g0; h0/ 2 G2 of the Euler-
Lagrange equations where the points g0 and h0 2 G are not necessarily close
enough to be contained in a common symmetric neighborhood. If we want to obtain
a local expression of the discrete Euler-Lagrange operator which connects the above
points, we must choose suitable neighborhoods of g0 and h0. For this purpose, we
will consider a symmetric neighborhood W , a local bisection through the point g0
and a local bisection through h0. By left-translation and right-translation (induced
by these sections) of W we will get such neighborhoods.

4.1 Bisections of a Lie Groupoid

The results contained in this section are well-known in the literature (see, for
instance, [4, 20]). However, to make the paper more self-contained, we will include
the proofs of them.

Let G � M be a Lie groupoid with source ˛WG !M and target ˇWG !M .
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Definition 1. A bisection ofG is a closed embedded submanifold˙ ofG such that
the restrictions of both ˛ and ˇ to ˙ are diffeomorphisms.

A bisection defines both a section ˙˛ of ˛ and a section ˙ˇ of ˇ as follows.

Proposition 3. Given a bisection ˙ the map ˙˛ D .˛j˙/�1 is a smooth section of
˛ such that Im.˙˛/ D ˙ and ˇ ı ˙˛ is a diffeomorphism. Alternatively, the map
˙ˇ D .ˇj˙/�1 is a smooth section of ˇ such that Im.˙ˇ/ D ˙ and ˛ ı ˙ˇ is a
diffeomorphism.

Proof. Indeed, since ˛j˙ W˙ !M is a diffeomorphism, the map˙˛ is well defined
and satisfies ˛ ı ˙˛ D idM . Moreover Im˙˛ D Im..˛˙/�1/ D ˙ and ˇ ı ˙˛ D
.ˇj˙/ı.˛j˙/�1 is a diffeomorphism because it is a composition of diffeomorphisms.
The proof of the second statement is similar.

Notice that the diffeomorphisms ˇ ı˙˛ and ˛ ı ˙ˇ are each one the inverse of
the other

.ˇ ı˙˛/
�1 D ˛ ı˙ˇ and .˛ ı˙ˇ/

�1 D ˇ ı˙˛:

Definition 2. A local bisection of G is a closed embedded submanifold W of G
such that there exist open subsets U ;V � M for which both ˛jW WW ! U and
ˇjW WW ! V are diffeomorphisms.

Proposition 4. Given a local bisection W the map W˛ D .˛jW /�1 is a smooth
local section of ˛ defined on the open set U such that .W˛/.U / D W and ˇ ı
W˛WU ! V is a diffeomorphism. Alternatively, the map Wˇ D .ˇjW /�1 is a
smooth local section of ˇ defined on the open set V such that .Wˇ/.V / D W and
˛ ıWˇWV ! U is a diffeomorphism.

Proof. The proof is a straightforward modification of the proof for global bisections.

We will need the following straightforward result.

Lemma 1. LetA andB be linear subspaces of a finite dimensional vector space V ,
with dim.A/ D dim.B/. There exists a linear subspace C � V such that A˚ C D
V and B ˚ C D V .

Proof. Let fcig be a basis of A \ B . We complete to a basis fci ; a˛g of A, and
we also complete to a basis fci ; b˛g of B . Then fci ; a˛; b˛g is a basis of A C B ,
which can be completed to a basis fci ; a˛; b˛; dJ g of V . Then, the subspace C D
spanfa˛ C b˛; dJ g is such that A˚ C D V and B ˚ C D V .

Proposition 5 (Existence of Local Bisections). Given g 2 G there exists a local
bisection W such that g 2 W .

Proof. Since the dimensions of ker.Tg˛/ and ker.Tgˇ/ are equal, there exists a
subspace I � TgG such that TgG D ker.Tg˛/ ˚ I and TgG D ker.Tgˇ/ ˚ I .
Notice that, since ˛ and ˇ are submersions, we have that Tg˛.I / D T˛.g/M and
Tgˇ.I / D Tˇ.g/M .
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Let˙ � G be any submanifold such that g 2 ˙ and Tg˙ D I . The maps Tg˛j˙
and Tgˇj˙ are linear isomorphisms at the point g. Indeed Im.Tg˛j˙/ D Tg˛.I / D
T˛.g/M , and similarly Im.Tgˇj˙/ D Tgˇ.I / D Tˇ.g/M , and dim.M/ D dim.I /.
By the inverse function theorem, it follows that there exist open subsets W ˛ and W ˇ

in ˙ and U ˛ and V ˇ in M such that g 2 W ˛ \ W ˇ and ˛jW ˛ WW ˛ ! U ˛ and
ˇjW ˇ WW ˇ ! V ˇ are diffeomorphisms. By taking W D W ˛ \ W ˇ, U D ˛.W /

and V D ˇ.W / we have that W is a local bisection and g 2 W .

In what follows we do not distinguish, in the notation, global and local bisections;
all then will be denoted by ˙ .

Definition 3. Given a local bisection ˙ defined on the open sets U and V , the
local left translation by ˙ is the map L˙ W˛�1.V /! ˛�1.U / defined by

L˙.g/ D hg; where h D ˙ˇ.˛.g//;

and the local right translation by˙ is the mapR˙ Wˇ�1.U /! ˇ�1.V / defined by

R˙.g/ D gh; where h D ˙˛.ˇ.g//:

Alternatively, the left action is ˙ �g D hg, where h 2 ˙ is the uniquely defined
element such that ˇ.h/ D ˛.g/. Similarly the right action is g �˙ D gh, where
h 2 ˙ is the uniquely defined element such that ˛.h/ D ˇ.g/. Observe that both
L˙ and R˙ are diffeomorphisms.

It is easy to see that, for a bisection ˙ , the left action L˙ preserves the ˇ-fibers
and maps ˛-fibers to ˛-fibers. Similarly, the right action R˙ preserves the ˛-fibers
and maps ˇ-fibers to ˇ-fibers.

The left actionL˙ by a bisection˙ extends the natural left action in the groupoid
and we have .˙ � g/h D ˙ � .gh/, or in other wordsL˙ılg D l˙ �g . Moreover, since
it preserves the ˛-fibers, it maps left-invariant vector fields to left invariant vector
fields

TL˙.
 �
X.g// D  �X .L˙ g/ for every X 2 � .�/: (35)

Similarly, we have .hg/ �˙ D h.g �˙/ or R˙ ı rg D Rg �˙ , from where

TR˙.
�!
X.g// D �!X.R˙ g/ for every X 2 � .�/: (36)

4.2 General Discrete Euler-Lagrange Evolution Operators

Let Ld W G ! R be a discrete Lagrangian function and consider a solution
.g0; h0/ 2 G2 of the discrete Euler-Lagrange equations, that is,

 �
X .g0/.Ld /� �!X .h0/.Ld / D 0; for all X 2 � .�/:
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We denote by x0 2M the point

x0 D ˇ.g0/ D ˛.h0/:

Then, we consider the following objects:

• A symmetric neighborhood W associated with x0 and some open subset U of
G, with local coordinates .x; u/ as in Section 3.2. We will denote by V the
corresponding open subset ofM and by .y/ the local coordinates on V .

• A local bisection ˙0 of G such that g0 2 ˙0.
• A local bisection $0 of G such that h0 2 $0.

We will assume, without the loss of generality, that the section .˙0/ˇ (respec-
tively, .$0/˛) is defined on the open subset V of M .

It is clear that W˙0 D L˙0.W / is an open neighborhood of g0 inG diffeomorphic
to W . On W˙0 we may consider a local coordinate system .x; u/ defined as follows:
if g 2 W˙0 then there exists a unique gW 2 W such that L˙0.gW / D g; the
coordinates of the point g are the coordinates in the symmetric neighborhood W of
the point gW .

Similarly, W$0 D R$0.W / is an open neighborhood of h0 in G diffeomorphic to
W . On W$0 we consider local coordinates .y; v/ defined as follows: for h 2 W$0 we
consider the unique point hW 2 W such that R$0.hW / D h, and we assign to h the
coordinates .y; v/ of hW in the symmetric neighborhood W .

Moreover, using the same notation as in Section 3.2, the pair of elements .g; h/ D
.L˙0.gW /; R$0.hW // 2 W˙0 �W$0 is composable if and only if y D b.x; u/.

To find the local equations satisfied by the coordinates of a solution .g; h/ of the
discrete Euler-Lagrange equations for Ld

 �e
 .g/.Ld / ��!e
 .h/.Ld / D 0; for all 
; (37)

we take into account equations (35) and (36), from where we get that equations (37)
hold if and only if

.TgW L˙0/.
 �e
 .gW //.Ld /� .ThW R$0/.�!e
 .hW //.Ld / D 0; for all 


or, equivalently,

 �e
 .gW /.Ld ı L˙0/ ��!e
 .hW /.Ld ıR$0/ D 0; for all 
:

In conclusion, using (24) and (25), we have proved

Theorem 1. The pair .g; h/ D .L˙0.gW /; R$0.hW // 2 W˙0 �W$0 is a solution of
the discrete Euler-Lagrange equations for Ld if and only if the local coordinates of
g and h

g Š .x; u/ Š gW ; h Š .y; v/ D .b.x; u/; v/ Š hW
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satisfy the equations

L
�.x; u/
@.Ld ı L˙0/

@u

.x; u/C �i�.y/

@.Ld ıR$0/
@xi

.y; v/C

�R
�.y; v/
@.Ld ıR$0/

@u

.y; v/ D 0: (38)

Note that the coordinates of g0 and h0 in W˙0 and W$0 , respectively, are .x0; 0/.
Next, as in Section 3.5, we will consider the matrix .FLd/



�.x; u/, where

.FLd/


�.x; u/ D�i�.x/

@2.Ld ıR$0/
@xi@u


.x; u/C

� @R
�
�

@u

.x; u/

@.Ld ıR$0/
@u�

.x; u/C

�R��.x; u/
@2.Ld ıR$0/
@u�@u


.x; u/:

Then, we have the following result:

Theorem 2. The following statements are equivalent.

• The matrix .FLd/


�.x0; 0/ is regular.

• The Poincare-Cartan 2-section˝Ld is non-degenerate at the point h0.
• The map F

�Ld is a local diffeomorphism at h0.

Any of them implies the following: there exist open neighborhoods QW˙0 � W˙0 and
QW$0 � W$0 of g0 and h0 such that if g 2 QW˙0 then there is a unique �.g/ D h 2
QW$0 satisfying that the pair .g; h/ is a solution of the Euler-Lagrange equations for
Ld . In fact, the map � W QW˙0 ! QW$0 is a local discrete Euler-Lagrange evolution
operator.

Proof. If the matrix .FLd /


�.x0; 0/ is regular then, using Theorem 1 and the implicit

function theorem, we deduce the result about the existence of the local discrete
Euler-Lagrange evolution operator � W QW˙0 ! QW$0 .

On the other hand, the mapR$0 is a diffeomorphism from an open neighborhood
of ".x0/ in the ˛-fiber ˛�1.x0/ to an open neighborhood of h0 in the ˛-fiber ˛�1.x0/.
Indeed, (a) it is well defined: if h 2 ˛�1.x0/ then

˛.R$0.h// D ˛.h �$0/ D ˛.h/ D x0;

so that R$0.h/ 2 ˛�1.x0/; (b) it is injective: it is the restriction of a local
diffeomorphism to an ˛-fiber; and (c) it is surjective: ˇ ı .$0/˛ is a diffeomorphism,
so that if h0 2 ˛�1.x0/ there exists x 2 M such that .ˇ ı .$0/˛/.x/ D ˇ.h0/, from
where h D h0Œ.$0/˛.x/	�1 2 ˛�1.x0/ and hence R$0.h/ D h0.
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Consequently, if

w
 .h0/ D .T".x0/R$0/.
@

@u
 j".x0/
/; for all 
;

then fw
 .h0/g is a basis of the vertical bundle to ˛ at the point h0.
Moreover, if �!e� is the right-invariant vector field on W$0 given by

�!e�.h/ D .ThW R$0/.�!e�.hW //; for h D R$0.hW / 2 W$0

then, using (25), it follows that

�!e �.Ld / ıR$0 D ��i�
@.Ld ıR$0/

@xi
CR��

@.Ld ıR$0/
@u�

which implies that the matrix .w
 .h0/.
�!e�.Ld /// is, up to the sign, .FLd/



�.x0; 0/.

In addition, from (11) and (36), we deduce that the local expression of the
restriction of F�Ld to W$0 is

.F�Ld/.x; u/ D .x;��i
 .x/
@.Ld ıR$0/

@xi
.x; u/CR�
 .x; u/

@.Ld ıR$0/
@u�

.x; u//:

These facts prove the result.

Now, as in Section 3.5, we consider local coordinates . Nx; Nu/ on i.U / D NU given
by . Nx; Nu/ D .x; u/ ı i . Note that W � NU and, thus, we have local coordinates on
W˙0 and W$0 which we also denote by . Nx; Nu/.

As above, using equations (31) and (32), we may prove that a pair .g; h/ D
.L˙0.gW /; R$0.hW // 2 W˙0 � W$0 is a solution of the discrete Euler-Lagrange
equations for Ld if and only if the local coordinates of g and h

g Š . Ny; Nv/ D .b. Nx; Nu/; Nv/ Š gW ; h Š . Nx; Nu/ Š hW
satisfy the equations

0 D� �i�.b. Nx; Nu//
@.Ld ı L˙0/

@ Nxi .b. Nx; Nu/; Nv/C

CR
�.b. Nx; Nu/; Nv/
@.Ld ı L˙0/

@Nu
 .b. Nx; Nu/; Nv/C

� L
�. Nx; Nu/
@.Ld ıR$0/

@Nu
 . Nx; Nu/: (39)
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In order to apply the implicit function theorem (using (39), we want to obtain
Nv in terms of Nx and Nu in a neighborhood of .x0; u0; v0/), we consider the matrix
.FL/




�. Nx; Nu/, where

.FL/



�. Nx; Nu/ D�i�. Nx/
@2.Ld ıR$0/
@ Nxi @Nu
 . Nx; Nu/C

� @R
�
�

@Nu
 . Nx; Nu/
@.Ld ıR$0/

@Nu� . Nx; Nu/C

� L��. Nx; Nu/
@2.Ld ıR$0/
@Nu�@Nu
 . Nx; Nu/: (40)

Then, one may prove the following result.

Theorem 3. The following statements are equivalent.

• The matrices .FLd /


�.x0; 0/ and .FL/




�.x0; 0/ are regular.
• The Poincare-Cartan 2-section˝Ld is non-degenerate at the points g0 and h0.
• The maps FCLd and F

�Ld are local diffeomorphisms at g0 and h0.

Any of them implies the following: there exist open neighborhoods QW˙0 � W˙0

and QW$0 � W$0 of g0 and h0 and a unique (local) discrete Euler-Lagrange
evolution operator � W QW˙0 ! QW$0 such that �.g0/ D h0. In addition, � is a
diffeomorphism.

Proof. Suppose that the matrices .FL/
�.x0; 0/ and .FL/



�.x0; 0/ are regular. Then,

the existence of the local discrete Euler-Lagrange evolution operator � W QW˙0 !QW$0 is guaranteed by Theorem 2. Moreover, using (39), (40) and the implicit
function theorem, we deduce that there exist open neighborhoods of g0 and h0
which we will assume, without the loss of generality, that are QW˙0 and QW$0 and,
in addition, there exists a smooth map

% W QW$0 ! QW˙0

such that, for each h 2 QW$0 , the pair .%.h/; h/ is a solution of the discrete Euler-
Lagrange equations for Ld .

Thus, from Theorem 2, we obtain that

� ı% D id; % ı � D id; (41)

which implies that � is a diffeomorphism. Indeed, if g 2 QW˙0 then there is a unique
element h in QW$0 , namely h D �.g/, such that .g; h/ is a solution of the discrete
Euler-Lagrange equations forLd . This proves (41) and thus � is a diffeomorphism.

On the other hand, the map L˙0 is a diffeomorphism from an open neighborhood
of ".x0/ in ˇ�1.x0/ on an open neighborhood of g0 in ˇ�1.x0/. Using this fact, (12),
(24), (35) and proceeding as in the proof of Theorem 2, we deduce the result.
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4.3 Application

Let Ld W G ! R be a discrete regular Lagrangian. Starting with a symmetric
neighborhood W of the Lie groupoid G, we have local expressions for the
discrete Euler-Lagrange equations assuming that we can solve it on the symmetric
neighborhood. If this is not the case, we are forced to use bisections.

To illustrate this, assume that G is a connected Lie group and W is a symmetric
neighborhood of the identity e 2 G. Assume that there exists a family of points ofG:

fgi g1�i�m and fhj g1�j�n, with g1 D h1 D e such that G D
m[

iD1
giW D

n[

jD1
W hj

(for instance, if G is compact this property is verified).
Given an initial point g, then there exists at least an integer I , 1 	 I 	 m such

that g 2 gIW (gI 2 G is the bisection using our notation). Now, we try to find an
integer J , 1 	 J 	 n such that there exists a solution h 2 W hJ of the following
equation defined on the symmetric neighborhood W :

.Tg�1
I gLgI /.

 �e
 .g�1
I g//.Ld / � .Thh�1

J
RhJ /.

�!e
 .hh�1
J //.Ld / D 0; for all 


where fe
g is a basis of the Lie algebra g. If we find this J , 1 	 J 	 n, we will
say that the pair .g; h/ 2 G2 is a solution of the discrete Euler-Lagrange equations
for Ld .

We will explore in a future paper these techniques working with points not
included in symmetric neighborhoods or points not included in the neighborhoods
where the retraction maps are local diffeomorphisms.

5 Conclusions and Future Work

In this paper we have studied the local description of discrete Mechanics. In Sec-
tion 3, we have found a local description of the discrete Euler-Lagrange equations
using the notion of symmetric neighborhood on Lie groupoids. In Section 4, we
extend this construction for points outside of this type of neighborhoods using
bisections. We expect that our results apply to a wide range of numerical methods
using discrete variational calculus.

On the other hand, this paper will also open the possibility to easily adapt
our construction to other families of geometric integrators derived from discrete
Mechanics, as for instance, forced or dissipative systems, holonomic constraints,
explicitly time-dependent systems [22], frictional contact [28] nonholonomic con-
straints [13], multisymplectic field theories [23] and discrete optimal control
[14, 17, 27].
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Keplerian Dynamics on the Heisenberg
Group and Elsewhere

Richard Montgomery and Corey Shanbrom

For Jerry

Abstract Posing Kepler’s problem of motion around a fixed “sun” requires the
geometric mechanician to choose a metric and a Laplacian. The metric provides
the kinetic energy. The fundamental solution to the Laplacian (with delta source at
the “sun”) provides the potential energy. Posing Kepler’s three laws (with input from
Galileo) requires symmetry conditions. The metric space must be homogeneous,
isotropic, and admit dilations. Any Riemannian manifold enjoying these three
symmetry properties is Euclidean. So if we want a semblance of Kepler’s three laws
to hold but also want to leave the Euclidean realm, we are forced out of the realm
of Riemannian geometries. The Heisenberg group (a subRiemannian geometry) and
lattices provide the simplest examples of metric spaces enjoying a semblance of all
three of the Keplerian symmetries. We report success in posing, and solving, the
Kepler problem on the Heisenberg group. We report failures in posing the Kepler
problem on the rank two lattice and partial success in solving the problem on the
integers. We pose a number of questions.

1 Introduction

Newton formulated and solved what we call today “Kepler’s problem” – the problem
whose negative energy solutions are Keplerian ellipses. The essential backdrop to
the problem is Euclidean three-space and its group of isometries and scalings. Can
we pose Kepler’s problem on an arbitrary metric space? What properties must the
space have if Kepler’s three laws, or ghosts of these laws, are to hold?
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In ‘Foundations of Mechanics’ [1], Abraham and Marsden formulate
classical mechanics as dynamical systems on the tangent or cotangent bundle
of a Riemannian manifold, which they call “natural mechanical systems”.
The Riemannian metric defines the kinetic energy. One must choose a potential
energy. In order to formulate Kepler’s problem on our manifold, we take this
potential to be the fundamental solution to the Laplacian. We choose a point on
the manifold to be our “sun,” which is the delta function source of the fundamental
solution. Following Galileo we assume that the choice of location of the sun does
not matter: that is, we will assume that our space is homogeneous.

The mildest Riemannian departures from Euclidean space are the spaces of
constant curvature: the sphere and hyperbolic space. About a century and a
half before ‘Foundations,’ Lobachevksy [14], one of the founders of hyperbolic
geometry, posed the Kepler problem as a “natural mechanical system” on hyperbolic
space. Later, Serret [17] posed the Kepler problem on the sphere. Additional history
and references appear in [8] (the research content of [8] appeared in a refereed
journal as [6] and [7], however [8] has a much more thorough history). Extensions
of the Kepler problem to surfaces of non-constant curvature have also been studied;
in particular, Darboux [10] attempted to extend Bertrand’s theorem to surfaces of
revolution. More recent work in this direction can be found in [16] and [20].

Kepler’s 1st and 2nd laws hold in each of the three constant curvature geometries:
hyperbolic space, the 3-sphere, and the original flat Euclidean space. But Kepler’s
3rd law fails for these non-flat geometries for the simple reason that they admit no
continuous scaling symmetries, or “dilations.”

We argue that in order to even formulate Kepler’s third law our metric space must
admit dilations. But if a space admits dilations, and is not Euclidean, then it cannot
even be Riemannian! (We sketch the proof of this fact below.) The non-Euclidean
spaces which admit dilations are subRiemannian: they are the Carnot groups. The
simplest Carnot group is the Heisenberg group.

This observation brings us to our main problem: pose and solve the Kepler
problem on the Heisenberg group. We will pose it. We will not fully solve it. We will
show that all periodic solutions to the Kepler problem on the Heisenberg group must
lie on the zero energy surface, and that the problem is integrable when restricted to
this zero energy surface. Such solutions are described in Figures 2 and 4. A modified
version of Kepler’s third law holds for the periodic solutions.

To write down the Kepler-Heisenberg problem we must have an explicit expres-
sion for the potential: it is the fundamental solution for the subLaplacian on the
Heisenberg group. Luckily, Folland [5] found such an expression in 1970.

We will also attempt to pose and solve Kepler’s problem on some lattices.
Lattices almost admit dilations: we can scale by positive integer scaling factors,
but we cannot invert these scaling factors. The integers form the simplest lattice.
We will pose and solve a Kepler problem on the integers. Our ‘solutions’ are of
a high school nature. (We apologize in advance if our treatment here embarrasses
readers with any skill in numerical methods and discretization.) These solutions are
indicated in Figure 5.

We then try to pose and solve the Kepler problem on the integer lattice in the
plane where we run into fundamental problems which lead us to believe that the
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very definition of a discrete dynamical system is not yet well formulated. The heart
of this problem is that the differences of values of the lattice potential – that being
the fundamental solution of the lattice Laplacian – are irrational.

DEDICATION AND ACKNOWLEDGEMENTS. This article is dedicated to the
memory of Jerry and in thanks for all his inspiration. We would also like to thank
the GMC group, in particular, David Martín de Diego, Juan Carlos Marrero, and
Edith Padron for inviting us to the summer school in 2011 outside of Madrid. The
formulation of the Kepler-Heisenberg problem was inspired by talking with many
of the participants at that summer school.

2 Kepler’s 3 Laws in a Metric Space

Let’s recall Kepler’s three laws for the motion of planets around the sun.

K1. Planets travel on ellipses with one focus the sun.
K2. Equal areas are swept out in equal times. This law is equivalent to the

conservation of the planet’s angular momentum about the sun.
K3. Period-Size: The period T of an orbit and its size a (semi-major axis) are

related by a universal monomial relation a3 D CT 2.
The Keplerian planet moves in a Euclidean space. Do Kepler’s laws even make

sense on a general metric space? If not, what restrictions must we impose on the
metric space in order to make sense of a particular law? We discuss what is required
of our metric space in order to formulate the corresponding law.

K1. We can define an “ellipsoid” for any metric space X . Fix two foci S; F 2 X
and a positive number 2a. Consider the locus of points x 2 X for which
d.S; x/ C d.x; F / D 2a. If this locus is to be a curve then the metric space
must be two-dimensional, for example, a smooth surface. K1 requires then that
X is a two-dimensional, or that its Keplerian dynamics can be reduced to two-
dimensions. Kepler’s problem has been posed and solved satisfactorily on the
two-sphere and on the hyperbolic plane as described in the introduction. Its
solutions satisfy K1.

K2 is equivalent to conservation of angular momentum. Angular momentum is
conserved if the kinetic and potential energies in Newton’s formulation of
the Kepler problem are invariant under rotations about the sun. This requires
isotropicness: all directions in the metric space are the same, at least through
the sun. The two-sphere and the hyperbolic plane enjoy rotational symmetry
and hence K2.

K3 is a scaling law. It is an immediate consequence of the fact that the Newtonian
potential V.x/ D c=jxj is homogeneous of degree �1. This homogeneity
implies the space-time symmetry x; t 7! �x; �3=2t , which is to say: if x.t/
solves Kepler’s equation then so does �x.��3=2t/. From one periodic solution
x.t/ we generate a one-parameter family x�. The energy-period relation in K3
for this family follows from the scaling symmetry.
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2.1 Kepler’s Third Law for Homogeneous Potentials
in Euclidean Space

Any homogeneous potential V on a Euclidean space enjoys a version of K3.
Homogeneity is a scaling symmetry: x 7! �x H) V.x/ 7! V.�x/ D ��˛V .x/.
We try to extend the symmetry to time and velocities by a power law ansatz:
.x; t; v/ 7! .�x; �ˇt; ���v/. Balancing the resulting scalings of potential and
kinetic energies implies that � D ˛=2. The requirement v D dx=dt yields
ˇ D 1C .˛=2/. We are led to the extended scalings

.x; t; v/ 7! .�x; �1C˛=2t; ��˛=2v/:

In terms of curves 
.t/, which are maps from t to x-space, the scaling operation is


.t/ 7! 
�.t/ D �
.��.1C˛=2/t/:

One verifies that if 
 satisfies Newton’s equation R
 D �rV.
/ then so does 
�.
(Use that rV is homogeneous of degree �˛ � 1.) The scaling symmetry thus takes
solutions of energyH to solutions of energy ��˛H . Now if 
 is periodic of period
T and with typical size a, then 
� is periodic of period �ˇT D �1C˛=2T and typical
size �a. We thus arrive at our modified K3: T 2 D Ca2C˛.

2.2 Dilations

To have an analogue of K3, our metric space must, like Euclidean space, admit
dilations.

Definition 1. A dilation of the metric space .X; d/ with center S 2 X and dilation
factor � is a map ı� W X ! X which fixes S and satisfies d.ı�x; ı�y/ D �d.x; y/

for all x; y 2 X . We say that the metric spaceX admits dilations if there is a dilation
of X with dilation factor � for each � > 0.

Spherical and hyperbolic metrics admit no dilations. K3 fails for both.

2.3 Keplerian Symmetries

We will restrict ourselves to metric spaces X which

� are homogeneous (1)

� are isotropic (2)

� admit dilations. (3)

We will call these three properties the Keplerian symmetry assumptions.
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Historical Motivation. Newton’s biggest victory was probably his derivation of
Kepler’s laws K1, K2, K3, from more basic laws: Galilean invariance, his equation
F D ma, and the specific choice of force F as ‘1=r2.’ From these laws he derived
what we today call Kepler’s differential equation Rq D �q=jqj3 and thence K1–3.
A subset of the Galilean group is the group of spatial isometries and this relates to
homogeneity and isotropicness. Dilations, as discussed above, are included so as to
get a version of Kepler’s third law.

We recall the formal definition homogeneity and isotropicness. Let I som.X/
denotes the group of isometries of X . Homogeneity asserts that I som.X/ acts
transitively on X . Isotropicness asserts that I som.X/ acts transitively on the space
of directions through any point S 2 X . The sphere and the hyperbolic plane are
homogeneous and isotropic, but they do not admit dilations.

Proposition 1. If a Riemannian manifold is homogeneous and admits dilations then
it is a Euclidean space.

Proof (sketch). See Gromov [12], prop. 3.15. Gromov defines the metric tangent
cone TpX of any metric space at any point p 2 X as the pointed limit .X; �d/ as
�!1. This limit need not always exist, but it does exist for Riemannian manifolds
and equals the usual tangent plane, with its induced Euclidean metric. If the metric
d admits a dilation with scale factor � then .X; d/ is isometric to .X; �d/. Letting
� ! 1 we see that such an X is isometric to its metric tangent cone TpX
for all p. ut

Consequently, if we insist on satisfying all three Keplerian symmetries (1)–(3)
while also leaving the realm of Euclidean spaces, we must also leave the world of
Riemannian manifolds! The simplest non-Euclidean metric space satisfying (1)–(3)
is the Heisenberg group with its subRiemannian metric.

2.4 Kepler’s Problem and the Laplacian

Before formulating the Kepler-Heisenberg problem, we look into how the standard
Kepler problem fits within the framework of “natural mechanical systems” and thus
how it generalizes to general Riemannian manifolds. This background will yield a
straightforward way to place the Kepler problem in the Heisenberg context.

The Hamiltonian for the standard Kepler problem on R
3 is

H D 1

2
.p2x C p2y C p2z / �

˛

r
;

where r D p
x2 C y2 C z2 and ˛ > 0: Why the 1=r potential? Perhaps the

best answer is that U D 1
4�r

is the fundamental solution for the Laplacian & on
(Euclidean!) R3, i.e. the solution to &U D �ı0. (See [3] and references therein.)
The choice of sign convention is due to the positivity of the operator �&.
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The kinetic term in H is the principal symbol of the Laplacian, so we can write

H.q; p/ D 1

2
�& � ˛&�1

q (*)

where �L denotes the principal symbol of L, and &�1.q/ D K.q; 0/; where
K.x; y/ D U.x� y/ is the Green’s function for the Laplacian (and where ˛ D 1

4�
).

This reformulation suggests that we can pose the Kepler problem as a Hamiltonian
system on any ‘space’ X with a ‘Laplacian’&.

This prescription (*) forH leaves us with a number of puzzles.

2.5 Problems

What is the cotangent bundle of an arbitrary ‘space’X? Assuming we make sense of
H as a function on the cotangent bundle of X , then what are Hamilton’s equations
on T �X? Can we ever compute the fundamental solution &�1

q of our Laplacian?
All these questions have answers in the Riemannian case. The principal symbol

has the coordinate expression

�&.p/ D †gij .q/pipj
– it is the standard cometric of kinetic energy. The fundamental solution of the
Laplacian has been explicitly computed for hyperbolic n-space, so we have a
hyperbolic Kepler problem.

If X is a compact manifold without boundary, then the fundamental solution
&�1
q does not exist for topological reasons. For example, we cannot have a single

gravitational source on the sphere. There must be an opposing sink elsewhere on
the sphere. To formulate the Kepler problem on the sphere, one places the sink
antipodally to the source. See [6, 7], or [17] for a precise formulation.

Remark. We have focused our study on generalizations of the Kepler problem
which preserve the symmetry content of K1–K3. Others have tried to generalize
Kepler so as to preserve one or more of the following properties, where V D c=r

denotes the gravitational potential.

1) V is a fundamental solution to the Laplace equation in R
3.

2) Bertrand’s theorem: excluding the harmonic oscillator potential, V is the only
rotationally symmetric potential on Euclidean space all of whose bounded non-
collision orbits are closed.

3) The Kepler problem is superintegrable: the common level sets of all its integrals
have (typically) codimension 1 in phase space.
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All three properties are retained by the Kepler problem in the sphere and
hyperbolic plane. However, in our generalizations, we lose properties (2) and (3).

3 Kepler’s Problem on the Heisenberg Group!

3.1 Heisenberg Geometry

Consider R3 with standard x; y; z coordinates, endowed with the two vector fields

X D @

@x
� 1
2
y
@

@z
Y D @

@y
C 1

2
x
@

@z
:

Then X; Y span the canonical contact distributionD on R
3 with induced Lebesgue

volume form. Curves are called horizontal if they are tangent to D. Declaring
X; Y orthonormal defines the standard subRiemannian structure on the Heisenberg
group and yields the Carnot-Carathéodory metric ds2

H
D dx2 C dy2. Geodesics

are qualitatively helices: lifts of circles and lines in the xy-plane. The horizontal
constraint implies that the z-coordinate of a curve grows like the area traced out by
the projection of the curve to the xy-plane. See Figure 1 and Chapter 1 of [15].

The Heisenberg (sub)Laplacian is

& D X2 C Y 2;
a second order subelliptic operator, and the only correct choice for ‘Laplacian’ on
the Heisenberg group. We have

ŒX; Y 	 D @

@z
DW Z

Fig. 1 A Heisenberg
geodesic

projection

area

area

π
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and ŒX;Z	 D ŒY;Z	 D 0. There are the commutation relations of the Heisenberg
Lie algebra, hence the name. The Heisenberg group H is the simply connected Lie
group with Lie algebra the Heisenberg algebra and is diffeomorphic to R

3. In x; y; z
coordinates the Heisenberg group law reads

.x1; y1; z1/ � .x2; y2; z2/ D .x1 C x2; y1 C y2; z1 C z2 C 1
2
.x1y2 � x2y1//:

Left multiplication is an isometry and the vector fields X; Y are left invariant.

3.2 The Heisenberg Kepler Problem

Folland [5] has derived an explicit formula for the fundamental solution for the
Heisenberg Laplacian! It is

U WD &�1
q D

˛

�2
; � D f.x2 C y2/2 C 1

16
z2g1=4:

Here ˛ D 2=�: Let px; py; pz be the dual momenta to x; y; z so that together
x; y; z; px; py; pz form canonical coordinates on T �

H. Then

PX D px � 1
2
ypz; PY D py C 1

2
xpz

are dual momenta to X; Y; and

K D 1
2
.P 2

X C P2
Y / D 1

2
�&

is the Heisenberg kinetic energy, given canonically by the cometric. (See Chapter 1
of [15].) K generates the subRiemannian geodesic flow on the Heisenberg group.
We see that Keplerian dynamics on the Heisenberg group are the Hamiltonian
dynamics for the canonical Hamiltonian

H D K � U:

There is no explicit formula for the Heisenberg subRiemannian distance function
jj.x; y; z/jjH WD dsr ..x; y; z/; .0; 0; 0//; measuring the distance from a point to the
origin . So the mix ofK and U – of geodesic and subLaplacian – is quite interesting
and it is rather remarkable that we can write down the Hamiltonian in closed form.

The dilation on the Heisenberg group is

ı�.x; y; z/ D .�x; �y; �2z/:

Like the subRiemannian distance, the function � is positive homogeneous of degree
1 with respect to this dilation. Since the Heisenberg sphere is homeomorphic to
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the Euclidean sphere, the standard argument which shows that any two norms on
R
n are Lipshitz equivalent shows that � and jj � jjH are Lipshitz equivalent: there

exist positive constants c; C such that c�.x; y; z/ < jj.x; y; z/jjH < C�.x; y; z/ for
.x; y; z/ ¤ 0.

Following the procedure described in Section 2.1, we find that if a curve 

solves Newton’s equation R
.t/ D rU.
.t//, where r denotes the subRiemannian
gradient, then so does


�.t/ WD ı�.
.��2t//:

Then given a periodic orbit 
 with period T (see Section 3.5), we get a family of
periodic orbits 
� with periods �2T . Choosing a suitable notion of the ‘size’ a of a
periodic orbit yields the Heisenberg version of Kepler’s third law:

T 2 D Ca4:

The isometry group of the Heisenberg group is generated by translations and
rotations. The translations denote the action of the Heisenberg group on itself by left
multiplication. These project to translations of the xy-plane. The rotations form the
circle group of rotations about the z axis. In addition we have the discrete ‘reflection’
.x; y; z/ 7! .x;�y;�z/. Translations act transitively: the Heisenberg group is
homogeneous. Rotations act transitively on (allowable) directions: the Heisenberg
group is isotropic. Thus the Heisenberg group enjoys the three Keplerian symmetry
properties.

3.3 Hamiltonian Dynamics

The dilation on phase space T �
H is

ı�W .x; y; z; px ; py; pz/ 7! .�x; �y; �2z; ��1px; ��1py; ��2pz/:

This is generated by the function J D xpx C ypy C 2zpz, which satisfies PJ D 2H .
When H D 0, J is a first integral. Note that ı�WH 7! ��2H:

Now change to cylindrical coordinates .r; �; z/ on H. We have the induced
conjugate momenta pr D .xpxCypy/=r and p� D xpy�ypx . Our Hamiltonian is

H D 1
2
p2r C 1

2

	p�

r
C 1

2
rpz


2 � ˛��2:

Note that this does not depend on � due to rotational symmetry, and the correspond-
ing angular momentum p� is conserved.

On the smooth submanifold of phase space fH D 0g, we have three (indepen-
dent) conserved quantities H;p� , and J , and a theorem of Arnold (see [2]) says
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Fig. 2 Projections of zero-energy orbits to the xy-plane

that our system is integrable by quadratures here. See Figure 2 for approximations
of orbits which exhibit this integrable behavior as well as the helical Heisenberg
geometry. For this reason, we will mostly focus on the H D 0 case. This is
especially justified in light of the following.

Lemma 1. Periodic orbits must have zero energy.

Proof. If 
.t/ D .x.t/; y.t/; z.t/; px.t/; py.t/; pz.t// satisfies 
.0/ D 
.T / for
some t D T , then J D xpx C ypy C 2zpz is also periodic. But we know the time
derivative of J is constant, given by PJ D 2H . Since J cannot be monotonically
increasing nor decreasing, we must have PJ D 2H D 0, so H D 0. ut

Periodic orbits exist and the existence proof forms part of C.S.’s thesis [18] –
see Section 3.5 below. We will momentarily report progress with integration of the
H D 0 system, but first we gather other dynamical results.

Proposition 2. If H < 0 then any solution is bounded.

Proof. SupposeH D �h where h is positive. ThenK � U D �h, so

U D K C h � h;
since K is always non-negative. Then a solution .x.t/; y.t/; z.t// in configuration
space must satisfy

0 	 ..x2 C y2/2 C 1
16

z/1=2 <
˛

h
;

where ˛ and h are positive constants. ut
Proposition 3. The only solutions in the plane z D 0 are lines through the origin.

Proof. The equations for Pz and P� satisfy the relation

Pz D 1
2
r2 P�:
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For a path lying in the plane z D 0, this implies either r D 0 or P� D 0. In the first
case, the path is trivial. In the second, it lies on a line through the origin. Such a
curve may be parametrized by


.t/ D .c1t1=2; c2t1=2; 0; 12 c1t�1=2; 12 c2t�1=2; 0/:

It is easy to verify that the desired equations are satisfied, and that H D 0. ut
Proposition 4. The only solutions constant in configuration space are


.t/ D .0; 0; k; 0; 0;� 4˛
k2
t/:

Proof. This is an easy calculation. Note that such solutions are unbounded in phase
space, and satisfy H < 0. ut

Next, we explicitly integrate the equations of motion on a codimension 3
submanifold, and recover conics reminiscent of the Euclidean Kepler problem.
Consider the smooth submanifold N D fz D pz D p� D 0g. This submanifold
is invariant under the dynamics, since Pz D Ppz D Pp� D 0 on N . The Hamiltonian is

H jN D 1
2
p2r �

˛

r2
;

which has the form of a classical central force problem in the plane. Fix an energy
level H jN D h. Then since pr D Pr , we can explicitly solve for r.t/ as follows.

Proposition 5. On N , r.t/ traces out a hyperbola if h > 0, an ellipse if h < 0, and
a parabola if h D 0.

Proof. The Hamiltonian may be rewritten as the simple ODE

1
2

	dr

dt


2 D ˛

r2
C h:

Assume temporarily that h ¤ 0. Integrating, we find

t D
Z

dt D 1p
2

Z
rp

˛ C r2hdr D
1

h
p
2

p
˛ C r2h;

which may be rewritten r2 � 2ht2 D �˛
h
: Since ˛ > 0, this curve in the t; r-plane

is an ellipse for h < 0 and a hyperbola for h > 0.
If h D 0, we find that

t D 1p
2˛

Z

rdr D 1

2
p
2˛
r2;

and thus r2 D p8˛ t: ut
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We conclude this section with the following conjecture:

Conjecture 1. There is an open set of initial conditions whose orbits are asymptotic
to helices.

This behavior is suggested by numerical experiment and by the fact that U and
its derivatives tend to zero as orbits tend towards1.

3.4 Integration of the Case H D 0

We now focus on the H D 0 case and reduce the integrability of the equations of
motion to the parametrization of a family of degree 6 algebraic plane curves.

Let QH D K
U

. Then integral curves for QH are the same as geodesics for the metric
Uds2

H
. When H D 0, this is the same as the metric .H C U /ds2

H
, whose geodesics

correspond to integral curves for H , according to the Jacobi-Maupertuis principle.
Thus, the flow of H is the same as the flow of QH up to reparametrization on the
hypersurface fH D 0g D f QH D 1g:

A short calculation shows that both J and p� Poisson commute with QH . (Recall
fH;J g D 2H .) This demonstrates the scale invariance of QH ; ı�W QH 7! QH: More
importantly, we have three independent quantities conserved by the flow of QH . Thus,
we have an integrable system on fH D 0g D f QH D 1g:

Change our third coordinate z 7! v D z=r2. We have conjugate momenta
Qpr ; p� ; pv . In these coordinates, we have J D r Qpr (as in the Euclidean case) and
QH D QH.p� ; J; v; pv/: On the submanifold fH D 0g, we have QH D 1. Also, the

initial conditions determine the constants J and p� . Thus, given initial conditions,
QH is a function of v and pv only. We arrive at the following result.

Proposition 6. When QH D 1, any solution must project to an algebraic curve in
the v; pv-plane.

These curves are naturally degree 10 but can be reduced to degree 6 by changing
variables. Examples are shown in Figure 3. If we can parametrize these curves, we
should be able to bootstrap up to find explicit solutions.

0
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Fig. 3 Curves in the v; pv-plane corresponding to J D 3; p� D 1 (left) and J D 0; p� D 1

(right)
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3.5 Periodic Orbits

Despite the fact that theH D 0 case is integrable, we have not been able to explicitly
solve the equations. However, we know that periodic orbits exist.

Take L D K C U as our Lagrangian and impose the horizontal constraint Pz D
1
2
x Py � 1

2
y Px. Then the tangent .
; P
/ of any trajectory must lie on the zero set of the

function

G D 1
2
x Py � 1

2
y Px � Pz:

The calculus of variations tells us that if 
 W Œ0; T 	 ! H is a minima of the action
functional

R T
0 Ldt which also satisfies our constraint, then there exists a scalar

function � D �.t/ such that 
 is a minima of the modified action functional

A.
/ D
Z T

0

L�.t; 
; P
/dt;

where we have written L�.t; 
; P
/ D L.
; P
/ � �.t/G.
; P
/. Setting the first
variation of A equal to zero and integrating by parts yields the Euler-Lagrange
equations:

Rx D �� Py � 1
2
P�y � 2˛x.x2 C y2/��6

Ry D � Px C 1
2
P�x � 2˛y.x2 C y2/��6

P� D � ˛
16

z��6:

When � D pz we find that these agree with Hamilton’s equations.
Application of the direct method in the calculus of variations applied to A.
/

yields a proof of the existence of periodic orbits. One works in the Hilbert space
H1.S1;H/ and requires that admissible curves are horizontal and satisfy the
symmetry conditions


.t C T=k/ D R2�=k
.t/ (S1)

z.t C T=2/ D �z.t/ (S2)

where

R2�=k D
2

4
cos.2�=k/ � sin.2�=k/ 0
sin.2�=k/ cos.2�=k/ 0

0 0 1

3

5

and k � 3 is any odd positive integer. Any admissible curve is therefore necessarily
periodic, with additional symmetry. A suggestive approximation of such a curve
with k D 3 is shown in Figure 4.
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Fig. 4 Projection of an orbit to the xy-plane (left) and z-coordinate over time (right)

The idea is to choose a minimizing sequence 
n of curves in this space, and
show that they converge within the space to some 
�. Applying elementary analysis
and the principle of symmetric criticality shows that 
� must minimize the action,
thereby satisfying the Euler-Lagrange equations. A central difficulty lies in proving
that 
� does not pass through the singularity at the origin. A full existence proof
appears in the thesis of C.S. [18].

3.6 A Failure of Reduction

Newton reduced his two-body problem to the Kepler problem in Euclidean space.
There is no analogous reduction for the two-body problem on the Heisenberg group,
nor is there for the two-body problem on the sphere or in hyperbolic space. We
discuss the geometric roots of this failure.

We begin by writing down the Heisenberg two-body problem. Let q1; q2 2 H Š
R
3 denote the positions of two bodies moving in the Heisenberg group H. Let their

masses be m1;m2. Their individual kinetic energies are

Ki D 1

2mi

..P
.i/
X /2 C .P .i/

Y /2/

where P i
X ; P

i
Y are the horizontal momenta of each body, as in Section 3.2. The

Heisenberg two-body problem is defined by the Hamiltonian

H D K1 CK2 � �m1m2U.q
�1
1 q2/;

where � is the Gravitational constant and U is Folland’s fundamental solution.
H is a Hamiltonian on the cotangent bundle of H � H, and is invariant under the
(cotangent lift of the left) translation .q1; q1/ 7! .gq1; gq2/, g 2 H.
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We know of two derivations of Kepler’s problem (on Euclidean space) from
Newton’s two-body problem. We will call these the ‘algebraic’ and the ‘group-
theoretic’ derivations. The ‘algebraic derivation’ begins with the equation F D ma
for each body. Divide the equation for each body by its mass to get equation for
the acceleration Rqi of each body’s position vector qi . Subtract one equation from
the other to obtain the ODE of Kepler’s problem, Rq D �˛q=jqj3; for the difference
vector q D q1 � q2. The ‘group theoretic derivation’ depends on the conservation
of the total linear momentum, the invariance of Newton’s mechanics with respect
to Galilean boosts, and the abelian nature of the translation group. If P is the total
linear momentum and M the total mass, we boost by the velocity �P=M to get to
a new representation of the same dynamics in which the total linear momentum is
zero. Then we reduce by translation at the value 0 by placing the center of mass at
the origin. Finally, we compute that each mass separately satisfies Kepler’s equation
with the origin – the center of mass – now playing the role of “sun”.

