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   Foreword   

 Viral diseases are spreading globally. Recent changes are accelerating due to 
 concomitant human behaviors including war, violence, poverty, starvation, and con-
temporaneous vector transmission. Additional factors include global warming, 
international travel, and encroachment of the prior balance of nature, i.e., invasion 
of nonhuman ecological domains by humans. 

 This book for professionals, students, faculty, and the interested reader brings to 
bear a snapshot of where we are. 

 We acknowledge and thank Professor Francesco Chiappelli (UCLA, Los 
Angeles, CA) for help in initiating this book, and Ioanna Panos Morris and Rita 
Beck of Springer Science + Business Media for help and guidance through the steps 
leading to the production of this book.  
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  Pref ace   

 Global warming, ever-increasing international travel, concomitant changes in 
human and animal behaviors, and vector transmission all infl uence and have had a 
huge impact on the spread of viral diseases. Many excellent and informative books 
review these topics. To reference a few, Wertheim et al. [1] published a human 
infectious disease atlas and Petersen et al. [2] published a geographic guide to infec-
tious diseases. Geopolitics is also discussed in these books, as is the involvement of 
many diseases, including measles, infl uenza, poliomyelitis, yellow fever, dengue, 
malaria, smallpox, cholera, leprosy, typhoid, typhus, bubonic plague, tuberculosis, 
and diseases caused by parasites and protozoa. Historically, of 150 common infec-
tions, the most devastating have been 35 diseases caused by bacteria, 28 diseases 
caused by viruses, and 6 diseases caused by protozoa [3]. 

 This book provides trajectories and illustrations of viruses that have catapulted into 
the global arena (linked to humans, animals, and vectors) due to human behaviors in 
recent years, as well as viruses that have already shown expansion among humans, 
animals, and vectors just a few decades ago. Topics in the current book include vac-
cines, environmental impact, emerging virus transmission, fi loviruses (Ebola virus), 
hemorrhagic fevers, fl aviviruses, dengue evasion, papillomaviruses, hepatitis C, giant 
viruses, bunyaviruses, encephalitides, West Nile virus, Zika virus, XMRV, henipavi-
ruses, respiratory syncytial virus, infl uenza, and several aspects of HIV-1 infection.    

 It should also be noted that among many articles pertaining to public health, lack 
of hygiene is demonstrably an important element in the spread of disease. Moreover, 
public education is a key component of what is needed to combat the spread of dis-
ease (e.g., hepatitis A) [4, 5]. 

 In conclusion, the eradication of war, human traffi cking, drug abuse, and poverty 
should be major goals toward the suppression of such pestilence. Education is a pil-
lar upon which such eradication is based. 

      Tampa, FL, USA    Paul     Shapshak     
Tampa, FL, USA    John     T.     Sinnott     
Tampa, FL, USA    Charurut     Somboonwit     
Frederick, MD, USA    Jens     H.     Kuhn    
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    Chapter 1   
 Short Peptide Vaccine Design 
and Development: Promises and Challenges 

             Pandjassarame     Kangueane     ,     Gopichandran     Sowmya    ,     Sadhasivam     Anupriya    , 
    Sandeep     Raja     Dangeti    ,     Venkatrajan     S.     Mathura    , and     Meena     K.     Sakharkar   

          Core Message   There is a need for novel vaccine technologies where existing viral 
vaccine types (viruses, killed or inactivated viruses, and conjugate or subunits) are 
unsuitable against many viruses. Hence, short peptide (10–20 residues) vaccine 
candidates are considered promising solutions in recent years. These function on 
the principle of short epitopes developed through the binding of CD8+/CD4+-
specifi c HLA alleles (12542 known so far). Thus, the specifi c binding of short 
peptide antigens to HLA alleles is rate limiting with high sensitivity in producing 
T-cell-mediated immune responses. Identifi cation of HLA allele-specifi c antigen 
peptide binding is mathematically combinatorial and thus complex. Therefore, 
prediction of HLA allele- specifi c peptide binding is critical. Recent advancement in 
immune-informatics technologies with the aid of known X-ray-determined HLA-
peptide structure data provides solutions for the accurate identifi cation of short 
peptides as vaccine candidates for further consideration. Thus, we document the 
possibilities and challenges in the prediction, large-scale screening, development, 
and validation of short peptide vaccine candidates in this chapter.  
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1     Introduction 

 The types of approved viral vaccines include live attenuated viruses, killed/inactivated 
viruses, and conjugate/subunits. However, these types of vaccine technologies may 
prove unsuitable against some viruses. In some cases, there is interest in the devel-
opment of short peptide vaccines to fi ll the gaps. For example, the use of live attenu-
ated HIV-1/AIDS vaccines is not as yet approved due to safety concerns [ 1 ]. There 
are several subunit vaccines under consideration and evaluation. However, one of 
these, the NIAID and Merck Co.-sponsored 2004 STEP (HVTN 502 or Merck 
V520-023) trial using three recombinant adenovirus-5 (rAD5) vectors containing 
HIV-1 genes Ad5-gag, Ad5-pol, and Ad5-Nef, did not show promising results [ 2 ]. 
This has led to the development of a multifaceted strategy for HIV-1/AIDS vaccine 
development. However, encouraging results were observed with four priming injec-
tions of a recombinant canary pox vector (ALVAC-HIV) and two booster injections 
of gp120 subunit (AIDSVAX-B/E) in a community-based, randomized, multicenter, 
double-blind, placebo-controlled effi cacy trial (NCT00223080) in Thailand [ 3 ]. The 
main concern following this study was that this vaccine did not affect the degree of 
viremia or the CD4 T-cell count in patients who later seroconverted. Further studies 
indicated that the challenges with the development of an HIV-1/AIDS vaccine are 
viral diversity and host-virus molecular mimicry [ 4 – 6 ]. Nonetheless, there is con-
siderable amount of interest to develop gp160 (gp120-gp41 complex) TRIMER 
envelope (ENV) protein as a potential vaccine candidate [ 4 ]. 

 The production of an HIV-1 ENV spike protein trimer complex is nontrivial due 
to protein size, protein type, sequence composition, and residue charge polarity. 
Therefore, the need for the consideration of alternative approaches for vaccine 
development such as T-cell-based HLA-specifi c short peptide vaccines is promising 

    S.   Anupriya    
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[ 6 ,  7 ]. The LANL HIV molecular immunology database provides comprehensive 
information on all known T-cell epitopes in the literature [ 8 ]. Thus, these resources 
in combination with other predictive advancements described in this chapter are 
collectively useful for the design, development, evaluation, and validation of short 
peptide vaccine candidates.  

2     Methodology 

2.1     Structural Data 

 A structural dataset of complexes for class I HLA-peptide (Table  1.1 ) and class II 
HLA-peptide (Table  1.2 ) is created from the protein databank (PDB) [ 9 ]. The char-
acteristic features of the datasets are presented in Tables  1.1  and  1.2 .

2.2         Structural Superposition of HLA Molecules 

 The peptide-binding grooves of both class I HLA (Fig.  1.1a ) and class II HLA 
(Fig.  1.1c ) molecules were superimposed using the molecular overlay option in the 
Discovery Studio software from Accelrys ®  [ 10 ].   

2.3     Molecular Overlay of HLA-Bound Peptides 

 HLA-bound peptides in the groove of both class I HLA (Fig.  1.1b ) and class II HLA 
(Fig.  1.1d ) molecules were overlaid using the molecular overlay option in the 
Discovery Studio software from Accelrys ®  [ 10 ].  

2.4     Accessible Surface Area Calculations 

 Accessible surface area (ASA) was calculated using the WINDOWS software 
Surface Racer [ 12 ] with Lee and Richard implementation [ 13 ]. A probe radius of 
1.4 Å was used for ASA calculation.  

2.5     Relative Binding Measure 

 Relative binding measure (RBM) is defi ned as the percentage ASA Å 2  of residues in 
the peptide at the corresponding positions buried as a result of binding with the 
HLA groove. This is the percentage change in ASA (ΔASA) of the position-specifi c 
peptide residues upon complex formation with the HLA groove (Fig.  1.2 ).    

1 Short Peptide Vaccine Design and Development: Promises and Challenges
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  Fig. 1.1    The structural basis for short peptide vaccine design is illustrated. The allele-specifi c 
nomenclature defi ned, ethnicity profi led using known HLA sequences at the IMGT/HLA database 
[ 11 ], and the striking backbone structural similarity of antigen peptides at the HLA binding groove 
is the bottleneck. This is generated with using a dataset (Tables  1.1  and  1.2 ) of HLA-peptide com-
plexes (67 class I and 16 class II) retrieved from protein databank (PDB) [ 9 ] using with Discovery 
Studio ®  (Accelrys Inc.) [ 10 ]. ( a ) The peptide-binding groove (superimposed) in class I HLA is 
structurally similar among known alleles and complexes. ( b ) The peptide-binding groove (super-
imposed) in class II HLA is structurally similar among known alleles and complexes; ( c ) class I 
HLA-bound peptides overlay showing structural constraints (bend peptides) at the groove; 
( d ) class II bound peptides overlay showing extended conformation at the groove. This clearly 
suggests that class I (panel  c ) and class II (panel  d ) bound peptides do not have identical binding 
patterns at the groove       

3     Results and Discussion 

3.1     HLA-Peptide Binding Prediction for T-Cell Epitope Design 

 The rate-limiting step in T-cell epitope design is allele-specifi c HLA-peptide bind-
ing prediction. The number of known HLA alleles is over 12542 in number as of 
March 2015 at the IMGT/HLA database [ 11 ]. Hence, a number of methods have 
been formulated so far and optimized for HLA-peptide binding prediction during 
the last two decades. Structural information on HLA-peptide complexes has 
increased our understanding of their binding patterns (Tables  1.1  and  1.2 ). The 
HLA-binding groove is structurally similar among class I (Fig.  1.1a ) and class II 
(Fig.  1.1b ) alleles. The class I (Fig.  1.1c ) and class II (Fig.  1.1d ) bound peptides do 
not show an identical binding pattern at the groove. A detailed illustration of peptide 
binding patterns (Fig.  1.2 ) at the groove of class I and class II alleles provides valu-
able insights using mean and deviation profi les (Fig.  1.3 ).  
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  Fig. 1.2    The peptide binding pattern at the groove is illustrated as function of residue position for 
class I and class II alleles using a dataset (Tables  1.1  and  1.2 ) of HLA-peptide complexes (67 class 
I and 16 class II) retrieved from protein databank (PDB). This dataset is represented by several 
class I and class II alleles (see Tables  1.1  and  1.2 ). The peptide lengthwise distribution of the bind-
ing pattern is shown as relative binding measure using change in solvent-accessible surface area 
upon complex formation with the HLA groove       

 A comprehensive description of HLA-peptide binding prediction is documented 
[ 14 ,  15 ]. Lee and McConnell [ 16 ] proposed a general model of invariant chain asso-
ciation with class II HLA using the side-chain packing technique on a known 
 structural template complex with self-consistent ensemble optimization (SCEO) 
[ 17 ,  18 ] using the program CARA in the molecular visualization/modeling software 
LOOK (Molecular Application Group (1995), Palo Alto, CA) [ 16 ,  19 ]. This was an 
important development in the fi eld and the approach was extended to a large dataset 
of known HLA-binding peptides. Kangueane et al. [ 20 ] collected over 126 class I 
peptides with known IC 50  values from literature with defi ned HLA allele specifi city. 
These peptides were modeled using available templates for a large-scale assessment 
of peptide binding to defi ned HLA alleles. Thus, a structural framework was estab-
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  Fig. 1.3    The mean peptide binding pattern with standard deviation (SD) at the groove is illustrated 
as function of residue position for class I and class II alleles using a dataset (Tables  1.1  and  1.2 ) of 
HLA-peptide complexes (67 class I and 16 class II) retrieved from protein databank (PDB). This 
provides insight into the understanding of the nature of peptide binding at the groove towards the 
design of an effective T-cell epitope candidate       

lished for discriminating allele-specifi c binders from non-binders using rules 
derived from a dataset of HLA-peptide complexes. This procedure was promising. 

 An extended dataset of class 1 and class 2 complexes were manually created, 
curated, and analyzed for insights into HLA-peptide binding patterns at the groove 
[ 21 ]. These studies lead to a detailed analysis of the HLA-peptide interface at the 
groove and the importance of peptide side chain and backbone atomic interactions 
were realized [ 22 ]. Meanwhile, the amount of structural data on HLA-peptide com-
plexes was increasing in size leading to the development of an online database [ 23 ]. 
Thus, information gleaned from HLA-peptide structural complexes helped to iden-
tify common pockets among alleles in the binding groove and provided insights into 
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functional overlap among them [ 24 ]. The need for a simple, robust, generic 
 HLA- peptide binding prediction was evident. Therefore, a model was formulated 
by defi ning virtual pockets at the peptide-binding groove using information gleaned 
from a structural dataset of HLA-peptide complexes [ 25 ]. The model (average accu-
racy of 60 %) was superior because of its application to any given class I allele 
whose sequence is clearly defi ned. The model (53 % accuracy) was then extended 
for class II prediction using a class II-specifi c HLA-peptide structural dataset [ 26 ]. 

 The techniques thus far established are highly promising towards short peptide 
vaccine design and development [ 27 ,  28 ]. Nonetheless, it was observed that alleles 
are covered within few HLA supertypes, where different members of a supertype 
bind similar peptides, yet exhibiting distinct repertoires [ 29 ]. These principles led to 
the development of frameworks to group alleles into HLA supertypes [ 30 ,  31 ], 
understand their structural basis [ 32 ], and cluster alleles based on electrostatic 
potential at the groove [ 33 ]. These observations should aid in the design of peptide 
vaccine candidates for viruses including HIV/AIDS [ 5 ,  6 ]. Further, for example, the 
importance of protein modifi cations to enhance HIV-1 ENV trimer spike protein 
vaccine across multiple clades, blood, and brain is discussed [ 4 ]. Currently available 
types of vaccine technology [ 34 ,  35 ], such as live virus, killed virus, and conjugate 
vaccines, have failed to produce a promising vaccine against several clinically 
important viruses, including HIV/AIDS [ 36 ]. Therefore, short peptide vaccines are 
promising solutions for viral vaccine development. It should be noted that there are 
many other viruses for which vaccines are needed. Examples of additional viruses 
for which there are no vaccines available, vaccines are still under development, vac-
cine failures occurred, or more effective vaccines are needed include RSV, measles, 
HBV, WNV, Coronaviruses, H5N1 infl uenza virus, HCV, Adenovirus, Hantavirus, 
and Filoviruses [ 37 – 47 ].   

4     Conclusion 

 The design and development of short peptide cocktail vaccines is a possibility in the 
near future. This function on the principle of short epitopes developed through the 
binding of CD8+/CD4+-specifi c HLA alleles. HLA molecules are specifi c within 
ethnic populations and are polymorphic with more than 12542 known alleles as of 
March 2015. Thus, the binding of short peptide antigens to HLA alleles is rate limit-
ing yet specifi c, with high sensitivity, while producing T-cell-mediated immune 
responses. Our understanding of this specifi c peptide binding to HLA alleles has 
improved using known HLA-peptide complexes. There is a search for superantigen 
peptides covering major HLA supertypes. Thus, peptide-binding predictions with 
large coverage, accuracy, sensitivity, and specifi city are essential for vaccine candi-
date design and development. It should be noted that available HLA-peptide bind-
ing prediction methods are highly promising in these directions.   
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    Chapter 2   
 Human Papillomaviruses 

                Lynette     J.     Menezes      ,     Jamie     P.     Morano      , and     Leela     Mundra     

          Core Message   HPV-associated anogenital and oropharyngeal cancers place an 
enormous burden on the health of populations globally. The natural progression of 
HPV infection is potentiated by HIV coinfection. Further investigation into site-
specifi c HPV acquisition is vital given the increasing trend in anal and oropharyngeal 
cancers and the need to inform prevention and treatment. HPV vaccination for both 
females and males is a promising strategy to prevent HPV infection and potential 
oncologic sequelae.  

1     Introduction 

 Human papillomavirus (HPV) is a major cause of infection related malignancies at 
multiple anatomic entry sites in both men and women globally. As the most com-
mon sexually transmitted infection among men and women worldwide, it is esti-
mated that between 50 and 80 % of men and women will acquire an HPV infection 
in their lifetime [ 1 ]. HPV was fi rst discovered to be an infectious etiological agent 
of cervical cancer by Harald zur Hausen in the late 1970s, when his laboratory iso-
lated HPV-16 and 18 from cervical cancer biopsies [ 2 ]. Overall 4.8 % of all incident 
cancers globally can be attributable to HPV infection [ 3 ] although the fraction 
attributable to HPV varies by anatomic site. HPV infection has been implicated in 
nearly 100 % of invasive cervical cancers, 88 % of anal cancers, 70 % of oropharyn-
geal and vaginal cancers, 43 % of vulvar cancers, and 50 % of penile cancers [ 3 ,  4 ]. 
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 Currently, there are more than 100 fully sequenced HPV genomes that infect the 
skin and mucosal squamous epithelia. Of these, nearly half have been identifi ed in 
the anogenital tract [ 5 ]. A substantial portion of previous research on HPV has been 
devoted to understanding the epidemiology of HPV infection, carcinogenesis, 
screening, and immunization in prevention of cervical cancer. As HPV-associated 
cervical, anal, and oropharyngeal cancers place an enormous burden on the health 
of populations globally, more attention has been turned to HPV screening and vac-
cination. This chapter describes HPV viral structure, molecular biology, and 
immune response. Additionally, it examines the epidemiology, natural history, and 
risk factors associated with HPV infection of the cervix, anal canal, and oropharynx 
including the effects of human immunodefi ciency virus (HIV) infection with 
chronic immunosuppression. Lastly, it discusses treatment modalities and preven-
tion strategies, specifi cally screening and immunization.  

2     Virus Structure and Molecular Biology 

 HPV is a small, circular, double-stranded non-enveloped DNA virus approximately 
55  nm  in diameter [ 6 ,  7 ]. Its DNA genome is approximately 8 kb [ 8 ] and contains 
six nonstructural proteins (E1, E2, E4-E7) that are involved in DNA replication 
and cell immortalization [ 1 ] The virus has two structural proteins, L1 and L2, 
which are produced late in the infectious cycle; [ 9 ] L1 is the major component on 
the exterior surface of the virion, and L2 is the minor structural protein that typi-
cally interacts with L1 and the viral genomic DNA. L1 protein spontaneously self-
assembles into capsomeres and virus-like particles (VLPs) when expressed in 
eukaryotic organisms; thus it is responsible for the initial interaction of the HPV 
capsid with the host. L2 proteins interact with E2 proteins produced earlier in the 
viral replication cycle and facilitate transportation of L1 to the nucleus and encap-
sulation of viral DNA [ 10 – 12 ]. 

 There are more than 100 HPV genotypes that infect the human epidermal or 
mucosal epithelial cells with varying clinical manifestations and oncogenic poten-
tial ranging from benign cutaneous lesions to advanced squamous cell carcinomas 
of the anogenital and oropharyngeal areas depending on anatomic sites of exposure. 
These HPV genotypes are divided into low-risk and high-risk categories based on 
their ability to integrate into host DNA and therefore the potential to produce lesions 
[ 13 ,  14 ]. Low-risk HPV genotypes such as HPV-6 and 11 do not integrate into the 
host DNA and are associated with benign warts called condyloma acuminatum, 
usually found on the oral or genital regions. Other HPV genotypes such as HPV-1, 
2, 3, and 10 cause cutaneous lesions, such as common digital warts and fl at warts 
[ 15 ]. High-risk genotypes, such as HPV-16, 18, 31, 33, 45, and 56 are commonly 
found integrated into host DNA and are associated with anogenital lesions that may 
progress to carcinoma [ 14 ]. Currently, there are 13 HPV types, HPV-16, 18, 31, 33, 
35, 39, 45, 51, 52, 56, 58, 59, and 68 that are designated as carcinogenic [ 16 ]. 
HPV-16 and 18 are the most carcinogenic types, and account for approximately 
92 % of anal cancers, 90 % of oropharyngeal cancers, 80 % of vulvovaginal cancers, 
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70 % of cervical cancers, and 63 % of penile cancers [ 17 ]. The attributable fraction 
of HPV-16 is far greater than HPV-18 at all neoplastic transformation sites [ 17 ]. The 
complex interactions between the HPV genotype, viral genetic variables, host 
immune response, the phenotype of the infected epithelial cell, and environmental 
and lifestyle choices impact clinical and microscopic presentation [ 12 ,  18 ].  

3     Transmission and Immune Response 

 HPV is highly transmissible through cutaneous and mucosal contact and has a broad 
incubation period from weeks to years, depending on the amount (dose) of virus 
transmitted. The infectious period commences when the virus reaches the basal 
layer of the epithelium, binds, and enters human cells [ 14 ,  19 ]. (Fig.  2.1 ) [ 14 ]. The 

  Fig. 2.1    Human papillomavirus (HPV) induced progression to invasive cervical cancer (ICC). 
HPV gains entry into the basal cells through microabrasions in the cervical epithelium. Following 
infection, the early HPV genes E1, E2, E4, E5, E6, and E7 are expressed and the viral DNA repli-
cates from episomal DNA. The viral genome undergoes further replication in the upper mid and 
superfi cial layers of epithelium where the late genes L1 and L2, and E4 are expressed. L1 and L2 
encapsulate the viral genomes to generate progeny virions. If untreated, the shed virus can initiate 
a new infection. Viral replication continues in low grade intraepithelial lesions. Some high-risk 
HPV infections progress from low grade to high-grade cervical intraepithelial neoplasias, and if 
untreated, some of these lesions progress to invasive cancer. This progression occurs when the 
HPV genome integrates into the host chromosomes (shown above with red nuclei), accompanied 
by a loss or disruption of E2, and the subsequent upregulation of E6 and E7 oncogene expression. 
Reproduced with permission from Woodman et al. [ 14 ]       
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HPV cycle is infl uenced by the maturity of the infected keratinocyte, as the 
 production of virions is limited to the mature suprabasal epithelial cells [ 8 ,  12 ]. 
Active replication commences when the basal cells penetrate to the suprabasal com-
partment and initiates the terminal differentiation program. HPV will replicate and 
be released into the environment for a variable amount of time, causing viral DNA 
to be detected [ 1 ,  14 ,  19 ].  

 The HPV structural and nonstructural viral regulatory proteins are a result of 
viral gene expression. The E4 protein is expressed in terminally differentiated kera-
tinocytes in the squamous epithelium, while E1 and E2 are associated with the regu-
lation of viral DNA replication, and early transcription. HPV proteins E6 and E7 
that induce proliferation, immortalization, and malignant transformation of cells are 
critical to viral replication [ 1 ,  20 ]. Their interactions with the proteins pRB and p53 
result in multiple mutations that are thought to be the mechanisms of oncogenesis 
[ 1 ]. Such continued activity of E6 and E7 increase genomic instability and result in 
the accumulation of oncogenic mutations, loss of cell-growth control, and eventu-
ally cancer formation. The viral genome eventually integrates into the host genome, 
providing constant level of E6 and E7 protein activity due to stabilization of the 
mRNA, further developing the tumor [ 7 ,  14 ,  19 ,  21 ,  22 ]. 

 In a normal host, a cell mediated immune (CMI) response will often clear the 
virus [ 22 ,  23 ]. Most HPV infections are transient and asymptomatic, over 50% of 
new infections are cleared in 6–18 months, while 80–90 % can be cleared within 
2–5 years through the immune system or other mechanisms [ 1 ,  24 ]. However, in 
approximately 10–20 % of individuals, and more commonly in those with immune 
compromise, a failure to develop an effective CMI results in chronic and persistent 
HPV replication in the host nucleus of a differentiating skin or mucosal epithelial 
cell. For these individuals unable to clear the virus, HPV infection is likely to prog-
ress to clinically or histologically signifi cant lesions [ 25 ]. 

 When infection involves oncogenic HPV genotypes, a human host is at greater 
risk of developing high-grade precancerous lesions that may advance to invasive 
carcinoma. Such lesions can be understood to be along a histologic continuum  of: 
(1) low grade lesions, where HPV continues to replicate in an episomal state, (2) 
high grade lesions resulting from viral integration into the host genome, and (3) 
invasion that can represent oncological transformation [ 14 ,  26 ]. For example, 
women with a history of genital warts are shown to have an increased risk of pro-
gression to stages of cervical intraepithelial neoplasia (CIN1, CIN2, CIN3) and 
cancer [ 27 ].  

4     Epidemiology of Invasive Cervical Cancer 

 Invasive cervical cancer (ICC) is the fourth leading cause of cancer in women glob-
ally representing 528,000 cases and 266,000 deaths in 2012 [ 28 ]. Age-standardized 
ICC incidence is estimated at 14 per 100,000 women worldwide with incidence 
rates greater than 30 per 100,000 women in Melanesia and sub-Saharan Africa [ 28 ]. 
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In 2012, 86 % of ICC cases and 88 % of ICC deaths occurred in less developed 
countries (Fig.  2.2 ) [ 28 ]. In a recent meta-analysis of 194 studies with greater than 
one million cytologically normal women, HPV prevalence varied from 16 % in 
Latin America to greater than 30 % among women from Eastern Africa and the 
Caribbean [ 29 ]. HPV-16 was the predominant genotype (3.2 %) followed by HPV-18 
(1.4 %), HPV-52 (0.9 %), HPV-31 (0.8 %), and HPV-58 (0.7 %) [ 29 ]. Another meta- 
analysis that included studies comprised of women with normal and abnormal 
cytology found that HPV prevalence increased with severity of cervical abnormali-
ties [ 30 ]. HPV prevalence rose from 76 % in women with CIN1 to 90 % in women 
with CIN3 [ 30 ]. HPV-16 was the most common genotype (63 %) in ICC cases fol-
lowed by HPV-18 (16 %) and HPV-45 (5 %) [ 30 ].  

4.1     Natural History of Cervical HPV Infection 

 HPV prevalence varies with age globally. In Europe and North America, the highest 
HPV prevalence was among women younger than 25 years old, followed by a grad-
ual decline over time with a lower HPV prevalence in women older than 45 years. 
HPV prevalence was more constant in women from Asia and Africa, whereas 
among women from Latin America and the Caribbean, HPV prevalence declined 
followed by a second prevalence peak during middle age [ 29 ]. 

 Although studies in several developed countries show that HPV prevalence can 
reach 40–80 % in young women 18–25 years old [ 31 – 33 ], many prospective studies 
have demonstrated that nearly 90 % of women clear these asymptomatic infections 
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  Fig. 2.2    Age-standardized incidence of cervical cancer worldwide in 2012. Reproduced with per-
mission from GLOBOCAN 2012 [ 28 ]       
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within 2 years [ 34 – 36 ]. Of women with prevalent infections, an estimated 4–10 % 
have persistent infections that may lead to neoplastic disease [ 31 ]. In a subset of 599 
women from Guanacaste, Costa Rica, with 800 oncogenic HPV infections and a 
mean 6.7 years of follow-up, 7 % (58) of HPV infections were persistent with pro-
gression to CIN2+ (Fig.  2.3 ) [ 36 ]. The cumulative risk for CIN2+ was 21 % for 
women with infections that persisted beyond 12 months [ 36 ]. Women with persis-
tent infections were older (mean 43 years) compared with those who cleared (mean 
23 years). Those with persistent infections also had multiple prevalent infections at 
baseline. Not all women with persistent HPV infections developed neoplastic dis-
ease, but these numbers were small [ 36 ].  

 Despite the extensive research on the natural history of HPV and neoplastic dis-
ease of the cervix, there are no well-developed, sensitive tools to detect the exact 
time at which a high-risk HPV infection transforms into a CIN3+ lesion [ 24 ]. 
Moscicki et al. note that the time to development of a CIN3 lesion is shorter than the 
decades needed for a CIN3 lesion to progress to complete invasion. In a few aggres-
sive cases, however, CIN3 may progress to early invasive disease. While persistence 
of HPV infection is critical to the development of neoplastic disease, detection of 
HPV genotype—including some genetic variants within a genotype—is a better 
predictor of neoplasia for those with persistent infections [ 37 ]. Higher viral loads of 
oncogenic HPV types are predictive of more severe cytologic abnormalities [ 24 ,  38 ]. 
Currently, severe neoplastic disease as determined by CIN3 or CIN3+ is the best 
available clinical surrogate marker of cancer risk, since sometimes CIN2 lesions 
may result from non-oncogenic HPV types and are often not clearly  distinguishable 
from CIN1 or CIN3 [ 24 ].  
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4.2     Risk Factors for Cervical HPV Infection, Persistence, 
and Progression to Invasive Cancer 

 Numerous studies have investigated factors that increase risk of HPV acquisition, 
persistence, and progression to invasive cervical disease. Younger age at fi rst sexual 
intercourse is linked to increased HPV acquisition [ 39 ]. The high prevalence of 
infections among adolescents and young adults may be due to immature cervical 
epithelium (a combination of columnar, squamous, and metaplastic epithelium) as 
compared to adult women with more impervious squamous cervical epithelium 
[ 24 ,  40 ,  41 ]. Of note, most infections are transient in younger populations, and stud-
ies have shown that prevalent HPV infections are more likely to persist in women 
older than 40 years [ 34 ]. Rodriguez et al. [ 34 ] found that new infections in older 
women were not associated with CIN2 or severe cervical disease, but instead, preva-
lent infections were highly correlated with progression to CIN2 or more severe 
disease, suggesting that persistent infections that were acquired at a young age were 
more likely to invade [ 24 ]. The number of sexual partners, both recent and lifetime, 
as well as male partner sexual behavior have a strong infl uence on acquisition of all 
types of cervical HPV [ 33 ,  42 – 44 ]. In one study, the risk of HPV detection increased 
sevenfold among women reporting ≥8 sex partners in their lifetime and increased 
nearly fi vefold among women reporting a new sex partner in 90 days before study 
enrollment [ 33 ,  43 ]. Likewise, HPV infection increased tenfold among young 
women whose male partner reported ≥6 lifetime partners [ 45 ]. 

