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    Chapter 19   
 Arenaviruses 

             Anna     N.     Honko      ,     Peter     B.     Jahrling      ,     Jens     H.     Kuhn      ,     Sheli     R.     Radoshitzky      , 
and     Joshua     C.     Johnson     

          Core Message   As research models, arenavirus infections such as those induced by 
Junín virus and lymphocytic choriomeningitis virus (LCMV) have been central to 
the discovery and characterization of many features of the immune system. In 
addition, these models have been used to study the establishment of persistent viral 
infections and relationships between viruses and rodent reservoirs. From the human 
perspective, several arenaviruses are important as zoonotic pathogens with 
signifi cant consequences, causing viral encephalitis and meningitis and severe and 
often fatal hemorrhagic disease.  

1     Introduction 

 In a general sense, geographic distribution may be used to separate the arenaviruses into 
Old World (OW) and New World (NW) viruses. With the exception of Tacaribe virus 
(TCRV), a NW arenavirus possibly associated with bats, all currently classifi ed arenavi-
ruses have a natural rodent reservoir (“mammarenaviruses”). The geographic distribu-
tion of these reservoirs generally correlates to a restriction of the distribution of the 
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viruses and endemic disease. Recently, several novel arenaviruses were identifi ed in 
snakes (“reptarenaviruses”), and whether an intermediate rodent or mite is involved in 
their transmission is not known (Tables  19.1 ,  19.2 , and  19.3  and references within).

     Arenaviruses were originally characterized ultrastructurally through electron 
micrographs of lymphocytic choriomeningitis virus (LCMV) particles and LCMV- 
infected cells about 45 years ago    [ 53 ]. Virions were found to be of variable size and 
shape, budding from the plasma membranes with visible spikes and ribonuclease- 
resistant electron-dense bodies within the particles (also shown with Lassa particles 
in Fig.  19.1 ). On the basis of these morphological features, in 1969 researchers ini-
tially suggested that LCMV, Machupo virus (MACV), and TCRV should be reorga-
nized in a single taxonomic group with LCMV as the prototype virus [ 54 ]. This was 
quickly followed by serological studies confi rming cross-reactivity between LCMV, 
TCRV, MACV, Amaparí virus, Junín virus (JUNV), Paraná virus, Pichindé virus 
(PICHV), Tamiami virus, and Latino virus, but not other arthropod-borne viruses or 
mouse viruses [ 55 ]. Several biological properties of arenaviruses were also listed as 
evidence for their separation from arthropod-borne viruses: (1) arenaviruses are 
RNA and not DNA viruses, (2) rodent vectors play a role in arenaviral disease trans-
mission, (3) arenaviruses produce persistent carrier state in rodents, and (4) they do 
not require arthropods in their life cycle. A more formal naming proposal was pre-
sented in 1970 [ 56 ] naming this virus group “Arenoviruses,” from the Latin word 
“arena” (= sand) based on the characteristic electron-dense granules in arenavirions. 
This name was later changed to Arenavirus (and later to  Arenavirus ), ostensibly to 
prevent confusion with “Adenovirus.” Lassa virus (LASV) was classifi ed as an 
 arenavirus in 1970 after in vitro characterization of several isolates [ 2 ,  57 ].  

 Smaller arenavirions tend toward being spherical, whereas larger particles are 
pleomorphic or “cup-shaped” [ 53 ,  54 ,  58 ]. The typical mean particle size is approx-
imately 110–130 nm in diameter, although individual particles may range from 50 
to over 350 nm in diameter. Particles are spotted with electron-dense granules of 
approximately 20 nm in diameter, later determined to be host ribosomes. Often, the 
formation of large intracytoplasmic inclusion bodies is observed in vitro in tissue 
culture and in vivo [ 53 ,  54 ,  56 ,  59 – 61 ]. These tubuloreticular inclusion structures 
(shown in Fig.  19.2 ) are also seen in cells infected with other viruses, such as 
Epstein Barr virus or Ebola virus [ 62 ], and have recently been the starting point of 
the discovery of a novel group of arenaviruses in snakes associated with inclusion 
body disease (IBD) [ 50 ,  51 ,  63 – 66 ].   

2     Genome Organization, Viral Proteins, and Replication 
Strategy 

2.1     Genome Structure 

 Arenaviruses have bisegmented, single-stranded ambisense RNA genomes. These 
segments are designated by their length: small, S (approximately 3.5 kb) and large, 
L (approximately 7.3 kb) [ 67 ,  68 ]. The L segment encodes a viral RNA-dependent 
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   Table 19.3    Newly detected or isolated arenaviruses (“Reptarenaviruses”) from snakes   

 Unclassifi ed arenaviruses from snakes 

 Virus  Abbreviation  Distribution 

 Reservoir 
species 
(reservoir(s)) 

 Year 
identifi ed  Reference(s) 

 CAS virus a   CASV  USA: 
California 

  Corallus 
annulatus  
(annulated tree 
boa) 

 2012  [ 50 ] 

 Collierville 
virus a  

 CVV  USA: 
California 

  Boa constrictor  
(boa constrictor) 

 2012  [ 50 ] 

 Golden Gate 
virus 

 GOGV  USA: 
California 

  Boa constrictor  
(boa constrictor) 

 2012  [ 50 ] 

 ROUT virus a   ROUTV  Netherlands   Boa constrictor  
(boa constrictor), 
 Corallus caninus  
(emerald tree 
boa) 

 2013  [ 51 ] 

 University of 
Helsinki 
virus 

 UHV  Germany, 
UK, Costa 
Rica 

  Corallus 
annulatus  
(annulated tree 
boa),  Corallus 
hortulanus  
(common tree 
boa),  Boa 
constrictor  (boa 
constrictor) 

 2012  [ 52 ] 

  ROUTV was previously known as Boa Av NL B3 
  a Only sequence data available (no virus isolate)  

  Fig. 19.1    Lassa virus particles budding from a stellate cell of a crab-eating macaque. Electron 
micrographs of virions (90–100 nm in diameter) budding from a presumed dendritic cell from an 
inguinal lymph node of a crab-eating macaque. Tissue was harvested 10 days following aerosol 
exposure to Lassa virus, Josiah strain. ( a ) Low magnifi cation at 25,000× and ( b )  inset , shown at 
high magnifi cation at 150,000×       
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RNA polymerase (L), as well as the matrix protein Z. The S segment encodes the 
nucleoprotein (NP) and the glycoprotein precursor (GPC) [ 69 ]. With such limited 
genome coding capacity, each expressed viral protein must play more than one role 
in the virus life cycle and suppression of the host immune response.  

2.2     Role of Viral Proteins 

2.2.1     NP 

 During viral infection, NP is the most abundantly produced viral protein. NP is 
involved in genomic RNA encapsidation and formation of viral ribonucleoprotein 
complexes (RNPs). NP binds to both genomic and antigenomic RNA and has 
immunosuppressive effects via the C-terminal domain [ 70 ,  71 ] that contains 3′–5′ 
exoribonuclease activity [ 72 ]. NP is encoded by the S segment, and translated from 
the subgenomic viral complementary mRNA [ 73 ]. The interaction of NP and L may 
be involved in the transient release of the RNA template from the nucleocapsid and 
in the movement of L during transcription [ 74 ].  