The algebraic derivation fails on the Heisenberg group because the ‘difference
vector’ g1.t/�1g2.t/ of two Heisenberg geodesics is not a Heisenberg geodesic.
Why is this lack of being a geodesic a problem? Set the Heisenberg Gravitational
constant � D 0 so the two-body problem reduces to two uncoupled Heisenberg
geodesic problems. Play the algebraic game. Our ‘difference vector’ does not satisfy
the Heisenberg geodesic equations or any other pretty Hamiltonian equation. But in
the Newtonian-Euclidean case, the difference vector travels like a free particle, i.e.,
moves in a straight line – as it should with ˛ D 0 in Kepler’s problem. Things will
just get worse for � ¤ 0.

The failure of the group theoretic derivation goes a bit deeper and is perhaps
more enlightening. What is a ‘Galilean boost’ for an arbitrary Lie group? We choose
some ‘translation velocity’ � and multiply elements x0 by exp.t�/. Euclidean space
enjoys the wonderful property that exp.t�/x0 D x0 C t� describes free motion; it
is a geodesic. This assertion is false for the Heisenberg group: with the exception
of the lines in the plane z D 0, the Heisenberg geodesics through the origin are not
one-parameter subgroups. As a result, applying a boost to a solution .q1.t/; q2.t//
to the Heisenberg two-body problem will not yield a solution. There is a conserved
total ‘linear momentum’: the momentum map for the (left) translation action. But
we cannot use it to ‘Galilean boost’ the ‘center of mass velocity’ down to zero.
Even if this total linear momentum were initially zero, we still seem to be stuck.
The non-Abelian nature of the group appears to block us from writing the reduced
Hamiltonian at zero as a Kepler Hamiltonian on the ‘diagonal group’ of elements
q D q�1

1 q2.
In spherical and hyperbolic geometry, reduction of the two-body problem to the

Kepler problem fails for similar reasons. See [9]. In the spherical case, Shchepetilov
[19] used the Morales-Ramis theory to prove that the two-body problem in these
two geometries is not meromorphically integrable.

Question. Is the two-body problem on the Heisenberg group non-integrable?
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4 Kepler’s Problem on a Lattice

Lattices admit one-sided dilations: we can scale a lattice L by a positive integer c
and land back in the lattice, stretching all distances by c. They admit Laplacians.
So we might be able to begin to investigate Kepler’s 3rd law on L.

What are Newton’s equations on L? Since we must hop from lattice site to lattice
site, we must choose our time variable t to be discrete:

t D : : : ;�1; 0; 1; 2; : : : :

A ‘solution’ to Newton’s equations will then be a ‘discrete curve’


 W Z! L; L our lattice,

satisfying a difference equation which mimics Newton’s equations. In 1st order
Hamiltonian form these equations should resemble

d


d Œt	
D p

dp

dŒt	
D �rV.
.t//;

where the differential is the discrete difference operator

d


d Œt	
D 
.t C 1/� 
.t/;

and where V W L ! R is our potential. The standard interpretation of rV is in
terms of its differential

dV.`/ W E` ! R; ` 2 L;

where E D E` is the set of edges (chosen lattice generator) leaving the lattice site
`; and where

dV.`/.e/ D V.`0/� V.`/; e D Œ`; `0	 an edge:

Then we can rewrite our Newton difference equations as


.t C 1/ D 
.t/C p.t/ (4)

p.t C 1/ D p.t/ � dV.
.t//: (5)
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What is the momentum, p.t/? We add to it dV.
.t//, so it must lie in the same
space as dV; which is

E
� D E

�̀ D real valued functions on E`:

This ‘cotangent space at `’ is a vector space isomorphic to R
d ;where d is the degree

of a vertex: the number of edges leaving `. Good. Now, how do we add p.t/ 2 E
�

to a lattice site ` D 
.t/ 2 L in order to get a new lattice site 
.t C 1/ as in the
1st Newton equation? We seem to be missing the ‘mass matrix’ or ‘cometric’ of
mechanics.

Definition 2. A lattice cometric is a ‘non-trivial’ map

M W E� ! L:

With this tentative definition we can now try to write down ‘Newton’s equations’


.t C 1/ D 
.t/CM.p.t// (6)

p.t C 1/ D p.t/ � dV.
.t//; (7)

which define a discrete dynamics on the phase space L�E�: The resulting dynamics
have some vague relation to the corresponding formal Hamiltonian

H.`; p/ D 1

2
pMp C V.`/;

but we aren’t sure how to interpret the term pMp.

4.1 Kepler’s Problem on Z

The Laplacian& on Z is given by &f.n/ D f .nC 1/� 2f .n/C f .n � 1/.
EXERCISE. Show thatU.n/ D � 1

2
jnj is a fundamental solution for the Laplacian

on Z with source at S D 0.

Take the Kepler constant ˛ D 2 so that the ‘Newtonian potential’ V D �˛U is
V D jnj: The Hamiltonian is

H.n; p/ D 1

2
p2 C jnj:
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Fig. 5 A Kepler orbit in
integer phase space: the
.n; p/-plane
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Since d
dŒn	
jnj D sgn.n/ is the sign of n, 1 if n > 0 and �1 if n 	 0, we find that

with this choice of ˛ the discrete gradient is integer valued. We get a good discrete
dynamical system. Newton’s equations (in 1st order form) become

n.j C 1/ D n.j /C p.j /

p.j C 1/ D p.j / � sgn.n/:

A solution is depicted in Figure 5.
At each iteration, the ‘lattice momentum’ p decreases by one as long as n > 0

and increases by 1 as long as n < 0. (We have to make a choice at n D 0; above we
chose sgn.0/ D �1:) Note that as long as the initial condition p.0/ is an integer, it
remains an integer, and we stay on the lattice!

Because of this happy coincidence with p’s evolution, we did not need to worry
about where p lived. It is a real number that happens to evolve to stay integral.
Our momentum space is not E� Š R

2. (There are two directions, right and left,
on the lattice, hence the dimension 2.) We also did not need to choose a ‘lattice
cometric’ M. If any choice was made, it seems to have been ‘1’ as written in the
Hamiltonian. The happy coincidence does not happen when we go up to the rank 2
lattice.

4.2 Kepler on the Rank 2 Lattice

The rank 2 lattice is Z2 with elements written ` D .n;m/. As a metric space, we use
the distance

d..n;m/; .n0; m0/ D jn� n0j C jm �m0j:
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The Laplacian is

&f.`/ D
X

`0W d.`;`0/D1
.f .`0/ � f .`//:

Let U denote the fundamental solution, this being the ‘most bounded’ solution to
&U D ı0, where ı0 is the lattice delta function corresponding to placing the sun
at the origin. (There is a lattice Liouville theorem, so U can be made unique up
to an additive constant.) There is no closed form expression for U: However, any
particular value of U can be computed recursively. Indeed, the fundamental solution
is a well studied object with applications to the theory of electrical circuits [4], solid
state physics, and quantum mechanics. Some values of the lattice Green’s function
are reproduced in Figure 6 from [13]. (We thank the brothers Hollos for permission
to reproduce their table.)

We write the formal Hamiltonian

H.`; p/ D 1

2
pMp � ˛U.`/

and derive Hamilton’s equations

`.t C 1/ D `.t/CMp.t/

p.t C 1/ D p.t/C ˛dU.`.t//

where

M W R4 D E
� ! Z

2:

The vector p is a 4-vector with components .pup; pdown; pright ; plef t / corre-
sponding to the 4 edges, which are the 4 directions of motion, through each vertex.
We have, for example dU.`/up D U.`C e2/ � U.`/ where e2 D .0; 1/ represents
motion in the ‘up’ direction. The second Hamilton equation makes sense.

When we try to parse the first Hamilton equation we get stuck. What do we take
for M W R4 ! Z

2? We require M to be non-constant. Certainly M will not be
continuous! Ideally M is ‘linear’:

M.kp/ D kM.p/; k 2 Z;

but this is probably not possible in any reasonable sense. One possibility for M

is to argue that there is a ‘canonical’ projection … W R4 ! R
2, for example,

….pup; pdown; pright ; plef t / D 1
2
.pup C pdown; pright C plef t /, and a canonical

embedding of our lattice as Z
2 � R

2. Then choose M.p/ to be the lattice point
closest to ….p/. This leaves us to worry about what to do if ….p/ is midway
between lattice points. Flip a coin?

We are stuck and look forward to some of our readers unsticking us.
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Fig. 6 Values of the Green’s
function g on Z

2, taken from
[13]
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4.3 Euler-Lagrange Formulation

We can make a bit more sense of the Euler Lagrange version of lattice dynamics. Fix
a positive integer T , the ‘time of flight,’ and initial and final vertices, v0; v1 2 Z

2.
There will be two formulations. In both, we consider discrete paths 
 W f0; 1;
: : : ; T g ! Z

2 which join v0 to v1 in time T , and we minimize an ‘action functional’
A among all such discrete paths.
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Version 1: Minimize the action

A.
/ D
TX

tD0
f1
2
.j d
dŒt	


.t/j1/2 C ˛U.
.t//g

among all discrete paths 
 joining v0 to v1 in discrete time T .
Here j d

dŒt 	

.t/j1 D d.
.t C 1/; 
.t//; so half of its square represents kinetic

energy.
Version 2: Call a discrete path ‘continuous’ if either d.
.t C 1/; 
.t// D 1 or


.tC1/ D 
.t/. Minimize the same action as Version 1, but now over all continuous
paths. (In this case the kinetic term 1

2
.j d
dŒt 	

.t/j1/2 is either 1=2 or 0 at each time

step.)
We are guaranteed a solution to Version 2 exists since there are only a finite

number of ‘continuous’ paths joining v0 to v1. We suspect that if we move too fast
the kinetic energy becomes too large, so that Version 1 is ‘coercive’ and one can
argue that again there are only a finite number of paths that matter.

It seems doubtful that any decent Euler-Lagrange type difference equation
‘dynamics’ will result from either principle. Indeed, take the case ˛ D 0 of a ‘free
particle’ on the lattice, and take v0 D .0; 0/; v1 D .n;m/, n > m � 0. There are
.nC 1/m shortest paths from v0 to v1. Just draw box-paths, always moving either
right or up. Their lengths are all n C m D d.v0; v1/. If T < d.v0; v1/ then there
are no paths connecting the two points. If T D d.v0; v1/ then their actions are all
1
2
T . If T > d.v0; v1/ the action remains the same; we just stay still for the requisite

times T � d.v0; v1/. This means either (i) all points v1 D .n;m/ with nm ¤ 0 are
conjugate to v0, or (ii) that there is no good ‘free’ dynamical equation, so likely no
good Euler-Lagrange equations in general.

4.4 Quantum Mechanics to Classical Mechanics
on Cayley Graphs?

By a graph here we mean the usual combinatorial collection of vertices and edges.
We write ( for the set of vertices and view ( as ‘configuration space.’ The graph
Laplacian is the operator& W `2.(/! `2.(/ defined by

&f.v/ D
X

v0WŒv;v0 	 an edge

.f .v0/� f .v//:

If ( is finite there will be no fundamental solution; that is, there is no solution
to &US D ıS where ıS is the discrete ı function centered at the sun: ıS .S/ D
1; ıS.v/ D 0; v ¤ S . If ( is finite, a necessary condition for the solvability of
&V D f is †f.v/ D 0, which will fail for f D ıS .
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Regardless of whether or not ( has a Green’s function, it has plenty of potentials,
meaning functions V 2 `2.(/. Consequently for each choice of Planck’s constant „
we have a Schrodinger operator:

„2&C V W `2.(/! `2.(/:

There is a large active field of graph Laplacians and quantum mechanics on graphs.
There is undoubtedly a theory of quantum mechanics on ( .

4.4.1 Challenge

Don’t you think this quantum mechanics ought to have a classical limit? If ‘yes’ then
please answer: what are the correct Newton’s equations for an arbitrary potential,
on an arbitrary graph?

4.4.2 Cayley Graph of a Group

Let ( be a finitely generated group and e1; : : : ; ed 2 ( be a fixed set of generators
for ( (so every element of ( is a product of the ei ’s or their inverses). Form the
graph whose vertices are the elements x 2 ( and for which two vertices x; y 2 (
are joined by an edge if and only if either y D xei or x D yei for some generator ei .
Count each edge as having length 1. Define the distance between points x and y in
( to be the minimum of the lengths of the paths joining x to y. This distance is
always an integer, since the length of a path is just the number of edges it contains.

In this representation, the ‘Lie algebra’ of the Cayley graph will be the tangent
space at the identity: the disjoint union of d copies of Z. Alternatively, it is the
subset of Zd consisting of vectors for which all but one component is zero.

4.4.3 Example: Lattices

Take ( D Z
2 to be the lattice of integers in the plane, with standard generators

e1 D .1; 0/; e2 D .0; 1/. Then the Cayley graph of Z2 realized as above has the
vertices of a standard infinite sheet of graph paper in R

2. Its Lie algebra consists
of integer points on the x-axis unioned with the collection of integer points on the
y-axis.

4.4.4 Kepler Symmetries of Cayley Graphs

Every Cayley graph satisfies Keplerian symmetry property (1) of being homoge-
neous since ( acts on itself on the right by isometries. View the generators as the
‘directions.’ Then if the automorphism group of the group ( acts transitively on
its generating set e1; : : : ; ed ; the metric is isotropic; it satisfies Keplerian symmetry
property (2). Finally we can send ei to eki . In some instances this defines a group
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homomorphism of ( into itself. Then the Cayley graph admits one-sided dilations
and so satisfies (3). The examples we know of groups whose Cayley graphs satisfy
(1), (2) and (3) are the lattices Zd , the lattices in nilpotent groups, and the free group
on d generators. In the continuous case, we know how to derive a Kepler’s third law
from the Keplerian symmetry (3). Is there an analogous construction in the discrete
case?

4.5 Full Disclosure: R.M.

I have little interest in any kind of graph for its own sake. I am not a combinatorist,
nor a discrete group theorist!

In contrast to the dozens of books that Jerry wrote in his life, I have mustered
the courage and stamina to write a single book in this life. (Jerry continues to
amaze.) In that book I devoted a chapter to trying to understand one of the big
ideas of Gromov in his paper ‘On Groups of Polynomial Growth . . . ’ [11] in
which he used subRiemannian ideas to solve a problem in discrete group theory.
Consider a discrete finitely generated group ( . Select some generators and form the
group’s Cayley graph. We say the group is ‘of polynomial growth’ if the number
of vertices of the Cayley graph lying inside a ball of radius R is bounded by
a polynomial in R as R ! 1. (If ( is of polynomial growth with respect to
one set of generators, it is of polynomial growth with respect to any other set
of generators.) The lattices, and the integer lattice in the Heisenberg group are
examples of groups of polynomial growth. More generally, the lattices in any
Carnot group are of polynomial growth. The free group on 2 generators in not
of polynomial growth: its balls have exponential growth, roughly 3R. There is
a notion of a group being ‘virtually nilpotent,’ and it was known that virtually
nilpotent implies polynomial growth. Gromov proved the converse: polynomial
growth implies virtually nilpotent.

Gromov’s paper is mind-blowing – the most astounding application of subRie-
mannian geometry that I know of made by a human. (Cats and micro-organisms
have made their own astounding applications.) Gromov scales the edges of the
Cayley graph by �, then takes the limit as � ! 0. He proves, in essence, that the
result converges to a Carnot group – a metric of subRiemannian type on a nilpotent
Lie group – and from this the theorem easily follows. (I am stretching the truth
here, but that is the spirit of Gromov’s paper. There are many technicalities.) What
I find so compelling about Gromov’s paper is the going back and forth between the
wonderful world of smooth metric spaces – Lie groups even – which I know and
love, and the chopped up world of discrete objects that I find so frightening at times.
Can we similarly go back and forth in dynamics? That is what I would like to see in
some ‘Kepler problem on a lattice.’
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On the Completeness of Trajectories
for Some Mechanical Systems

Miguel Sánchez

Abstract The classical tools which ensure the completeness of both, vector fields
and second order differential equations for mechanical systems, are revisited.
Possible extensions in three directions are discussed: infinite dimensional Banach
(and Hilbert) manifolds, Finsler metrics and pseudo-Riemannian spaces, the latter
including links with some relativistic spacetimes. Special emphasis is taken in
the cleaning up of known techniques, the statement of open questions and the
exploration of prospective frameworks.

1 Introduction

As explained in the classical Abraham and Marsden book [1, p. 71], the complete-
ness of vector fields is often stressed in the literature since it corresponds to well-
defined dynamics persisting eternally. However, in many circumstances one has to
live with incompleteness and, in this case, incompleteness may mean the failure of
our model. Remarkably, this happens in General Relativity, where singularities have
become so common (Schwarzschild spacetime, Raychauduri equation, theorems by
Penrose and Hawking: : :) that one expects to find incompleteness under physically
reasonable general assumptions—and one hopes that the quantum viewpoint will
be able to explain the physical meaning of singularities. In any case, the possible
completeness or incompleteness becomes a fundamental property of the model.

In his early works at the beginning of the seventies, Marsden gave two remark-
able results on completeness. The first, in collaboration with Weinstein [68], extends
previous works on the completeness of Hamiltonian vector fields by Gordon [33],
Ebin [23] and others. The second, about the geodesic completeness of compact
homogeneous pseudo-Riemannian manifolds [47], was one of the few results
ensuring completeness instead of incompleteness in the Lorentzian setting of that
time. The results on the side of geodesics in the Lorentzian setting have increased
notably since then (see the review [14]). Moreover, some connections with the
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original Riemannian results for Hamiltonian systems have appeared. This has been
a stimulus for the recent update and extension of such Riemannian results carried
out by the author and his coworkers in [17].

The aim of this paper is to revisit these results, formulating them in a general
framework, and pointing out new open questions as well as new lines of study.
The paper is organized into three parts. In the first (Section 2), some preliminaries
on infinite-dimensional Banach manifolds endowed with Finsler metrics are intro-
duced. From our viewpoint, this is the natural framework for the completeness of
first order systems (vector fields), and some second order ones can be reduced to
this setting.

In Section 3 we study completeness for both, first and second order systems.
For first order, we review some old results [1, 2, 23, 33, 68] formulating them in
the general Banach Finsler case, and also allowing the time-dependence of the
vector fields. We introduce primary bounds (Definition 1) here, which allow the
purification of previous techniques (Theorem 1). For second order, i.e., trajectories
accelerated by potentials and other time-dependent forces, we give a general result
on completeness in Riemannian Hilbert manifolds (Theorem 2), which summarizes
and extends those in [17, 23, 33, 68]. The latter are also simplified technically
because, even though our proof uses comparison criteria between differential
equations as in previous references, here such criteria are reduced essentially to
the elementary Lemma 1—and the bounds through positively complete functions
introduced in [68] reduce to primary bounds as well. We suggest the possibility of
going further in two directions: the time-dependence of the potentials and the Finsler
Banach framework.

Section 4 deals with (finite-dimensional) pseudo-Riemannian manifolds. Here
there is a great diversity of results and techniques (see [14]), and we focus on
two topics. Firstly, results regarding manifolds with a high degree of symmetry.
In particular, the extension of Marsden’s Theorem 5 to conformally related metrics
(Theorem 6), is explained by using the techniques in the previous section. Secondly,
the geometry of wave type spacetimes. This provides a simple link between
Riemannian and Lorentzian results (Theorem 9) with new exciting open questions—
some of them collected together at the end.

2 Preliminaries on Infinite-Dimensional Manifolds

Some preliminaries on Banach manifolds are introduced here. Results on the
elements which will be relevant for the posterior results will be gathered together,
and a framework for tentative generalizations will be provided. Special emphasis is
focused on the role of paracompactness for the ambient manifold, as this condition
will be equivalent to the existence of a C0-Finsler metric such that its associated
distance metrizes the manifold topology. The role of smoothability for Finsler
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metrics is also emphasized. Essentially, C0 smoothability is sufficient for distance
estimates in first order problems (Section 3.1), but further smoothability may be
required for the development of second order ones (Section 3.2).

We will follow conventions on Banach and Hilbert manifolds as in the original
papers by Palais [51–53], as well as books such as Abraham et al. [2], Lang [44],
Deimling [20], Kriegl and Michor [42] or Moore’s notes [49].

2.1 Banach Manifolds and Finsler Metrics

2.1.1 Topological Conventions

Any Banach manifold M will be always assumed Ck with k � 1, as well as
connected, Hausdorff and paracompact and, thus, normal.1 A n-manifold will be
a finite dimensional Banach manifold with dimension n 2 N. When the infinite
dimension is allowed, we will remark explicitly that M is Banach (say, modelled
on some Banach space B with norm k � k) or, when applicable, that it is Hilbert
(modelled on some real Hilbert spaceH with inner product h � ; � i). When indefinite
metrics are considered, as in Section 4, M will be typically a n-manifold.

2.1.2 Finsler Banach Manifolds

F will denote a (reversible) Finsler metric on the Banach manifoldM , and .M;F /
will be called a Finsler Banach manifold. This notion is taken in the sense of Palais
[52], that is, F yields a norm at each tangent space:

Fp W TpM ! R (1)

which admits a Ck chart .U; '/; p 2 U; ' W U � M ! B such that the induced
norms

k u kqWD Fq.d.'�1/'.q/.u// 8u 2 B; (2)

(here d denotes the differential or tangent map) satisfy: (a) they are equivalent to the
natural norm k � k of B (i.e., �q k � kq	k � k	 ��1

q k � kq for some 0 < �q < 1

1In particular, our Banach manifolds will be always regular and, so, some difficulties pointed out
by Palais in [53] (see Sect. 2 including the Appendix therein), will not apply. The central role of
paracompactness from the topological viewpoint is stressed in Figure 1. Notice that, as a difference
with the finite dimensional case, second countability does not imply paracompactness (see for
example [46], [42, Sect. 27.6] or [53]).
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Fig. 1 Topological
properties related to the
paracompactness of a
(connected, Hausdorff)
Banach manifold

and all q 2 U ) , and (b) they vary continuously at p (i.e., for each 0 < � < 1 there
exists a neighborhoodU� � U of p such that � k � kq 	k � kp 	 ��1 k � kq for all
q 2 U�).

As norms cannot be differentiable at2 0, the Ck0

differentiability of the norm
k � k means always away from 0. The Finsler metric is called Ck0

(for 0 	 k0 	
k � 1) if Fp is Ck0

and varies smoothly with p in a Ck0

way (i.e., for any chart
.U; �/ as above the map U � .B n f0g/! R; .q; u/ 7!k u kq is Ck0

).

2.1.3 Existence of Finsler Metrics

The question of the existence of a C0 Finsler metric depends only on topological
grounds, but the existence of a Ck0

one with k0 > 0 is much subtler. Namely, on
the one hand the hypothesis of paracompactness on M becomes equivalent to the

2By the same reason that neither is the absolute value function on R. Moreover, at least in the
finite-dimensional case, the square of a norm is smooth at 0 if and only if the norm comes from a
scalar product [67, Prop. 4.1].
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Fig. 2 Existence of smooth
Finsler metrics on a manifold
M modelled on the Banach
space B

existence of C0-partitions of the unity subordinated to any open covering. By a
result of Palais [52, Th. 1.6], [53, Sect. 3], it is also equivalent to the existence of
locally Lipschitz partitions of the unity, and this allows ensuring the existence of
C0 Finsler metrics in any Banach manifold [52, Th. 2.11]. On the other hand, when
the model Banach space B admits Ck partitions of the unity subordinate to any
open covering (which happens, in particular, when B is separable and admits a Ck

norm away from 0, see [9], [2, Prop. 5.5.18, 5.5.19]), then the Banach manifold M
also admits Ck partitions of the unity [2, Th. 5.5.12] and, in this case, M admits
Ck�1-Finsler metrics too (Figure 2).

Remark 1. It is worth pointing out that, even though the differentiability of F may
be useful for some issues (see Section 3.2.2 below), it will not be especially relevant
for the estimates which involve length or distances in the first order problems to be
studied in Section 3.1. This fact is used implicitly in time-dependent problems. In
fact, this case is commonly handled by transforming it into a non time-dependent
one, defined on the product manifoldM �R which is endowed with a natural direct
sum of Finsler metrics (namely, the addition of the Finsler metrics of the factors),
see Remark 3. Nevertheless, this direct sum is non-differentiable away from 0 even
if differentiability is assumed for the metric on each factor (notice that it is not
guaranteed the differentiability on a vector tangent to the product whenever one of
its two components is equal to zero).
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2.1.4 Distance Associated to a Finsler Metric

Remember that our definition of a Finsler metric F includes its reversibility (i.e.,
F.v/ D F.�v/ for all tangent vector v 2 TM ). So, F defines a natural distance
by taking the infimum of the lengths of the curves connecting each pair of points.
This distance will be denoted dF or, simply, d if there is no possibility of confusion.
One can prove that the topology generated by d agrees with the manifold topology
by using the regularity of the manifold. Palais [53, p. 202] and, so, that all Finsler
Banach manifolds are metrizable.3

We will speak about the completeness of .M;F / in the sense of metric
completeness, i.e., the convergence of Cauchy sequences for .M; d/. One can
also consider geodesics for .M;F / (for example, in the sense of locally length-
minimizing curves of constant speed, with other characterizations under further
smoothability, see Section 3.2.2) and we will say that .M;F / is geodesically
complete when its inextensible geodesics are defined on all R. In the infinite-
dimensional case, the completeness of .M;F / implies geodesic completeness but,
as stressed by Atkin [3], neither geodesic completeness implies metric completeness
nor other consequences of Hopf–Rinow theorem hold.

In order to make estimates with the distances, we fix a base point p0 2 M and
denote

jpj D d.p; p0/ 8p 2M: (3)

(This notation will be used when the properties under study are independent of the
chosen point p0.)

2.2 Pseudo-Riemannian Metrics and Hilbert Manifolds

2.2.1 Pseudo-Riemannian Metrics on Banach Manifolds

When the model space B of the Banach manifold M is reflexive, it is natural
to define a Ck0

.k0 	 k � 1/ pseudo-Riemannian metric g as a Ck0

choice of a
continuous symmetric bilinear form gp at each tangent space TpM such that the
associated “flat” map (to lower indexes in finite dimension) into the dual space
given by

[p W TpM ! TpM
�; vp 7! gp.vp; � / (4)

3Consistently, paracompactness can be deduced from the hypothesis of metrizability (or even just
from pseudo-metrizability, see [2, Lemma 5.515]).
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is a homeomorphism (if this condition on [b were not imposed, one would speak of
a weak pseudo-Riemannian metric, and the reflexivity of B would not be required).
The set of all such bilinear forms gp can be identified via a chart around p with
an open subset of the set BLsym.B/ of all the continuous symmetric bilinear forms
on B . As BLsym.B/ is naturally a Banach space too, the pseudo-Riemannian metric
g can be regarded as a section of a fiber bundle onM with fiber BLsym.B/ (see [44,
Ch VII.1]).

2.2.2 Riemannian Metrics on Hilbert Manifolds

When the pseudo-Riemannian metric g is positive definite then we say that it is
Riemannian. As we are assuming that [p is a homeomorphism, the model spaceB is
then Hilberteable. So, it will be denoted H , and we will consider only Riemannian
metrics on Hilbert manifolds. Notice that, for any Riemannian metric g, one has
an associated Finsler metric given by F.v/ D p

g.v; v/ for all v 2 TM . So, the
bounds required in the definition of continuity for F in the Finslerian case (see (a)
and (b) below formula (2)), hold here in terms of the norm associated to the inner
product h � ; � i ofH . Moreover, this norm is always C1 away from 0. Thus, any Ck

Hilbert manifold modelled on a separable spaceH admits Ck partitions of the unity
and, then, a Ck�1 Riemannian metric. Riemannian metrics on Hilbert manifolds,
as well as their geodesics, are extensively studied in the literature, see for example
[44] or, for the separable case, [40]. A type of Hopf–Rinow theorem for separable
Riemann Hilbert manifolds can be found in [40, Th. 2.1.3] (including the “Notes”
therein; recall also [3]); some related remarkable properties can be seen in [25].

2.3 Concluding Remarks and Conventions

For the convenience of the reader, a summary on the topological and smooth-related
results commented above is provided in Figures 1 and 2. Basic detailed background
can be found in [52, 53] and [2]. In what follows, all the objects will be smooth i.e.
as differentiable as possible according to the discussion above. In the case of first
order problems (Section 3.1), this will mean at least C2 for any Banach manifold
M and C1 for any vector field X onM . As emphasized in Remarks 1 and 3, Finsler
metrics are required only C0 at this stage. Further requirements of smoothability
will be needed for the second order case (Section 3.2). In the (indefinite) finite-
dimensional case (Section 4), the issues on smoothability are not especially relevant
and, so, the reader may either track them or just assume C1 smoothability.
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3 Completeness of Trajectories in a Positive-Definite
Infinite-Dimensional Setting

This section is divided into two subsections. The first one is devoted to the problem
of the completeness of a vector field. We start by reviewing some results. These
have essentially been known from the seventies [23, 33, 68] and explained in [1, 2].
They are extended here to the (C0) Finsler setting when possible (Propositions 1,
and 2). Then, the notion of primarily complete function is introduced (Definition 1).
Primary bounds for a vector field allows us to give an optimal result on completeness
in the Finsler Banach case, Theorem 1. The time-dependent case is specially
discussed in Remark 3 and the last part of the subsection.

In the second subsection, our Theorem 2 (plus Remark 6) summarizes and
extends the results on second order differential equations in [17, 23, 33, 68]. The
proof is carried out in three conceptually independent steps. The first one is just
a standard reduction to the first order case. The second one deals with technical
bounds. This is carried out here just by using systematically the simple Lemma 1.
In the third step, the subtleties of the infinite dimensional case (first studied by Ebin
[23]), are stressed.

Further discussions are also provided in this second subsection. Firstly, the
relation between the previous notion of primarily complete function and Weinstein–
Marsden’s positive completeness, is analyzed. Secondly, we consider specifically the
time-dependent case. Even though natural bounds are obtained for the growth
of the potential in this case, we also explore some alternatives. Finally, we
discuss the difficulties of the generalization when the Riemannian metrics are
replaced by Finslerian ones, and we provide a simple example for the (standard)
finite-dimensional Finsler case.

3.1 Complete Vector Fields on Finsler Banach Manifolds

3.1.1 Elementary Criteria

The properties of the (local) flow � of a vector field X and, in particular, the
existence of a flow box around each point, can be found, for example, in [2, p. 192ff],
[44, p. 84ff] or [49, Sect. 1.10]. We start with a well-known result (see for example
[2, Prop. 4.1.19]).

Proposition 1. Let X be a vector field on a Banach manifold M , and let c W
Œ0; b/ ! M (resp. Œ�b; 0/ ! M ) be an integral curve of X with 0 < b < C1.
Then, c can be extended beyond b as an integral curve ofX if and only if there exists
a sequence tn ! b� such that the sequence fc.tn/gn (resp. fc.�tn/gn) is convergent
in M .
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Proof. The necessity of the condition is obvious. For its sufficiency, let p 2 M be
the limit of the sequence. The existence of a flow box ofX at p ensures the existence
of a neighborhoodU of p and some � > 0 such that the integral curves of X at any
p0 2 U are defined on .��; �/. So, taking n large so that b � tn < � the integral
curve through c.tn/ will be defined on Œ0; �/ and c will be extensible through b.

Accordingly, we will say that an integral curve c of X defined on some interval I
of R is complete if it can be extended as an integral curve of X to all R, and X will
be complete if so are its integral curves.

Remark 2. (i) This result follows in the infinite-dimensional case as well as in the
finite-dimensional one. However, the application in the latter case is easier, as
M is then locally compact. For example, Proposition 1 yields directly that, if
the support of X is compact (in particular, if M is compact and, thus, finite-
dimensional) then X is complete.

(ii) Analogously, one can prove that if a Banach manifold .M;F / admits a C1-
proper map f W M ! R (i.e. f �1.Œa; b	/ is compact for any compact Œa; b	 �
R), then a vector field X is complete whenever

jXp.f /j 	 C1jf .p/j C C2 (5)

for some C1; C2 > 0 and all p 2 M . In fact, (5) implies a bound for the
derivative of log.C1jf ı cj C C2/. If the domain of the integral curve c were
bounded, a bound for f on c would be obtained too. As f is proper, the
result would follow then from Proposition 1 (see [1, 2.1.20] or [2, 4.1.21] for
more details). Even though proper maps are well behaved in Banach manifolds
(for example, they are closed maps [54]) results as the previous one are used
typically in the finite-dimensional case (putting, for example, f D C1jxj2CC2
on a complete Riemannian n-manifold).

The following criterion on completeness for Finsler Banach manifolds holds as in
the case of Riemann Hilbert ones or Banach spaces (compare with [1, Prop. 2.1.2]
or [2, Prop. 4.1.22]).

Proposition 2. Let .M;F / be a complete Finsler Banach manifold and X a vector
field on M . If c W I � R ! M is an integral curve of X and F. Pc/ is bounded on
bounded subintervals of I , then c is complete.

Proof. Assume with no loss of generality that I D Œ0; b/; b < 1, let A be the
assumed bound and choose ftng % b. The associated distance d satisfies then:

d.c.tn/; c.tm// 	
Z tm

tn

F . Pc.t//dt 	 Ajtn � tmj:

So, fc.tn/gn is a Cauchy sequence, which becomes convergent to some limit p by
the completeness of .M;F /. Then, Proposition 1 can be applied to fc.tn/gn.
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Remark 3 (The Time-Dependent Case). The results in the previous two proposi-
tions can be extended to the case when X is time-dependent, and defined for all the
values of the time.

More precisely, consider the product manifold M � R, let ˘R W M � R ! R,
˘M WM�R!M be the natural projections, and denote by t the natural coordinate
on R. We say thatX is a time-dependent vector field onM if it is a smooth section of
the pull-back bundle˘?

M.TM/, whose base is M �R and each fiber comes from a
tangent space toM . Such a vector field yields naturally a (time-independent) vector
field OX on M � R which satisfies both, d˘M

OX.p0;t0/ is naturally identifiable to the
natural projection of X.p0;t0/ on Tp0M and d˘R

OX.p0;t0/ D @t jt0 , for all .p0; t0/ 2
M � R.

To speak about the integral curves of X makes a natural sense (see for example
[44, Ch. IV]) and becomes equivalent to consider the integral curves of OX ; in fact,
c will be an integral curve of X if and only if Oc W t 7! .c.t/; t/ is an integral curve
of OX . So, Proposition 1 is extended directly to a time-dependentX .

To extend Proposition 2, recall that, if .M;F / is a Finsler Banach manifold, then
M �R admits a natural C0 Finsler metric OF obtained as the direct sum of F and the
usual one on R (see Remark 1). Clearly, OF will be complete if and only if so is F .
Moreover, the F -length of the integral curve c of X is bounded on finite intervals if
and only so is the OF -length of the integral curve Oc of OX , as required.

3.1.2 Applications

Next, we will apply previous results to simple but general situations. But, previously,
we consider the following technical elementary result for future referencing (see for
example [66, Lemma 1.1]).

Lemma 1. Consider the equation

Pu D f .t; u/ on Œt0; T /; (6)

where f 2 C0.R2;R/ is locally Lipschitz in its second variable, and let w D w.t/
be a subsolution of the differential equation i.e.,

Pw.t/ < f .t;w.t// 8t 2 Œt0; T /: (7)

Then, for every solution u D u.t/ of (6) such that w.t0/ 	 u.t0/ we have

w.t/ < u.t/ for all t 2 .t0; T /: (8)

The same conclusion (8) holds if w is only locally Lipschitzian and the inequality (7)
occurs when Pw.t/ is replaced by some local Lipschitz bound around each t .
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The proof follows just recalling that � WD w� u < 0 close to t0 by the assumptions
and, if there were a first point such that�.t1/ D 0, then P�.t1/ < 0 (or an analogous
inequality involving a local Lipschitz bound) holds, a contradiction.

Estimates of the Growth for Completeness Let us introduce some auxiliary
definitions.

Definition 1. A (locally Lipschitz) function ˛ W Œ0;1/! R is primarily complete
if it is positive, non-decreasing and satisfies:

Z 1

0

dx

˛.x/
D 1 (9)

A vector field X on a Finsler Banach manifold .M;F / is primarily bounded if
there exists a primarily complete function ˛, which be called a bounding function,
such that

F.Xp/ < ˛.jpj// 8p 2M: (10)

In particular, X grows at most linearly if it is primarily bounded by an affine
bounding function, i.e.:

F.Xp/ < C0 C C1jpj 8p 2M; (11)

for some constants C0; C1 > 0.

Remark 4. The best polynomial candidate for the bounding function ˛ has degree
one as, clearly, no polynomial of higher degree can be a primarily complete function.
Nevertheless, a slightly faster growth is allowed for non-polynomial functions. For
example, ˛ will be primarily complete if it grows as x � logx � log.logx/ for large
x (see also the discussion in the last part of Section 3.2.1).

Now, we can give a general bound for the completeness of vector fields.

Theorem 1. Any primarily bounded vector field on a complete Finsler Banach
manifold .M;F / is complete.

Proof. Let c W I !M be an integral curve ofX . With no loss of generality, assume
I D Œ0; b/, 0 	 t0 < t1 < b, and choose p0 D c.0/ in the notation introduced in (3).
Then:

jjc.t1/j � jc.t0/jj 	
Z t1

t0

F . Pc.s//ds <
Z t1

t0

˛.jc.s/j/ds; (12)

where ˛ is the bounding function. Thus, putting w.t/ D jc.t/j we can assume:

Pw.t/ < ˛.w.t//;
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(or the analogous inequality for local Lipschitz constants). The unique inextensible
solution w0 of the equality

Pw0.t/ D ˛.w0.t// w0.0/ D w.0/.D 0/

is defined for all t 2 Œ0;1/, as its inverse is determined as w 7! t.w/ DR w
0
d Nw=˛. Nw/ and (9) holds. So, from Lemma 1 one has

w.t/ < w0.t/ < w0.b/ 8t 2 .0; b/:

As ˛ is non-decreasing, equation (10) yields the bound F. Pc/ 	 ˛.w0.b// so that
Proposition 2 is applicable.

Remark 5. By considering on R a vector field type Xx0 D ˛.x0/@x one can check
the optimality of Theorem 1 and, in particular, the optimality (in the sense discussed
in Remark 4) of the at most linear growth of X to ensure completeness. Of course,
a vector field with a superlinear growth such as X D y2@x may be complete. In
fact, in order to ensure completeness, only the growth of X along the direction of
its integral curves becomes relevant. This underlies in the fact that the sum of two
complete vector fieldsX; Y may be incomplete (put Y D x2@y andX as before) and
may suggest more refined hypotheses for completeness in Hilbert spaces (compare
with [2, Exercise 2.2H]).

Time-Dependent Case As in the case of the criterions on completeness, Theo-
rem 1 can be extended to the case of a time-dependent vector field X . In fact, the
proof works in a completely analogous way (with the observations in Remark 3),
if the inequality in (9) is regarded as F.X.p;t// < ˛.jpj/ for all .p; t/ 2 M � R:

Nevertheless, one can be a bit more accurate.

Definition 2. A time-dependent vector field X on a Finsler Banach manifold is
primarily bounded along finite times if there exists a primarily complete function ˛
and a continuous function C.t/ > 0 such that

F.X.p;t// < C.t/˛.jpj/ 8.p; t/ 2M � R:

In particular, X grows at most linearly along finite times when ˛ can be chosen
affine or, equivalently, when

F.X.p;t// < C0.t/C C1.t/jpj 8.p; t/ 2M �R (13)

for some functions C0.t/; C1.t/ > 0

Corollary 1. Let X be a time-dependent vector field on a complete Finsler Banach
.M;F /. If X is primarily bounded along finite times then it is complete.

Proof. Reasoning with an integral curve c defined on Œ0; b/ as in the proof of
Proposition 2, notice that the inequality (13) for all the pairs .p; t/ 2M � Œ0; b	 also
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yields a time independent inequality as (11) with Ci DMaxt2Œ0:b	fCi.t/g; i D 0; 1.
Then, reason as in Remark 3 taking into account that OX is primarily bounded (on
M � Œ0; b	) if and only if so does X .

3.2 Completeness for 2nd Order Trajectories

3.2.1 General Result on Riemann Hilbert Manifolds

The next result, stated on a Riemann Hilbert manifold .M; g/, will summarize those
in [1, 17, 23, 33]. To state it, recall that the notion of time-dependent vector field
on M in Remark 3 can be directly translated to (continuous, linear) endomorphism
fields, which will be regarded here as sections of a fiber bundle on M � R with
fiber at each .p; t/ 2 M � R equal to the vector space of bounded linear operators
T.p;t/.M � R/! T.p;t/.M � R/ which vanish on .0; @t /.p;t/. Given such a field E ,
we will decompose it as E D S C H where S denotes its self-adjoint part .S D
.E C E)/=2/, and H the skew-adjoint one. A time-dependent or non-autonomous
potential means just a smooth map V WM �R! R, then, the notation @V=@t WM �
R ! R makes a natural sense, and rMV denotes the time dependent vector field
onM obtained by taking the gradient of V at each slice t Dconstant with respect to
g, i.e., dV.X.p; t/; 0/ D gp.rMV.p; t/; X.p; t// for .X.p; t/; 0/ 2 T.p;t/.M �R/.
The pointwise norm induced by g in any space of tensor fields will be denoted k � k.
Theorem 2. Let .M; g/ be a complete Riemann Hilbert manifold, and consider a
endomorphism field E D S CH , a vector field R and a potential V on M , all of
them time-dependent and smooth. Assume that:

(i) S is uniformly bounded along finite times, i.e., k S.p;t/ k	 C0.t/ for all .p; t/ 2
M �R,

(ii) R grows at most linearly along finite times, i.e., k R.p;t/ k	 C0.t/C C1.t/jpj
for all .p; t/ 2M � R, and

(iii) both, �V and j@V=@t j grow at most quadratically along finite times, i.e., they
are bounded by C0.t/C C2.t/jpj2,

where Ci.t/; i D 0; 1; 2, denote positive functions. Then, the inextensible solutions
of

D P

dt
.t/ D E.
.t/;t / P
.t/CR.
.t/;t / � rMV.
.t/; t/; (14)

are complete.

Proof. In order to clarify the ideas, the proof is divided into three steps.

Step 1: Reduce the problem to the completeness of a vector field on the tangent
bundle. The second order equation (14) allows to define a vector field G on the
manifold T .M �R/ such that each solution 
 of (14) generates an integral curve
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t 7! .
 0.t/; 1/ of G. This is standard (see for example [1, Ch. 3] or, for explicit
details on the time-dependent case, [17, Section 3.1]) and, so, the problem will
be reduced to apply the criterions in Propositions 1 and 2 to G.

Step 2: Find a bound for the velocity of any solution 
 of (14), by using the
hypotheses (i) to (iii). With no loss of generality, let 
 W Œ0; b/ ! M;b < 1,
be a solution of (14) whose extendability to b is to be determined, let u.t/ D
g. P
.t/; P
.t// the function to be bounded, and choose the base point p0 D 
.0/
for (3). Taking in (14) the product by P
 :

1

2
Pu.t/ D g.S.
.t/;t / P
.t/; P
.t//C g.R.
.t/;t /; P
.t// �

�
d

dt
V .
..t/; t/ � @V

@t
.
..t/; t/

�

so that taking pointwise norms and simplifying the notation:

d
dt
. 1
2
uC V / 	k S k uC k R k puC @V=@t

	 .k S k C1=2/uC k R k2 =2C @V=@t (15)

Using the bounds (i), (ii), (iii) and taking into account that, as the t coordinate is
confined in the compact interval Œ0; b	, the t-dependence of these bounds can be
dropped:

d

dt
.uC 2V / 	 A0 C A1uC A2j
 j2 (16)

for some constants A0;A1; A2 > 0. Consider the function l.t/ D R t
0

p
u, t 2

Œ0; b/ which provides the length of 
 . Clearly:

j
.t/j2 	 l.t/2 and
Z t

0

l.Nt/2d Nt 	 b � l.t/2 8t 2 Œ0; b/;

the latter as l is nondecreasing. Using these inequalities and integrating in (16):

u.t/ �A1
Z t

0

u 	 A0
0 � 2V.
.t/; t/C A2bl.t/2 < C0 C C1l.t/2;

where A0
0; C0; C1 are constants (C0 and C1 positive), obtained by taking into

account the hypothesis (iii). So, putting v.t/ D R t
0

u and relabelling A1,

Pv < C0 C C1 � l2 C C2 � v for some constants C0; C1; C2 > 0: (17)

Now, v can be regarded as a subsolution of a differential equation, and Lemma 1
will be applicable to the solution v0 of this equation with v0.0/ D v.0/ D 0 i.e.
v.t/ < v0.t/ and, taking into account (17):

Pv < C0 C C1 � l2 C C2 � v0 D Pv0
on .0; b/. As u D Pv, to bound Pv0 would suffice.