 Several studies have also documented the association of cigarette smoking with 
persistence and development of cervical neoplasia [ 46 – 49 ]. Among women 18–35 
years old, the duration of HPV infection was longer at 10.7 months for smokers 
versus 8.5 months for nonsmokers. A dose response relationship was evident, 
wherein women who had smoked for greater than 6 years were 60 % less likely to 
clear an HPV infection [ 46 ]. Similarly, women who were former or current smokers 
were two to four times more likely to develop CIN3 or cancer compared to non-
smokers [ 47 – 49 ]. Long-term oral contraceptive (OC) use has been associated with 
an elevated risk for persistent HPV infection and progression to invasive cancer 
[ 48 ,  50 ]. Individual data from 35 studies of women with and without cervical cancer 
globally showed that the relative risk for cervical cancer increased with current use 
of oral contraceptives. However, this risk decreased on stopping OC use, and by 10 
or more years, risk was similar to that of never-users [ 50 ].   

5     Epidemiology of Anal Cancer 

 Anal cancers are rare with an age-standardized incidence of less than 2 cases per 
100,000 men and women per year, worldwide [ 51 ]. They are mostly squamous cell 
carcinomas arising from the transition zone of the anal mucosa. Almost 90 % of 
anal cancer cases can be attributed to HPV infection, and HPV-16 is the predominant 
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genotype (up to 83 %) detected in HPV-positive anal tumors [ 5 ]. Globally, in 2002, 
there were an estimated 99,000 incident cases of anal cancer with slightly more 
cancers among women (60 %) than men (40 %) [ 52 ]. In the USA, there were an 
estimated 7210 cases of anal cancer and 950 deaths in 2014 [ 53 ]. National US data 
from 2000 to 2010 indicate a rising trend of 2.2 % new cases annually among both 
men and women [ 53 ], with a greater increase among men having sex with men 
(MSM) and HIV-infected individuals [ 54 ]. It has been suggested that the increasing 
trend in anal cancers is possibly a refl ection of the changing sexual practices among 
men and women and likely potentiated by HIV infection [ 24 ]. (Please see section on 
HPV/HIV coinfection and associated chronic immunosuppression). 

 Data on anal HPV prevalence among healthy adult HIV-uninfected women and 
men are limited with most studies reporting anal HPV prevalence in HIV-infected 
women and men. One of the few studies conducted by Hernandez et al. in Hawaii 
reported an anal HPV point prevalence of 27 % among 1378 healthy adult women 
[ 55 ]. Other studies of HIV-uninfected women have reported a wide range of anal 
HPV prevalence from 13 to 56 % [ 56 ]. Most of the studies that estimated a high 
prevalence were among high-risk HIV-uninfected women reporting a history of 
injection drug use, sexually transmitted infections, and multiple sex partners 
[ 56 ,  57 ]. Among healthy adult men having sex with women (MSW), fi ndings from 
two studies, one conducted in the southwest US and the second (HPV in Men 
(HIM)) study among 1305 heterosexual men from Brazil, Mexico, and the USA 
revealed that HPV infection in the anal canal was common and anal HPV preva-
lence ranged from 13 to 24.6 % [ 56 ,  58 ]. 

5.1     HPV Genotype Distribution 

 Although most studies have found a similar range of HPV genotypes between the 
anal canal and cervix, there is relative variation in the frequency of their detection 
[ 55 ,  57 ]. In the Hawaiian study, among women with concurrent HPV infection, 
HPV genotypes were slightly more diverse in the anal canal (34 types) than cervix 
(32 types), but more oncogenic types were detected in the cervix. In contrast, 
women with only anal and no cervical HPV infection had an almost equal distribu-
tion of non-oncogenic (48 %) and oncogenic HPV infections (52 %) with HPV-84 
being the most frequently detected genotype followed by 62, 16, 51, and 53. Among 
women with only cervical HPV infection and no anal HPV infection, HPV-16 was 
most frequently detected, followed by HPV types 53, 58, 52, and 62. Concurrent 
anal and cervical HPV infection was observed most commonly in younger women 
averaging 29 years old [ 55 ]. 

 Similar to women, heterosexual men harbored a wide range of HPV types in the 
anal canal, with up to 34 different genotypes in the HIM study, and HPV 16, 6, and 
61 being the most common [ 58 ].  
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5.2     Natural History of Anal HPV Infection 
in Women and Men 

 Prospective data assessing the natural history of anal HPV infection among women 
and men show differences in viral persistence. In the Hawaiian cohort, among 
women followed for a median 15 months, 50 % had an incident anal HPV infection, 
the majority of which were transient [ 59 ]. Of the incident anal HPV infections that 
cleared, 87 % had cleared within 1 year. Oncogenic anal HPV infections cleared 
more quickly (median duration 150 days) than oncogenic cervical HPV infections 
(median duration 8 months) in the same cohort of women [ 59 ]. A more recent study 
of 75 younger women (mean 23.5 years) with a mean follow-up of 7 years found 
that >80 % of non-HPV-16 high- and low-risk anal HPV infections cleared within 3 
years and nearly 24 % of HPV-16 infections persisted beyond 3 years [ 60 ]. Among 
heterosexual men in the HIM study, incident anal infections are much lower at 8.5 
per 1000 person months than women in the Hawaii cohort. Most HPV infections 
including all HPV-16 infections cleared within 6 months with persistent HPV types 
detected in 4.2 % of men [ 61 ]. 

 Conversely, men who have sex with men (MSM) regardless of HIV status have a 
much higher incidence and persistence of anal HPV infections. In a one-year pro-
spective study of 94 young MSM (mean age 21 years), incident anal HPV infections 
were high at 38.5 infections per 1000 person months [ 62 ]. Nearly 42 % had persis-
tent any type HPV infection, and 19 % had detectable HPV-16 and/or 18. Of those 
who had prevalent infections at baseline, 81 % cleared one or more types within 6 
months. Lifetime number of male receptive anal sex partners was associated with 
prevalent, incident, and persistent anal HPV infection [ 62 ]. Among slightly older 
HIV-infected MSM (median age 43 years) in Montreal, Canada, the incidence of 
anal HPV-16 was 10.8 per 1000 person-months, and the cumulative incidence of 
HPV-16 over 36 months was 33.2 %. Chronic anal HPV-16 infections were the 
slowest to clear with a mean duration of 36 months [ 63 ].  

5.3     Risk Factors for Anal HPV Infection 

 Substantive evidence in developed countries supports the link between sexual 
behavior and anal cancers. Early studies on anal cancers in both men and women 
found a robust association between a history of sexually transmitted infections and 
incidence of anal cancer [ 64 ,  65 ] Lifetime number of sex partners (>10), anal inter-
course (receptive being higher risk than insertive), and having a partner with a sexu-
ally transmitted infection have also been strongly associated with prevalent anal 
HPV infection and cancer incidence, in addition to other risk factors such as HPV- 
related cervical neoplasia in women and cigarette smoking [ 62 ,  65 – 68 ]. Among 
MSW, data from recent studies indicate that genital HPV infection is a risk factor 
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for prevalent anal HPV infection. Heterosexual men with genital HPV infection 
were two to four times more likely to have anal HPV infection [ 69 ,  70 ]. These 
 fi ndings may help explain HPV infection in the anal canal in the absence of recep-
tive anal intercourse in men [ 56 ]. Of note, several studies have reported prevalent 
anal HPV infection in the absence of receptive anal intercourse in both men and 
women. It has been suggested that in women, a possible transmission route is auto- 
inoculation, wherein the cervix acts as a reservoir for the transmission of HPV 
through cervico-vaginal fl uid to the anus [ 57 ]. In addition, hand carriage, the use of 
objects, and other non-penetrative sexual behaviors may also act as potential modes 
of transmission [ 56 ].   

6     Epidemiology of Oropharyngeal Cancer 

 Cancers of the head and neck, specifi cally oral cavity and oropharyngeal cancers 
(OPC) that include the tongue base, oropharynx, and tonsils, account for an esti-
mated 400,000 cases and 223,000 deaths in 2008 [ 71 ]. HPV has been clearly shown 
as the causative agent of oropharyngeal squamous cell carcinomas [ 72 ] and up to 
70 % of OPC are attributed to HPV infection, mostly HPV-16 [ 4 ]. In contrast, HPV 
prevalence is low in the oral cavity, suggesting other etiologic causes [ 4 ]. Kreimer 
et al. suggest that HPV infects the oropharynx because the tonsilar tissue area may 
resemble the squamous–columnar junction of the cervix with its large, exposed 
layer of basal epithelial cells [ 73 ]. 

 From 1988 to 2004, there was a 225 % increased incidence in HPV-associated 
OPC in the USA [ 4 ]. Similarly, Chaturvedi et al report that from 1983 to 2002, the 
incidence of OPC increased signifi cantly compared with oral cavity cancers among 
individuals less than 60 years of age in developed countries most likely due to 
changes in sexual behavior patterns and thus greater exposure to HPV [ 74 ]. OPC 
incidence was 2–17 times higher in males than in females [ 74 ]. 

 Oropharyngeal HPV acquisition and clearance data are limited but initial studies 
demonstrate that males might be at higher risk than females. Among 5579 male and 
female participants (14–69 years old) of the US National Health and Nutrition 
Examination Survey (NHANES) 2009–2010, oral HPV prevalence was signifi -
cantly higher at 10.1 % in males compared to 3.6 % in females, with an overall 
population prevalence of 6.9 % and an HPV-16 prevalence of 1 %. Age-specifi c 
prevalence showed a bimodal pattern with peak HPV prevalence at 30–34 years and 
60–64 years of age [ 75 ]. The only prospective study (the HIM Study) showed that 
for healthy heterosexual men, oral HPV infections are infrequent and transient. 
Over 1 year, 4.4 % of men acquired a new oral HPV infection, 1.7 % acquired a new 
oncogenic HPV infection, and 0.6 % acquired a new HPV-16 infection. Oral HPV 
infections cleared quickly with a median duration of 6.9 months for all HPV, 
6.3 months for oncogenic HPV, and 7.3 months for HPV-16, specifi cally [ 76 ]. 
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 Risk factors for oral HPV infection include increased lifetime number of vaginal 
and/or sex partners, oral–anal sexual contact (“rimming”), current tobacco smok-
ing, and immunosuppression as measured by a low CD4 count among HIV patients 
[ 72 ,  75 – 78 ].  

7     Coinfection with HIV and Associated Immunosuppression 

 HIV-infected men and women are at elevated risk for HPV-associated malignancies 
at multiple anatomic sites. HIV-infected women share a disproportionate burden of 
ICC risk with a 2- to 25-fold increase in incident invasive cervical cancers [ 79 ]. 
Furthermore, HIV-infected individuals have a greater than 25-fold increased risk for 
anal cancer [ 54 ] and a 1.3- to 3-fold increased risk for oropharyngeal cancer than 
HIV-negative individuals [ 80 ]. 

7.1     Cervical Cancer in HIV-Infected Women 

 HIV-infected women are two to fi ve times more likely to have a cervical HPV infec-
tion, experience increased incidence and persistence of HPV, and experience a rapid 
progression to cervical lesions compared to HIV-negative women. Further, data also 
indicate that women with HIV have a higher incidence of cervical lesions, recurrent 
disease, and progression to invasion at a younger age [ 81 – 88 ]. In the USA, the 
Centers for Disease Control and Prevention (CDC) have designated invasive cervi-
cal cancer as an AIDS defi ning illness [ 89 ]. Thus, cervical cancer screening guide-
lines for HIV infected men and women suggest more frequent screening than within 
the general population 

 Cervical HPV prevalence remains markedly higher in HIV-infected women even 
in the absence of any cervical disease. For example, in a meta-analysis by Clifford 
et al. that included 20 studies of 5578 HIV-infected women across 5 continents, any 
type HPV prevalence was 36.3 % in women without cervical abnormalities and 
12 % harbored multiple HPV types [ 90 ]. HPV-16 was the most common subtype 
(4.5 %) followed by HPV-58, 18, 52, 31, and 33. HIV-infected women with cervical 
abnormalities had a twofold to threefold higher HPV prevalence of any type ranging 
from 69.4 % in ASCUS/LSIL to 84.1 % in HSIL. HPV-16 was the most common 
type with a prevalence that was almost threefold higher in women with HSIL 
(31.9 %) in comparison to women with ASCUS/LSIL (12.0 %). Compared to the 
general female population with HSIL, HIV-infected women with HSIL were more 
likely to harbor multiple HPV types (41.9 %), exhibit a higher prevalence of HPV 
types 11, 18, 33, 51, 52, 53, 58, and 61 but a lower prevalence of HPV-16 [ 90 ]. In a 
more recent multicenter study of frozen tissue biopsies from women with cervical 
carcinoma in Kenya and South Africa, DeVuyst et al. reported a higher HPV-18 
prevalence in HIV-positive compared to HIV-negative cases, but the combined 
 prevalence of HPV-16 and/or 18 was similar [ 91 ].  
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7.2     Anal Cancer in HIV-Infected Individuals 

 HIV-infected men who have sex with men (MSM) have the highest anal cancer 
incidence rates (131/100,000 person-years) in comparison to HIV-infected men 
who have sex with women (MSW) (46/100,000 person-years), HIV-infected women 
(30/100,000 person-years) and HIV-uninfected men (2/100,000 person-years) and 
women (no cases) (Fig.  2.4 ) [ 54 ]. The growing research on HPV infection in HIV- 
infected MSM supports the high anal cancer incidence estimates. Data from a meta- 
analysis of 53 studies indicate that the pooled prevalence of anal HPV infection (any 
type and oncogenic type) was signifi cantly higher in HIV-infected MSM (92 % and 
74 %) compared with HIV-uninfected MSM (64 % and 37 %) [ 92 ]. A few research 
studies with HIV-infected MSWs also, report a comparatively lower anal HPV prev-
alence ranging from 46 to 68 % [ 93 ,  94 ]. Similar to HIV-infected MSM, studies of 
HIV-infected women in the developed world report an equally high anal HPV prev-
alence ranging from 79 to 90 % compared with cervical HPV prevalence (53–83 %) 
in the same population [ 57 ,  95 ]. However, Gonçalves et al. found a similar HPV 
prevalence across the cervix (61.6 %) and anus (63.7 %) in 138 HIV-infected women 
from Brazil [ 96 ]. Despite the high prevalence of anal HPV, anal cancer incidence is 
still far lower than ICC incidence suggesting that the natural history of anal HPV 
infection varies from the cervix and that the process and pathways of carcinogenesis 
to invasion might be different for the cervix versus the anal canal.  

 In HIV-infected women and men, HPV-16 is among the most common genotypes 
to be detected [ 57 ,  95 – 97 ]. Other HPV types frequently detected in women are 18, 
35, 45, 51, 52, 53, 58, 61, and 70 [ 57 ,  95 ,  96 ]. Two studies that investigated concur-
rent anal and cervical infection in HIV-infected women found a high concordance 
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of HPV genotypes across the cervix and anal canal (63 % and 68.6 %) [ 95 ,  96 ], 
whereas Palefsky et al. found diverse genotypes between the cervix and anus [ 57 ]. 
In the Hawaii cohort of healthy women, concordance of at least one HPV type 
across the cervix and anus was 86 % [ 55 ]. Among MSM, Machalek et al. reported 
a pooled anal HPV-16 prevalence of 35.4 % for HIV-infected MSM and 12.5 % for 
HIV-uninfected MSM [ 92 ]. Using PCR testing, Palefsky et al. detected 29 diverse 
anal HPV types from both HIV-infected and un-infected MSM. Some of the HPV 
types that were isolated are less frequently detected in the cervix [ 98 ]. 

 Although there are limited long-term studies of anal disease, anal cytological 
abnormalities in both HIV-infected women and men are common. Among 99 
women followed prospectively for a minimum of 2 visits and a maximum of 3 vis-
its, the prevalence of anal cytological abnormality was 33 %. HPV was isolated 
from 67 % of the 33 women. Anal cytological abnormalities consisted of only LSIL 
and ASCUS. However, of 36 women that underwent high-resolution anoscopy 
(HRA), 12 were diagnosed with AIN2-3. Incidence of anal abnormalities was 13.1 
cases per 100 person-years of follow-up [ 68 ]. Similarly, in a study of HIV-infected 
MSM and MSW, the prevalence of anal cytological abnormalities in MSM was 
twice (40 %) that of MSW (20 %) [ 99 ]. Correspondingly, in a study of 450 HIV- 
infected MSM in the Spanish AIDS network cohort, slightly more than half (54.7 %) 
were diagnosed with anal cytological abnormalities that did not include 
ASCUS. Multiple oncogenic HPV ≥5 types was the only risk factor associated with 
prevalent anal abnormalities [ 100 ]. In Machalek et al.’s meta-analysis, histological 
high grade AIN pooled prevalence was higher at 29.5 % in HIV-infected MSM 
versus 21.5 % in HIV-uninfected MSM and anal cancer incidence was eightfold 
higher among HIV-infected at 45.9 per 100,000 men in comparison to 5.1 per 
100,000 in HIV-uninfected men [ 92 ].  

7.3     Oropharyngeal Cancer in HIV-Infected Individuals 

 HIV-infection and its associated immunosuppression is clearly one of the risk 
factors for acquiring an oral HPV infection. Similar to HIV-negative individuals, 
the natural history of HPV infection in HIV-positive individuals also varies by ana-
tomic site and is infl uenced by immunosuppression. Data from one study indicated 
that oral HPV prevalence was signifi cantly higher among HIV-infected women 
(33 %) than HIV-uninfected women (15 %). However, cervical HPV prevalence 
was much higher at the same time point in both groups (73 % and 51 %) respec-
tively [ 78 ]. Additionally, oral HPV incidence rate in HIV-infected women (3.3 per 
100 person months) was twice that of HIV-uninfected women (1.7 per 100 person 
months). More than half of infections in all women persisted to 6 months [ 78 ]. 
Similarly, another study of HIV-infected men and women found that prevalence 
(28 % vs 84 %), incidence (31 vs 145 per 1000 person months) and persistence 
(29 % vs 54 %) were signifi cantly lower for oral HPV infections than anal HPV 
infections [ 97 ].  
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7.4     Antiretroviral Therapy and HPV Infection 

 Antiretroviral therapy (ART) has had a dramatic impact on morbidity and mortality 
due to HIV globally. A similar effect has not yet been evident in HIV-infected indi-
viduals coinfected with HPV, though theoretically HIV virological suppression and 
elevated CD4 counts would contribute to a better immune response to increase 
HPV clearance and decrease acquisition of new infections. Reviews indicate that 
cervical and anal cancers are not currently declining despite the introduction of 
ART, but there is insuffi cient data on the infl uence of ART on HPV infection and 
cancer among HIV-infected individuals in the developing world [ 101 – 103 ]. 
Inconsistent results have been published regarding the effect of ART on the inci-
dence, prevalence, and progression of cervical and anal HPV infections and dis-
ease. Some studies show regression of cervical lesions and neoplasias associated 
with receipt of antiretroviral therapy [ 104 – 106 ], other studies show no such effect 
[ 103 ,  107 – 109 ]. Additionally, incidence of anal cancers [ 110 ,  111 ] and oral warts 
[ 112 ] are on the rise among both HIV-positive men and women on ART. Franceschi 
and Jaffe note that ART-induced immune reconstitution has a modest effect on 
HPV infection and that the incidence of cervical cancers has not declined in devel-
oped nations [ 113 ]. 

 The reasons for the limited impact of ART on HPV-related carcinogenesis in 
HIV-infected individuals are unclear. Palefsky suggests that HIV patients might 
suffer enough genetic destruction in the epithelium allowing cells to proliferate 
despite restoration of HPV specifi c immunity with ART [ 114 ]. However, given 
the relatively recent history of successfully, virologically suppressed HIV and 
widely available ART, more studies are needed to examine the relationship 
between immune reconstitution and HPV progression, especially with the con-
founding factors of ongoing, high-risk behaviors often concurrent in HIV infec-
tion. The introduction of the HPV vaccine among HIV infected individuals is 
also expected to decrease oncologic transformation among this population, with 
studies forthcoming.   

8     Prevention of HPV-Related Malignancies 

 Currently, the two main strategies for prevention of invasive cervical cancer are 
cervical screening followed by treatment of abnormalities and HPV vaccination. 
The adoption of cervical screening using Papanicolaou (Pap) testing for the early 
detection of cervical abnormalities has dramatically decreased the progression to 
invasive cervical carcinoma worldwide [ 115 ]. The two main modalities for cervical 
screening include: (1) cytology using the conventional Papanicolaou (Pap) test 
or the newer liquid-based, thin layer cytology which has largely become the 
standard of care in developed countries, and (2) high-risk HPV nucleic acid testing. 
In resource-limited settings, particularly in rural areas, the lack of adequate 
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infrastructure for Pap cytology testing including trained cytopathologists has  created 
a need for alternative visual inspective techniques with acetic acid (VIA) and 
Lugol’s iodine (VILI) that allow same day screen-and-treat approaches [ 116 ,  117 ]. 
However, due to the subjective nature, quality control issues, and low specifi city, 
solely using visual inspective techniques should be reserved for resource-limited 
settings [ 118 – 121 ]. 

8.1     Cervical Screening 

8.1.1     Pap Cytology Screening 

 The Pap test, fi rst introduced in 1928 by Dr. Georgios Papanikolaou, utilizes 
inspection of a smeared cell sample directly onto a glass microscope slide for 
inspection by a trained cytopathologist. Newer liquid-based cytology (Thin Prep ®  
or Sure Path ® ) utilizes submerged cervical cell samples within a preservative liquid 
that is later inspected on a glass microscope slide. The liquid medium removes 
contaminants, can be performed during menses, and allows the cervical cells to be 
spread more evenly on the slide. This liquid-cell medium is clinically preferred as 
it can further undergo HPV nucleic acid testing for high-risk HPV genotypes 
[ 115 ,  122 ,  123 ].  

8.1.2     Screening Using HPV Nucleic Acid Testing 

 Although Pap cytology has historically been the gold standard for ICC screening, 
recent evidence indicates that HPV nucleic acid testing is a superior and more cost-
effective screening strategy to prevent ICC among women older than 30 years of 
age, particularly in low and middle-income countries that lack a well-developed 
infrastructure including well-trained cytopathologists [ 124 – 128 ]. In the USA and 
other developed countries, HPV nucleic acid testing is recommended in combina-
tion with cytology screening and is an invaluable component of cancer screening, 
management, and treatment. Currently, the FDA has approved four HPV tests: to be 
used in conjunction with Pap cytology: Hybrid Capture 2 ® , Cervista ® , Cobas, and 
Aptima ®  [ 129 ]. Aptima ®  is the only test that detects HPV mRNA, whereas the other 
three tests detect HPV DNA. These commercially available tests are available from 
qualitative to semiquantitative platforms and are of two types: (1) tests that detect 
any of the 12–14 high-risk genotypes and (2) tests that detect HPV-16 or 18 geno-
types (Cobas, Cervista™ HR, and most recently Aptima 16,18/45) [ 130 – 132 ]. The 
Qiagen developed careHPV™ test is a new rapid clinically validated HPV test that 
can detect any of 14 high-risk genotypes, is able to provide results in a few hours, 
and is designed specifi cally for screening women in low-resource settings [ 124 , 
 133 ]. It has recently been approved by the China FDA to be used for cervical 
screening of Chinese women [ 134 ]. 
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 All of these HPV screening tests are able to detect a small number of HPV geno-
types, mainly combined high-risk types or HPV-16/18. For HPV genotyping, other 
validated molecular assays using type-specifi c PCR primers that are able to detect a 
large number of genotypes are mainly used in research facilities [ 133 ]. Cuzick et al. 
note that newer technologies with improved specifi city are required to screen high- 
risk HPV positive women if HPV testing must become an alternate primary modal-
ity for screening women [ 133 ]. Some potential new approaches could be HPV 
typing, methylation of host and viral genes, detection of HPV E6 and E7 proteins, 
and cytologic methods such as p16 INK4a  staining [ 133 ].  

8.1.3     Cervical Screening Guidelines 

 Cervical screening guidelines in developed countries differ from developing nations. 
In the USA, the US Preventive Services Task Force, the American Society for 
Colposcopy and Cervical Pathology, the American Cancer Society and the American 
College of Obstetricians and Gynecologists have set the standard for screening guide-
lines for US women [ 115 ,  135 ]. For women in resource-limited settings, the World 
Health Organization (WHO) has set the standard and recently updated their guidelines 
signifi cantly to included specifi c guidelines for HIV-infected women [ 136 ]. (Table  2.1 ).

   In the USA, HIV-negative women between the ages of 30–65 years with a cervix 
should receive cytology screening every 3 years, or if receiving HPV DNA testing 
then screening may be extended to 5 years [ 115 ]. Women are screened more 
 frequently if HPV positive or abnormal pathology is detected [ 115 ,  137 ]. Women 
21–29 years old should receive screening with cytology alone every 3 years if 
screening results are normal. Screening is not recommended for HIV-negative 
women under the age of 21. HPV vaccination regardless of HIV status does not 
change current screening recommendations. For women above the age of 65 who 
have undergone hysterectomy and/or have no prior history of high-grade cervical 
lesions may defer HPV screening [ 115 ]. (Table  2.1 ) 

 As noted earlier, HIV-positive women are at signifi cantly higher risk of progres-
sion to cervical carcinoma and should undergo a cervical Pap test at baseline, month 
6 and month 12 of fi rst HIV diagnosis; if normal, yearly screens are recommended 
thereafter regardless of age or modality of HIV acquisition. Immediate referral to 
colposcopy is recommended for lesions greater than ASCUS [ 138 ,  123 ,  139 ]. HIV-
positive women and high-risk HIV negative women in developing countries should 
be screened more frequently within 3 years of each negative screening [ 136 ].   

8.2     Prevention of HPV-Related Anal 
and Oropharyngeal Cancers 

 Given the elevated incidence of anal cancers in HIV-positive MSM anal cytology 
screening is recommended in this population. with frequency of screening currently 
at the discretion of the health care provider based pathology results [ 54 ,  140 ]. 
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Although formal recommendations as to frequency of screening have not been 
 codifi ed, annual anal screening and referral to high resolution anoscopy (HRA) 
among HIV-positive MSM and transgendered individuals is now the standard of 
care in HIV specialty clinics in the USA [ 141 ]. Some US facilities are also offering 
similar annual screening services to all HIV-infected women and men [ 142 ]. Unlike 
in cervical screening, HPV testing has not been validated as a screening tool for anal 

    Table 2.1    Summary of cervical cancer screening guidelines for women by the US Preventive 
Services Task Force (USPSTF) [ 135 ], American Society for Colposcopy and Cervical Pathology 
(ASCCP) [ 115 ], and World Health Organization (WHO) [ 136 ]   

 Population  USPSTF  ASCCP  WHO a  

 Age <21 years  No screening  No screening  No screening for 
women <30 years 
unless HIV+ or living 
in high HIV 
prevalence area 

 Age 21–29 
years 

 Cytology screening 
(Pap smear) alone 
every 3 years. No 
HPV screening 
alone or with 
cytology. 

 Cytology screening every 3 
years 

 No screening for 
women <30 years 
unless HIV+ or living 
in high HIV 
prevalence area 

 Age 30–65 
years 

 Cytology screening 
(Pap smear) alone 
every 3 years 
 Cytology and HPV 
contesting every 5 
years (if women 
prefer to increase 
screening interval) 

 Cytology and HPV 
co-testing every 5 years 
(preferred) 
 Cytology screening alone 
every 3 years (acceptable) 

 Prioritize women 
30–49 years a  
 Screening interval with 
HPV testing should be 
minimum 5 years (not 
less) 
 Screening interval with 
VIA/cytology should 
be 3–5 years 

 Age >65 years  No screening, if 
adequate prior 
negative screening 
and not high-risk 
for cervical cancer 

 No screening, if previous 
history of negative screening 
 Women with prior history 
of ≥ CIN2 must continue 
routine screening 3–5 years 
as in women 30–65 years for 
at least 20 years 

 After 
hysterectomy 

 No screening for 
women without 
cervix and no 
history of ≥ CIN2 
or cervical cancer 

 No screening for women 
without cervix and previous 
negative screening for CIN2 

 HPV 
vaccinated 

 Same as age-specifi c 
recommendations for 
unvaccinated women 

   VIA  visual inspection with acetic acid,  CIN2  cervical intraepithelial neoplasia grade 2,  ICC  inva-
sive cervical cancer,  HPV  human papillomavirus 
  a WHO guidelines for resource-limited settings with no organized screening efforts  

2 Human Papillomaviruses



32

precancerous lesions because of the high-prevalence of HPV in the anal canal of 
high-risk individuals even in the absence of anal abnormalities. 