2.2.2      L 

 Based on sequence [ 75 ] and mass (greater than 200 kDa), researchers presumed that 
the L protein was an RNA-dependent RNA polymerase consisting of multiple 
domains, which was later confi rmed by mutational analysis and crystallographic 

  Fig. 19.2    Tubuloreticular structures in Lassa virus-infected circulating lymphocytes from a crab- 
eating macaque. Electron microscopy reveals burlap-like tubuloreticular structures (TRS) in a 
 circulating lymphocyte collected 8 days following aerosol exposure to Lassa virus, Josiah strain. 
( a ) Low-magnifi cation (30,000×) shows multiple, highly ordered TRS in the cytoplasm. ( b ) Higher 
magnifi cation (80,000×) of  boxed area , showing cross-sectional detail of a single TRS       
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studies [ 76 – 80 ]. L has at least four conserved regions with separate transcription, 
cap-snatching, and genome replication functions [ 76 ,  78 ,  80 ,  81 ]. L also interacts 
with Z and NP. The interaction of NP and L may be required for the release of tem-
plate RNA during transcription [ 74 ].  

2.2.3      Z 

 Z is a self-associating protein forming dimers that can form virion-like particles 
(VLPs) with myristoylation sites for membrane targeting. The primary function of 
Z is to serve as a viral matrix protein, recruiting NP and the GP to the site of bud-
ding particles at the plasma membrane [ 71 ,  82 ,  83 ]. The release of viral particles 
from the cell requires the intracellular cargo receptor ERGIC-53 and its associated 
machinery [ 84 ], and the budding process has been modeled in vitro [ 85 ]. Also, Z 
appears to have an immune-modulatory role, as a domain was identifi ed in NW 
arenaviruses (but not LASV or LCMV) that inhibited type I interferon (IFN) induc-
tion of the retinoic acid-inducible gene 1 (RIG-I) signaling pathway [ 86 ]. Z inhibits 
viral RNA synthesis by directly binding to L [ 71 ] and exerts inhibitory effects on 
polymerase activity.  

2.2.4     GPC 

 GPC is expressed as a single polypeptide precursor that is cleaved in the lumen of 
the endoplasmic reticulum. The cleaved stable signal peptide (SSP) remains stably 
associated with the GP spike complex. SSP plays essential roles in endosomal traf-
fi cking and pH-mediated fusion and interacts with Z [ 87 – 89 ]. Further proteolytic 
processing cleaves GP to separate GP1 and GP2, producing a globular head domain, 
a transmembrane region, and spontaneous trimer formation [ 90 ,  91 ]. 

 The trimeric GP spike complex on the virion surface mediates cell entry of arena-
virions; GP1 mediates cell attachment and receptor binding, whereas GP2 mediates 
membrane fusion within the endosome [ 92 ,  93 ]. GP2 is typical class I fusion protein 
and, during fusion, undergoes a conformational change involving a characteristic 
six-helix bundle [ 94 ]. The association of GP with membrane microdomains and 
Z promotes effi cient budding at the plasma membrane [ 95 ].   

2.3     Receptor Usage, Attachment, Entry, and Uncoating 

 Cellular entry of arenavirions is mediated by at least two defi ned receptors. The primary 
OW cellular receptor is the highly conserved cell surface protein α-dystroglycan 
(α-DG). This receptor is the entry receptor for LCMV, LASV, Mobala virus, Mopeia 
virus, Ippy virus, Oliveros virus, and Latino virus [ 92 ,  96 ]. Transferrin receptor 1 
(TfR1) was fi rst identifi ed as the cellular receptor for the pathogenic NW arenavi-
ruses JUNV, MACV, Guanarito virus, and Sabiá virus (SABV) [ 93 ]. Later studies 
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examined and compared arenavirus usage of TfR1 from hosts of different species 
[ 74 ,  97 ,  98 ], and preference of virion binding to human TfR1 correlated directly 
with pathogenicity. Lujo virus (LUJV) appears to enter cells via both α-DG- and 
TfR1-independent mechanisms, suggesting the existence of a third arenavirus 
receptor [ 99 ]. 

 Following attachment, virion internalization occurs via clathrin-dependent or 
clathrin-independent mechanisms depending on receptor usage and virus. Similarly, 
differences in endosomal traffi cking are also observed. However, a pH-dependent 
fusion step of the viral and cellular membrane is required [ 100 – 102 ]. Once virions 
are internalized and uncoated, virus replication is restricted to the cytoplasm where 
L initiates transcription at the 3′ end of each genomic RNA segment.  

2.4     Ambisense Coding Strategy and Replication 

 Arenaviruses use an ambisense coding strategy, whereby each single-stranded RNA 
genome segment has two open reading frames in opposite orientation (viral genomic 
sense versus the viral complementary sense). The noncoding intergenic regions 
(IGR) between the two open reading frames of each segment of most arenaviruses 
are predicted to form one- or two-stem-loop hairpin structures (SABV segments are 
predicted to have three-stem loop structures [ 103 ]). This G:C rich hairpin confi gura-
tion was fi rst identifi ed in the S segment of PICHV [ 104 ,  105 ], and its role as a puta-
tive terminator of L was suggested [ 105 ]. Both the L and S segments also have 
terminal noncoding untranslated regions (UTRs) at their extremities; these conserved 
regions of reverse complementary sequence promote the circularization of each 
genome segment into “panhandle” structures via base pairing [ 106 ]. The coiled, 
circular fi laments of viral RNA genome have been made visible by electron micros-
copy using purifi ed TCRV nucleocapsid [ 107 ]. The 3′ UTR of each segment also 
serves as a conserved promoter for L. 

 Arenavirus RNA synthesis is initiated after delivery of each of the two genomic 
segments, each associated with L, into the cytosol. Primary transcription from the 
3′ end of each genomic template results in mRNA transcribed from the NP and L 
genes in antigenomic orientation, terminating at nonspecifi c sites within the distal 
end of the stem loop in the IGR. As an example of the ambisense strategy for the S 
segment, NP mRNA would be transcribed directly in this fashion from the viral 
genome. However, transcription of GPC gene would not occur until the replication 
intermediate step of viral complementary RNA has been completed. Regulation of 
the switch from transcription to replication is controlled by the local abundance of 
particular viral proteins. At early times after uncoating, gene expression of NP and 
L is favored as the limiting amounts of NP reduce the read-through capability of 
L. Viral RNA synthesis is also promoted at this time, when low concentrations of 
Z protein are present. As the intracellular concentrations of Z increase following 
transcription and translation, the functions of Z might be modulated to increase the 
inhibition of viral RNA synthesis by directly interacting with L [ 71 ]. Z directly binds 
to L and exerts inhibitory effects on the polymerase activity in a dose- dependent 
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manner, potentially driving the shift from viral replication to virus assembly and 
budding. This interaction of Z with L would also ensure that L is packaged into 
virions prior to release. 

 The arenavirus ambisense coding strategy is hypothesized to play a role in the 
establishment of persistence in the rodent host, as well as immune evasion by 
limiting and regulating transcription and replication at critical times during the 
arenavirus replication cycle.   

3     Human Disease 

3.1     Transmission 

 Humans usually become infected via direct contact with rodents by inhaling dried 
excreta (feces, urine) during occupational exposure (laboratory workers, rodent 
sellers, farm workers) or from keeping rodents as pets [ 108 ]. Destruction of natural 
habitat due to human expansion increases the potential for human contact with 
infected rodents and may be a factor in zoonotic transmission.  

3.2     Clinical Presentation and Pathogenesis 

 The incubation period for human arenavirus infections ranges from 7 to 21 days 
followed by onset of infl uenza-like clinical signs and symptoms, including general 
malaise, sore throat, high fever, headache, myalgia, and lymphadenopathy. 
Progression of disease typically includes gastrointestinal symptoms such as nausea, 
vomiting, and diarrhea [ 109 – 113 ]. Disease presentation may range widely, from 
very mild to severe disease. More severe disease and poorer prognosis is generally 
associated with higher viral loads [ 114 ]. 