On the Completeness of Trajectories for Some Mechanical Systems 357

Notice that v0 can be written explicitly as:

v0.t/ D eC2t
Z t

0

e�C2 Nt .C0 C C1l.Nt /2/d Nt

so that, using that l is nondecreasing,

Pv0 	 C0 C C1l2 C C2beC2b.C0 C C1l2/ D AC Bl2 on Œ0; b/ (18)

for some constants A;B > 0. But recall that Pl D pu <
pPv0, that is, l can be also

regarded as a subsolution of a differential equation:

Pl <
p
AC B � l2: (19)

So, l is bounded by the corresponding solution (l.t/ <
p
A=B � sinh.

p
B � t on

.0; b/) and, thus, u (regarded either as Pl2 in (19) or as Pv0 in (18)) is bounded, as
required.

Step 3: As g is complete, P
 must lie in a compact subset. The aim is to prove the
extendability of P
 as an integral curve of the vector fieldG on T .M �R/ defined
in the first step. As a first consequence of the boundedness of u, the completeness
of g imply that 
 must be convergent in M . Then, it is convenient to distinguish
two type of reasonings:

(3a) In the case that M is finite dimensional, the convergence of 
 at b, the
boundedness of u D g. P
; P
/ and the local compactness of TM , are enough
to ensure that P
 lies in a compact subset of TM , so that Proposition 1 is
applicable to G.

(3b) In the infinite-dimensional case, the lack of local compactness requires a
more elaborated argument. First, the Riemannian metric g on M induces
naturally a Riemannian metric Qg on TM , the Sasaki metric [62]. As proven
by Ebin [23], Qg is complete whenever so is g. The vector field G can be
written as a sum G D G0 CG1 C G2 where G0 is the geodesic spray and,
thus, a horizontal vector field, G1 is a vertical vector field such that, at each
v.p;t/, depends only of the value of R C rMV at .p; t/ and G2 is also a
vertical vector which, at each v.p;t/, can be identified with E.v.p;t//. The
convergence of 
 yields a bound for Qg.G1;G1/ on P
 , the boundedness of u
implies a bound for Qg.G0;G0/ and, then, the boundedness of the operator
E implies the boundedness of Qg.G2;G2/. So, G is bounded on P
 , and
Proposition 2 is applicable.

Remark 6. (1) The result can be also sharpened, if one is only interested in the
forward or backward completeness of the trajectories (positive or negative
completeness), i.e. the possibility to extend the solutions to an upper or lower
unbounded interval type Œa;1/ or .�1; a	. From the proof is clear that, in
order to obtain the extensibility of the trajectories to C1 (resp. �1), one
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requires only the upper (resp. lower) uniform bound of g.v; S.v//=g.v; v/, for
v 2 TM n f0g,4 as well as the upper (resp. lower) bound of @V=@t , instead of
the bounds for the norm and absolute value imposed in the hypotheses (i) and
(iii).

(2) As a trivial consequence of Theorem 2, ifM is compact then all the inextensible
trajectories are complete, for any E;R; V .

Primary and Positively Complete Functions The optimal growth allowed either
for�V or for j@V=@t j can be sharpened, by using bounds in the spirit of the primary
ones, introduced for Theorem 1, which are clearly related to the notion of positive
completeness introduced by Weinstein and Marsden [68].

Recall that a smooth function V0 W Œ0;1/! R is called positively complete if it
is non-increasing and satisfies

Z C1

0

ds
p
e � V0.s/

D 1;

for some (and then all) constant e > V0.0/ (hence e > V0.s/ for all s 2 Œ0;C1/) [1,
68]. Extending Weinstein–Marsden notions, we say that a smooth time-dependent
function V WM �R! R is bounded by a positively complete function along finite
times if there exists functions V0; C W Œ0;1/ ! R, V0 positively complete and
C > 0 such that:

V.p; t/ � C.t/V0.jpj// 8.p; t/ 2M � R:

The relation between these notions and those used in the last subsection comes from
the fact that a smooth function V0 is positively complete if and only if

p
e � V0 is

well-defined and primarily complete for some e > V0.0/. Now, from the proof of
Theorem 2, one can easily check:

Hypotheses (ii) and (iii) in Theorem 2 can be replaced by the following
more general one: there exists a primarily complete function ˛ and a positive
one C such that R is primarily bounded along finite times by C � ˛ and
�V.p; t/; j@V=@t j.p; t/ < C.t/2˛.jpj/2 for all .p; t/ 2 M � R.

In particular, the quadratic bounds in (iii) can be improved by requiring only
bounds5 by, say, C0.t/ C C2.t/jxj2 log2.1 C jxj/ and the linear bound in (ii) by

4This can be rephrased as a bound of the spectrum of S , see [44, Th. 3.10].
5These improvements can be also extended to other contexts, as the completeness of certain Finsler
metrics in [21].
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QC0.t/CC1.t/jxj log.1Cjxj/ (as well as by other functions pointed out in [1, p. 233]
or [17, Remark 5(2)]). These bounds might be optimized further, combining them
also with better bounds for E .

The Time-Dependence of the Potential V For a non-autonomous potential, the
role of the bounds of @V=@t becomes quite subtler. Notice that one can regardrMV
as a time-dependent vector. Thus:

If we assume in Theorem 2 that rMV grows at most linearly along finite
times, no bound for @V=@t is necessary. Nevertheless, such a hypothesis is
independent of the one stated in (iii). In fact, in the autonomous case, if rMV
grows at most linearly then �V grows at most quadratically, but, clearly, the
converse does not hold.

Other alternative bounds for @V=@t in Theorem 2 can be explored. For example,
assuming by simplicity R D 0 in (ii), the result of completeness still holds if we
replace (iii) by the following two conditions: V is lower bounded at finite times
(V.p; t/ � �C0.t/) and:

j@V=@t j 	 C1.t/.V .p; t/ � C0.t// 8.p; t/ 2 M � R: (20)

In fact, (15) would yield now d.uC 2V /=dt < C.uC 2V �B/ for some constants
C > 0;B 2 R which depend on the domain Œ0; b/; b <1. So, uC2V (and, then, u)
would be bounded as a subsolution, see [16] for details.

These new bounds (lower for V plus (20)) are independent of those in (iii)
because, when V grows fast to infinity, such a growth is allowed for @V=@t
too. So, to find a general optimal bound for @V=@t (say, extending all previous
with some nice geometric interpretation) remains as a natural question.

3.2.2 Notes on the General Finsler Case

Finsler Metrics, Second Order Equations and Strong Convexity In order to
extend previous results to the Finslerian setting, notice that the Riemannian metric
g in Theorem 2 not only allows to introduce distances and estimates on the growth
of tensor fields, but also becomes essential to pose the second-order differential
equation (14). Thus, for the Finslerian extension, not only higher differentiability
for the Finsler metricF will be required but also its strong convexity, to be explained
here.
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Remark 7. As pointed out in Section 2, the existence of smooth Finsler metrics
introduce some restrictions in the infinite dimensional case. In fact, notions such
as pseudo-gradients6 were introduced to avoid those restrictions. Recall that the
smoothness of each pointwise norm Fp is required only away from 0 and, thus, it
can be characterized as the smoothness of the Fp-unit sphere as a submanifold of
the corresponding vector space TpM . However, the smoothness of F is not enough
to introduce connections, covariant derivatives, etc., which appear implicitly in (14).

The triangle inequality implies that, for each norm Fp , p 2 M , the closed unit
ball NBp.0; 1/ is convex, i.e., it contains any segment with endpoints in NBp.0; 1/. If
the triangle inequality holds strictly, then the unit sphere is strictly convex, in the
sense that each segment with endpoints in NBp.0; 1/ must be entirely contained in
the open unit ball Bp.0; 1/ except, at most, the endpoints. Nevertheless, even in
the smooth finite-dimensional case, the unit sphere may be strictly convex but not
strongly convex in the following sense.

Recall that the fundamental tensor of each norm Fp is the tensor field on TpM n
f0g defined as the Hessian hvp of F 2

p at each vp 2 TpM n f0g. Such a Hessian can
be defined by using an affine connection of TpM if Fp is C2. Now, consider the
slit tangent bundle TM n f0g and the tangent bundle TM , as well as the natural
projection � W TM n f0g ! M . This maps induces a vector bundle ��.TM/ with
base TM n f0g, being its fiber at each v 2 TM n f0g isomorphic to T�.v/M . Taking
the fundamental tensor for each Fp; p 2 M , one defines naturally the fundamental
tensor field h of F as a tensor field on the vector bundle ��.TM/, and F is called
strongly convex when h becomes a smooth positive definite tensor.

Strong convexity may introduce a new restriction in the infinite-dimensional
case, but it is necessary for several purposes, even in the case of n-manifolds (see
[37] for details):

• To ensure that geodesics (defined as extremals of the energy functional) are
determined univocally by its initial condition (starting point and velocity) at some
point. That is, otherwise geodesics cannot be regarded as solutions of a second
order differential equation nor their velocities yield integral curves on a vector
field on TM .

• To ensure (at least in the finite-dimensional case) that the natural Legendre
transformation TM ! TM �; vp 7! gvp .vp; � / (which generalizes the metric
isomorphism of inner spaces, see (4), but may not be linear) becomes a diffeo-
morphism. Recall that this map is the fiber derivative associated to the Lagrangian
L D F 2=2 (see [65, Sect. 3.1], [2, Sect. 3.6]) and, then, the Lagrangian becomes
hyper-regular. In this case gradients can be defined, and pseudo-gradients (see
the footnote 6) are no longer necessary.

• To define natural connections on the Finsler manifold.

6According to Palais [52, Defn. 4.1] (and taking into account Moore’s modification [49, p. 50]), a
pseudo-gradient for a function V on an open subset U is a locally Lipschitz vector field X such
that �2Fp.Xp/2 �k dVp k� ��2dVp.Xp/ for all p 2 U .
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Standard Finsler Case Taking into account the difficulties pointed out above
for the general Finsler case, we restrict now to standard Finsler manifolds i.e.,
n-manifolds endowed with a C1-smooth and strongly convex Finsler metric. This
is the object of study of standard references on Finsler manifolds as, for example,7

[4, 65]. Some similarities with the Riemannian case appear then:

• A covariant derivative for vector fields on curves exists. Thus, the acceleration of
these curves can be defined, extending so the notion ofD P
=dt in the Riemannian
case [4, pp. 121–124], [65, Sect. 5.3].

• Non-constant geodesics can be defined as curves with 0 acceleration, they admit
a variational characterization and they also determine a (second order equation)
vector field G on the slit tangent bundle TM n f0g so that the integral curves of
G are the curves of velocities of geodesics, [4, Sect. 3.8, 5.3], [65, Sect. 5.1].

• The Finsler metric F provides the fundamental tensor as well as a natural Sasaki
type metric on the slit tangent bundle that makes TM n f0g a Riemannian
manifold [4, p. 35].

Of course, important differences with the Riemannian case remain, because
Chern/Rundt connection in Finslerian geometry (as well as Cartan, Hashiguchi
or Berwald connections) becomes much subtler than the natural Levi–Civita
connection in the Riemannian case.

Bearing in mind these subtleties, one can try to give different Finslerian
extensions of Theorem 2. Here, we will consider just the most obvious one, and
leave the possibility of obtaining more general results for further developments.
To avoid working with Finslerian machinery and work with one of the possible
connections, notice that, in the caseR D E D 0, formula (14) is the Euler–Lagrange
equation for the critical curves of the action:

Z b

a

�
1

2
F. P
.t//2 � V.
.t/; t/

�

dt (21)

with fixed points 
.a/; 
.b/. In Theorem 2, F is the norm of the Riemannian metric
but, obviously, functional (14) makes sense for any Finsler metric and, under some
conditions as above, its Euler–Lagrange equation can be written as in (14). We say
that 
 W I � R ! M is a trajectory for the potential V if its restriction to any
compact subinterval Œa; b	 of I is a critical point of the action functional (21).

Proposition 3. Let .M;F / be a standard Finsler manifold, and consider aC1 time-
dependent potential V W M � R ! R such that �V and j@V=@t j grows at most
quadratically for finite times. Then, any inextensible trajectory 
 W I � R!M for
the potential V is complete.

7However, standard Finsler metrics are usually allowed to be non-reversible, see Remark 8.
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Proof. Notice first that the problem can be reduced to study the integral curves of
a vector field on TM , because, as the Finsler metric is standard, the Lagrangian
L D .F 2=2/ � V becomes regular (in fact, hyper-regular), see for example
[2, Th. 3.5.17, 3.8.3]. Then, putting u D F. P
/2, one has d.uC 2V /=dt D 2@V=@t

and formula (16) holds (with A1 D 0), so that the proof follows as in Theorem 2.

Remark 8. A different direction in the possible generalizations of Theorem 2, is to
allow non-reversible Finsler metrics, so that F.v/ ¤ F.�v/ in general. This leads
us to consider generalized distances (i.e., possibly non-symmetric ones) and then,
forward and backward geodesics and Cauchy completions, as well as many other
subtleties (see [28] and references therein). Nevertheless, the general background
for completeness would be maintained for this case. In fact, Proposition 3 can
be extended to the non-reversible case. Namely, regarding the hypotheses of
completeness for F in the sense of, say, forward completeness, and the generalized
distance dF to the base point in the ordering jpj D dF .p0; p/ (so that the bound
for the potential remains formally equal). Then, the technique works also for the
non-reversible case, and the conclusion of forward completeness still holds.

4 Completeness of Pseudo-Riemannian Geodesics

This section is divided into four parts. The first one tries to orientate the intuition
about completeness on indefinite manifolds by recalling some examples. Moreover,
the role of incompleteness in relativistic singularity theorems is compared with the
role of finite diameter for some Riemannian Myer’s-type results. In the second
part, we recall some results on completeness for manifolds with a high degree
of symmetry. Here, the difference between global symmetries (homogeneous,
symmetric spaces) as in Theorems 5 and 6 and local ones (constant curvature,
local symmetry) in Theorems 7 and 8 becomes apparent. The third part is focused
on plane wave type spacetimes, whose completeness yields a direct link with the
Riemannian results of trajectories under potentials (Theorem 9). Previous results
suggest some open questions stated in the last part of the section.

In what follows, .M; g/ will be a n-manifold endowed with a pseudo-
Riemannian metric of index �, typically a Lorentzian one (i.e., � D 1 so that
the signature is .�;C; : : : ;C/). The name of semi-Riemannian manifold (instead
of pseudo-Riemannian) has been also spread, especially since O’Neill’s book
[50]. This book is referred to here for general background on pseudo-Riemannian
geometry, the review [14] for the specific problem of geodesic completeness, and
the book [6] for related Lorentzian results.
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4.1 The Pseudo-Riemannian and Lorentzian Settings

Let .M; g/ be a pseudo-Riemannian manifold, and v 2 TM , v ¤ 0. Extending
the nomenclature in General Relativity, v will be called timelike (resp. lightlike,
spacelike) if g.v; v/ < 0 (resp.D 0, > 0).

4.1.1 Abandoning the Riemannian Intuition

For a pseudo-Riemannian manifold there is no any result analogous to the Hopf–
Rinow one and, for example,M may be compact and geodesically incomplete.

Example 1. Consider the Lorentzian metric g on R
2 defined as g D 2dxdy C

�.x/dy2, where � is periodic of period 1, �.0/ D 0 and � 0.0/ ¤ 0. A simple
computation shows that the line x D 0 can be reparameterized as an incomplete
lightlike geodesic. So, the quotient torus T D R

2=Z2 inherits an incomplete
Lorentzian metric (more refined properties on tori can be found in [59] and
references therein).

The previous example also shows that a closed lightlike geodesic may be non-
periodic and, then, incomplete. Also as a difference with the Riemannian case, a
homogeneous Lorentzian manifold may be incomplete.

Example 2. Consider a half plane of Lorentz–Minkowski space in lightlike coordi-
nates u; v namely .RC�R; g D 2dudv/. This space is trivially incomplete, and it is
homogeneous too, as both, the v-translations and the maps ˚� W .u:v/ 7! .�u; v=�/
(for any � > 0), are isometries. Recall also that the quotient cylinder obtained from
the orbits of the isometry group f˚m

2 W m 2 Zg is another example of space with a
closed incomplete lightlike geodesic (namely, the projection of u 7! .u; 0/).

4.1.2 Singularity Theorems

Even though at the very beginning of General Relativity incompleteness was
regarded as a pathological property for a physical spacetime, the further develop-
ment of Relativity showed that incompleteness appears commonly under physically
realistic conditions. Well-known results in this direction were obtained by Ray-
chaudhuri [56], Penrose [55], Hawking [34], Gannon [31] or, more recently,
Galloway and Senovilla [30], amongst others (see the review [63] for general
background). We emphasize that the claimed incompleteness here occurs only for
geodesics of timelike or lightlike type.8 Even though it is not totally clear to what

8Explicit examples by Kundt [39], Geroch [32, p. 531] and Beem [5] showed the full logical
independence among spacelike, timelike and lightlike geodesic completeness.
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extent such incomplete geodesics would represent a physical singularity (nor the
meaning of the latter, see the classical discussion [32]), the moral in Relativity is
that the knowledge of the possible completeness or incompleteness of the underlying
Lorentzian manifold becomes an essential property of the spacetime.

As pointed out in [61], perhaps the simplest singularity theorem for researchers
interested in connections with Riemannian Geometry is the following one by
Hawking, which can be regarded as a support for the physical existence of a Big
Bang.

Theorem 3. Let .M; g/ be a spacetime satisfying the following conditions:

1. .M; g/ is globally hyperbolic,
2. there exists some spacelike Cauchy hypersurface S with an infimum C > 0 of its

expansion, that is, such that its mean curvature vector H D Hn, where n is the
future-directed unit normal, satisfies H � C > 0,

3. the timelike convergence condition holds: Ric.v; v/ � 0 for any timelike vector v.

Then, any past-directed timelike curve starting at S has length at most 1=C .

The reason is that the proof of this theorem can be regarded as isomorphic to the
proof of the following purely Riemannian result:

Theorem 4. Let .M; g/ be a Riemannian manifold satisfying:

1. g is complete,
2. there exists some embedded hypersurface S which separates M as a disjoint

union M D M� [ S [MC, with an infimum C > 0 of its expansion towards
MC, that is, such that its mean curvature vector H D Hn, where n is the unit
normal which points out M�, satisfies H � C > 0,

3. Ric.v; v/ � 0 for every v.

Then, dist.p; S/ 	 1=C for every p 2 M�.

In fact, this last theorem can be proven by using standard techniques on focal points
and Myers’ theorem. Such techniques can be extended to the Lorentzian setting
by realizing that the roles of each one of the three hypotheses in Theorem 3 is
isomorphic in the proof to the corresponding hypothesis in Theorem 4 (in particular,
the role of Riemannian completeness is played by global hyperbolicity), see [36] and
[48] for full details. The techniques of singularity theorems, however, become much
more refined, because of the weakening of causality assumptions, the appearance of
genuinely Lorentzian elements such as trapped surfaces and other subtleties, see for
example [35] or, more recently, [30].
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4.2 Completeness Under Symmetries

After previous considerations, it is clear that some strong assumptions will be
required in order to ensure geodesic completeness. We will focus on some types
of symmetries.

4.2.1 Killing and Conformal Fields

The simple Examples 1 and 2 of non-complete compact or homogeneous Lorentzian
manifolds, make apparent the importance of the following theorem by Marsden [47]
(see also [1, 4.2.22]):

Theorem 5 ([47]). Any compact homogeneous pseudo-Riemannian manifold is
geodesically complete.

Marsden’s proof is carried out by proving that TM can be written as the union of
compact subsets S˛ , each one invariant by the geodesic flow (and, so, Proposition 1
yields directly the result). In fact, if g� is the dual of the Lie algebra of the isometry
group, and P W TM ! g� is the momentum map (i.e., P.v/� D g.v; �M /, where
�M is the infinitesimal generator of � 2 g), then S˛ D P�1.˛/, for each ˛ 2 g�.

As proven by Romero and the author [57, 58], this result can be extended in two
directions. Firstly, it is not necessary, in order to ensure the completeness of each
geodesic 
 , that its velocity P
 remains in a compact subset of TM . In the spirit
of Proposition 2, it is enough if it remains in a compact subset when its domain
is restricted to bounded intervals. From such an observation, Theorem 5 can be
extended to metrics conformal to Marsden’s. Secondly, a homogeneous manifold is
full of Killing vector fields but if, say, a compact Lorentzian manifold admitted just
one timelike Killing vector field9 K , this would be enough. Indeed, as g. P
;K/ is
a constant for any geodesic 
 , this (plus the constancy of g. P
; P
/) is sufficient to
ensure that P
 lies in a compact subset. So, from these ideas:

Theorem 6 ([57, 58]). A compact pseudo-Riemannian manifold .M; g/ of index �
is geodesically complete if one of the following properties hold:

• .M; g/ is (globally) conformal to a homogeneous one, or
• .M; g/ admits � timelike conformal vector fields which are pointwise inde-

pendent.

The technique also admits extensions to non-compact manifolds, see [57, 60]; for
applications to classification of spaceforms, see [38]. Further results on locally
homogeneous 3-spaces (involving also the classification of these spaces) can be
found in [10, 13, 22].

9This case is interesting also for the classification of flat compact Lorentzian manifolds, which are
called then standard, see [38].
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4.2.2 Locally Symmetric and Constant Curvature Manifolds

As a difference with homogeneous spaces, it is easy to check that any pseudo-
Riemannian symmetric space is geodesically complete (see for example [50,
Lemma 8.20]). Nevertheless, even for locally symmetric spaces and, in particular,
constant curvature ones, the problem is not as trivial as it may seem. We quote two
results which will be relevant in order to state some open questions below. The first
one is due to Lafuente:

Theorem 7 ([43]). For a locally symmetric Lorentzian manifold, the three types of
causal completeness (timelike, lightlike and spacelike) are equivalent.

The second one was proven by Carriére [19] in the flat case and extended by Klinger
[41] for manifolds of any constant curvature.

Theorem 8 ([19, 41]). Any compact Lorentzian manifold of constant curvature is
geodesically complete.

Remark 9. Recall that the proof of this result holds only for Lorentzian signature; as
far as we know, the extension of the result to higher signatures is an open problem.

4.3 Riemannian and Lorentzian Interplay: Plane Waves

4.3.1 Plane Waves, pp-Waves and Further Generalizations

Following [15], consider a Lorentzian n-manifold, n � 3, that can be written
globally as .M D R

2 �M0; g/ where the natural coordinates of R2 will be labelled
.u; v/ and g is written as:

g.u;v;x/ D �2dudvCH.u; x/du2 C˘?
0 g0; 8.u; v; x/ 2 R

2 �M0;

being ˘0 W M ! M0 the natural projection and g0 a Riemannian metric on M0.
Here, we will refer to these spaces as M0p-waves. When .M0; g0/ is just Rn�2,
these metrics are called pp-waves (plane-fronted waves with parallel rays), namely,
M D R

n,

g.u;v;x/ D �2dudvCH.u; x1; : : : ; xn�2/du2 C
n�2X

iD1

.dxi/2 8.u; v; x1; : : : ; xn�2/ 2 R
n

(22)
Such a pp-wave is called a plane wave when H is quadratic in .x1; : : : ; xn�2/,

H.u; x1; : : : ; xn�2/ D
n�2X

i;jD1
Aij.u/x

ixj :
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In the particular case n D 4 one writes H.u; x; y/ D a.u/ .x2 � y2/C 2 b.u/ xyC
c.u/ .x2 C y2/; where a; b; c are arbitrary smooth functions of u. The functions
a; b describe the wave profiles of the two linearly independent polarization modes
of gravitational radiation, while c describes the wave profile of non-gravitational
radiation. When c D 0 (vacuum or gravitational plane waves) the Ricci tensor
vanishes.

Plane waves are interesting in many physical issues. We remark here that they
are also interesting in the framework of r th-symmetric spaces r � 2 (introduced in
[64], see [8] for a systematic study). These are pseudo-Riemannian manifolds with
r th-covariant derivative of its curvature tensor R equal to 0:

rrR WD r : : :.r/rR � 0:

For Riemannian manifolds r th-symmetry implies local symmetry (i.e.,rR D 0) but
proper examples of rth-symmetric spaces can be found in the class of plane waves.
In fact, such examples are obtained just regarding the matrix A as a polynomial in u
of degree r � 1:

Aij.u/ D a.r�1/ij ur�1 C : : :C a.1/ij u1 C a.0/ij

where a.r�1/ij 6� 0; a simple computation shows that rrR D 0 but rr�1R ¤ 0.
As shown in [8], proper 2nd-symmetric Lorentzian spaces are locally isometric

to the product of such a wave (with r D 2) and a locally symmetric Riemannian
space.

4.3.2 Completeness of M0p-Waves

A nice relation between the geodesic completeness of a class of Lorentzian manifold
and the completeness of Riemannian trajectories for a potential appears in the case
of M0p-waves:

Theorem 9. A M0p-wave is geodesically complete if and only if .M0; g0/ is
complete and the trajectories of

D P

dt
.t/ D �rM0V.
.t/; t/

are complete for V D �H=2.
Thus, under the completeness of the Riemannian part .M0; g0/, a M0p-wave

is complete if H and j@H=@uj grows at most quadratically for finite u-times. In
particular, all plane waves are geodesically complete.
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Proof. The first part is proven in [15, Th. 3.2], by means of a careful equivalence
between the Lorentzian geodesics and Riemannian trajectories [15, Prop. 3.1]. So,
it is enough to apply Theorem 2.

As emphasized in [26], this type of result also justifies that all physically reasonable
pp-waves (that is, those with a qualitative behavior ofH as a plane wave, eventually
with some possible decay at infinity) will be geodesically complete and, so, they can
be regarded as singularity free.

Finally, we state the following very recent result by Leistner and Schliebner on
pp-waves. Notice that, for any pp-wave as above (formula (22)), the vector field
V D @v is parallel and lightlike, and the curvature tensor R satisfies:

R.U;W / D 0 for all vector fields U;W orthogonal to V: (23)

Conversely, any spacetime admitting such a vector field can be written locally as a
pp-wave. Now:

Theorem 10 ([45]). The universal covering of any compact Lorentzian manifold
.M; g/ which admits a parallel lightlike vector field V satisfying (23), is a
geodesically complete pp-wave. In particular, .M; g/ is geodesically complete.

This result goes in the same direction of those for the compact case with constant
curvature or (conformal) homogeneity. Nevertheless, the special holonomy derived
from the global existence of V plays a fundamental role here. So, in principle, it is
not enough to assume that the spacetime is just locally isometric to a plane wave
(and, so, for example, Carriére’s theorem is not re-proved). In fact, the universal
covering is taken such that @v is the lift of the globally defined vector field V .

Remark 10. The existence of a complete vector field V fulfilling the hypotheses in
Theorem 10, can be also regarded as a generalization of the notion of pp-wave to
non-trivial topology. As emphasized in [45], such a generalization may pose some
topological subtleties related to Ehlers–Kundt conjecture (see the third question
below), loosely suggested in the original article [24].

4.4 Some Open Questions

Taking into account previous considerations, the following questions become
natural and are open, as far as we know:

1. Assume that a compact Lorentzian manifold is globally conformal to a
manifold of constant curvature. Must it be geodesically complete?

Recall that this poses a possible extension of Theorem 8, which may be
expected after the conformal extension in Theorem 6 of Marsden’s Theorem 5.
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It is also worth pointing out that, for compact manifolds, lightlike completeness
is a conformal invariant (this is easy to check as lightlike pregeodesics are
conformally invariant, and their reparameterizations as geodesics depend on a
bounded conformal factor, see [14, Section 2.3] for detailed computations). So, if
a counterexample to the question existed, it would be incomplete in some causal
sense and complete in the lightlike case. In particular, such a counterexample
would prove that Lafuente’s Theorem 7 cannot be extended to the conformal case
even for compact manifolds. It is also worth pointing out that, if 
 is a geodesic
for a metric g, then it satisfies an equation type (14) for any conformally related
metric Ng (but, in this case, such an equation is posed on a Lorentzian manifold
.M; Ng/).

2. Assume that a pseudo-Riemannian manifold is r-th symmetric. Must the
three types of causal completeness be equivalent?

Such a question becomes natural after Lafuente’s Theorem 7, especially in the
case of Lorentzian 2nd-symmetric spaces, because of their simple classification
explained above.

3. Must any complete gravitational (i.e., Ricci flat) pp-wave be a plane wave?

This is a long-standing open problem posed by Ehlers and Kundt [24]. Recall
first that all plane waves are complete, even if non-gravitational (Theorem 9). The
fact that these waves are gravitational, i.e., Ricci flat, yields a link with complex
variable, as this condition is equivalent to the harmonicity of H.x; u/ with
respect to the variable x (see [27])—notice that the study of the completeness
of holomorphic vector fields, become a field of research in its own right which
has been handled with specific tools, see for example [11, 12, 29]. Thus, there
are both, physical and mathematical motivations for its study [7, 27].

As a last comment, we point out that the completeness of trajectories in a Lorentzian
manifold under external forces is an almost open field with rich possibilities [18]; as
we have said in the comments to question 1, this includes the equation of geodesics
for a conformally related metric. So, even though the physical interpretations of
such forces are less apparent in the Lorentzian case than in the Riemannian one, this
may be an interesting topic for future research.
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with Left-Invariant Metrics
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Abstract The geometric approach to diffeomorphic image registration known as
large deformation by diffeomorphic metric mapping (LDDMM) is based on a left
action of diffeomorphisms on images, and a right-invariant metric on a diffeo-
morphism group, usually defined using a reproducing kernel. We explore the use
of left-invariant metrics on diffeomorphism groups, based on reproducing kernels
defined in the body coordinates of a source image. This perspective, which we
call Left-LDM, allows us to consider non-isotropic spatially-varying kernels, which
can be interpreted as describing variable deformability of the source image. We
also show a simple relationship between LDDMM and the new approach, implying
that spatially-varying kernels are interpretable in the same way in LDDMM. We
conclude with a discussion of a class of kernels that enforce a soft mirror-symmetry
constraint, which we validate in numerical experiments on a model of a lesioned
brain.
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1 Introduction

The geometric point of view on diffeomorphic image matching was pioneered by
[10, 31], and has been developed significantly in the last ten years [4, 5, 8, 16, 19, 20,
32]. In its many practical applications to medical imaging, including computational
anatomy [23], the approach is known as the Large Deformation Diffeomorphic
Metric Mapping framework (LDDMM). A good geometric overview may be found
in [5]. Two key elements of this framework are: a right-invariant Riemannian
metric on a group of diffeomorphisms; and the left action of this group on images
I W ˝ ! R

d defined by � � I WD I ı ��1. Combining these two elements gives an
induced Riemannian metric on the group orbit of a given image I .

In image registration in general, the inexact matching problem is, given two
images I and J , to find a transformation � that minimises the sum of some measure
of the size of � and some measure of image dissimilarity (or error)E.� � I; J /, such
as k� � I � J k2

L2
. In LDDMM, we seek a path of diffeomorphisms �.t/ starting at

Id , with the size of the final diffeomorphism �.1/ given by the length of the path �
defined by the right-invariant Riemannian metric associated with some norm k:kV
on a Hilbert space V of smooth vector fields. Thus the fundamental optimisation
problem in LDDMM is to minimise

J .�/ D 1

2

Z 1

0

kv.t/k2V dt C E.�.1/ � I; J /; (1)

for a path � with �.0/ D Id , under the constraint

@t�.t/ D v.t/ ı �.t/; (2)

which defines v.t/ as the spatial (Eulerian) velocity of �.t/. Note that all minimisers
of this functional are geodesics, since they must minimise the first term of (1) for a
given �.1/.

The minimisation problem (1) is well-posed provided that the norm on V is
sufficiently strong in terms of smoothness (see [36], Theorem 11.2). The Hilbert
space V is usually defined via its reproducing kernel:

kvk2K D hp;K ? piL2; where v D K ? p : (3)

A Gaussian kernel is often chosen for computational convenience, or a mixture of
Gaussian kernels as in [25, 26].

We note that LDDMM is not the only diffeomorphism-based approach to image
matching. There is another family of successful methods, based on exponentiating
stationary vector fields [2, 3, 33]. However, unlike these methods, LDDMM is able
to draw on concepts in geometry and mechanics such as geodesic distance and
momentum, which have been central both to theoretical developments and to recent
efficient numerical algorithms [7, 34].
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Though not required by the theory, in practice the kernel used in diffeomorphic
methods (LDDMM and the other methods cited above) has always been chosen
to be translationally-invariant and isotropic. In LDDMM, spatially-varying or non-
isotropic (“direction-dependent”) kernels have no obvious interpretation, because
the norm is defined in Eulerian coordinates, so that as t varies during the defor-
mation, a fixed point in the source image moves through space, and conversely,
a fixed point in space will correspond to different points on the source image.
Similarly, the directions in a direction-dependent kernel are defined with respect to
Eulerian coordinates, not the coordinates of the moving source image. Nonetheless,
spatially-varying kernels are potentially of great interest in medical applications,
if they can be made to represent spatially-variable (or non-isotropic) deformability
of tissue. This is indeed already done in [27] to model sliding conditions between
the lungs and the ribs. In general it is well-known that a good choice of kernel (the
“regulariser”) is essential for optimising registration performance, so that taking into
account any spatial variability of the tissue deformability in the kernel will improve
the registration.

With this motivation, we propose a new registration framework, which will
support natural interpretations of spatially-varying metrics. Left-Invariant LDDMM
(“Left-LDM”) is analogous to LDDMM but based on a left-invariant metric, i.e.
based on a norm in the body (Lagrangian) coordinates of the source image. This
means that instead of the norm in (1) being applied to the spatial (Eulerian) velocity
defined by (2), it is applied to the convective velocity defined by

@t�.t/ D d�.t/ � v.t/ ; (4)

where d�.t/ is the spatial derivative of �.t/. To emphasize the relationship between
the two frameworks, we will refer to LDDMM from now on as “Right-LDM”,
consistent with the use of the shortened acronym LDM in [16]. The matching
problem in Left-LDM is to minimize the same functional as in Right-LDM (1) but
under the “new” constraint (4). Note that the convective velocity of a given �.t/ is
the pull-back of the spatial velocity by �t , i.e. it is just the spatial velocity expressed
in body (Lagrangian) coordinates.

Subject to some analytical subtleties explored in Section 2, the solutions �.t/ are
left-geodesics in a diffeomorphism group. The description of left-geodesic flow in
terms of the convective velocity is an example of a convective representation of a
continuum theory. Convective representations were introduced in [18] for ideal fluid
flow, and [29] for elasticity, and the subject has been further developed in [15]. The
relationship between left- and right- geodesic flows on a diffeomorphism group was
explored earlier in [14].

In the Left-LDM framework, a spatially-varying or non-isotropic kernel makes
sense, because it is defined in Lagrangian coordinates, so it can model variable
deformability of different parts of the source image. (The norm is carried along
by push-forwards with the moving source image.) This opens up possibilities for
application-specific regularisation, either hand-tuned or learnt from data.
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2 Analytical Setting

We consider the convective velocity constraint, formula (4), and the conditions on
v.t/ such that it can be integrated to produce the diffeomorphism �.t/. Such an
evolution equation is a partial differential equation that belongs to the class of linear
symmetric hyperbolic systems [12]. The usual method for solving such equations
consists in using the method of characteristics, which amounts to solve an equation
of the type (2) on the inverse of the flow. The equation of characteristics, being
equivalent to formula (2), is an ordinary differential equation and can be integrated
provided sufficient smoothness assumptions on the spatial velocity. For the spatial
velocity constraint, a satisfactory answer has been given in [36, Theorems 8.7
and 8.14]: The flow of a time dependent vector field in L2.Œ0; 1	; V / is well-defined
if there exists a constant C > 0 such that for every v 2 V

kvk1;1 	 CkvkV ; (5)

where kvk1;1 is the Banach norm in W 1;1.˝;Rd /. Under this hypothesis, the
variational problem (1) is well-posed and the set GR, defined by1

GR WD
˚
�.1/

ˇ
ˇ @t�.t/ D v.t/ ı �.t/ and v 2 L2.Œ0; 1	; V / ; �.0/ D Id

�
; (6)

is a group. A similar approach in [11] proves that the flow of v 2 C.Œ0; 1	;Hs/

defines an Hs diffeomorphisms for s > d=2C 2. From a variational point of view
the former approach is better suited for solving Problem (1). In particular, working
with the space L2.Œ0; 1	; V / is crucial for proving the existence of a minimizer
and therefore we cannot reduce our work to a smooth setting. This is our main
motivation for developing the following analytical study. Let us then define the
following set,

GL WD
˚
�.1/

ˇ
ˇ @t�.t/ D d�.t/ � v.t/ and v 2 L2.Œ0; 1	; V / ; �.0/ D Id

�
: (7)

Integrating equation (4) is straightforward in a smooth setting. Indeed, this equation
is equivalent to

@t�
�1.t/ D �v.t/ ı ��1.t/ : (8)

Unfortunately, working with L2.Œ0; 1	; V / vector fields, Equation (8) has to be
proven true in that context. An example of this issue is the following: with a fixed
regularity, for instance the group Diffs ofHs diffeomorphisms, the inversion map is

1In the corresponding definition in [36], v need only be absolutely integrable in time.
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only continuous and not differentiable. This comes from the fact that the inversion
map Inv W Diffs ! Diffs presents a loss of regularity when being differentiated:

D Inv.�/.v/ D �d��1.v ı ��1/ : (9)

The rest of the section will be devoted to show that equation (4) can be solved via the
method of characteristics. Our strategy consists in proving that Equation (8) holds
under very weak conditions so that integration of the convective velocity equation (4)
reduces to the integration of Equation (8).

In what follows, we consider˝ a closed, bounded domain and V a Hilbert space
of vector fields u such that both u and du vanish on its boundary, and we suppose
that V is embedded in C1.˝;Rd /, i.e. there exists a constant C > 0 such that (5)
applies for all u. Let us begin with the following lemma:

Lemma 1. Let B WD C0.Œ0; 1	; C 11.˝;Rd //\H1.Œ0; 1	; L2.˝;Rd //. Let � 2 B ,
and denote by ��1 the map t 7! ��1

t . If �t is a diffeomorphism onto ˝ for all
t 2 Œ0; 1	, then ��1 lies in B .

Remark 1. The subscript1 denotes the use of the sup norm.

Proof. The standard Inverse Function Theorem implies that ��1
t is C1 for all t 2

Œ0; 1	. The continuity of � implies the continuity of the map .t; x/ 7! �t.x/, which
by a lesser-known version of the Implicit Function Theorem (see [22]) implies the
continuity of t 7! ��1

t .x/ for every x. Therefore, by compactness of ˝ we have
��1 2 C0.Œ0; 1	; C 11.˝;Rd /.

Let us first suppose that � 2 C WD C0.Œ0; 1	; C 11.˝;Rd / \ C1.Œ0; 1	; C 0

.˝;Rd //, and that (as before) �t is a diffeomorphism onto ˝ for all t 2 Œ0; 1	.
Then for all x 2 ˝ one has by simple differentiation

@t�
�1
t .x/ D �Œd�t 	��1

t .x/.@t�t .�
�1
t .x/// : (10)

We aim at proving that @t��1
t belongs to L2.Œ0; 1	; L2.˝;Rd //: The first term

Œd�t 	��1
t .x/ is continuous (on ˝) and its sup norm is uniformly bounded for

t 2 Œ0; 1	 since C01.Œ0; 1	; C 11.˝;Rd //. By assumption, @t�t 2 L2.˝;Rd / and
the right composition with a C1 diffeomorphism is a bounded linear operator on
L2.˝;Rd / (by a standard change of variable). It follows easily that @t��1

t 2
L2.Œ0; 1	; L2.˝;Rd // and ��1 2 C .

We will prove a similar result for any � 2 B: By density of C in B , we consider
a sequence �n 2 C converging to � 2 B . In particular, we have

��1
n;T .x/ D

Z T

0

�Œd�n;t 	��1
n;t .x/

.@t�n;t .�
�1
n;t .x/// dt : (11)

First, the left-hand side strongly converges in C11.˝;Rd / (by the inverse function
theorem) and thus in L2.˝;Rd / to ��1

T .
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Second, the right-hand side weakly converges in L2.˝;Rd / to

Z T

0

�Œd�t 	��1
t .x/.@t�t .�

�1
t .x/// dt :

Indeed, let us consider f 2 C1.˝;Rd / and calculate the L2 scalar product

hf;
Z T

0

�Œd�n;t 	��1
n;t . � /.@t�n;t .��1

n;t . � /// dti D
Z T

0

�hŒd�n;t 	���1
n;t . � /.f /; @t�n;t .�

�1
n;t . � //i dt

D
Z T

0

�hŒd�n;t 	�1�.f ı �n;t /; @t�n;t . � /Jac.�n;t /i dt : (12)

Since f is smooth and˝ compact, f is uniformly Lipschitz and thus Œd�n;t 	�1�.f ı
�n;t / converges for the sup norm to Œd�t 	�1�.f ı �t /. The same convergence holds
for Jac.�n;t / by assumption. This proves the weak convergence on smooth functions,
which implies the weak convergence in L2 (see [35]). Strong and weak limits
are equal so that Œd�t 	��1

t . � /.@t�t .��1
t . � /// 2 L2.Œ0; 1	; L2.˝;Rd // is the (time)

derivative of ��1
t and the conclusion ensues.

Remark 2. In fact, we could have proven the following stronger result: the inversion
map is continuous on an affine subspace QB ofB defined by QB D f� 2 B j�t 2 Diff g
endowed with the Banach norm sup.k�kH1 ; k�k1; k��1k1/. However, the proof
would be a little more involved and the result is not needed in what follows.

Proposition 1. Solutions in B of (4) exist, are unique and are characterized by
being solutions of

@t�
�1.t/ D �v.t/ ı ��1.t/ : (13)

Proof. The initial condition is �0 D Id together with the assumption � 2 B imply
the existence of a positive real number T > 0 such that �t is a diffeomorphism
for t 2 Œ0; T 	. On this interval, the previous lemma gives that ��1 2 B and
@t�t D �Œd�t 	��1

t . � /.@t�t .��1
t . � ///. Since @t�t D d�.t/ � v.t/, we obtain @t��1

t D
�v.t/ı��1.t/. Using the result [36, Theorem 8.7] on flow integration, we obtain the
existence and uniqueness of ��1 2 B satisfying (13). This implies also existence
and uniqueness of solutions inB of (4) on Œ0; T 	. The extension for all time t 2 Œ0; 1	
is straightforward by considering I D supfT > 0 j 8t < T ; �t 2 Diffg. By
construction, I is open and the argument above shows that I is non-empty. Last,
I is closed since the flow of �v.t/ is a diffeomorphism for all time t 2 Œ0; 1	 and
therefore I D Œ0; 1	.
Remark 3. The definition of the spaceB could have been a little more general using
W 1;1.˝;Rd / instead of H1.˝;Rd /. However, it was not necessary regarding the
existence of minimizers of functional (1) under convective velocity constraint.
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In light of this result, we modify the definitions of GL and GR to require that
� 2 B:

GL WD
˚
�.1/ 2 B ˇˇ @t�.t/ D d�.t/ � v.t/ and v 2 L2.Œ0; 1	; V /� ;

GR D
˚
�.1/ 2 B ˇˇ @t�.t/ D u.t/ ı ��1.t/ and u 2 L2.Œ0; 1	; V /� :

Since GR is closed under inversion, Proposition 1 implies GL D GR. Note that the
sets of paths �.t/ in the definitions ofGL andGR do not coincide in general. Indeed,
these sets of paths correspond to each other by the inverse map, and this inversion
shows a loss of regularity for instance on Diffs . In the rest of the paper, we will use
the notationGV to denote the groupGL D GR, and by abuse of notation,GL andGR
will denote the set of paths generated under the constraint (4) (and respectively (2))
by elements of L2.Œ0; 1	; V /.

The structure of GV is not well-known. In the case of Gaussian kernels, GV is
probably included in an ILH-Lie group in the sense of Omori [24]. In general, it
is not known whether GV admits a differentiable structure. Nonetheless, the group
carries natural left- and right- invariant metrics, as defined in the next section, and
isometries should be understood as being between metric spaces. In the case of
Sobolev spaces, the right-invariant metric is a smooth Riemannian metric, whereas
the left-invariant metric is probably not.

Finally, we can now benefit from the existence of minimizers for the func-
tional (1) in the LDDMM framework:

Theorem 1. If V satisfies assumption (5) and E is continuous w.r.t. uniform
convergence of � on every compact set in ˝ , then there exists a minimizer in GV of
the functional (1) under the convective velocity constraint (4).

Proof. This follows from [36, Theorem 11.2].

Note that the theorem applies for the usual sum of squared differences similarity
measure:

E.�/ D kI ı �.1/�1 � J k2
L2
:

3 Left- and Right-Invariant Metrics on Diffeomorphism
Groups

Proposition (1) proved that the convective velocity constraint (4) is equivalent to

@t�
�1.t/ D �v.t/ ı ��1.t/ ; (14)
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in a general setting.This equation is simply the spatial velocity constraint (2) for
��1, except with a minus sign. In other words, if the spatial and convective velocities
of any path �.t/ are denoted by v�R and v�L, respectively, then

v
��1

R D �v�L: (15)

As a consequence of this simple fact (well-known in a smooth setting), there are
close relationships between Left-LDM and Right-LDM.

On GV a left-invariant metric dL can be defined by

dL.�; Id/ D inff
s
Z 1

0

kv�L.t/k2V dt W �.0/ D Id and �.1/ D �g: (16)

A right-invariant metric dR can be defined in the same way but using the spatial
velocity v�R instead of the convective velocity v�L. It follows from (15) that

dL.�; Id/ D dR.��1; Id/: (17)

As shown in [31], the distance dR is well-defined and makes GV a complete
metric space. From (17), it follows that the same is true of dL. Between any two
diffeomorphisms in GV , there exists a path minimising the distance dL (resp. dR),
and such minimising paths will be called left- (resp. right-) geodesics. Note that we
have defined geodesics without reference to a Riemannian metric, since we do not
know whether GV even has a smooth structure, as discussed earlier.