 Prevention of oropharyngeal cancer is challenging because of the lack of visibil-
ity of precancerous lesions. Although high-risk individuals can be screened for oro-
pharyngeal lesions to detect invasive cancer by visual inspection and cytology, the 
low sensitivity and specifi city of cytology screening studies does not currently jus-
tify widespread screening [ 143 ,  144 ]. Oropharyngeal cytology screening is not cur-
rently recommended [ 4 ,  145 ].  

8.3     Treatment of HPV-Related Disease 

 Depending on the HPV subtype and location of infection, manifestations can range 
from simple, isolated lesions to more extensive, clustered lesions necessitating exci-
sion. For uncomplicated, external cutaneous HPV condyloma with very mild dys-
plasia, recommendations are podophyllotoxin (antimitotic agent), imiquimod cream 
(topical cytokine inducer), or sinecatechins (green tea catechins). For more exten-
sive lesions, cryotherapy using liquid nitrogen, cauterization using trichloroacetic 
acid or bichloroacetic acid, or traditional surgical excision such as curettage or elec-
trocautery are recommended. For the latest recommendations, dosages, and dura-
tion of therapy please refer to the US Centers for Disease Control and Prevention’s 
“Guidelines for the prevention and treatment of opportunistic infections in HIV-
Infected Adults and Adolescents.” [ 146 ] 

 For more dysplastic lesions such as cervical intraepithelial neoplasia (CIN), anal 
intraepithelial neoplasia (AIN), vulvar intraepithelial neoplasia (VIN) and vaginal 
intraepithelial neoplasia (VAIN), more extensive excision and repeated evaluation is 
recommended based on the pathological spectrum of atypical cells of uncertain sig-
nifi cance (ASC-US), low grade squamous intraepithelial lesion (LSIL), high grade 
squamous intraepithelial lesion (HSIL), carcinoma in situ, and invasive, squamous 
cell carcinoma. LSIL includes mild dysplasia (CIN1, AIN1, VAIN1); HSIL includes 
moderate dysplasia (CIN2, AIN2, VAIN2), severe dysplasia CIN3, AIN3, VAIN3), 
carcinoma in situ (CIS) [ 147 ]. 

 Treatment recommendations depend on pathological grade and patient profi le 
and can include colposcopy (visualization of abnormal cells in the cervical squa-
mocolumnar junction), high resolution anoscopy (HRA), loop electrosurgical exci-
sion (LEEP), endocervical curettage (ECC), chemoradiation, or hysterectomy 
[ 115 ,  123 ,  138 ]  

8.4     HPV Vaccination 

 A most exciting development for reducing infection-related malignancy are the 
HPV vaccines (bivalent, quadrivalent and nonavalent), which are estimated to pre-
vent up to 70 % of all cervical and anal cancer cases associated with HPV-16/18 
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infections and >95 % of genital warts (quadrivalent vaccine) in both women and 
men globally [ 31 ,  148 ]. A series of clinical trials have shown that both vaccines are 
highly effi cacious in reducing both incident and persistent cervical and vulvovagi-
nal infections and abnormal lesions in women [ 149 ,  150 ], whereas the quadrivalent 
vaccine has also demonstrated effi cacy against persistent genital and anal infection 
as well as anal lesions in men [ 148 ,  151 ]. The vaccine contains noninfectious and 
non- oncogenic recombinant L1 proteins that form virus-like proteins (VLPs). These 
VLPs induce both a humoral response and cell-mediated immune response that is 
more profound and sustained than natural infection [ 1 ,  152 ]. 

 In 2006, the US Food and Drug Administration (FDA) approved the fi rst quadri-
valent (qHPV) vaccine (Gardasil ® ) that is now recommended for both females and 
males aged 9 through 26 years to protect against infection from HPV genotypes 6, 
11, 16, and 18 [ 152 – 155 ]. Cervarix ® ) also known as the bivalent HPV vaccine was 
approved in 2009 by the FDA for the prevention of precancerous lesions and cervi-
cal cancer due to HPV types 16 and 18 and is recommended only for females 9 to 
26 years old [ 152 ,  155 ]. Both vaccines are administered in three separate shots over 
6 months as to ensure high immunogenicity with serum antibodies peaking at 
2 years and sustained levels at 5 years [ 152 ,  156 ,  157 ]. Several clinical trials and 
other follow-up studies have corroborated that the two vaccines are safe and 
 well- tolerated with limited adverse events, sustained protection of up to 8.4 years 
and high levels of immunogenicity [ 31 ]. Both vaccines have also shown some mea-
sure of cross protection against a few HPV types not in the vaccine—HPV 31 for 
both vaccines and HPV 33 and 45 for Cervarix ®  [ 31 ]. The nonavalent HPV vaccine 
(Gardasil ® 9) includes protection against HPV-31, 33, 45, 52 and 58 in addition to 
the quadrivalent vaccine HPV genotypes of 6, 11, 16 and 18. The Gardasil ® 9 was 
recently approved for use in both females and males aged 9–26 years [ 158 ]. Recent 
clinical trial data showed that the nonavalent vaccine was 96 % effi cacious against 
HPV-31, 33, 45, 56, 58 related persistent infection at 6 months, as well as 96.7 % 
effi cacious against related high-grade cervical/vulvar/vaginal disease [ 159 ]. 

8.4.1     Impact of HPV Vaccine and Barriers to Implementation 

 Given that HPV associated anogenital cancers are slow growing, assessing the true 
impact on incidence of cancers would require future studies. However, a number of 
recent studies have documented a decreasing cervical HPV prevalence and incidence 
of cervical abnormalities. In the USA among females 14–19 years old, the preva-
lence of vaccine HPV types 6, 11, 16, and 18 had decreased from 11.5 to 5.1 % in the 
post-vaccine era (2007–2010) [ 160 ]. Data from Australia and the USA demonstrate 
a reduction in genital warts in both women and men having sex with women 
 [ 161 – 163 ]. Two other studies among 18–31-year-olds in the USA and <18-year- olds 
in Australia have documented a decline in the incidence of high grade cervical 
lesions [ 164 ,  165 ]. A more recent study in Costa Rica demonstrated a vaccine 
 effi cacy of 93 % against oral HPV [ 166 ] suggesting that the vaccine may have a 
protective effect against infection at multiple anatomic sites in men and women. 
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Serrano et al., estimate that the nonavalent vaccine has the potential to prevent up to 
90 % of cervical cancers worldwide [ 167 ]. 

 There are several challenges for the HPV vaccine to be effective worldwide. The 
low coverage of HPV vaccinations in the USA as compared to other developed 
countries is a major challenge. Current data on immunization rates among teens 
13–17 year old indicate that slightly more than half (53.8 %) of girls have received 
one dose of the HPV vaccine and only a third have completed the full three doses 
[ 168 ]. The coverage for males was only 21 % for one dose of the HPV vaccine 
[ 167 ]. For developing countries where the vaccine has the potential to have the 
maximum impact because of the large burden of ICC, the vaccine is cost prohibi-
tive. In addition, the lack of awareness about the vaccine and its effi cacy, concerns 
about safety, lack of physician recommendations combined with cultural beliefs 
that adolescents are not sexually active as well as concerns of safety and fear of 
promiscuity have become major barriers to vaccine uptake in the USA and world-
wide [ 169 ,  170 ,  171 ].    

9     Conclusion 

 In summary, HPV-associated cancers are a signifi cant global health burden. 
Persistent HPV infection with HPV-16 and/or other carcinogenic types has been 
fi rmly established as a precursor of cervical disease. Thus, understanding the natu-
ral history of cervical HPV infection has been essential to the development of 
screening and treatment guidelines for the prevention and treatment of cervical can-
cer. Unlike in cervical cancer, there are relatively few studies that have assessed the 
natural history of anal and oropharyngeal cancer among women and men. The ris-
ing trend in these cancers suggests a critical need for such studies to inform the 
development of screening and treatment. The vast majority of invasive cervical can-
cers are among women in developing countries where HIV is also a tremendous 
burden. While the differences in ICC incidence indicate the lack of widespread 
availability of preventative services or issues with access when available, HIV must 
be considered when women present with ICC in these resource-limited settings. 
Additionally, HIV is a crucial cofactor in the rising incidence of anal cancers among 
the MSM population as well as in heterosexual men and women. Reducing the high 
incidence and prevalence of HPV-associated cancers worldwide will require several 
approaches including prevention of HPV infection, newer screening technologies 
that can detect precancerous lesions early, and new therapeutics. Meanwhile, HPV 
vaccination seems to be the most promising in terms of preventing incident HPV 
infection and its sequelae of HPV-related disease. 
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    Chapter 3   
 Adaptation of Freshwater Mosquito Vectors 
to Salinity Increases Arboviral Disease 
Transmission Risk in the Context 
of Anthropogenic Environmental Changes 

             Ranjan     Ramasamy    

          Core Message    Aedes aegypti  and  Aedes albopictus , the dominant vectors of 
dengue, chikungunya and yellow fever, have been regarded to undergo pre-imaginal 
development only in freshwater. Vector control efforts therefore presently target 
only their freshwater habitats. The two  Aedes  vectors have recently been shown to 
develop in brackish water with associated biological changes in  Ae. aegypti . 
Anthropogenic environmental changes have produced habitats that favour brackish 
water adaptation in the two  Aedes  and other vector species and increase the risk of 
arboviral disease transmission. Such changes can also increase disease transmission 
by other salinity- tolerant arboviral vector mosquitoes. Appropriate strategies are 
needed to address the associated health risks, particularly in the context of rising sea 
levels increasing coastal groundwater salinity.  

1     Human Arboviral Diseases and Their Mosquito Vectors 

 Dengue is the most common arboviral disease of humans, with 50–100 million 
annual cases in more than 100 countries and an increasing incidence and spread 
worldwide that places 2.5 billion people at risk according to the World Health 
Organisation (WHO) [ 1 ]. Severe dengue or dengue hemorrhagic fever has a case 
fatality rate of 2.5 % [ 1 ]. There is presently no licensed vaccine or specifi c antiviral 
drug for dengue [ 2 ]. Yellow fever has a zoonotic reservoir, is endemic in Africa and 
South America with the potential to spread to Asia and is responsible for 200,000 
cases and 30,000 deaths in the world every year [ 3 ]. An effective live attenuated 
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vaccine is however available against yellow fever. Chikungunya, a debilitating 
 arboviral disease, is endemic in Southeast Asia and has produced epidemics in trop-
ical Africa and Asia, and more recently in temperate Europe and the Americas 
[ 4 – 6 ]. A vaccine against chikungunya is not yet available. Many other arboviruses 
have animal reservoirs and can be transmitted to humans with serious risk to health. 
These include viruses causing West Nile fever, Japanese encephalitis, St. Louis 
encephalitis and Eastern and Western equine encephalitis [ 7 ]. However the viremia 
that develops in humans is typically not high enough to permit human-to-human 
transmission but this situation can change if the viruses undergo appropriate genetic 
alterations. 

  Aedes aegypti  (Linnaeus) (Diptera:  Culicidae ) is the principal mosquito vector 
of arboviruses causing yellow fever, dengue and chikungunya in populated areas 
of tropical and subtropical regions [ 7 ,  8 ].  Aedes albopictus  Skuse is however 
becoming an increasingly important vector of dengue and chikungunya because of 
its recent global spread, the evolution of an ability to survive winters and a propen-
sity to outcompete  Ae. aegypti. Aedes albopictus  has been responsible for the 
recent transmission of dengue and chikungunya in temperate regions [ 4 ,  5 ,  7 ,  9 ]. 
Both species are able to bite outdoors and during the day making the use of bed 
nets less effective than for malaria control. Therefore the control of dengue and 
chikungunya in tropical countries mainly relies on surveillance for  Ae. aegypti  and 
 Ae. albopictus  larvae, elimination of their pre-imaginal development habitats, use 
of larvicides and the space spraying of insecticides in areas of high transmission 
[ 1 ,  2 ,  5 ].  

2     Salinity-Tolerant Mosquito Vectors of Human 
Arboviral Diseases 

 While most mosquito species lay eggs and undergo pre-imaginal development in 
freshwater, approximately 5 % of mosquito species undergo pre-imaginal develop-
ment in brackish and saline waters. Water with less than 0.5 ppt or parts per thou-
sand, 0.5–30 and greater than 30 ppt of sodium chloride are commonly termed 
fresh, brackish and saline, respectively [ 10 ]. Many mosquitoes that transmit human 
arboviral diseases, including  Ae. aegypti  and  Ae. albopictus,  have been long con-
sidered to undergo pre-imaginal development only in freshwater habitats [ 1 ,  2 ,  8 , 
 11 ]. However, some salinity-tolerant mosquito species are known to transmit 
human arboviral diseases [ 8 ,  10 ,  12 ]. Common examples of salinity-tolerant mos-
quito vectors and the arboviral diseases that they transmit are presented in 
Table  3.1 . Salinity- tolerant mosquito larvae and pupae have evolved various physi-
ological and structural mechanisms to cope with high osmolarity in their aqueous 
environment [ 13 – 15 ].
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3        Recent Evidence Shows That  Ae. aegypti  
and  Ae. albopictus  Can Undergo Pre-imaginal 
Development in Brackish Water  

 There is now evidence that  Ae. aegypti  and  Ae. albopictus  can also lay eggs and 
undergo pre-imaginal development into adults in brackish water collections in 
coastal areas of the tropics [ 16 – 21 ]. Pre-imaginal stages of  Ae. aegypti  and  Ae. 
albopictus  were observed in brackish water in coastal areas of up to 15 ppt and 
14 ppt salinity, respectively, in northern and eastern Sri Lanka [ 16 – 18 ] and up to 
8 ppt salinity in Brunei Darussalam [ 19 ,  20 ]. 

 The habitats where the larvae of the two vectors were found in Sri Lanka were 
brackish water collections in discarded plastic and glass food and beverage contain-
ers along beaches, disused fi shing boats and coastal domestic wells that were either 
abandoned or used for domestic purposes other than drinking, e.g., washing clothes 
and bathing (Fig.  3.1 ). Discarded food and beverage containers were also found to 
provide suitable brackish water habitats for the development of  Ae. albopictus  along 
the South China sea coast of Brunei Darussalam [ 19 ].  

 In the Jaffna peninsula in northern Sri Lanka, recent data show that adaptation to 
brackish water is accompanied by greater tolerance of  Ae. aegypti  larvae to salinity, 
which is only partly reversible after transfer to freshwater for fi ve generations [ 21 ]. 
This suggests that genetic and reversible physiological changes are in combination 

   Table 3.1    Salinity-tolerant mosquito vectors of human viral diseases   

 Species  Distribution  Examples of viruses transmitted 

  Aedes dorsalis   Pacifi c coast of North 
America, Temperate Eurasia 

 West Nile and Western equine 
encephalitis viruses 

  Ae. (Ochlerotatus) 
taeniorhynchus  

 North and South America  Eastern equine encephalitis virus 

  Ae. togoi   North Pacifi c rim  Japanese encephalitis virus 
  Ae. (Ochlerotatus) vigilax   Australasia, Southeast Asia  Ross River and Barmah forest 

viruses 
  Culex sitiens   Indian Ocean rim countries  Japanese encephalitis and Ross 

River viruses 
  Cx. tarsalis   North America  St. Louis encephalitis, Western 

equine encephalitis and West Nile 
viruses 

  Cx. tritaeniorhyncus   Russia, Middle East, Africa, 
India 

 Japanese encephalitis virus 

  Common examples of mosquito vector species that undergo pre-imaginal development in brackish 
or saline water, their geographical distribution and the viruses that they transmit are listed in this 
table (modifi ed with permission from Ramasamy and Surendran, BMC Infectious Diseases 11:18 
(2011). doi:  10.1186/1471-2334-11-18     and Ramasamy and Surendran, Frontiers in Physiology 
3:198 (2012). doi:   10.3389/fphys.2012.00198    )  
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responsible for the adaptation to brackish water. Brackish water  Ae. aegypti , unlike 
freshwater isolates in the Jaffna peninsula, tended to prefer laying eggs in brackish 
water [ 21 ]. But the hatching of eggs was signifi cantly less effi cient and the time 
taken for larvae to develop into pupae was prolonged in 10 ppt brackish water com-
pared to freshwater with both brackish and freshwater-derived  Ae. aegypti  [ 21 ]. 
Brackish and freshwater  Ae. aegypti  isolates from the Jaffna peninsula were how-
ever shown to interbreed and produced viable offspring in the laboratory [ 21 ]. These 
fi ndings also showed that there was restricted gene fl ow between coastal brackish 
and inland freshwater  Ae. aegypti  isolates even when separated by a distance of only 
5 km in the Jaffna peninsula. The results suggest that there is an ongoing adaptive 
process involving genetic and physiological changes, which could potentially lead 
to speciation in the future if the two populations were to become reproductively 
isolated.  

4     Signifi cance of the Likely Role of Brackish Water  Aedes  
Vectors in Dengue Transmission 

 The analysis of the relationship between monsoonal rainfall and the incidence of 
dengue in coastal areas of northern and eastern Sri Lanka has been performed to 
evaluate the contribution of brackish water developing  Aedes  vectors in dengue 
transmission in the island [ 20 ]. The fi ndings showed that monsoon rains, that allow 
freshwater to collect and form suitable habitats for pre-imaginal development of 

  Fig. 3.1    Typical brackish water habitats of  Aedes  larvae in coastal areas of northern and eastern 
Sri Lanka. The photographs show the brackish water collections containing larvae in ( a  and  b ) 
disused boats; ( c  and  e ) abandoned wells; ( d  and  f ) discarded food and beverage containers (repro-
duced with permission from Ramasamy et al. PLoS Neglected Tropical Diseases 5(11): e1369. 
doi:  10.1371/journal.pntd.0001369    )       
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 Aedes  vectors in the vicinity of populated areas, are the dominant driver for the 
increased dengue transmission that follows the monsoons in Sri Lanka. This was 
also found to hold true for the dry zone coastal districts of Jaffna and Batticaloa in 
northern and eastern Sri Lanka that receive rainfall during the Northeast monsoon 
[ 20 ] and where pre-imaginal development of  Ae. aegypti  and  Ae. albopictus  in 
brackish water habitats was fi rst observed [ 16 ]. 

 However it is likely that brackish water habitats provide a previously unappreci-
ated source of vectors for maintaining dengue transmission in coastal areas that 
may be particularly important in a local context, e.g., coastal areas of Jaffna city in 
northern Sri Lanka [ 16 – 18 ]. Some brackish water habitats such as coastal wells 
constitute perennial habitats that are relatively independent of rainfall. Monsoonal 
and inter-monsoonal rains in combination with sea spray and tidal movements may 
also cause brackish water to accumulate in discarded plastic and glass containers 
and coastal rock pools that provide additional habitats for the dengue vectors. 
However monsoonal rains rapidly increase the extent of freshwater habitats for the 
 Aedes  vectors in coastal and inland areas leading to the greater transmission of 
dengue that follows soon after the rains. It seems possible therefore that brackish 
water vectors in coastal areas may play a role as a perennial reservoir of virus to 
support the post- monsoonal amplifi cation of dengue transmission by freshwater 
vectors. Vertical or transovarial transmission of dengue virus in brackish water-
adapted  Aedes  will enhance their capacity to serve a virus reservoir in the period 
between monsoons. Determining the relative vector competence of brackish and 
freshwater vectors, changes in adult vector densities and larval indices, temporal 
and spatial variation in dengue cases and rainfall and other pertinent epidemiologi-
cal parameters during and between monsoons in selected coastal districts will be 
needed to confi rm this hypothesis.  

5      Anthropogenic Environmental Changes That Expand 
Brackish Water Habitats Increase the Potential 
for Transmission of Arboviral Diseases 

5.1     Rising Sea Levels 

 Global climate change is caused by long-term changes in common meteorological 
parameters that can be ascribed to anthropogenic infl uences, particularly the con-
tinuing accumulation of greenhouse gases like carbon dioxide in the atmosphere. 
Temperature, rainfall and humidity are primary climate changes and these have 
been studied for their impact on common vector-borne diseases, notably malaria 
and dengue (reviewed in [ 10 ,  12 ,  20 ]). These studies predict an expansion of the 
range of mosquito vectors due to climate change. Primary changes in global climate 
lead to secondary changes in the biosphere and geosphere, including an altered 
distribution of animals and plants and a rise in sea levels [ 10 ]. It has been proposed 
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with supporting evidence that a rise in sea levels caused by global warming can 
potentially increase the transmission of vector-borne diseases [ 12 ]. 

 The Intergovernmental Panel on Climate Change in its most recent report  predicts 
a likely sea level rise of up to 82 cm by the year 2100 [ 22 ]. A rise in sea levels will 
produce greater saline intrusion into coastal freshwater aquifers [ 10 ,  12 ,  20 ,  23 ]. 
This will be particularly important for low-lying areas like the Jaffna peninsula in 
northern Sri Lanka which is largely composed of relatively porous limestone [ 10 , 
 20 ]. The Jaffna peninsula also has a high population density and consequently a 
high rate of groundwater withdrawal rate from freshwater aquifers that are only 
replenished during the Northeast monsoon in October to December [ 10 ,  20 ]. A rise 
in sea level will therefore increase the availability of brackish water larval habitats 
for brackish water-adapted  Ae. aegypti  and  Ae. albopictus  as well as other brackish 
water mosquito vectors of human disease that are present in the peninsula and outly-
ing islands [ 16 – 18 ,  21 ]. 

 Tropical South and Southeast Asia have extensive coastlines bordering the Indian 
and Pacifi c Oceans and various seas. Southeast Asia also has the largest archipelago 
in the tropics encompassing populous countries like Indonesia and the Philippines 
with extensive coastal areas compared to their total land area. A similar situation 
prevails in the Caribbean countries and the Indian Ocean islands of Seychelles, 
Singapore and Reunion. 

 Countries with long coastlines and high coast to land area ratios are particularly 
vulnerable to the consequences of rising sea levels. One in ten persons worldwide 
live in coastal localities that are less than 10 m above sea level [ 24 ]. Such low-lying 
areas are prone to greater salinisation caused by rising sea levels. Many densely 
populated tropical countries have a large proportion of their populations living in 
such vulnerable areas, e.g., Vietnam, Bangladesh, Thailand and Indonesia [ 24 ].  

5.2     Expanding Coastal Populations and Beach Litter 

 Beach container litter provides excellent habitats for brackish water-adapted  Ae. 
aegypti  and  Ae. albopictus  [ 16 ,  19 ]. Increasing population densities along coastal 
regions will result in the construction of more wells that may become brackish and a 
greater tendency to litter the shoreline and beaches with discarded containers that can 
collect brackish water. Garbage collection and disposal mechanisms managed by local 
government authorities in coastal areas of resource-poor countries may fi nd it hard to 
cope with such hazardous environmental changes posed by expanding populations. 

 Population increase in coastal areas can reduce vegetation cover, thereby driving 
vector mosquitoes, notably  Ae. albopictus,  to seek other habitats closer to human 
dwellings for laying eggs. Another likely consequence is a decrease in the relative 
numbers of animals and birds that can serve as alternative sources of a blood meal. 
The two factors combined with higher population density will increase the human 
biting rate and therefore the rate of propagation of arboviral diseases as outlined 
previously [ 10 ].  
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5.3     Agriculture in Coastal Zones 

 Intensive agriculture in dry coastal areas promotes salinisation of the land and 
causes inland water bodies to become more saline, thereby facilitating the expan-
sion of salinity-tolerant mosquito vector habitats. For example, higher densities of 
 Aedes  ( Ochlerotatus )  camptorhynchus , a vector of Ross River virus, are associated 
with increasing salinisation of inland freshwater bodies caused by wheat farming 
in Western Australia [ 25 ]. Aquaculture, an increasing economic activity along 
tropical coasts, also creates new brackish water habitats for mosquito vectors. 
There is presently no data on its ensuing impact on the transmission of arboviral 
diseases though a consequential increase in malaria vector populations has been 
recorded [ 12 ].  

5.4     Use of Insecticides and Larvicides in Inland Areas Can 
Drive the Adaptation of Freshwater Vector Mosquitoes 
to Coastal Brackish Water Habitats 

 Insecticides are used for agricultural pest control in inland areas. Malaria control 
programmes use indoor residual spraying of insecticides that target houses in 
endemic areas. Larvicides against malaria vectors are predominantly applied to 
freshwater collections in most countries and this has been exclusively the case for 
dengue control targeting  Ae. aegypti  and  Ae. albopictus.  Adaptation of vector mos-
quitoes to coastal brackish water habitats therefore has a selective advantage. Data 
from the Jaffna peninsula in northern Sri Lanka recently documented that coastal 
brackish water isolates of  Ae. aegypti  were signifi cantly more sensitive to the 
organophosphate insecticide malathion than inland populations [ 21 ]. It was pro-
posed that this was caused by the recent use of malathion for malaria control and 
organophosphate insecticides in general for controlling agricultural pests in inland 
areas of the Jaffna peninsula [ 21 ].  

5.5     Increased Coastal Arboviral Disease 
Transmission Will Impact on Inland Areas 

 Any increase in the transmission of arboviral diseases in coastal areas due to condu-
cive environmental changes will also act to increase disease incidence in inland 
areas through bridging freshwater vectors and inland movement of infected 
persons.   
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6     Implications for Other Arboviral Diseases 
Transmitted by Mosquitoes 

  Ae. aegypti  and  Ae. albopictus  are potential vectors for arboviruses other than those 
causing dengue, chikungunya and yellow fever [ 8 ].  Ae. albopictus , for example, has 
been reported to be a vector of 26 different viruses from the Bunyaviridae, 
Flaviviridae, Nodaviridae, Reoviridae and Togaviridae families [ 26 ]. Brackish 
water-developing  Ae. aegypti  and  Ae. albopictus  may therefore make a hitherto 
unrecognised contribution to the transmission of many zoonotic arboviruses to 
humans in coastal areas. Besides  Ae. aegypti  and  Ae. albopictus , other freshwater 
arboviral vectors also have the potential to adapt to brackish water and contribute to 
disease transmission. 

 The increased extent of brackish water habitats caused by anthropogenic factors 
outlined in Sect.  5  also heighten the risk of arboviral disease transmission by known 
salinity-tolerant mosquito vector species.  

7     Strategies for Controlling the Transmission of Arboviral 
Diseases in Coastal Areas 

 Local government and national and international authorities responsible for con-
cerned sectors, e.g., health, agriculture, coastal planning, environment, irrigation, 
local government and livestock development, need to be aware of the health risk 
associated with mosquito vectors developing in brackish water habitats in coastal 
areas. The potentially greater risk associated with rising sea levels needs to be 
appreciated and included appropriately in development plans. The WHO in particu-
lar needs to take cognizance of the likely role of brackish water mosquitoes in 
transmitting dengue and chikungunya and incorporate it into their international 
guidelines. Most countries depend on the WHO recommendations for formulating 
national dengue control programmes and the WHO guidelines are presently based 
on the assumption that the  Aedes  vectors of dengue only develop in freshwater 
habitats [ 2 ]. 

 There is a need for more research at all levels into the bionomics of salinity- 
tolerant mosquito vector populations that has become more important in the context 
of the documented ability of the most important arboviral vectors to adapt to salin-
ity. The underlying genetic and physiological mechanisms that facilitate salinity 
adaptation in  Ae. aegypti  and  Ae. albopictus  need to be elucidated. A readily usable 
molecular marker for salinity tolerance in the two species would be a useful epide-
miological tool. Mathematical models of mosquito-borne disease transmission 
would need to incorporate the consequences of vectors undergoing development in 
brackish water habitats. Larvicidal formulations with  Bacillus thuringiensis  toxin 
that were primarily developed for freshwater use are less effective against  Ae. 
aegypti  in brackish water at high salinities [ 17 ]. Controlling pre-imaginal stages of 
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the vectors in brackish water may therefore require the development of specifi c 
larvicides or larvicide formulations. Larvivorous fi sh and predatory mosquito larvae 
that are effective in controlling vector larvae in brackish water [ 18 ,  27 ] are other 
measures that can be utilised in brackish water habitats in coastal areas. 

 The monitoring of disease incidence in tropical coasts and mosquito vector 
development in coastal brackish and saline water habitats is a current defi ciency 
that needs to be redressed. The immediate extension of vector source reduction 
and management programmes to the brackish water habitats of  Ae. aegypti  and  Ae. 
albopictus  may rapidly improve disease control in coastal areas, e.g., Kurunagar 
in Jaffna, Sri Lanka, that has a high dengue incidence [ 16 ]. Larval source reduc-
tion in defi ned habitats with the cooperation of affected communities has proved 
effective in controlling dengue and chikungunya in many countries. The likely 
role in disease transmission of salinity-tolerant mosquito vectors developing in 
brackish water habitats provided by beach litter and domestic wells need to 
communicated to coastal communities at risk and their cooperation sought for 
disease    control.     