 In cases that resolve, recovery typically occurs within 8–10 days of disease onset 
and is usually concomitant with appearance of circulating antibody and measurable 
cellular responses [ 112 ]. Severe disease is characterized by deterioration in the 
patient’s condition that includes facial edema, severe pulmonary effusion, and 
bleeding from mucosal surfaces. Neurological signs, including tremors, disorienta-
tion, hyporefl exia, and ataxia may also present. Patients who succumb to disease 
(approximately 15–30 % of cases of viral hemorrhagic fever-causing arenaviruses) 
may experience respiratory distress, as a result of pulmonary edema, and/or enceph-
alopathy, which sometimes results in seizures and coma, followed by shock [ 115 ]. 
In the case of Lassa fever, nosocomial outbreaks are sometimes associated with 
higher incidence of fatality, ranging from 36 to 65 % [ 116 ]. Survivors of Lassa fever 
may experience diffuse hair loss and changes in nail beds. Sensorineural deafness, 
a common clinical feature that occurs during convalescence and late stage of dis-
ease, is noted in approximately 15 % of cases [ 117 ]. 

 Unlike other highly virulent hemorrhagic fever viruses, such as Ebola virus, 
arenaviruses are not distinguished by causing prominent hemorrhagic features or 
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disseminated intravascular coagulation (DIC) [ 111 ]. However, viral infection of 
endothelia and disruption of vascular function plays a prominent role in pathogen-
esis caused by hemorrhagic fever-causing arenaviruses, particularly in the case of 
LASV. Impaired vascular regulation is the causative underlying mechanism of facial 
erythema or edema, conjunctivitis, hypotension, pulmonary and pericardial edemas, 
and shock. In some cases, petechial or macular rash likely results from increased 
vascular permeability [ 116 ]. 

 LASV and JUNV are perhaps the best characterized of the OW and NW hemor-
rhagic fever viruses, respectively, and diverge in their histological and pathological 
features of disease. Lassa fever is characterized by a viral hepatitis [ 118 ] that is not 
as prominent in patients with Junín hemorrhagic fever. Renal necrosis is more pro-
nounced in patients with Junín hemorrhagic fever than in patients with Lassa fever, 
and these necrotic sites correspond to presence of high viral replication [ 113 ]. 
Other OW arenaviruses, such as LUJV, and NW arenaviruses, such as Chapare 
virus, MACV, GTOV, and SABV, cause diseases with very similar presentation. 

 Prominent differences in OW and NW arenavirus infections become more 
 readily apparent in regard to the immune response. Lassa fever results in general-
ized immune suppression [ 119 ,  120 ], whereas Junín hemorrhagic fever promotes 
development of a deregulated systemic infl ammation resulting from uncontrolled 
cytokine production [ 121 – 123 ]. Survival from Lassa fever is dependent on a strong 
cellular response whereas humoral immunity is less important [ 114 ]. Conversely, 
neutralizing antibodies are much more important for controlling NW arenavirus 
disease. Results from animal modeling of arenavirus infection suggest that comple-
ment fi xation is a critical component of the effectiveness of the humoral immune 
response, although cellular immunity is important [ 124 ]. 

 Pathogenesis is thought to partially result from virus damage to the endothelial 
system. Endothelial cells support high levels of virus replication without causing cell 
death, as arenaviruses do not undergo lytic cell replication. This replication initiates 
release of infl ammatory mediators such as prostaglandins and nitric oxide, which 
promote vascular permeability [ 125 ]. Additionally, arenaviruses are known to cause 
thrombocytopenia as a result of abnormal platelet aggregation [ 126 ] and reduced 
complement activity [ 127 ], both of which contribute to coagulopathy and tissue 
edema. Generally, severity of arenaviral disease is proportional to concentrations of 
IFN-α, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), particularly in 
Junín hemorrhagic fever [ 121 – 123 ].   

4     Animal Models of Highly Pathogenic Arenaviruses 

4.1     Rodents 

4.1.1     Laboratory Mice 

 Since the almost simultaneous discovery of LCMV by three groups [ 6 – 10 ], the use 
of LCMV in vitro and in laboratory mice as a research model [ 128 – 133 ] has been 
critical to the fundamental understanding of the immune system, particularly in 
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regard to cellular immunity. LCMV models have allowed investigators to study all 
aspects of the T lymphocyte response. These aspects include early interactions of T 
cells with dendritic cells in the context of major histocompatibility complex (MHC) 
restriction, the determination of immunodominant peptides and development of 
tetramer reagent systems, the phases of T cell expansion and contraction, and 
establishment of memory cells that occur following infection. Most of this research 
compared the dynamics of the murine immune response induced by the LCMV 
Armstrong isolate, which results in an acute infection of 7–10 days, to the clone 13 
isolate, which establishes a chronic infection (≥3 months) of laboratory mice. 

 For the pathogenic arenaviruses, rodent models of disease provide an economi-
cal way to characterize pathogenesis, vaccine immunogenicity, host-range restric-
tion, and therapeutic drug evaluation. Infection of laboratory mice with arenaviruses 
generally leads to a transient or persistent infection without characteristic pathogen-
esis seen in primates and requires  extensive virus adaptation to promote virulence. 
As a result, most mouse models of highly pathogenic arenavirus infections typically 
rely on gene-knockout variants that produce mice with an immune-compromised 
status rendering them more susceptible to viral infections in general. 

 Two gene knockout models utilize either signal transducer and activator of tran-
scription 1 (STAT1) or type I interferon (IFNαβR) receptor knockout mice to cripple 
the IFN response and establish a pathogenic model without the requirement for 
virus adaptation to the host. The STAT1 gene family is activated in response to type 
I IFN triggered by viral infection and regulates expression of a variety of genes 
important for cell viability and immune function regulation. 

 STAT1 knockout mice have previously been utilized for both wild-type LASV 
[ 134 ] and MACV [ 135 ] exposures resulting in lethal disease characterized by 
weight loss, disseminated infection, high serum and tissue viral titers, and death. 
Additional models have also been developed with similar results by eliminating the 
gene for IFN-α- and IFN-β-receptors, effectively disabling the IFN response. 
IFNαβR knockout mice have been used for a variety of both OW and NW arenavi-
ruses with success [ 136 ,  137 ]. 

 Laboratory mice that are typically not susceptible to LASV infection become 
unable to control viral replication and present with severe Lassa fever-like disease 
when murine MHC class I is replaced with a humanized ortholog. Depletion of 
T cells revokes the conferred lethality and development of signifi cant disease, 
despite the ability of the virus to maintain high-level replication, suggesting an 
important role for T-cells in LASV pathogenesis. The absence of T cells may lead 
to an abolition of appropriate activation of antigen-presenting cells, i.e., T cells may 
be contributing to deleterious infl ammatory responses mediated by monocytes/
macrophages [ 138 ]. 

 T cells are also important for JUNV pathogenesis. Murine models that make use 
of athymic mice persistently infected with JUNV have been described. The neuro-
virulence of JUNV in laboratory mice has been previously hypothesized to depend 
on the presence of T lymphocytes [ 139 ]. To achieve virulence in suckling mice, 
splenocytes from persistently infected athymic animals were passively transferred 
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via the intracranial route. Transfer of virus-infected cells results in brain lesions and 
establishment of acute disease, followed by death within 25 days [ 140 ]. Normal 
splenocytes did not affect viral burden in the brain nor result in pathology. Results 
of these studies highlight the role for T cells in neurovirulence and pathogenesis, at 
least in the murine model. The establishment of persistent infection is also critical 
for pathogenesis as splenocytes taken from athymic mice just after infection were 
unable to confer disease, whereas those harvested 30–45 days postinoculation pro-
duced a lethal outcome [ 141 ].  

