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    Abstract     Acquired immunodefi ciency syndrome (AIDS) is a life-threatening 
 disorder caused by infection of individuals with the human immunodefi ciency virus 
(HIV). Entry of HIV-1 into target cells depends on the presence of two surface 
proteins on the cell membrane: CD4, which serves as the main receptor, and either 
CCR5 or CXCR4 as a co-receptor. A limited number of people harbor a genomic 
32-bp deletion in the  CCR5  gene ( CCR5∆32 ), leading to expression of a truncated 
gene product that provides resistance to HIV-1 infection in individuals homozygous 
for this mutation. Moreover, allogeneic hematopoietic stem cell (HSC) transplanta-
tion with  CCR5∆32  donor cells seems to confer HIV-1 resistance to the recipient as 
well. However, since  Δ32  donors are scarce and allogeneic HSC transplantation is 
not exempt from risks, the development of gene editing tools to knockout  CCR5  in 
the genome of autologous cells is highly warranted. Targeted gene editing can be 
accomplished with designer nucleases, which essentially are engineered restriction 
enzymes that can be designed to cleave DNA at specifi c sites. During repair of these 
breaks, the cellular repair pathway often introduces small mutations at the break 
site, which makes it possible to disrupt the ability of the targeted locus to express 
a functional protein, in this case CCR5. Here, we review the current promise and 
limitations of  CCR5  gene editing with engineered nucleases, including factors 
affecting the effi ciency of gene disruption and potential off-target effects.  
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         Introduction 

 As HIV research continues to identify novel druggable viral and host factors that 
promote virulence and latency, the long-term clinical management and survival of 
HIV-positive individuals has improved considerably. Combination therapies, like 
highly active antiretroviral therapy (HAART), continuously suppress HIV replica-
tion while attenuating the development of escape mutants. However, because 
HAART is unable to clear latent viral reservoirs [ 1 ,  2 ], patients require lifelong 
treatment, which not only is expensive but has been associated with multiple adverse 
side effects and the development of drug-induced diseases [ 3 – 5 ]. The sustained 
antiviral effi cacy of these therapeutic regimens is also strongly infl uenced by the 
compliance of each patient, which remains a key factor in managing not only the 
HIV infection but also the development of any accompanying disease [ 6 ]. Ideally, a 
therapy aimed at eliminating both the replicating and latent viral populations would 
provide a long awaited cure. 

 HIV-1 fusion with the cell membrane and ensuing virus entry is an intricate pro-
cess that requires the expression of both the CD4 transmembrane glycoprotein as 
well as an associated seven-pass G-protein coupled chemokine co-receptor, CCR5 
or CXCR4 (Fig.  1 ), a receptor combination typically found on CD4+ T cells, mac-
rophages and dendritic cells [ 7 ]. Virus attachment is mediated by gp120, a viral 
surface glycoprotein located in the lipid membrane of the HIV-1 virion. Initially 
gp120 binds to CD4, which then facilitates the sequential attachment of gp120 to 
either the CCR5 or CXCR4 co-receptors. R5-tropic viruses, most prominently 
detected during the early stages of HIV-1 infection, bind to the CCR5 co-receptor, 
whilst X4-tropic viruses bind to CXCR4. The subsequent conformational change of 
the viral envelope protein exposes the viral gp41 glycoprotein, which mediates 
fusion with the target cell membrane. The resulting formation of a transmembrane 
pore enables the delivery of the viral capsid, which initiates viral integration and 
replication. Whereas the majority of the population is susceptible to infection, a 
small percentage of individuals are protected from infection with particular HIV 
strains. This resistance to HIV infection has been linked to naturally occurring 
genetic variations, including polymorphisms within the locus encoding the CCR5 
co-receptor [ 8 – 14 ]. As a consequence, rational design of novel therapeutic strate-
gies has also focused on blocking viral entry with small molecule drugs or genetic 
engineering to generate HIV-resistant T cells.   