  Confl ict of Interest   The author declares no confl ict of interest in this publication.  
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    Chapter 4   
 Epidemiology of Henipaviruses 

             Stephen     Luby       and     Emily     Gurley    

          Core Message   The henipaviruses are RNA viruses whose natural reservoir is large 
fruit bats. People occasionally become infected with these viruses by being exposed 
to body fl uids of bats or other infected animals.  

 Henipaviruses are a recently discovered genus of paramyxovirus. At the time of draft-
ing this chapter three henipaviruses had been isolated: Hendra virus [ 1 ], Nipah virus [ 2 ] 
and Cedar virus [ 3 ]. The reservoir for all three isolated henipaviruses is fruit bats of the 
genus  Pteropus  in the family  Pteropodidae  [ 3 ,  4 ]. Segments of RNA closely related to 
known henipaviruses, but likely representing different species of henipavirus have been 
identifi ed from urine and saliva of  Pteropus giganteus  [ 5 ], and from feces and tissue 
samples from  Eidolon helvum , a native African fruit bat in the family  Pteropodidae  [ 6 ,  7 ]. 

 Neither Nipah nor Hendra virus causes any apparent disease in infected bats [ 4 ,  8 , 
 9 ] and likely coevolved with these bats. The ephrin-B2 and ephrin-B3  molecules which 
henipaviruses exploit to enter epithelial cells [ 3 ,  10 ] are widely conserved across 
mammals, and many mammals are therefore susceptible to henipavirus infection [ 11 ]. 

 Human infection and severe disease has been recognized occasionally with Hendra 
virus, repeatedly with Nipah virus, but has not yet been described with Cedar virus. In 
contrast to Nipah virus and Hendra virus which causes severe illness in laboratory 
animals that are experimentally infected, ferrets and guinea pigs that were infected 
with Cedar virus remained clinically well [ 3 ]. This chapter updates a previous chapter 
on the epidemiology of human henipavirus infection by these authors [ 12 ]. 
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1     Hendra Outbreaks 

 Hendra virus, previously referred to as equine morbillivirus, was fi rst identifi ed in 
an outbreak in September 1994 in Hendra, a suburb of Brisbane, Queensland, 
Australia [ 13 ,  14 ]. The fi rst recognized infection occurred in a pregnant mare that 
was staying in an open paddock when noted to be ill. The mare was moved into a 
stable in Hendra and died within 2 days. Between 8 and 11 days after the mare’s 
death 18 other horses residing in or near the stable became ill. Affected horses had 
depression, loss of appetite, fever, ataxia, tachycardia, tachypnea, dyspnea, and a 
copious frothy nasal discharge. Among 18 horses with clinical illness, 14 died, 12 
horses from the Hendra stable, 1 horse staying in the paddock adjoining the stable 
and 1 horse living on a neighboring property that had very close contact with horses 
from the Hendra stable. Autopsy fi ndings from the horses were notable on gross 
pathology for heavy edematous lungs with hemorrhage and froth in the airway. The 
histopathological fi ndings suggested interstitial pneumonia, with focal necrotizing 
alveolitis, and syncytial giant cells within the vascular endothelium [ 1 ]. 

 Two employees at the stable, a 40-year-old male stable hand and a 49-year-old 
male horse trainer had particularly close contact with the index mare during the fi nal 
stages of her fatal illness. The horse trainer, whose hands and arms had abrasions, 
attempted to force feed the mare by placing his bare hands with food into the sick 
mare’s mouth. Both the stable hand and the horse trainer became ill 5–6 days after 
the death of the mare with fever, myalgia, headaches, lethargy, and vertigo. The 
stable hand remained lethargic for several weeks but eventually recovered. The 
horse trainer developed progressive respiratory failure and died. His autopsy fi nd-
ings were consistent with interstitial pneumonia, with focal alveolitis and syncytial 
formation [ 14 ]. An identical virus which was ultimately named Hendra virus was 
grown from samples from both the affected horses and the affected people [ 1 ]. 

 Since its identifi cation and the fi rst two recognized human infections, fi ve addi-
tional human infections with Hendra virus have been recognized, all in Queensland, 
Australia, though Hendra virus infection of horses has also been identifi ed in New 
South Wales, Australia [ 15 ]. The third person with recognized Hendra infection was 
a 35-year-old male who lived on a horse stud farm [ 16 ]. He had cared for two sick 
horses, one with acute respiratory distress and the other with a rapid onset of neuro-
logical symptoms. Both horses died. He assisted a veterinary surgeon during the 
necropsy of the two horses. Throughout caring for the horses and the necropsy the 
assistant never wore gloves, mask or protective eyewear. A few days after assisting 
with the autopsies he became ill, and sought medical attention. Subsequent PCR 
evaluation of serum samples from that illness amplifi ed a 500 nucleotide sequence 
of the matrix gene of Hendra virus. 

 McCormack and colleagues evaluated people who had contact with Hendra 
infected humans and horses during these fi rst two recognized outbreaks of Hendra. 
They collected serum samples from 159 people who had contact with Hendra 
infected human patients, 16 who participated in necropsies on Hendra virus infected 
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horses, 6 who had other close contact with Hendra infected horses and 113 who had 
other variable contact with horses [ 17 ]. None of the tested study subjects had neu-
tralizing antibody to Hendra virus. 

 The fourth recognized human infection with Hendra occurred in a recent veteri-
nary graduate who conducted a limited autopsy on a 10-year-old horse that died of 
a rapidly progressive respiratory illness with large amounts of blood stained frothy 
nasal secretions [ 18 ]. Although she initially wore gloves, she soon removed them 
because they were not appropriately designed and had become contaminated inside. 
She did not use any other personal protective equipment. She reached deep into the 
carcass to examine internal organs and became heavily contaminated with the 
horse’s body fl uids. After completing the autopsy, the veterinarian returned home 
and showered. Seven days later she developed a dry cough, sore throat, fever, body 
aches, and fatigue. She recovered after 8 days. Serial serological samples demon-
strated seroconversion of IgM and IgG antibodies against Hendra virus. The two 
autopsy assistants and an adult family member who held the dying animal’s head 
and were exposed to frothy bloody nasal secretions did not develop clinical illness 
and were seronegative for Hendra virus infection [ 18 ]. 

 The fi fth and sixth recognized human infections with Hendra virus were a 
33-year-old male veterinarian and a 21-year-old female veterinary nurse who 
worked at a veterinary practice in Thornlands, Queensland during an outbreak of 
Hendra virus that affected fi ve horses in the practice [ 19 ]. Both the veterinarian 
and the nurse performed nasal cavity lavage to a horse during the 3 days before 
the horse developed symptoms of ataxia, depression, and disorientation and was 
later confi rmed to be infected with Hendra virus [ 20 ]. The veterinarian developed 
fever, myalgia, and headache which progressed to confusion, ataxia, respiratory 
failure, and death. The nurse developed fever, confusion, and ataxia. She survived 
with substantial neurological defi cits. Both the veterinarian and nurse had Hendra 
virus RNA detected by reverse transcription PCR from both serum and nasopha-
ryngeal aspirate specimens. The outbreak investigation identifi ed 83 other people 
who had contact with the sick horses. Sixteen reported mild symptoms, but none 
developed a clinical illness. None had Hendra virus RNA or Hendra antibodies. 
Among the 28 persons who reported contact with potentially infected equine body 
fl uids only the two cases developed Hendra virus infection. One veterinary worker 
who had a percutaneous blood exposure from an infected horse also had no evi-
dence of infection. 

 The seventh recognized human infection with Hendra virus was a veterinarian 
who examined a horse that died the next day. A pony and a horse on the same prop-
erty died of confi rmed Hendra infection in the subsequent 11 days [ 21 ]. 

 These seven people infected with Hendra virus were infected through contact 
with only fi ve Hendra virus infected horses. Most infected horses do not transmit 
Hendra virus to people. Indeed, of the 84 recognized equine Hendra virus infections 
through July 2013, only 5 have resulted in human infection [ 15 ,  22 ]. In the origi-
nally identifi ed outbreak in the Hendra stable, all of the infected horses developed 
illness within one incubation period (8–11 days after the death of the index mare). 
This suggests that the mare was a superspreader [ 23 ], though we do not know if this 
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exceptionally effi cient transmission was due to unusual viral shedding in this mare, 
care practices by its animal handlers or both. The absence of a successive wave of 
infection among horses, and the low attack rate of Hendra virus among people who 
had contact with Hendra virus infected horses suggest that such superspreaders are 
exceptional. All seven recognized human cases of Hendra virus had intimate contact 
with Hendra virus infected horses, usually with heavy exposure to respiratory secre-
tions and without wearing personal protective equipment. Other people with close 
contact with these same horses did not develop Hendra virus infection. These obser-
vations suggest that Hendra virus is not easily transmitted from horse to human. It 
apparently requires a horse that is an unusually effi cient transmitter and a person 
with a high exposure to infectious secretions. 

 All humans confi rmed with Hendra virus infections had contact with Hendra 
virus infected horses. The absence of human cases among healthcare workers and 
among family members suggests that Hendra virus is not easily transmissible from 
person to person. Selvey and colleagues identifi ed 128 people who cared for 
Pteropid bats, the wildlife reservoir of Hendra virus [ 24 ]. The bat carers included 
volunteers who cared for injured or orphaned bats and professionals who cared for 
captive bats. Bat carers had a median 48 months of bat contact. Seventy-four per-
cent reported daily contact with fl ying foxes. Seventy-four percent reported having 
been bitten, 88 % scratched, and 60 % reported exposure to fl ying fox blood. None 
of the bat carers tested positive for antibodies to Hendra virus. While, direct trans-
mission of Hendra virus from fl ying foxes to humans could not be excluded, the 
study suggested that it was extremely rare.  

2     Nipah Virus Outbreaks 

2.1     Malaysia/Singapore 

 Human Nipah virus (NiV) infection was fi rst recognized in a large outbreak in pen-
insular Malaysia from September 1998 through May 1999 [ 25 – 27 ]. The initial 
human cases were identifi ed among pig farmers who lived near the city of Ipoh 
within the state of Perak in northwestern peninsula Malaysia in late September 
1998. Patients presented with fever and headache. Over half developed a reduced 
level of consciousness; 42 % had seizures [ 28 ]. Among 28 early cases, 4 had IgM 
antibodies against Japanese encephalitis. The government declared the outbreak 
was due to Japanese encephalitis and initiated widespread mosquito control mea-
sures. By December 1998 larger clusters of similar cases were reported within the 
Port Dickson District of Negri Sembilan, 300 km south of Ipoh [ 29 ]. In March 1999 
a novel paramyxovirus was isolated from the cerebrospinal fl uid of a patient from 
Sungai Nipah village [ 2 ] that was confi rmed to be the cause of the outbreak [ 25 ]. 
Ultimately the Malaysian Ministry of Health reported 283 cases with 109 (39 %) 
fatalities [ 27 ]. 
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 Parashar and colleagues conducted a case–control study to explore the risk 
 factors for human illness with NiV during the outbreak [ 30 ]. They enrolled 110 NiV 
antibody confi rmed cases from Port Dickson and two sets of controls, 147 commu-
nity farm controls from among persons who either lived or worked on pig farms 
with no reported human encephalitis cases, and 107 case-farm controls who were 
selected from among NiV antibody negative persons who lived on farms where 
there was a known case of human NiV infection. Case patients were more likely 
than community farm controls to report increased numbers of sick or dying pigs, 
dogs and chickens on their farms. Case patients were more likely than case farm 
controls to have direct contact with pigs that appeared sick and to have close contact 
with pigs through feeding pigs, processing baby pigs, assisting in breeding of pigs, 
assisting in birth of pigs, injecting or medicating pigs, and handling dead pigs. 

 In contrast to the severe illness manifested by Hendra virus infected horses, most 
pigs infected with NiV had mild illness. Forty-one percent of human NiV infected 
cases who worked on pig farms reported no increase in sick or dying pigs on their 
farm [ 30 ]. Case fatality among adult infected pigs was low, ranging from <1 to 5 % 
[ 31 ]. Among three pigs infected with NiV through experimental oral inoculation or 
sharing a cage with an inoculated pig, all developed asymptomatic infections [ 32 ]. 
A subset of NiV infected pigs were severely affected and developed fever, agitation, 
trembling, and twitching accompanied by rapid labored respirations, increased 
drooling and a non-productive loud barking cough [ 31 ]. Pathological examination 
of severely affected pigs demonstrated extensive involvement of the lungs with a 
giant cell pneumonia with multinucleated syncytial cells containing NiV antigen in 
the lungs and epithelial cells lining the upper airways [ 25 ]. NiV was recovered from 
respiratory secretions of infected pigs, and NiV antigen was detected in renal tubu-
lar epithelial cells [ 25 ,  32 ]. 

 Between March 10 and 19, 1999 eleven workers in one of Singapore’s abattoirs 
developed NiV associated with encephalitis or pneumonia [ 26 ]. One worker died. 
Compared to controls who were also abattoir workers, cases were more likely to be 
exposed to pig urine or feces from pigs that had been imported from Malaysia dur-
ing the Malaysian NiV outbreak. NiV RNA recovered from autopsy specimens 
from the one worker who died, had a nucleotide sequence that was identical to the 
sequences of NiV isolates from humans and from pigs in Malaysia [ 26 ]. 

 The isolation of NiV from pigs’ lungs and respiratory secretions combined with 
the observation that human cases of NiV infection had closer contact with pigs and 
so more contact with pigs’ secretions and excretions than controls suggests that NiV 
was transmitted from infected pigs to humans through contaminated saliva and pos-
sibly urine. The human outbreak of NiV infection ceased after widespread deploy-
ment of personal protective equipment to people contacting sick pigs, restriction on 
livestock movements, and culling over 900,000 pigs [ 33 ]. Since the outbreak ended 
through December 2014 no human or porcine NiV infections have been reported 
from Malaysia. 

 Mathematical modeling suggests that multiple spillovers into the pig population 
were necessary to create a dynamic population with suffi cient newly susceptible 
pigs to sustain NiV transmission within pigs for months [ 34 ]. All human NiV 
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 infections in the outbreak in Malaysia/Singapore in 1998–1999, may have been 
linked to a single NiV transmission from an infected bat to an immunologically 
primed pig population, leading to a sustained porcine epidemic which in turn led to 
a human epidemic. NiV isolates from pigs and people were nearly identical [ 25 ,  35 ]. 

 Not all people infected with NiV in Malaysia had contact with pigs. In the Port 
Dickson case control study, two human NiV infected cases reported no contact with 
pigs [ 30 ]. KS Tan provided details on two additional NiV patients who had no direct 
contact with pigs [ 36 ]. One NiV patient who did not enter or go near a pig farms 
prior to his illness, worked repairing pig cages. His illness suggests that pig secre-
tions/excretions remain infectious at least for hours and perhaps for days. The Port 
Dickson case control study noted an increased risk of dying dogs on farms where 
NiV cases were confi rmed [ 30 ]. Serological studies in dogs in Malaysia demon-
strated that they were commonly infected [ 37 ,  38 ]. One NiV patient who had no pig 
exposure worked as a cabinet maker and lived near a pig farm. His two pet dogs 
became seriously ill and died before the patient became ill with NiV infection [ 36 ]. 

 There was limited evidence of person-to-person transmission of NiV in 
Malaysia. Multiple cases in families may have resulted from shared exposures. 
A large cohort study enrolled healthcare workers from the three hospitals that 
admitted over 80 % of patients with suspected NiV encephalitis [ 39 ]. The study 
enrolled 363 health care workers who provided direct patient care to encephalitis 
patients. More than 60 % reported contact with encephalitis patients before the 
institution of infection control measures on March 19, 1999. Many reported epi-
sodes of high risk exposure including skin exposure to body fl uids of NiV infected 
patients ( n  = 89), splash of patient body fl uids to mucosal membranes ( n  = 39), or 
needle stick injuries ( n  = 12). None reported any serious illness, encephalitis or hos-
pital admission. None of the fi rst serum samples were positive by EIA for NiV IgG 
or IgM antibody. In the second round of antibody testing conducted 30 days later 3 
of 293 serum samples (1 %) from exposed health care workers were positive for 
NiV IgG antibody, though none had detectable IgM and all three were negative for 
anti-NiV neutralizing antibodies. All three were nurses who cared for outbreak 
related encephalitis patients for more than 30 days compared with a mean of 10 
days in nurses with negative IgG antibodies [ 39 ]. One of the nurses with NiV IgG 
antibody reported a febrile illness before the fi rst serum sample was obtained, and 
the second reported a febrile illness between the two serum samples. One of the 
nurses reported a mucosal splash exposure. In a separately reported investigation a 
nurse who cared for hospitalized NiV infected patients and had antibody against 
NiV but was asymptomatic, had MRI fi ndings characteristic of NiV infection [ 40 ]. 
Eleven years after the Malaysian outbreak a 32-year-old women presented with 
characteristic MRI fi ndings of late onset NiV encephalitis and NiV IgG antibody 
[ 41 ]. Her family had stopped pig farming and moved away from the outbreak area 
10 years before the outbreak, but she visited her aunt and uncle during the NiV 
outbreak and cared for her aunt who became ill and died. The woman reported no 
contact with pigs or other domestic animals.  
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2.2     NiV Epidemiology India/Bangladesh 

 The epidemiology of NiV in Bangladesh/India has been quite different than in 
Malaysia. Since 2001 human infections with Nipah virus have been recognized 
in South Asia most years (Fig.  4.1 ). The cases in Bangladesh have largely clustered 
in western/northwestern Bangladesh (Fig.  4.2 ). The two recognized Indian out-
breaks occurred in West Bengal, remarkably near where cases have been repeatedly 
identifi ed in Bangladesh (Fig.  4.2 ).   

2.2.1     NiV Transmission Through Date Palm Sap 

 Outbreak investigations in Bangladesh have identifi ed drinking raw date palm sap 
as the most common pathway of NiV transmission from  Pteropus  bats to people. In 
the 2005 outbreak investigation in Tangail, Bangladesh NiV cases were 7.9 times 
more likely to report drinking raw date palm sap in the 10 days before they devel-
oped illness than neighborhood matched controls [ 42 ]. Similarly in the 2008 out-
break in Manikgonj and Rajbari districts in Bangladesh cases were 25 times more 
likely than controls to report drinking raw date palm sap [ 43 ]. In outbreaks in 
Faridpur, Bangladesh in 2010, and in Lalmonirhat in 2011 cases were again signifi -
cantly more likely than controls to report drinking raw date palm sap in the 2 weeks 
prior to the onset of illness [ 44 ,  45 ]. The outbreaks of human NIV infection in 
Bangladesh and India coincide with the date palm sap harvesting season [ 46 ]. 

 In Bangladesh date palm sap harvesters collect sap beginning in December with 
the fi rst cold night and continue collecting most regularly through January and early 
February, though some harvesters continue to collect in at least a few trees through 

  Fig. 4.1    Human infections with Nipah virus in South Asia 2001–2013       
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March and early April. At the beginning of the season, the bark is shaved off of one 
side of the tree ( Phoenix sylvestris ) near the top in a V shape and a small hollow 
bamboo tap is placed at the base of the V [ 47 ]. In the late afternoon, the date palm 
sap harvester climbs the tree, scrapes the area where the bark is denuded so the sap 
can fl ow freely, and ties a 2–4 l clay pot underneath the tap. During the night as the 
sap rises to the top the tree, some sap oozes out from where the bark is denuded, 
fl ows through the tap and drips into the clay pot. Palm sap collectors climb the trees 
at daybreak to gather the clay pots. 

 Most date palm sap in Bangladesh is cooked and made into molasses that is a 
popular sweetener for cakes and other desserts [ 47 ,  48 ]. A smaller amount of date 
palm sap is sold fresh for immediate consumption. Indeed, after a few hours, likely 

  Fig. 4.2    Location of Nipah cases, Bangladesh/India 2001–2013       
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because of fermentation, the date palm sap is less sweet and sap sellers have to 
lower the price. Collectors will often share fresh sap as a treat with family members 
and walk house to house near where the sap was collected and offer to sell it to 
neighbors. 

 Sap harvesters and villagers report that bats and other animals sometimes visit 
the trees during sap collection. Sap harvesters commonly fi nd bat excrement outside 
of the clay pot or fl oating in the sap and occasionally fi nd drowned dead bats fl oat-
ing in the pots [ 42 ,  47 ]. Infrared wildlife photography confi rms that  Pteropus  bats, 
the presumed reservoir of NiV in Bangladesh, commonly visit date palm trees dur-
ing collection and lick the sap stream [ 49 ]. Infrared cameras placed in the seven 
trees that were the source of fresh date palm sap drunk by the human NiV cases in 
the Manikgonj/Rajbari outbreak in 2008, identifi ed an average of four  Pteropus  bat 
visits per tree where the bat licked the sap stream, per night of observation [ 43 ]. 

 Date palm sap is a plausible vehicle for transmission of NiV from  Pteropus  bats 
to people.  Pteropus  bats occasionally shed NiV in their saliva [ 8 ,  50 ,  51 ]. The infra-
red camera studies confi rm that  Pteropus  bats directly lick raw date palm sap and 
occasionally urinate in the sap collection pot [ 49 ]. NiV inoculated in mango fl esh, 
mango juice, pawpaw juice, and lychee juice for up to 3 days was recoverable at 
high concentrations [ 52 ]. NiV that was inoculated into a solution of 14 % sucrose 
and 0.21 % bovine serum albumin to mimic date palm sap, survived for 8 days at 
22 °C with no reduction in titer [ 53 ]. To date, in outbreak investigations NiV has not 
been isolated directly from date palm sap [ 43 ]. This is not surprising, because 
 Pteropus  shedding of NiV is intermittent [ 54 ], and with the median 10 day incuba-
tion period from exposure to date palm sap to illness [ 43 ], and the time required to 
recognize an outbreak of NiV, outbreak investigation teams have only been able to 
collect sap samples from trees weeks after the likely transmission event. 

 Some date palm sap in Bangladesh is fermented into palm wine ( tari ). One NiV 
case in India [ 55 ] and an outbreak in Bangladesh [ 56 ] have been tied to drinking this 
fermented date palm sap. Apparently, at least in some cases, the alcohol content of 
the fermented sent sap is insuffi cient to inactivate the virus. 

 Other direct pathways of NiV transmission from  Pteropus  to people have not 
been confi rmed. In the 2004 outbreak in Rajbari District, Bangladesh, cases were 
more likely to climb trees than controls (83 % versus 51 %,  p  = 0.025) [ 57 ]. It is 
possible that children climbing trees had direct contact with NiV contaminated bat 
urine or bat saliva that subsequently infected their respiratory or gastrointestinal 
tract and led to infection; however, this pathway of transmission has been assessed 
but not implicated in any of the subsequent outbreak investigations through 2014. 
Moreover, 91 % of cases in the Rajbari outbreak reported drinking raw date palm 
sap [ 57 ]. The father of two of the cases was a date palm sap harvester and the out-
break was centered on his friends and family (Emily Gurley personal communica-
tion). Although there was insuffi cient statistical power to implicate date palm sap in 
the Rajbari outbreak investigation (91 % versus 72 %,  p  = 0.328), the subsequent 
repeated implication of date palm sap as the vehicle of transmission in other out-
breaks, and the high level of exposure among cases (91 %) in Rajbari suggests that 
fresh date palm sap was the primary vehicle of NIV infection in this outbreak.  
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2.2.2     NiV Transmission from Domestic Animals 

 A second route of transmission for NiV from bats to people in Bangladesh is via 
domestic animals. Fruit bats commonly drop partially eaten saliva-laden fruit. 
Domestic animals in Bangladesh forage for such food. Date palm sap that is con-
taminated with bat feces and so is unfi t for human consumption is also occasionally 
fed to domestic animals [ 47 ]. Animal husbandry practices in Bangladesh are quite 
different than in Malaysia. In Malaysia, thousands of pigs were raised together on 
large factory farms. By contrast, in Bangladesh many rural families keep just a few 
domestic animals. If a domestic animal in Bangladesh contracts NiV, there are few 
susceptible mammals physically close enough to become infected, so rather than 
sustained transmission as was observed in the Malaysian outbreak, in Bangladesh 
the chain of transmission would be expected to be short. 

 Nevertheless, there have been human NiV cases linked to apparent domestic 
animal infections in Bangladesh. The index case in the Meherpur District 2001 
outbreak developed illness on April 20, the latest post winter onset of any con-
fi rmed NIV outbreak in Bangladesh, past the end of the date palm sap season in 
most communities. NiV cases in Meherpur were eight times more likely to report 
contact with a sick cow than controls [ 58 ]. In the Naogaon outbreak in 2003, NiV 
cases were six times more likely than controls to report contact with a pig herd that 
visited the community 2 weeks before the human outbreak [ 59 ]. In 2004 a child 
developed NiV infection 2 weeks after playing with two goats that developed an 
illness that began with fever, and progressed to diffi culty walking, frothing at the 
mouth and death [ 60 ].  

2.2.3    NiV Person-to-Person Transmission 

 In contrast to limited evidence of person-to-person transmission of NiV in Malaysia, 
person-to-person transmission of NiV has been repeatedly identifi ed in Bangladesh/
India. The fi rst NiV outbreak recognized in the Indian subcontinent was a large 
outbreak affecting 66 people in Siliguri, India in 2001. The outbreak apparently 
originated from an unidentifi ed patient admitted to Siliguri District Hospital who 
transmitted infection to 11 additional patients, all of whom were transferred to other 
facilities. In two of the facilities, subsequent transmission infected 25 staff and 8 
visitors [ 61 ]. 

 The longest sustained chain of person-to-person transmission of NiV so far 
identifi ed in Bangladesh occurred in an outbreak in Faridpur District in 2004. 
Friends and family members who provided direct care to NiV infected patients, or 
helped to carry them or transport them to health facilities when they were near 
death, sustained a chain of transmission through fi ve generations [ 62 ] (Fig.  4.3 ). 
One NiV patient was a popular religious leader who was visited by many of his 
family members and followers when he became ill. Twenty-two of these visitors 
developed NiV infection.  
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 While the outbreaks in Siliguri in 2001 and Faridpur in 2004 were the largest 
examples, person-to-person transmission has been identifi ed in other outbreaks in 
Bangladesh [ 45 ,  63 ]. In a review of the 122 NiV cases identifi ed in Bangladesh from 
2001 through 2007, 62 (51 %) developed illness 5–15 days after close contact with 
another NiV patient [ 46 ]. 

 Outbreak investigations in Bangladesh suggest that respiratory secretions are the 
primary vehicle of person-to-person transmission of NiV. Patients in Bangladesh 
were more likely to have respiratory symptoms then were patients in Malaysia. In a 
review of cases in the fi rst four recognized outbreaks in Bangladesh, 62 % of patients 
had cough and 69 % had respiratory diffi culties [ 64 ]. By contrast, in Malaysia only 
14 % of patients presented with cough [ 28 ]. In the 2004 Faridpur outbreak, cases 
were more likely than controls to report touching an NiV infected patient who later 
died (OR 5.5, 95 % CI 2.1, 16) [ 62 ]. Similarly, in Thakurgaon in 2007 six family 
members and friends who cared for an NiV infected patient developed NiV infec-
tion. Cases were more likely than controls to have been in the same room when the 
index case was coughing (100 % versus 0 %,  p  = 0.04) [ 63 ]. Across all recognized 
outbreaks in Bangladesh from 2001 through 2007, NiV patients who had diffi culty 
breathing during their illness were more likely to transmit NiV than NiV patients 
who did not have diffi culty breathing (12 % versus 0 %,  p  = 0.03) [ 46 ]. 

 NiV RNA has been frequently identifi ed in the saliva of NiV patients [ 65 ,  66 ]. In 
Bangladesh family members and friends without health care or infection control 
training provide nearly all the hands on care to ill patients both at home and in the 
hospital [ 67 ]. During the Faridpur 2004 outbreak care providers shared eating 

  Fig. 4.3    Chain of person-to-person transmission in NiV outbreak in Faridpur, Bangladesh, 2004. 
(From [ 60 ])       
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 utensils, ate leftovers of food offered to NiV patients, commonly slept in the same 
bed with a sick, coughing NiV patient, and often fed and hugged the dying patient 
[ 68 ]. During an outbreak in Faridpur in 2010 a person whose only contact with an 
NIV infected patient was cleaning the corpse in preparation for burial became 
infected with NIV [ 45 ].  

2.2.4    Other Plausible Pathways of NiV Transmission 

 There are a number of plausible pathways of NiV transmission from  Pteropus  bats 
to people that have been explored in outbreak investigations in Bangladesh, but have 
not been implicated as pathways of transmission. One of these pathways is living 
underneath a bat roost. Pteropus bats intermittently shed NiV in their urine [ 54 ]. 
Although some homes are located quite close to bat roosts, living near a bat roost 
has not been identifi ed frequently in outbreak investigations, and has not been found 
more commonly among cases than controls [ 60 ]. 

 Another plausible pathway of transmission is consumption of bat-bitten fruit. 
Both birds and  Pteropus  bats often drop fruit after taking a single bite. In Bangladesh, 
where child malnutrition is widespread [ 69 ], ripe tasty dropped fruit is commonly 
picked up and consumed by rural Bangladeshi residents. In each of the outbreak 
investigations in Bangladesh consumption of dropped fruit has been evaluated as a 
potential exposure, but in none of the outbreaks have cases been reported to have 
eaten dropped fruit signifi cantly more commonly than controls [ 70 ].    