4.1.2     Guinea Pigs 

 Guinea pig models of arenavirus infections have been widely used to study patho-
genesis and to evaluate the effi cacy of potential vaccines and therapeutics. Current 
guinea pig models of arenavirus infection caused by both NW and OW hemorrhagic 
fever-causing arenaviruses appear to closely resemble human disease, but do not 
epitomize its neurological aspects. Strain 13 guinea pigs have been the primary animal 
model to date, presumably because they are more susceptible to arenavirus infections 
than Hartley guinea pigs [ 142 ]. Both LUJV and LASV infection of strain 13 guinea 
pigs results in uniform susceptibility and high lethality with similar pathological 
features [ 142 ,  143 ]. Animals rapidly develop high fever and weight loss progressing 
to lethargy, reduced grooming, and death. Viremia and tissue titers are consistent 
with disseminated viral disease involving most visceral and lymphatic organs. 
Histologic fi ndings from animals infected with LUJV include hepatic infarction with 
associated necrosis and fi brin deposition, whereas the most prominent histologic 
feature in LASV infection is interstitial pneumonia. 

 JUNV infection models utilizing strain 13 guinea pigs are characterized by 
prominent hematologic and lymphatic involvement including necrosis and cellular 
depletion and hemorrhage [ 144 ,  145 ]. Further study of the hematological changes 
of bone marrow during the course of infection revealed a signifi cant increase in cells 
with abnormal morphology [ 145 ,  146 ].   

4.2     Nonhuman Primates 

4.2.1     Common Squirrel Monkey 

 Walker et al. fi rst described a nonhuman primate model of Lassa fever in the 
common squirrel monkey ( Saimiri sciureus ) [ 147 ]. Four monkeys were inoculated 
intramuscularly and serially sampled post-exposure on days 7, 12, 14, and 28 to 
both evaluate the clinical course and characterize progression of disease pathology. 
Animals exhibited a variable clinical course with an incubation period between 8 
and 18 days. Early clinical signs included development of anorexia, polydipsia, and 
lassitude. Early presence of detectable virus in the tissues involved lymph nodes, 
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liver, and kidneys followed by dissemination through various other organs in a 
pantropic manner. Histopathological fi ndings suggested similarities between the 
common squirrel monkey model and human disease pathology that included germi-
nal necrosis in lymphoid organs, myocarditis, acute arteritis, renal tubular necrosis, 
hepatocytic regeneration, and chronic infl ammation of the choroid plexus, ependy-
mal, and meninges with cerebral perivascular cuffi ng.  

4.2.2     Tufted Capuchins 

 Intracerebral JUNV infection of tufted capuchins ( Cebus apella ) [ 148 ] results in 
clinical signs after a 2-week incubation period, including weight loss and mild-to- 
moderate central nervous system involvement that resolves in most animals. Despite 
resolution, some animals still have detectable viral antigen in the brain as long as 
5 months post exposure. Hemorrhagic manifestations do not develop. The clinical 
response to infection is not uniform, though all animals develop high antibody 
responses. Although the model does not reproduce the human disease faithfully, it 
may have utility to study effects of the virus on the central nervous system or to 
evaluate viral persistence.  

4.2.3     Common Marmoset 

 Both JUNV and LASV infection models utilizing the common marmoset ( Callithrix 
jacchus ) have been described [ 149 – 154 ]. Except for microscopic neurological irreg-
ularities [ 155 ], JUNV infection in common marmosets shares pathological and 
hematological characteristics with human disease. Common marmosets infected 
with JUNV intramuscularly developed characteristic disease [ 156 ]. Animals initially 
presented with anorexia, lassitude, weight loss, thrombocytopenia, and leukocytope-
nia, followed by progression to severe fatal neurological and hemorrhagic disease 
approximately 3 weeks after exposure. Histologically, development of multifocal 
hemorrhage, microscopic lesions of the central nervous system, interstitial pneumo-
nia, lymphocytic depletion, hepatocytic necrosis, and loss of bone marrow cellularity 
correlate with high virus concentrations [ 155 ]. 

 Further evaluation of the hematological values of JUNV-infected marmosets 
revealed anemia and alteration of blood coagulation as evidenced by reduction of 
platelets and disruption of enzymatic activation of thrombin. These alterations ulti-
mately led to a state of DIC [ 157 ,  158 ]. Complement activation was independent of 
clotting abnormalities, though this fi nding is inconsistent with what is known about 
human disease and remains to be further evaluated in nonhuman primate models. 

 A later study also described LASV infection in experimentally infected com-
mon marmosets that echoed human disease [ 149 ]. Following subcutaneous inocu-
lation with LASV strain Josiah, common marmosets developed a systemic illness 
including fever, weight loss, high viremia and viral tissue loads, liver damage, and 
substantial morbidity. Virus tissue tropism was extensive as indicated by extremely 
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high viral titers in the spleen, lymph nodes, lung, liver, kidney brain, and adrenal 
glands. The most prominent microscopic features included hepatic necrosis, inter-
stitial nephritis, and depletion of lymphoid cells. Additionally, these histologic 
fi ndings suggested impairment of adaptive immune responses by depletion of T 
and B cells and ablation of macrophage expression of MHC class II. The common 
marmoset therefore appears to be a suitable model for further characterization of 
Lassa fever pathogenesis.  

4.2.4     Rhesus Monkey 

 The disease caused by LASV in rhesus monkeys ( Macaca mulatta ) shares many 
striking similarities with human Lassa fever, including onset of high fever, general 
weakness and malaise, pleural and pericardial effusion, hemorrhagic manifestations 
(e.g., bleeding from mucosal surfaces), shock, and death [ 116 ]. Several authors 
reported on LASV Josiah exposure of rhesus monkeys via the subcutaneous route 
of exposure with very similar fi ndings [ 159 – 162 ]. Animals developed clinical signs 
(high fever, anorexia, reduced responsiveness) 4–12 days post exposure. This model 
was not uniformly lethal, and survivors tended to present with signs of disease later 
than their moribund counterparts. As disease progressed, animals became increas-
ingly lethargic and presented with petechial skin rash, recumbency, elevated liver 
enzyme concentrations, and weakness. Although not ubiquitously reported, some 
cases involved aphagia, constipation, conjunctivitis, and hiccups. End-stage disease 
involved hypotension and hypothermia just prior to death. 

 Gross pathology and histological studies of LASV-infected rhesus monkeys 
resembled human disease, including pulmonary congestion, pleural effusion, peri-
cardial edema, fi brin deposition, and gross visceral hemorrhage. The most prominent 
histological fi ndings included necrotizing hepatitis and interstitial pneumonia [ 161 ]. 
While coagulopathy consistent with DIC was not observed, increased time for sam-
ple clotting was observed occasionally, suggesting a clotting abnormality consistent 
with viral hemorrhagic diseases with associated platelet aggregation [ 160 ,  162 ]. 
High virus titers in tissues were consistently reported in excess of serum viremia and 
included liver, lung, adrenal glands, pancreas, spleen, kidneys, lymph nodes and neu-
rological tissues, with liver, spleen, and lungs generally yielding the highest virus 
titers. With the exception of a single animal that developed hind leg paralysis fol-
lowing apparent recovery from clinical signs at day 58 [ 162 ], no other neurological 
fi ndings were reported. This fi nding is in contrast to the smaller primate models 
described previously (such as common marmosets and common squirrel monkeys). 
Intravenous inoculation of LASV strain Josiah into rhesus monkeys led to similar 
clinical presentation and pathological fi ndings as those recorded after subcutaneous 
inoculation [ 163 ]. 

 JUNV infection in rhesus monkeys can be established by the intramuscular and 
aerosol routes of exposure. McKee et al. compared several strains of JUNV (Romero, 
Espindola, Ledesma, and P-3551) in rhesus monkeys to characterize differences in 
disease course and outcome [ 164 ,  165 ]. Animals initially presented with similar 
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onset independent of strain, including progressive anorexia, lassitude, and diarrhea 
or constipation. JUNV infection in macaques infected with the Romero strain 
spontaneously resolved without developing more substantial illness. 