    CCR5 as a Target for HIV Antiretroviral Therapy 

 CCR5 was fi rst identifi ed as the prominent co-receptor for R5-tropic viruses 
 following the discovery that three chemokines, RANTES (CCL5), MIP-1α (CCL3), 
and MIP-1β (CCL4), impede HIV-1 binding [ 15 ]. Ever since, pharmaceutical com-
panies have focused heavily on the development of HIV antiretroviral therapies 
based on entry and fusion inhibitors. One such drug, Maraviroc, binds to the 
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  Fig. 1    Attachment and entry of R5-tropic HIV-1. ( a ) The HIV virion initially binds to target cells 
through interactions between the viral gp120 surface glycoprotein and the CD4 receptor. The CD4 
receptor then draws the virion closer to the target cell, facilitating the interaction between the 
CCR5 co-receptor and gp120. This triggers a conformational change, allowing the gp41 glycopro-
tein to fuse to the cell membrane in order to create a transmembrane pore. The viral capsid, which 
contains the HIV RNA, integrase and reverse transcriptase, is then released into the target cell. 
( b ) Initial binding of the HIV-1 virion occurs as described above; however, the CCR5Δ32 mutant 
form of this co-receptor is severely truncated and remains cytosolic, ultimately eliminating the 
gp120 binding site. As there is no co-receptor binding, the conformational change required to 
expose the gp41 protein is blocked, preventing viral fusion and entry       
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transmembrane domains of CCR5, ultimately preventing viral attachment and 
fusion [ 16 ]. Based on successful clinical trials, Maraviroc has been approved for 
HIV-1 treatment in both Europe and the USA. However, as with most currently 
available HIV therapies, viral escape mutants have been isolated [ 17 – 19 ]. 
Furthermore, as Maraviroc binds to the CCR5 co-receptor, it is not effective against 
X4-tropic viral infections. 

 Moving away from traditional HAART therapy, the adoptive transfer of syner-
gistic T cells and allogeneic stem cells has been investigated as potential curative 
treatments. Initially, the effi cacy of synergistic or autologous transplantation of 
hematopoietic stem/progenitor cells (HSPCs) was described in HIV-positive 
patients that had developed lymphomas [ 20 – 23 ]. Whilst patients remained on anti-
viral therapy, the myeloablative conditioning required prior to transplantation facili-
tated the reconstitution of the T cell compartment. In 2007, Hoffmann and colleagues 
reported that the adoptive transfer of T cells between HIV-1 discordant twins 
resulted in improved CD4 +  T cell counts [ 24 ]. The patients remain on antiretroviral 
therapy and required a total of 12 transfers to achieve a sustained expansion of CD4 +  
cells. Since myeloablative conditioning was not performed before adoptive trans-
fers, these results suggest that HLA-matched T cells could help reprise aspects of 
the immune system, provided that HIV viral loads are continuously repressed. 
Nonetheless, neither approach is curative, as patients still require continuous anti-
retroviral therapy post-transplantation. 

 In contrast, an allogeneic HSPC transplantation from a donor homozygous for 
the  CCR5Δ32  mutation has given rise to the fi rst described permanent “cure” for 
HIV [ 25 – 27 ]. The  CCR5Δ32  mutation was originally identifi ed in a small group of 
people who, despite being repeatedly exposed to HIV, did not contract the disease 
[ 12 ,  13 ]. This 32 base pair deletion in the  CCR5  gene induces a frameshift mutation 
and the resulting truncated protein does not support gp120 binding, ultimately pre-
venting HIV-1 infection (Fig.  1 ). Although individuals who are homozygous for this 
mutation are resistant to R5-tropic HIV-1 infection, they remain susceptible to 
X4-tropic strains [ 28 ]. A number of studies showed that HIV-positive patients, who 
are heterozygous for the  CCR5Δ32  mutation, have reduced disease progression and 
better overall prognosis than patients who are homozygous for the wild-type  CCR5  
gene [ 10 ,  11 ,  29 ,  30 ]. In 2009, Hütter and colleagues described the fi rst curative 
allogeneic HSPC transplantation using an HLA-matched donor who was homozy-
gous for the  CCR5Δ32  mutation [ 26 ]. Timothy Brown (alternatively referred to as 
the “Berlin patient”), an HIV-positive patient on HAART therapy, received the ini-
tial HSPC transplant after developing acute myeloid leukemia (AML), which was 
refractory to induction and consolidation chemotherapy. As his AML relapsed, a 
second HSPC transplantation from the same homozygous  CCR5Δ32  donor was per-
formed. To date, the patient remains cancer-free and HIV negative in the absence of 
HAART [ 25 – 27 ], suggesting that homozygous  CCR5Δ32  HSPC transplantation 
could be used to cure not only the blood-related malignancy but also HIV-1 infec-
tion. Although this presents an idealistic approach, the number of homozygous 
 CCR5Δ32  donors is low, since only approximately 1 % of the Caucasian population 
has this HIV-1-resistant genotype [ 30 ,  31 ]. Accordingly, much research has focused 
on engineering homozygous  CCR5Δ32 -like mutations in patient-derived HSPCs 
and T cells using designer nucleases.  
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    Gene Editing with Designer Nucleases 