3     Open Questions in Henipavirus Epidemiology 

 Both Hendra and Nipah virus are widely distributed among  Pteropus  bats, but spill-
over occurs in a much more restricted region. Apparently the frequency of a specifi c 
human behavior that is uncommon across the human population but more common 
in these areas provides an opportunity for henipavirus transmission. In Queensland, 
the popularity of horse racing leads to many horses sharing the natural environment 
with  Pteropus  bats, and people come in close contact with symptomatic ill horses. 
In Bangladesh,  Pteropus  bats are present across the entire country, and presumably 
shed virus throughout the year [ 54 ]. We hypothesize that people living in the out-
break infected regions in Bangladesh are more likely to drink fresh date palm sap or 
have other activities that put them in more contact with bat secretions compared 
with people living in other regions with  Pteropus  bats, but without recognized 
human NiV cases. 

 Among the most important open question in Henipavirus epidemiology is esti-
mating the magnitude of risk that a strain of Nipah virus would develop suffi cient 
capacity for person-to-person transmission to cause a high mortality global out-
break [ 71 ]. NIV is a stage III zoonotic disease that is an agent that normally lives in 
its animal reservoir, but occasionally spills over into people and is capable of 
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 non- sustained person-to-person transmission [ 72 ]. Because its basic reproductive 
 number ( R  0 ), i.e., the average number of people who a new case infects is <1, spill-
overs result in stuttering chains of person-to-person transmission. While stage III 
zoonotic agents are infecting humans, the virus comes under selection pressure 
favoring characteristics that facilitate person-to-person transmission [ 73 ]. Humanity 
has a deadly historical example of a different zoonotic paramyxovirus, rinderpest, 
whose ancestor virus spilled over into humans as measles virus between the elev-
enth and twelfth century [ 74 ] and was subsequently a major cause of human mortal-
ity for centuries [ 75 ]. The Henipaviruses are widely distributed across species of 
bats and there is no evidence that they cause illness in bats [ 4 ,  8 ]. Thus, these viruses 
likely coevolved with the bats. Date palm sap has been collected in the area that is 
now Bangladesh for centuries [ 76 ] and so while NiV disease is newly recognized, 
there have likely been occasional human infections for a long time, none of which 
have resulted in pandemic transformation of the virus. Nevertheless, population 
density in South Asia has reached unprecedented levels, and so there is increased 
opportunity for sustained person-to-person transmission. Better understanding the 
frequency of spillover of Henipavirus from bats to other mammals in the environ-
ment, and the rate of change in adaptation of those viruses can provide a more pre-
cise estimate of the risk of a NIV pandemic, which, in turn, could prioritize and 
inform policy to reduce risks. 

 A related question to pandemic risk is how much strain differences in Henipavirus 
are responsible for observed epidemiological differences. There is substantial 
 heterogeneity among Nipah strains in Bangladesh compared with much less strain 
heterogeneity associated with the single large Nipah outbreak in Malaysia [ 77 ]. 
Nipah patients in Bangladesh were much more likely to have severe respiratory 
symptoms and much more likely to transmit Nipah person-to-person compared with 
Nipah patients in Malaysia [ 64 ]. In animal experiments inoculating Syrian hamsters 
and African green monkeys, animals exposed to a lower dose of Nipah virus were 
more likely to develop encephalitis; animals exposed to a higher dose of Nipah virus 
were more likely to develop severe respiratory disease [ 78 ,  79 ]. In human infections 
it is unclear if dose of exposure increases the proclivity for respiratory infection and 
subsequent person-to-person transmission. Alternatively, specifi c risk behaviors, 
especially the frequency of intimate personal contact with people who are dying in 
Bangladesh [ 68 ] may be the primary determinant of person to person transmission. 
It is also possible that some strains of Nipah that have characteristics which favor 
pulmonary tropism or other characteristics that facilitate person-to-person transmis-
sion. We do not yet have enough strains of henipavirus, paired with careful epide-
miological data to resolve these questions, but continued careful outbreak 
investigation and collection of additional isolates could provide additional insight. 
If there are structural differences in viral proteins that facilitate person-to-person 
transmission, then better understanding the variability of these structures and capac-
ities and their rate of change in different contexts can help to estimate pandemic risk 
and provide targets for intervention.  
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4     Conclusion 

 Careful investigation over the last 20 years have clarifi ed the basic transmission 
pathways of Hendra and Nipah virus infection, and found evidence of other henipa-
viruses. These organisms are not easily transmitted to people. When humans do 
become infected, only occasional superspreaders infected with NiV transmit illness. 
To date transmission has not been suffi ciently effi cient to maintain person-to-person 
transmission. However, these agents are newly recognized. Human infection with 
either Hendra virus or Nipah virus is commonly fatal and their pandemic potential 
is poorly defi ned. Henipaviruses warrant ongoing public health and scientifi c 
attention. 
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    Chapter 5   
 Respiratory Syncytial Virus 

             Gary     Hellermann     and     Shyam     Mohapatra    

          Core Message   Since its discovery in 1956, respiratory syncytial virus, RSV, has 
been the subject of extensive research and study; yet it has stubbornly resisted our 
efforts to create effective vaccines and drugs to prevent or treat RSV infection. 
At the present time, our knowledge of RSV biology and the intimate ways the virus 
interacts with its host and bends the immune response to its advantage has matured. 
That knowledge combined with mind-boggling new advances in nanotechnology, 
nanomaterials, and delivery platforms makes the current time perhaps the most 
exciting and promising in RSV history.  

1     Introduction 

 Respiratory syncytial virus, RSV, was discovered nearly 60 years ago as the caus-
ative agent of human respiratory tract disease, and it still remains a serious threat to 
infants, immunocompromised persons, and the aging adult population. Although 
infants and young children are still the main target of RSV, pneumonia in the elderly 
is being found more frequently associated with RSV infection and leads to more 
deaths in that population than among young children [ 1 – 3 ]. Approximately 3.4 mil-
lion people throughout the world are hospitalized every year with pneumonia or 
bronchitis attributed to RSV infection and nearly 17,000 die in the USA alone [ 4 ,  5 ]. 
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The cost of morbidity from RSV in terms of lost productivity and impaired quality 
of life is astronomical. 

 Prevention of RSV infection has been the goal of research and clinical trials for 
many decades, but the virus has proven to be a tough adversary. Vaccination of 
children with formalin-inactivated RSV was tried unsuccessfully in the 1960s and 
received a major setback when it was shown that the immune response to the vac-
cine actually exacerbated the disease. Since then, researchers have proceeded with 
caution, testing recombinant antigen combinations, adjuvants, and immune system 
boosters with some success in animal models. Other prophylactic compounds such 
as the humanized monoclonal antibody palivizumab (Synagis) that binds to an epi-
tope in the viral F protein can be used to reduce RSV pathology in at-risk infants, 
but it is too costly for routine use and has not been approved for RSV prevention in 
the elderly [ 6 ,  7 ]. In terms of therapeutic intervention, the only approved antiviral 
drug in the USA is ribavirin which lowers overall mortality among transplant 
patients but it has serious side effects at the doses needed to kill RSV and is not that 
effective [ 8 ]. 

 Data on RSV-host interactions have been accumulating from years of study. 
Today we have a much better idea of potential viral targets such as the virus-cell 
fusion process for prophylaxis to prevent entry of RSV into host epithelial cells. 
Here we review the current fi eld of RSV research and highlight some of the more 
promising current strategies for RSV prophylaxis with a special emphasis on the 
elderly who are making up an increasingly larger portion of the world’s population.  

2     Epidemiology 

 RSV is one of the most important respiratory pathogens targeting all age groups; 
however, infants (<18 months old), immunosuppressed individuals, and the elderly 
are the groups who experience the most severe aspects of the disease—bronchiolitis 
and pneumonia [ 9 ]. The greatest number of hospitalizations for complications of 
RSV infection occur in infants 2–3 months of age [ 3 ] and RSV bronchiolitis imposes 
a severe burden upon healthcare services especially in developing countries. 
Worldwide, about fi ve million infants are hospitalized annually for severe RSV 
infection resulting in more infant deaths than infl uenza [ 10 ,  11 ]. Costs related to 
emergency department visits amounted to approximately 202 million US dollars 
between 1997 and 2000 [ 12 ]. 

2.1     Seasonality 

 Outbreaks of RSV infection are seasonal, lasting for about 4 months with peaks 
occurring in the northern hemisphere between November and March and in the 
southern hemisphere between July and September [ 13 ,  14 ]. Records of RSV 
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morbidity and mortality are not kept consistently, especially in resource-poor 
 developing countries, but it is estimated that RSV infection worldwide results in 
about 100,000 hospitalizations and 4,500 deaths annually [ 5 ]. World mortality esti-
mates range as high as four million deaths annually with no indication of improve-
ment in many areas [ 11 ]. 

2.1.1     USA 

 The average length of the RSV season is 15 weeks [ 13 ] but peak times and rates can 
vary geographically throughout the country [ 2 ]. Southern states tend to show the 
earliest onset of the RSV season while cities in the Midwest experience the latest. 
For example, the RSV season in parts of Florida can start as early as July and con-
tinue into March.  

2.1.2     Europe 

 The pattern of RSV epidemics in Europe differs from that in the Western hemi-
sphere in that there are cycles of 9 and 15 months that recur every 2 years [ 15 ]. This 
2-year cycle is also seen in Germany, Switzerland, and Scandinavia, but the pattern 
is 23–25 months. The incidence of severe RSV infection in children less than 2 
years of age in western Russia is similar to that in other European countries, but the 
peak appears to be later in the season, more towards the spring. Geography again 
plays a role in RSV epidemics in the UK, where the cycle reverts to the monophasic 
pattern seen in the USA [ 16 ].  

2.1.3     Southern Hemisphere 

 In Australia, the majority of the 100,000 annual cases of RSV lower respiratory tract 
infections (LRTIs) occur in winter between July and September [ 17 ].   

2.2     RSV in Developing Countries 

 Limited record keeping and availability of testing labs hinder the picture of RSV 
epidemics, incidence, seasonality, and mortality in the developing world. The World 
Health Organization has sponsored studies in Africa and Asia targeting respiratory 
tract infections in children but results are far from complete and accurate. Hospital- 
based studies reported RSV as the main etiological agent in LRTIs in 6–96 % of 
cases with an average of 65 % of virus infections being RSV and associated with 
17 % of the hospitalizations. In one WHO survey of LRTIs in Africa, RSV was 
identifi ed as the culprit in 36 % of cases in Nigeria but only 6 % in Mozambique, 
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again emphasizing the importance of geography, climate, regional differences, and 
social factors in the epidemiology of RSV. Between 66,000 and 199,000 children 
die from RSV complications every year and the great majority of these deaths occur 
in resource-poor developing countries [ 5 ].   

3     RSV Biology: Host vs. Virus 

3.1     Taxonomy and Structure of RSV 

 RSV is classifi ed in the family  Paramyxoviridae  which also includes parainfl uenza 
virus, measles, and mumps virus. Viruses in this family have a genome consisting 
of a non-segmented negative-sense RNA that must be transcribed by an endogenous 
RNA polymerase to provide mRNA for translation of the viral proteins. Epithelial 
cells of the bronchioles and alveolae are the primary targets of RSV and the mecha-
nism of viral recognition and fusion with the host cells has received much attention 
in recent years as a blocking point for inhibiting viral infection [ 18 – 20 ]. The RSV 
virion is surrounded by a lipid bilayer acquired from the host plasma membrane in 
which are spikes of viral G and F glycoproteins. Recent investigations implicate the 
F protein as key to RSV binding and entry into epithelial cells, hence the relative 
success of the prophylactic anti-F monoclonal antibody, palivizumab, in preventing 
pediatric RSV infections. 

 The nucleocapsid is constructed from the N protein and contains the genomic 
RNA, the large RNA polymerase subunit L with its cofactor P phosphoprotein, and 
the anti-termination factor M2-1. The nucleocapsid is linked to the envelope via the 
M matrix protein and the virion is spherical with a diameter of 140–300 nm, 
although fi lamentous forms have also been seen. Viral genes in the negative-sense 
RNA genome are oriented 3′ to 5′ in the order NS1, NS2, N, P, M, SH, G, F, M2, 
and L. The fi rst two proteins expressed from the viral RNA, nonstructural proteins 
1 and 2 (NS1 and NS2), have been shown to suppress the host’s antiviral interferon 
response which allows RSV to rapidly spread among susceptible lung epithelial 
cells [ 21 ,  22 ]. The other proteins encoded in order on the genome participate in 
replication of the viral genome, nucleocapsid formation, encapsidation with the 
plasma membrane, and entry into host cells.  

3.2     Viral Attachment, Fusion, and Entry 

 RSV virions are only about one-hundredth the size of an epithelial cell and must 
utilize the cell’s surface proteins as docking points for fusion and entry [ 20 ]. This 
is the obvious golden point for suppressing viral infection and research is still 
being aggressively conducted to achieve this end [ 23 ]. The viral envelope G 
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glycoprotein has two variants known as A and B that account for the difference in 
RSV strains. The G proteins are thought to interact with specifi c surface mem-
brane proteins on target cells after which the viral F protein undergoes a molecular 
rearrangement that promotes fusion of the viral envelope with the plasma mem-
brane [ 19 ]. Various membrane-bound host proteins have been proposed over the 
years as primary candidates for RSV targeting, including ICAM-1, nucleolin, Toll-
like receptor 4, annexin 2, and the fractalkine receptor CX3CR1. The viral F pro-
tein is the main player in the fusion process. It possesses two heptad repeat domains 
that interact to form a helical bundle when the virion is in the proper orientation to 
the host epithelial cell and insertion of the hydrophobic region into the plasma 
membrane promotes “melting” of the envelope into the cell membrane [ 24 ]. The 
small hydrophobic, SH, protein is also found in the viral envelope but there has 
been no evidence that it is necessary for attachment or fusion of the virion to the 
target cell. 

 Among the paramyxoviruses, the structure of the F protein appears to be highly 
conserved, leading to the hopeful hypothesis that pharmacological intervention at 
the fusion event may be an effective strategy to block the infection of several differ-
ent species of virus in a way that does not permit the development of resistance. 
Recent comparisons of peptide inhibitors among Nipah, Hendra, and other family 
members suggest that there is a common fusion mechanism involving the helical 
bundles that is susceptible to interference [ 25 ].  

3.3     Cell Surface Receptors for RSV Infection 

 There does not appear to be a single cell-surface receptor for RSV. Over the years, 
primary candidates have included intercellular adhesion molecule-1 (ICAM-1), 
heparin sulfate, chondroitin sulfate, lipid rafts, and nucleolin. The viral envelope 
proteins G and F are both involved in attachment, but only F is obligatory for infec-
tion. That the G protein is important but not mandatory is shown by experiments in 
which RSV lacking G protein is still able to infect epithelial cells, but at a reduced 
level [ 26 ]. The plasma membrane-bound cell-surface glycoprotein, nucleolin, meets 
the criteria for an RSV receptor: RSV infection in vitro is inhibited by treating the 
cells with anti-nucleolin antibody, soluble nucleolin, or small interfering RNA 
against the nucleolin mRNA, and cells that are normally resistant to RSV infection 
become permissive when transfected with a plasmid-over-expressing nucleolin 
[ 27 ]. The RSV F protein immunoprecipitates with nucleolin and with ICAM-1 and 
virus lacking F are noninfective. Lay et al. [ 28 ] have proposed a model in which the 
RSV G protein fi rst attaches to negatively charged cell-surface glycosaminogly-
cans, which brings the fusion protein F into contact with nucleolin allowing it to 
undergo the conformational change that causes association with cholesterol-rich 
lipid rafts.  
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3.4     RSV Detection and Attack by the Host Immune System 

 Pattern-recognition receptors such as the Toll-like receptors (TLRs) are one of the 
molecular sentinels whose particular response signals the presence of a particular molec-
ular signature corresponding to a microbial invader. The intracellular TLRs found pri-
marily in dendritic cells are localized to the endoplasmic membrane where they are 
exposed to the cytoplasmic milieu and the transcriptional and replicative forms of RNA 
viruses [ 29 ]. Single-stranded viral RNA is recognized by TLR7/8 while TLR3 binds 
double-stranded viral RNA. TLR3 signaling does not require the adapter protein MyD88 
while TLR7/8 signaling does. Binding of RNA to the TLRs precipitates a signal cascade 
that results in activation of the interferon response factor 3 and production of the type I 
interferons, IFN-alpha/beta. 

 In addition to the TLR viral detection system, cells have a pair of cytosolic RNA- 
sensing proteins, RIG-I (retinoic acid-inducible gene-I) and MDA5 (myeloma 
differentiation- associated protein 5), that bind double-stranded viral RNA [ 30 ]. 
MDA5 is specifi c for non-triphosphorylated RNA such as that of the picornaviruses, 
while RIG-I recognizes the triphosphorylated form, which is found, for example, in 
the infl uenza virus [ 31 ,  32 ]. Binding of RNA to RIG-I causes it to interact with the 
mitochondrial antiviral signaling protein, MAVS, which forms a complex that acti-
vates the antiviral defense mechanism with production of IFN-alpha/beta and 
infl ammatory cytokines, and the induction of programmed cell death, apoptosis, of 
infected cells. There is yet another RNA-sensing molecule in the cytoplasm, LGP2 
(“Laboratory of Genetics and Physiology”-2), whose role is apparently to sequester 
viral RNA and thereby put the brakes on RIG-I/MDA5-triggered signaling [ 33 ]. 
Inhibiting LGP2 synthesis has the effect of increasing production of IFN-alpha/beta 
after viral infection [ 34 ]. 

3.4.1     RSV Subversion of the Host Antiviral Defense System 

 Viruses infecting mammalian hosts coevolved with them, inventing new ways to 
circumvent the immune system’s strategies to inactivate and eliminate the invading 
microbes. RSV has a number of tactics of its own to blunt the antiviral interferon 
response and interrupt leukocyte attack. At the 3′ end of the viral genome are two 
genes encoding nonstructural proteins, NS1 and NS2. These are the key to the sub-
version of the antiviral defenses by suppressing the interferon-alpha/beta signaling 
pathways [ 21 ]. Once RSV enters the cell, its negative-sense RNA genome is released 
and viral mRNA is produced. In the cytosol, RIG-I acts as a receptor for the viral 
RNA, and the complex in turn activates mitochondrial antiviral signaling protein, 
MAVS. MAVS triggers a signaling cascade that results in activation of the inter-
feron pathway with expression of interferon- alpha/beta, translocation of NF-kappa 
B to the nucleus and production of infl ammatory cytokines, and induction of apop-
tosis [ 35 ]. Transfection of epithelial cells with siRNA against RIG-I or MAVS 
severely limits IFN-alpha/beta production upon virus infection. 
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 NS1, the viral protein that is translated fi rst in order on the viral mRNA, is 
 localized to mitochondria where it short-circuits the MAVS-RIG-I interaction by 
binding to MAVS before RIG-I and inhibiting activation of the antiviral system 
[ 36 ]. The second viral nonstructural protein, NS2, contains 124 amino acids and 
appears to bind to RIG-I but not MAVS. The cooperative role of NS2 in subverting 
activation of MAVS signaling has not been completely worked out. NS1 and NS2 
were shown to associate under some conditions and the presence of NS2 is neces-
sary for full suppression of STAT2 [ 37 ]. Normally, MAVS/RIG-I association trig-
gers TRAF3 which results in the downstream activation of the serine/threonine 
protein kinases, IKK-epsilon and TBK-1. These in turn phosphorylate residues in 
the C-terminal region of interferon regulatory factor 3 (IRF3) and IRF7 which then 
translocate to the nucleus where they can promote transcription of the IFN-alpha/
beta genes [ 38 ]. The secreted IFNs then bind to cell-surface receptors on virus-
infected cells and signal the activation of STAT1 and STAT2 which results in expres-
sion of the whole panoply of IFN-responsive genes and induction of viral resistance. 
By preventing MAVS/RIG-I interaction, RSV subverts this defense system and 
insures its survival and rapid replication. The viral NS1 and NS2 proteins thus con-
stitute logical therapeutic targets for drugs to treat RSV infection. Short interfering 
RNAs against NS1 and NS2 combined with anti-fusion agents in nanoparticles 
could produce an RSV prophylactic formulation that is safe, relatively inexpensive, 
and very effective.  

3.4.2     Dendritic Cells: Key Watchdogs in the Host Response 
to RSV Infections 

 Dendritic cells or DCs are one of the body’s main sentinels on guard against viral 
attack in the lungs and other organs. They constitute the primary link between the 
innate and adaptive immune systems and they are often the fi rst responders when we 
become infected with RSV, producing large amounts of IFN-alpha/beta to eliminate 
the virus. There are a number of subpopulations of DCs and the type known as plas-
macytoid (pDCs), derived from bone marrow precursor cells, is one of the most 
important in terms of type I IFN production and activation of immune system cells 
[ 39 ]. pDCs are released from the bone marrow into the blood and are found in 
mucosal associated lymphoid tissue as well as spleen and lymph nodes. Through 
secretion of IFN and cytokines such as IL12 as well as their usual functions of anti-
gen presentation, pDCs can participate in both innate and adaptive immune 
responses to RSV and thus may be an important effector cell in the antiviral defense 
mechanism. 

 pDCs lack TLR3 and are resistant to RSV infection, so how is the function of 
these cells regulated? They do possess TLRs-7 and -9 and signaling through these 
plasma-membrane receptors can induce the IFN-alpha/beta cascade. Another key 
regulatory factor in pDC-mediated response to RSV appears to be the bone sialo- 
protein, osteopontin (Opn) [ 40 ]. Opn is found in several isoforms, but primarily 
as a secreted form and an intracellular form (iOpn). The intracellular variant is 
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synthesized from the same mRNA as the secreted form, but uses an alternative 
translation start site. As its name suggests, Opn is produced by bone cells, osteo-
blasts, and osteocytes, but it is also expressed in DCs and recent evidence sug-
gests that iOpn may regulate expression of TLR9 and thus the IFN-alpha 
production by pDCs, which affects the adaptive immune response to viral attack 
through induction of Th1 effector cells and memory cells [ 41 ]. 

 The normal, healthy response of the adaptive immune system’s cells to viral 
attack declines with age, but age-related deterioration of the innate antiviral sys-
tem has not been so well characterized. Analysis of RSV infection in aged mouse 
models has identifi ed a number of specifi c changes in gene expression in relation 
to changes to the activation of proinfl ammatory cytokine signaling (Fig.  5.1 ). 
Expression of 84 antiviral gene targets in RSV, strain A2-infected young and aged 
mice was compared with RT2-PCR Profi ler array analysis. (A) Twenty-seven 
genes from the PCR array analysis were found upregulated. A GeneMania net-
work map, assembled using signals that were greater than twofold. The pathway 
illustrating the networks linking genes of different innate immune mechanisms is 
shown in Fig.  5.1 . Also, aged mice infected with RSV showed decreased expres-
sion of the antiviral genes, RIG-I, TLR8, IFN-alpha-R1, IL-1β, and osteopontin 
[ 50 ]. Mucus production was lower in aged mice compared to young and the dis-
ease symptoms persisted longer. These effects in elderly mice suggest that similar 
declines in the native immune response occur in humans. Strategies for antiviral 
prophylaxis and treatment must take these phenotypic changes into consideration 
in designing new drugs.    
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  Fig. 5.1       P   athway map illustrates innate immune genes upregulated >2-fold in aged as compared 
to young [ 50 ]       
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3.5     Neurogenic Infl ammatory Response to RSV 

 The interaction of RSV with the nervous system is a sometimes overlooked but 
important component of the infl ammatory scenario orchestrated by the body to 
ward off invading virus. RSV especially affects the airways by making them more 
susceptible to neurogenic infl uence through upregulation of the receptor for sub-
stance P and increased production of nerve growth factor and its receptor, p75 [ 42 ]. 
Experiments with young animals show important distinctions in the neurological 
response to RSV infection compared to adult animals. Persistent effects of RSV- 
induced infl ammation on the developing lung and its innervations may increase the 
tendency towards hyperreactivity and airway dysfunction upon reinfection with 
RSV [ 43 ]. Remodeling of the sensorineural network or changes in neurotrophin 
expression during the neonatal period could have long-lasting effects. This aspect of 
the neuroinfl ammatory process may play a role in the proposed association between 
repeated RSV infection in infancy and later development of asthma.  

3.6     Persistent RSV Infections 

 RSV was discovered as a pathogen that targets the lungs and it was assumed that 
following clearance by the immune system, there would be no more virus present. 
This dogma was recently challenged by fi ndings that RSV could infect and persist 
in human bone marrow stromal cells long after the virus was cleared from the lungs 
[ 44 ]. Evidence was presented that the presence of the virus altered the bone marrow 
compartment in ways that might compromise hematopoietic cell differentiation, 
proliferation, and activity. The existence of extrapulmonary sites of RSV infection 
and the possibility of reinfection from immunologically privileged stem cells 
migrating to the lungs are intriguing avenues for new research. Indeed, investigation 
of patients who have stable COPD has detected RSV transcripts in the absence of 
disease exacerbation suggesting that the virus may persist in some form in these 
patients [ 45 ].   

4     Pathology of RSV Infection 

4.1     Pathogenesis 

 Around 90 % of children have been infected by the age of 2 years [ 2 ] and reinfection 
throughout life is common because complete immunity to RSV is never developed. 
The fi rst infection is usually the most severe and infants with a history of premature 
birth, bronchopulmonary dysplasia, congenital heart disease, cystic fi brosis, or 
immunosuppression are the ones most likely to develop the severest cases of 
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bronchiolitis and pneumonia, which carry the highest risk of death [ 11 ]. However, a 
comprehensive analysis of RSV-associated deaths between 1979 and 1997 in US 
children suggested that the majority of deaths do not occur among children who are 
presumed to be at high risk for severe RSV LRTIs [ 46 ]. Although the major clinical 
manifestation of RSV in older children and adults is upper respiratory tract illness 
such as rhinitis and acute otitis media, it may also be the main etiological agent in 
up to 2.4 % of community-acquired pneumonia in these groups [ 47 ].  

4.2     Clinical Manifestations 

4.2.1     Infants and Young Children 

 Lower respiratory tract involvement and bronchiolitis are the most common types of 
RSV infection in infants, but in many cases the fi rst symptoms may only be dimin-
ished activity, loss of appetite, and shortness of breath. Children may show cold-like 
symptoms and fever, and only after a couple of days develop a cough or wheezing.  

4.2.2     Adults and Elderly Individuals 

 Healthy adults infected with RSV may be asymptomatic or suffer primarily upper 
respiratory tract RSV infections with fever, cough, runny nose, and fatigue. The 
disease is normally self-limiting and lasts for about 5 days. In older adults, RSV was 
identifi ed as responsible for 10 % of winter hospital admissions, and it has a case- 
fatality rate that approaches 10 %. In addition, 78 % of RSV-associated deaths 
occurred in individuals aged 65 years or older with underlying cardiac and pulmo-
nary pathology [ 48 ]. Patients taking immunosuppressive drugs are at risk for RSV 
pneumonia and should be especially careful during peak seasons to avoid contact 
with infected persons. 

 While RSV infection used to be looked upon as a serious threat to infants but 
only a nuisance to adults, the burgeoning populations of the elderly and immuno-
compromised patients have changed this outlook radically. Hospitalizations for 
pneumonia, especially among the elderly in community care facilities, have been on 
the upswing along with a signifi cant increase in the duration of stay with concomi-
tant rise in cost and reduced quality of life. Rates of RSV illness in nursing homes 
are 5–10 % per year with 10 % of these resulting in pneumonia and 2–5 % ending 
in death. Individuals with cardiovascular disease or those taking immunosuppres-
sive medications are at greatest risk of severe infection, pneumonia, and death. 
An estimated 10,000 deaths occur annually among those over 65 years of age 
because of RSV infection. A 4-year study published in 2005 [ 49 ] reported that 
nearly 80 % of deaths associated with RSV occurred in the elderly who also had 
respiratory and circulatory problems.   
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4.3     Differential Pathology in Infants and the Elderly 

 The increased susceptibility to RTIs and to complications can be traced, at least in 
part, to a weakened immune system in the elderly that prevents them from mounting 
an effective defense against microbial attack. Immune dysregulation can occur at 
the innate and adaptive levels and the age-related inability to mount an ineffective 
immune response to microbial invasion is often referred to as immunosenescence 
[ 49 ]. A signifi cant decrease in the number and proliferative capacity of lymphoid 
precursors is a key feature in immunosenescence and declining T-cell function is 
one of the best-studied characteristics of the aging immune system. Defects can be 
found along the functional pathway from initial activation of naïve T-cells through 
to the stage of expansion, effector proliferation, and memory cell production. 

 In addition to cellular defi ciencies, the elderly lungs show substantially reduced 
rates of mucociliary clearance, loss of elasticity, and a tendency to chronic infl am-
mation. Comorbid conditions such as emphysema, chronic obstructive pulmonary 
disease, and congestive heart failure all may contribute to a greater susceptibility to 
severe RSV infection when compared to younger adults. Because of these impor-
tant differences between the immune responses of young and aged individuals, 
there is a distinct need for new diagnostic, prophylactic, and therapeutic strategies 
tailored specifi cally for combating viral infections such as RSV in the geriatric 
population [ 51 ].   