The following proposition summarises some elementary properties of these
distance metrics, all straightforward consequences of (15) and the definitions.

Proposition 2.

1. The inverse mapping is an isometry:

.GV ; dL/! .GV ; dR/

� ! ��1

2. � is a left-geodesic if and only if ��1 is a right-geodesic.
3. Left translation is an isometry of .GV ; dL/, and right translation is an isometry

of .GV ; dL/.
4. The left translation of a left-geodesic is a left-geodesic (and similarly for right-

geodesics).

Remark 4. In the context of fluid dynamics, � is the usual Lagrangian map, and
��1 is the “back-to-labels” map. Observation (2) in the above proposition has been
exploited before in this context [14].

We now show two correspondences between Left- and Right- LDM.
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Lemma 2. Let �.t/ be a path of diffeomorphisms with spatial velocity v�R.t/,

defined by (2). Define  W t ! �.1/��1.1 � t/, and let v L .t/ be its convective
velocity, defined by (4). Then v L.t/ D v�R.1 � t/.
Proof. From (2) we have, by direct calculation:

@t�
�1.t/ D �d��1.t/ � v�R.t/ ;

so that

@t�
�1.1 � t/ D d��1.1 � t/ � v�R.1 � t/ ;

and therefore,

@t .t/ D d .t/ � v�R.1 � t/ :

Thus v�R.1 � t/ satisfies the relation (4) that defines v L .t/.

The following proposition is a direct consequence of the previous lemma. It
concerns a generalisation of the matching functional (1), in which the squared path
length in the first term is replaced by the integral of a general Lagrangian l.v.t//,
and the image dissimilarity term E.�.1/ � I; J / is replaced by a general real-valued
functionH.�.1//.

Proposition 3. Let V and G D GL D GR be as defined above. Let H W G 7! R

and l W V 7! R be smooth maps. Let v�R and v�L be the spatial and convective
velocities defined by (2) and (4), respectively. We define FR on the set of paths in
GR such that �.0/ D Id˝ by

FR.�.t// D
Z 1

0

`.v
�
R.t// dt CH.�.1// : (18)

Respectively, FL.�/ is defined on the set of paths in GL by

FL.�.t// D
Z 1

0

`.v
�
L.t// dt CH.�.1// : (19)

Then,

FR.�.t// D FL.�.1/�
�1.1 � t// ; (20)

and as a consequence, the minimizers of FR and FL are in one to one bijection by
the map �.t/ 7! �.1/��1.1 � t/.
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Proof. Let  W t ! �.1/��1.1 � t/. Changing the variable t 7! 1 � t , and then
applying the Lemma, we have

Z 1

0

`.v
�
R.t// dt D

Z 1

0

`.v
�
R.1 � t// dt D

Z 1

0

`.v
 
L .t// dt:

Since  .0/ D �.0/ D Id˝ and  .1/ D �.1/, the result follows.

Remark 5.

1. Generically, changing from right- to left- invariant Lagrangian does not change
the endpoint of the optimal path.

2. The correspondence also holds for the boundary value problem, i.e. when �.1/
is fixed.

3. One can use a time-dependent Lagrangian `.v; t/ if `.v; 1 � t/ D `.v; t/ for all
t 2 Œ0; 1	.

4. If the termH is replaced by a path-dependent term, then the result does not hold
any more.

A direct application of the previous proposition to the case of the kinetic energy
defined by `.v/ WD 1

2
kvk2V and H.�/ D E.�1 � I; J / gives the following corollary.

The existence of minimizers for these functionals is guaranteed by [36].

Corollary 1 (Equivalence of Optimal Matches in Left- and Right- LDM).
Consider the problem of minimising

J .�/ D 1

2

Z 1

0

kv.t/k2V dt CE.�1 � I; J / ; (21)

for �0 D Id˝ , and with either constraint

@t�t D d�t � vt (Left-LDM constraint) (22)

or

@t�t D vt ı �t (Right-LDM constraint): (23)

Then

1. The optimal endpoint �1 is the same with either constraint.
2. If �t minimises J in Left-LDM, then  t WD ��1

1�t ı �1 minimises J in Right-
LDM.

3. If  t minimises J in Right-LDM, then �t WD  1 ı  �1
1�t minimises J in Left-

LDM.

Optimal paths in Left-LDM are left-geodesics, while optimal paths in Right-LDM
are right-geodesics.
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Fig. 1 This figure shows snapshots of two deformations from the left-most source image to the
right-most target image. The green curves show the optimal Right-LDM path (a right-geodesic),
while blue curves show the optimal Left-LDM path (a left-geodesic). Note that the paths are
different, though both arrive at an exact match. The right-metric length of the green geodesic
equals the left-metric length of the blue geodesic

In summary, the optimal diffeomorphism �1 is the same in both approaches, but
there are two optimal paths from Id to �1: one left- and one right- geodesic. These
two paths are illustrated in the following diagram.

When left- (resp. right-) geodesics act on a image, the resulting paths in shape
space are left- (resp. right-) geodesics. An example is given in Figure 1.

4 Geodesic Flow of Left-Invariant Metrics

We have considered minimisers of (1), which are geodesics. We now consider
the corresponding initial value problem in which only �.0/ D Id is fixed.
The minimisers �.t/ evolve according to Euler-Lagrange equations which are
equivalent, in the Right-LDM case, to the EPDiff equation [21],

d

dt

@l

@v
D � ad�

v

@l

@v
; (24)

together with the spatial velocity constraint. This formulation leads to the momen-
tum representation of diffeomorphisms, and further to the special pulson solutions,
which correspond to image landmarks and have applications to optimization
schemes [7, 34] and to the statistical description of images [23]. We now discuss
the corresponding concepts in Left-LDM.
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The first term of (1) with fixed endpoints may be expressed as
R 1
0
l.v.t//dt where

l is the kinetic energy Lagrangian defined by

l.v/ WD 1

2
kvk2V ; (25)

and v.t/ is the convective velocity of �.t/, defined in (4). The minima of this
problem, with given endpoints �.0/ and �.1/, are left-geodesics, as defined in the
previous section. There is a question of the well-posedness of the boundary value
problem that defines these “left-geodesics”. However, from the equivalence with
Right-LDM shown in Section 3, it follows that the problem is well-posed for the
same norms for which the corresponding problem in Left-LDM is well-posed. In
addition, the Euler-Poincaré equation is available via this equivalence and let us
point out that left-reduction is not needed here.

4.1 Euler-Poincaré Equation

Using the equivalence with Right-LDM, under mild conditions on H in (21), left-
geodesics minimising (21) satisfy the left Euler-Poincaré equation [21],

d

dt

@l

@v
D ad�

v

@l

@v
: (26)

This equation can be expressed in terms of the convective momentum,

p.t/ WD @l

@v
;

as d
dt
p D ad�

v p. In Euclidean coordinates, the Euler-Poincaré equation takes the
following form, called EPDiff-left,

@p
@t
D ad�

v p WD v � rpC .rv/T � pC p .div v/ ; (27)

where .rv/T � p WD P
j pjrvj . If the norm is defined in terms of a kernel K� as

in (3), then v D K� ? p and

l D 1

2

Z 1

0

hp.t/;K� ? p.t/iL2 dt: (28)
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4.2 Conservation Law

Given the convective velocity constraint (4), the left-invariant Euler-Poincaré
equation is equivalent to (see [21])

0 D d

dt
Ad�

�

@l

@v
D ���1�� p: (29)

This is a conservation law, with the conserved quantity being spatial momentum,

m.t/ WD ���1�� p.t/ D ���1�� @l
@v
:

Note that this reverses the Right-LDM situation, where convective momentum is
preserved and spatial momentum evolves according to EPDiff-right.

4.3 Pulsons

Singular “pulson” solutions may be found by making the following ansatz [13],

p.t/ D
NX

aD1
Pa.t/ı .x �Qa.t// : (30)

It is known [17] that this momentum ansatz defines an equivariant momentum map

JSing W T �Emb.S;Rn/!X .Rn/� (31)

called the singular solution momentum map, where here S is a finite set ofN points
indexed by a. It is the momentum map for the cotangent-lift of the left action of
Diff .Rn/ on Emb.S;Rn/. It follows from general theory (see e.g. [21]) that JSing

is a Poisson map with respect to the canonical symplectic form on T �Emb.S;Rn/
and the right Lie-Poisson bracket on X .Rn/�. Thus the EPDiff-right equations pull
back to canonical Hamiltonian equations in Q and P , with respect to Hamiltonian

H D
NX

a;bD1

�
Pa.t/ �Pb.t/�K �Qa.t/;Qb.t/

�
:

These are the singular pulson solutions discussed in [13] and elsewhere. It also
follows, applying a time reversal, that the EPDiff-left equations (27) pull back to
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time-reversed canonical Hamiltonian equations in Q and P , with respect to the
same Hamiltonian:

@

@t
Qa.t/ D �

NX

bD1
Pb.t/K.Qa.t/;Qb.t//

@

@t
Pa.t/ D

NX

bD1

�
Pa.t/ �Pb.t/

� @

@Qa

K.Qa.t/;Qb.t// :

These are the equations of the pulson solutions of EPDiff-left. Note that they are
nearly the same equations as for the pulson solutions of EPDiff-right, with two
important differences: (i) there is a time-reversal; and (ii) Qa.t/ is not the spatial
location of particle a at time t , but instead it is an “anti-particle’s location” in body
coordinates, i.e. the location in body coordinates corresponding to a fixed spatial
location Qa.0/. This follows from the conservation of spatial momentum. Similar
observations apply to higher-dimensional singular solutions (filaments, sheets, etc.).

All of the results in this section can be either verified directly, making minor
changes to the well-known proofs for right-geodesics (the flow of EPDiff-right), or
deduced from the correspondence between left and right geodesics in Section 3.

5 Spatially Varying Metrics and Non-local Symmetries

Regarding applications, a crucial point consists in defining the metric which can be
viewed as a parameter to be tuned accordingly with data. In the classical Right-LDM
picture, due to translation and rotation symmetry, the class of metrics is rather small.
In contrast, the Left-LDM model enables the use of many more types of kernels. In
particular, kernels that incorporate non-local correlations. A striking example is the
brain development where a symmetry at large scale between the left and the right
parts of the brain can be exploited in order to improve the image matching quality.
Of course, it is natural to ask for soft symmetry in practical applications rather than
perfect symmetry. We give hereafter an explicit example of a kernel satisfying those
requirements.

Let us first present the case of perfect symmetry: Let ˘ W V 7! V be the
symmetry of interest, which is a continuous linear operator on the space of vector
fields V that satisfies ˘2 D id . For instance, in R

2 if v D .v1; v2/, the example
showed in the simulation is ˘..v1; v2/// D .u1; u2/ where u1.x; y/ D �v1.�x; y/
and u2.x; y/ D v2.�x; y/. The set of vector fields v satisfying the symmetry
condition ˘.v/ D v is thus a closed linear subspace denoted by V1, which may
be endowed with the induced norm or alternatively with:

kv1k2V1 D min
v2V

�

kvk2V
ˇ
ˇ
ˇ
1

2
.v C˘.v// D v1

�

: (32)
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In general, those two norms do not coincide, unless ˘ is self-adjoint which is the
case in our example. We prefer the metric (32) since the kernel associated with that
metric is given by:

KV1 D
1

4
.IdC˘/ ıK ı .IdC˘�/ : (33)

Since, in our example, ˘ is self-adjoint, we can simplify the expression of KV1 to
get

KV1 D
1

2
.IdC˘/ ıK : (34)

The above kernel KV1 will produce perfect symmetry which is not desired as
mentioned above. However, we can modify it to allow for a variable degree of
symmetry. For example, consider the class of kernels

K D .IdC c˘/ ıK� ; (35)

where the strength of the symmetry ranges from none at c D 0 to perfect symmetry
at c D 1. It is also natural to introduce a mixture of kernels with different length
scales, to account for local discrepancies in the deformation field, i.e. which means
using

K D .IdC c˘/ ıK�1 CK�2 ; (36)

where �1; �2 are the scale parameters of the kernels, for example the standard
deviation of the Gaussian kernel. In particular, it is natural to use �1 > �2 to account
for large scale symmetry. Looking at the form of the kernel (36), it is tempting to
introduce a spatially varying coefficient that accounts for more or less symmetry
or importance of a given kernel. Therefore, the final example of spatially-varying
kernel is the following: Let Ki be n kernels and �i W ˝ 7! Œ0; 1	 be n smooth
functions such that

Pn
iD1 �i D 1 then we consider

K D
nX

iD1
�iKi�i : (37)

This kernel is associated to the following variational interpretation:

kvk2 D min
.v1;:::;vn/2V1�:::�Vn

(
nX

iD1
kvik2Vi

ˇ
ˇ
ˇ

nX

iD1
�ivi D v

)

: (38)

We note that Formula (38) is a simple generalization of mixtures of kernels, which
are explained in detail in [6].
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6 Experiments

In the following experiments, we are interested in deformations generated by
the Left-LDM model using spatially dependent kernels that incorporate the soft
symmetry constraint proposed in Section 5. By the equivalence proven in Section 3,
the final deformation is also given by the corresponding Right-LDM model, so all
of the numerical results presented below have been computed using the standard
gradient descent optimization method for the Right-LDM model detailed in [6].

We registered two images out of the LPBA40 dataset [28]. We considered
Subjects 8 and 9 of the dataset. The images were resampled to a resolution of 1 mm
and rigidly aligned. We then extracted corresponding 2D slices from the two aligned
images. Finally, we simulated a large lesion in the slice from Subject 8. A mask was
also constructed, by dilating the original lesion location mask 8 times, each time
using a 3�3 structuring element. This mask was used to omit lesioned areas from
calculation of the image dissimilarity term, and also to mask the updated momenta
before smoothing. Registered images are shown in Fig. 2.

We registered the lesioned images with LDM as described above, using two
kinds of kernel: a standard translationally-invariant sum of Gaussian kernels
(non-symmetric); and a spatially-varying kernel that softly enforces a left-right
symmetry:

1. (non-symmetric) the sum of two Gaussian kernelsK�1CK�2 , where �1 D 25mm
and �2 D 7mm, as in [4, 26].

2. (symmetric) the sum of a large-scale symmetrised kernel with a small-scale
Gaussian kernel,K�1 C c˘K�1 CK�2 , where˘ is a reflection about the vertical
line dividing the two hemispheres. The values of �1 and �2 are the same as above,
and c takes values 0:1 (weak symmetry), 0:5 or 1:0 (pure symmetry at large
scale).

For comparison, we have also performed LDM registration of the unlesioned images
using kernel (1) without a mask.

Fig. 2 (From left to right) 2D slice from Subject 8 of the LPBA40 dataset; same slice with a
simulated lesion (source image); and corresponding 2D slice from Subject 9 (target image). The
red isoline represents the surface of Subject 9’s brain
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Fig. 3 Source images around the simulated lesion deformed using the registration strategies 1 and
2 of Section 6. From left to right, the registration strategies were: non-symmetric kernel (strategy
1); symmetric kernel (strategy 2) with symmetry weighting factor c D 0:1; and symmetric kernel
(strategy 2) with symmetry weighting factor c D 1 (pure symmetry at large scale). The red isoline
(surface of the target) and the blue cross are always at the same location, to visualize the influence
of the symmetric kernel

Fig. 4 Deformation magnitude in the x direction (horizontal) estimated using the different
registration strategies in Section 6. Results were obtained by registering the images without (a)
and with (b–e) the lesion. A mixture of Gaussian kernels was used in (a–b). In (c), (d), (e) a similar
mixture of kernels was used, but with a symmetry at the large scale weighted by the factors 0.1,
0.5 and 1, respectively. The dashed curve represents the boundary of the simulated lesion

Deformed images are shown in Fig. 3 and deformation magnitudes in the x
direction (horizontal) are shown in Fig. 4. We can see in Fig. 3 that modeling a
symmetry in the left and right sides of the brain allows partial compensation for
the information missing in the lesion. The deformations estimated in the lesion are
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indeed almost only due to the symmetry as clearly emphasized in Fig. 4. It is also
interesting to remark that the most similar deformation to the one obtained without
the lesion (image (a) in Fig. 4) is not the one obtained using pure symmetry on
the large scale (image (e) in Fig. 4), but the one obtained using a factor 0.5 on the
symmetry (image (d) in Fig. 4). In this case, the symmetry plausibly compensates
for the missing information at a large scale in the lesion but does not penalize too
much the estimation of the deformations in the region symmetric to the lesion.

7 Discussion

We have introduced a new perspective on diffeomorphic image matching, based on
left- (rather than right-) invariant metrics. For inexact matching with Left-LDM,
the optimal diffeomorphism �.1/ is the same as for Right-LDM (i.e., the usual
LDDMM), however there are two different optimal paths from the identity to �.1/ in
the diffeomorphism group: one left- and one right- geodesic. This difference could
become significant if a time-dependent similarity measure were used.

In the Left-LDM setting, it is clear that spatially-varying and nonisotropic kernels
describe variable deformability properties of the source image. We have shown, in
a numerical experiment, the value of spatially-varying kernels as problem-specific
regularisation terms in inexact matching. In particular, in a model of a lesioned brain
image, we found that a kernel including a large-scale soft symmetry constraint was
successful in compensating for missing information in the lesion area.

Through the relationship between Left- and Right- LDM, it also becomes
apparent that spatially-varying and directionally-dependent kernels in Right-LDM
have an interpretation in terms of local deformability properties of the source image,
which has not been remarked upon in the literature.

One very promising avenue for further work is to replace ad-hoc regularisation
choices with automatically learnt ones, as has been done by Simpson et al. [30]
for global regularisation parameters. Similar methods could be developed for
spatially-varying and directionally-dependent regularisation, based on a generative
Left-LDM model. Given a template image I , the LDM functional (1) can be
interpreted as a log probability density function on pairs of initial vector fields v.0/
and images J :

logP .v.0/; J jI; �; � / D logP.v.0/j� /C logP.J jv.0/; I; �/ (39)

D 1

2

Z 1

0

kv.t/k2V�
dtC �

2
k�.1/ � I � J k2

L2
;

with the constraint (4) determining v.t/ and � from v.0/. This could in theory
be marginalised over v to get P.J /. Both the regularisation parameters � and the
noise parameters � could be spatially-varying, possibly expressed in terms of labels
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associated with the template. A variety of more or less standard methods could
be used to optimise the parameters for a population of targets, including Bayesian
methods related to those in [1, 9].
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Normal Forms for Lie Symmetric Cotangent
Bundle Systems with Free and Proper Actions

Tanya Schmah and Cristina Stoica

Abstract We consider free and proper cotangent-lifted symmetries of Hamiltonian
systems. For the special case of G D SO.3/, we construct symplectic slice
coordinates around an arbitrary point. We thus obtain a parameterisation of the
phase space suitable for the study of dynamics near relative equilibria, in particular
for the Birkhoff-Poincaré normal form method. For a general symmetry group G,
we observe that for the calculation of the truncated normal forms, one does not
need an explicit coordinate transformation but only its higher derivatives at the
relative equilibrium. We outline an iterative scheme using these derivatives for the
computation of truncated Birkhoff-Poincaré normal forms.

1 Introduction

The Birkhoff-Poincaré normal form is one of the main tools used in studying local
bifurcation and stability for dynamical systems. It is a method based on applying
coordinate transformations that simplify the jets of a vector field at an equilibrium,
up to a certain order. For Hamiltonian vector fields, the transformations applied must
be symplectic, or more generally Poisson, so that the truncated vector field preserves
its structure. We will not report here on the importance and usefulness of normal
forms in relation, for instance, to bifurcation and stability theory; the interested
reader may consult, for instance, [4] and references therein, as well as [12].

For Lie symmetric systems, relative equilibria play an important rôle in dynam-
ics, analogous to the rôle that equilibria play for generic vector fields. A very
common first step in dynamical studies near relative equilibria is to use a slice
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theorem to pass to a coordinate system that separates directions along and transver-
sal to the group orbit. Indeed, if the symmetry groupG acts freely and properly, then
in a sufficiently small neighborhood of an orbit Gz0, the phase space is isomorphic
to the slice bundleG�S where S , called the slice, is a subspace of the tangent space
at z0 that is transversal to Gz0. (For the non-free case, as well as a characterisation
of normal forms near relative equilibria, see [10].) This local model of the action of
G on the phase space is actually “semi-global” in the sense that it is global “in the
G direction” but local “in the transverse direction”.

In these coordinates, a relative equilibrium z.t/ corresponds to .exp.t!/; 0/ and
the dynamics takes the form

Pg D gfG.s/; Ps D fS.s/ ;

where fS W S ! S and fG W S ! g. Thus, locally, the dynamics in the slice
Ps D fS.s/ drives the dynamics in the group (or “drift”) directions Pg D gfG.s/.

In the case of Lie symmetric Hamiltonian systems, the dynamics may be split
into the “drift” and “slice” directions as above, but it must also accommodate the
additional Hamiltonian structure. By Noether’s theorem, the symmetry group G
provides the Hamiltonian system with conserved quantities, called momenta. The
symplectic manifold is therefore partitioned into flow-invariant level sets of the
momenta. The way these level sets intersect the slice can be complicated, especially
whenG is non-abelian and the relative equilibrium has non-trivial isotropy (the non-
free action case). This leads to a nontrivial structure on the slice bundle, which in
turn induces a nontrivial structure on the slice equations, [22, 23].

For calculating Birkhoff-Poincaré normal forms near relative equilibria of
Hamiltonian systems, a natural approach is to try to transfer the machinery from the
case of canonical Hamiltonian systems near an equilibrium. For many dynamical
studies, it is sufficient to consider a single symplectic reduced space at a single
momentum level �0, in which the original relative equilibrium z0 corresponds to an
equilibrium.

In the case of cotangent-bundle systems T �Q, coordinates on the symplectic
reduced space suitable for the normal form computation may be found by applying
a slice theorem in the configuration space: Q is locally modelled as G � S , where
S is an “internal-shape space” direction transverse to the group orbit Gq0. Then
the symplectic reduced space may be identified with O�0 � T �S (where O�0 is the
coadjoint orbit through �0), with the KKS and canonical symplectic forms. This
point of view is pursued in [5] and [6]; see also [15].

However it is not always sufficient to consider only a single symplectic reduced
space, or a single momentum level set. In particular, the analysis of symmetry-
breaking perturbations requires symmetry-adapted local coordinates for the entire
phase space that simultaneously place the group action, its momentum map and
the symplectic form in simple forms. For symplectic actions, the Hamiltonian slice
theorem of Marle [11] and Guillemin and Sternberg [8] (see Theorem 2 below)
achieves this goal, modelling the phase space as G � g�

�0
� Ns (for free actions),

where Ns is the symplectic normal space. In these symplectic slice coordinates,
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the momentum level set J�1.�0/ becomes G�0 � f0g � Ns , where G�0 is the
isotropy group of �0 with respect to the co-adjoint action; so the corresponding
symplectic reduced space may be symplectically embedded in the unreduced space
as fe; 0g � Ns . For free actions on cotangent bundles, Ns Š T�0O�0 � T �S , for
S a slice in configuration space, with KKS and canonical symplectic forms, which
illustrates the connection with the approach in the previous paragraph.

The applicability of the Hamiltonian slice theorem is obstructed by the lack of a
constructive proof. Practically, one does not know the change of coordinates, known
as the symplectic tube, which renders the desired structure. This explicit change of
coordinates has been found in only two special cases: (i) cotangent-lifted actions
where G�0 D G (this happens, for instance, at zero momentum and for abelian Lie
groups) [24]; and (ii) free cotangent-lifted actions ofG D SO.3/, which we present
here in Sections 2.3 and 2.4.

In this paper we outline an algorithm for the computation of truncated Birkhoff-
Poincaré normal forms near a relative equilibrium, for Lie symmetric cotangent
bundle systems with free and proper actions. The splitting of the phase space and the
associated change of coordinates are explicitly given for SO.3/-symmetric systems.
The general algorithm, for any symmetry group G, is based on an iterative scheme
which allows the calculation of the truncated normal form up to any desired order. At
its core, our method relies on the observation that for the calculation of the truncated
normal forms one does not need an explicit coordinate transformation but only its
derivatives at the equilibrium/relative equilibrium. We thank Mark Roberts making
this key observation in a discussion about 10 years ago.

For the dynamics on T �SO.3/, the coordinates we have obtained for the reduced
space coincide with the regularised Serret-Andoyer-Deprit coordinates used in
celestial mechanics (see [3] and references therein); however, we retrieved these
coordinates via a different path and this was crucial for arriving at a methodology
for the general case. Our slice parameterisation uses a global description for the
reconstruction (attitude) variable R.t/ 2 G. (We use the word “attitude” in analogy
to its use in rigid body dynamics.) In concrete applications, it is likely that a
local coordinate system will be used. For example, for SO.3/; if an explicit local
coordinate system is sought, Serret-Andoyer-Deprit is probably the best choice,
because they are action-angle coordinates with a very simple relation to Euler
angles.

We also compare the splitting of the phase space used for the computations of the
normal forms with those used in the Reduced Energy Momentum Method (REM)
[12, 25], the latter citation being to Jerry Marsden’s “blue book”. We respond to one
of Jerry’s questions stated on page 104 of that book:

It is also of interest to link the normal forms here (i.e., in the REM) with those in
singularity theory. In particular, can one use the forms here as first terms in higher
order normal forms?

In short, the answer is no: while the REM splittings are very useful when looking
for sufficient conditions for stability with minimal computational effort, they do not
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organise the symplectic form in a convenient form for the Birkhoff-Poincaré normal
form method. We expand on this subject in Section 5.

This paper is organised as follows. In Section 2 we investigate the free action of a
Lie group G on T �G by cotangent lifts, arriving at a general Tube Condition given
in Proposition 1. (Some technical details from this section appear in the Appendix.)
We then focus on the special case of G D SO.3/ and succeed in constructing an
explicit symplectic tube around an arbitrary point, see Theorem 3. We use this to
construct a symplectic tube for any free cotangent-lifted action of SO.3/ on an
arbitrary manifold, see Section 2.4. In Section 3 we offer the equations of motion
in slice coordinates for dynamics on T �SO.3/ and for cotangent bundle rotationally
invariant systems, including the case of simple mechanical systems. In Section 4 we
outline the algorithm for calculating truncated Birkhoff-Poincaré normal forms for
general free and proper actions. Section 5 comments on the relationship between the
splittings used in these normal forms and those in the Reduced Energy Momentum
method.

2 Slice Coordinates

2.1 Lie Symmetries of Hamiltonian Systems

For general background information on Lie symmetries, see [9]. In what follows,
gothic letters will always denote Lie algebras of the Lie groups with corresponding
latin letters. Let G act on M , with the action of g 2 G on z 2 M denoted by gz.
The corresponding infinitesimal action of � 2 g on z is denoted by �z. The isotropy
subgroup of a point z 2 M is Gz WD fg 2 G j gz D zg. The adjoint action of G on
g is denoted by Ad, and the infinitesimal adjoint action by ad. The coadjoint action
ofG on g� is the inverse dual to the adjoint action, g� D Ad�

g�1 �. The infinitesimal
coadjoint action is given by � � � D � ad�

� �. For any � 2 g�, the notation G� will
always denote the isotropy subgroup of G with respect to the coadjoint action, that
is G� WD fg 2 G j Ad�

g�1 � D gg. The notation introduced is summarised in the
following table.

g Lie algebra of a Lie group G

gz Action of g 2 G on z

�z Infinitesimal action of � 2 g on z

Adg Adjoint action of g 2 G on g

Ad�

g�1 Coadjoint action of g 2 G on g�

ad� Infinitesimal adjoint action of � 2 g on g

� ad�

� Infinitesimal coadjoint action of � 2 g on g�

G� Isotropy subgroup of � w.r.t. coadjoint action
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Suppose G acts symplectically on a symplectic manifold .M;˝/. Recall that
any function F W M ! R defines a Hamiltonian vector field XF by iXF ˝ D dF;

in other words ˝ .XF .z/ ; v/ D dF .v/ for every v 2 T �
z M . A momentum map

is a function J W M ! g� satisfying XJ� .z/ D �z for every � 2 g and z 2 M ,
where J� W M ! R is defined by J� .z/ D hJ .z/ ; �i. If the G action has an Ad�-
equivariant momentum map J; then it is called globally Hamiltonian.

The coadjoint orbit through any � 2 g� is the orbit of � with respect to the
coadjoint action, O� WD fAd�

g�1 � W g 2 Gg. The Kostant-Kirillov-Souriau (KKS)
symplectic forms on any coadjoint orbit O� are given by

˝Ȯ�
.�/

	
� ad�

�1
�;� ad�

�2
�


D ˙h�; Œ�1; �2	i : (1)

The momentum map of the coadjoint action of G on O� with respect to ˝Ȯ�
(the

“˙KKS forms”) is JO� .�/ D ˙�. It can be shown that the KKS forms are always
G-invariant.

Let Ns be the symplectic normal space at z,

Ns.z/ WD ker dJ.z/=g�z ;

where g�z WD f�z W � 2 g�g The restriction of ˝.z/ to kerdJ.z/ has kernel g�z, by
the Reduction Lemma [1], so it descends to a reduced symplectic bilinear form on
Ns.z/. For free and proper actions, this space is isomorphic to the tangent at Œz	 to
the symplectic reduced space J�1.�/=G� (see [12]).

We now give limited versions of Palais’ slice theorem [18, 19] and the Hamil-
tonian Slice Theorem of Marle, Guillemin and Sternberg [8, 11], treating only the
case of free actions (for ease of exposition).

Theorem 1 (“Palais’ Slice Theorem” for Free Actions [18, 19]). Let G be a
Lie group acting properly, smoothly and freely on a manifold M; and let z 2 M:
Choose a local Riemannian metric around z (such a metric always exists), let N
be the orthogonal complement to gz, and let expz be the corresponding Riemannian
exponential based at z: Then there exists a neighbourhood S of 0 in N such that the
map

� W G � .S � N/!M

.g; s/ 7�! g expz s

is a G-equivariant diffeomorphism. (Such a � is called a tube.) If M is a vector
space andG acts linearly, then the “expzs” in the formula for � may be replaced by
“zC s”, and � is a G-equivariant diffeomorphism for any choice of anH -invariant
neighbourhood S of 0 for which � is injective.

Suppose that G acts symplectically on a manifold .M;˝/, with Ad�-equivariant
momentum map J . We would like to find a symplectic tube � W G � N ! M , for
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some N , with respect to some simple or “natural” symplectic form on G �N . The
Hamiltonian Slice Theorem, also known as the Marle-Guillemin-Sternberg normal
form [2, 8], accomplishes this, for actions that are not necessarily free. We present
the theorem now only for free actions. Let z 2 M and � D J .z/, and let G� be the
isotropy group of � with respect to the coadjoint action. (Note that � is a specific
momentum value, corresponding to the �0 in the Introduction; we have dropped the
subscript 0 for ease of notation.) Let Ns be the symplectic normal space at z. We

define a symplectic form on G �
	
g�
� �Ns



. First, choose a specific G-invariant

splitting g D g� ˚ g?
� . Define ˝T and˝� on G � g�

� by

˝T .g; �/ ..�1; P�1/; .�2; P�2// D< �; Œ�1; �2	 >
˝0.g; �/ ..�1; P�1/; .�2; P�2// D h�; Œ�1; �2	iC < P�2; ��1 > � < P�1; ��2 >;

where ��1 and ��2 are the g� components of �1 and �2. Third, let ˝Ns be the reduced
symplectic bilinear form onNs (defined above). Then˝Z WD ˝T C˝0C˝Ns is a
presymplectic form on G � g�

� �Ns. It can be shown that there exists a G-invariant
neighbourhood Y of Œe; 0; 0	 in G � g�

� � Ns in which ˝Z is symplectic. Let ˝Y

be the restriction of˝Z to Y . Finally, note that there is left G-action on Y given by
g0 .g; �; �/ D .g0g; �; �/ It is easy to check that this is symplectic with respect to
˝Y .

Theorem 2 (Hamiltonian Slice Theorem for Free Actions1 [2, 8]). In the above
context, there exists a symplectic tube from Y � G � g�

� � Ns to M that maps
.e; 0; 0/ to z: The momentum map of the G action on Y is

JY .g; �; �/ D Ad�
g�1 .�C �/ :

No general constructive proof of this theorem is known, even for free actions.
However a constructive proof is given in [24] for the special case of a cotangent-
lifted action, not necessarily free, for which G� D G.

2.2 Symplectic Slices for the Cotangent Bundle of a Lie Group

We now consider the special case of G acting on T �G by the cotangent lift of
left multiplication. We left-trivialise T �G, meaning that we identify it with G � g�
via the map p 2 TgG 7! .g; �/ WD .g; g�1p/, with g�1p WD D˚g.e/

�.p/. We
seek a constructive symplectic tube based at a general .g; �/ 2 G � g� satisfying
the conditions of the Hamiltonian Slice Theorem (Theorem 2). Without loss of

1In the full Hamiltonian Slice Theorem, at a point z with non-trivial isotropy group Gz, the model

space is G �Gz

	
g�

� � Ns



, and JY has an extra term.
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generality, we will assume g D e (the identity). We will also assume that � ¤ 0,
since in the case � D 0 we have G� D G and a trivial symplectic normal space, so
Theorem 2 is trivial.

Using left-trivialisation, the canonical symplectic form becomes:

˝c.e; �/ ..�1; �1/; .�2; �2// D< �; Œ�1; �2	 > C < �2; �1 > � < �1; �2 > :

The G action on T �G becomes h.g; �/ D .hg; �/, which has momentum map
J.g; �/ D Ad�

g�1 �. Note that J is Ad�-equivariant) and

DJ.e; �/ � .�; �/ D � ��C � D � ad�
� �C �: (2)

Fix a � 2 g�, � ¤ 0. Choose a G-invariant Riemannian metric on g, and let g?
�

be the orthogonal complement of g�. Define

N1 WD
n	
�; ad�

� �


W � 2 g?

�

o
: (3)

It follows from (2) that N1 is a complement to g�z in kerDJ.z/. Therefore N1
is isomorphic to the symplectic normal space Ns.z/, with the reduced symplectic
bilinear form on Ns.z/ corresponding to the restriction of˝c.z/ to N1.

Lemma 1. The following is a linear symplectomorphism from N1 (with the
restricted canonical symplectic form) to T�O� with the KKS form ˝�

O.�/,

L W
	
�; ad�

� �


7! ad�

� � :

Proof.

˝c

		
�1; ad�

�1
�


;
	
�2; ad�

�2
�



D< �; Œ�1; �2	 > C < ad�

�2
�; �1 >

� < ad�
�1
�; �2 >

D �h�; Œ�1; �2	i D ˝�
O.�/

	
ad�
�1
�; ad�

�2
�



D �L�˝�
O.�/

� 		
�1; ad�

�1
�


;
	
�2; ad�

�2
�



:

The result follows by equivariance of L and invariance of the two symplectic forms.

We identifyNs.z/ Š N1 Š T�O� via this lemma, so that the reduced symplectic
form˝Ns is identified with ˝�

O.�/.
We seek a constructive version of the Hamiltonian Slice Theorem (for free

actions) in this context. That is, we wish to construct a G-equivariant local
diffeomorphism
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˚ W G � g�
� �N �! G � g�;

.e; 0; 0/ 7! .e; �/;

such that ˚�˝c D ˝Y WD ˝T C˝0 C˝N , where

˝T .g; �; �/ ..�1; P�1; P�1/; .�2; P�2; P�2// D< �; Œ�1; �2	 >;
˝0.g; �; �/ ..�1; P�1; P�1/; .�2; P�2; P�2// D h�; Œ�1; �2	iC < P�2; ��1 >

� < P�1; ��2 >; (4)

˝N.g; �; �/
	
.�1; P�1; ad�

�1
�/; .�2; P�2; ad�

�2
�/


D �h�; Œ�1; �2	i :

The following proposition, proven in the Appendix, characterises the symplectic
tubes that appear in the Hamiltonian Slice Theorem (Theorem 2).

Proposition 1 (Tube Condition). ˚�˝c D ˝Y if and only if

˚.g; �; ad�
� �/ D

	
gF.�; �/�1;Ad�

F.�;�/�1
.�C �/




for some F W g�
� � g?

� ! G such that F.0; 0/ D e and

˝
�C �; �F.�; �/�1 .DF.�; �/ � . P�1; �1// ; F .�; �/�1 .DF.�; �/ � . P�2; �2//

�˛

C ˝ P�2; F.�; �/�1 .DF.�; �/ � . P�1; �1//
˛ � ˝ P�1; F.�; �/�1 .DF.�; �/ � . P�2; �2//

˛

D h�; Œ�1; �2	i :

We have not found a general construction for a symplectic tube valid for all Lie
groups G, and indeed we do not expect that one will ever be found. However we
noticed, as explained in the Appendix, that the restriction of the Tube Condition to
the subspace f0g � f0g �N is reminiscent of the condition in the following lemma,
which is proven in the Appendix.

Lemma 2. Let ' W T�O� ! O� be of the form '.� ad�
� �/ D f .�/� for some

f W g?
� ! G. Then ' preserves the �KKS symplectic form if and only if

h�; Œ�1; �2	i D
˝
f .�/�;

�
.Df .�/ � �1/ f .�/�1; .Df .�/ � �2/ f .�/�1

�˛

D ˝�; �f .�/�1 .Df .�/ � �1/ ; f .�/�1 .Df .�/ � �2/
�˛

(5)

for all �; �1; �2 2 g?
� .

This was the inspiration that led to the constructive slice theorem in the next
section.
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2.3 A Constructive Slice Theorem for T �SO.3/

For the reason outlined above, we consider maps ' W T�O� ! O� such that
'.0/ D � andD'.0/ is the identity, that preserve the �KKS form. The KKS forms
for SO.3/, for any �, are 1

k�k times the signed area form on O� Š S2, with the sign
corresponding to the outward-pointing normal for theCKKS form, and the inward-
pointing normal for the �KKS form. Thus a map ' W T�O� ! O� that preserves
the˙KKS form is just an area-preserving map from R

2 to S2.k�k/, where S2.k�k/
is the sphere of radius k�k centred at the origin.

Without loss of generality, we consider � D .0; 0; �z/, with �z > 0. Consider
the usual polar coordinates .r; �/ on the plane and spherical coordinates .�; �/ on
the unit sphere, where � is usual angle coordinate in the xy-plane, and � is the angle
from the positive z axis. Note that the signed area d� ^ d� is the �KKS form. We
seek an area-preserving map ' W T�O� ! O�, such that '.0/ D � andD'.0/ D Id,
and require also that ' be equivariant with respect toG�, which consists of rotations
around the z axis. We make an Ansatz that ' preserves � . It can be shown that the
unique ' satisfying all of these requirements is given by

� D 2 arcsin

�
r

2k�k
�

:

To write this in the form of Lemma 2, '
	
� ad�

� �


D Ad�

f .�/�1
�, we define

f .�/ WD exp

�

2 arcsin

�k�k
2

�
�

k�k
�

:

where exp be the usual matrix exponential.
Comparing (37) and (38) in the Appendix, we may guess that a factor involving

k�k=k�C�k should be inserted in order to produce a symplectic tube. The solution
may be discovered by trial and error, however we will proceed systematically from
the Ansatz

F.�; �/ D exp

�

h.�; �/
�

k�k
�

; (6)

for some real-valued h. Note that the term F.�; �/�1 .DF.�; �/ � . P�; �// that appears
in the Tube Condition in Proposition 1 takes the following form when P� D 0,

F.�; �/�1 .DF.�; �/ � .0; �// D exp .�Ov/ d
dt

ˇ
ˇ
ˇ
ˇ
tD0

exp .OvC t Ow/ ;

where Ov WD h.�; �/ �

k�k and Ow WD h.�; �/ �

k�k , and the hat map v 7! Ov is defined by
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Ov D
0

@
0 �v3 v2
v3 0 �v1
�v2 v1 0

1

A :

We compute this quantity with the aid of Rodrigues’ rotation formula (see [13]):

exp.Ov/ D I C sin kvk
kvk OvC

1 � cos kvk
kvk2 Ov2 D I C sin kvk

kvk OvC
2 sin2 kvk

2

kvk2 Ov2:

Lemma 3. For general orthogonal v and w,

exp .�Ov/ d
dt

ˇ
ˇ
ˇ
ˇ
tD0

exp .OvC t Ow/ D sin kvk
kvk Ow � 2 sin2 kvk

2

kvk2 .v � w/O: (7)

Proof. By the naturality property of exp, and the fact that R OwR�1 D .Rw/O, it
suffices to prove the claim for v D .vx; 0; 0/ and w D .0;wy; 0/. This is a
straightforward calculation.

Lemma 4. If �; � 2 g?
� and � is perpendicular to �, then

F.�; �/�1 .DF.�; �/ � . P�; �// D sinh

k�k
O� � 2 sin2 h

2

k�k2 .� � �/O;

and � � � 2 g�.

Proof.
d

dt

ˇ
ˇ
ˇ
ˇ
tD0
k�C t�k D 0 and

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�C t�
k�C t�k D

�

k�k . Then

DF.�; �/ � .0; �/ D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

exp

�

h.�; �/
�

k�k C t h.�; �/
�

k�k
�

:

From (7), with Ov D h.�; �/ �

k�k and Ow D h.�; �/ �

k�k ,

F.�; �/�1 .DF.�; �/ � . P�; �// D exp .�Ov/ d
dt

ˇ
ˇ
ˇ
ˇ
tD0

exp .OvC t Ow/

D sin kvk
kvk Ow � 2 sin2 kvk

2

kvk2 .v �w/O

D sinh

h
Ow � 2 sin2 h

2

h2
.v � w/O

D sinh

k�k
O� � 2 sin2 h

2

k�k2 .� � �/O:

Since �; � 2 g?
� and � ? �, it follows that � � � 2 g�.
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We now calculate the Tube Condition in Proposition 1 under the Ansatz (6). The
following lemma covers the case of �1; �2 both parallel to �, which includes the case
of �1 D �2 D 0 (the “ P� � P�” case). Though motivated by our study of the SO.3/
case, the following lemma applies to generalG. It is proven in the Appendix.

Lemma 5. Suppose F.�; �/ D exp

�

h.�; �/
�

k�k
�

, for some h W g�
� � g?

� ! R.

Then the Tube Condition in Proposition 1 is automatically satisfied (regardless of
the definition of h) for all . P�1; �1/ ; . P�2; �2/ such that �1 and �2 are parallel to �.

From this and the bilinearity of Condition (37) in the Appendix, we are left with
three cases to check.

Case: �1 and �2 both perpendicular to �. In this case, �1 and �2 are parallel to
each other, and

D
�C �;

h
F.�; �/�1 .DF.�; �/ � .0; �1// ; F .�; �/�1 .DF.�; �/ � .0; �2//

iE

D
*

�C �;
�

sinh

k�k �2
�

�
 
2 sin2 h2
k�k2 .� � �1/

!

�
�

sinh

k�k �1
�

�
 
2 sin2 h2
k�k2 .� � �2/

!+

D 0 D h�; Œ�1; �2	i :

Therefore the Tube Condition in Proposition 1 is satisfied, for any h.

Case: P�1 D P�2 D 0, �1 is parallel to � and �2 is perpendicular to �. By Lemma 4,

˝
�C �; �F.�; �/�1 .DF.�; �/ � .0; �1// ; F .�; �/�1 .DF.�; �/ � .0; �2//

�˛

D
*

�C �;
�
@h

@�
.�; �/ � �1

�
�

k�k �
 

sin h

k�k �2 �
2 sin2 h

2

k�k2 .� � �2/
!+

D
�

�C �;
�
@h

@�
.�; �/ � �1

�
�

k�k �
�

sin h

k�k
�

�2

�

D ˙k�C �k
�
@h

@�
.�; �/ � �1

��
sin h

k�k
�

k�2k;

where the sign is the sign of � � .� � �2/.
For the Tube Condition in Proposition 1 to be satisfied, this must equal � � �1 �

�2 D ˙k�kk�1kk�2k for all �1; �2, which occurs if and only if

sgn.�1 � �/k�C �k
�
@h

@�
.�; �/ � �1

��
sin h

k�k
�

D k�kk�1k: (8)

If we further assume that h depends on � only through k�k, then (8) becomes:

k�C �k @h
@k�k .�; k�k/

�
sinh

k�k
�

D k�k: (9)
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Case: �1 D 0 and �2 is perpendicular to �.

˝
�C �; �F.�; �/�1 .DF.�; �/ � . P�1; 0// ; F.�; �/�1 .DF.�; �/ � .0; �2//

�˛

C ˝ P�2; F.�; �/�1 .DF.�; �/ � . P�1; 0//
˛ � ˝ P�1; F.�; �/�1 .DF.�; �/ � .0; �2//

˛

D
�

�C �;
��

@h

@�
.�; �/ P�1

�
�

k�k
�

�
�

sin h

k�k �2
��

C
*

P�1;
2 sin2 h

2

k�k2 .� � �2/
+

D ˙


k�C �k
�
@h

@�
.�; �/ P�1

�

.sin h/
k�2k
k�k C 2 P�1

�

sin2
h

2

� k�2k
k�k

�

;

where the sign is the sign of � � .� � �2/.
For the Tube Condition in Proposition 1 to be satisfied, this expression must equal

zero, for all P�1. If h.�; �/ ¤ 0, a factor of sin.h=2/ cancels, giving the equivalent
condition

k�C �k @h
@�

cos
h

2
C sin

h

2
D 0; (10)

Theorem 3. Let

˚.g; �; ad�
� �/ D

	
gF.�; �/�1;Ad�

F.�;�/�1
.�C �/



;

where

F.�; �/ D exp

 

2 arcsin

 
1

2
k�k

s
k�k
k�C �k

!
�

k�k

!