 Designer nucleases are engineered enzymes that are comprised of a DNA binding 
domain, tailored to bind to a specifi c target sequence, and a DNA cleavage domain 
(Fig.  2 ). Binding of the engineered nuclease to a defi ned genomic target site results 
in the formation of a DNA double stranded break (DSB) which, in turn, elicits cel-
lular DNA repair mechanisms that can be exploited to achieve targeted and perma-
nent genetic modifi cations. Mammalian cells rely on two major DSB repair pathways: 
non-homologous end joining (NHEJ), which is active throughout the cell cycle, and 
homologous recombination (HR) based repair, which is restricted to the S/G2 phase. 

  Fig. 2    Designer nucleases to disrupt  CCR5 . ( a ) Schematic of the CCR5 protein localized to the 
cellular membrane. The  dotted boxes  indicate the corresponding regions of the genomic locus 
targeted by designer nucleases as well as the location of the  ∆32  deletion. Three different designer 
nuclease platforms have been effi ciently engineered to knock out  CCR5  and the corresponding 
DNA target sites are indicated in  green  (RGN),  light blue  (TALEN), and  orange  (ZFN). The puta-
tive cleavage sites are indicated ( black triangles ) ( b ) Designer nucleases. RGENs are composed of 
the Cas9 nuclease and a guide RNA (gRNA) that directs the enzyme to the target site. The proto-
spacer adjacent motive (PAM) required by the Cas9 enzyme to recognize and cleave the target site 
is indicated in  red . The two nuclease domains within the Cas9 protein (RuvC and HNH) are high-
lighted. TALEN or ZFN monomers include a modular DNA binding domain that is engineered to 
recognize a specifi c DNA target sequence. Each TALE module specifi cally recognizes one nucleo-
tide in the target subsite, while a ZF module binds to a nucleotide triplet. A short linker connects 
the respective DNA binding domain to the cleavage domain of the  Fok I restriction enzyme ( light 
red ), which cuts the DNA upon dimerization of the two monomers at the target site       
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As compared to HR, NHEJ is an error-prone pathway, which can be harnessed to 
insert small insertion/deletion (indel) mutations at the DNA break in order to inacti-
vate a target gene, such as  CCR5 . Conversely, HR relies on the genetic information 
contained in the sister chromatid for the accurate repair of a DSB. For gene editing, 
this pathway can be exploited by including a donor DNA template with specifi c 
sequence homology during the generation of nuclease-mediated DSBs [ 32 ,  33 ]. In 
this setting, the genetic information is transferred from the donor DNA to the target 
locus, thus allowing precise genomic modifi cations.  

 Dimeric zinc-fi nger nucleases (ZFNs) have been traditionally used for genetic 
modifi cations [ 34 ]. The DNA binding domain is comprised of multiple zinc-fi nger 
modules, each recognizing three to four nucleotides in a sequence-specifi c manner. 
However, generating highly active ZFNs with novel specifi cities is challenging and 
cumbersome, as context-dependent interactions between individual modules within 
the zinc-fi nger array affect the overall binding effi ciency [ 35 ]. In the last 15 years, 
ZFNs have been successfully used in basic research to study gene function [ 36 – 44 ] 
and to correct genetic defects underlying human disorders for therapeutic purposes 
[ 45 – 47 ] in preclinical settings. Their relatively small size has allowed ZFNs to be 
delivered using the most common viral and non-viral platforms as well as a direct 
protein delivery [ 48 ]. 