5     Diagnosis, Prophylaxis, and Treatment of RSV Infection 

 In spite of decades of effort, an effective and safe vaccine for RSV continues to 
elude biomedical researchers. The antiviral drug, ribavirin, is only moderately 
effective against RSV in children and the humanized monoclonal antibody against 
the RSV fusion protein F (palivizumab) is very expensive and restricted to prophy-
laxis of at-risk neonates. The need for safer, less expensive, more effective alterna-
tives for prophylaxis and treatment of viral respiratory infections, especially with 
the increasing population of elderly individuals, is obvious and needs to be taken 
seriously by the pharmaceutical and government funding agencies. 

 Assays that identify RSV as the causative agent in RTIs are often not performed 
or else the time required to obtain the results is so long that the illness has already 
progressed beyond the point where any antiviral treatment would be effective. The 
currently most effective method for rapid identifi cation of respiratory viruses is the 
real-time multiplex PCR assay [ 52 ]. The cost of instrumentation, staffi ng, and 
reagents, however, is beyond reach of many resource-limited clinics. An inexpen-
sive, rapid, point-of-care device capable of distinguishing RSV from infl uenza, rhi-
novirus, or bacterial infections would be a tremendous boon for providing global 
care to the elderly and immunocompromised. If disease could be identifi ed early 
then ribavirin or intravenous polyvalent (hyper)-immunoglobulins (IVIG) could be 
administered with some hope of terminating the infection. 
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5.1     New Targets for RSV Prophylaxis 

 In the past decade, research has led to the identifi cation of a number of targets, both 
cellular and viral, that may be useful for the prevention of RSV infection and its 
accompanying pathology. Differential microarray analysis has been employed to 
pinpoint gene expression changes in RSV-infected cells and to identify candidate 
therapeutic genes [ 53 ]. Expression plasmids have been constructed for these genes 
and they have been tested in cultured lung epithelial cells in vitro and in animal 
models in vivo. In order to deliver these plasmids in the most effective way to target 
cells, novel carrier systems have been produced based on modifi ed polysaccharide 
nanoparticles which protect the DNA and facilitate its introduction into the lungs. 
Characterization of these gene expression changes includes immune modulation, 
signal transduction, and apoptosis. A summary of lead vaccine and therapy candi-
dates in each of the drug classes ranging from small molecules to DNA-based drugs 
that are in phase I or II clinical trials is summarized in Table  5.1 . However, given the 
historic failures, it is diffi cult to speculate if any one of them will translate to anti-
RSV product. Some of the recent advances are briefl y discussed below.

5.2        Use of Animal and Three-Dimensional Cellular 
Models to Develop Anti-RSV Compounds 

 Developing antivirals requires a comprehensive molecular understanding of the 
early events of virus-host interaction necessary for virus fusion and entry into cells 
and virus replication. To study the virus interaction, researchers have established 
human monolayer and three-dimensional epithelial cell cultures, human dendritic 

   Table 5.1    A list of anti-RSV therapy or vaccine candidates in clinical trials   

 Product  Sponsor  Class  Status 

 ALN-RSV01  Alnylam  siRNA  Phase IIb (completed) 
 MEDI-557  MedImmune  Humanized mAb  Phase I (ongoing) 
 RSV604  Arrow/Novartis  Nucleoprotein inhibitor  Phase II (pending) 
 ALS-8176  Alios  Nucleoside analogue  Phase I (ongoing) 
 MDT-637  Teva 

Pharmaceuticals 
 Fusion inhibitor  Phase I (completed) 

 RSV ∆NS2 
∆1313 11314L 

 NIAID  Vaccine  Phase I (recruiting) 

 MEDI-559  MedImmune  Vaccine 
(rA2cp248/404/1030∆SH) 

 Phase I–IIa 
(completed) 

 RSV-F 
Nanoparticle 

 Novavax  RSV-F vaccine with adjuvant  Phase I (ongoing, 
elderly) 

G. Hellermann and S. Mohapatra



85

cell isolation and culture, and mouse models of RSV infection. RSV affects 
 pulmonary function in BALB/c mice [ 54 ] and a number of investigators have 
 utilized this mouse model for the study of asthma and RSV infection [ 55 – 59 ]. 

 As in humans, mouse pulmonary T-cells induce both Th1 and Th2 responses in 
the lung in response to RSV infection [ 58 – 61 ]. RSV infection induces the  expression 
of intracellular adhesion molecule-1 (ICAM-1) on host cells. The  co- localization of 
RSV and ICAM-1 suggested that ICAM-1 binds to RSV, most likely by interacting 
with the RSV fusion protein. Treatment of cells with antibodies to ICAM-1 or 
 targeting ICAM-1 in mice signifi cantly inhibited RSV infection and the production 
of infl ammatory mediators, suggesting a potential therapeutic use for anti-ICAM-1 
antibodies. 

 Intranasal administration in mice of a plasmid encoding IFN-γ signifi cantly 
decreased viral replication and infl ammation in mouse lung. From DNA microarray 
analysis and other molecular and cellular techniques, the 2-5AS-oligoadenylate 
synthetase (2-5AS) has been identifi ed as playing a major role in the IFN-γ-mediated 
inhibition of RSV replication. Mice given adenovirus-expressing 2-5AS showed a 
signifi cant inhibition of RSV replication. From microarray studies aimed at dissect-
ing the early events of RSV infection it was determined that multiple signaling 
pathways involving STAT1 and STAT3, ERK-1 and ERK-2, and PKC-α are involved 
in RSV-induced early gene expression and infl ammation. PKC-α is a critical target 
upstream of these signaling pathways, and inhibitors of PKC-α specifi cally block 
RSV fusion and cause abortion of infection in normal human bronchial epithelial 
cells. To elucidate the mechanism of RSV infection, RSV-induced signal transduc-
tion pathways involving STAT and PKC were investigated. In an attempt to develop 
a vaccine, prophylaxis, or treatment based on RSV genes, a multigene DNA vaccine 
and siRNA-based strategy was explored.  

5.3     Immunoprophylaxis 

 Prophylactic IFN-γ gene transfer in BALB/c mice decreased viral replication and 
induced a Th1-like (increased production of IFN-γ and IL-12), instead of a Th2-
like (decreased IL-5), immune response against RSV infection [ 62 – 64 ]. Viral 
infections induce IFN-γ, which in turn facilitates the resolution of viral infection 
[ 63 ]. IFN-γ levels have been compared in bronchoalveolar lavage (BAL) fl uids fol-
lowing infection with RSV in control and pIFN-γ-treated mice. A three- to sixfold 
increase in IFN-γ production was found in RSV-infected mice compared to unin-
fected mice; such increases have been considered relatively low compared to other 
viral infections [ 62 – 64 ]. The fi nding that a natural, live-virus infection is cleared 
by elevated IFN-γ production, a response similar to that seen after live-viral infec-
tion in mice, suggests that the results from an animal model will be applicable to 
human RSV disease.  
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5.4     siRNA-Based Prophylaxis 

 A new prophylactic approach consists of taking advantage of the RNA interference 
mechanism initially discovered in plant cells and that also has been found in all spe-
cies including mammals. RNA interference is triggered by double-stranded RNA 
that is cleaved by an RNAse-III-like enzyme, Dicer, into 21–25-nucleotide frag-
ments (siRNAs) with characteristic 5′ and 3′ termini [ 65 ,  66 ]. These siRNAs act as 
guides for a multi-protein complex, including a PAZ/PIWI domain containing the 
protein Argonaute2 that cleaves the target mRNA [ 67 ]. These gene silencing mech-
anisms are highly specifi c and induce inhibition of gene expression throughout an 
organism. RNA interference is a well-characterized phenomenon that has proven 
effective in silencing a number of genes of different viruses [ 68 – 70 ]. siRNA to viral 
P and NS1 mRNAs have been shown to be effi cient as prophylactics for RSV infec-
tion in cellular and animal model studies [ 21 ,  71 ]. The prophylactic intranasal 
administration of a siRNA formulation specifi c for RSV-P mRNA was able to sig-
nifi cantly reduce the viral load and the disease parameters on RSV-infected mice 
[ 71 ]. A carrier in the formulation was not required. In addition, a very low dose was 
effective in showing a protective effect. Moreover, siRNA-resistant virus did not 
appear after using this formulation [ 71 ]. While intranasal naked siRNA to humans 
was found to be safe in a phase I study, other studies have shown toxicity effects. 

 Since the synthesis of RNA oligonucleotide-based siRNA is expensive, DNA 
vectors have been engineered to introduce siRNA into RSV-infected human cells 
and animals. This is based on the principle of the intracellular transcription of small 
RNA molecules that are synthesized from a DNA template under the control of 
RNA polymerase III promoters, such as U6. NS1 was selected as the target because 
NS1 protein interferes with the type-1 IFN-mediated host antiviral response [ 72 ]. 
Silencing of the NS1 gene attenuated RSV replication and boosted the immune 
response through an increase in IFN-β production [ 21 ]. The prophylactic intranasal 
administration of siNS1 formulated with chitosan nanoparticles signifi cantly 
reduced the viral load and pulmonary pathology in RSV-infected mice [ 21 ]. In addi-
tion, mice treated with these prophylactic nanoparticles develop protection from 
reinfection [ 21 ]. The nanoparticle-mediated siRNA silencing of NS1 allowed the 
normal expression of host-antiviral genes that suppress RSV replication. 
Nanoparticle-siNS1 represents a novel prophylactic that could be at low cost pre-
pared and distributed globally to save millions of infants and children from RSV 
disease and death. 

 Alnylam Pharmaceuticals [  http://www.alnylam.com/    ] has developed and is test-
ing an siRNA (ALN-RSV01) that degrades the viral nucleocapsid protein N mRNA 
and thus prevents its translation for construction of the RSV nucleocapsid. Without 
being able to form the nucleocapsid, the virus cannot replicate itself and dies. The 
safety of ALN-RSV01 has been tested in a phase 1 clinical trial and the formulation 
proved to be harmless and biocompatible [  http://www.alnylam.com/Programs-and- 
Pipeline/Partner-Programs/index.php    ].  
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5.5     Modifi ed Peptides for Blocking RSV Fusion and Entry 

 RSV enters host cells through the fusion protein RSV F, which forms a six-helix 
fusogenic bundle. Therefore, approaches to RSV prophylaxis target the highly con-
served heptad-repeat domains of the RSV fusion protein F, which is an absolute 
requirement for infection to take place. An approach involving small interfering 
peptides that prevent bundle formation and limit RSV infection in vitro has been 
suggested, which is schematically shown in Fig.  5.2 . However, these peptides are 
highly susceptible to degradation in vivo, which has been a major stumbling block 
for all peptidic drugs.  

 Recently however in an elegant study, Bird et al. [ 73 ] took advantage of the 
alpha-helical structure of this peptide and colleagues applied hydrocarbon stapling 
to stabilize the α-helical structure of an RSV F peptide (SAH-RSV). Pretreatment 
with SAH-RSV prevented infection in both cell culture and murine models of 
RSV. A series of modifi ed peptides were synthesized that bind to the C-terminal 
region of the F protein and prevent the conformational change that results in the 
formation of six-helix bundles. 

 Intranasal delivery prevented viral infection within the nares, while intratracheal 
delivery of a nanoparticle preparation of SAH-RSV prevented RSV infection in the 
lung. Viruses lacking this capability remain extracellular and cannot replicate or 

  Fig. 5.2    Illustration of the therapeutic strategy for using decoy HR peptides to inhibit the RSV- 
cell fusion. The fusion protein F of RSV has specifi c domains known as heptad repeats (HRs) that 
enable it to merge its envelope with the membrane of a target, usually an epithelial cell, and deposit 
its contents within the cytosol. A schematic of the HR1 and HR2 domains ( a ) and the amino acid 
sequence of primary structure of the F1 subunit of RSV-F ( b ) are shown. A strategy deploying 
decoy peptides to block fusion is also shown ( c )       
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infect host epithelial cells. The engineered antiviral peptides are resistant to 
 proteolysis and can be stably delivered to the airways in the form of inhalable bio-
compatible nanoparticles. Movement of this formulation into phase I clinical trials 
is essential for continued development of promising approaches to preventing RSV 
infection in at-risk populations.   

6     Conclusions and Future of Anti-RSV Strategies 

 RSV remains a dangerous pathogen for infants less than 12 months of age and an 
effective vaccine for that population is unlikely to be developed; thus prophylactic 
measures are still the mainstay for protecting at-risk infants. The high cost of the 
currently approved anti-RSV treatment, however, means that many of the world’s 
infants will not have access to it and points to the continuing need for a safe, cost-
effective RSV prophylactic. Infants are not the only ones at risk of hospitalization 
and death from RSV infection. Although not usually recognized as such, RSV is 
every bit as serious a pathogen as infl uenza in the elderly and the lack of a vaccine 
makes RSV pneumonia less preventable than the fl u. Given the promising research 
on methods of blocking RSV attachment to and entry into airway epithelial cells 
plus the great advances in the use of nanoparticles for drug delivery, it gives cause 
for hope that a routinely available, safe, and effective RSV preventive is not too far 
in the future.      
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1     Importance and Aims of Hepatitis C Surveillance 

 Hepatitis C virus (HCV) infection is a common type of chronic blood-borne 
 infection [ 1 ]. The World Health Organization estimates that 170 million persons are 
HCV infected globally [ 2 ]. In countries that conduct hepatitis C surveillance, hepa-
titis C may be required to be reported by laboratories and healthcare providers to 
health departments. 

 Hepatitis C surveillance includes acute and chronic hepatitis C cases; however, 
some countries or local areas may not have the necessary confi rmatory laboratory 
tests to distinguish current (or present) from resolved (or past) HCV infection. 
Additionally, because the chronic hepatitis C burden is large and conducting follow-
 up investigation can be labor intensive, some countries and local areas might lack 
the capacity to investigate and confi rm cases. Despite the challenges of conducting 
hepatitis C surveillance, there is hope for hepatitis C eradication because primary 
prevention is effective, and secondary transmission and complications are prevent-
able through case management, new effective treatments, and alcohol counseling. 
Surveillance data are essential to the planning, implementation, and evaluation of 
public health programs and policies [ 3 ].  

2     Epidemiology 

2.1     Characteristics 

 Hepatitis C traces back to the mid-1970s, though at the time, the virus was broadly 
termed “non-A, non-B hepatitis” when serologic tests ruled out hepatitis A or B as 
the cause of acute hepatitis following a blood transfusion [ 4 ]. In 1989, hepatitis C 
was fully distinguished from non-A, non-B hepatitis [ 4 ,  5 ]. 

 HCV infection may be diffi cult to measure because 70–85 % of HCV-infected 
persons are asymptomatic. When symptoms are present, they can include jaundice, 
fever, abdominal pain or discomfort, nausea, vomiting, dark urine, fatigue, joint 
pain, loss of appetite, and clay-colored stools [ 6 ]. For symptomatic HCV-infected 
individuals, the onset of symptoms usually occurs 6–7 weeks after exposure [ 7 ,  8 ]. 
For asymptomatic HCV-infected individuals, diagnosis usually occurs incidentally 
during blood donation screenings and other medical screenings. In the USA, feder-
ally supported surveillance captures only a fraction of all acute HCV infections 
because the identifi cation of acute HCV infection requires the presence of symp-
toms [ 9 ], and the proportion of those with symptoms is relatively small (20–30 %) 
[ 6 ]. However, procedures have been developed that account for asymptomatic HCV 
infections in estimating the total number of reported acute cases ( estimation proce-
dures are discussed in  Sect.  5.5 ). Table  6.1  describes the general characteristics of 
acute and chronic HCV infection   .
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   Table 6.1    Characteristics of acute and chronic hepatitis C virus (HCV) infection   

 Characteristic  Acute hepatitis C  Chronic hepatitis C 

 Defi nition  The fi rst 6 months of a new HCV 
infection 

 HCV infection persisting past 6 months 

 Burden of 
disease 

 No global estimate available  170 million persons worldwide 

 Persons at 
risk 

 Persons who have percutaneous 
exposure to HCV-infected blood, 
e.g., persons who share needles and 
persons who seek healthcare services 
in settings where standard 
precautions and infection control 
measures are not strictly 
implemented 

 About 80 % of persons who are acutely 
infected with hepatitis C 

 Symptoms (if 
present) 

 Jaundice, fever, abdominal pain or 
discomfort, nausea, vomiting, dark 
urine, fatigue, joint pain, loss of 
appetite, and clay-colored stools 

 Symptoms are usually present in 
advanced stages: cirrhosis, jaundice, 
liver failure 

 Rate of 
spontaneous 
recovery 

 20 %  Chronic HCV-infected persons will not 
recover spontaneously but can achieve 
a sustained virologic response with 
treatment 

 Rate of 
asymptomatic 

 70–85 %  Symptoms are usually not present until 
the advanced stages of liver disease 

 Laboratory 
diagnosis 

 (1) Antibody to hepatitis C-positive 
followed by HCV RNA-positive 
result or genotype result and report 
of recent risk behavior/factor; (2) 
positive HCV RNA and documented 
HCV antibody seroconversion within 
the past 6 months 

 (1) Two positive HCV RNA or 
genotype results performed 6 months 
apart; (2) antibody to hepatitis 
C-positive followed by HCV RNA-
positive result or genotype result and 
report of risk behavior/factor occurring 
more than 6 months prior 

 Mortality  16,000 deaths worldwide in 2010  499,000 deaths worldwide in 2010 
 Progression 
to chronic 
infection 

 Approximately 80 % of acute HCV 
infections will progress to chronic 
HCV infection 

 Not applicable 

 Progression 
to liver cancer 

 No  Yes, the rate of progression is 
approximately 4–5 % among 
chronically HCV-infected persons 

 Treatment  High rate of sustained virologic 
response among those treated with 
ribavirin and/or peginterferon 

 There are multiple national and 
regional guidelines for treatment of 
hepatitis C. The following drugs are 
currently approved for treatment of 
hepatitis C: peginterferon and ribavirin, 
boceprevir, telaprevir, simeprevir, 
sofosbuvir. Treatment depends on stage 
of disease and genotype 

 Primary 
prevention 

 Needle exchange programs, standard 
precaution measures and infection 
control in healthcare settings, 
increase awareness of disease 

 Prevention of acute hepatitis C 

 Secondary 
prevention 

 Screening for HCV infection  Hepatitis A and B vaccination 

 Tertiary 
prevention 

 Some studies have shown that 
treatment of acute hepatitis C could 
prevent the progression to chronic 
disease and provide a cure 

 Case management, routine medical 
care, alcohol counseling, treatment 
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2.2        Geographic Distribution 

 Although the overall estimated global prevalence of past/present HCV infection is 
high (3 %; 170 million persons) [ 2 ], there is wide variability in prevalence between 
geographic regions [ 10 ]. Typically, developing countries, such as parts of Africa 
and Asia, have the highest reported prevalence of >3.5 % (Fig.  6.1 ). In Egypt, for 
example, 15 % of persons aged 15–59 years had evidence of past/present HCV 
infection [ 11 ]. In comparison, more developed countries, such as those in North 
America, northern and western Europe, and Australia, have a low to moderate 
reported prevalence (<3.5 %) (Fig.  6.1 ). In the USA, for example, the estimated 
prevalence of HCV infection is approximately 1.0 %, or 2.7 million persons [ 12 ]—
disproportionately affecting persons who are middle aged [ 1 ,  12 ,  13 ]. Hepatitis C 
has at least six distinct genotypes widely distributed across the globe. In the USA, 
Europe, and Japan, genotypes 1a and 1b are most predominant although genotypes 
2a and 2b are also common [ 14 ]. Genotype 2c is prevalent in northern Italy while 
genotype 3a is prevalent among intravenous drug users in Europe and the USA [ 14 ]. 
In North Africa and the Middle East, genotype 4 is predominant while genotypes 5 
and 6 are confi ned to South Africa and Hong Kong [ 14 ].   

  Fig. 6.1    Seroprevalence of hepatitis C antibody by global burden of disease region, 2005. Adapted 
from Mohd HK, Groeger J, Flaxman AD, Wiersma ST. Global epidemiology of hepatitis C virus 
infection: new estimates of age-specifi c antibody to HCV seroprevalence.  Hepatology . 2013; 
57(4):1333–42. Permission to use this fi gure was obtained from  Hepatology        
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2.3     Mode of Transmission 

 HCV is primarily transmitted through percutaneous exposure to infected blood 
[ 15 ]. One of the most common ways by which HCV is transmitted is injection drug 
use (IDU) [ 1 ,  2 ]. In the USA, among persons with acute hepatitis C who responded 
to questions about IDU, approximately 60 % reported injection of street drugs [ 16 ]. 
From 2007 to 2011, US surveillance data detected a 44 % increase in the hepatitis 
C incidence [ 16 ], which may be due to a rise in injection drug users among young 
persons [ 17 – 19 ]. 

 In healthcare settings where standard precautions and infection control measures 
are less strictly implemented, needle stick injuries and unsafe medical practices are 
common causes of HCV transmission. In developed countries like the USA, the risk 
of HCV transmission in healthcare settings has dramatically declined due to the 
implementation of safe injection and universal infection control practices [ 20 ]. 
Despite the decline, from 2008 to 2012, 16 healthcare-associated hepatitis C out-
breaks that resulted in 160 cases of HCV infection were reported to the United 
States Centers for Disease Control and Prevention (CDC) [ 21 ]. Healthcare- 
associated hepatitis C outbreaks are indicators of failure to implement and strictly 
adhere to standard precautions and infection control measures. Since the develop-
ment of the hepatitis C antibody screening test in 1990 and screening of the blood 
supply for hepatitis C in 1992, HCV transmission from blood transfusions has been 
greatly reduced in developed countries [ 22 ]. In developing countries, this mode of 
transmission remains signifi cant [ 22 ,  23 ]. 

 HCV also can be transmitted from HIV-coinfected mothers to their infants, and 
HIV-infected men who have sex with men (MSM) have an increased likelihood of 
acquiring HCV infection [ 24 ]. The risk of HCV transmission among HIV-infected 
MSM is also increased in the presence of genital ulcerative disease and sexual prac-
tices that lead to mucosal trauma [ 25 ]. Heterosexual contact among monogamous 
partners is an unlikely route of transmission [ 24 ]. 

 Other demographic groups also are disproportionately affected by hepatitis C, 
evident by a higher prevalence among those groups. For example, in the USA, the 
overall hepatitis C antibody prevalence is estimated to be 1.6 %; however, it is 3 % 
among persons born during 1945–1965 [ 13 ]; 5 % among military veterans [ 26 ,  27 ]; 
6 % among blacks aged 30–49 years [ 28 ]; 14 % among HIV-infected persons [ 1 ]; 
and 23–39 % among the incarcerated [ 26 ]. Additionally, some hepatitis C epidem-
ics are fueled by contaminated injection equipment used in mass treatment cam-
paigns, such as schistosomiasis treatment in Egypt during 1960–1980; HCV 
transmission is still ongoing today [ 29 ].  

2.4     Complications of Chronic Infection 

 The burden of hepatitis C, mostly among persons who are undiagnosed and not in 
care, is evidenced by increasing complications. One such complication is the devel-
opment and progression of chronic liver disease (CLD). In addition, alcohol use is 
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independently associated with liver disease progression [ 13 ]. Based on  representative 
samples of published reports from at least 1990 and 11 World Health Organization 
regions, hepatitis C was identifi ed as one of the most common etiologies of CLD 
throughout most of the world [ 30 ] and was associated with 27 % of liver cirrhosis 
and 25 % of hepatocellular carcinoma (HCC) [ 30 ]. From the same study, death due 
to HCV infection was identifi ed in approximately 211,000 persons with liver cir-
rhosis and 155,000 persons with liver cancer [ 30 ]. Among US adult residents in two 
sentinel surveillance sites and one healthcare network site, 64 % of newly diagnosed 
CLD had underlying hepatitis C during 1999–2001 [ 31 ]. In the USA, over 15,000 
hepatitis C-related deaths occurred in 2007, of which 57 % had CLD, including 
HCC [ 32 ]. 

 Although hepatitis C is widely known to increase the risk of dying from liver- 
related diseases, recent studies have found that HCV infection also increased the 
risk of dying from non-liver-related diseases [ 33 – 35 ]. In one study, patients with 
chronic HCV infection had a non-liver-related mortality risk nearly two times 
higher than uninfected patients [ 33 ]. Similarly, in another study, persons who were 
HCV antibody positive had signifi cantly higher mortality than persons who were 
HCV antibody negative. Additionally, persons with detectable HCV RNA levels 
had signifi cantly higher mortality than persons with undetectable RNA levels [ 34 ].  

2.5     Laboratory Testing 

 The traditional approach for detecting HCV infection is to screen persons for a his-
tory of risk factors and to test those with any identifi able risk factor [ 36 ]. While IDU 
is the most common mode of transmission in developed countries, additional risk 
factors, including exposure to unsafe blood products and injection practices, are 
highly prevalent and contribute to signifi cant HCV transmission in developing 
countries [ 37 ]. There are many international recommendations for hepatitis C test-
ing and all have consistency in their recommendation for testing of persons who 
inject illicit drugs, prior recipients of transfusions or organ transplants, persons with 
persistently elevated liver enzymes, children born to HCV-infected mothers, and 
persons exposed to HCV-positive blood in healthcare [ 38 ]. 

 Table  6.2  describes the interpretation of hepatitis C test results and correspond-
ing further actions. The initial test is for HCV antibodies, which are detectable 
approximately 4–10 weeks after exposure [ 39 ]. In symptomatic cases, this time 
period usually occurs at or before the onset of clinical symptoms. The HCV anti-
body test is positive in acute, chronic, and resolved infections (Table  6.2 ). 
Consequently, HCV antibody tests do not have the capacity to distinguish current 
infection from past, resolved infection [ 40 ]. In addition to standard serologic assays, 
there are also rapid tests to detect HCV antibodies [ 41 ]. The availability of standard 
and rapid assays varies signifi cantly and is dependent on availability of resources 
[ 40 ]. Over the past decade, new generations of standard tests with high sensitivity 
and specifi city have been developed [ 40 ,  42 ]. However, the proportion of 
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 false- positive HCV antibody results is inversely related to the HCV prevalence in 
that setting [ 40 ,  43 ]. False-negative HCV antibody results also occur, particularly in 
individuals with severe immunodefi ciency [ 39 ,  44 ], but rarely among the general 
population.

   In contrast to HCV antibodies, HCV RNA can detect current infection and is 
detectable in serum as early as 1–2 weeks after exposure [ 41 ]. There are a number 
of qualitative and quantitative HCV RNA assays [ 43 ]. However, these tests are 
expensive and not widely available. Further, because these tests detect HCV RNA, 
they are important for differentiating current infection from past, resolved infection 
[ 45 ]. Therefore, both in the clinical practice and in epidemiologic studies, it is 
important to follow up on every HCV antibody-positive result with an RNA assay 
[ 43 ]. In conditions where the HCV antibody test is likely a false negative, RNA test-
ing may provide the correct diagnosis [ 43 ]. For these reasons, quantitative HCV 
RNA assays and genotype studies are important in the clinical management of 
chronic HCV infection. 

    Table 6.2    Interpretation of results of tests for hepatitis C virus (HCV) infection and further 
actions   

 Test outcome  Interpretation  Further actions 

 HCV antibody 
nonreactive 

 No HCV 
antibody detected 

 Sample can be reported as nonreactive for HCV 
antibody. No further action required. If recent 
exposure in person tested is suspected, test for HCV 
RNA a  

 HCV antibody 
reactive 

 Presumptive 
HCV infection 

 A repeatedly reactive result is consistent with current 
HCV infection, or past HCV infection that has 
resolved, or biologic false positivity for HCV 
antibody. Test for HCV RNA to identify current 
infection 

 HCV antibody 
reactive, HCV 
RNA detected 

 Current HCV 
infection 

 Provide person tested with appropriate counseling and 
link person tested to care and treatment b  

 HCV antibody 
reactive, HCV 
RNA not detected 

 No current HCV 
infection 

 No further action required in most cases. If distinction 
between true positivity and biologic false positivity 
for HCV antibody is desired, and if sample is 
repeatedly reactive in the initial test, test with another 
HCV antibody assay. In certain situations, c  follow up 
with HCV RNA testing and appropriate counseling 

  Adapted from CDC. Testing for HCV infection: An update of guidance for clinicians and labora-
torians. MMWR 2013;62(18) 
  a If HCV RNA testing is not feasible and person tested is not immunocompromised, do follow-up 
testing for HCV antibody to demonstrate seroconversion. If the person tested is immunocompro-
mised, consider testing for HCV RNA 
  b It is recommended before initiating antiviral therapy to retest for HCV RNA in a subsequent blood 
sample to confi rm HCV RNA positivity 
  c If the person tested is suspected of having HCV exposure within the past 6 months, or has clinical 
evidence of HCV disease, or if there is concern regarding the handling or storage of the test specimen  
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 Other tests available for hepatitis C detection and diagnosis include the HCV 
core antigen test [ 46 ] and core antigen/antibody tests [ 47 ]. These tests are available 
only in some countries. While the HCV core antigen test is sensitive, will yield 
results early in the course of infection, and detects active infection [ 46 ,  48 ], the 
HCV core antigen/antibody test is positive in the presence of either one or both 
antigen and antibody [ 47 ] making it diffi cult to differentiate between active and 
resolved infection. Blood donations are screened by testing for HCV RNA and core 
antigen [ 49 ]. 