:

Then˚�˝c D ˝Y . The domain of definition of˚ is SO.3/�
	
U � so.3/���T�O�



,

where

U D
(
	
�; ad�

� �


W � > �k�k and k�k < 2

s
k�C �k
k�k

)

:

Proof. Let x D k�k
q k�k

k�C�k , and

h.�; k�k/ D 2 arcsin
x

2
D 2 arcsin

 
1

2
k�k

s
k�k
k�C �k

!

:
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Then dh=dx D 2=p4 � x2 D 1= cos.h=2/, so

@h

@�
cos

h

2
D �k�k
2k�C �k

s
k�k
k�C �k ;

which implies that (10) is satisfied. Also,

@h

@k�k sinh D 2 sin
h

2

s
k�k
k�C �k D

k�kk�k
k�C �k ;

so (9) is satisfied.

Remark 1. The restriction of ˚ to a level set defined by .R; �/ D .Id; �0/ has as
its image an open neighbourhood of � C �0 in the coadjoint orbit O�C�0 , which
is a sphere and is isomorphic to the symplectic reduced space at � C �0. For any
choice of �0, the neighbourhood covers almost the entire sphere, excluding only the
antipodal point �.�C �0/.
Remark 2. This ˚ has a limited uniqueness property. From the Tube Condition in
Proposition 1, any symplectic tube must of be expressed in terms of an F as stated
in the theorem. Any F can be expressed as the exponential of some function g�

� �
g?
� 7! g. If that function is of the form h.�; k�k/ �=k�k, then the two conditions (9)

and (10) are sufficient to determine h.�; k�k/.

2.4 Actions of SO.3/ on Arbitrary Configuration Spaces

The results of the previous section can be used to construct symplectic slices for any
free and proper cotangent-lifted action of SO.3/ on T �Q, for arbitraryQ.

Proposition 2. Suppose SO.3/ acts freely on a manifold Q, and by cotangent lifts
on T �Q. Let

� W SO.3/ � .S � N/! Q

.R; s/ 7�! R expq0 s

be the tube given by Theorem 1 (Palais’ Slice Theorem). Let ˚ W SO.3/ � so.3/�� �
T�O�0 ! SO.3/ � so.3/� be defined as in Theorem 3. Then the following
composition

SO.3/ � so.3/�� � T�O� � T �S
.˚;id/! SO.3/ � so.3/� � T �S Š T �.SO.3/ � S/
T ���1

! T �Q (11)
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(where the central isomorphism is left-trivialisation) is an SO.3/-equivariant
symplectomorphism with respect to the canonical symplectic form on T �Q and the
symplectic form ˝Y defined in (4).

In the caseQ D R
n, we have �.R; s/ D R.q0Cs/. We now explain the cotangent

lift T ���1 that appears in (11). Writing q WD R.q0Cs/, the tangent space TqQ splits
into the direct sum of two subspaces:

so.3/q WD f�q W � 2 so.3/g (“group direction”, tangent to Gq),

RN WD fRv W v 2 N g (“slice direction”).

The cotangent space T �
q Q has a corresponding splitting into so.3/� (group direc-

tion) andRN � (slice direction); note that .RN/� D R.N �/. The tangent lift of � is
given by

.�; Ps/ 2 T.R;s/.SO.3/ � S/ 7! R .�.q0 C s/C Ps/ 2 TqQ; (12)

where R .�.q C s// is in the group direction and RPs is in the slice direction, and
we have used left-trivialisation to write .R; �/ 2 SO.3/ � so.3/ Š T .SO.3/. The
cotangent lift T ���1, also has two components, in the group and slice directions:

.�; �/ 2 T �
.R;s/.SO.3/ � S/ 7! .˛�.q/CR�/ 2 T �

q Q;

where ˛�.q/ 2 .so.3/q/� and R� 2 RN �. To define these components explicitly,
we pair them with the components of a general tangent vector. Since � is a
diffeomorphism, all such tangent vectors can be expressed in the form (12). We
have

˝
˛�.q/CR�;R .�.q C s/C Ps/

˛ WD h�; �i C h�; Psi ;

i.e.

˝
˛�.q/; R .�.q C s//

˛ WD h�; �i ; and

hR�;RPsi WD h�; Psi :

A similar strategy allows one to construct symplectic slices for some non-free
actions of SO.3/ on general cotangent bundles. However we leave this topic for a
later paper.
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3 Dynamics in Slice Coordinates

3.1 Dynamics on T �SO.3/

In this section we describe the motion on T �SO.3/ in normal form coordinates near
a fixed non-zero momentum .0; 0; �0/ 2 R

3 ' so.3/�. We identify T�0O�0 with
so.3/?�0 via ad�

� �0 7! �. Then the SO.3/-equivariant symplectomorphism given by
Theorem 3 takes the form

˚ W SO.3/ � so.3/��0 � so.3/?�0 ! SO.3/ � so.3/�

˚.R; �; �/ D
	
R .F.�; �//�1 ; F .�; �/.�0 C �/




with

F.�; �/ D exp

�

�
O�
k�k

�

where sin
�

2
D 1

2
k�k

s
k�0k
k�0 C �k : (13)

Specifically, one has the change of variables

SO.3/ � so.3/��0 � so.3/?�0 ! SO.3/ � so.3/�

.R; �; �/! ˚.R; �; �/ WD .S; �/

where

�1 D �y

s

�0.�0 C �/
�

1 � �0

4.�0 C �/.�
2
x C �2y/

�

(14)

�2 D ��x
s

�0.�0 C �/
�

1 � �0

4.�0 C �/.�
2
x C �2y/

�

(15)

�3 D .�0 C �/� 1
2
�0.�

2
x C �2y/ (16)

and S D RF.�; �/�1. The symplectic form on SO.3/�so.3/��0�so.3/?�0 is given by

˝Y .R; �; �/ D
2

4
.�0 C �/J 0 0

0 J 0

0 0 ��0J

3

5



408 T. Schmah and C. Stoica

where we use the notation J WD

0 1

1 0

�

. Note that this matrix does not depend on �.

In .R; �; �/ coordinates the (spatial) momentum map J.S; �/ D S� reads:

J .R; �; �/ D R .�0 C � /:

It is useful to recall that in slice coordinates the Marsden-Weinstein reduced spaces
at .R; �; �/, which are J�1 .R.�0 C �// =SO.3/�R.�0C�/, are all isomorphic to the

linear space T�0O�0 Š so.3/?�0 . The symplectic leaves O�0C� D S2.k�0 C �k/ of
so.3/� are modelled (locally) as canonical linear spaces, and “indexed” by �.

Consider now a Hamiltonian QH.S;�/ on SO.3/�so.3/�. Applying the change of
coordinates given by˚;we have:H.R; �; �/ WD . QH ı˚/.R; �; �/ and the equations
of motion become

2

6
6
6
6
6
6
6
6
6
6
6
4

�x
�y

�z

P�

P�x
P�y

3

7
7
7
7
7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
6
6
6
6
6
4

0 1
�0C� 0 0 0 0

� 1
�0C� 0 0 0 0 0

0 0 0 1 0 0

0 0 �1 0 0 0

0 0 0 0 0 � 1
�0

0 0 0 0 1
�0

0

3

7
7
7
7
7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
6
6
4

�
R�1@RH

�
x�

R�1@RH
�
y

�
R�1@RH

�
z

@�H

@�xH

@�yH

3

7
7
7
7
7
7
7
7
7
7
7
7
5

(17)

where � D R�1 PR 2 so.3/. In particular, if H is SO.3/-invariant and h.�; �/ WD
H. � ; �; �/, we have

P� D 0 (18)

P� D � 1
�0

Jr�h (19)

with reconstruction equations:

R.t/�1 PR.t/ D �.t/ D

0

B
@

0

0
@h
@�

ˇ
ˇ
ˇ
.�.t/;�.t//

1

C
A : (20)

Note that this reconstructs R.t/, not the body’s attitude S.t/. At a given time t1,
once �.t1/; �.t1/ and R.t1/ have been calculated by integrating (18), (19) and (20),
the attitude can be computed simply as

S.t1/ D R.t1/F.�.t1/; �.t1//�1:



Normal Forms for Rotationally-Invariant Systems 409

A relative equilibrium is a steady motion in a group direction. In the original left-
trivialised coordinates .S; �/, a relative equilibrium with velocity �0 is a trajectory
of the form S.t/ D exp.t�0/S0 with � constant. In slice coordinates, � constant
is equivalent to � and � constant, and in this case S.t/ D R.t/F�1.�0; �0/ implies
R.t/ D exp.t�0/R0. Thus in slice coordinates, a relative equilibrium with velocity
�0 is a trajectory in which � is an equilibrium of (19) and the velocity �.t/ given
by (20) has the constant value �0.

Since � D const: D �0, the reduced Hamiltonian depends dynamically on � only,
whereas �0 affects the motion as an external parameter. Thus h.�I �0/ is a one degree
of freedom canonical system on a symplectic vector space. The phase curves for (19)
fill in the so.3/?�0-phase plane as level sets of the energy integral h.�I �0/ D const.
In particular, any SO.3/-invariant system on T �SO.3/ is integrable.

Note that the reconstruction equation (20) reduces to reconstruction on the
Abelian group SO.3/�0 and it leads to rotations about the z-axis. Specifically, if
�.t/ is a solution for (19), then

R.t/ D
2

4
cos �.t/ � sin �.t/ 0
sin �.t/ cos �.t/ 0
0 0 1

3

5 (21)

where

�.t/ D @h

@�

ˇ
ˇ
ˇ
.�0;�.t//

:

3.2 The Euler-Poinsot Rigid Body

The Hamiltonian of the Euler-Poinsot (free) rigid body is (see, for instance, [13]):

h.�1; �2; �3/ D 1

2

�
�1

I1
C �2

I2
C �3

I3

�

where Ii are the principal moments of inertia. Using the formulae (14)–(16) the
Hamiltonian h reads:

h.�; �/ WD 1

2
.�0 C �/

"

�0

�

1 � �0

4.�0 C �/
	
�2x C �2y


�
 
�2x
I2
C �2y

I1

!

C
�

1 � �0

2.�0 C �/
	
�2x C �2y


�2 .�0 C �/
I3

#

(22)

One may deduce easily the stability criteria, as well as sketch the Marsden-
Weinstein reduced phase-space at any momentum .�0 C �/; see Figure 1. The
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Fig. 1 The Marsden-Weinstein reduced phase-space for the free rigid body in slice coordinates.
By (19), we have � D �0 D const: The phase curves are retrieved as the level sets of the
Hamiltonian h.�x; �yI �0/. Left: 3-d view. Right: top view

super-integrability of the Euler-Poinsot rigid body (that is the case when I1 D I2) is
transparent, as h becomes a function of j�j2 only.

Is is known that the rigid body accepts a canonical action-angle description as
given by Serret-Deprit-Andoyer coordinates. A comprehensive description of these
coordinates and their generalisation to regularised coordinate charts which cover
the co-adjoint sphere minus the antipodal point of the relative equilibrium .0; 0; �0/

can be found in [3, Section 4] and the references therein. A direct comparison of the
slice and the regularised Serret-Deprit-Andoyer coordinates shows that they provide
identical parametrisations of T�0O�0 � so.3/?�0 . Specifically, .�x; �y/ are in fact
regularised Serret-Andoyer-Deprit coordinates. The slice parameterisation uses a
global attitude description R(t). If an explicit local coordinate system is sought,
Serret-Deprit-Andoyer is probably the best choice, because they are action-angle
coordinates with a very simple relation to Euler angles. The relationship between
the two parametrisations will be discussed in detail in future work.

3.3 Cotangent-Bundle Rotationally Invariant Systems

Consider a SO.3/-invariant Hamiltonian system H W T �Q ! R and let .q0; p0/ 2
T �Q be a point on a relative equilibrium with group velocity � and momentum �0.
We apply now Proposition 2 where .q0; p0/ is the base point of the Palais tube. It
follows that in a neighbourhood of .q0; p0/ the phase space is symplectomorphic to
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SO.3/ � so.3/��0 � so.3/?�0 � T �S , where we identified T�0O�0 � so.3/?�0 . Since
the Hamiltonian is SO.3/ invariant, in slice coordinates

.R; �; �; s; �/ 2 SO.3/ � so.3/��0 � so.3/?�0 � T �S (23)

it can be written as h D h.�; �; s; �/. The equations of motion take the form

P� D 0 (24)

P� D � 1

�0
J @�h ;

0

@
Ps

P�

1

A D J

0

@

@h
@s

@h
@�

1

A (25)

whereas the reconstruction equation is

PR D R
0

@
0

0
@h
@�
:

1

A (26)

The reconstruction equation can be integrated to give rotations about the z axis
by angle:

�.t0/ D
Z t0

0

@h

@�

ˇ
ˇ
ˇ
.�0;�.t/;s.t/;�.t//

dt: (27)

We consider relative equilibria at .�; �; s; �/ D .�0; 0; 0; 0/, with velocity

�0 WD

0

B
@

0

0
@h
@�

ˇ
ˇ
ˇ
.�0;0;0;0/

1

C
A : (28)

By construction the Marsden-Weinstein reduced space at�0 is locally symplecto-
morphic to the canonical vector space so.3/?�0�T �S , and the dynamics are given by
the reduced Hamiltonian h�0.�; s; �/ WD h.0; �; s; �/. In this model of the reduced
space, the relative equilibrium q0 becomes the origin.

Recall that a simple mechanical system is a system with a Hamiltonian H W
T �Q! R of the form

H.q; pq/ D 1

2
K

�1.pq; pq/C V.q/ (29)

for some G-invariant Riemannian metric K, and some G-invariant potential V W
Q! R. We assume thatG acts properly. The dynamics on T �Qmay be specialised
easily this case. We takeQ a finite dimensional vector space which, without loss of
generality, we consider to be an open subset of Rn.
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Fix q0 2 Q and let N be the orthogonal complement to the group orbit through
q0. By Palais’ slice theorem, there is a neighbourhoodS of 0 2 N such that the map
� W SO.3/ � S ! Q, .R; s/ 7! R.q0 C s/ is a diffeomorphism onto its image. The
cotangent lift of � defines local coordinates .R; �; s; Ps/ on TQ, .R;�; s; �/ on T �Q,
as explained in Section 2.4. Since the Riemannian metric K and the potential V are
both SO.3/-invariant, they are independent ofR in these coordinates. We write K.s/
in block form in coordinates .�; Ps/ as follows (this defines I;C andm):

K.s/ D


I.s/ C.s/

C
T .s/ m.s/

�

and define A WD I
�1
C and M WD m � C

T
I
�1
C. With these definitions, it can be

shown that the Hamiltonian takes the following form,

h.�; s; �/ D 1

2
�T I�1 �C 1

2
.� �A

T �/TM�1.� � A
T �/C V.s/: (30)

This is a special case, for free actions, of a more general result in [23, Section 6].
In the case of N -body problems (molecules), the corresponding Hamiltonian is
deduced in [15] and [5]. The relative equilibria conditions are [23]

� D A
T .s/�

� � �I�1.s/ �
� D 0

@

@s

�
V.s/C �T I�1.s/ �

� D 0 :

Assume that ..0; 0; �0/; s0; �0/ is a relative equilibrium, as determined by the
above equations, and let .q0; p0/ ' .Id; .0; 0; �0/; s0; �0/. Now we express the
Hamiltonian (30) in the slice coordinates given by (14)–(16), obtaining

h W so.3/�0 � so.3/?�0 � T �S ! R ; h D h.�; �; s; �/ :

The equations of motion are given by (24)–(26).

3.4 On the Nekhoroshev’s Estimates Near a Relative
Equilibrium

Recall that in [16] Nekhoroshev showed that under a perturbation of order ", the
actions of an arbitrary orbit of a quasi-convex integrable Hamiltonian vary at order
"b over a time interval of order exp."�a/;where a and b are positive numbers which
depend on the number of degrees of freedom and the steepness of the Hamiltonian.
For Hamiltonians near an elliptic equilibrium, under certain hypothesis, analogous
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estimates are found by [7, 21] and [17]. Specifically, (under the right conditions) the
actions I D .I1; I2; : : : ; In/ of a Hamiltonian system near an elliptic equilibrium
fulfill

jI.t/� I.0/j < C"a for jt j < D1exp.D2"
�a/

where a; C;D1;D2 are constants independent of ".
The Nekhoroshev long term stability of the perturbed Euler-Poinsot rigid-body

near a relative equilibrium (proper rotation) was treated in a series of excellent
papers by Benettin, Fassò et al. (see [3] and references therein). In particular,
the authors show that for a perturbed rigid body, the proper rotations around the
symmetry axis are Nekhoroshev stable.

Recall from Section 3.2 that our slice coordinates for the reduced space
correspond to the regularised Serret-Andoyer-Deprit coordinates used by Benettin,
Fassò et al. This suggests that our slice coordinates for general rotationally-invariant
cotangent-bundle systems may be useful for addressing long-term stability of RE.
Specifically, one may look for conditions under which motions that start near an
elliptic RE (i.e., an elliptic equilibrium in the reduced space) are Nekhoroshev long
term stable with respect to a small symmetry-breaking perturbation.

4 Birkhoff-Poincaré Normal Forms Near a Relative
Equilibrium

4.1 Rotationally Invariant Cotangent Bundle Systems

Consider a canonical symplectic manifold .P;˝c/, a HamiltonianH W P ! R and
z0 an equilibrium of the dynamics induced byH . Denote by OH.i/ the homogeneous
polynomial of degree i as obtained from the Taylor expansion of H around z0. The
truncated normal form of order k is defined as the k-jet of the Hamiltonian written
in some (new) coordinates OH

jk OH D OH.2/ C OH.3/ C : : :C OH.k/

which fulfills
n OH.2/ ; OH.i/

o
D 0 for all i D 2; 3; : : : k

The method itself consists in obtaining the property above by applying iteratively
changes of coordinates as given by the time-1 Hamiltonian flow X1

F where F is a
homogeneous polynomial of degree k found by solving the homological equation

OH.k/ C
n OH.2/ ; F

o
D 0
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A detailed exposition of Hamiltonian normal forms can be found in [4] (see
also [14]).

The classical method of Birkhoff-Poincaré normal forms near an equilibrium can
now be applied to the study of dynamics near relative equilibria in the reduced space
in the case of rotationally invariant systems. Indeed, since a relative equilibrium is
an equilibrium in the reduced space, and since the reduced space is endowed with a
canonical form, one may immediately apply the standard theory.

We will not report here on the importance and usefulness of normal forms in
relation, for instance, to bifurcation and stability theory (the interested reader may
consult, for instance, [4] and references therein, as well as [12]). In the context of
cotangent bundles systems with SO.3/ symmetry, very recent applications can be
found in [5] and [6]; here, since the normal forms are calculated directly on the
reduced space, there is no need of a canonical embedding in the full space.

4.2 The General Case

All of the theory in Section 3 can be generalised to arbitrary Lie groups, i.e., to
proper, cotangent-lifted free actions of any G on T �G. A key difference is that we
have no general formula for the symplectic tube ˚ , and do not expect to find one.
Thus we do not expect to be able to write H explicitly in slice coordinates (though
this might be possible in special cases). Nonetheless, the equations of motion in the
slice have almost the same form as in (18) and (19). If G� is compact, the equations
of motion are

P� D ad�
@h
@�

�; (31)

P� D � 1

�0
Jr�h; (32)

with the first equation reducing to P� D 0wheneverG� is abelian. The reconstruction
equation takes the same form as before:

R.t/�1 PR.t/ D @h

@�
: (33)

The case of non-compact G� is dealt with in [22]. For simple mechanical systems,
the relative equilibrium conditions given in Section 3.3 have a generalisation in [23].

It is clear that if an explicit formula for the symplectic tube ˚ W G � g� �N !
G � g� exists, then this can be composed with the original Hamiltonian to express
it in slice coordinates, and this Hamiltonian can then be differentiated as needed.
However, a key observation is that, to obtain a truncated normal form of order k, it
is not necessary to have an explicit formula for OH ; all that is required is its truncated
series expansion. In particular, to obtain such a truncation in slice coordinates one
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needs only the derivatives of˚ at .e; 0; 0/ up to order k. These can be obtained using
the Tube Condition in Proposition 1, which for reader’s convenience we re-write:
˚�˝c D ˝Y if and only if

˚.g; �; ad�
� �/ D

	
gF.�; �/�1;Ad�

F.�;�/�1
.�C �/




for some F W g�
� � g?

� ! G such that F.0; 0/ D e and, for all �; �; �i ; �i ,

˝
�C �; �F.�; �/�1 .DF.�; �/ � . P�1; �1// ; F .�; �/�1 .DF.�; �/ � . P�2; �2//

�˛

C ˝ P�2; F.�; �/�1 .DF.�; �/ � . P�1; �1//
˛ � ˝ P�1; F.�; �/�1 .DF.�; �/ � .P�2; �2//

˛

D h�; Œ�1; �2	i :

For any specific matrix Lie group G, this condition can be solved directly for
DF.0; 0/, while implicit differentiation of the same condition allows the iterative
calculation of higher derivatives to the desired order. Note that there may not be
unique solutions to these equations, since the symplectic tube is in general not
unique. Different choices of solutions will lead to different normal forms, all valid.

Note that the Lie symmetry group need not be compact, either in the Tube
Condition in Proposition 1 or in Lemma 5. In particular, one can apply the
methodology outlined here for G D SE.3/ for which an interesting case study is
given by the so-called full two body problem, that is, two spatially extended bodies,
(two asteroids), in gravitational interaction. We intend to investigate such problems
in the future.

5 Relationship to Reduced Energy Momentum Method

We consider the relationship between the symplectic slice coordinates studied here
and the Reduced Energy Momentum (REM) method [12, 25]. The general Energy-
Momentum Method [20] concerns a relative equilibrium ze , with velocity �e , of a
G-symmetric Hamiltonian system. The method gives sufficient conditions for for a
kind of equivariant nonlinear stability called G�e -stability, where �e D J.ze/. The
main condition is that the augmented Hamiltonian defined by H�e .z/ D H.z/ �
hJ.z/; �ei be definite on some (and hence any) subspace S of kerdJ.ze/ that is
transverse to g�e ze .

Consider a simple mechanical system on T �Q, with Hamiltonian as in (29) and
G acting properly, with relative equilibrium ze D .qe; pe/. The REM reduces the
main condition of the Energy-Momentum method to two simple tests of definiteness
on subspaces of TqeQ. This provides a computationally cheap way to prove
nonlinear stability in some cases. The proof of the REM relies on a particular choice
of the subspace S mentioned above, and a particular splitting of that subspace that
block-diagonalises d2H�e . We compute some of these spaces in coordinates given
the Palais slice theorem for the action of G on Q. Let S be a slice in Q at qe with
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respect to the given metric. Without loss of generality we assume S is a vector space,
so that

T �Q Š T �.G � S/ Š g˚ g� ˚ S ˚ S�;

where we use left-trivialisation on T �G. The relative equilibrium in the new
coordinates is ze D .e; �; 0; 0/. Restricting the Riemannian metric at qe D .e; 0/ to
the subspace g˚f0g of Te.G�S/ Š g˚S gives an inner product on g, with respect
to which we take the complement g?.2 We calculate the spaces V � T.e;0/Q and
S � kerdJ.ze/ in the Reduced Energy-Momentum method as presented in [12]:

J.g; �; s; �/ D Ad�
g�1 �;

kerdJ.e; �; 0; 0/ D f.�; ad�
� �/ W � 2 gg ˚ S ˚ S�;

Tze .G�ze/ D g�ze D g� ˚ f0g ˚ f0g ˚ f0g;
V WD �g�.e; 0/

�? D �g� ˚ f0g
�? D g?

� ˚ S;

where the last equality is due to the definition of the inner product on g, and

S WD fız 2 kerDJ.ze / W T�Q � ız 2 V g
D f.�; ad�

� �/ W � 2 g?
� g ˚ S ˚ S�

D N1 ˚ S ˚ S�;

where N1 is as in (3). Since S is a complement to g�ze in kerDJ.ze/, it is a
realisation of the symplectic normal space Ns , and in fact it is the same as the
realisation that appears in the constructive symplectic slice theorem in Section 2.4
(recall that N1 Š T�O� Š g?

� ). The REM splits S further:

S D SRIG ˚WINT ˚W �
INT :

We will not fully calculate these spaces here, but the following can easily be
checked:

SRIG D N1 ˚ f0g ˚ f0g;
WINT 	 g?

� ˚ g� ˚ S ˚ f0g; (34)

W �
INT D f0g ˚ f0g ˚ f0g ˚ S�:

2This inner product need not be invariant with respect to the adjoint action of G� on g. One of the
conditions of the Energy-Momentum Method is that g admits a G�e -invariant inner product.
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The REM works in part because this splitting of S block-diagonalises the aug-
mented Hamiltonian.

In contrast, the Hamiltonian Slice Theorem block-diagonalises the symplectic
form, and it does so at every point z, not just ze . In symplectic slice coordinates,
the symplectic form block-diagonalises with respect to the two-way splitting	
g˚ g�

�



˚Ns , where

Ns Š N1 ˚ S ˚ S� Š T�O� ˚ S ˚ S� (35)

and˝Ns has the following form with respect to this splitting:

2

4
˝KKS 0 0

0 0 I

0 �I 0

3

5 : (36)

Thus the total symplectic form block-diagonalises with respect to the the 3-way

splitting
	
g˚ g�

�



˚N1 ˚ .S ˚ S�/.

The REM and the constructive Hamiltonian Slice Theorem both make use of
the same realisation of the symplectic normal space, S D N1 ˚ S ˚ S�, but
while the slice theorem uses the canonical 3-way splitting N1 ˚ S ˚ S�, the
REM uses the splitting in (34). The two splittings do share one common subspace,
f0g ˚ f0g ˚ f0g ˚ S�, however there the similarities end. The splitting in the REM
is chosen to block-diagonalise the augmented Hamiltonian, leading to a stability
condition defined directly on configuration space. The splitting in the constructive
Hamiltonian Slice Theorem puts the symplectic form into block form, but not
the augmented Hamiltonian, and is not associated with a convenient condition for
nonlinear stability.

For the specific purpose of proving stability of a relative equilibrium of a
simple mechanical system, the REM is a superb tool. Symplectic slice coordinates
are general-purpose symmetry-adapted coordinates on phase space that block-
diagonalise the symplectic form at every z, leading to a normal form for the
Hamiltonian equations given in (31), (32) and (33). The simple form of these
equations, and the fact that (32) is the reduced Hamiltonian system, make these
coordinates ideal for computing Birkhoff-Poincaré normal forms.
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during a research stay at the Otter Lake Science Institute in Ontario. Also, we thank the referee for
many useful comments.
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Appendix

This appendix contains proofs of three results in the main text. The main result is
Proposition 1 (the “Tube Condition”) in Section 2.2, which gives a necessary and
sufficient condition for a map ˚ fromG � g�

� �Ns to G � g� to be symplectic. This
proposition is used in Section 2.3 to construct an explicit symplectic tube when
G D SO.3/, and it is also a key ingredient in the algorithm outlined in Section 4 for
computing Birkhoff-Poincaré normal forms for arbitrary G.

In the statement of the proposition, ˝c is the canonical symplectic form on
T �G, which is identified by left-trivialisation with G � g�. The symplectic form
˝Y is the form on Y WD G � g�

� � Ns that appears in the Hamiltonian Slice
Theorem (Theorem 2). This symplectic form is stated more explicitly in (4), using
the identification of Ns with T�O� that appears earlier in the same section.

Restatement of Proposition 1 (Tube Condition) ˚�˝c D ˝Y if and only if

˚.g; �; ad�
� �/ D

	
gF.�; �/�1;Ad�

F.�;�/�1
.�C �/




for some F W g�
� � g?

� ! G such that

˝
�C �; �F.�; �/�1 .DF.�; �/ � . P�1; �1// ; F .�; �/�1 .DF.�; �/ � . P�2; �2//

�˛

C ˝ P�2; F.�; �/�1 .DF.�; �/ � . P�1; �1//
˛ � ˝ P�1; F.�; �/�1 .DF.�; �/ � .P�2; �2//

˛

D h�; Œ�1; �2	i :

Proof. The most general formula for a G-equivariant˚ is

˚.g; �; ad�
� �/ D .gF1.�; �/; F2.�; �// :

We consider the condition ˚�˝c D ˝Y . Since

D˚.g; �; ad�
� �/ � .�; 0; 0; / D

	
Ad�

F�1
1 .�;�/

�; 0


;

it follows that, for all �1; �2,

�
˚�˝c

�
.e; �; ad�

� �/ ..�1; 0; 0/ .�2; 0; 0// D ˝Y .e; �; ad�
� �/ ..�1; 0; 0/ .�2; 0; 0//

,
D
F2

	
�; ad�

� �


;
h
AdF�1

1 .�;�/ �1;AdF�1
1 .�;�/ �2

iE
D h�C �; Œ�1; �2	i

,
D
Ad�

F�1
1 .�;�/

F2

	
�; ad�

� �


; Œ�1; �2	

E
D h�C �; Œ�1; �2	i :

Hence this condition is true for all �1; �2 if and only if

F2

	
�; ad�

� �


D Ad�

F1.�;�/
.�C �/ :
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Let F D F�1
1 . We will use the notation F.�; �/� WD Ad�

F.�;�/�1
�, so

˚.g; �; ad�
� �/ D

�
gF.�; �/�1; F .�; �/ .�C �/� ;

with first derivative:

D˚.g; �; ad�
� �/ � .�; P�; ad�

� �/

D .AdF.�;�/ � � .DF.�; �/ � . P�; �// F.�; �/�1;
.DF.�; �/ � . P�; �// .�C �/C F.�; �/ P�/:

(using left-trivialisation in the first component). Hence,

.˚�˝c/.e; �; ad�
� �/..�1; P�1; ad�

�1
�/.�2; P�2; ad�

�2
�//

D ˝c.gF.�; �/�1; F .�; �/.�C �//
..AdF.�;�/ �1 � .DF.�; �/ � . P�1; �1//F.�; �/�1;
.DF.�; �/ � . P�1; �1//.�C �/C F.�; �/ P�1/;
.AdF.�;�/ �2 � .DF.�; �/ � . P�2; �2//F.�; �/�1;
.DF.�; �/ � . P�2; �2//.�C �/C F.�; �/ P�2//

D hF.�; �/.�C �/;
ŒAdF.�;�/ �1 � .DF.�; �/ � . P�1; �1//F.�; �/�1;

AdF.�;�/ �2 � .DF.�; �/ � . P�2; �2//F.�; �/�1	i
C h.DF.�; �/ � . P�2; �2//.�C �/C F.�; �/ P�2;

AdF.�;�/ �1 � .DF.�; �/ � . P�1; �1//F.�; �/�1i
� h.DF.�; �/ � . P�1; �1//.�C �/C F.�; �/ P�1;

AdF.�;�/ �2 � .DF.�; �/ � . P�2; �2//F.�; �/�1i:

To verify the condition ˚�˝c D ˝Y , we must consider all pairs of tangent vectors
.�i ; P�i ; �i /. By linearity, it suffices to consider only tangent vectors where two of
these three components are zero. Thus there are 9 types of tangent vector pairs to
consider, which reduce to 6 types by skew-symmetry. The ��� case has already been
considered above, with the conclusion that the pull-back condition is automatically
satisfied for arbitrary F . This same conclusion will now be shown to apply in the
� � P� and � � � cases. Finally, we will combine the remaining 3 cases into one
.�; �/� .�; �/ case, which will lead to the Tube Condition in Proposition 1.
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Case � � P�:

�
˚�˝c

�
.e; �; ad�

� �/ ..�1; 0; 0/ .0; P�2; 0//
D ˝F .�; �/ .�C �/; �AdF.�;�/ �1;� .DF.�; �/ � . P�2; 0// F.�; �/�1

�˛

C ˝.DF.�; �/ � . P�2; 0// .�C �/C F.�; �/ P�2;AdF.�;�/ �1
˛

D ˝F .�; �/ .�C �/; �.DF.�; �/ � . P�2; 0// F.�; �/�1;AdF.�;�/ �1
�˛

C ˝.DF.�; �/ � . P�2; 0// .�C �/;AdF.�;�/ �1
˛

C ˝F.�; �/ P�2;AdF.�;�/ �1
˛

Using explicit notation for the coadjoint action gives:

D
Ad�

F.�;�/�1
.�C �/; ad.DF.�;�/ � .P�2;0//F .�;�/�1

�
AdF.�;�/ �1

�E

C
D
�Ad�

F.�;�/�1
ad�
F.�;�/�1.DF.�;�/ � .P�2;0//.�C �/;AdF.�;�/ �1

E

C
D
Ad�

F.�;�/�1
P�2;AdF.�;�/ �1

E

D
D
Ad�

F.�;�/�1
.�C �/; ad.DF.�;�/ � .P�2;0//F .�;�/�1

�
AdF.�;�/ �1

�E

�
D
ad�
.DF.�;�/ � .P�2;0//F .�;�/�1

	
Ad�

F.�;�/�1
.�C �/



;AdF.�;�/ �1

E

C hP�2; �1i
D hP�2; �1i
D ˝Y .e; �; ad�

� �/ ..�1; 0; 0/ .0; P�2; 0// ; for all �1; P�2
automatically, for all functions F .

Case � � �:

�
˚�˝c

�
.e; �; ad�

� �/
	
.�1; 0; 0/ ;

	
0; 0; ad�

�2
�




D ˝F .�; �/ .�C �/; �AdF.�;�/ �1;� .DF.�; �/ � .0; �2// F.�; �/�1
�˛

C ˝.DF.�; �/ � .0; �2// .�C �/;AdF.�;�/ �1
˛

D 0
D ˝Y .e; �; ad�

� �/ ..�1; 0; 0/ .0; 0; �2// ; for all �1; �2

automatically, for all functions F .
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Case . P�; �/� . P�; �/ (three cases combined)

�
˚�˝c

�
.e; �; ad�

� �/
		
0; P�1; ad�

�1
�

 	
0; P�2; ad�

�2
�




D ˝F .�; �/ .�C �/; �.DF.�; �/ � . P�1; �1// F.�; �/�1;
.DF.�; �/ � . P�2; �2// F.�; �/�1

�˛

� ˝.DF.�; �/ � . P�2; �2// .�C �/; .DF.�; �/ � . P�1; �1// F.�; �/�1
˛

C ˝.DF.�; �/ � . P�1; �1// .�C �/; .DF.�; �/ � . P�2; �2// F.�; �/�1
˛

� ˝F.�; �/ P�2; .DF.�; �/ � . P�1; �1// F.�; �/�1
˛

C ˝F.�; �/ P�1; .DF.�; �/ � . P�2; �2// F.�; �/�1
˛
:

Using explicit notation for the coadjoint action gives:

�
˚�˝c

�
.e; �; ad�

� �/
		
0; P�1; ad�

�1
�

 	
0; P�2; ad�

�2
�




D
D
Ad�

F.�;�/�1
.�C �/; �.DF.�; �/ � . P�1; �1// F.�; �/�1;

.DF.�; �/ � . P�2; �2// F.�; �/�1
� E

�
D
ad�
.DF.�;�/ � .P�2;�2//F .�;�/�1

	
Ad�

F.�;�/�1
.�C �/



;

.DF.�; �/ � . P�1; �1// F.�; �/�1
E

C
D
ad�
.DF.�;�/ � .P�1;�1//F .�;�/�1

	
Ad�

F.�;�/�1
.�C �/



;

.DF.�; �/ � . P�2; �2// F.�; �/�1
E

� ˝ P�2; F.�; �/�1 .DF.�; �/ � . P�1; �1//
˛

C ˝ P�1; F.�; �/�1 .DF.�; �/ � . P�2; �2//
˛

D �
D
Ad�

F.�;�/�1
.�C �/; �.DF.�; �/ � . P�1; �1// F.�; �/�1;

.DF.�; �/ � . P�2; �2// F.�; �/�1
� E

� ˝ P�2; F.�; �/�1 .DF.�; �/ � . P�1; �1//
˛C ˝ P�1; F.�; �/�1 .DF.�; �/ � . P�2; �2//

˛

D � ˝�C �; �F.�; �/�1 .DF.�; �/ � . P�1; �1// ; F .�; �/�1 .DF.�; �/ � . P�2; �2//
�˛

� ˝ P�2; F.�; �/�1 .DF.�; �/ � . P�1; �1//
˛C ˝ P�1; F.�; �/�1 .DF.�; �/ � . P�2; �2//

˛
:
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We need this to equal

˝Y .e; �; ad�
� �/

		
0; P�1; ad�

�1
�

 	
0; P�2; ad�

�2
�



D �h�; Œ�1; �2	i ;

for all �; P�1; P�2 2 g�
�, for all �; �1; �2 2 g?. This proves the Tube Condition.

Remark 3. We note the three special cases that were combined in the “. P�; �/ �
. P�; �/” case above:

Case P� � P�: When P�1 D P�2 D 0, the condition in the proposition is equivalent to:
˝
�C �; �F.�; �/�1 .DF.�; �/ � . P�1; 0// ; F.�; �/�1 .DF.�; �/ � . P�2; 0//

�˛

C ˝ P�2; F.�; �/�1 .DF.�; �/ � . P�1; 0//
˛ � ˝ P�1; F.�; �/�1 .DF.�; �/ � . P�2; 0//

˛ D 0:

Note that a sufficient condition is that .DF.�; �/ � . P�1; 0// is a multiple of
.DF.�; �/ � . P�2; 0// and F.�; �/�1 .DF.�; �/ � . P�1; 0// 2 g?

� for all P�1; P�2 2 g�
�.

Case P� � �: When P�1 D P�2 D 0, the condition in the proposition is equivalent to:

� ˝.�C �/; �F.�; �/�1 .DF.�; �/ � . P�1; 0// ; F.�; �/�1 .DF.�; �/ � .0; �2//
�˛

C ˝ P�1; F.�; �/�1 .DF.�; �/ � .0; �2//
˛ D 0

all P�1; �2, since ˝Y .e; �; ad�
� �/ ..0; P�1; 0/ ; .0; 0; �2// D 0.

Case � � �: When P�1 D P�2 D 0, the condition in the proposition is equivalent to:

˝
�C �; �F.�; �/�1 .DF.�; �/ � .0; �1// ; F .�; �/�1 .DF.�; �/ � .0; �2//

�˛

(37)

D h�; Œ�1; �2	i :

The last case above may be compared with the following:

Restatement of Lemma 2 Let ' W T�O� ! O� be of the form '.� ad�
� �/ D

f .�/� for some f W g?
� ! G. Then ' preserves the �KKS symplectic form if and

only if

h�; Œ�1; �2	i D
˝
f .�/�;

�
.Df .�/ � �1/ f .�/�1; .Df .�/ � �2/ f .�/�1

�˛
(38)

D ˝�; �f .�/�1 .Df .�/ � �1/ ; f .�/�1 .Df .�/ � �2/
�˛

for all �; �1; �2 2 g?
� .

Proof. D'.� ad�
� �/ �

	
� ad�

� �


D .Df .�/ � �/� (using the “hat” map for �),

which corresponds to

� ad�
.Df .�/ � �1/f .�/�1

	
Ad�

f .�/�1
�


;
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so

�
'�˝�

KKS

� 	� ad�
� �

 	
� ad�

�1
�;� ad�

�2
�



D ˝�
KKS.f .�/�/ ..Df .�/ � �1/ �; .Df .�/ � �2/ �/

D ˝�
KKS.Ad�

f .�/�1
�/
	

ad�
.Df .�/ � �1/f .�/�1

	
Ad�

f .�/�1
�


;

ad�
.Df .�/ � �2/f .�/�1

	
Ad�

f .�/�1
�




D
D
Ad�

f .�/�1
�;
�
.Df .�/ � �1/ f .�/�1; .Df .�/ � �2/ f .�/�1

�E

D ˝�; �Adf .�/�1
�
.Df .�/ � �1/ f .�/�1

�
;Adf .�/�1

�
.Df .�/ � �2/ f .�/�1

��˛

D ˝�; �f .�/�1 .Df .�/ � �1/ ; f .�/�1 .Df .�/ � �2/
�˛

The similarity of conditions (37) and (38) led to the discovery of an explicit
construction of a symplectic tube for G D SO.3/, see Section 2.3.

Finally, we prove Lemma 5 in Section 2.3. This lemma concerns an Ansatz that
is motivated by our consideration of the SO.3/ case. However, the lemma is valid
for all Lie groups.

Restatement of Lemma 5 Suppose F.�; �/ D exp

�

h.�; �/
�

k�k
�

, for some h W
g�
� � g?

� ! R. Then the Tube Condition in Proposition 1 is automatically satisfied
(regardless of the definition of h) for all . P�1; �1/ ; . P�2; �2/ such that �1 and �2 are
parallel to �.

Proof. For arbitrary f W R ! M.n;R/, if f 0.0/ is a multiple of f .0/ then they
commute, so

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

exp .f .t// D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

exp
�
f .0/C tf 0.0/

� D exp .f .0// f 0.0/ (39)

D f 0.0/ exp .f .0// : (40)

Let f .t/ D h ..�; �/C t. P�; �// �

k�k . If � is parallel to � then
�C t�
k�C t�k D

�

k�k , so

DF.�; �/ � . P�; �/ D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

F ..�; �/C t. P�; �//

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

exp

�

h ..�; �/C t. P�; �// �

k�k
�

D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

exp .f .t//
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D f 0.0/ exp .f .0//

D .Dh.�; �/ � . P�; �// �

k�kF.�; �/

D F.�; �/ .Dh.�; �/ � . P�; �// �

k�k :

Thus if �1 and �2 are parallel to �,

�
F.�; �/�1 .DF.�; �/ � . P�1; �1// ; F .�; �/�1 .DF.�; �/ � . P�2; �2//

� D 0

and

˝ P�i ; F .�; �/�1
�
DF.�; �/ � � P�j ; �j

��˛ D 0;

for all i; j D 1; 2. Therefore the Tube Condition in Proposition 1 holds.
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Polite Actions of Non-compact Lie Groups

Larry Bates and Jędrzej Śniatycki

Abstract Based mainly on examples of interest in mechanics, we define the notion
of a polite group action. One may view this as not only trying to give a more general
notion than properness of a group action, but also to more fully understand the role
of invariant functions in describing just about everything of interest in reduction.

We show that a polite action of a symmetry group of a dynamical system admits
reduction and reconstruction.

1 Introduction

Dirac’s seminal 1950 paper [6] showed how to construct a reduced bracket on a
Hamiltonian system with constraints, but did not focus on constraints generated
by the action of a symmetry group. The first significant theory of reduction of a
Hamiltonian system with symmetry was given by Meyer in 1973 [9], and this was
followed by work of Marsden and Weinstein a year later [8]. Since then there has
been a veritable flood of papers endeavouring to understand reduction and various
forms of singular behaviour. For example, many of these works have studied what
happens when the action of the symmetry group is not free and quotient spaces
are not manifolds. It is probably fair to say that a reasonably complete reduction
theory now exists in the case that the group action is proper (see, for example,
[2, 5, 11–13]). Here we make the case that since there are interesting, important
examples in mechanics where the symmetry group does not act properly, a less
restrictive notion of group action warrants consideration.

This paper defines the notion of a polite action, and gives some examples. In
addition, it proves that a polite action of the symmetry group of a dynamical system
admits reduction and reconstruction. This means that the dynamical vector field
projects to a vector field on a reduced space, and that the original dynamics can be
recovered from the dynamics on the reduced space. This is all done in the context
of vector fields and differential equations on manifolds.
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Department of Mathematics, University of Calgary, Calgary, AB, Canada T2N 1N4
e-mail: bates@ucalgary.ca; sniatyck@ucalgary.ca

© Springer Science+Business Media New York 2015
D.E. Chang et al. (eds.), Geometry, Mechanics, and Dynamics, Fields Institute
Communications 73, DOI 10.1007/978-1-4939-2441-7_18

427

mailto:bates@ucalgary.ca
mailto:sniatyck@ucalgary.ca


428 L. Bates and J. Śniatycki

Since the possibility exists that our notion of a polite action is not the last word
on group actions in mechanics, we hope that, in the spirit of this commemorative
volume, others will provide even better solutions to the problem of ‘what’s next’.

2 Motivating Examples

The following examples motivate why one needs to deal with problems where the
group action is not proper, so that strictly speaking the usual reduction theories do
not apply.

1. The one-dimensional harmonic oscillator. Here the Hamiltonian is h.p; q/ D
1
2
p2 C 1

2
q2 on the phase space P D T �

R. All solutions of Hamilton’s equations
are periodic with period 2� . The Hamiltonian flow �t is

�t

�
q0
p0

�

D
�

cos t sin t
� sin t cos t

��
q0
p0

�

:

The action of R on P is not proper but is indistinguishable from the free proper
action of the compact group R=2�Z.

2. The stiff spring. The Hamiltonian is, for � > 0,

h.q; p/ D 1

2
p2 C 1

2
q2 C �

4
q4:

Hamilton’s equations yield Duffing’s equation q00 C q C �q3 D 0. This implies
that the solution may be written in terms of the Jacobi elliptic function cn as

q.t/ D cn

�p
1C � t I

r
�

2.1C �/
�

:

Here the parameters are chosen so that q.t/ solves the initial value problem

q00 C q C �q3 D 0; q.0/ D 1; q0.0/ D 0;

for � > 0. It follows that the period � is

� D 4p
1C � K

�r
�

2.1C �/
�

;

D 2�
�

1 � 3
8
� C 57

256
�2 C � � �

�

;

where K.k/ is the complete elliptic integral of the first kind. It is now easy to
solve for other initial conditions to find the period as a function of the energy h
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and �. The Hamiltonian flow �t , which is an action of R on P D T �
R is still

periodic, but not proper. In this case there is no fixed subgroup G of R with the
flow �t being a proper R=G action (although we can do this individually for each
orbit). However, it is common practice in mechanics to rescale the Hamiltonian
vector field Xh by the period � to produce a new vector field Y D �Xh, all of
whose integral curves are periodic of period 1. It is a theorem that the resulting
vector field Y is still a Hamiltonian vector field, and we produce a new variable
called the action (see, for example [4]). In this way a free proper action  t of the
compact group SO.2/ is associated to the original nonproper action �t by setting
 t WD �� t .