 For therapeutic applications, a high specifi city of the designer nuclease is of 
utmost importance, as off-target cleavage activity poses obvious concerns with 
regard to genotoxicity. Two studies assessing the genome-wide specifi city of the 
 CCR5 -specifi c ZFN pair revealed a considerable level of non-specifi c off-target 
activity [ 49 ,  50 ]. In view of the complexity of generating highly specifi c ZFNs, the 
discovery of a novel modular DNA binding domain identifi ed in transcription 
activator- like effectors (TALEs) of plant pathogens has provided new momentum to 
the genome engineering fi eld. TALE-based nucleases (TALENs) can be easily cus-
tomized to target any given sequence (Fig.  2 ) due to their simple recognition code in 
which a TALE module specifi cally recognizes one nucleotide [ 51 – 53 ]. When com-
pared to an existing ZFN, some  CCR5 -specifi c TALENs showed similar activity but 
lower cytotoxicity [ 54 ,  55 ]. While more work needs to be invested to dissect the 
specifi city signature of designer nucleases, initial results suggest that TALENs seem 
to harbor a rather high specifi city [ 55 – 57 ]. TALENs have hence evolved as a valid 
alternative for the generation of transplantable HIV-resistant T cells. Unlike ZFNs, 
TALENs are relatively large proteins with a highly repetitive structure. While ade-
noviral vectors can be used to deliver single TALEN monomers, lentiviral vectors 
have failed to transfer intact TALEN encoding expression cassettes [ 58 ]. As a con-
sequence, many labs have relied on in vitro transcribed mRNA or plasmid DNA to 
deliver the TALENs. 

 The newest addition to the toolbox for genome engineers is of bacterial origin as 
well. The clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 
system is used by prokaryotes to defend themselves against invading DNA [ 59 ]. 
It consists of the Cas9 cleavage enzyme complexed to a guide RNA strand that directs 
the enzyme to a 20-nucleotide long target site [ 60 ,  61 ]. Exchanging a specifi c por-
tion of the gRNA molecule allows researchers to redirect the Cas9 cleavage activity 
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to a user-defi ned target sequence (Fig.  2 ). This versatile platform, also known as 
RNA-guided nuclease (RGN) technology, holds many advantages over both ZFNs 
and TALENs. The most obvious one is the simplicity to customize the enzyme to 
target any sequence of choice by simple molecular cloning techniques [ 62 ,  63 ]. 
Moreover, delivering the Cas9 protein with more than one gRNA molecule allows 
multiplexing, i.e., to target several sites simultaneously [ 64 ]. Although RGNs have 
been shown to target  CCR5  effi ciently [ 65 ,  66 ], concerns regarding their specifi city 
have been raised [ 67 – 69 ]. On the other hand, further advances, such as Cas9 nick-
ases [ 70 ], the use of truncated guide RNAs [ 71 ], and dimeric RNA-guided  Fok I 
nucleases [ 72 ], have shown promise to generate more specifi c RGNs.  

    Target Cells 

 Two potential cellular targets have been envisioned for a  CCR5  disruption-based 
HIV therapy: CD4+ T cells, which are the mature lymphocytes infected by HIV, or 
CD34+ HSPCs, which would give rise to HIV-resistant T cells and macrophages. 

 In the fi rst scenario, patient derived CD4+ T cells will be collected by apheresis 
and modifi ed ex vivo using designer nucleases [ 47 ]. Modifi ed cells will then be 
amplifi ed in vitro and subsequently reintroduced in the patient (Fig.  3 ). For the ther-
apy to be effective, a large number of cells are required to retain profi cient prolifera-
tive and effector functions. Consequently, patients enrolled in such trials should 
have a CD4+ T cell count above a set threshold that allows collection of enough 
CD4+ T cells to be genetically altered and subsequently expanded ex vivo. Transfer 
of the  CCR5  modifi ed T cells will at least temporarily restore T cell immunity of the 
patients. Discontinuation of antiretroviral medication would allow the virus to infect 