 Dried blood spot assays are well developed and validated for HIV detection [ 50 ]. 
HCV antibody and RNA testing on a dried blood spot sample are used in research 
activities whereby a blood draw is not feasible [ 51 ,  52 ]. However, these tests are not 
well validated and require highly qualifi ed personnel. Therefore, its use is restricted 
to research use only. 

 In many sub-Saharan African countries, a high rate of false-positive HCV anti-
body test results have been reported, even when the latest generation of serologic 
assays are used [ 53 ]. In the majority of HCV antibody-positive samples, the recom-
binant immunoblot assay (RIBA) yields either a negative or indeterminate result 
[ 53 ]. RIBA is a more specifi c blood test for detecting HCV antibodies and is some-
times used as a confi rmatory test to less specifi c antibody tests [ 43 ]. In the USA, 
RIBA was phased out in 2013 [ 41 ]. Even among RIBA-confi rmed HCV antibody- 
positive samples, the large majority are HCV RNA negative. Such fi ndings have 
been a challenge for clinical diagnosis, epidemiological studies, and screening of 
blood products for transfusion. While the cause of the high false positivity is still 
unknown [ 54 ], it raises questions about the best strategy to test for HCV infection 
in some countries.  

2.6     Treatment 

 The goal of treatment for chronic HCV infection is to achieve sustained virologic 
response (SVR), or cure, currently defi ned as having an undetectable viral load 
24 weeks after the end of treatment [ 55 ]. Achieving SVR, in turn, is associated 
with long-term clearance of the virus and reduced long-term health complications 
such as cirrhosis, HCC, liver failure, and all-cause mortality [ 56 ,  57 ]. Novel thera-
pies with direct-acting antivirals have demonstrated high virus eradication rates. 
Persons diagnosed as HCV positive should be medically evaluated and entered into 
routine care, as appropriate. The evaluation should include confi rmation of chronic 
infection by viral testing including genotype and viral load, an assessment of liver 
function, stage of liver fi brosis, evidence of liver cancer, and eligibility for treat-
ment [ 58 ]. 

 The traditional treatment is pegylated interferon with ribavirin [ 7 ]. The duration 
of treatment is determined by the virologic response, which in turn is associated 
with the person’s genotype. With pegylated interferon and ribavirin therapy, a 
24-week treatment course is recommended for genotypes 2 and 3 and a 48-week 
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treatment course for other genotypes [ 7 ]. Persons with genotypes 2 and 3 who 
 followed this regimen have ≥80 % SVR rate compared with a 40–50 % SVR rate 
for persons with genotype 1 [ 7 ]. 

 Pegylated interferon and ribavirin is associated with many side effects, requires 
frequent injections, and has shown low success rates with hepatitis C genotype 1 
[ 59 ]. In 2011, the United States (US) Food and Drug Administration approved the 
use of two new protease inhibitors, boceprevir and telaprevir, for the treatment of 
hepatitis C genotype 1 [ 7 ,  59 ]—the most common genotype reported in the 
USA. When used in combination with pegylated interferon and ribavirin, bocepre-
vir and telaprevir demonstrated SVR rates of 63–66 % and 69–75 %, respectively 
[ 7 ], a marked increase from traditional standard of care therapy alone. 

 In November and December 2013, the US Food and Drug Administration 
approved the use of two new drugs for the treatment of chronic HCV infection, 
simeprevir and sofosbuvir. These drugs are approved for use in HCV-infected 
patients with genotypes 1 and 4, which showed >90 % SVR rates in clinical trials 
[ 60 ]. Although treatment is very costly, these are among the new drugs that offer 
promising hope towards the global eradication of hepatitis C. As new therapies con-
tinue to be developed, evidence-based hepatitis C management recommendations 
are continuously updated to address issues ranging from testing and linkage to care 
to the optimal treatment regimen in specifi c patient situations [ 36 ].   

3     Assessment of Priorities 

 The success of a surveillance system for hepatitis C is dependent on the dedicated 
resources and established priorities for the surveillance system. For example, if the 
priority is to measure the overall burden of disease, the design of the system might 
be to conduct a seroprevalence survey. However, if the objective is to obtain data for 
case management and evaluation of local area prevention programs, then individual 
cases should be monitored and records updated over time [ 61 ]. Furthermore, the 
population for which information is needed is an important determinant of surveil-
lance methods. For example, in an enhanced surveillance pilot study in select neigh-
borhoods in England, there were concerns about increases in HCV infection among 
MSM. Health offi cials quickly recruited and collected information from certain 
drug treatment facilities and implemented a surveillance project that provided 
results that were applied and published in less than a year [ 62 ]. In another study, 
researchers sought to determine which hepatitis C genotypes were circulating 
among injection drug users in Hungary [ 63 ]. They approached needle exchange 
programs and drug treatment facilities in all health districts and found that HCV 
strains among injection drug users were very different compared to HCV-infected 
persons who did not acquire their infections from injecting drugs [ 63 ]. The objec-
tives and expected use of the surveillance data also should be tempered with the 
resources available to conduct the activities.  
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4     United States Surveillance Methods 

4.1     Passive Surveillance 

 In a population-based passive surveillance system, sources of hepatitis C reports 
(e.g., hospitals, clinics, laboratories) routinely report cases to health departments 
[ 64 ]. However, in this type of surveillance system, notifi cation may not be timely 
enough to alert health offi cials of a potential outbreak. In addition, the data reported 
are often incomplete because few, if any, incentives are given to the laboratories and 
healthcare providers to report information [ 64 ]. 

 In the USA, as of 2013, acute hepatitis C is reportable in all states and the District 
of Columbia, and past/present hepatitis C is reportable in 43 states and the District 
of Columbia. Due to resource constraints, it is oftentimes diffi cult for health depart-
ments to obtain the necessary confi rmatory laboratory tests from laboratories or 
healthcare providers to distinguish current from resolved or past HCV infection. 
Therefore, these cases are labeled as “past/present hepatitis C.” Under the current 
national surveillance system, acute and past/present hepatitis C are passively and 
voluntarily reported on a weekly basis by health departments to a national surveil-
lance network at CDC. The system relies on laboratories and healthcare providers 
to submit case reports to health departments, as mandated by states. Health depart-
ments process case reports to determine that they represent new, unique cases and 
store data with personal identifi ers. 

 Most laboratory reports and some physician reports are submitted electroni-
cally to health departments. However, reporting can be accomplished by fax or 
telephone, even using toll-free numbers or automated recording devices available 
at all hours. Time and lack of resources greatly limit such a system to a small per-
centage of most reportable diseases, but as long as the reporting system and 
requirements remain unchanged, the changes in incidence may refl ect meaningful 
patterns of disease. 

 The advantage of a case reporting system is that there is an organized system of 
reporting and tabulating cases at both the local and national level. Also, at the local 
level, individuals are identifi ed for intervention. However, case-reporting systems 
also have a number of disadvantages, including the following: (1) not all cases are 
reported despite legal requirements, primarily because of the lack of both symptoms 
and resources; (2) the variability in reporting from one jurisdiction to another; and 
(3) the lack of hepatitis C laboratory tests that distinguish between acute and chronic 
HCV infection. 

 Due to the large volume of past/present hepatitis C case reports and the resource- 
intensive process of identifying and classifying a case, chronic hepatitis C is grossly 
underreported in the USA. Current estimates indicate 2.2–3.2 million persons 
chronically infected with HCV [ 12 ].  
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4.2     Active Surveillance 

 Active surveillance requires health departments to contact sources of hepatitis C 
reports at regular intervals and request specifi c information for case reports [ 64 ]. 
Reporting frequency is monitored and data on epidemiologic features, such as com-
plications of infections, which would not otherwise be collected through passive 
surveillance, are obtained. In addition, the data are reported in a more timely fashion 
than in a passive system. However, unlike passive surveillance, active surveillance 
is expensive and resource intensive.  

4.3     Enhanced Surveillance 

 CDC provides additional funding to support enhanced surveillance programs. These 
programs conduct follow-up investigation on cases to obtain additional information, 
including information about risk behaviors and/or exposures. As a result, data are 
more complete than passive surveillance. These additional data allow the surveil-
lance infrastructure to answer discrete surveillance and research questions. From 
1982 through 2006, the Sentinel Counties Study of Acute Viral Hepatitis enrolled 
all acute viral hepatitis patients in six county/city health departments in the USA 
[ 65 ]. From this project, funded sites collected data about cases of acute viral hepa-
titis from hospitals, healthcare providers, and other agencies and patient care 
sources. These data were used to describe the incidence of acute viral hepatitis [ 66 ], 
characterize individual cases, and identify and describe risk behaviors/exposures. 
From 2005 through 2011, CDC funded seven sites to conduct enhanced viral hepa-
titis surveillance throughout major US cities and states. Because of additional 
resources, completeness of reporting signifi cantly improved in the enhanced sur-
veillance sites [ 67 ].  

4.4     Analysis of Specimens/Supplementary Data Sources 

 In the USA, there are existing data from other sources to augment hepatitis C sur-
veillance data. For example, cancer registries have information on HCC [ 68 ]. Vital 
statistics generally include information on the number of deaths for which hepatitis 
C was listed among causes of death and calculating trends in HCV infection as a 
cause of death relative to other causes is useful [ 32 ]. Healthcare administrative data 
are available electronically and may be a useful source of data as well. Events avail-
able from administrative data include diagnosis, procedure codes, and cost informa-
tion to examine the economic impact of hepatitis C [ 69 ]. 

 Currently, CDC uses data from a variety of sources to further understand the 
burden of chronic HCV infection; characterize persons who receive treatment; 
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describe treatments, results of treatment, and sequelae of disease; and characterize 
those who die with and as a consequence of hepatitis C:

    (a)     Vital Statistics : The oldest form of surveillance in the USA is mortality registra-
tion. Registration of death, using a death certifi cate, is legally required in the 
USA. As a result, virtually all deaths are included in the registries. Cause of 
death listed on the death certifi cate is dependent on the presence/absence of a 
physician or family member who is knowledgeable about the health of the 
deceased, severity of disease, complexity of the disease, associated  illnesses, 
and whether or not an autopsy or diagnostic laboratory testing was performed. 

 Death certifi cates are completed by funeral directors based on information 
from attending physicians, medical examiners, coroners, and family members. 
Death certifi cates are fi led in vital statistics offi ces within each state and the 
District of Columbia. States share information from death certifi cates with 
CDC through the National Vital Statistics System, which then produces public- 
use mortality fi les containing death information with cause of death coded in 
accordance with the International Classifi cation of Disease, Tenth Revision 
[ 70 ]. These data are used to determine the national burden of mortality associ-
ated with specifi c diseases, including viral hepatitis. A recent analyses of these 
mortality data from 1999 through 2007 indicated that the hepatitis C mortality 
rate exceeded the HIV mortality rate in 2007 [ 32 ].   

   (b)     Surveys : Health surveys are used for a variety of reasons, including augmenting 
our understanding of viral hepatitis from surveillance. Currently, the CDC uses 
several national surveys, which may include seroprevalence data, to describe and 
understand hepatitis C-related prevalence, hospitalizations, treatments, and devel-
opment of CLD. For example, the National Health and Nutrition Examination 
Survey (NHANES) has provided valuable seroprevalence data on hepatitis A [ 71 ], 
hepatitis B [ 72 ], and hepatitis C [ 12 ] that are representative of the US noninstitu-
tionalized civilian population [ 73 ]. The National Ambulatory Medical Care Survey 
and the National Hospital Ambulatory Medical Care Survey use a national sample 
of visits from nonfederal employed offi ce-based physicians who provide direct 
patient care and from emergency departments and outpatient department of nonin-
stitutional general and short-stay hospitals, respectively, to obtain information 
about the use and provision of ambulatory medical care services, including viral 
hepatitis-related visits [ 74 ], in these settings. The National Hospital Discharge 
Survey was a nationally representative survey conducted from 1965-2010 that pro-
vided information from patients of non-federal, short-stay hospitals in the USA 
about the characteristics of these patients, conditions for which they were treated, 
cost of treatment, and a number of other public health topics of interest. The 
National Hospital Care Survey is a new survey which links the inpatient data that 
was collected by the National Hospital Discharge Survey with the emergency 
department, outpatient department, and ambulatory surgery center data collected 
by the National Hospital Ambulatory Medical Care Survey. Together, these popu-
lation-based surveys provide a wealth of readily available data that are already in 
electronic format. As a result, they can be relatively inexpensive sources of useful 
information in addition to that obtained from surveillance.       
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5     Sequence in Case-Based Surveillance Processes 

5.1     Sequential Flow of Case Data for Hepatitis C 
Surveillance to CDC 

 CDC uses message mapping guides to standardize the data transmitted for all notifi -
able diseases monitored by health departments transmitted to the national surveil-
lance network. States report basic demographic, clinical, and risk information on 
cases of notifi able conditions to the national surveillance network. The CDC 
Division of Viral Hepatitis retrieves data from servers once a week. These data are 
used to detect outbreaks, fl ag cases requiring immediate public health follow-up, 
and perform data quality checks. Viral hepatitis data are summarized in annual sur-
veillance reports and are made available to the public on the CDC Division of Viral 
Hepatitis website [ 75 ].  

5.2     Case Defi nitions in the USA, Europe, and Australia 

 Cases of notifi able conditions must meet standard case defi nitions. In the USA, 
these case defi nitions are developed and updated in collaboration with the Council 
of State and Territorial Epidemiologists and CDC. The 2012 hepatitis C surveil-
lance case defi nitions require a combination of symptoms and laboratory fi ndings 
for acute disease and laboratory fi ndings only for past/present hepatitis C [ 9 ]. 
Because the clinical characteristics are the same for acute hepatitis A, B, and C, 
laboratory testing is needed to identify the specifi c viral cause of illness. For both 
acute and past/present hepatitis C cases, laboratory fi ndings include a positive 
antibody to hepatitis C virus screening test, nucleic acid test for HCV RNA, and 
genotype testing. A special defi nition is applied to identify new seroconversions 
that require only one positive test and a previous negative test within the past 
6 months [ 9 ]. 

 In 2012, the European Union decided not to require clinical signs/symptoms for 
a confi rmed case. Instead, at least one laboratory fi nding (RNA, core antigen, or 
antibody) in a person aged >18 months represents a confi rmed case. The defi nition 
classifi es an acute hepatitis C case as one that has a seroconversion within 12 months 
or has detected either RNA or core antigen but is antibody negative. A chronic case 
is defi ned as two samples positive for RNA or core antigen detected at least 
12 months apart [ 76 ]. In Australia, case reports supplement other sources of infor-
mation on HCV infection. A confi rmed case in Australia requires laboratory evi-
dence of either an antibody or nucleic acid test (either genotype or RNA) in a person 
aged at least 24 months, and who does not meet the criteria for a newly acquired 
case; that is, there is no evidence that the infection was acquired in the 24 months 
before diagnosis [ 77 ].  
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5.3     Follow-Up Investigation and Case Management 

 A hepatitis C case report is usually initiated with a positive antibody test, which 
can indicate either acute or chronic infection. After checking the surveillance data-
base to determine whether the potential case was previously reported and had other 
epidemiologic or laboratory information, health departments can either attempt 
follow- up investigation or wait for future laboratory information to be received. 
Follow-up might require contacting the case patient’s provider to determine 
whether symptoms of hepatitis were present. Together with information that the 
case was not previously reported suggests a newly reported acute hepatitis C case. 
Follow-up with the case patient and/or the healthcare provider is required to obtain 
additional epidemiologic data. Cases might be divided into groups of interest, such 
as persons aged <30 years that may indicate IDU [ 78 ] or adults aged >65 years that 
may indicate transmission in healthcare and extended care facilities. Prioritizing 
groups of interest reduces the number of cases to be investigated, which makes the 
task more achievable. Basic demographic, clinical, and risk information are col-
lected using a standard case report form (Fig.  6.2 ). This information is needed to 
confi rm the classifi cation, determine the most likely source of infection, and limit 
further transmission [ 79 ].   

5.4     Uses of Surveillance Data in the USA 

 The uses of surveillance data vary depending on the public health agency’s need for 
the data. In general, at the national level, surveillance data are used to understand 
the burden of disease, inform local partners of disease clusters or outbreaks within 
and across jurisdictions, identify high-risk populations, and inform, prioritize, and 
evaluate prevention activities. At the local level, surveillance data are used to iden-
tify the most likely mode of transmission in the community to limit further trans-
mission, detect and control local outbreaks, improve outreach services, and provide 
appropriate case management including screening and linking infected persons into 
care and counseling. Additionally, hepatitis C surveillance data can be matched 
with other disease registries, such as HIV, in order to integrate medical services for 
each individual and further understand disease burden. Surveillance data can also be 
used to evaluate the quality of care, including implementation of hepatitis A and B 
vaccine recommendations, among HCV-infected patients. Hepatitis A and B vac-
cine history can be obtained through follow-up investigation of cases and can be 
used to improve vaccine coverage rates.  
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  Fig. 6.2    Viral hepatitis case report form                   
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Fig. 6.2 (continued)
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Fig. 6.2 (continued)

6 Surveillance for Hepatitis C



110

Fig. 6.2 (continued)
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Fig. 6.2 (continued)
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5.5      Estimation of Hepatitis C Incidence in the USA 

 Most HCV infections are not captured through surveillance because many of these 
infections are asymptomatic. Estimation methodologies are used to account for 
underreporting of asymptomatic hepatitis C infections. The methodology employed 
by the CDC to estimate the incidence of HCV infections in the USA was revised in 
2011. This methodology uses a simple probability model to estimate all new hepa-
titis C infections that occur in the USA during a calendar year [ 80 ]. 

Fig. 6.2 (continued)
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 Under this model, the estimated number of acute HCV infections in the USA 
is the number of reported confi rmed acute hepatitis C cases multiplied by the 
joint probability that acute HCV-infected persons who would have developed 
symptoms, sought healthcare tests, and been reported to health offi cials [ 80 ]. 
CDC conducted a meta-analysis of peer-reviewed studies to inform the three 
parameters [ 80 ]. However, more sophisticated models informed by representa-
tive and comprehensive studies are needed to best estimate acute HCV infections 
in the USA.  

5.6     Security and Confi dentiality 

 While hepatitis C surveillance data can serve many useful public health purposes, 
these data must be collected, stored, shared, and used in a way that protects the 
identity of infected individuals [ 81 ]. Countries with a well-established hepatitis C 
surveillance system may have data security and confi dentiality policies and proce-
dures in place while countries that are still developing their surveillance system may 
not. In general, there are guiding principles [ 82 ] that can be followed by all coun-
tries in order to guarantee security and confi dentiality of public health data. These 
principles are summarized below:

•    Data collection and use policies should respect the rights of individuals and 
 community groups and minimize undue burden.  

•   Program offi cials should be active, responsible stewards of public health data.  
•   Programs should:

 –    Require that public health data be acquired, used, disclosed, and stored for 
legitimate public health purposes  

 –   Collect the minimum amount of personally identifi able information necessary 
to conduct public health activities  

 –   Have strong policies to protect the privacy and security of personally identifi -
able data  

 –   Have policies and procedures to ensure the quality of any data they collect 
or use  

 –   Have the obligation to use and disseminate summary data to relevant stake-
holders in a timely manner  

 –   Have public health data maintained in a secure environment and transmitted 
through secure methods  

 –   Share data for legitimate public health purposes and establish data-use agree-
ments to facilitate sharing data in a timely manner  

 –   Minimize the number of persons and entities granted access to identifi able 
data         
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6     Limitations and Challenges of Surveillance 

6.1     Distinguishing Acute and Chronic HCV Infection 

 Many countries do not distinguish between acute and chronic HCV infection and 
use a case defi nition based on HCV antibody results alone [ 76 ]. For example, in a 
survey of countries, the European Centre for Disease Prevention and Control found 
that Germany, the Netherlands, Sweden, England and Wales, and Scotland were 
enumerating hepatitis C cases based on an antibody test alone [ 76 ]. 

 Jaundice may be a practical method for conducting viral hepatitis surveillance in 
areas where laboratory testing is not routinely included in healthcare visits. For 
example, in a surveillance system developed to measure the frequency of hepatitis 
E in northern Uganda, epidemiologists implemented a system originally designed 
for malaria surveillance [ 83 ]. Upon presentation of a person with jaundice to one of 
the facilities where providers were trained, providers completed a brief case report 
form, and collected a specimen that was then sent to a central laboratory [ 83 ]. At a 
centralized location, the information from the case report forms and the laboratory 
results were processed and analyzed to determine the frequency of the different 
etiologies of jaundice [ 83 ].  

6.2     Underreporting 

 Even with the technological advances made in the areas of health information in 
the USA, the surveillance of hepatitis C continues to be hampered by underreport-
ing, misclassifi cation of cases, and need for more complete data since hepatitis C 
reporting to the national surveillance network is voluntary. In the USA, CDC esti-
mates that for every reported case of acute hepatitis C, another 12 infections go 
unreported [ 80 ]. There are many reasons why hepatitis C is underreported in the 
USA. First, HCV infections can only be considered acute if symptoms are present 
or there is a documented seroconversion. However, 70–85 % of HCV-infected indi-
viduals are asymptomatic; about one-half are unaware of their infection [ 84 ]. 
Second, a large percentage of HCV-infected persons may lack access to healthcare 
services and are thus not reported to health departments. In addition, many states 
lack the funding needed to conduct enhanced surveillance and do not have the 
capacity to develop a surveillance system capable of receiving and processing the 
large number of positive HCV antibody laboratory reports. The number of hepati-
tis C cases annually reported to health departments often outpaces the amount of 
resources on hand to fully conduct follow-up investigations to determine if the 
newly reported case is acute. For these reasons, identifying hepatitis C cases is 
challenging.  
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6.3     Resources 

 Case-based hepatitis C surveillance is a resource-intensive process. Because of 
many low-resource settings and competing priorities to dedicate the majority of 
resources to surveillance for acute and effectively preventable conditions, hepatitis 
C surveillance is often not well developed. As a result, many health departments do 
not have the capacity to fully investigate every newly reported hepatitis C case. The 
inability to depend solely on serologic testing to identify acute hepatitis C cases 
combined with the inability to fully investigate all newly reported cases often leads 
to the inability to determine if hepatitis C cases are confi rmed; these cases instead 
have a case status label of “probable,” “suspect,” or “unknown.” Unconfi rmed cases 
may never be tested or investigated to determine if they are currently infected [ 85 ]. 
An important decision should be made about the specifi c objectives and needs for 
hepatitis C surveillance data such that resources can be used most effi ciently and 
effectively.  

6.4     Laboratory Issues 

 Although a number of highly sensitive and specifi c rapid tests are available in order 
to accurately and quickly identify HCV-infected persons and link them to the appro-
priate care, these tests are often not available in resource-limited settings. The bar-
riers for correctly identifying HCV-infected persons include the lack of simple 
laboratory assays, need for additional confi rmatory testing, and lack of a test for 
delineating acute from chronic infection.   

7     Future Directions 

7.1     Health Information Technology 

 Health information technology (HIT) provides the tools necessary for healthcare 
providers to better manage patient care through the secure electronic exchange of 
health information [ 86 ]. In a fragmented healthcare system such as that in the USA 
where multiple healthcare providers are making individual healthcare decisions on 
the same patient, benefi ts of the widespread use of HIT include improved quality of 
healthcare, signifi cantly reduced medical errors, decreased healthcare costs, 
increased administrative effi ciencies, decreased paperwork, and expanded access to 
affordable healthcare [ 86 ,  87 ]. For example, in 2004, the Massachusetts eHealth 
Collaborative was formed to establish an electronic health record (EHR) system that 
would improve the quality, effi ciency, and safety of patient care in Massachusetts 
[ 88 ]. By August 2007, nearly 600 physicians participating in the initiative were 
using EHRs [ 89 ]. 
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 Historically, a series of critical events which occurred during the late 1990s and 
early 2000s drew concerns regarding the ability of the USA to respond effectively 
to acts of bioterrorism and natural epidemics while continuing to protect the health 
of the nation. These events included the anthrax attacks; destruction of the World 
Trade Center and the attack on the Pentagon; and emerging disease epidemics such 
as SARS, avian infl uenza, and West Nile virus [ 90 ]. Having a national system with 
medical and health information on its citizens would be critical. In response, on 
April 27, 2004, the president of the USA signed Executive Order 12225, which cre-
ated the Offi ce of the National Coordinator of Health Information Technology, the 
principal federal entity charged with supporting the widespread meaningful use of 
HIT and coordinating efforts to implement and use a nationwide interoperable and 
secure health information exchange system [ 90 ]. 

7.1.1     Electronic Integration 

 Ideally, electronic sources of data on HCV infections would have some standardiza-
tion allowing easy aggregation, supplementation, and analyses. In the USA, with 
the exception of 16 states, viral hepatitis surveillance systems are neither integrated 
nor interoperable to produce a singular national electronic surveillance system. 
Such a system would help to prevent the spread of viral hepatitis and help under-
stand the relationship between viral hepatitis and comorbidities [ 91 ]. Hepatitis C 
surveillance can be greatly improved by expanding health information exchanges 
(HIEs) and electronic laboratory reporting (ELR). 

 Where electronic medical records are not integrated, separate data streams can 
be used to identify persons with HCV infection, for example, using pharmacy 
records that list antiviral medications specifi c for hepatitis C [ 60 ].  

7.1.2     Health Information Exchanges 

 The framework for a nationwide health information network that connects indepen-
dent but interoperable public health data systems dates back to 2004 [ 92 ]. A key 
goal of a nationwide health information network is to create an electronic system 
that can accurately and in a timely fashion exchange patient health information 
while following security and other protection protocols [ 93 ]. HIEs facilitate infor-
mation fl ow across various healthcare delivery systems including hospitals, health-
care provider groups, insurers, and government agencies, and are characterized by 
formal agreements and technologies that facilitate the electronic movement of 
health-related information [ 94 ]. In the USA, funding by the CDC and other public 
health agencies have supported the development of HIEs and a nationwide health 
information network [ 95 ,  96 ]. 

 The ability of HIEs to strengthen patient safety through improving laboratory 
result processing, diagnoses, treatment modalities, and communication between pro-
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viders and patients has magnifi ed the potential uses for HIEs. Despite the  potential 
uses of HIEs and the great amount of progress that has occurred over the past 
10 years, resource constraints prevent widespread implementation of HIEs [ 97 ,  98 ].  

7.1.3     Electronic Laboratory Reporting 

 In the USA, electronic laboratory reporting is conducted by the automated transmit-
tal of laboratory test results of notifi able diseases from commercial, public health, 
and hospital laboratories to health departments through a laboratory information 
management system. The goal of ELR for reporting of hepatitis C is to improve the 
accuracy, timeliness, and completeness by reducing the number of laboratory 
reports that are manually entered by health departments. When using ELR, labora-
tories export data from their information systems in a standard fi le format and elec-
tronically transmit it to their health departments through the laboratory information 
management system. 

 Prior to the advances in ELR technology in the USA, manual data entry of paper 
laboratory reports was the standard procedure for collecting data on viral hepatitis 
infections. However, manual data entry of paper laboratory reports is both labor 
intensive and costly. ELR has been shown to identify almost three times as many 
hepatitis C cases as the traditional paper-based method, and, on average, identifi ed 
those cases nearly 5.5 days earlier than the conventional method [ 99 ]. 

 Although ELR shows promising hope for timely and accurate laboratory report-
ing, there are challenges. First, these systems report only data listed on laboratory 
reports and do not contain the clinical information required to confi rm a hepatitis C 
case. Secondly, these systems do not report any enhanced epidemiologic data 
including risk behaviors/exposures, hepatitis A and B vaccination history, and preg-
nancy status. These additional components are obtained through enhanced  follow- up 
investigation with the provider and patient. Because of the overwhelming burden of 
past/present hepatitis C laboratory reports that are submitted to health departments, 
follow-up investigations are often an enormous endeavor, and for highly populated 
areas such as New York State, only a sample of total past/present hepatitis C reports 
can be followed. Additionally, complex ELR algorithms that are either inept or inef-
fi cient often lead to incorrect detection of new viral hepatitis cases [ 99 ].   

7.2     Lessons Learned from Enhanced Surveillance in the USA 

 From 2005 through 2011, the CDC funded seven health departments to conduct 
enhanced hepatitis C surveillance throughout the USA. Experiences from this col-
laboration suggest that certain elements are critical to the success of conducting 
complete, useful surveillance:

    (a)     Electronic infrastructure to receive and process hepatitis C laboratory reports . 
Most clinical laboratories have the capacity to report tests associated with all 
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notifi able diseases in an electronic format to the health departments. However, 
because laboratories lack a standardized system and health departments vary in 
their capacity to receive and process electronic information, the large number of 
hepatitis C reports easily overwhelmed their systems. The lesson learned was 
that health departments needed to invest in electronic data systems that allowed 
signifi cant numbers of test results to be received, de-duplicated to result in 
patient-level information, and then processed to determine electronically 
whether the patient had been reported previously or was a new case [ 100 ].   