 In macaques infected with the other three strains (i.e., Espindola, Ledesma, 
P-3551), JUNV infection progressed to debilitating illness and, in most cases, death. 
These strains induced a pronounced loss of body weight, facial erythema developing 
into macular rash, conjunctivitis, oral ulcerations, and in some cases hypothermia 
precluding death by 24–48 h. 

 All three strains evolved into distinct disease phenotypes. Espindola strain infec-
tion induced a primarily hemorrhagic disease, including widespread petechial rash, 
mucous membrane and/or nasal bleeding prior to death, and was associated with 
severe bacteremia [ 164 – 166 ]. In contrast, animals infected with the Ledesma strain 
developed early bacteremia and a prominent neurological disease, including 
encephalopathy, tremors, spontaneous and isolated limb paralysis, and balance dis-
turbances. Animals infected with the P-3551 strain presented with a disease that 
shared components of both JUNV Espindola and Ledesma strain infections, but 
disease was generally milder (all animals infected with the Espindola strain suc-
cumbed to disease, whereas infection with the other two strains did not necessarily 
have a lethal outcome). 

 Investigators of a study assessing the aerosol route of exposure used the Espindola 
strain of JUNV but induced disease was similar to disease seen in intramuscularly 
inoculated animals [ 167 ]. All macaques developed acute signs 2–3 weeks post 
exposure, including anorexia, malaise, and weight loss, followed by development of 
rash, thrombocytopenia, lymphadenopathy, oral hemorrhage, and mucosal bleed-
ing. Animals surviving beyond 3 weeks experienced a wasting illness prior to death. 
Interestingly, no distinct neurological signs were noted following aerosol exposure 
in rhesus monkeys. 

 MACV, the causative agent of Machupo/Bolivian hemorrhagic fever in humans, 
was also studied in rhesus monkeys. Initials signs were present within a week of 
subcutaneous inoculation and included depression, progressive anorexia followed 
by constipation, and intermittent diarrhea [ 168 ,  169 ]. Animals generally either suc-
cumbed to disease in this initial phase or progressed to develop neurological mani-
festations (tremors, nystagmus, lack of coordination, paresis, coma). Most animals 
succumbed during this neurological phase of disease, but some recovered. Animals 
that survived the fi rst phase of disease typically developed neutralizing antibodies 
[ 168 ]. The mean time to death was also partially dependent on age and weight, with 
younger animals succumbing earlier. The mean time to death for smaller and larger 
rhesus monkeys was 19.3 days and 30.5 days, respectively. 

 Viremia in animals exposed to MACV was highest during the initial 2 weeks of 
infection but was still present in animals that had neurological signs. Interestingly, 
in an experiment in which complement was selectively depleted, viremia increased 
overall, highlighting the importance of complement fi xation for clearance of the 
virus by antibodies [ 168 ]. These fi ndings indicate that clinicians should exercise 
caution when passive transfer of convalescent serum is considered to treat human 
disease. 
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 Gross and microscopic lesions included lymphocytic infi ltrates in brain, spinal 
cord, pancreas, intestine, liver, kidneys, adrenals, heart, and skeletal muscle. 
Additional lymphocytic infl ammation was noted in the nervous system [ 170 ]. 

 Disease in rhesus monkeys, unlike NW monkeys, appears to correlate well with 
human disease induced by both the OW and NW arenaviruses (specifi cally LASV, 
JUNV, and MACV). Progression of the clinical phase for the rhesus monkey model 
is well mirrored in human case reports, making these models particularly well suited 
for studies exploring pathogenesis or evaluating medical countermeasures,  including 
both vaccine and therapeutic approaches.  

4.2.5     Crab-Eating (Cynomolgus) Macaque 

 Crab-eating macaques ( Macaca fascicularis ) have been used as models for infection 
caused by highly virulent arenaviruses, including LASV and MACV. As with rhesus 
monkeys, arenavirus disease in crab-eating macaques caused by LASV and MACV 
share major defi ning characteristics with human disease. 

 Following intramuscular inoculation of LASV, animals develop high fever, 
anorexia, mild-to-moderate depression, and dehydration between days 3 and 10. 
Facial edema occurs in some animals. Progressive anorexia and severe dehydration 
are followed by development of neurological signs, including convulsions and sei-
zures, which rapidly increase in duration and severity until death [ 171 ]. 

 Signifi cant clinical parameters of LASV infection included increases in 
D-dimer and protein C plasma concentrations followed by elevation of liver 
enzyme and blood urea nitrogen concentrations in late stages of disease. Viremia 
occurred early in disease, starting as early as day 3, and peaked at approximately 
2 weeks prior to death. 

 Increases in peripheral cytokine concentrations were signifi cant for IL-6, IL-1β, 
eotaxin, and monocyte chemoattractant protein-1 (MCP-1) [ 171 ]. Baize et al. dem-
onstrated that production of large quantities of IL-6 was correlative with fatal out-
come. Survivors tended to have early and robust cell-mediated immune responses, 
further supporting the pivotal role of T cells over humoral responses in survival of 
Lassa fever [ 120 ]. Other studies supported these fi ndings by demonstrating substan-
tial increases in chemokines and cytokines in crab-eating macaques  following inoc-
ulation with LASV, including those associated with immunosuppressive activities 
[ 172 ,  173 ]. 

 Gross necropsy fi ndings of LASV infection revealed lymphadenopathy with 
associated congestion, pale and friable livers, enlargement of the adrenal glands and 
pancreas, renal congestion, and pericardial effusion. Focal, petechial hemorrhage 
was noted on the mucosal surface of the urinary bladder, and congestion of the ileo-
cecal junction suggested gastrointestinal involvement. 

 Histology supported gross pathological fi ndings with antigen staining primarily 
associated with antigen-presenting cells in lymph nodes, spleen, and thymus. 
Hepatic and renal changes included lymphoplasmacytic and neutrophilic infl amma-
tion with substantial immunostaining in animals sacrifi ced during late-stage d isease. 
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Fibrin deposition was also noted in both tissues. Mild interstitial pneumonia 
occurred in a single animal, and cardiac involvement was evident by neutrophilic 
infl ammation of the pericardium. LASV antigen staining was present in all tissues 
evaluated, indicating systemic dissemination of virus. Microscopic examination of 
neurological tissue indicated meningoencephalitis in the cerebrum, cerebellum and 
brain stem with neuronal necrosis and gliosis. Endothelial and histiocytic cells were 
antigen positive in terminal cases [ 171 ]. 

 Crab-eating macaques inoculated subcutaneously with MACV (Carvallo strain) 
exhibited clinical progression and pathogenesis similar to rhesus macaques with a 
biphasic disease character consisting of initial fever, anorexia, and depression fol-
lowed by development of neurological symptoms often leading to death. Unlike 
rhesus monkeys, however, crab-eating macaques succumbed to disease without 
development of signs equal in severity to those in rhesus monkeys inoculated with 
an equivalent dose of virus. The mean time to death for MACV-infected crab-eating 
macaques was 17 days post-exposure [ 168 ]. 

 Aerosol and intramuscular exposure of macaques with the Chicava strain of 
MACV caused a similar disease course as seen with the Carvallo strain in crab- 
eating macaques [ 174 ]. Animals exhibited similar biphasic disease, and death 
occurred within 3 weeks of exposure. Similar to previous studies, lymphadenopathy 
with associated congestion, viral hepatitis, and gastrointestinal hemorrhage were 
present. Histologic fi ndings consisted of necrosis and apoptosis of cells of affected 
tissues, including liver, pancreas, adrenal glands, lymph nodes, stomach, and intes-
tines. Interstitial pneumonia was also present in some cases. As expected, infl am-
mation within the central nervous system was also histologically confi rmed.   