  Fig. 3    Clinical application of modifi ed T cells and CD34+ cells. After collection of cells by apher-
esis, CD4+ T cells or CD34+ hematopoietic stem cells are enriched and  CCR5  disruption is 
accomplished by expression of designer nuclease. T cells are expanded ex vivo before adaptive 
transfer. In case of CD34+ cells, chemotherapy of AIDS lymphoma patients will assist the engraft-
ment of the modifi ed cells       
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and replicate in susceptible cells. Over time, only cells devoid of CCR5 will be able 
to expand in presence of the virus. Once the modifi ed pool of T cells is depleted as 
a result of cellular senescence, the transfer of modifi ed T cells can be repeated. Of 
note, the  CCR5  disrupted cells remain susceptible to CXCR4-tropic strains and dis-
continuing HAART could result in a fl are of these X4-tropic strains. Importantly, 
however, a viral rebound was not observed in the “Berlin patient” although he was 
positive for CXCR4-tropic strains [ 26 ,  73 ]. Nonetheless, to overcome this potential 
limitation, a simultaneous disruption of  CCR5  and  CXCR4  has been reported in 
primary CD4+ T cells, and protection from both R5 and X4-tropic virus was veri-
fi ed in a mouse model [ 74 ].  

 The second approach is directed towards the targeting and manipulation of 
CD34+ HSPCs [ 45 ]. The main advantage of this strategy when compared to CD4+ 
T cell targeting is the ability of modifi ed CD34+ cells to engraft and produce a long- 
lasting effect. HSPCs continuously differentiate in all the hematopoietic lineages, 
including T cells and macrophages that can be infected by HIV. The downside is 
that stem cells are diffi cult to manipulate and tend to lose their differentiation poten-
tial when cultured ex vivo. In addition, transplantation of HSPCs requires a mild 
preconditioning regimen to provide adequate space in the bone marrow for engraft-
ment of the modifi ed HSPCs. In this setting, leukopoiesis will occur from both 
modifi ed and non-modifi ed CD34+ cells, and the survival advantage in the presence 
of replicating HIV will occur on the level of CD4+ T cells and macrophages. 

 The advantages of the two approaches are apparent: since the genetic modifi ca-
tion is performed in autologous cells, there is no need for HLA matching, which 
signifi cantly decreases the risk of developing graft-versus-host-disease or graft 
rejection. Additionally, there is no need for post-transplantation immunosuppres-
sive therapy. The patients will be provided with an autologous pool of HIV-resistant 
cells, which restores the immune system either transiently or permanently. An open 
question is whether active clearance of HIV reservoirs will occur in an autologous 
setting where the graft-versus-host effect is not present.  

    Applying Designer Nucleases for HIV Gene Therapy 

 Many HIV gene therapy trials based on the ex vivo modifi cation of CD4+ T cells or 
HSPCs have used ribozymes, aptamers, and siRNAs [ 75 ]. Although none of these 
studies have reported clinical benefi t in terms of decreased viral load or protection 
from HIV replication so far, they showed promising outcomes in terms of safety, 
long-term engraftment and survival of modifi ed peripheral cells [ 76 ,  77 ], including 
maintenance of the genetic modifi cation in mature myeloid and T cells [ 77 ,  78 ]. 
These positive aspects were the basis for the clinical trials aimed at disrupting the 
 CCR5  co-receptor gene with designer nucleases. This strategy has a major advan-
tage over conventional knockdown approaches using RNA interference, since it 
permits the generation of HIV-resistant cells after a single treatment. Indeed, when 
 CCR5 -specifi c ZFNs were delivered to primary human T cells by adenoviral 
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transduction, a population of HIV-resistant T cells was observed in vivo 50 days 
after transplantation in a murine HIV infection model [ 47 ]. A similar approach 
was applied to human CD34+ HSPCs by nucleofection of DNA expression plas-
mids encoding  CCR5 -specifi c ZFNs. Following transplantation in a humanized 
HIV mouse model,  CCR5  disrupted cells showed selective survival after challenge 
with HIV [ 45 ]. However, nucleofection of plasmid DNA into primary cells, and in 
particular into stem cells, can be associated with considerable cytotoxicity. This 
drawback has been recently overcome by delivering ZFNs in the form of in vitro 
transcribed mRNA [ 79 ]. 