3. The champagne bottle. The Hamiltonian in this case is

h D 1

2
.p21 C p22/C .q21 C q22/2 � .q21 C q22/

on the phase space P D T �
R
2. This is a completely integrable system because

of the rotational invariance. The Hamiltonian h, together with the angular
momentum j gives the construction of action variables .I1; I2/ that generate
a torus action whose orbits contain the original quasiperiodic trajectories of the
Hamiltonian. In this way, a proper group action is associated to the non-proper
Hamiltonian action of R2 associated to the flow of the commuting Hamiltonian
vector fields of the energy and the angular momentum (see [3] for more details).
However, what is interesting in this case is that the construction of the actions
is only local because of the presence of an obstruction called monodromy
preventing the torus group action being globally well-defined (see [1]).

4. A nonabelian example. We construct an oriented S3 bundle over R3nf0g. The
fiber S3 is diffeomorphic to the group Spin.3/, but the bundle is not a principal
bundle. In a sense, we may view this example as a simply-connected version of
the previous example.

To start, consider the two copies of the trivial bundleD2�S3, which we think
of as local trivializations of our bundle over the upper and lower hemispheres of
the sphere S2. Viewing S3 as the unit sphere in R

4, we consider the gluing map
from one hemisphere to another as a map from the equator into DiffC(S3). By a
theorem of Hatcher [7], this diffeomorphism group retracts onto the orthogonal
group SO.4/. The orthogonal group is diffeomorphic to the product SO.3/ �
Spin.3/, and has fundamental groupZ2. The transition map from one hemisphere
to the other is given by the map

S1 �! SO.4/ W � �!

0

B
B
@

cos� � sin � 0 0
sin � cos� 0 0

0 0 1 0

0 0 0 1

1

C
C
A :
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This map is a generator of the fundamental group of SO.4/ because the matrix
represented by the upper left 2� 2 block is a generator of the fundamental group
of SO.2/, and we have the natural inclusions

SO.2/ ,! SO.3/ ,! SO.4/

and thus a surjection in homotopy �1.SO.2// �! �1.SO.4//. This implies that
the bundle is not a trivial bundle.

Observe that the south pole .0; 0; 0; 1/ on the sphere S3 is fixed by the
transition map, and this implies that the map S2 �! ‘south pole’ is a global
section of the bundle. This fact, together with the nontriviality of the bundle
implies that the bundle is not a principal Spin.3/ bundle, as any principal bundle
with a global section must be globally trivial.

Reviewing this example from the point of view of classifying spaces suggests
that many more such examples may be constructed by considering Spin.3/
bundles over the four-sphere S4.

The bundle constructed here may be given a symplectic structure by embed-
ding the sphere S2 into R

3n0 in the usual way. In more detail, let S2 be
x21Cx22Cx23 D 1, and 1; 2;  3 be the usual left-invariant one-forms on Spin.3/.
Then the form

! D  1 ^  2 C d.z.x3/ 3/C dx1 ^ dx2
is a symplectic form on our bundle where z.x3/ is a function that satisfies 1)
z0.x3/ > 0 for all x3, and 2) jz.x3/j < 1 for all x3. For example, we may take
z.x/ D x=p1C x2.

5. Consider the Hamiltonian system given by the motion of the free particle in
space (you can take any dimension n � 2 for space). The Euclidean group
SE.n/ acts in a Hamiltonian way on the phase space T �

R
n and preserves the

level set h�1.1=2/, which are the straight lines parameterized by arclength.
We are of course taking the Hamiltonian to be h D jpj2=2. The components
of the momentum map for the Euclidean group are the linear and angular
momentum, and as they commute with the Hamiltonian, they induce an action
on the quotient space NP WD h�1.1=2/= , where the  represents the quotient
by the Hamiltonian flow �t .q; p/ D .qC tp; p/. The quotient manifold NP , which
is the space of oriented lines in R

n, is naturally endowed with a symplectic
structure, as follows from the reduction theorem. Furthermore, the action of
the Euclidean group on the quotient NP is Hamiltonian. This action is not fixed
point free and is not proper, as the stability subgroup of a point in the quotient
contains the subgroup which corresponds to the translations along the line that
it represents. More precisely, the space of lines is the homogeneous space
SE.n/=.SO.n � 1/ � R/  T �Sn. This construction is used when studying the
Radon transform, as it involves integration along lines.
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3 Polite Actions

Consider a Hamiltonian system .P; !; h/ invariant under the action � of a connected
Lie group G. Given a closed subgroupH of G, define

PH WD fp 2 P j Gp D H g:

Denote by NH the normalizer of H in G; that is

NH D fn 2 G j n�1hn 2 H for all h 2 H g:

The normalizer is a closed subgroup of G.

Lemma 1. The action of NH on P preserves PH .

Proof. For p 2 PH , and n 2 NH , the isotropy groupGnp of np is given by

Gnp D fg 2 G j gnp D npg
D fg 2 G j n�1gnp D pg
D fg 2 G j n�1gn 2 H g:

In other words, g 2 Gnp if and only if h D n�1gn 2 H . Therefore, g D nhn�1 2 H ,
and Gnp D H: Hence, np 2 PH . Thus, the action of NH on P preserves PH .

Since the action of NH on P preserves PH , it induces an action of NH on PH :
Let GH D NH=H . Since H is closed in G, it is closed in NH , and GH is a Lie
group. Moreover, there is an action

GH � PH ! PH W .Œn	; p/ D np;

where Œn	 is the equivalence class of n in GH D NH=H .
Warning: The groupGH is not a subgroup of the group G.

Proposition 1. The action of GH on PH is free.

Proof. For g 2 NH , suppose Œg	 2 GH preserves a point p 2 PH ; that is gp D p.
This means that g 2 Gp D H . Therefore, Œg	 is the identity in GH .

Definition 1. The action of G on P is polite if for each closed subgroup H of G,
the set PH is a manifold and the action of GH on PH is proper.

4 Examples of Polite Actions

It is straightforward to check that the group action in all of the following examples
(except the third) is polite.
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Example 1. The actions in the motivating Examples 1, 2, 3, 5 are all polite.

Example 2. Every action of a compact group is polite because it is proper.

Example 3. The R action generated by the flow of the vector field X D sinx @x C
cosx @y on the plane is free but not polite.

Example 4. The coadjoint action of a compact connected Lie group is polite
because this is just the action of the (finite) Weyl group NH=H on a coadjoint
orbit cross an interval.

Example 5. The co-adjoint action of SL.2;R/.

There are three co-adjoint orbits of interest, which we can label as parabolic,
hyperbolic and elliptic since the group is semi-simple. The elliptic and hyperbolic
ones correspond to Cartan subalgebras, so the corresponding stability groups are
self-normalizing. The only nontrivial case is the parabolic one, and here the
normalizer is the Borel subgroup which we may take as the upper triangular
matrices. The quotientNH=H in this case acts by dilations on the cone (translations
along the ruling), and the action is again seen to be proper.

Example 6. A special class of solvable groups of type S.

Following Nomizu [10], we say that a group G belongs to the class S if the
Lie algebra g of the Lie group G contains a codimension one commutative ideal a
and an element Y with the property that ŒY;X	 D X for all X in the ideal a. Let
X1; : : : ; Xn be a basis for a, and letX�

1 ; : : : ; X
�
n ; Y

� be the corresponding dual basis
in the dual space g�. Let .a; b/ be an element in the half-space RC�R, and consider
the point � D aX�

1 C bY � 2 g�. Then the non-zero infinitesimal generators of the
co-adjoint action are generated by

ad�
X1
j� D �a @

@Y � ; ad�
Y j� D �a

@

@X�
1

:

This implies that the co-adjoint orbit through the point � is the two-dimensional
open half plane spanned by Y � and �. It follows that the Lie algebra h D
spanfX2; : : : ; Xng, and hence that the isotropy group H  R

n�1. Thus the
normalizerNH D G and

NH=H  AffC.1;R/

acts freely, transitively and properly on the co-adjoint orbit through �. Note that the
action is just the usual action of the affine group on the half-plane.

In light of the previous two examples we make the following

Conjecture 1. The coadjoint action of a Lie group on the dual of its Lie algebra is
polite for any group in which the coadjoint orbits are locally closed.
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5 Reduction and Reconstruction of Polite Symmetries

We consider a dynamical system given by a smooth vector fieldX on a manifoldP ,
called the phase space of the system. Evolutions of our dynamical system are
integral curves 
 W I ! P of X , where I is an interval in R.

Let � W G � P ! P be an action of a Lie group G on P . We say that G
is a symmetry group of our dynamical system if the action � preserves the vector
field X . The reduced phase space is the space NP D P=G ofG-orbits in P endowed
with a differential structure

C1. NP/ D ff W NP ! R j ��f 2 C1.P /Gg;

where � W P ! NP is the orbit map and C1.P /G is the ring of G-invariant
smooth functions on P: It should be noted that the orbit space NP has two topologies:
the quotient space topology and the differential space topology. Here, we take the
differential space topology.1 The reduced dynamical system is the derivation ��X
of C1. NP/ defined by

��..��X/.f // D X.��f / (1)

for every f 2 C1. NP/:
Proposition 2. For every integral curve 
 W I ! P of X , the curve � ı 
 W I !
NP W t 7! �.
.t// satisfies the equation

d

dt
f .�.
.t/// D ..��X/.f //.�.
.t/// (2)

for each f 2 C1. NP / and t 2 I .

Proof. It follows from equation (1) that

d

dt
f .�.
.t/// D d

dt
..��f /.
.t// D .X.��f //.
.t//

D ��..��X/.f //.
.t// D ..��X/.f //.�.
.t///:

Equation (2) is called the reduced equation. A curve �ı
 W I ! NP satisfying the
reduced equation gives a reduced evolution of the system. Given a reduced evolution
N
 W I ! NP of the system, the process of finding integral curves 
 of X such that
� ı 
 D N
 is called reconstruction. If the action � of G on P is free and proper,
the reduced equation as well as equations involved in reconstruction are ordinary
differential equations on manifolds.

1For applications of the theory of differential spaces to reduction of symmetries see [13].
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Definition 2. An action � W G � P ! P that preserves a vector field X on P
admits reduction and reconstruction if the reduced equation and equations involved
in reconstruction can be presented as differential equations on manifolds.

Theorem 1. A polite action � W G � P ! P that preserves a vector field X on P
admits reduction and reconstruction.

We shall prove this theorem by a sequence of propositions.

Proposition 3. LetX be a vector field onP that is invariant under a polite action of
a Lie groupG on P . For each closed subgroupH ofG, the flow ofX preserves PH .

Proof. Let exp tX be the local one-parameter group of local diffeomorphisms of P
generated by X , and H be a closed subgroup of G. For each g 2 H we have

g exp tXg�1 D exp tX;

because X is G-invariant and H � G. Hence, for each p 2 PH and g 2 H ,

g exp tX.p/ D exp tXgp D exp tX.p/;

which implies that exp tX.p/ 2 PH :
Let NPH D �.PH/ and �H W PH ! NPH be the restriction of � to PH . The

following diagram

�H
PH ,! P

�H # # �
NPH ,! NP
�H

where the horizontal arrows are the inclusion maps, commutes.
The space NPH has the differential structure

C1
1 .
NPH / D fh W NPH ! Rj ��

Hh 2 C1.PH /g

and a differential structure C1
2 .
NPH/ generated by the restrictions to NPH of smooth

functions on NP .

Proposition 4. The differential structures C1
2 .
NPH/ and C1

1 .
NPH / are related by

the inclusion

C1
2 .
NPH/ � C1

1 .
NPH/:

If the action of G on P is improper, C1
2 .
NPH/ may be a proper subset of C1

1 .
NPH/:
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Proof. If f 2 C1. NP /, then ��
Hf D fj NPH 2 C2. NPH/. On the other hand,

��f 2 C1.P / and the restriction of ��f to PH is an NH -invariant smooth
function .��f /jPH D ��H��f on PH . Moreover, � ı �H D �H ı �H implies that
��H��f D ��

H�
�
Hf . Therefore, ��

Hf 2 C1
1 .
NPH/:

Suppose now that h W NPH ! R is such that, for every r 2 NPH , there exists a
neighbourhood Ur of r in NPH and a function fr 2 C1. NP/ such that ��

Hfr jUr D
hjUr . By definition of the differential structure generated by a family of functions,
fr 2 C1

2 .
NPH/. We have shown above that ��

Hfr 2 C1
1 .
NPH/. Hence, fr j NPH\Ur D

fr jUr , which implies

C1
2 .
NPH/ � C1

1 .
NPH/:

On the other hand, suppose that h 2 C1
1 .
NPH/; which means that ��

Hh 2
C1.PH /H . The set

P.H/ D fgp 2 P j g 2 G; p 2 PH g

is the union of the orbits of G through points in PH . We can extend theH -invariant
function ��

Hh on PH to a G-invariant function k on P.H/: If the action of G on P is
not proper, we have no guarantee that a G-invariant function k on P.H/ extends to a
G-invariant function on P , as may be seen in the following example. Let X be the
planar vector field

X D sinx @x C cos x @y:

Since X has bounded norm in the plane (so has a complete flow) and is invariant by
translations of 2� in both the x and y directions, X generates an R-action on the
torus R2=.2�Z�2�Z/ This action is not free only on the two circular orbits through
Œ.0; 0/	 and Œ.�; 0/	, and the isotropy group H for these orbits in this case is 2�Z.
Any function that is locally constant on each circle need not extend to an invariant
function on the entire torus unless it has the same value on each circle, because the
pair of circles are the alpha and omega limit sets of every other trajectory on the
torus.

Hence, if the action is not proper, C1
2 .
NPH/ may be a proper subset of C1

1 .
NPH/:

In the following we shall consider NPH with the differential structure C1
1 .
NPH/.

Proposition 5. For each closed subgroup H of G, NPH with the differential
structure C1

1 .
NPH / is diffeomorphic to PH=GH .

Proof. The differential structure C1
2 .
NPH/ of NPH consists of pushforwards of

NH -invariant smooth functions on PH . However, a function f 2 C1.PH / is NH -
invariant if and only if it is GH -invariant. But the differential structure of PH=GH
consists of GH -invariant functions on PH . Hence, the differential structures of NPH
and PH=GH coincide.
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By Proposition 3, for each closed subgroup H of G, the flow exp tX of the
invariant vector field X preserves PH : The politeness of the action of G on
P ensures that PH is a manifold and that the action of GH on PH is proper.
Proposition 1 ensures that the action of GH on PH is free. Hence, PH=GH is a
quotient manifold of PH , and PH has the structure of a left principal GH -bundle
over PH=GH : This implies that both the reduction and the reconstruction of the
restriction of X to PH is the same as in the case of a free and proper action. This
completes the proof of Theorem 1.
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13. Śniatycki, J.: Differential Geometry of Singular Spaces and Reduction of Symmetries.

Cambridge University Press, Cambridge (2013)



Geometric Computational Electrodynamics
with Variational Integrators and Discrete
Differential Forms

Ari Stern, Yiying Tong, Mathieu Desbrun, and Jerrold E. Marsden

In memory of Jerry, our colleague, mentor, and friend.
— A.S., Y.T., and M.D.

Abstract In this paper, we develop a structure-preserving discretization of the
Lagrangian framework for electrodynamics, combining the techniques of varia-
tional integrators and discrete differential forms. This leads to a general family of
variational, multisymplectic numerical methods for solving Maxwell’s equations
that automatically preserve key symmetries and invariants. In doing so, we show
that Yee’s finite-difference time-domain (FDTD) scheme and its variants are
multisymplectic and derive from a discrete Lagrangian variational principle. We
also generalize the Yee scheme to unstructured meshes, not just in space but in
4-dimensional spacetime, which relaxes the need to take uniform time steps or
even to have a preferred time coordinate. Finally, as an example of the type of
methods that can be developed within this general framework, we introduce a
new asynchronous variational integrator (AVI) for solving Maxwell’s equations.
These results are illustrated with some prototype simulations that show excellent
numerical behavior and absence of spurious modes, even for an irregular mesh with
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1 Introduction

The Yee scheme (also known as finite-difference time-domain, or FDTD) was
introduced by Yee [48] in 1966, but it remains to this day one of the most successful
numerical methods used in the field of computational electromagnetics, particularly
in the area of microwave problems. Although it is not a “high-order” method, it
is still preferred for many applications because it preserves important structural
features of Maxwell’s equations that other methods fail to capture. Among these
distinguishing attributes are the exact preservation of a discrete version of the Gauss
constraint r �D D �, and discrete stationarity of electrostatic solutions of the form
E D �r� (cf. Rylander et al. [39], Taflove and Hagness [41]). In this paper, we
show that these desirable properties are direct consequences of the variational and
discrete differential structure of the Yee scheme, which mirrors the geometry of
Maxwell’s equations. Moreover, we will show how to construct other variational
methods, which share these same numerical properties while being applicable to
more general domains.

1.1 Variational Integrators and Symmetry

Geometric numerical integrators have been used primarily for the simulation of
classical mechanical systems, where features such as symplecticity, conservation
of momentum, and conservation of energy are essential (cf. Hairer et al. [18]).
Among these, variational integrators are developed by discretizing the Lagrangian
variational principle of a system, and then requiring that numerical trajectories sat-
isfy a discrete version of Hamilton’s stationary-action principle. These methods are
automatically symplectic, and they exactly preserve discrete momenta associated to
symmetries of the Lagrangian: for instance, systems with translational invariance
will conserve a discrete linear momentum, those with rotational invariance will
conserve a discrete angular momentum, etc. In addition, variational integrators
exhibit good long-time energy behavior, without artificial numerical damping. (For
a comprehensive overview of variational integrators in mechanics, see Marsden and
West [30].)

This variational approach was extended to discretizing general multisymplectic
field theories, with an application to nonlinear wave equations, in Marsden et al.
[31, 32], which developed the multisymplectic approach for continuum mechanics.
Building on this work, Lew et al. [28] introduced asynchronous variational integra-
tors (AVIs), which allow different time step sizes to be chosen at individual elements
of the spatial mesh, while still preserving the same variational and geometric
structure as uniform-time-stepping schemes. These methods were implemented and
shown to be not only practical, but in many cases superior to existing methods for
problems such as nonlinear elastodynamics. Some further developments are given
in Lew et al. [29].
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While there have been attempts to apply the existing AVI theory to computational
electromagnetics, these efforts encountered a fundamental obstacle: the key sym-
metry of Maxwell’s equations is not rotational or translational symmetry, as in
mechanics, but a differential gauge symmetry. Without taking additional care to
preserve this differential structure, even variational integrators cannot be expected
to preserve the symmetries and invariants of Maxwell’s equations. We demonstrate
how to overcome this obstacle by combining variational methods with discrete
differential forms and operators. This gauge structure also turns out to be important
for numerical performance, and its preservation is one of the hallmarks of the Yee
scheme.

1.2 Preserving Differential Structure and Gauge Symmetry

As motivation, consider the basic relation B D r �A, where B is the magnetic flux
and A is the magnetic vector potential. Because of the vector calculus identities
r �r� D 0 and r � r D 0, this equation has two immediate and important
consequences. First, B is automatically divergence-free. Second, any transformation
A 7! AC rf has no effect on B; this describes a gauge symmetry, for which the
associated conserved momentum is r �D � � (which vanishes, by Gauss’s law).
A similar argument also explains the invariance of electrostatic solutions, since
E D �r� is curl-free and invariant under constant shifts in the scalar potential �.
Therefore, a proper variational integrator for electrodynamics should also preserve
a discrete analog of these differential identities.

This can be done by viewing the objects of electromagnetics not as vector
fields, but as differential forms in 4-dimensional spacetime, as is typically done
in the literature on classical field theory. Using Discrete Exterior Calculus (DEC)
as the framework to discretize these differential forms, we find that the resulting
variational integrators automatically respect discrete differential identities such as
d2 D 0 (which encapsulates the previous div-curl-grad relations) and Stokes’ theo-
rem. Consequently, they also respect the gauge symmetry of Maxwell’s equations,
and therefore preserve the associated discrete momentum.

1.3 Numerical Consequences of Geometry

The Yee scheme, as we will show, is a method of precisely this type, which gives
a new explanation for many of its previously observed a posteriori numerical
qualities. For instance, one of its notable features is that the electric field E and
magnetic field H do not live at the same discrete space or time locations, but at
separate nodes on a staggered lattice. The reason why this particular setup leads to
improved numerics is not obvious: if we view E and H simply as vector fields in
3-space—the exact same type of mathematical object—why shouldn’t they live at
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the same points? In fact, traditional finite element method (FEM) approaches do
exactly this, resulting in a “nodal” discretization. However, from the perspective of
differential forms in spacetime, it becomes clear that the staggered-grid approach is
more faithful to the structure of Maxwell’s equations: as we will see, E and H come
from objects that are dual to one another (the spacetime forms F and G D �F ),
and hence they naturally live on two staggered, dual meshes.

The argument for this approach is not merely a matter of theoretical interest:
the geometry of Maxwell’s equations has important practical implications for
numerical performance. For instance, the vector-field-based discretization, used
in nodal FEM, results in spurious 3-D artifacts due to its failure to respect the
underlying geometric structure. The Yee scheme, on the other hand, produces
resonance spectra in agreement with theory, without spurious modes (cf. Rylander
et al. [39], Taflove and Hagness [41]). Furthermore, it has been shown in Haber
and Ascher [17] that staggered-grid methods can be used to develop fast numerical
methods for electrodynamics, even for problems in heterogeneous media with
highly discontinuous material parameters such as conductivity and permeability.

By developing a structure-preserving, geometric discretization of Maxwell’s
equations, not only can we better understand the Yee scheme and its characteristic
advantages, but we can also construct more general methods that share its desirable
properties. This family of methods includes the “Yee-like” scheme of Bossavit and
Kettunen [7], which presented the first extension of Yee’s scheme to unstructured
grids (e.g., simplicial meshes rather than rectangular lattices). General methods like
these are highly desirable: rectangular meshes are not always practical or appropri-
ate to use in applications where domains with curved and oblique boundaries are
needed (see Clemens and Weiland [8]). By allowing general discretizations while
still preserving geometry, one can combine the best attributes of the FEM and Yee
schemes.

1.4 Contributions

Using DEC as a structure-preserving, geometric framework for general discrete
meshes, we obtain the following results:

1. The Yee scheme is actually a variational integrator: that is, it can be obtained by
applying Hamilton’s principle of stationary action to a discrete Lagrangian.

2. Consequently, the Yee scheme is multisymplectic and preserves discrete momen-
tum maps, analogous to the conserved quantities in continuum electrodynamics.
In particular, the Gauss constraint is understood as a discrete momentum map
of this integrator, while the preservation of electrostatic potential solutions
corresponds to the identity d2 D 0, where d is the discrete exterior derivative
operator.

3. We also create a foundation for more general schemes, allowing for arbitrary
discretizations of spacetime, not just uniform time steps on a spatial mesh.
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One such scheme, introduced here, is a new asynchronous variational integrator
(AVI) for Maxwell’s equations, where each spatial element is assigned its own
time step size and evolves “asynchronously” with its neighbors. This means
that one can choose to take smaller steps where greater refinement is needed,
while still using large steps for other elements. Since this allows for local
(rather than global) refinement, an AVI can be computationally efficient and
numerically stable with fewer total iterations. In addition to the AVI scheme,
we briefly sketch how fully covariant spacetime integrators for electrodynamics
can be implemented, without even requiring a 3 C 1 split into space and time
components.

1.5 Outline

We will begin by reviewing Maxwell’s equations, first introducing their differential
forms expression from a Lagrangian variational principle, and next showing how
this is equivalent to the familiar vector calculus formulation. We will then motivate
the use of DEC for computational electromagnetics, explaining how electromag-
netic quantities can be modeled using discrete differential forms and operators on a
spacetime mesh. These DEC tools will then be used to set up the discrete Maxwell’s
equations, and to show that the resulting numerical algorithm yields the Yee and
Bossavit-Kettunen schemes as special cases, as well as a new AVI method. Finally,
we will demonstrate that the discrete Maxwell’s equations can also be derived
from a discrete variational principle, and will explore its other discrete geometric
properties, including multisymplecticity and momentum map preservation.

2 Maxwell’s Equations

This section quickly reviews the differential forms approach to electromagnetism,
in preparation for the associated discrete formulation given in the next section. For
more details, the reader can refer to Bossavit [5], Gross and Kotiuga [16].

2.1 From Vector Fields to Differential Forms

Maxwell’s equations, without free sources of charge or current, are traditionally
expressed in terms of four vector fields in 3-space: the electric field E, magnetic
field H, electric flux density D, and magnetic flux density B. To translate these into
the language of differential forms, we begin by replacing the electric field with a
1-form E and the magnetic flux density by a 2-form B . These have the coordinate
expressions
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E D Ex dx CEy dy C Ez dz

B D Bx dy ^ dzCBy dz ^ dx C Bz dx ^ dy;

where E D .Ex;Ey;Ez/ and B D .Bx; By; Bz/. The motivation for choosing E as
a 1-form and B as a 2-form comes from the integral formulation of Faraday’s law,

I

C

E � dl D � d

dt

Z

S

B � dA;

where E is integrated over curves and B is integrated over surfaces. Similarly,
Ampère’s law,

I

C

H � dl D d

dt

Z

S

D � dA;

integrates H over curves and D over surfaces, so we can likewise introduce a 1-form
H and a 2-formD.

Now, E and B are related to D and H through the usual constitutive relations

D D �E; B D �H:

As shown in Bossavit and Kettunen [7], we can view � and � as corresponding to
Hodge operators �� and ��, which map the 1-form “fields” to 2-form “fluxes” in
space. Therefore, this is compatible with viewing E and H as 1-forms, and D and
B as 2-forms.

Note that in vacuum, with � D �0 and � D �0 constant, one can simply express
the equations in terms of E and B, choosing appropriate geometrized units such that
�0 D �0 D c D 1, and hence ignoring the distinction between E and D and between
B and H. This is typically the most familiar form of Maxwell’s equations, and the
one that most students of electromagnetism first encounter. In this presentation, we
will restrict ourselves to the vacuum case with geometrized units; for geometric
clarity, however, we will always distinguish between the 1-forms E and H and the
2-formsD and B .

Finally, we can incorporate free sources of charge and current by introducing
the charge density 3-form � dx ^ dy ^ dz, as well as the current density 2-form
J D Jx dy^dzCJy dz^dxCJz dx^dy. These are required to satisfy the continuity
of charge condition @t�C dJ D 0, which can be understood as a conservation law.

2.2 The Faraday and Maxwell 2-Forms

In Lorentzian spacetime, we can now combine E and B into a single object, the
Faraday 2-form

F D E ^ dt C B:
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There is a theoretical advantage to combining the electric field and magnetic
flux into a single spacetime object: this way, electromagnetic phenomena can be
described in a relativistically covariant way, without favoring a particular split
of spacetime into space and time components. In fact, we can turn the previous
construction around: take F to be the fundamental object, with E and B only
emerging when we choose a particular coordinate frame. Taking the Hodge star
of F , we also get a dual 2-form

G D �F D H ^ dt �D;

called the Maxwell 2-form. The equation G D �F describes the dual relationship
between E and B on one hand, and D and H on the other, that is expressed in the
constitutive relations.

2.3 The Source 3-Form

Likewise, the charge density � and current density J can be combined into a single
spacetime object, the source 3-form

J D J ^ dt � �:

Having defined J in this way, the continuity of charge condition simply requires that
J be closed, i.e., dJ D 0.

2.4 Electromagnetic Variational Principle

Let A be the electromagnetic potential 1-form, satisfying F D dA, over the
spacetime manifoldX . Then define the 4-form Lagrangian density

L D �1
2

dA ^ �dAC A ^ J;

and its associated action functional

SŒA	 D
Z

X

L:

Now, let ˛ be a variation of A vanishing on the boundary @X . Then the variation of
the action functional along ˛ is
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dSŒA	 � ˛ D d

d�

ˇ
ˇ
ˇ
ˇ
�D0

SŒAC �˛	

D
Z

X

.�d˛ ^ �dAC ˛ ^ J/

D
Z

X

˛ ^ .�d�dAC J/ ;

where in this last equality we have integrated by parts, using the fact that ˛ vanishes
on the boundary. Hamilton’s principle of stationary action requires this variation to
be equal to zero for arbitrary ˛, thus implying the electromagnetic Euler-Lagrange
equation,

d�dA D J: (1)

2.5 Variational Derivation of Maxwell’s Equations

Since G D �F D �dA, clearly (1) is equivalent to dG D J. Furthermore, since
d2 D 0, it follows that dF D d2A D 0. Hence, Maxwell’s equations with respect to
the Maxwell and Faraday 2-forms can be written as

dF D 0; (2)

dG D J: (3)

Suppose now that we choose the standard coordinate system .x; y; z; t/ on
Minkowski space X D R

3;1, and define E and B through the relation F D
E ^ dt C B . Then a straightforward calculation shows that (2) is equivalent to

r � EC @tB D 0; (4)

r �B D 0: (5)

Likewise, if G D �F D H ^ dt �D, then (3) is equivalent to

r �H � @tD D J; (6)

r �D D �: (7)

Hence this Lagrangian, differential forms approach to Maxwell’s equations is
strictly equivalent to the more classical vector calculus formulation in smooth
spacetime. However, in discrete spacetime, we will see that the differential form
version is not equivalent to an arbitrary vector field discretization, but rather implies
a particular choice of discrete objects.
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2.6 Generalized Hamilton-Pontryagin Principle for Maxwell’s
Equations

We can also derive Maxwell’s equations by using a mixed variational principle,
similar to the Hamilton-Pontryagin principle introduced by Yoshimura and Marsden
[49] for classical Lagrangian mechanics. To do this, we treat A and F as separate
fields, while G acts as a Lagrange multiplier, weakly enforcing the constraint F D
dA. Define the extended action to be

SŒA; F;G	 D
Z

X



�1
2
F ^ �F C A ^ JC .F � dA/ ^G

�

:

Then, taking the variation of the action along some ˛; �; 
 (each vanishing on @X ),
we have

dSŒA;F;G	 � .˛; �; 
/ D
Z

X
Œ�� ^ �F C ˛ ^ JC .� � d˛/ ^G C .F � dA/ ^ 
	

D
Z

X
Œ˛ ^ .J� dG/C � ^ .G � �F /C .F � dA/ ^ 
	 :

Therefore, setting this equal to zero, we get the equations

dG D J; G D �F; F D dA:

This is precisely equivalent to Maxwell’s equations, as derived above. However,
this approach provides some additional insight into the geometric structure of
electromagnetism: the gauge condition F D dA and constitutive relationsG D �F
are explicitly included in the equations of motion, as a direct result of the variational
principle.

2.7 Reducing the Equations

When solving an initial value problem, it is not necessary to use all of Maxwell’s
equations to evolve the system forward in time. In fact, the curl equations (4) and (6)
automatically conserve the quantities r �B and r �D��. Therefore, the divergence
equations (5) and (7) can be viewed simply as constraints on initial conditions, while
the curl equations completely describe the time evolution of the system.

There are a number of ways to see why we can justify eliminating the divergence
equations. A straightforward way is to take the divergence of equations (4) and (6).
Since r �r� D 0, we are left with

@t .r �B/ D 0; @t .r �D/Cr � J D @t .r �D � �/ D 0:



446 A. Stern et al.

Therefore, if the divergence constraints are satisfied at the initial time, then they are
satisfied for all time, since the divergence terms are constant.

Another approach is to notice that Maxwell’s equations depend only on the
exterior derivative dA of the electromagnetic potential, and not on the value of
A itself. Therefore, the system has a gauge symmetry: any gauge transformation
A 7! A C df leaves dA, and hence Maxwell’s equations, unchanged. Choosing
a time coordinate, we can then partially fix the gauge so that the electric scalar
potential � D A .@=@t/ D 0 (the so-called Weyl gauge or temporal gauge), and so A
has only spatial components. In fact, these three remaining components correspond
to those of the usual vector potential A. The reduced Euler-Lagrange equations in
this gauge consist only of (6), while the remaining gauge symmetry A 7! AC rf
yields a momentum map that automatically preserves r �D � � in time. Equations
(4) and (5) are automatically preserved by the identity d2A D 0; they are not
actually part of the Euler-Lagrange equations. A more detailed exposition of these
calculations will be given in Subsection 5.2.

3 Discrete Forms in Computational Electromagnetics

In this section, we give a quick review of the fundamental objects and operations
of Discrete Exterior Calculus (DEC), a structure-preserving calculus of discrete
differential forms. By construction, DEC automatically preserves a number of
important geometric structures, and hence it provides a fully discrete analog of
the tools used in the previous section to express the differential form version
of Maxwell’s equations. In subsequent sections, we will use this framework to
formulate Maxwell’s equations discretely, emulating the continuous version.

3.1 Rationale Behind DEC for Computational
Electromagnetics

Modern computational electromagnetics began in the 1960s, when the finite element
method (FEM), based on nodal basis functions, was used successfully to discretize
the differential equations governing 2-D static problems formulated in terms of a
scalar potential. Unfortunately, the initial success of the FEM approach appeared
unable to carry over to 3-D problems without spurious numerical artifacts. With the
introduction of edge elements by Nédélec [34] came the realization that a better
discretization of the geometric structure of Maxwell’s electromagnetic theory was
key to overcoming this obstacle (see Gross and Kotiuga [16] for more historical
details). Mathematical tools developed by Weyl and Whitney in the 1950s, in the
context of algebraic topology, turned out to provide the necessary foundations on
which robust numerical techniques for electromagnetics can be built, as detailed
in Bossavit [5].
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3.2 Discrete Differential Forms and Operators

In this section, we show how to define differential forms and operators on a discrete
mesh, in preparation to use this framework for computational modeling of classical
fields. By construction, the calculus of discrete differential forms automatically
preserves a number of important geometric structures, including Stokes’ theorem,
integration by parts (with a proper treatment of boundaries), the de Rham complex,
Poincaré duality, Poincaré’s lemma, and Hodge theory. Therefore, this provides
a suitable foundation for the coordinate-independent discretization of geometric
field theories. In subsequent chapters, we will also use these discrete differential
forms as the space of fields on which we will define discrete Lagrangian variational
principles.

The particular “flavor” of discrete differential forms and operators we will be
using is known as Discrete Exterior Calculus, or DEC for short (see Desbrun et al.
[10], Hirani [23], Leok [26]). Guided by Cartan’s exterior calculus of differential
forms on smooth manifolds, DEC is a discrete calculus developed, ab initio, on
discrete manifolds, so as to maintain the covariant nature of the quantities involved.
This computational tool is based on the notion of discrete chains and cochains,
used as basic building blocks for compatible discretizations of important geometric
structures such as the de Rham complex. The chain and cochain representations
are not only attractive from a computational perspective due to their conceptual
simplicity and elegance; as we will see, they also originate from a theoretical
framework defined by Whitney [46], who introduced the Whitney and de Rham
maps between simplicial cochains and Lipschitz differential forms, thereby inducing
an isomorphism between simplicial cohomology and de Rham cohomology.

Other approaches to the discretization of differential forms include the calculus
of differential chains (or chainlets) of Harrison [19, 20], Harrison and Pugh [21],
as well as the Finite Element Exterior Calculus (FEEC) of Arnold et al. [1, 2]. In
particular, FEEC has proven to be a powerful framework for obtaining numerical-
analytic results about stability and convergence, particularly for elliptic problems in
Euclidean domains. An extension of FEEC to Riemannian submanifolds embedded
in Euclidean space was also obtained by Holst and Stern [24]. Since computational
electrodynamics concerns hyperbolic problems on Lorentzian spacetime manifolds,
the purely combinatorial nature of DEC allows it to be adapted to this setting with
relatively little additional complication, although it would be interesting to study the
extension of the aforementioned approaches to this setting as well.

3.2.1 Primal and Dual Meshes

DEC is concerned with problems in which the smooth n-dimensional manifoldX is
replaced by a discrete mesh—precisely, by a cell complex that is manifold, admits a
metric, and is orientable. The simplest example of such a mesh is a finite simplicial
complex, such as a triangulation of a 2-dimensional surface. We will generally
denote the complex by K, and a cell in the complex by � .
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Fig. 1 Given a 2-D simplicial mesh (left), we can construct its circumcentric dual mesh, called
the Voronoi diagram of the primal nodes (right). In bold, we show one particular primal edge �1

(left) and its corresponding dual edge ��1 (right); the convex hull of these cells CH.�1;��1/ is
shaded dark grey

Given a mesh K, one can construct a dual mesh �K, where each primal k-cell
� corresponds to a dual .n � k/-cell �� . (�K is “dual” to K in the combinatorial
sense of a graph dual.) One way to do this is as follows: place a dual vertex at
the circumcenter of each n-simplex, then connect two dual vertices by an edge
wherever the corresponding n-simplices share an .n � 1/-simplex, and so on. This
is called the circumcentric dual, and it has the important property that primal
and dual cells are automatically orthogonal to one another, which is advantageous
when defining a pseudo-inner product (as we will see later in this section). For
example, the circumcentric dual of a Delaunay triangulation, with the Euclidean
metric, is its corresponding Voronoi diagram (see Figure 1). For more on the dual
relationship between Delaunay triangulations and Voronoi diagrams, a standard
reference is O’Rourke [36]. A similar construction of the circumcenter can be
carried out for higher-dimensional Euclidean simplicial complexes, as well as
for simplicial meshes in Minkowski space. Note that, in both the Euclidean and
Lorentzian cases, the circumcenter may actually lie outside the simplex if it has
a very bad aspect ratio, underscoring the importance of mesh quality for good
numerical results [33].

There are alternative ways to define the dual mesh—for example, placing
dual vertices at the barycenter rather than the circumcenter—but we will use the
circumcentric dual unless otherwise noted. Note that a refined definition of the dual
mesh, where dual cells at the boundary are restricted to K, is discussed in Sub-
section 3.3 to allow proper enforcement of boundary conditions in computational
electromagnetics.

3.2.2 Discrete Differential Forms

The fundamental objects of DEC are discrete differential forms. A discrete k-form
˛k assigns a real number to each oriented k-dimensional cell �k in the mesh K. (The
superscripts k are not actually required by the notation, but they are often useful as
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reminders of what order of form or cell we are dealing with.) This value is denoted
by
˝
˛k; �k

˛
, and can be thought of as the value of ˛k “integrated over” the element

�k , i.e.,

h˛; �i �
Z

�

˛:

For example, 0-forms assign values to vertices, 1-forms assign values to edges,
etc. We can extend this to integrate over discrete paths by linearity: simply add
the form’s values on each cell in the path, taking care to flip the sign if the path
is oriented opposite the cell. Formally, these “paths” of k-dimensional elements
are called chains, and discrete differential forms are cochains, where h � ; � i is the
pairing between cochains and chains.

Differential forms can be defined either on the mesh K or on its dual �K; we
will refer to these as primal forms and dual forms respectively. Note that there is a
natural correspondence between primal k-forms and dual .n� k/-forms, since each
primal k-cell has a dual .n� k/-cell. This is an important property that will be used
below to define the discrete Hodge star operator.

3.2.3 Exterior Derivative

The discrete exterior derivative d is constructed to satisfy Stokes’ theorem, which in
the continuous sense is written

Z

�

d˛ D
Z

@�

˛:

Therefore, if ˛ is a discrete differential k-form, then the .kC 1/-form d˛ is defined
on any .k C 1/-chain � by

hd˛; �i D h˛; @�i ;

where @� is the k-chain boundary of � . For this reason, d is often called the
coboundary operator in cohomology theory.

3.2.4 Diagonal Hodge Star

The discrete Hodge star transforms k-forms on the primal mesh into .n � k/-forms
on the dual mesh, and vice-versa. In our setup, we will use the so-called diagonal
(or mass-lumped) approximation of the Hodge star [5] because of its simplicity, but
note that higher-order accurate versions can be substituted. Given a discrete form ˛,
its Hodge star �˛ is defined by the relation



450 A. Stern et al.

1

j�� j h�˛;��i D �.�/
1

j� j h˛; �i ;

where j� j and j�� j are the volumes of these elements, and � is the causality operator,
which equals C1 when � is spacelike and �1 otherwise. For more information on
alternative discrete Hodge operators, the reader may refer to, e.g., Arnold et al.
[1, 2], Auchmann and Kurz [3], Harrison [20], Hiptmair [22], Tarhasaari et al. [42],
Wang et al. [45].

3.2.5 Pseudo-Inner Product

Define the pseudo-inner product . � ; � / between two primal k-forms to be

.˛; ˇ/ D
X

�k

�.�/

 
n

k

!
jCH.�;��/j
j� j2 h˛; �i hˇ; �i

D
X

�k

�.�/
j�� j
j� j h˛; �i hˇ; �i

where the sum is taken over all k-dimensional elements � , and CH.�;��/ is the
diamond-shaped region defined as the signed union of the n-dimensional convex
hulls of the primal vertices of � and each boundary element of the dual cell �� , see
Figure 1. (On a spacelike mesh, this is a true inner product, since �.�/ D 1 for all � .
Otherwise, it is merely a pseudo-inner product, as it fails to be positive-definite.) The
final equality holds as a result of using the circumcentric dual, since � and �� are
orthogonal to one another, and hence jCH.�;��/j D �n

k

��1 j� j j�� j. (Indeed, this is
one of the advantages of using the circumcentric dual, since one only needs to store
volume information about the primal and dual cells themselves, and not about these
primal-dual convex hulls.) This pseudo-inner product can be expressed in terms of
˛ ^�ˇ, as in the continuous case, for a particular choice of the discrete primal-dual
wedge product; see Desbrun et al. [9].

Note that, since we have already defined a discrete version of the operators d and
�, we immediately have a discrete codifferential ı D d�. See Figure 2 for a visual
diagram of primal and dual discrete forms, along with the corresponding operators
d;�; ı, for the case where K is a 3-D tetrahedral mesh.

3.2.6 Implementation of DEC

DEC can be implemented simply and efficiently using linear algebra. A k-form ˛

can be stored as a vector, where its entries are the values of ˛ on each k-cell of the
mesh. That is, given a list of k-cells �ki , the entries of the vector are ˛i D

˝
˛; �ki

˛
.

The exterior derivative d, taking k-forms to .k C 1/-forms, is then represented as
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d

0-forms (vertices) 1-forms (edges) 2-forms (faces) 3-forms (tets)

d d

d d d

Fig. 2 This figure is an illustration of discrete differential forms and operators on a 3-D simplicial
mesh. In the top row, we see how a discrete k-form lives on k-cells of the primal mesh, for k D
0; 1; 2; 3; the bottom row shows the location of the corresponding dual .n� k/-forms on the dual
mesh. The differential operators d and ı map “horizontally” between k and .k C 1/ forms, while
the Hodge star � and its inverse ��1 map “vertically” between primal and dual forms

a matrix: in fact, it is precisely the signed incidence matrix between k-cells and
.k C 1/-cells in the mesh, with sparse entries ˙1. The Hodge star taking primal k-
forms to dual .n�k/-forms becomes a square matrix, and in the case of the diagonal

Hodge star, it is the diagonal matrix with entries �
�
�ki
� j��ki j
j�ki j . The discrete pseudo-

inner product is then simply the Hodge star matrix taken as a quadratic form.
Because of this straightforward isomorphism between DEC and linear algebra,

problems posed in the language of DEC can take advantage of existing numerical
linear algebra codes. For more programming details, refer to Bell and Hirani [4],
Elcott and Schröder [11].

3.3 Initial and Boundary Values with DEC

Particular care is required to properly enforce initial and boundary conditions on the
discrete spacetime boundary @K. For example, in electrodynamics, we may wish to
set initial conditions for E and B at time t0; however, while B is defined on @K at
t0, E is not. In fact, as we will see, E lives on edges that are extruded between the
time slices t0 and t1, so unless we modify our definitions, we can only initialize E
at the half-step t1=2. (This half-step issue also arises with the standard Yee scheme.)
There are some applications where it may be acceptable to initialize E and B at
separate times (for example, when the fields are initialized randomly and integrated
for a long time to compute a resonance spectrum), but we wish to be able to handle



452 A. Stern et al.

Fig. 3 In this 2-D example, the dual mesh is properly defined near the boundary by adding dual
vertices on the boundary edges. The restricted Voronoi cells of the primal boundary vertices
(shaded at right) thus have boundaries containing both dual edges (dashed lines) and primal
boundary half-edges

the more general case. Although our previous exposition of DEC thus far applies
anywhere away from a boundary, notions as simple as “dual cell” need to be defined
carefully on or near @K.