4.3     Use of Surrogate Models of Highly Virulent Arenaviruses 

 Work with OW and NW arenaviruses that cause viral hemorrhagic fevers in humans 
(LASV, Lujo virus, MACV, JUNV, SABV, GTOV, and Chapare virus), is restricted 
to biosafety level 4 conditions, limiting the work to a few specialized facilities. 
As a result, surrogate models utilizing related viruses in both rodent and primates 
have been developed for disease modeling purposes [ 175 – 186 ]. Several arenavi-
ruses (e.g., TCRV, PICHV, MOPV, LCMV) or attenuated varieties of parental 
viruses that do not cause substantial disease in humans (except immunocompro-
mised individuals) have been used in the development of both rodent and primate 
models with less inherent risk to researchers. 

 While these surrogate models can and have provided a wealth of information in 
advancing understanding of their highly pathogenic relatives, caution should be 
exercised with the extent to which these models can be used to identify pathogenic 
mechanisms and correlates of human disease. Most rodent models are based on 
gene knockouts that fundamentally alter the immune response, and nonhuman pri-
mate models rarely completely recapitulate the disease resulting from more virulent 
arenavirus members. These models are best suited to be used to specifi cally explore 
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pointed questions about aspects of these diseases that the models can faithfully 
reproduce. Alternatively, surrogate models can be used to ask more general questions 
about arenavirus replication applicable to all family members.   

5     Vaccines and Therapeutics 

5.1     Vaccines 

5.1.1    Live Attenuated or Nonpathogenic Viruses 

 Currently, the only licensed, yet not FDA-approved, vaccine for use in the prevention 
of disease caused by an arenavirus is Candid#1. This vaccine has been clinically 
demonstrated to be save and effi cacious against JUNV infection [ 187 ]. Using 
recombinant viruses in a laboratory mouse model of JUNV infection, the parental 
JUNV XJ44 strain was shown to be attenuated via a single amino acid change in 
GPC at position 427 (phenylalanine to isoleucine) [ 188 ,  189 ]. Vaccine safety and 
immunogenicity were demonstrated in rabbits, guinea pigs, and rhesus monkeys, 
and fi nally in randomized clinical trials in humans [ 190 ]. The vaccine has been suc-
cessful in reducing both disease magnitude and severity of Junín hemorrhagic fever 
and is licensed in Argentina for vaccination of people living in high-risk areas where 
JUNV virus is endemic [ 187 ]. 

 Another live attenuated vaccine candidate with substantial promise is the chimeric 
virus ML-29 containing the LASV S segment and the MOPV L segment. This recom-
binant virus was generated by coinfection of Vero cells with both viruses followed by 
plaque purifi cation of the ML-29 virus clone [ 191 ]. In guinea pigs vaccinated with 
ML-29 and inoculated with LASV, disease did not develop. Immunogenicity was then 
evaluated in rhesus monkeys, and virus-specifi c cellular immunity to LASV and 
MOPV antigens, as well as LCMV, was demonstrated. The rhesus monkeys did not 
develop overt disease, nor were there histological lesions following vaccination, 
suggesting that ML-29 could be used for prevention of Lassa fever [ 192 ]. 

 Nonpathogenic arenaviruses have also been evaluated as vaccine candidates 
against disease caused by more virulent arenaviruses. Early studies using MOPV 
indicated cross-protection against LASV infection in rhesus monkeys, as the mon-
keys had no signs of disease and survived otherwise fatal infection [ 193 ]. However, 
liver and kidney histological alterations were noted in rhesus monkeys infected with 
MOPV in the absence of overt clinical signs of disease, indicating that arenaviruses 
thought to be apathogenic may not be entirely safe [ 163 ]. Thus, caution should be 
exercised when evaluating the safety of closely related viruses thought not to cause 
disease in humans. 

 Similar approaches with TCRV have also been used successfully in the common 
marmoset primate model of JUNV disease [ 153 ,  154 ,  194 – 196 ]. Intramuscular or 
intranasal inoculation of marmosets with TCRV prior to injection with a lethal 
dose of JUNV provided protection from disease development and death. 
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Additionally, intrathalamic inoculation of animals with TCRV caused no clinical 
signs of disease, histopathologic changes, or viremia up to 480 days post-inoculation. 
Common marmosets developed measurable, protective immune responses as early 
as 3 weeks following exposure to TCRV. Results of these studies suggest TCRV may 
be a  viable and safe candidate for vaccination against the pathogenic JUNV. 

 XJC13, an attenuated variant of JUNV derived from the parental XJ strain, was 
tested for effi cacy as a vaccine candidate in common marmosets [ 151 ]. Following 
intramuscular inoculation of XJC13, no fatality or signs of overt illness were 
observed in animals up to 420 days post-inoculation. The only evidence of patho-
genicity was slight weight loss between days 18 and 40 post-inoculation, after 
which animals’ weight rapidly normalized. Viremia was detectable between day 6 
and 22 post-inoculation with virus spread limited to lungs, spleen, lymph nodes, 
and bone marrow. Ganglionic hypertrophy with immunoblast proliferation was 
detected in animals sampled approximately 3 weeks after inoculation without 
recovery of virus. Measureable infectious virus could not be isolated at sampling 
time points greater than 1 year post-inoculation, although viral antigen staining 
was present in some organs. 

 All animals developed neutralizing antibody responses from week 3 onward. 
At days 60 or 380 following XJC13 inoculation, animals were inoculated with a lethal 
dose of the parental JUNV strain. XJC13 exposure conferred protection to all animals, 
whereas all control animals died. This study provides evidence that common marmo-
sets may be useful in evaluating attenuated vaccines for JUNV infection.  

5.1.2    Recombinant Vaccine Vector Approaches 

 More targeted approaches for the development of recombinant vaccine virus vectors 
have also been used. Vaccinia virus vectors modifi ed to express LASV NP or GPC 
successfully protected guinea pigs against lethal LASV infection [ 197 ,  198 ]. Multiple 
vaccinia virus vaccines expressing different LASV antigens were tested in nonhu-
man primates, including vectors expressing only N-terminal (GP1) or C-terminal 
(GP2) parts of GPC, whole GPC or NP. Only whole GPC or administration of both 
GP1 and GP2 provided signifi cant protection against disease and death in both rhe-
sus monkey and crab-eating macaque models [ 199 ]. All animals receiving either 
GP1 or GP2 vaccines succumbed to disease, and 80 % of NP-vaccinated animals 
died despite development of high antibody titers. In comparison, all animals receiv-
ing both the GP1 and GP2 vaccines simultaneously survived, and 90 % of the ani-
mals receiving whole GPC survived even in the absence of signifi cant antibody 
responses. The results of these studies suggest that a predominant cellular response 
is important in conferring protection and that whole GPC of LASV is necessary in 
eliciting a protective outcome. 

 A similar strategy was used for the development of a candidate vaccine against 
JUNV infection. A recombinant vaccinia virus expressing either GPC or NP of 
TCRV or GPC of JUNV was used to vaccinate guinea pigs. This approach resulted 
in partial protection of guinea pigs following lethal JUNV injection in both groups 
(50 % for TCRV GPC and 72 % for JUNV GPC) [ 200 ]. Interestingly, while recombinant 
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vaccinia virus expressing NP protein elicited a neutralizing antibody response, the 
vaccine was not protective. Conversely, both GPC vaccines were protective in the 
presence of low or undetectable neutralizing antibodies. Protection with  recombinant 
vector vaccines against LASV and JUNV infection without appreciable antibody 
responses suggest that cell-mediated immunity (e.g., T cell responses) may play a 
prominent role in protection of animals from arenavirus infection. 

 Vesicular stomatitis Indiana virus (VSV) has also been used as a recombinant 
vaccine vector. Replication-competent VSV expressing LASV GPC protected 
 nonhuman primates from lethal LASV infection. Transient viremia developed fol-
lowing inoculation, but no outward clinical signs of disease were noted [ 201 ,  202 ]. 
As was seen with the vaccinia virus vector, the VSV vaccine elicited strong cellular 
immune responses in vaccinated monkeys. In contrast to other vaccines, however, 
rVSV expressing LASV GP also induced a humoral response, although the contri-
bution of this response to the positive outcome was impossible to determine. 