 Based on these preclinical accomplishments, the use of ZFNs as an HIV gene 
therapy for the generation of transplantable autologous HIV-resistant T cells has 
entered phase I/II clinical trials. The protocol was similar in all studies (Fig.  3 ): 
CD4+ T cells were isolated from HIV patients and transduced with an adenoviral 
vector expressing a ZFN pair targeted to  CCR5 . After ex vivo expansion, the cells 
were reinfused into the patients. In the fi rst published study [ 80 ], 12 patients were 
recruited and received one infusion of 10 billion CD4 T cells. Six patients under-
went a 12-week treatment interruption 4 weeks after infusion. The primary objec-
tive was the assessment of safety, while secondary objectives included the evaluation 
of increased CD4+ T cell counts, the traffi cking of  CCR5 -modifi ed cells to the gut 
mucosa, and a decrease in viral load. The modifi ed CD4+ T cells engrafted and 
were detected in the patients up to 42 months after transfer. Moreover, modifi ed 
cells were detected in all biopsies of the rectal mucosa, revealing successful traffi ck-
ing. Treatment was prematurely discontinued and HAART reinitiated in two patients 
because of a rise in HIV RNA levels above the threshold. In four patients who 
completed the 12-week HAART interruption, a relative survival advantage of the 
modifi ed cells was observed. The decrease in virus load correlated with the number 
of circulating cells carrying biallelic modifi cations at the  CCR5  locus. Actually, the 
one patient with undetectable HIV load after treatment interruption was found to be 
heterozygous for the  CCR5Δ32  allele. In summary, this fi rst-in-human application 
of ZFN designer nucleases showed infusion of  CCR5 -modifi ed T cells to be safe 
and well tolerated, and led to reduced virus loads in some patients. However, com-
plete eradication of HIV could not be achieved, probably due to suboptimal engraft-
ment and the low number of cells carrying a biallelic disruption. It will be interesting 
to learn what further safety evaluations involving a larger sample size and a long- 
term follow-up will reveal. 

 Based on these promising results, more studies have been initiated, including one 
which specifi cally enrolled ten patients heterozygous for  CCR5Δ32  (NCT01044654). 
As expected, the biallelic modifi cation frequency in the  CCR5Δ32  cohort was 
 doubled as compared to normal, and three out of eight subjects with high levels of 
engraftment had virus loads below detection limit up to 20 weeks following inter-
ruption of HAART (Sangamo Biosciences Inc., Richmond, CA: press release on 
Dec. 6, 2013). To improve engraftment and increase of CD4+ T cell counts, another 
study involving 12 patients has evaluated the use of escalating doses of cyclophos-
phamide (NCT01543152), a drug used for non-myeloablative lymphodepletion to 
enhance adoptive T cell transfer [ 81 ]. Conditioning with cyclophosphamide was 
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reported to be safe and well tolerated, and a dose-dependent increase was observed 
for both normal and modifi ed CD4+ T cells (Sangamo Biosciences Inc., Richmond, 
CA: press release on Dec. 6, 2013). 

 Since HIV can also use the  CXCR4  co-receptor for viral entry, an alternative 
strategy for HIV treatment using  CXCR4 -specifi c ZFNs delivered by adenoviral 
vectors has been investigated [ 82 ]. However, while  CCR5  disruption seems to be 
well tolerated by the immune system, the CXCR4 receptor plays an important role 
in immune regulation, especially in B cell development [ 83 ], and its disruption 
raises concerns of potential deleterious effects. ZFNs have not only been used to 
create HIV-resistant cells but novel strategies have also been developed to eradicate 
the provirus from infected cells [ 84 ]. While promising, this approach may be lim-
ited by the diffi culties associated with targeting the integrated provirus, especially 
in rare cells like resting T cells or latently infected cells.  

    Concluding Remarks 

 The presented clinical results are encouraging and validate the  CCR5  knockout strat-
egy as an important development in fi ghting HIV infection. Furthermore, the data 
underline the number of T cells with biallelic  CCR5  disruption to be a key factor for 
clinical success. On the other hand, off-target cleavage of designer nucleases is a 
major concern. This is especially true if applied in multipotent stem cells predestined 
to be transplanted in patients, as the potentially mutagenic events could prompt a 
malignant phenotype. Hence, specifi city of engineered nucleases will be the second 
key factor required to pave the road for this new line of gene therapy into the clinic.     
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