For a primal mesh K, the dual mesh �K is defined as the Voronoi dual of K
restricted to K. This truncates the portion of the dual cells extending outside of
K; compare Figure 3 with the earlier Figure 1. This new definition results in the
addition of a dual vertex at the circumcenter of each boundary .n � 1/-simplex,
in addition to the interior n-simplices as previously defined. To complete the dual
mesh �K, we add a dual edge between adjacent dual vertices on the boundary, as
well as between dual boundary vertices and their neighboring interior dual vertices,
and proceed similarly with higher-dimensional dual cells. For intuition, one can
imagine the .n � 1/-dimensional boundary to be a vanishingly thin n-dimensional
shell. That is, each boundary .k � 1/-simplex can be thought of as a prismal k-cell
that has been “squashed flat” along the boundary normal direction. This process
is quite similar to the use of “ghost cells” at the boundary, as is commonly done
for finite volume methods (see LeVeque [27]). Note that these additional dual cells
provide the boundary @K with its own dual mesh �.@K/. In fact, the boundary of
the dual is now equal to the dual of the boundary, i.e., @.�K/ D �.@K/. Returning
to the example of initial conditions on E and B , we recall that E is defined on
extruded faces normal to the time slice t0. Therefore, thanks to the proper restriction
of the Voronoi diagram to the domain, we can now define E on edges in @K at time
t0, where these edges can be understood as vanishingly thin faces (i.e., extruded
between some t�� and t0 for � ! 0). Notice finally that with this construction of
�K, there is a dual relationship between Dirichlet conditions on the dual mesh and
Neumann conditions on the primal mesh, e.g., between primal fields and dual fluxes,
as expected.
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3.4 Discrete Integration by Parts with Boundary Terms

With the dual mesh properly defined, dual forms can now be defined on the
boundary. Therefore, the discrete duality between d and ı can be generalized to
include nonvanishing boundary terms. If ˛ is a primal .k � 1/-form and ˇ is a
primal k-form, then

.d˛; ˇ/ D .˛; ıˇ/C h˛ ^ �ˇ; @Ki : (8)

In the boundary integral, ˛ is still a primal .k � 1/-form on @K, while �ˇ is an
.n � k/-form taken on the boundary dual �.@K/. Formula (8) is readily proved
using the familiar method of discrete “summation by parts,” and thus agrees with
the integration by parts formula for smooth differential forms.

4 Implementing Maxwell’s Equations with DEC

In this section, we explain how to obtain numerical algorithms for solving
Maxwell’s equations with DEC. To do so, we proceed in the following order.
First, we find a sensible way to define the discrete forms F , G, and J on a
spacetime mesh. Next, we use the DEC version of the operators d and � to obtain
the discrete Maxwell’s equations. While we have not yet shown that these equations
are variational in the discrete sense, we show later in Section 5 that the Lagrangian
derivation of the smooth Maxwell’s equations also holds with the DEC operators,
in precisely the same way. Finally, we discuss how these equations can be used to
define a numerical method for computational electromagnetics.

In particular, for a rectangular grid, we show that our setup results in the
traditional Yee scheme. For a general triangulation of space with equal time
steps, the resulting scheme will be Bossavit and Kettunen’s scheme. We then
develop an AVI method where each spatial element can be assigned a different
time step, and the time integration of Maxwell’s equations can be performed
on the elements asynchronously. Finally, we comment on the equations for fully
generalized spacetime meshes, e.g., an arbitrary meshing of R3;1 by 4-simplices.

Note that the idea of discretizing Maxwell’s equations using spacetime cochains
was mentioned in, e.g., Leok [26], as well as in a paper by Wise [47] taking the
more abstract perspective of higher-level “p-form” versions of electromagnetism
and category theory.
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4.1 Rectangular Grid

Suppose that we have a rectangular grid in R
3;1, oriented along the axes .x; y; z; t/.

To simplify this exposition (although it is not necessary), let us also suppose that the
grid has uniform space and time steps �x;�y;�z; �t . (Note that the DEC setup
applies directly to a non-simplicial rectangular mesh, since an n-rectangle has a
well-defined circumcenter.)

4.1.1 Setup

Since F is a 2-form, its values should live on 2-faces in this grid. Following the
continuous expression of F ,

F D Ex dx ^ dt C Ey dy ^ dt C Ez dz ^ dt
C Bx dy ^ dzC By dz ^ dx CBz dx ^ dy;

and due to the tensor product nature of the regular grid, the exact assignment of
each 2-face becomes simple: the six components of F correspond precisely to the
six types of 2-faces in a 4-D rectangular grid. Simply assign the values Ex�x�t
to faces parallel to the xt-plane, Ey�y�t to faces parallel to the yt-plane, and
Ez�z�t to faces parallel to the zt-plane. Likewise, assign Bx�y�z to faces parallel
to the yz-plane, By�z�x to faces parallel to the xz-plane, and Bz�x�y to faces
parallel to the xy-plane. This is pictured in Figure 4.

Let us look at these values on the faces of a typical 4-rectangle Œxk; xkC1	 �
Œyl ; ylC1	� Œzm; zmC1	� Œtn; tnC1	. To simplify the notation, we can index each value

ofF by the midpoint of the 2-face on which it lives: for example, F jnC 1
2

kC 1
2 ;l;m

is stored

on the face Œxk; xkC1	� fylg � fzmg � Œtn; tnC1	, parallel to the xt-plane. Hence, the
following values are assigned to the corresponding faces:

xt-face W Ex jnC 1
2

kC 1
2 ;l;m

�x�t

yt-face W Ey
ˇ
ˇnC 1

2

k;lC 1
2 ;m
�y�t

zt-face W EzjnC 1
2

k;l;mC 1
2

�z�t

yz-face W Bx jnk;lC 1
2 ;mC 1

2
�y�z

xz-face W By
ˇ
ˇn
kC 1

2 ;l;mC 1
2
�z�x

xy-face W BzjnkC 1
2 ;lC 1

2 ;m
�x�y:
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Fig. 4 Values of F are stored on the primal 2-faces of a 4-D rectangular grid. Shown here are the
three mixed space/time 3-cells, and the one purely spatial 3-cell (lower right)

We see that a “staggered grid” arises from the fact that E and B naturally live on
2-faces, not at vertices or 4-cells.

4.1.2 Equations of Motion

The discrete equations of motion are, as in the continuous case, given formally by

dF D 0; dG D J;

where now these equations are interpreted in the sense of DEC. Let us first look at
the DEC interpretation of dF . Since dF is a discrete 3-form, it takes values on the
3-faces of each 4-rectangle. Its values are as follows:
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xyt-face W �
�

Ex jnC 1
2

kC 1
2 ;lC1;m

� Ex jnC 1
2

kC 1
2 ;l;m

�

�x�t

C
�

Ey
ˇ
ˇnC 1

2

kC1;lC 1
2 ;m
� Ey

ˇ
ˇnC 1

2

k;lC 1
2 ;m

�

�y�t

C
	
BzjnC1

kC 1
2 ;lC 1

2 ;m
� BzjnkC 1

2 ;lC 1
2 ;m



�x�y;

xzt-face W �
�

Ex jnC 1
2

kC 1
2 ;l;mC1 � Exj

nC 1
2

kC 1
2 ;l;m

�

�x�t

C
�

EzjnC 1
2

kC1;l;mC 1
2

� EzjnC 1
2

k;l;mC 1
2

�

�z�t

�
	
By
ˇ
ˇnC1
kC 1

2 ;l;mC 1
2
� By

ˇ
ˇn
kC 1

2 ;l;mC 1
2



�x�z;

yzt-face W �
�

Ey
ˇ
ˇnC 1

2

k;lC 1
2 ;mC1 � Ey

ˇ
ˇnC 1

2

k;lC 1
2 ;m

�

�y�t

C
�

EzjnC 1
2

k;lC1;mC 1
2

� EzjnC 1
2

k;l;mC 1
2

�

�z�t

C
	
Bx jnC1

k;lC 1
2 ;mC 1

2

� Bx jnk;lC 1
2 ;mC 1

2



�y�z;

xyz-face W
	
Bx jnkC1;lC 1

2 ;mC 1
2
� Bx jnk;lC 1

2 ;mC 1
2



�y�z

C
	
By
ˇ
ˇn
kC 1

2 ;lC1;mC 1
2
� By

ˇ
ˇn
kC 1

2 ;l;mC 1
2



�x�z

C
	
BzjnkC 1

2 ;lC 1
2 ;mC1 � BzjnkC 1

2 ;lC 1
2 ;m



�x�y:

Setting each of these equal to zero, we arrive at the following four equations:

Bx jnC1

k;lC 1
2 ;mC

1
2

� Bx jn
k;lC 1

2 ;mC
1
2

�t
D

Ey
ˇ
ˇnC

1
2

k;lC 1
2 ;mC1

� Ey
ˇ
ˇnC

1
2

k;lC 1
2 ;m

�z
�
EzjnC

1
2

k;lC1;mC
1
2

� EzjnC
1
2

k;l;mC
1
2

�y
;

By
ˇ
ˇnC1

kC
1
2 ;l;mC

1
2

� By
ˇ
ˇn
kC

1
2 ;l;mC

1
2

�t
D

EzjnC
1
2

kC1;l;mC
1
2

� EzjnC
1
2

k;l;mC
1
2

�x
�
Ex jnC

1
2

kC
1
2 ;l;mC1

� Ex jnC
1
2

kC
1
2 ;l;m

�z

BzjnC1

kC
1
2 ;lC

1
2 ;m

� BzjnkC
1
2 ;lC

1
2 ;m

�t
D

Ex jnC
1
2

kC
1
2 ;lC1;m

� Ex jnC
1
2

kC
1
2 ;l;m

�y
�
Ey
ˇ
ˇnC

1
2

kC1;lC 1
2 ;m

� Ey
ˇ
ˇnC

1
2

k;lC 1
2 ;m

�x
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and

Bx jnkC1;lC 1
2 ;mC 1

2
� Bx jnk;lC 1

2 ;mC 1
2

�x
C
By
ˇ
ˇn
kC 1

2 ;lC1;mC 1
2
� By

ˇ
ˇn
kC 1

2 ;l;mC 1
2

�y

C
BzjnkC 1

2 ;lC 1
2 ;mC1 � BzjnkC 1

2 ;lC 1
2 ;m

�z
D 0: (9)

These equations are the discrete version of the equations

@tB D �r � E; r �B D 0:

Moreover, since E and B are differential forms, this can also be seen as a
discretization of the integral version of Maxwell’s equations as well. Because DEC
satisfies a discrete Stokes’ theorem, this automatically preserves the equivalence
between the differential and integral formulations of electrodynamics.

Doing the same with the equation dG D J, evaluating on dual 3-faces this time,
we arrive at four more equations:

Dx jnC 1
2

kC 1
2 ;l;m
� Dx jn� 1

2

kC 1
2 ;l;m

�t

D
HzjnkC 1

2 ;lC 1
2 ;m
� HzjnkC 1

2 ;l� 1
2 ;m

�y
�
Hy

ˇ
ˇn
kC 1

2 ;l;mC 1
2
� Hy

ˇ
ˇn
kC 1

2 ;l;m� 1
2

�z
�Jx jnkC 1

2 ;l;m
;

Dy

ˇ
ˇnC 1

2

k;lC 1
2 ;m
� Dy

ˇ
ˇn� 1

2

k;lC 1
2 ;m

�t

D
Hx jnk;lC 1

2 ;mC 1
2
� Hx jnk;lC 1

2 ;m� 1
2

�z
�
HzjnkC 1

2 ;lC 1
2 ;m
� Hzjnk� 1

2 ;lC 1
2 ;m

�x
�Jy

ˇ
ˇn
k;lC 1

2 ;m
;

DzjnC 1
2

k;l;mC 1
2

� Dzjn� 1
2

k;l;mC 1
2

�t

D
Hy

ˇ
ˇn
kC 1

2 ;l;mC 1
2
� Hy

ˇ
ˇn
k� 1

2 ;l;mC 1
2

�x
�
Hx jnk;lC 1

2 ;mC 1
2
� Hx jnk;l� 1

2 ;mC 1
2

�y
�Jzjnk;l;mC 1

2
;
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Fig. 5 Values ofG D �F are stored on dual 2-faces in a rectangular grid. Shown here are a mixed
space/time dual 3-cell (left), corresponding to a spacelike primal edge; and a purely spatial dual
3-cell (right), corresponding to a timelike primal edge. There are also two other mixed space/time
cells, as in Figure 4, that are not shown here

and

Dx jnC 1
2

kC 1
2 ;l;m
� Dx jnC 1

2

k� 1
2 ;l;m

�x
C
Dy

ˇ
ˇnC 1

2

k;lC 1
2 ;m
� Dy

ˇ
ˇnC 1

2

k;l� 1
2 ;m

�y

C
DzjnC 1

2

k;l;mC 1
2

� DzjnC 1
2

k;l;m� 1
2

�z
D �jnC 1

2

k;l;m : (10)

This results from storing G on the dual grid, as shown in Figure 5. This set of
equations is the discrete version of

@tD D r �H � J; r �D D �:

After eliminating the redundant divergence equations (9) and (10) (see
Subsection 5.2 for details) and making the substitutions D D �E, B D �H,
the remaining equations are precisely the Yee scheme, as formulated in Rylander
et al. [39, p. 73].

4.2 Unstructured Spatial Mesh with Uniform Time Steps

We now consider the case of an unstructured grid in space, but with uniform steps
in time as advocated in, e.g., Bossavit and Kettunen [6]. Suppose that, instead of a
rectangular grid for both space and time, we have an arbitrary space discretization
on which we would like to take uniform time steps. (For example, we may be given
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Fig. 6 For an unstructured spatial mesh, F is stored on primal 2-faces (left), while G D �F is
stored on dual 2-faces (right). Shown here are the values on mixed space/time 3-cells (the purely
spatial 3-cells, which correspond to the divergence equations and do not contribute to the equations
of motion, are not shown)

a tetrahedral mesh of the spatial domain.) This mesh contains two distinct types
of 2-faces. First, there are triangular faces that live entirely in the space mesh at
a single position in time. Every edge of such a face is spacelike—that is, it has
positive length—so the causality operator defined in Subsection 3.2 takes the value
� D 1. Second, there are rectangular faces that live between time steps. These faces
consist of a single spacelike edge extruded by one time step. Because they have
one timelike edge, these faces satisfy � D �1. Again, the circumcentric-dual DEC
framework applies directly to this type of mesh, since the prismal extrusion of a
3-simplex still has a well-defined circumcenter.

4.2.1 Setup

Again, we can characterize the discrete values of F by looking at the continuous
expression

F D E ^ dt C B:

Therefore, let us assign B to the purely spacelike faces and E�t to the mixed
space/time faces. Looking at G D �F shows that mixed dual faces should store
H�t and spacelike dual faces should store D; see Figure 6.

4.2.2 Equations of Motion

As in Bossavit [5], we can store the values of each differential form over every
spatial element in an array, using the method described in Subsection 3.2. This
leads to the arrays Bn and Hn at whole time steps n, and EnC1=2 and DnC1=2 at
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half time steps. Let d1 denote the edges-to-faces incidence matrix for the spatial
domain. That is, d1 is the matrix corresponding to the discrete exterior derivative,
taken only in space, from primal 1-forms to primal 2-forms. Similarly, the transpose
dT1 corresponds to the exterior derivative from spatial dual 1-forms to dual 2-forms.
Then the equation dF D 0, evaluated on all prismal 3-faces becomes

BnC1 � Bn

�t
D �d1EnC1=2:

Likewise, the equation dG D J, evaluated on all space/time 3-faces in the dual
mesh, becomes

DnC1=2 �Dn�1=2

�t
D dT1 H

n � J n:

We can also evaluate dF D 0 and dG D J on spacelike 3-faces, e.g, tetrahedra;
these simply yield the discrete versions of the divergence conditions for B and D,
which can be eliminated.

Therefore, the DEC scheme for such a mesh is equivalent to Bossavit and
Kettunen’s Yee-like scheme; additionally, when the spatial mesh is taken to be
rectangular, this integrator reduces to the standard Yee scheme. However, we now
have solid foundations to extend this integrator to handle asynchronous updates for
improved efficiency.

4.3 Unstructured Spatial Mesh with Asynchronous Time Steps

Instead of choosing the same time step size for every element of the spatial
mesh, as in the previous two sections, it is often more efficient to assign each
element its own, optimized time step, as done in Lew et al. [28] for problems
in elastodynamics. In this case, rather than the entire mesh evolving forward in
time simultaneously, individual elements advance one-by-one, asynchronously—
hence the name asynchronous variational integrator (AVI). As we will prove in
Section 5, this asynchronous update process will maintain the variational nature of
the integration scheme. Here, we again allow the spatial mesh to be unstructured.

4.3.1 Setup

After choosing a primal space mesh, assign each spatial 2-face (e.g., triangle) � its
own discrete time set

� D
˚
t0� < � � � < tN��

�
:
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Fig. 7 Shown here is part of an AVI mesh, for a rectangular spatial mesh (left) and for an
unstructured spatial mesh (right). The different heights of the spacetime prisms reflect the fact
that elements can take different time steps from one another. Moreover, these time steps can be
asynchronous, as seen in the mismatch between the horizontal faces

For example, one might assign each face a fixed time step size �t� D tnC1
� � tn� ,

taking equal time steps within each element, but with �t varying across elements.
We further require for simplicity of explanation that, except for the initial time, no
two faces take the same time step: that is, � \� 0 D ft0g for � ¤ � 0.

In order to keep proper time at the edges e where multiple faces with different
time sets meet, we let

e D
[

�3e
� D

˚
t0e 	 � � � 	 tNee

�
:

Therefore the mixed space-time 2-faces, which correspond to the edge e extruded
over a time step, are assigned the set of intermediate times

0
e D

˚
t1=2e 	 � � � 	 tNe�1=2e

�
;

where tkC1=2
e D .tkC1

e C tke /=2. The values stored on a primal AVI mesh are shown
in Figure 7.

Since e � � when e � � , each spatial edge e takes more time steps than any
one of its incident faces � ; as a result, it is not possible in general to construct a
circumcentric dual on the entire spacetime AVI mesh, since the mesh is not prismal
and hence the circumcenter may not exist. Instead, we find the circumcentric dual
to the spatial mesh, and assign the same time steps to the primal and dual elements

�� D �; �e D e:

This results in well-defined primal and dual cells for each 2-element in spacetime,
and hence a Hodge star for this order. (A Hodge star on k-forms for k ¤ 2 is not
needed to formulate Maxwell’s equations.)
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4.3.2 Equations of Motion

The equation dF D 0, evaluated on a mixed space/time 3-cell, becomes

BnC1
� � Bn

�

tnC1
� � tn�

D �d1
X˚

EmC1=2
e W tn� < tmC1=2

e < tnC1
�

�
: (11)

Similarly, the equation dG D J becomes

D
mC1=2
e �Dm�1=2

e

t
mC1=2
e � tm�1=2

e

D dT1
	
Hn
� Iftn�Dtme g



� Jme ; (12)

where Iftn�Dtme g is the indicator function “picking out” the incident face that lives at
the same time step as edge e, i.e., equaling 1 when face � has tn� D tme for some n,
and 0 otherwise.

Solving an initial value problem can then be summarized by the following update
loop:

1. Pick the minimum time tnC1
� where BnC1

� has not yet been computed.
2. Advance BnC1

� according to (11).
3. Update HnC1

� D ��1
� B

nC1
� .

4. AdvanceDmC3=2
e on neighboring edges e � � according to (12).

5. Update EmC3=2
e D ��1

� D
mC3=2
e .

4.3.3 Iterative Time Stepping Scheme

As detailed in Lew et al. [28] for elastodynamics, the explicit AVI update scheme
can be implemented by selecting mesh elements from a priority queue, sorted by
time, and iterating forward. However, as written above, the scheme is not strictly
iterative, since (12) depends on past values of E . This can be easily fixed by
rewriting the AVI scheme to advance in the variables A and E instead, where the
potential A effectively stores the cumulative contribution of E to the value of B
on neighboring faces. Compared to the AVI for elasticity, A plays the role of the
positions x, while E plays the role of the (negative) velocities Px. The algorithm is
given as pseudocode in Figure 8. Note that if all elements take uniform time steps,
the AVI reduces to the Bossavit–Kettunen scheme.

4.3.4 Numerical Experiments

We first present a simple numerical example demonstrating the good energy
behavior of our asynchronous integrator. The AVI was used to integrate in time over
a 2-D rectangular cavity with perfectly electrically conducting (PEC) boundaries, so
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Fig. 8 Pseudocode for the asynchronous variational integrator (AVI), implemented using a priority
queue data structure for storing and selecting the elements to be updated

that E vanishes at the boundary of the domain. The initial values of E were chosen
randomly, so as to excite all frequency modes, and integrated for 8 seconds. Each
spatial element was given a time step equal to 1/10 of the stability-limiting time step
determined by the Courant–Friedrichs–Lewy (CFL) condition.

This simulation was performed for two different spatial discretizations. The
first is a uniform discretization, so that each element has identical time step size,
which coincides exactly with the Yee scheme. The second discretization randomly
partitioned the x- and y-axes, so that each element has completely unique spatial
dimensions and time step size, and so the update rule is truly asynchronous. The
energy plot for the uniform Yee discretization is shown in Figure 9, while the energy
for the random discretization is shown in Figure 10. Even for a completely random,
irregular mesh, the AVI method displays near-energy preservation qualities. Such
numerical behavior stems from the variational nature of the integrator, which will
be detailed in Section 5.

In addition, we tested the performance of the AVI method with regard to comput-
ing the resonant frequencies of a 3-D rectangular cavity, but using an unstructured
tetrahedral spatial mesh. While the resonant frequencies are relatively simple to
compute analytically, nodal finite element methods are well known to produce
spurious modes for this type of simulation. By contrast, as shown in Figure 11,
the AVI simulation produces a resonance spectrum consistent with electromagnetic
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Fig. 9 Energy vs. time for the AVI with uniform space and time discretization. This is the special
case where the AVI reproduces the Yee scheme—which is well known to have good energy
conservation properties, as seen here (the vertical “tick marks” on the plot show where the elements
become synchronized, since they take uniform time steps)
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Fig. 10 Energy vs. time for the AVI with random spatial discretization and fully asynchronous
time steps. Despite the lack of regularity in the mesh and time steps, the AVI maintains the good
energy behavior displayed by the Yee scheme
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Fig. 11 To produce the power spectrum shown at left, the electric field E was initialized with
random data (to excite all frequencies) and integrated forward in time, measuring the field strength
at a particular sample point for every time step, and then performing a discrete Fourier transform.
The locations of the amplitude “spikes” are consistent with the analytic resonant frequencies,
shown by the dashed vertical lines. The spatial mesh, shown at right, was refined closer to the
boundary, and coarser in the interior, allowing the AVI to produce this result with fewer total steps
than uniform-time-stepping would require

theory. Furthermore, by refining the mesh close to the spatial boundary, while using
a coarser discretization in the interior, we were able to achieve these results with
less computational effort than a uniformly fine mesh would require, since the time
steps were selected to be proportional to the respective element sizes.

4.4 Fully Unstructured Spacetime Mesh

Finally, we look at the most general possible case: an arbitrary discretization of
spacetime, such as a simplicial 4-complex. Such a mesh is completely relativistically
covariant, so that F cannot be objectively separated into the components E and B
without a coordinate frame. In most engineering applications, relativistic effects are
insignificant, so a 3 C 1 mesh (as in the previous subsections) is almost always
adequate, and avoids the additional complications of spacetime mesh construction.
Still, we expect that there are scientific applications where a covariant discretization
of electromagnetism may be very useful. For example, many implementations of
numerical general relativity (using Regge calculus for instance) are formulated on
simplicial 4-complexes; one might wish to simulate the interaction of gravity with
the electromagnetic field, or charged matter, on such a mesh.
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4.4.1 Spacetime Mesh Construction

First, a quick caution on mesh construction: since the Lorentz metric is not positive
definite, it is possible to create edges that have length 0, despite connecting two
distinct points in R

3;1 (so-called “null” or “lightlike” edges). Meshes containing
such edges are degenerate—akin to a Euclidean mesh containing a triangle with
two identical points. In particular, the DEC Hodge star is undefined for 0-volume
elements (due to division by zero). Even without 0-volume elements, it is still
possible for a spacetime mesh to violate causality, so extra care should be taken.
Methods to construct causality-respecting spacetime meshes over a given spatial
domain can be found in, e.g., Erickson et al. [12] and Thite [43, 44].

When the mesh contains no inherent choice of a time direction, there is no
canonical way to split F into E and B . Therefore, one must set up the problem
by assigning values of F directly to 2-cells (or equivalently, assigning values of A
to 1-cells). For initial boundary value problems, one might choose to have the initial
and final time steps be prismal, so that E and B can be used for initial and final
values, while the internal discretization is general.

4.4.2 Equations of Motion

The equations dF D 0 and dG D J can be implemented directly in DEC. Since
this mesh is generally unstructured, there is no simple algorithm as the ones we
presented above. Instead, the equations onF results in a sparse linear system which,
given proper boundary conditions, can be solved globally with direct or iterative
solvers. However, it is clear that the previous three examples that the methods of
Yee, Bossavit–Kettunen, and our AVI integrator are special cases where the global
solution is particularly simple to compute via synchronous or asynchronous time
updates.

4.4.3 Mesh Construction and Energy Behavior

It is known that, while variational integrators in mechanics do not preserve energy
exactly, they have excellent energy behavior, in that it tends to oscillate close to
the exact value. This is only true, however, when the integrator takes time steps of
uniform size; adaptive and other non-uniform stepping approaches can give poor
results unless additional measures are taken to enforce good energy behavior. (See
[18, Chapter VIII] for a good discussion of this problem for mechanics applications.)

Therefore, there is no reason to expect that arbitrary meshes of spacetime will
yield energy results as good as the Yee, Bossavit–Kettunen, and AVI schemes.
However, if one is taking a truly covariant approach to spacetime, “energy” is
not even defined without specifying a time coordinate. Likewise, one would not
necessarily expect good energy behavior from the other methods with respect to an
arbitrary transformation of spatial coordinates. Which sort of mesh to choose is thus
highly application-dependent.
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5 Theoretical Results

In this section, we complete our exposition with a number of theoretical results
about the discrete and continuous Maxwell’s equations. In particular, we show
that the DEC formulation of electrodynamics derives from a discrete Lagrangian
variational principle, and that this formulation is consequently multisymplectic.
Furthermore, we explore the gauge symmetry of Maxwell’s equations, and detail
how a particular choice of gauge eliminates the equation for r �D � � from the
Euler–Lagrange equations, while preserving it automatically as a momentum map.

Theorem 1. The discrete Maxwell’s equations are precisely the discrete Euler–
Lagrange equations corresponding to the discrete Lagrangian density Ld D
� 1
2
dA ^ �dA C A ^ J. Consequently, the numerical methods of Section 4 are

variational integrators.

Proof. The idea of this proof is to emulate the derivation of the continuous
Maxwell’s equations from Section 2. Interpreting this in the sense of DEC, we will
obtain the discrete Maxwell’s equations.

Given a discrete 1-formA and dual source 3-form J, the discrete action functional
Sd is defined by

Sd ŒA	 D hLd ;Ki D
�

�1
2

dA ^ �dAC A ^ J;K

�

:

Then, taking a discrete 1-form variation ˛ vanishing on the boundary @K, the
corresponding variation of the action is

dSd ŒA	 � ˛ D h�d˛ ^ �dAC ˛ ^ J;Ki D h˛ ^ .�d�dAC J/ ;Ki :

Note that we used the bold d to indicate that we are differentiating over the smooth
space of discrete forms A, as opposed to differentiating over discrete spacetime, for
which we use d. Setting this equal to 0 for all variations ˛, the resulting discrete
Euler–Lagrange equations are therefore d�dA D J. Defining the discrete 2-forms
F D dA and G D �F , this implies dF D 0 and dG D J, the discrete Maxwell’s
equations.

5.1 Multisymplecticity

The concept of multisymplecticity for Lagrangian field theories was developed
in Marsden et al. [31], where it was shown to arise from the boundary terms
for general variations of the action, i.e., those not restricted to vanish at the
boundary. (This work had its roots in the fabled GIMMSY project of Gotay et al.
[14, 15].) As originally presented, the Cartan form �L is an .nC 1/-form, where the
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Fig. 12 To illustrate the
discrete multisymplectic form
formula (14), we have here a
2-D asynchronous-time mesh
K, where the shaded region is
an arbitrary subcomplex
K 	 K. Given any two
variations ˛; ˇ of the field,
and the multisymplectic form
!Ld , the formula states that
!Ld 
˛ 
ˇ vanishes when
integrated over the boundary
@K (shown in bold)

n-dimensional boundary integral is then obtained by contracting �L with a variation.
The multisymplectic .n C 2/-form !L is then given by !L D �d�L. Contracting
!L with two arbitrary variations gives an n-form that vanishes when integrated over
the boundary, a result called the multisymplectic form formula, which results from
the identity d2 D 0. In the special case of mechanics, where n D 0, the boundary
consists of the initial and final time points; hence, this implies the usual result that
the symplectic 2-form !L is preserved by the time flow.

Alternatively, as communicated to us by Patrick [37], one can view the Cartan
form �L as an n-form-valued 1-form, and the multisymplectic form !L as an
n-form-valued 2-form. Therefore, one simply evaluates these forms on tangent
variations to obtain a boundary integral, rather than taking contractions. These two
formulations are equivalent on smooth spaces. However, we will adopt Patrick’s
latter definition, since it is more easily adapted to problems on discrete meshes:
�Ld

and !Ld
remain smooth 1- and 2-forms, respectively, but their n-form values

are now taken to be discrete. See Figure 12 for an illustration of the discrete
multisymplectic form formula.

Theorem 2. The discrete Maxwell’s equations satisfy the multisymplectic form
formula h!Ld

�˛ �ˇ; @Ki D 0, for all variations ˛; ˇ of the discrete 1-form A and
all subcomplexes K � K. Consequently, the numerical methods of Section 4 are
multisymplectic.

Proof. Let K � K be an arbitrary subcomplex, and consider the restricted discrete
action functional sd D Sd jK . Suppose now that we take a discrete variation ˛,
without requiring it to vanish on the boundary @K . Then variations of the restricted
action contain an additional boundary term

dsd ŒA	 � ˛ D h˛ ^ .�d�dAC J/ ;Ki C h˛ ^ �dA; @Ki :
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Restricting to the space of potentials A that satisfy the discrete Euler–Lagrange
equations, the first term vanishes, leaving only

dsd ŒA	 � ˛ D h˛ ^ �dA; @Ki (13)

Then we can express the Cartan form �Ld
by

�Ld
�˛ D ˛ ^ �dA:

Since �Ld
takes a tangent vector ˛ and produces a discrete 3-form on the boundary

of the subcomplex, it is a smooth 1-form taking discrete 3-form values. Now, since
the space of discrete forms is itself actually continuous, we can take the exterior
derivative in the smooth sense on both sides of (13). Evaluating along another first
variation ˇ (again, restricted to the space of Euler–Lagrange solutions), we then get

d2sd ŒA	 � ˛ �ˇ D hd�Ld
� ˛ �ˇ; @Ki :

Finally, using the multisymplectic form defined by !Ld
D �d�Ld

and the fact that
d2sd D 0, we get the relation

h!Ld
�˛ �ˇ; @Ki D 0 (14)

for all variations ˛; ˇ, which completes the proof.

5.2 Gauge Symmetry Reduction and Covariant Momentum
Maps

We now explore the symmetry of Maxwell’s equations under gauge transformations.
This symmetry allows us to reduce the equations by eliminating the time component
of A (for some chosen time coordinate), effectively fixing the electric scalar
potential to zero. Because this is an incomplete gauge, there is a remaining gauge
symmetry, and hence a conserved momentum map. This conserved quantity turns
out to automatically preserve the Gauss constraint r �D D �, which justifies its
elimination from the Euler–Lagrange equations. These calculations are done in the
formal language of differential forms and exterior calculus, and hence the results
apply equally well to the continuum and discrete cases of electrodynamics.
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5.3 Choosing a Gauge

Because Maxwell’s equations only depend on dA, they are invariant under gauge
transformations of the form A 7! A C df , where f is any scalar function on
spacetime. If we fix a time coordinate, we can now choose the Weyl gauge, so that
the time componentAt D 0. Therefore, we can assume that

A D Ax dx C Ay dy C Az dz:

In fact, Ax;Ay; Az are precisely the components of the familiar vector potential
A D A].

5.4 Reducing the Equations

Having fixed the gauge and chosen a time coordinate, we can now define two new
“partial exterior derivative” operators, dt (time) and ds (space), where d D dt C ds .
Since A contains no dt terms, dsA is a 2-form containing only the space terms of
dA, while dtA contains the terms involving both space and time. That is,

dtA D E ^ dt; dsA D B:

Restricted to this subspace of potentials, the Lagrangian density then becomes

L D �1
2
.dtAC dsA/ ^ � .dtAC dsA/C A ^ J

D �1
2
.dtA ^ �dtAC dsA ^ �dsA/C A ^ J ^ dt

Next, varying the action along a restricted variation ˛ that vanishes on @X ,

dSŒA	 � ˛ D
Z

X

.dt ˛ ^D � ds˛ ^H ^ dt C ˛ ^ J ^ dt/ (15)

D
Z

X

˛ ^ .dtD � dsH ^ dt C J ^ dt/ :

Setting this equal to zero by Hamilton’s principle, one immediately gets Ampère’s
law as the sole Euler–Lagrange equation. The divergence constraint dsD D �,
corresponding to Gauss’s law, has been eliminated via the restriction to the Weyl
gauge.
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5.4.1 Noether’s Theorem and Preservation of the Gauss Constraint

Let us restrictA to be an Euler–Lagrange solution in the Weyl gauge, but remove the
previous requirement that variations ˛ be fixed at the initial time t0 and final time tf .
Then, varying the action along this new ˛, the Euler–Lagrange term disappears, but
we now pick up an additional boundary term due to integration by parts

dSŒA	 � ˛ D
Z

˙

˛ ^D
ˇ
ˇ
ˇ
ˇ

tf

t0

;

where˙ denotes a Cauchy hypersurface ofX , corresponding to the spatial domain.
If we vary along a gauge transformation ˛ D dsf , then this becomes

dSŒA	 � dsf D
Z

˙

dsf ^D
ˇ
ˇ
ˇ
ˇ

tf

t0

D �
Z

˙

f ^ dsD

ˇ
ˇ
ˇ
ˇ

tf

t0

Alternatively, plugging ˛ D dsf into (15), we get

dSŒA	 � dsf D
Z

X
dsf ^J ^ dt D �

Z

X
f ^ dsJ ^ dt D �

Z

X
f ^ dt � D �

Z

˙
f ^ �

ˇ
ˇ
ˇ
ˇ

tf

t0

:

Since these two expressions are equal, and f is an arbitrary function, it follows that

.dsD � �/jtft0 D 0:

This indicates that dsD�� is a conserved quantity, a momentum map, so if Gauss’s
law holds at the initial time, then it holds for all subsequent times.

5.5 Boundary Conditions and Variational Structure

It should be noted that the variational structure and symmetry of Maxwell’s
equations may be affected by the boundary conditions that one chooses to impose.
There are many boundary conditions that one can specify independent of the initial
values, such as the PEC condition used in the numerical example in Subsection 4.3.
However, one can imagine more complicated boundary conditions where which the
boundary interacts nontrivially with the interior of the domain—such as dissipative
or forced boundary conditions, where energy/momentum is removed from or added
to the system. In these cases, one will obviously not conclude that total charge is
conserved, but more generally that the change in charge is related to the flux through
the spatial boundary. This is because, in the momentum map derivation above, the
values of f on the initial time slice causally affect its values on the spatial boundary
at intermediate times, not just on the final time slice. Thus, the spatial part of @X
cannot be neglected for arbitrary boundary conditions.
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6 Conclusion

The continued success of the Yee scheme for many applications of computational
electrodynamics, for over four decades, illustrates the value of structure-preserving
numerical integrators for Maxwell’s equations. Recent advances by, among others,
Bossavit and Kettunen, and Gross and Kotiuga, have demonstrated the important
role of compatible spatial discretization using differential forms, allowing for Yee-
like schemes that apply on generalized spatial meshes. In this paper, we have
extended this approach by considering discrete forms on spacetime, encapsulating
both space and time discretization, and have derived a general family of geometric
numerical integrators for Maxwell’s equations. Furthermore, since we have derived
these integrators from a discrete variational principle, the resulting methods are
provably multisymplectic and momentum-map-preserving, and they experimentally
show correct global energy behavior. Besides proving the variational nature of well-
known techniques such as the Yee and Bossavit–Kettunen schemes, we have also
introduced a new asynchronous integrator, so that time step sizes can be taken non-
uniformly over the spatial domain for increased efficiency, while still maintaining
the desirable variational and energy behavior of the other methods.

6.1 Future Work

One promising avenue for future work involves increasing the order of accuracy of
these methods by deriving higher-order discrete Hodge star operators. While this
would involve redefining the Hodge star matrix to be non-diagonal, the discrete
Maxwell’s equations would remain formally the same, and hence there would be no
change in the variational or multisymplectic properties proven here. In particular,
Stern [40] discusses the construction of a spectrally accurate spatial Hodge star,
which might make these geometric schemes competitive for applications where non-
variational spectral codes are currently favored.

Additionally, the recent work of Kale and Lew [25] has shown that AVIs can
be implemented as parallel algorithms for solid mechanics simulations. This uses
the fact that, due to the asynchronous update procedure, an element does not need
information from every one of its neighbors at every time step, which lessens the
need for communication among parallel nodes. The resulting parallel AVIs, or
PAVIs, can therefore take advantage of parallel computing architecture for improved
efficiency. This approach might be valuable in the case of our electromagnetic AVI.

While we have experimentally observed the fact that variational integrators
exhibit near-energy conservation, little is known about this behavior from a
theoretical standpoint. In the case of ODEs in mechanics, backward error analysis
has shown that these methods exactly integrate a nearby smooth Hamiltonian
system, although not much is known about how this relates to the discrete
variational principle on the Lagrangian side. Some initial work has been done
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in Oliver et al. [35] to understand, also by a backward error analysis approach, why
discrete multisymplectic methods also display good energy behavior.

Finally, variational methods using discrete spacetime forms may be developed
for field theories other than electromagnetism. Recent work by Gawlik et al.
[13], Pavlov et al. [38] has proposed an extension to fluid dynamics through
discretization of the infinite-dimensional diffeomorphism group. Another promising
candidate is numerical general relativity. One may be able to adapt our work to
these field theories to derive numerical methods for, e.g., gravity coupled with an
electromagnetic field, or the dynamics of a charged or magnetic fluid.
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Hamel’s Formalism and Variational Integrators

Kenneth R. Ball and Dmitry V. Zenkov

Abstract Hamel’s formalism is a representation of Lagrangian mechanics obtained
by measuring the velocity components relative to a frame that generically is
not induced by configuration coordinates. The use of this formalism often leads
to a simpler representation of dynamics. Utilizing the variational discretization
approach, this paper develops a discrete Hamel’s formalism with applications to
nonholonomic integrators.

1 Introduction

This paper introduces the discrete Hamel formalism along with some of its applica-
tions. Besides being of a pure theoretical interest, this development is motivated by
restoring the concept of ideal constraints in the discrete setting and by an attempt
to better understand structural stability of variational and nonholonomic integrators.
A loss of structural stability has been recently observed in [25, 26, 34].

Hamel’s formalism is a version of Lagrangian mechanics in which the velocity
components are measured relative to a set of independent vector fields on the
configuration space. These vector fields are not associated with configuration
coordinates and therefore do not commute, leading to the so-called ‘bracket terms’
in the equations of motion.

One of the reasons for using Hamel’s formalism is that the Euler–Lagrange
equations written in generalized coordinates, while universal, are not always the
best tool for analyzing the dynamics of mechanical systems. For example, it is
difficult to study the motion of the Euler top if the Euler–Lagrange equations (either
intrinsically or in generalized coordinates) are used to represent the dynamics.
On the other hand, the use of the angular velocity components relative to a
body frame pioneered by Euler [13] results in a much simpler representation of
dynamics. Euler’s approach led to the development of the Euler–Poincaré equations
by Lagrange [24] for reasonably general Lagrangians on the rotation group and by
Poincaré [35] for arbitrary Lie groups (see [27] for details and history). An extension
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of this formalism from Lie groups to arbitrary configuration manifolds was carried
out by Hamel [16]. Hamel’s formalism is especially useful in nonholonomic
mechanics. See e.g. [5, 30, 33] for the history and contemporary exposition of
Hamel’s formalism.

Discrete Lagrangian mechanics is obtained by discretizing Hamilton’s varia-
tional principle. This approach leads to symplectic- and, for systems with symmetry,
momentum-preserving integrators. By discretizing the Lagrange–d’Alembert prin-
ciple, nonconservative forces (see Kane et al. [20] and Marsden and West [28])
and nonholonomic constraints (see Cortés and Martínez [12]) can be incorporated
as well. Recall that, in the continuous-time setting, the dynamics of a Lagrangian
system with nonholonomic constraints may be reformulated as the dynamics of an
unconstrained system by adding the constraint reaction force. See Suslov [37] and
Chetaev [11] for details and precise statements. However, as pointed out in Cortés
and Martínez [12], the discretizations of these two representations, as a rule, are not
the same, which makes the versions of the discrete Lagrange–d’Alembert principle
of [20, 28] and [12] incompatible. In other words, the notion of an ideal constraint
of continuous-time mechanics is not retained by the discretization of Cortés and
Martínez.

Following the variational discretization approach, we develop discrete Hamel’s
formalism by discretizing Hamilton’s principle for Hamel’s equations. The principal
difficulty in extending this program to Hamel’s setting is caused by the bracket
terms, as a discrete analogue of the Jacobi–Lie bracket is known only for left-
or right-invariant vector fields on Lie groups (Moser and Veselov [32], Marsden,
Pekarsky, and Shkoller [29], Bobenko and Suris [6, 7]). In this paper we resolve the
bracket term discretization issue for systems on vector spaces.

When a continuous-time system is discretized, we first select the vector fields that
are used to measure the velocity components, and then set up the discrete variational
principle. In general, the outcome is a somewhat different discrete dynamical system
than the outcome of the usual variational discretization procedure. Remarkably, a
modification of our formalism for systems with nonholonomic constraints resolves,
at least for Chaplygin systems, the ideal constraint issue of Cortés and Martínez.
That is, the discrete Lagrange–d’Alembert principle for Hamel’s equations in
the presence of nonholonomic constraints is identical to the discrete Lagrange–
d’Alembert principle of Kane et al. [20] and Marsden and West [28] written after
replacing the constraints with their reactions.

Our formalism also contributes to the study of structural stability of non-
holonomic integrators. Recently, Lynch and Zenkov [25, 26] discovered that the
nonholonomic integrator of Cortés and Martínez, in general, is not structure-
preserving, as it is capable of changing the dimension and stability of manifolds
of relative equilibria of continuous-time systems. A similar effect was observed in
the holonomic setting in [34]. This lack of structural stability is a serious issue as it
alters the ˛- and !-limit sets, thus making the asymptotic dynamics of the integrator
different from the asymptotic dynamics of the underlying continuous-time system.
Such an integrator, in principle, is not suitable for long-term numerical simulations
of continuous-time nonholonomic systems. Discrete Hamel’s equations are certain
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to preserve the manifolds of relative equilibria and their stability, and thus are a
better candidate for good quality long-term integrators.

The paper is organized as follows: Continuous-time Lagrangian mechanics and
Hamel’s formalism, Hamilton’s variational principle, and discrete mechanics are
reviewed in Sections 2–4. Discrete Hamel’s formalism is introduced in Section 5.
Applications of discrete Hamel’s formalism to nonholonomic mechanics and to
global energy-momentum numerical integration of the spherical pendulum are
exposed in Sections 6 and 7.

2 Lagrangian Mechanics

Lagrangian mechanics provides a systematic approach to deriving the equations
of motion as well as establishes the equivalence of force balance and variational
principles.

2.1 The Euler–Lagrange Equations

A Lagrangian mechanical system is specified by a smooth manifold Q called the
configuration space and a function L W TQ ! R called the Lagrangian. In many
cases, the Lagrangian is the kinetic minus potential energy of the system, with the
kinetic energy defined by a Riemannian metric and the potential energy being a
smooth function on the configuration spaceQ. If necessary, non-conservative forces
can be introduced (e.g., gyroscopic forces that are represented by terms inL that are
linear in the velocity), but this is not discussed in detail in this paper.

In local coordinates q D .q1; : : : ; qn/ on the configuration space Q we write
L D L.q; Pq/. The dynamics is given by the Euler–Lagrange equations

d

dt

@L

@ Pqi D
@L

@qi
; i D 1; : : : ; n: (1)

These equations were originally derived by Lagrange [24] in 1788 by requiring
that simple force balance be covariant, i.e. expressible in arbitrary generalized
coordinates. A variational derivation of the Euler–Lagrange equations, namely
Hamilton’s principle (see Theorem 1 below), came later in the work of Hamilton
[17, 18] in 1834/35.

Let q.t/, a 	 t 	 b, be a smooth curve in Q. A variation of the curve q.t/ is
a smooth map ˇ W Œa; b	 � Œ�"; "	 ! Q that satisfies the condition ˇ.t; 0/ D q.t/.
This variation gives rise to the vector field

ıq.t/ D @̌ .t; s/

@s

ˇ
ˇ
ˇ
ˇ
sD0

(2)

along the curve q.t/.
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Theorem 1. The following statements are equivalent:

(i) The curve q.t/, where a 	 t 	 b, is a critical point of the action functional

Z b

a

L.q; Pq/ dt

on the space of curves in Q connecting qa to qb on the interval a 	 t 	 b,
where we choose variations of the curve q.t/ that satisfy the condition ıq.a/ D
ıq.b/ D 0.

(ii) The curve q.t/ satisfies the Euler–Lagrange equations (1).

We point out here that this principle assumes that a variation of the curve q.t/
induces the variation ı Pq.t/ of its velocity according to the formula

ı Pq.t/ WD d

dt
ıq.t/:

For more details and a proof, see e.g. [2, 27], and Theorem 2 below.