 Vaccination with the well-described yellow fever virus 17D backbone modifi ed to 
express LASV GP1 and GP2 has resulted in partial protective effi cacy in guinea pigs. 
Approximately 6 weeks post vaccination, fi ve of six guinea pigs inoculated subcuta-
neously with 1,000 PFU of LASV survived; however, all animals developed clinical 
signs of disease (e.g., fever, loss of body weight and viremia) [ 203 ]. The vaccine also 
successfully elicited CD8+ T-cell responses in both CBA/J+ mice and strain 13 
guinea pigs. As the vaccine failed to protect common marmosets from lethal LASV 
infection, the likelihood of effi cacy in humans may be questionable [ 204 ]. 

 A Venezuelan equine encephalitis virus replicon particles (VRP)-based vaccine has 
also been tested and found effective in protecting guinea pigs from lethal LASV infec-
tion [ 205 ]. Both individual vaccine strategies, VRPs expressing LASV GP or NP, were 
protective, as was vaccination with both vaccines simultaneously. None of the vacci-
nated animals developed signs of disease, and the majority of guinea pigs did not 
develop viremia as a consequence of LASV inoculation. Unlike previous vaccine strat-
egies in which the use of NP did not lead to protection, results of this study provide 
evidence that an NP vaccine strategy may be viable. None of the vaccinated animals 
developed signifi cant neutralizing antibody responses following vaccination, again 
suggesting a central role for cellular immunity in prevention of arenavirus disease. 

 Perhaps one of the most interesting approaches to development of a vaccine 
against LASV infection has been the expression of LASV NP in  Salmonella  
Typhimurium. Mucosal immunization of mice elicited both virus NP-specifi c 
humoral and T cell responses [ 206 ]. Further evaluation of effi cacy in an LCMV 
laboratory mouse model suggested that protection against LCMV infection could be 
achieved with the strategy. Experiments using this strategy with LASV, both in 
rodents and nonhuman primates, remain to be performed [ 207 ].  

5.1.3    Inactivated and Virion-Like Particle Vaccines 

 Inactivated vaccine strategies for the prevention of arenavirus disease are underex-
plored. Virion-like particles (VLPs) containing LASV GP1, GP2, Z, and NP have been 
evaluated for their ability to induce antibody responses [ 208 ]; however, they have 
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yet to be evaluated for effi cacy. LASV particles inactivated by gamma- irradiation 
failed to protect rhesus monkeys from lethal infection with live LASV, despite 
development of a humoral antibody response. This failure is attributed to a lack of 
an adequately induced cellular immunity following vaccination [ 209 ]. Likewise, 
guinea pigs vaccinated with formalin-inactivated JUNV developed neutralizing 
antibodies, but these animals were not protected from lethal disease [ 210 ]. Taken 
together, results of these studies suggest that non-replicating approaches are unlikely 
to provide protective immunity against arenaviral infections.  

5.1.4    DNA Vaccines 

 Electroporation of DNA plasmids encoding viral genes and uptake by host cells can 
induce immunity to targets by promoting host cell expression of viral proteins. 
Cross-presentation of these antigens by antigen-presenting cells thus may elicit a 
potentially protective immune response. To evaluate this approach for vaccination 
against LASV infection, both the immunogenicity and effi cacy of electroporation of 
DNA plasmid vaccine expressing LASV NP was evaluated in mice using LCMV or 
PICHV inoculant. A single inoculation induced cellular CD8+ immune responses 
and resulted in lower viral titers in vaccinated mice euthanized 4 days post-virus 
inoculation as compared to non-vaccinated controls [ 211 ]. While these results are 
encouraging, it remains to be demonstrated that these vaccines can provide protec-
tion against LASV infection. Furthermore, DNA vaccines are known to elicit rather 
weak immune responses and often require multiple dosing in prime-boost strategies 
or additional adjuvants to provide both protection and durability. As mice were 
inoculated with virus 3 weeks post-vaccination, the duration of protection with this 
DNA vaccine approach is unclear. 

 A DNA plasmid expressing LASV GPC was effi cacious in protecting both 
guinea pigs [ 212 ] and nonhuman primates [ 213 ] from otherwise lethal LASV infec-
tion. In initial studies, 5/6 guinea pigs were protected, although the vaccine did not 
provide sterilizing immunity. Subsequent improvements in delivery and codon opti-
mization of the GPC gene resulted in complete protection, and no viremia devel-
oped in vaccinated animals. Similarly, this strategy also completely protected 
crab-eating macaques.   

5.2     Therapeutics 

5.2.1    Passive Transfer Using Immune Sera 

 Multiple studies have highlighted the protective value of immune sera treatment to 
counter JUNV infection in both common marmoset and guinea pig models. Guinea 
pigs were protected from illness as many as 6 days post-challenge, though develop-
ment of viremia and neurological complications (encephalitis, meningitis detected 
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at necropsy) did occur [ 214 ,  215 ]. Similar results were seen in common marmosets 
inoculated with JUNV—a 75 % survival rate following treatment with immune sera 
6 days post-inoculation [ 152 ]. All animals developed clinical signs. Some survivors 
also developed neutralizing antibody titers following convalescence. Collectively, 
these studies suggest that passive immune therapy may be a promising approach for 
treatment of NW arenavirus infections. 

 The effectiveness of passive immune treatment has also been shown in nonhuman 
primate and guinea pig models of LASV infection. Multiple methods were used to 
characterize the neutralizing antibody components of animal or human convales-
cent serum, including immunofl uorescent and standard plaque reduction neutraliza-
tion titer techniques. The quality and concentration of neutralizing antibodies was 
clearly correlated with favorable outcome [ 216 – 218 ], and therapeutic cut-off values 
predictive of a favorable outcome were established. Treatment with neutralizing 
antibodies coupled with ribavirin therapy resulted in enhanced protection in the 
crab-eating macaque models of LASV and JUNV infections, underlining the advan-
tages of combinational therapy approaches [ 219 ,  220 ]. A single study assessed the 
role of complement in neutralization of JUNV [ 221 ]. Presence of complement was 
critical for neutralization of virulent JUNV strains, but not for attenuated strains, 
suggesting that complement activation may play an important role in the quality of 
the neutralizing antibody response. 

 Passive transfer of immune sera has also been tested experimentally in rhesus 
monkeys or crab-eating macaques inoculated with MACV [ 222 ]. Immunoglobulin 
of human origin was given either pre- or post-virus inoculation. Animals receiving 
sera were protected from developing initial clinical illness; however, some survivors 
later developed neurological signs and subsequently succumbed to disease. 
Neurological development may have had a greater association with high doses of 
immunoglobulin, suggesting that neurological pathology may be at least in part 
mediated by delivery of treatment.  

5.2.2    Drugs Targeting Viral Entry 

 Preventing virion cell entry in theory prevents a virus from establishing infection 
and therefore subsequent replication. Cell entry begins with engagement of attach-
ment factors present on the target cell surface by arenaviral GP1, leading to internal-
ization, endosomal traffi cking, and virus uncoating. Thus, targeting cell-surface 
receptors involved in engagement of arenaviral glycoproteins and host pathways 
involved in permitting access of virus to the cell following attachment is an attrac-
tive therapeutic strategy. 