3 Lagrangian Mechanics in Non-coordinate Frames

In this section we discuss the continuous-time Hamel formalism and a relevant
variational principle, following the exposition of [5].

3.1 The Hamel Equations

In many cases the Lagrangian and the equations of motion have a simpler structure
when the velocity components are measured against a frame that is not necessarily
induced by system’s local configuration coordinates. An example of such a system
is the rigid body.

Let q D .q1; : : : ; qn/ be local coordinates on the configuration space Q and
ui 2 TQ, i D 1; : : : ; n, be smooth independent local vector fields on Q defined in
the same coordinate neighborhood hereafter denotedU . In certain cases, some or all
of ui can be chosen to be global vector fields on Q. The components of ui relative
to the coordinate-induced basis @=@qj are written as  ji ; that is,

ui .q/ D  ji .q/
@

@qj
;

where i; j D 1; : : : ; n.
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Let � D .�1; : : : ; �n/ 2 R
n be the components of the velocity vector Pq 2 TQ

relative to the frame u.q/ D .u1.q/; : : : ; un.q//, i.e.,

Pq D u.q/ � �; (3)

where, by definition,

u.q/ � � WD �iui .q/: (4)

When convenient, we reverse the order of factors in (4), i.e., we assume that

u.q/ � � D � � u.q/:

The Lagrangian of the system written in the local coordinates .q; �/ on the velocity
phase space TQ reads

l.q; �/ WD L.q; u.q/ � �/: (5)

The coordinates .q; �/ are a Lagrangian analogue of non-canonical variables in
Hamiltonian dynamics.

Given two elements �; � 2 R
n, define the antisymmetric bracket operation

Œ � ; � 	q W Rn � R
n ! R

n by

u.q/ � Œ�; �	q D
�
u.q/ � �; u.q/ � ��;

where Œ � ; � 	 is the Jacobi–Lie bracket of vector fields on Q. That is, Œ�; �	q consists
of the components of Œui �i ; uj �j 	.q/ relative to the frame u1; : : : ; un.

Therefore, each tangent space TqU is isomorphic to the Lie algebra Wq WD
.Rn; Œ � ; � 	q/, and the tangent bundle T U is diffeomorphic to a Lie algebra bundle
over U .

The dual of Œ � ; � 	q is, by definition, the operation Œ � ; � 	�q W Wq � W �
q ! W �

q

given by

hŒ�; ˛	�q ; �i WD h˛; Œ�; �	qi:

Define the structure functions caij .q/ by the equations

Œui .q/; uj .q/	 D caij .q/ua.q/;

i; j; a D 1; : : : ; n. These quantities vanish if and only if the vector fields ui .q/,
i D 1; : : : ; n, commute.



482 K.R. Ball and D.V. Zenkov

Viewing ui as vector fields on TQ whose fiber components equal 0, one defines
the directional derivatives ui Œl 	 for a function l W TQ ! R in a usual way. It is
straightforward to show that

ui Œl 	 D  ji
@l

@qj
:

For a frame u D .u1; : : : ; un/, define uŒl 	 by the formula

uŒl 	 D .u1Œl	; : : : ; unŒl	/:

The evolution of the variables .q; �/ is governed by the Hamel equations

d

dt

@l

@�j
D caij �i

@l

@�a
C uj Œl	; (6)

coupled with equation (3). If ui D @=@qi , equations (6) become the Euler–Lagrange
equations (1). Equations (6) were introduced in [16] (see also [33] and [5] for details
and some history).

3.2 Hamilton’s Principle for Hamel’s Equations

The variational derivation of Hamel’s equations in this section mostly follows [5].
We refer the readers to [27] for the related history of the development of variational
principles for the Euler–Lagrange, Euler–Poincaré, and Hamel equations, and to [1]
for the Hamilton–Pontryagin principle for the Hamel equations.

Theorem 2 (Zenkov, Bloch, and Marsden [5]). Let L W TQ ! R be a
Lagrangian and l be its representation in local coordinates .q; �/. Then, the
following statements are equivalent:

(i) The curve q.t/, where a 	 t 	 b, is a critical point of the action functional

Z b

a

L.q; Pq/ dt (7)

on the space of curves in Q connecting qa to qb on the interval Œa; b	, where
we choose variations of the curve q.t/ that satisfy ıq.a/ D ıq.b/ D 0.

(ii) The curve q.t/ satisfies the Euler–Lagrange equations

d

dt

@L

@ Pq D
@L

@q
:
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(iii) The curve .q.t/; �.t// is a critical point of the functional

Z b

a

l.q; �/ dt (8)

with respect to variations ı�, induced by the variations

ıq D u.q/ � � � ui .q/�
i ; (9)

and given by

ı� D P� C Œ�; �	q :1 (10)

(iv) The curve .q.t/; �.t// satisfies the Hamel equations

d

dt

@l

@�
D


�;
@l

@�

��

q

C uŒl 	

coupled with the equations Pq D u.q/ � � � �iui .q/:
For the early development of these equations see [35] and [16].

Proof. The equivalence of (i) and (ii) is proved by computing the variation of the
action functional (7):

ı

Z b

a

L.q; Pq/ dt D
Z b

a

�
@L

@q
ıq C @L

@ Pq ı Pq
�

dt D
Z b

a

�
@L

@q
� d

dt

@L

@ Pq
�

ıq dt:

Recall that we denote the components of ıq.t/ relative to the frame u.q.t// D
.u1.q.t//; : : : ; un.q.t/// by �.t/ D .�1.t/; : : : ; �n.t//; that is,

ıq.t/ D u.q.t// � �.t/ � ui .q.t//�
i .t/:

To prove the equivalence of (i) and (iii), we first compute the quantities ı Pq and
d.ıq/=dt. Using the definition (2) of the field ıq, one concludes that

ıua.q.t// D @ua.ˇ.t; s//

@s

ˇ
ˇ
ˇ
ˇ
sD0
D � � uŒua	 D ıqŒua	 � �bubŒua	: (11)

Similarly,

d

dt
ub.q.t// D PqŒub	 D � � uŒub	 � �auaŒub	:

1If Q is a Lie group, this formula is derived in Bloch, Krishnaprasad, Marsden, and Ratiu [4].
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Next,

ı Pq D ıu.q.t// � �.t/C u.q.t// � ı�.t/;
d.ıq/

dt
D du.q.t//

dt
� �.t/C u.q.t// � P�.t/:

Equivalently, in coordinates,

ı Pq D ı ��i .t/ui .q.t//
� D ı�i .t/ui .q.t//C �i .t/ @ui

@qj
ıqj ;

d.ıq/

dt
D d

dt

�
�i .t/ui .q.t//

� D P�i .t/ui .q.t//C �i .t/ @ui
@qj
Pqj :

Since ı Pq D d.ıq/=dt, we obtain

u.q.t// � �ı�.t/ � P�.t/� D �i .t/�j .t/�ui .q.t//Œuj .q.t//	 � uj .q.t//Œui .q.t//	
�

D �i .t/�j .t/Œui .q.t//; uj .q.t//	 �
�
u.q.t// � �.t/; u.q.t// � �.t/�;

which implies formula (10).
To prove the equivalence of (iii) and (iv), we use the above formula and compute

the variation the functional (8):

ı

Z b

a

l.q; �/ dt D
Z b

a

�
@l

@q
ıq C @l

@�
ı�

�

dt

D
Z b

a

�

� � uŒl 	C @l

@�

	 P� C Œ�; �	q.t/

�

dt

D
Z b

a

�

uŒl 	C


�;
@l

@�

��

q.t/

� d
dt

@l

@�

�

� dt:

The latter vanishes if and only if the Hamel equations are satisfied. ut

3.3 Remarks on the Frame Selection

As discussed in [2, 3], and [5], constraints and symmetry naturally define subbundles
of the velocity phase space TQ. For underactuated mechanical systems, the
controlled directions define a subbundle of the momentum phase space T �Q. It
may be beneficial to select a frame in such a way that suitable subframes of the
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frame and its dual span the mentioned subbundles. Such frames lead to a simpler
representation of dynamics and clarify the structure of the mechanical system under
consideration (subsystems, interconnections, etc.).

4 Discrete Mechanics

A discrete analogue of Lagrangian mechanics can be obtained by discretizing
Hamilton’s principle; this approach underlies the construction of variational inte-
grators. See Marsden and West [28], and references therein, for a more detailed
discussion of discrete mechanics.

A key notion is that of the discrete Lagrangian, which is a mapLd W Q�Q! R

that approximates the action integral along an exact solution of the Euler–Lagrange
equations joining the configurations qk; qkC1 2 Q,

Ld .qk; qkC1/ � ext
q2C.Œ0;h	;Q/

Z h

0

L.q; Pq/ dt;

where C.Œ0; h	;Q/ is the space of curves q W Œ0; h	 ! Q with q.0/ D qk , q.h/ D
qkC1, and ext denotes extremum.

In the discrete setting, the action integral of Lagrangian mechanics is replaced by
an action sum

Sd .q0; q1; : : : ; qN / D
N�1X

kD0
Ld .qk; qkC1/;

where qk 2 Q, k D 0; 1; : : : ; N , is a finite sequence in the configuration space.
The equations are obtained by the discrete Hamilton principle, which extremizes
the discrete action given fixed endpoints q0 and qN . Taking the extremum over
q1; : : : ; qN�1 gives the discrete Euler–Lagrange equations

D1L
d.qk; qkC1/CD2L

d .qk�1; qk/ D 0 (12)

for k D 1; : : : ; N � 1. Here and below, DiF denotes the partial derivative of the
function F with respect to its i th input. Equations (12) implicitly define the update
map ˚ W Q �Q ! Q �Q, where ˚.qk�1; qk/ D .qk; qkC1/ and Q �Q replaces
the velocity phase space TQ of continuous-time Lagrangian mechanics.

In the case thatQ is a vector space, it may be convenient to use .qkC1=2; vk;kC1/,
where qkC1=2 D 1

2
.qk C qkC1/ and vk;kC1 D 1

h
.qkC1 � qk/, as a state of a discrete
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mechanical system. In such a representation, the discrete Lagrangian becomes a
function of .qkC1=2; vk;kC1/, and the discrete Euler–Lagrange equations read

1
2

�
D1L

d .qk�1=2; vk�1;k/CD1L
d.qkC1=2; vk;kC1/

�

C 1
h

�
D2L

d.qk�1=2; vk�1;k/ �D2L
d.qkC1=2; vk;kC1/

� D 0:

These equations are equivalent to the variational principle

ıSd D
N�1X

kD0

�
D1L

d .qkC1=2; vk;kC1/ ıqkC1=2 CD2L
d .qkC1=2; vk;kC1/ ıvk;kC1

� D 0; (13)

where the variations ıqkC1=2 and ıvk;kC1 are induced by the variations ıqk and are
given by the formulae

ıqkC1=2 D 1
2

�
ıqkC1 C ıqk

�
; ıvk;kC1 D 1

h

�
ıqkC1 � ıqk

�
:

The discrete Hamel formalism introduced below may be interpreted as a generaliza-
tion of the representation (13) of discrete mechanics.

5 Discrete Hamel’s Equations

In the rest of the paper we assume that Q is a vector space. Start with a sequence
of configurations fqkgNkD0. Given a parameter � 2 Œ0; 1	, define the points qkC� WD
.1 � �/qk C �qkC1 for each 0 	 k 	 N � 1. The velocity components relative to
the frame u.q/ at qkC� are denoted �k;kC1 D .�1k;kC1; : : : ; �nk;kC1/. Similar to [8, 22],
the phase space for the suggested discretization of Hamel’s equation is the tangent
bundle TQ. In local coordinates .q; �/ on TQ, the discrete Lagrangian ld W TQ !
R reads ld D ld .qkC� ; �k;kC1/. To discretize a continuous-time system, we suggest
the following procedure:

(i) Select a frame u.q/ and identify the continuous-time Lagrangian l.q; �/, as
in (5).

(ii) Construct the discrete Lagrangian using the formula

ld .qkC� ; �k;kC1/ D hl.qkC� ; �k;kC1/:

The action sum then is

sd D
N�1X

kD0
ld .qkC� ; �k;kC1/; (14)

which is an approximation of the action integral (8) of the continuous-time system.
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Given � 2 Œ0; 1	, define �kC� by the formula

�kC� D .1 � �/�k C ��kC1: (15)

The quantities �k , �kC1, and �kC� will be used below to establish the discrete
analogues of the variation formulae (9) and (10).

Define the discrete conjugate momentum by

�k;kC1 WD D2l
d .qkC� ; �k;kC1/: (16)

Below, we use the notations

ukC� WD u.qkC� /; ldkC� WD ld .qkC� ; �k;kC1/; u
�
ld
�
kC� WD u

�
ld
�
.qkC� ; �k;kC1/;

etc.

Theorem 3. The sequence
�
qkC� ; �k;kC1

� 2 TQ satisfies the discrete Hamel
equations

1
h

�
�k�1;k � �k;kC1

�C �u
�
ld
�
k�1C� C .1 � �/u

�
ld
�
kC�

C ���k�1;k ; �k�1;k
��
qk�1C�

C .1 � �/��k;kC1; �k;kC1
��
qkC�
D 0 (17)

if and only if

ısd D ı
N�1X

kD0
ld .qkC� ; �k;kC1/ D 0;

where

ıqkC� D u.qkC� / � �kC� ; (18)

ı�k;kC1 D 1
h

�
�kC1 � �k

�C ��k;kC1; �kC�
�
qkC�

: (19)

Here �0 D �N D 0; and �kC� is defined in (15), k D 0; : : : ; N � 1.

In order to obtain a complete system of equations, one supplements (17) with a
discrete analogue of the kinematic equation Pq D u.q/ � �. There is a certain freedom
in doing that. For now, we assume this discrete analogue to be

�qk

h
D ukC� � �k;kC1:

We will use a different discretization of the kinematic equation to construct an
integrator for the spherical pendulum in Section 7.
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In the coordinate form, the discrete Hamel equations and the formulae for
variations read

1
h

�
�k�1;kIj � �k;kC1Ij

�C �uj
�
ld
�
k�1C� C .1 � �/uj

�
ld
�
kC�

C �caij .qk�1C� /�ik�1;k�k�1;kIa C .1 � �/caij .qkC� /�ik;kC1�k;kC1Ia D 0;

and

ıqikC� D  ib.qkC� /�bkC� ;

ı�bk;kC1 D 1
h

�
�bkC1 � �bk

�C cbij .qkC� / �ik;kC1�
j

kC� ;

respectively.

Remark. Unlike the continuous-time case, the formulae for variations (18) and (19)
cannot be derived in a manner presented in the proof of Theorem 2. The situation
here is somewhat similar to the issue encountered and resolved by Chetaev in his
work [10] on the equivalence of the Lagrange–d’Alembert and Gauss principles for
systems with nonlinear nonholonomic constraints. Recall that Chetaev’s approach
was to define variations in such a way that the two principles become equivalent.

Proof. Using formulae (18) and (19) and computing the variation of the action
sum (14), one obtains

ısd D
N�1X

kD0
D1l

d .qkC� ; �k;kC1/ ıqkC� CD2l
d .qkC� ; �k;kC1/ ı�k;kC1

D
N�1X

kD0

D
D1l

d
kC� ; ukC� � �kC�

E

C
D
D2l

d
kC� ; .�kC1 � �k/=hC

�
�k;kC1; �kC�

�
qkC�

E

D
N�1X

kD1

D
1
h
.�k�1;k � �k;kC1/; �k

E

C
D
u
�
ld
�
kC� C

�
�k;kC1; �k;kC1

��
qkC�

; .1 � �/�k C ��kC1
E

D
N�1X

kD1

D
1
h
.�k�1;k � �k;kC1/; �k

E
C
D
�u
�
ld
�
k�1C� C .1 � �/u

�
ld
�
kC� ; �k

E

C
D
�
�
�k�1;k ; �k�1;k

��
qk�1C�

C .1 � �/��k;kC1; �k;kC1
��
qkC�

; �k

E
:
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Thus, vanishing of ısd for arbitrary �k; k D 1; : : : ; N � 1, is equivalent to discrete
Hamel’s equations (17). ut

The formulae for variations (18) and (19) in the discrete setting are motivated
by the following observations. First, recall that in the continuous-time setting the
formula (10) for ı� follows from the formula

ı.u � �/ � d
dt
.u � �/ D 0: (20)

A discrete analogue of ı.u � �/ is relatively straightforward to obtain. Indeed, using
the formula

ıqkC� D ukC� � �kC� � ukC� �
�
.1 � �/�k C ��kC1/

�

and the interpretation of the operator ı as a directional derivative, just like in
formula (11), one obtains

ıukC� D
�
�kC� � uŒu	

�
kC� ;

and therefore

ı.ukC� � �kC1/ D ıukC� � �k;kC1 C ukC� � ı�k;kC1

D ukC� � ı�k;kC1 C
�
�kC� � u

�
�k;kC1 � u

��
kC� :

However, a discrete analogue of the formula d
dt .u � �/ is not immediately available,

as the operation of time differentiation is not intrinsically present in the discrete
setting. A workaround that we suggest is to view the transition from qk to qkC1 as a
motion along a straight line segment at a uniform rate:

qkC� D .1 � �/qk C �qkC1; 0 	 � 	 1; (21)

so that qkC� D qk when � D 0 and qkC� D qkC1 when � D 1. Since the time step
is h, the analogue of continuous-time velocity is �qk=h. From (21),

�qk

h
D 1

h

dqkC�
d�

;

leading to an interpretation of the operator

1

h

d

d�

as a discrete analogue of time differentiation of continuous-time mechanics.
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The discrete analogue of the term d
dt .u � �/ thus is

1

h

d

d�

�
ukC� � �kC�

� D 1

h

dukC�
d�
� �kC� C ukC� � 1

h

d�kC�
d�

D ukC� � 1
h

d�kC�
d�

C ��k;kC1 � u
�
�kC� � u

��
kC�

D ukC� � �kC1 � �k
h

C ��k;kC1 � u
�
�kC� � u

��
kC� :

Summarizing, the discrete analogue of (20) reads

ukC� � ı�k;kC1 D ukC� � �kC1 � �k
h

C �u � �k;kC1; u � �kC�
�
qkC�

;

which implies formula (19) for variation ı�.

6 Hamel’s Formalism and Nonholonomic Integrators

In this section we study some of the structure-preserving properties of discrete
Hamel’s formalism in the presence of velocity constraints.

6.1 The Lagrange–d’Alembert Principle

Assume now that there are velocity constraints imposed on the system. We confine
our attention to constraints that are homogeneous in the velocity. Accordingly, we
consider a configuration space Q and a distribution D on Q that describes these
constraints. Recall that a distribution D is a collection of linear subspaces of the
tangent spaces of Q; we denote these spaces by Dq � TqQ, one for each q 2
Q. A curve q.t/ 2 Q is said to satisfy the constraints if Pq.t/ 2 Dq.t/ for all t .
This distribution is, in general, nonintegrable; i.e., the constraints are, in general,
nonholonomic.2

Consider a Lagrangian L W TQ ! R. The equations of motion are given by the
following Lagrange–d’Alembert principle.

2Constraints are nonholonomic if and only if they cannot be rewritten as position constraints.
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Definition 1. The Lagrange–d’Alembert equations of motion for the system are
those determined by

ı

Z b

a

L.q; Pq/ dt D 0;

where we choose variations ıq.t/ of the curve q.t/ that satisfy ıq.a/ D ıq.b/ D 0
and ıq.t/ 2 Dq.t/ for each t 2 Œa; b	.
This principle is supplemented by the condition that the curve q.t/ itself satisfies
the constraints. Note that we take the variation before imposing the constraints; that
is, we do not impose the constraints on the family of curves defining the variation.
This is well known to be important to obtain the correct mechanical equations (see
[23] and [3] for discussions and references).

6.2 Ideal Constraints

As discussed in e.g. Suslov [37] and Chetaev [11], it is assumed in classical
mechanics that the constraints imposed on the system can be replaced with the
reaction forces. This means that after the forces are imposed on the unconstrained
system, the constraint distribution becomes a conditional invariant manifold of the
forced unconstrained Lagrangian system whose dynamics on this invariant manifold
is identical to that of the constrained system.

Definition 2. Constraints (either holonomic or nonholonomic) are called ideal if
their reaction forces at each q 2 Q belong to the null space Dı

q � T �
q Q of Dq .

As shown in Suslov [37] and Chetaev [11], the reaction forces of ideal constraints
are defined uniquely at each state .q; Pq/ 2 TQ.

In summary, for a system subject to ideal constraints, the forced dynamics is
equivalent to the Lagrange–d’Alembert principle. We refer the reader to books
[37] and [11] for a more detailed exposition and history of the concept of ideal
constraints.

6.3 The Constrained Hamel Equations

Given a system with velocity constraints, that is, a Lagrangian L W TQ ! R and
constraint distribution D, select the independent local vector fields

ui W Q! TQ; i D 1; : : : ; n;
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such that Dq D spanfu1.q/; : : : ; um.q/g, m < n. Each Pq 2 TQ can be uniquely
written as

Pq D u.q/ � �D C u.q/ � �U; (22)

where u.q/ � �D is the component of Pq along Dq and u.q/ � �U is the complementary
component. Similarly, each a 2 T �Q can be uniquely decomposed as

a D aD � u�.q/C aU � u�.q/;

where aD � u�.q/ is the component of a along the dual of Dq , where aU � u�.q/ is
the complementary component, and where u�.q/ 2 T �Q � � � � � T �Q denotes the
dual frame of u.q/. Using the decomposition (22), the constraints read

� D �D or �U D 0: (23)

Similar to (22), we write

ıq D u.q/ � � D u.q/ � �D C u.q/ � �U:

Recall that ıq.t/ 2 Dq.t/, which is equivalent to

� D �D or �U D 0: (24)

The Lagrange–d’Alembert principle in combination with (24) proves the following
theorem:

Theorem 4. The dynamics of a system with velocity constraints is represented by
the constrained Hamel equations

�
d

dt

@l

@�
�


�D;
@l

@�

��

q

� uŒl 	

�

D
D 0; �U D 0;

coupled with the kinematic equation

Pq D u.q/ � �D:

The constrained Lagrangian is the restriction of the Lagrangian to the constraint
distribution. Thus, using Hamel’s formalism, the constrained Lagrangian reads

lc
�
q; �D

� D l �q; �D; 0� � l.q; �/j�UD0:
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It is straightforward to check that an alternative form of the constrained Hamel
equations is

d

dt

@lc

@�D
�
�

�D;
@l

@�

��

q

�

D
� uDŒlc	 D 0; �U D 0: (25)

6.4 Continuous-Time Chaplygin Systems

As an important special case, consider commutative Chaplygin systems, which are
nonholonomic systems with a commutative symmetry group H , dimH D n � m,
and subject to the condition that at each q 2 Q the tangent space TqQ is the direct
sum of the fiber of the constraint distribution and the tangent space to the orbit
OrbH.q/ ofH through q:

TqQ D Dq ˚ TqOrbH.q/: (26)

To avoid technical difficulties, assume that the groupH acts freely and properly on
the configuration spaceQ, so that � W Q! Q=H is a principal fiber bundle, where
� is the projection. Elements of Q=H and H are denoted x and s, respectively.

Following [3], define an Ehresmann connection by requiring that Dq and
TqOrbH.q/ are the horizontal and vertical spaces at q 2 Q, respectively. These
spaces are denotedHq and Vq .

In other words, the nonholonomic kinematic constraints provide an Ehresmann
connection on the principal bundle � W Q ! Q=H . Under the assumptions made
above, the equations of motion drop to the reduced space D=H , which in this special
case is the same as T .Q=H/.

Recall that an Ehresmann connection A on a bundle Q is a vertical-valued one-
form that is a projection; i.e., Aq W TqQ ! Vq is a linear map for each q 2 Q and
A.v/ D v for all v 2 Vq . In the bundle coordinates .x; s/ introduced above, the
form A reads

A D !a @

@sa
; where !a.q/ D Aa˛.x/ dx˛ C dsa; (27)

where ˛ D 1; : : : ; m and a D m C 1; : : : ; n. Recall also that the horizontal space
Hq D kerAq , so that TqQ D Hq ˚ Vq , in full agreement with (26).

The curvature of A is the vertical-valued two-form defined by

B.X; Y / D �A.ŒhorX; horY 	/;
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where horX and horY are the horizontal parts of the vectors X; Y 2 TqQ. In the
bundle coordinates .x; s/,

B.X; Y / D Ba
˛ˇX

˛Y ˇ
@

@sa
;

where

Ba
˛ˇ D

@Aa˛
@rˇ
� @A

a
ˇ

@r˛
:

Recall that the constrained Lagrangian is the restriction of the Lagrangian onto
the constraint distribution: Lc D LjD. For Chaplygin systems, L and Lc naturally
reduce to the functions on TQ=H and D=H , respectively. In the bundle coordinates
.x; s/, this simply means that L is independent of s,3 i.e., L D L.x; Px; Ps/, and the
constrained Lagrangian reads

Lc.x; Px/ D L.x; Px;�A.x/ Px/:

The equations of motion for Chaplygin systems,

d

dt

@Lc

@ Px �
@Lc

@x
D
�
@L

@Ps ; i Px B
�

; (28)

or, in coordinates,

d

dt

@Lc

@ Px˛ �
@Lc

@x˛
D � @L

@Psa B
a
˛ˇ Pxˇ;

˛; ˇ D 1; : : : ; m, a D m C 1; : : : ; n, were first derived, through a coordinate
calculation, by Chaplygin in [9]. They are called the Chaplygin equations.

Following [30], we now obtain equations (28) using Hamel’s formalism. Recall
that connection (27) is defined by the constraint distribution. Equivalently, the
constraints read

Ps C A.x/ Px D 0:

Associated with the constraint distribution are the vector fields

u˛ D hor @x˛ D @x˛ � Aa˛@sa and ua D @sa : (29)

3For a noncommutative symmetry group, L depends on .s; Ps/ through the combination s�1 Ps.
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Using this frame,

Pq D Px˛u˛ C .Psa C Aa˛ Px˛/ua;

˛ D 1; : : : ; m, a D mC 1; : : : ; n, or, equivalently,

�D D Px; �U D Ps C A.x/ Px; Pq D uD � �D C uU � �U;

and

l.x; �/ D L �x; �D; �U � A.x/�D� ; lc
�
x; �D

� D L �x; �D;�A.x/�D� : (30)

Evaluating the Jacobi–Lie brackets of the fields (29), one obtains

Œu˛; uˇ	 D
 
@Aa˛
@xˇ
� @A

a
ˇ

@x˛

!
@

@sa
� Ba

˛ˇ

@

@sa
; Œu˛; ua	 D Œua; ub	 D 0;

which implies

�

�D;
@l

@�

��

q

�

D
D
�
@L

@Ps ; i Px B
�

;

and thus (28) are just the constrained Hamel equations (25). Recall that B is the
curvature of the form A.

An important remark is that, from Chaplygin’s prospective, equations (28)
are the Euler–Lagrange equations on the configuration space Q=H subject to a
nonconservative force

�
@L

@Ps ; i Px B
�

:

This force may be interpreted as a shape component of the constraint reaction.
Another important remark is that Px˛ in the classical literature are viewed as

the reduced configuration velocities, whereas from the point of view of Hamel’s
formalism Px˛ represent the velocity components along the non-commuting fields
u˛, ˛ D 1; : : : ; m.

6.5 Discrete Nonholonomic Systems

Discrete nonholonomic systems (nonholonomic integrators) were introduced by
Cortés and Martínez in [12].
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Let Q be a configuration space. According to Cortés and Martínez, a discrete
nonholonomic mechanical system on Q is characterized by:

(i) A discrete Lagrangian Ld W Q �Q! R;
(ii) A constraint distribution D on Q;

(iii) A discrete constraint manifold Dd � Q �Q which has the same dimension
as D and satisfies the condition .q; q/ 2 Dd for all q 2 Q.

The dynamics is given by the following discrete Lagrange–d’Alembert principle
(see [12]):

N�1X

kD1

	
D1L

d .qk; qkC1/CD2L
d .qk�1; qk/



ıqk D 0; ıqk 2 Dqk ; .qk; qkC1/ 2 Dd :

As pointed out in [14, 15], the discrete constraint manifold should be carefully
selected when a continuous-time nonholonomic system is discretized. For the details
on the properties of discrete nonholonomic systems we refer the reader to papers
[12, 14, 15, 31]. In a recent paper [22], a somewhat different approach to discretizing
nonholonomic systems has been suggested.

Cortés and Martínez also study the dynamics of discrete Chaplygin systems. In
particular, given a continuous-time Chaplygin system, they discretize the Euler–
Lagrange equations with constraint reactions, and conclude that, in general,
the resulting discrete system is inconsistent with the outcome of their discrete
Lagrange–d’Alembert principle. In other words, the concept of ideal constraints
is not acknowledged by their discretization procedure.

Lynch and Zenkov [25, 26] proved that the discrete dynamics defined by
the Lagrange–d’Alembert principle of Cortés and Martínez may lack structural
stability. For example, it is possible for the discretization of a continuous-time
Chaplygin system to change the dimension and/or stability of manifolds of relative
equilibria of the said continuous-time system.

Below, we shall show that a different definition of the discrete
Lagrange–d’Alembert principle exists that is free of the aforementioned issues.
In particular, the dimension and stability of manifolds of relative equilibria are kept
intact if this new version of the Lagrange–d’Alembert principle is utilized.

6.6 Hamel’s Formalism for Discrete Nonholonomic Systems

Recall that the Lagrange–d’Alembert principle for continuous-time nonholonomic
systems assumes that the variation of action is carried out before imposing the
constraints. The outcome is the constrained Hamel equations, as discussed in
Section 6.3. In a similar manner, we accept that the dynamics of a discrete non-
holonomic system is determined by the discrete Lagrange–d’Alembert principle,
obtained by first taking the variation of the discrete action (14) using variations (18)
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and (19) subject to the discrete analogue of (24), and then imposing the discrete
constraints. We emphasize that the definition of the discrete Lagrange–d’Alembert
principle given here is not the same as the definition of Cortés and Martínez
reproduced in Section 6.5.

In the continuous-time setting, the constraints are represented by formula (23).
We thus suggest that, under the same assumptions on the frame selection as in
Section 6.3, the discrete constraints are

�k;kC1 D �Dk;kC1 or �Uk;kC1 D 0:

The discrete analogue of (24) is

�k D �Dk or �Uk D 0:

Arguing like in Section 6.3, one proves the discrete analogue of Theorem 4:

Theorem 5. The dynamics of a discrete system with velocity constraints is given by
the constrained discrete Hamel equations

1
h

�
�k�1;k � �k;kC1

�
D C

�
�u
�
ld
�
k�1C� C .1 � �/u

�
ld
�
kC�

�
D

C ����Dk�1;k ; �k�1;k
��
qk�1C�

C .1 � �/��Dk;kC1; �k;kC1
��
qkC�

�
D D 0; (31)

where �k;kC1 is given by formula (16).

Of a special interest is the value � D 1=2, in which case one verifies that the order
of approximation of (31) is 2.

6.7 Discrete Chaplygin Systems

Given a continuous-time Chaplygin system, we construct its discretization by
utilizing the discrete Hamel formalism. Using the frame (29) and the continuous-
time Lagrangians (30) introduced in Section 6.4, the discrete Lagrangian and the
discrete constrained Lagrangian read

ld .xkC� ; �k;kC1/ D hl.xkC� ; �k;kC1/;

ldc
�
xkC� ; �Dk;kC1

� D ld �xkC� ; �Dk;kC1
� � hlc

�
xkC� ; �Dk;kC1

�
:

The dynamics is then given by equation (31), with

.�k;kC1/D D D2l
d
c

�
xkC� ; �Dk;kC1

� � D2l
d .xkC� ; �k;kC1/j�Uk;kC1D0

and �k;kC1 defined as in (16).
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We now convert the dynamics into a discrete analogue of the Chaplygin
equations (28). Following the general discretization procedure, we obtain the
formulae

�Dk;kC1 D �xk=h; �Uk;kC1 D �sk=hC A.xkC� /�xk=h:

Then, invoking (30), it is straightforward to see that

ld .xkC� ; �k;kC1/ D hl.xkC� ; �k;kC1/

D hL �xkC� ; �Dk;kC1; �
U
k;kC1 � A.xkC� /�Dk;kC1

�
(32)

and

ldc
�
xkC� ; �Dk;kC1

� D ld �xkC� ; �Dk;kC1
� D hlc

�
xkC� ; �Dk;kC1

�

D hLc
�
xkC� ; �Dk;kC1

� D hLc.xkC� ; �xk=h/

D hL.xkC� ; �xk=h;�A.xkC� /�xk=h/; (33)

where L.x; Px; Ps/ is the Lagrangian of the continuous-time Chaplygin system. From
formulae (32), (33), and (29), one obtains

�k;kC1 D D2l
d .xkC� ; �k;kC1/;

.�k;kC1/D D D2l
d
c

�
xkC� ; �Dk;kC1

�

D hD2Lc
�
xkC� ; �Dk;kC1

� D hD2Lc.xkC� ; �xk=h/;

.�k;kC1/U D D3l
d
�
xkC� ; �Dk;kC1; �

U
k;kC1

�

D hD3L
�
xkC� ; �Dk;kC1; �

U
k;kC1 �A.xkC� /�Dk;kC1

�

D hD3L.xkC� ; �xk=h;�sk=h/:

Next, since we utilize the frame (29) just like in the continuous-time setting, the
formula

	�
�Dk;kC1; �k;kC1

��
qkC�




D
D
D
�k;kC1; i�Dk;kC1

BqkC�

E

D
D
.�k;kC1/U; i�Dk;kC1

BqkC�

E
D ˝.�k;kC1/U; i�xk=h BqkC�

˛

D ˝hD3L.xkC� ; �xk=h;�A.xkC� /�xk=h/; i�xk=h BqkC�

˛

is established with an aid of the arguments of Section 6.4. To keep the formulae
shorter, we write the latter expression as

˝
hD3L; i�xk=h B

˛
kC� :
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Finally,

�
uŒld 	.qkC� ; �k;kC1/

�
D D D1l

d
�
xkC� ; �Dk;kC1

�

D D1l
d
c

�
xkC� ; �Dk;kC1

� D hD1Lc.xkC� ; �xk=h/:

Summarizing, the dynamics of the discrete Chaplygin system reads

1
h

�
.D2Lc/kC� � .D2Lc/k�1C�

� D �.D1Lc/k�1C� C .1 � �/.D1Lc/kC�

C � ˝D3L; i�xk�1=h B
˛
k�1C� C .1 � �/

˝
D3L; i�xk=h B

˛
kC� ; (34)

where .DiLc/kC� WD DiLc.xkC� ; �xk=h/: Remarkably, the discrete Chaplygin
equations (34) are identical to the discretization of continuous-time Chaplygin
equations (28) viewed as forced Euler–Lagrange dynamics. For more details on this
latter discretization of the Chaplygin equations see [12] and [26].

6.8 Stability

In this section we link up stability of relative equilibria of Chaplygin systems with
structural stability of nonholonomic integrators.

Consider a commutative Chaplygin system characterized by the Lagrangian L
and constraint distribution D, as discussed in Section 6.4. Assume that the dynamics
of the Chaplygin system (28) is invariant with respect to the action of a commutative
group G on Q=H .4 Often such a situation is the result of the original system being
invariant with respect to the semidirect productGsH of the groupsG andH . The
elements of the groupG are denoted g, and we assume that the action ofG onQ=H
is free and proper, so thatQ=H has the structure of a principal fiber bundle with the
structure group G. Thus, locally, there exist the bundle coordinates x D .r; g/ on
Q=H .

Under certain assumptions (see e.g. [21] and [39]), the dynamics has a manifold
(whose dimension equals dimG) of relative equilibria. These relative equilibria are
the solutions of (28) that in the bundle coordinates .r; g/ read

r D re; Pg D �e:

As established in Karapetyan [21], some of these relative equilibria may be partially
asymptotically stable. Karapetyan justifies stability using the center manifold
stability analysis, which, for nonholonomic systems under consideration, reduces

4The general noncommutative setting is not studied in this paper and will be the subject of a future
publication.
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to verifying that the nonzero spectrum of linearization of (28) at the relative
equilibrium of interest belongs to the left half-plane.5

Partially asymptotically stable relative equilibria are a part of the !-limit set of
dynamics (28). Similarly, relative equilibria that become partially asymptotically
stable after the time reversal are a part of the ˛-limit set of dynamics (28).

It is important for a long-term numerical integrator to preserve the manifold of
relative equilibria and their stability types. Indeed, if the limit sets of an integrator
are different from the limit sets of the continuous-time dynamics, this integrator will
not adequately simulate the continuous-time dynamics over long time intervals.

As shown in [25, 26], the discrete Lagrange–d’Alembert principle of Cortés and
Martínez may produce discretizations that fail to preserve the manifold of relative
equilibria. For instance, it may change the dimension of this manifold, thus changing
the structure of the limit sets. Informally, the origin of this effect can be explained
as follows: The discrete Lagrange–d’Alembert principle of Cortés and Martínez is
capable of introducing reactions that correspond to non-ideal constraints. A typical
example would be a reaction force with a dissipative component, whose discrete
counterpart causes the aforementioned changes of relative equilibria.

A relative equilibrium of a discrete Chaplygin system (34) with commutative
symmetry is a solution

rk D const; �gk D const:

Assume now that � D 1=2 in equations (34). Let h > 0 be the time step.

Theorem 6 (Lynch and Zenkov [25, 26]). Discretization (34)6 preserves the
manifold of relative equilibria of the continuous-time Chaplygin system; that is,
rk D re, �gk D h�e is a relative equilibrium of the discretization (34) if and only
if r D re, Pg D �e is a relative equilibrium of the continuous-time system. The
conditions for partial asymptotic stability of the equilibria of the continuous-time
system and of its discretization are the same.

Summarizing, the discrete Lagrange–d’Alembert principle proposed in this
paper ensures the necessary conditions for structural stability of the associated
nonholonomic integrator.

5The stability analysis of relative equilibria of nonholonomic systems has a long history, starting
form the results of Walker [38] and Routh [36]; see [39] for some of this history and for the energy-
momentum method for nonholonomic systems.
6Equations (34) were derived in [25, 26] without the use of the discrete Hamel formalism.
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7 The Spherical Pendulum

Here we outline the results of Zenkov, Leok, and Bloch [40] on the applications
of the discrete Hamel formalism to the energy-momentum-preserving integrator for
the spherical pendulum.

7.1 The Spherical Pendulum as a Degenerate Rigid Body

Consider a spherical pendulum whose length is r and mass is m. We view the
pendulum as a point mass moving on the sphere of radius r centered at the origin
of R3. The development here is based on the representation

P� D � � � Cmg � � a; (35)

P� D � � � (36)

of pendulum’s dynamics; that is, the pendulum is viewed as a rigid body rotating
about a fixed point. This rigid body is of course degenerate, with the inertia tensor
I D diagfmr2;mr2; 0g. Here � is the angular velocity of the pendulum, � is its
angular momentum, � is the unit vertical vector (and thus the constraint k�k D 1

is imposed), and a is the vector from the origin to the center of mass, which for the
pendulum is its bob, all written relative to the body frame. Throughout the rest of
the paper, the boldface characters represent three-dimensional vectors. The kinetic
and potential energies of the pendulum are

K D 1
2
h�; �i � 1

2
hI �; �i; U D mgh�; ai � mgr
3;

and the Lagrangian reads

l.�;�/ D 1
2
hI �; �i �mgh�; ai: (37)

This Lagrangian is invariant with respect to rotations about � , and therefore the
vertical component of the spatial angular momentum is conserved.

There are two independent components in the vector equation (35). We empha-
size that the representation (35) and (36) of the dynamics of the pendulum, though
redundant, eliminates the use of local coordinates on the sphere, such as spherical
coordinates. Spherical coordinates, while being a nice theoretical tool, introduce
artificial singularities at the north and south poles. That is, the equations of motion
written in spherical coordinates have denominators vanishing at the poles, but this
has nothing to do with the physics of the problem and is solely caused by the
geometry of the spherical coordinates. Thus, the use of spherical coordinates in
calculations is not advisable.
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Another important remark is that the length of the vector � is a conservation law
of equations (35) and (36), and thus adding the constraint k�k D 1 does not result in
a system of differential-algebraic equations. The latter are known to be a nontrivial
object for numerical integration.

Equations (35) and (36) may be interpreted in a number of ways. In the above,
we viewed them as the dynamics of a degenerate rigid body. Since the moment of
inertia relative to the direction of the vector a is zero, the third component of the
body angular momentum vanishes,

�3 D @l

@�3
D 0;

and thus there are only two nontrivial equations in (35). Thus, one needs five
equations to capture the pendulum dynamics. This reflects the fact that rotations
about the direction of the pendulum have no influence on the pendulum’s motion.

The dynamics then can be simplified by setting

�3 D 0; (38)

which leads to an interpretation of equations (35) and (36) as the dynamics of the
heavy Suslov top7 with a rotationally-invariant inertia tensor and constraint (38).

Summarizing, the dynamics becomes

P� D mg� � a; P� D � � �; h�; ai D 0: (39)

These equations are in fact the constrained Hamel equations, the reconstruction
equation, and the constraint, written in the redundant configuration coordinates
� D .
1; 
2; 
3/; see [40] for details. Recall that the length of � is the conservation
law, so that the constraint k�k D 1 does not need to be imposed, but the appropriate
level set of the conservation law has to be selected.

Our discretization is based on this point of view, i.e., the discrete dynamics
will be written in the form of discrete Hamel’s equations. The discrete dynamics
will posses the discrete version of the conservation law k�k D const, so that the
algorithm should be capable, in theory, of preserving the length of � up to machine
precision.

7.2 Variational Discretization for the Spherical Pendulum

The integrator for the spherical pendulum is constructed by discretizing equa-
tions (39).

7See [33, 37], and [2] for the Suslov top.
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Let the positive real constant h be the time step. Applying the mid-point rule
to (37), the discrete Lagrangian is computed to be

ld .�k;kC1;�kC1=2/ D h
2
hI �k;kC1; �k;kC1i � hU.�kC1=2/:

Here �k;kC1 D .�1k;kC1; �2k;kC1; 0/ is the discrete analogue of the angular velocity

� D .�1; �2; 0/ and �kC1=2 D 1
2
.�kC1 C �k/. The discrete dynamics then reads

1
h
I ��k;kC1 � �k�1;k

� D mg��kC1=2 C �k�1=2
� � a; (40)

1
h

�
�kC1=2 � �k�1=2

� D 1
2

�
�kC1=2 C �k�1=2

� � 1
2

�
�k;kC1 C �k�1;k

�
: (41)

We reiterate that there is a certain flexibility in setting up the discrete analogue (41)
of the continuous-time reconstruction equation (36). Our choice may be justified in
a number of ways, one of them being energy conservation by the discrete dynamics.

The structure-preserving properties of the proposed integrator for the spherical
pendulum are summarized in the following theorem.

Theorem 7 (Zenkov, Leok, and Bloch [40]). The discrete spherical pendulum
dynamics (40) and (41) preserves the energy, the vertical component of the spatial
angular momentum, and the length of � .

We refer the readers to [40] for the proof and details.

7.3 Simulations

Here we present simulations of the dynamics of the spherical pendulum using the
integrator constructed in Section 7.2. For simulations, we select the parameters of
the system and the time step to be

m D 1 kg; r D 9:8 m; h D :2 s:

The trajectory of the bob of the pendulum with the initial conditions

�10 D :6 rad=s; �20 D 0 rad=s; (42)


10 D :3 m; 
20 D :2 m; 
30 D �
q

1 � �
1
0

�2 � �
2
0

�2
m (43)

is shown in Figure 1a. As expected, it reveals the quasiperiodic nature of pendulum’s
dynamics.

Figure 1b shows pendulum’s trajectory that crosses the equator. This simulation
demonstrates the global nature of the algorithm, and also seems to do a good job of
hinting at the geometric conservation properties of the method.
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Fig. 1 Trajectories of the pendulum calculated with the Hamel integrator. (a) Pendulum’s
trajectory on S2 for initial conditions (42) and (43). (b) Pendulum’s trajectory on S2 that crosses
the equator

0

a b

2000 4000 6000 8000 10000

1. × 10−14

1. × 10−15

0 2000 4000 6000 8000 10000

5. × 10−15

−5. × 10−15

Fig. 2 Numerical properties of the Hamel integrator for the pendulum. (a) Preservation of the
length of � . (b) Conservation of energy

Theoretically, if one solves the nonlinear equations exactly, and in the absence of
numerical roundoff error, the Hamel variational integrator should exactly preserve
the length constraint and the energy. In practice, Figure 2a demonstrates that
k�k stays to within unit length to about 10�14 after 10,000 iterations. Figure 2b
demonstrates numerical energy conservation, and the energy error is to about
5 � 10�15 after 10,000 iterations. Indeed, one notices that the energy error tracks the
length error of the simulation, which is presumably due to the relationship between
the length of the pendulum and the potential energy of the pendulum. The drift
in both appear to be due to accumulation of numerical roundoff error, and could
possibly be reduced through the use of compensated summation techniques.

For the comparison of the Hamel integrator with simulations using the general-
ized Störmer–Verlet method and the RATTLE method see [40]. We point out here
that the energy error for the Hamel integrator is smaller than those of the Störmer–
Verlet and RATTLE methods.
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8 Conclusions

This paper introduced the discrete Hamel formalism and demonstrated its utility in
nonholonomic mechanics. Future work will include further study of the properties
of this formalism, as well as the development of discrete Hamel’s formalism on
manifolds in general, and on Lie groups and homogeneous spaces as important
special cases. It would be also interesting to relate the discrete Hamel formalism
to the results of Iglesias et al. [19].
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