 Virulent NW arenaviruses (all of which belong to clade B) utilize human hTfR1 
by recognition of structures distinct from the transferrin- binding site [ 74 ,  93 ,  223 ]. 
Understanding the binding site necessary for arenavirion attachment presents the 
possibility of targeting the site for therapeutic intervention. Using a monoclonal 
antibody to hTfR1 targeting the region necessary for arenavirus GP1 binding, but 
dispensable for transferrin binding, Helguera et al. successfully blocked infection of 
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HEK293 cells by all NW arenaviruses. The antibody may be promising for studies 
in nonhuman primates as the antibody is cross-reactive with transferrin receptor 
orthologs of primates belonging to several species. 

 OW arenaviruses are thought to utilize extracellular matrix ligands for attach-
ment and entry, presenting a more diffi cult challenge for inhibiting entry at the cell 
surface. Despite this possible hurdle, phosphorothioate DNA oligonucleotides can 
potently inhibit LCMV infection by interfering with the virus–αDG interaction, 
thus preventing viral entry by steric blockade [ 224 ]. 

 Small molecule inhibitors are capable of blocking entry by preventing pH- 
mediated fusion of the arenaviral GP1 with cellular entry receptors that are rela-
tively specifi c to arenaviruses in multiple cell types [ 225 ]. High-throughput 
screening of various compounds yielded lead candidate small molecule inhibitors, 
ST-193 and ST-294, which are effective at blocking LASV, JUNV, MACV, and 
GTOV GP-mediated entry by inhibiting membrane fusion [ 226 ,  227 ]. ST-193 tested 
in the guinea pig model of LASV infection signifi cantly reduced fatality [ 228 ]. 

 Lassa virus GPC is proteolytically cleaved by cellular site 1 protease (S1P) to 
generate the attachment protein GP1 and the fusion-active transmembrane protein 
GP2. PF-42942, a small molecule inhibitor of S1P, had no impact on transcription, 
translation, or budding of LCMV and LASV, but had a modest effect on virus cell 
entry [ 229 ]. Thus, the anti-arenavirus activity of PF-42942 is primarily related to 
inhibition of S1P-mediated processing of GPC. More recent studies indicate that 
PF-42942 may work against NW arenaviruses as well [ 230 ]. Using small molecule 
inhibitors of S1P may therefore hold promise as a novel antiviral strategy in pre-
venting arenavirus infection. 

 Imidazothiazole carbohydrate derivatives also have potential utility in blockade 
of JUNV at the point of infection [ 231 ]. Cells were preincubated with varying con-
centrations of these compounds, compounds were premixed and incubated with 
virions prior to cell infection, or cells were treated at time of infection. Pre- 
incubation with virions yielded little reduction in infectivity, but both pretreatment 
of cells or simultaneous addition of drug and virions reduced infection. 

 Trifl uoperazine and chlorpromazine, both drugs in the phenothiazine class, proved 
effi cacious in vitro against JUNV, TCRV, and PICHV. These effects were achieved at 
IC 50  concentrations ranging from 7.7 to 23 μM. Time-of-addition experiments 
revealed that the drugs acted early in the replicative cycle, likely by modulating actin 
microfi laments and affecting viral entry [ 232 ].  

5.2.3    Drugs Targeting Viral Replication 

 Ribavirin, the only off-label drug for treatment of arenavirus infections, is a nucleo-
side analogue and still remains the treatment drug of choice, despite its well-known 
toxicity [ 233 – 237 ]. Ribavirin reduces morbidity and fatality in both clinical and 
experimental conditions of Old and New World arenavirus infections when pro-
vided early in course of clinical disease [ 161 ,  219 ,  238 – 242 ]. Ribavirin is thought 
to exert its antiviral activity by negatively regulating RNA synthesis. While the 
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precise mechanism remains elusive, ribavirin may inhibit inosine monophosphate 
dehydrogenase activity, leading to depletion of intracellular GTP pools [ 243 ], 
although results of some studies have challenged this idea [ 244 ]. Another possible 
explanation for ribavirin’s antiviral effect may be direct mutagenesis of viral RNA 
[ 245 ]. Other drugs targeting inosine monophosphate dehydrogenase, which may be 
as effi cacious as ribavirin but be less toxic, may be worth investigating. 

 T705, also known as favipiravir, is a pyrazine derivative that is effective in vitro 
against arenavirus infections. The mechanism of action involves disruption of the 
early intermediate phase of virus replication by inhibition of L activity [ 246 ,  247 ]. 
In vivo studies using PICHV rodent models yielded promising results. Twenty and 
seventy eight percent of guinea pigs treated with favipiravir by the oral or peritoneal 
routes, respectively, survived inoculation with PICHV when treatment occurred 
with 48 h [ 248 ]. Those animals who succumbed to disease experienced a prolonged 
disease course, and surviving animals presented with less severe disease overall. In 
hamsters, initiating treatment during the most severe stage of disease still altered 
disease outcome. These results suggest that T705 is an exceptional candidate for 
further preclinical development to treat arenavirus disease [ 249 ,  250 ]. Most of the 
studies described above incorporated ribavirin as a comparative treatment control. 
Not only did T705 outperform ribavirin in direct studies, but it also was signifi -
cantly less toxic [ 246 ,  248 ,  250 ]. 

 The antibiotic pyrazofurin was tested both in vitro and in guinea pigs inoculated 
with PICHV [ 251 ]. Results in cell culture were promising as relatively low concentra-
tions of the drug, 2 μg/ml, markedly inhibited plaque formation of multiple arenavi-
ruses. The mechanism of action is attributed to inhibition of de novo synthesis of 
nucleotides by blocking the activity of orotic acid monophosphate decarboxylase and 
preventing formation of uridine. Unfortunately, results in guinea pig studies were dis-
appointing as treatment did not prevent lethal outcome or alter viral loads. 

 A few studies have also evaluated the use of type I IFNs, specifi cally IFN-α, as a 
treatment for arenavirus infection. Generally speaking, results of these studies indi-
cated arenavirus infections to be relatively insensitive to IFN treatment [ 252 – 255 ]; how-
ever, at least one study suggested that treatment with type I IFNs can reduce LASV 
replication in HuH7 and Vero cells [ 256 ]. Additionally, therapeutic benefi t has also 
been achieved by treating hamsters with IFN alfacon-1 immediately following and 
up to 2 days after exposure to PICHV [ 257 ]. A protective effect in the same hamster 
model was also achieved using the non-replicating recombinant adenovirus plat-
form DEF201 encoding consensus IFN alfacon- 1 in pre- and post-prophylaxis 
approaches. These results suggest that IFN treatment may be at least partially benefi -
cial to controlling arenavirus infections [ 258 ]. 

 Several other compounds, including  S -adenosyl- L -homocysteine (SAH) hydro-
lase inhibitors [ 259 – 262 ], brassinosteroids [ 263 ], myristic acid [ 264 ], carboxamide 
derivatives [ 265 ], and zinc-fi nger-reactive compounds [ 266 ], have anti-arenaviral 
activity. Zinc-fi nger-reactive compounds are thought to act via inhibition of Z, pre-
senting yet another viral replication cycle target. To date, none of these compounds 
have been evaluated in animals or demonstrated to have signifi cant advantages over 
ribavirin as a therapeutic alternative. 
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 Kinase inhibitors have also been evaluated for effi cacy in treating both NW and 
OW arenavirus infections. Genistein is a general tyrosine kinase inhibitor that 
blocks infection of cells by PICHV, likely at the step of entry. Activation of tran-
scription factor-2 protein (ATF-2) and cyclic adenosine monophosphate response 
element binding protein (CREB) in Vero cells by PICHV was inhibited following 
treatment with genistein, and this inhibition correlated with decreased viral entry 
[ 267 ]. A similar suppression of infection was observed when genistein was paired 
with tyrphostin, another kinase inhibitor. The drugs both demonstrated individual 
effi cacy and a synergistic effect when combined [ 268 ]. Genistein was also tested in 
the Syrian golden hamster model of PICHV infection with successful reduction in 
fatality and improved clinical profi le [ 269 ].       
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