   (b)     Funding for staff at health departments to conduct follow - up investigation . 
Because of limited human resources, it became clear that attempting to follow-
 up on all de-duplicated cases was not feasible. The solution to this problem was 
to conduct follow-up investigation on a random sample of cases. In most sites, 
sampling was conducted prospectively on recently reported cases, allowing a 
3-month waiting period to ensure that providers had notifi ed patients of their 
test results. The goal in most sites was to sample ≥10 % of reported cases and 
to obtain supplemental information from the healthcare provider associated 
with the positive test result.   

   (c)     Flexibility of data collection instruments and data entry and storage systems . 
Previously, information on mode of transmission was considered desirable, but 
more helpful to prevention was the identifi cation of which individuals were 
linked to care. Several health departments had the fl exibility to pilot new infor-
mation items including whether the individual had seen a healthcare provider for 
hepatitis-related care, and whether they had ever been treated for hepatitis C.   

   (d)     Secure and standardized transmission of data to a central offi ce . Diffi culties with 
the larger electronic system for notifi able diseases resulted in the use of an inde-
pendent, secure transfer protocol mechanism to receive electronic data from sites.   

   (e)     Capacity to conduct analyses at the central offi ce . The application of standard-
ized case defi nitions was complicated at the local level by subjective interpreta-
tions and applications of the defi nition. Data collected on all positive HCV 
antibody tests allows surveillance programs to understand the population test-
ing positive, and not only those who have the additional confi rmatory testing 
requirements to meet the case defi nition (e.g., RIBA, RNA). Therefore, a best 
practice is to receive all data elements and observations health departments are 
able to collect and send them to a central offi ce. Then, standardized selection 
criteria can be applied prior to data analyses. For example, the current US hepa-
titis C case defi nition requires a confi rmatory antibody test; however, under-
standing the frequency with which persons test positive and are then not reported 
to have a follow-up test is useful for prevention [ 85 ].      

7.3     Conclusions 

 Hepatitis C surveillance can yield useful information for understanding burden of 
disease, preventing outbreaks, identifying high-risk populations, and planning and 
evaluating prevention activities. However, careful consideration of objectives should 
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be balanced with available resources. The current US hepatitis C surveillance 
 system forms the backbone of surveillance and provides incidence data. Enhanced 
surveillance activities provide additional risk and exposure information on cases. To 
describe the complete spectrum of HCV disease, HCV-related information from 
additional sources of data, including population-based surveys, is used. As health-
care services evolve in their application of informatics, surveillance of HCV infec-
tion can take advantage of the events generated from HCV-related medical 
encounters in electronic medical records. Testing data from laboratories could be 
used to monitor the implementation of screening recommendations, and results 
from nucleic acid tests could be useful to distinguish between current present and 
resolved or past HCV infection.      

      References 

       1.    Armstrong G, Wasley A, Simard E, McQuillan G, Kuhnert W, Alter M. The prevalence of 
hepatitis C virus infection in the United States, 1999 through 2002. Ann Intern Med. 
2006;144(10):705–14.  

      2.    WHO. Global surveillance and control of hepatitis C. Report of a WHO Consultation orga-
nized in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. J Viral 
Hepat. 1999;6:35–47.  

    3.    Dobbins J, Stewart J, Demmler G. Surveillance of congenital cytomegalovirus disease, 
1990–1991. Collaborating Registry Group. MMWR CDC Surveill Summ. 1992;41(2):35–9.  

     4.    Houghton M. The long and winding road leading to the identifi cation of the hepatitis C virus. 
J Hepatol. 2009;51:939–48.  

    5.    Choo Q, Kuo G, Weiner A, Overby L, Bradley D, Houghton M. Isolation of a cDNA clone 
derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989;244:
359–62.  

     6.   Centers for Disease Control and Prevention. Hepatitis C FAQs for health professionals. 
Available at:   http://www.cdc.gov/hepatitis/hcv/hcvfaq.htm#b10    . Accessed on August 8, 
2013.  

         7.    Ghany M, Nelson D, Strader D, Thomas D, Seeff L. An update on treatment of genotype 1 
chronic hepatitis C virus infection: 2011 Practice Guideline by the American Association for 
the Study of Liver Diseases. Hepatology. 2011;54:1433–44.  

    8.    CDC. Recommendations for prevention and control of hepatitis C virus (HCV) infection and 
HCV-related chronic disease. MMWR Recomm Rep. 1998;47(RR-19):1–33.  

      9.   Centers for Disease Control and Prevention. CDC/CSTE case defi nitions. Available at:   http://
wwwn.cdc.gov/NNDSS/script/casedefDefault.aspx    . Accessed on September 5, 2013.  

    10.    Shepard C, Finelli L, Alter M. Global epidemiology of hepatitis C virus infection. Lancet. 
2005;5(9):558–67.  

    11.    El-Zanaty F, Way A. Egypt demographic and health survey 2008. Cairo, Egypt: Ministry of 
Health, El-Zanaty and Associates, and Macro International; 2009.  

       12.    Denniston M, Jiles R, Drobeniuc J, et al. Chronic hepatitis C virus infection in the United 
States, National Health and Nutrition Examination Survey 2003 to 2010. Ann Intern Med. 
2014;160:293–300.  

      13.    Centers for Disease Control and Prevention. Recommendations for the identifi cation of 
chronic hepatitis C virus infection among persons born during 1945–1965. MMWR Recomm 
Rep. 2012;61(RR04):1–18.  

      14.    Zein N. Clinical signifi cance of hepatitis C virus genotypes. Clin Microbiol Rev. 2000;13(2):
223–35.  

6 Surveillance for Hepatitis C

http://wwwn.cdc.gov/NNDSS/script/casedefDefault.aspx
http://wwwn.cdc.gov/NNDSS/script/casedefDefault.aspx
http://www.cdc.gov/hepatitis/hcv/hcvfaq.htm#b10


120

    15.    Liang T, Rehermann B, Seeff L, Hoofnagle J. Pathogenesis, natural history, treatment, and 
prevention of hepatitis C. Ann Intern Med. 2000;132(4):296–305.  

     16.   Centers for Disease Control and Prevention. Surveillance for viral hepatitis - United States, 
2011. Available at:   http://www.cdc.gov/hepatitis/Statistics/2011Surveillance/index.htm    . 
Accessed on September 5, 2013. 2013.  

    17.    CDC. Notes from the fi eld: hepatitis c virus infection among young adults-rural Wisconsin, 
2010. MMWR Morb Mortal Wkly Rep. 2012;61:358.  

   18.    CDC. Use of enhances surveillance for hepatitis c virus infection to detect a cluster among 
young injection drug users-New York, November 2004-April 2007. MMWR Morb Mortal 
Wkly Rep. 2008;57:517–21.  

    19.    CDC. Hepatitis C virus infection among adolescents and young adults - Massachusetts, 2002- 
2009. MMWR Morb Mortal Wkly Rep. 2011;60(17):537–41.  

    20.    Henderson D. Managing occupational risks for hepatitis C transmission in the health care 
setting. Clin Microbiol Rev. 2003;16:546–68.  

    21.   Centers for Disease Control and Prevention. Viral hepatitis surveillance – United States, 
2010. Available at:   http://www.cdc.gov/hepatitis/Statistics/2010Surveillance/index.htm    . 
Accessed on November 21, 2013. 2012.  

     22.    Selvarajah S, Busch M. Transfusion transmission of HCV, a long but successful road map to 
safety. Antivir Ther. 2012;17:1423–9.  

    23.    Averhoff F, Glass N, Holtzman D. Global burden of hepatitis C: considerations for healthcare 
providers in the United States. Clin Infect Dis. 2012;55 Suppl 1:510–5.  

     24.    Tohme R, Holmberg S. Is sexual contact a major mode of hepatitis C virus transmission? 
Hepatology. 2010;52:1497–505.  

    25.    Centers for Disease Control and Prevention. Sexual transmission of hepatitis C virus among 
HIV-infected men who have sex with men—New York City, 2005–2010. MMWR Morb 
Mortal Wkly Rep. 2011;60:945–50.  

     26.    Chak E, Talal A, Sherman K, Schiff E, Saab S. Hepatitis C virus infection in USA: an esti-
mate of true prevalence. Liver Int. 2011;31:1090–101.  

    27.    Dominitz J, Boyko E, Koepsell T, Heagerty P, Maynard C, Sporleder J. Elevated prevalence 
of hepatitis C infection in users of United States Veterans Medical Centers. Hepatology. 
2005;41:88–96.  

    28.    Kim W. The burden of hepatitis C in the United States. Hepatology. 2002;36:S30–4.  
    29.    Centers for Disease Control and Prevention. Progress toward prevention and control of hepa-

titis C virus infection—Egypt, 2001–2012. MMWR Morb Mortal Wkly Rep. 
2012;61(29):545–9.  

      30.    Perz J, Armstrong G, Farrington L, Hutin Y, Bell B. The contributions of hepatitis B virus and 
hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 
2006;45:529–38.  

    31.    Bell B, Manos M, Zaman A, Terrault N, Thomas A. The epidemiology of newly diagnosed 
chronic liver disease in gastroenterology practices in the United States: results from 
population- based surveillance. Am J Gastroenterol. 2008;103:2727–36.  

      32.    Ly K, Xing J, Klevens R, Jiles R, Ward J, Holmberg S. The growing burden of mortality from 
viral hepatitis in the United States, 1999-2007. Ann Intern Med. 2012;156:271–8.  

     33.    El-Kamary S, Jhaveri R, Shardell M. All-cause, liver-related, and non–liver-related mortality 
among HCV-infected individuals in the general U.S. population. Clin Infect Dis. 
2011;53(2):150–7.  

    34.    Lee M, Yang H, Lu S, et al. Chronic hepatitis C virus infection increases mortality from 
hepatic and extrahepatic diseases: a community-based long-term prospective study. J Infect 
Dis. 2012;206(4):469–77.  

    35.    Ly K, Xing J, Klevens R, Jiles R, Holmberg S. Causes of death and characteristics of dece-
dents with viral hepatitis, United States, 2010. Clin Infect Dis. 2014;58:40. doi:  10.1093/cid/
cit642    .  

K.N. Ly et al.

http://dx.doi.org/10.1093/cid/cit642
http://dx.doi.org/10.1093/cid/cit642
http://www.cdc.gov/hepatitis/Statistics/2010Surveillance/index.htm
http://www.cdc.gov/hepatitis/Statistics/2011Surveillance/index.htm


121

     36.   AASLD/IDSA. Recommendations for testing, managing, and treating hepatitis C. Available 
at:   http://www.hcvguidelines.org/    . Accessed March 17, 2014.  

    37.    European Association for the Study of the Liver. EASL clinical practice guidelines: manage-
ment of chronic hepatitis B virus infection. J Hepatol. 2012;57:167–85.  

    38.   World Gastroenterology Organisation. World Gastroenterology Organisation global guide-
lines: diagnosis, management and prevention of hepatitis C. Available at:   http://www.world-
gastroenterology.org/assets/export/userfi les/WGO_Hepatitis%20C_Final%20Version.pdf    . 
Accessed on March 20, 2014.  

     39.    Poynard T, Yuen M, Ratzin V, Lai C. Viral hepatitis C. Lancet. 2003;362:2095–100.  
       40.    Kamili S, Drobeniuc J, Araujo A, Hayden T. Laboratory diagnostics for hepatitis C virus 

infection. Clin Infect Dis. 2012;55 Suppl 1:S43–8.  
      41.    Centers for Disease Control and Prevention. Testing for HCV infection: an update of guid-

ance for clinicians and laboratorians. MMWR Morb Mortal Wkly Rep. 2013;62(18):362–5.  
    42.    Maity S, Nandi S, Biswas S, Sadhukhan S, Saha M. Performance and diagnostic usefulness 

of commercially available enzyme linked immunosorbent assay and rapid kits for detection 
of HIV, HBV and HCV in India. Virol J. 2012;9:290–8.  

        43.    Centers for Disease Control and Prevention. Guidelines for laboratory testing and result 
reporting of antibody to hepatitis C virus. MMWR Recomm Rep. 2003;52(RR03):1–16.  

    44.    Chamie G, Bonacini M, Bangsberg D, et al. Factors associated with seronegative chronic 
hepatitis C virus infection in HIV infection. Clin Infect Dis. 2007;44:577–83.  

    45.   Centers for Disease Control and Prevention. Recommended testing sequence for identifying 
current hepatitis C virus (HCV) infection. Available at:   http://www.cdc.gov/hepatitis/HCV/
PDFs/hcv_fl ow.pdf    . Accessed on March 20, 2014.  

     46.    Gu S, Liu J, Zhang H, et al. Core antigen tests for hepatitis C virus: a meta-analysis. Mol Biol 
Rep. 2012;39:8197–208.  

     47.    Lambert N. Value of HCV antigen-antibody combined HCV assay in hepatitis C diagnosis. 
Dev Biol (Basel). 2007;127:113–21.  

    48.    Dawson G. The potential role of HCV core antigen testing in diagnosing HCV infection. 
Antivir Ther. 2012;17:1431–5.  

    49.   U.S. Food and Drug Administration. Complete list of donor screening assays for infectious 
agents and HIV diagnostic assays. Available at:   http://www.fda.gov/biologicsbloodvaccines/
bloodbloodproducts/approvedproducts/licensedproductsblas/blooddonorscreening/infec-
tiousdisease/ucm080466.htm#anti_HCV_Assays    . Accessed on March 20, 2014.  

    50.    Vidya M, Saravanan S, Rifkin S, et al. Dried blood spots versus plasma for the quantitation 
of HIV-1 RNA using a real-time PCR, m2000rt assay. J Virol Methods. 2012;181:177–81.  

    51.    McCarron B, Fox R, Wilson K, et al. Hepatitis C antibody detection in dried blood spots. 
J Viral Hepat. 1999;6:453–6.  

    52.    Abe K, Konomi N. Hepatitis C virus RNA in dried serum spotted onto fi lter paper is stable at 
room temperature. J Clin Microbiol. 1998;69:3070–2.  

     53.    Chasela C, Wall P, Drobeniuc J, et al. Prevalence of hepatitis C virus infection among human 
immunodefi ciency virus-1-infected pregnant women in Malawi: the BAN study. J Clin Virol. 
2012;54:318–20.  

    54.    Mullis C, Laeyendecker O, Reynolds S, et al. High frequency of false-positive hepatitis C 
virus enzyme-linked immunosorbent assay in Rakai, Uganda. Clin Infect Dis. 2013;57:
1747–50.  

    55.    Pearlman B, Traub N. Sustained virologic response to antiviral therapy for chronic hepatitis 
C virus infection: a cure and so much more. Clin Infect Dis. 2011;52:889–900.  

    56.    Backus L, Boothroyd D, Phillips B, Belperio P, Halloran J, Mole L. A sustained virologic 
response reduces risk of all-cause mortality in patients with hepatitis C. Clin Gastroenterol 
Hepatol. 2011;9:509–16.  

    57.    van der Meer A, Veldt B, Feld J, et al. Association between sustained virological response and 
all-cause mortality among patients with chronic hepatitis C and advanced hepatic fi brosis. 
JAMA. 2012;308:2584–93.  

6 Surveillance for Hepatitis C

http://www.fda.gov/biologicsbloodvaccines/bloodbloodproducts/approvedproducts/licensedproductsblas/blooddonorscreening/infectiousdisease/ucm080466.htm#anti_HCV_Assays
http://www.fda.gov/biologicsbloodvaccines/bloodbloodproducts/approvedproducts/licensedproductsblas/blooddonorscreening/infectiousdisease/ucm080466.htm#anti_HCV_Assays
http://www.fda.gov/biologicsbloodvaccines/bloodbloodproducts/approvedproducts/licensedproductsblas/blooddonorscreening/infectiousdisease/ucm080466.htm#anti_HCV_Assays
http://www.cdc.gov/hepatitis/HCV/PDFs/hcv_flow.pdf
http://www.cdc.gov/hepatitis/HCV/PDFs/hcv_flow.pdf
http://www.worldgastroenterology.org/assets/export/userfiles/WGO_Hepatitis C_Final Version.pdf
http://www.worldgastroenterology.org/assets/export/userfiles/WGO_Hepatitis C_Final Version.pdf
http://www.hcvguidelines.org/


122

    58.   Chou R, Hartung D, Rahman B, Wasson N, Cottrell E, Fu R. Treatment for hepatitis C virus 
infection in adults. Comparative Effectiveness Review No. 76. (Prepared by Oregon 
Evidence-based Practice Center under Contract No. 290-2007-10057-I.) AHRQ Publication 
No. 12(13)-EHC113-EF. Rockville, MD: Agency for Healthcare Research and Quality. 2012. 
Available at:   http://www.effectivehealthcare.ahrq.gov/reports/fi nal.cfm    . Accessed on May 
24, 2013.  

     59.    Casey L, Lee W. Hepatitis C virus therapy update 2013. Curr Opin Gastroenterol. 
2013;29:243–9.  

     60.   U.S. Food and Drug Administration. FDA approves Sovaldi for chronic hepatitis C. Available 
at:   http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm377888.htm    . 
Accessed on December 24, 2013.  

    61.    Yawn B, Gazzuola L, Wollan P, Kim W. Development and maintenance of a community- 
based hepatitis C registry. Am J Manag Care. 2002;8:253–61.  

    62.    Ruf M, Cohuet S, Maguire H, et al. Setting up an enhanced surveillance of newly acquired 
hepatitis C infection in men who have sex with men: a pilot in London and South East region 
of England. Euro Surveill. 2008;13(47):1–3.  

     63.    Treso B, Takacs M, Dencs A, Dudas M, Par A, Rusvai E. Molecular epidemiology of hepatitis 
C virus genotypes and subtypes among injecting drug users in Hungary. Euro Surveill. 
2013;18(47):1–6.  

      64.    Nsubuga P, White M, Thacker S, et al. Chapter 53. Public health surveillance: a tool for tar-
geting and monitoring intervention. In: Jamison DT, Breman JG, Measham AR, Alleyne G, 
Claeson M, Evans DB, Jha P, Mills A, Musgrove P, editors. Disease control priorities in 
developing countries. 2nd ed. Washington, DC: The World Bank and Oxford University 
Press; 2006.  

    65.    Alter M, Hadler S, Margolis H, et al. The changing epidemiology of hepatitis B in the United 
States: need for alternative vaccination strategies. JAMA. 1990;63(9):1218–22.  

    66.    Klevens R, Miller J, Vonderwahl C, et al. Population-based surveillance for hepatitis C virus, 
United States, 2006–2007. Emerg Infect Dis. 2009;15(9):1499–502.  

    67.    Iqbal K, Klevens R, Jiles R. Comparison of acute viral hepatitis data quality using two meth-
odologies, 2005-2007. Public Health Rep. 2012;127(6):591–7.  

    68.    Centers for Disease Control and Prevention. Hepatocellular carcinoma – United States, 2001- 
2006. MMWR Morb Mortal Wkly Rep. 2010;59(17):517–20.  

    69.    Davis K, Mitra D, Medjedovic J, Beam C, Rustgi V. Direct economic burden of chronic hepa-
titis C virus in a United States managed care population. J Clin Gastroenterol. 2011;45:
e17–24.  

    70.    World Health Organization. International classifi cation of diseases, 10th revision. Geneva: 
World Health Organization; 1998.  

    71.    Klevens R, Kruszon-Moran D, Wasley A, et al. Seroprevalence of hepatitis A virus antibodies 
in the U.S.: results from the National Health and Nutrition Examination Survey. Public 
Health Rep. 2011;126(4):522–32.  

    72.    Wasley A, Kruszon-Moran D, Kuhnert W, et al. The prevalence of hepatitis B virus infection 
in the United States in the era of vaccination. J Infect Dis. 2010;202(2):192–201.  

    73.   Centers for Disease Control and Prevention. National health and nutrition examination sur-
vey. Available at:   http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm    . Accessed on 
January 6, 2014.  

    74.    Roberts H, Utuama O, Klevens R, Teshale E, Hughes E, Jiles R. The contribution of viral 
hepatitis to the burden of chronic liver disease in the United States. Am J Gastroenterol. 
2014;109:387–93.  

    75.   Centers for Disease Control and Prevention. Viral hepatitis statistics and surveillance. 
Available at:   http://www.cdc.gov/hepatitis/statistics/    . Accessed on January 8, 2014.  

      76.    European Centre for Disease Prevention and Control. Annual Epidemiological Report 2012. 
Reporting on 2010 surveillance data and 2011 epidemic intelligence data. Stockholm: ECDC; 
2012. doi:  10.2900/76137    . ISBN 978-92-9193-443-0 ISSN 1830-6160.  

K.N. Ly et al.

http://dx.doi.org/10.2900/76137
http://www.cdc.gov/hepatitis/statistics/
http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm377888.htm
http://www.effectivehealthcare.ahrq.gov/reports/final.cfm


123

    77.    The Kirby Institute. HIV, viral hepatitis and sexually transmissible infections in Australia 
Annual Surveillance Report 2012. Sydney, NSW: The Kirby Institute for infection and 
immunity in society, University of New South Wales; 2012.  

    78.    Centers for Disease Control and Prevention. Use of enhanced surveillance for hepatitis C 
virus infection to detect a cluster among young injection drug users - New York, November 
2004-April 2007. MMWR Morb Mortal Wkly Rep. 2008;57:517–21.  

    79.   Centers for Disease Control and Prevention. Guidelines for viral hepatitis surveillance and 
case management, Atlanta, Georgia, 2005. Available at:   http://www.cdc.gov/hepatitis/
PDFs/2005Guidlines-Surv-CaseMngmt.pdf    . Accessed on November 25, 2013.  

       80.    Klevens R, Liu S, Roberts H, Jiles R, Holmberg S. Estimating acute viral hepatitis infections 
from nationally reported cases. Am J Public Health. 2014;104:482–7.  

    81.    Centers for Disease Control and Prevention. Data security and confi dentiality guidelines for 
HIV, viral hepatitis, sexually transmitted disease, and tuberculosis programs: standards to 
facilitate sharing and use of surveillance data for public health action. Atlanta, GA: U.S. 
Department of Health and Human Services, Centers for Disease Control and Prevention; 2011.  

    82.    Lee L, Gostin L. Ethical collection, storage, and use of public health data: a proposal for a 
national privacy protection. JAMA. 2009;302(1):82–4.  

      83.    Gerbi GB, Williams R, Bakamutumaho B, et al. Hepatitis E as a cause of acute jaundice 
syndrome in northern Uganda, 2010–2012. Am J Trop Med Hyg. 2015;92:411–4.  

    84.    Denniston M, Klevens R, McQuillan G, Jiles R. Awareness of infection, knowledge of hepa-
titis C, and medical follow-up among individuals testing positive for hepatitis C: National 
Health and Nutrition Examination Survey 2001-2008. Hepatology. 2012;55(6):1652–61.  

     85.    Centers for Disease Control and Prevention. Vital signs: evaluation of hepatitis C virus infec-
tion testing and reporting – eight US sites, 2005-2011. MMWR Morb Mortal Wkly Rep. 
2013;62:357–61.  

     86.   United States Department of Health and Human Services HealthIT.gov. Compatibility & 
information exchange. Available at:   http://www.healthit.gov/providers-professionals    . 
Accessed on August 1, 2013.  

    87.    Blumenthal D. Stimulating the adoption of health information technology. N Engl J Med. 
2009;360(15):1477–9.  

    88.    Goroll A, Simon S, Tripathi M, Asgenzo C, Bates D. Community-wide implementation of 
health information technology: the Massachusetts eHealth Collaborative Experience. J Am 
Med Inform Assoc. 2009;16(1):132–9.  

    89.   Massachusetts eHealth Collaborative. History. Available at:   http://www.maehc.org/about/
history/    . Accessed on January 6, 2014.  

     90.   Long Island Patient Information Exchange (LIPIX). History of the health information 
exchange. New York: LIPIX, Inc. Available at:   http://www.lipix.org/about/history.html    . 
Accessed on August 1, 2013.  

    91.    Centers for Disease Control and Prevention. Program collaboration and service integration: 
enhancing the prevention and control of HIV/AIDS, viral hepatitis, sexually transmitted dis-
eases, and tuberculosis in the United States. Atlanta, GA: U.S. Department of Health and 
Human Services, Centers for Disease Control and Prevention; 2009.  

    92.   National Committee on Vital and Health Statistics. Report to the secretary of HHS functional 
requirements needed for the initial defi nition of a Nationwide Health Information 
Network (NHIN). Available at:   http://www.ncvhs.hhs.gov/061030lt.pdf    . Accessed on 
November 20, 2013.  

    93.   Walker J, Pan E, Johnston D, Adler-Milstein J, Bates D, Middleton B. The value of health 
care information exchange and interoperability.  Health Affairs.  2005;(Suppl Web 
Exclusives):W5–10.  

    94.   Offi ce of the National Coordinator for Health Information Technology. Mission statement. 
Available at:   http://www.hhs.gov/healthit/onc/mission    . Accessed on November 26, 2013.  

    95.   Federal Business Opportunities. CDC funding opportunity announcement: accelerating 
 public health situational awareness through health information exchanges. Available at: 

6 Surveillance for Hepatitis C

http://www.hhs.gov/healthit/onc/mission
http://www.ncvhs.hhs.gov/061030lt.pdf
http://www.lipix.org/about/history.html
http://www.maehc.org/about/history/
http://www.maehc.org/about/history/
http://www.healthit.gov/providers-professionals
http://www.cdc.gov/hepatitis/PDFs/2005Guidlines-Surv-CaseMngmt.pdf
http://www.cdc.gov/hepatitis/PDFs/2005Guidlines-Surv-CaseMngmt.pdf


124

  https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=e20621df660665af7
606627430ba4108&_cview=0    . Accessed on November 20, 2013.  

    96.   National Prevention Information Network. CDC funding opportunity announcement: viral 
hepatitis - prevention and surveillance. Available at:   http://www.cdcnpin.org/Display/
FundDisplay.asp?FundNbr=4546    . Accessed on November 20, 2013.  

    97.    Des Roches C, Campbell E, Rao S. Electronic health records in ambulatory care—a national 
survey of physicians. N Engl J Med. 2008;359:50–60.  

    98.    Adler-Milstein J, McAfee A, Bates D, Jha A. The state of regional health information organi-
zations: current activities and fi nancing. Health Aff. 2008;27:W60–9.  

     99.    Overhage J, Grannis S, McDonald C. A comparison of the completeness and timeliness of 
automated electronic laboratory reporting and spontaneous reporting of notifi able conditions. 
Am J Public Health. 2008;98:344–50.  

    100.   New York State Department of Public Health. Laboratory reporting of 2010 communicable 
diseases. Available at:   http://www.wadsworth.org/labcert/regaffairs/clinical/commdisease-
guide.pdf    . Accessed December 24, 2013.    

K.N. Ly et al.

http://www.wadsworth.org/labcert/regaffairs/clinical/commdiseaseguide.pdf
http://www.wadsworth.org/labcert/regaffairs/clinical/commdiseaseguide.pdf
http://www.cdcnpin.org/Display/FundDisplay.asp?FundNbr=4546
http://www.cdcnpin.org/Display/FundDisplay.asp?FundNbr=4546
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=e20621df660665af7606627430ba4108&_cview=0
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=e20621df660665af7606627430ba4108&_cview=0


125© Springer Science+Business Media New York 2015 
P. Shapshak et al. (eds.), Global Virology I - Identifying and Investigating 
Viral Diseases, DOI 10.1007/978-1-4939-2410-3_7

    Chapter 7   
 Nipah Virus Emergence, Transmission, 
and Pathogenesis 

                Emmie     de     Wit       and     Vincent     J.     Munster     

          Core Message   Nipah virus is an important emerging virus with potentially global 
impact. In this chapter, we discuss the emergence of Nipah virus and the current 
state of knowledge on Nipah virus pathogenesis and countermeasures.  

1     Nipah Virus Emergence 

1.1     Nipah Virus Outbreaks 

1.1.1     Malaysia and Singapore, 1998–1999 

 In September of 1998, an outbreak of febrile illness with encephalitis was reported 
in Malaysia [ 1 ]. Besides the disease observed in humans, disease in the local pig 
population was noticed simultaneously. These pigs were suffering from pronounced 
respiratory and neurological disease, also named “barking pig syndrome,” albeit not 
with a high morbidity and mortality [ 2 ]. Human cases occurred primarily in adult 
men who had been in close contact with pigs, indicating that pigs acted as an ampli-
fying, intermediate host enabling the transmission of the virus from bats to humans 
(Fig.  7.1 ) [ 1 ,  3 – 5 ]. By February 1999, the outbreak spread to humans and pigs in 
other regions of Malaysia; this spread was associated with the movement of pigs 
[ 1 ,  2 ]. This movement of pigs also resulted in the spread of the outbreak to abattoir 
workers in Singapore in March 1999 [ 6 ].  
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 Initially, the outbreak in Malaysia and subsequently Singapore was suspected to be 
caused by Japanese encephalitis virus, but this was dismissed as the causative agent 
when it became clear that most cases were adult men rather than young children and 
when mosquito control measures and vaccination programs were shown to be 
ineffective in controlling the outbreak. A previously unknown paramyxovirus was 
subsequently isolated from the cerebrospinal fl uid (CSF) of several fatal encephali-
tis cases. This virus was named Nipah virus and was later classifi ed in the genus 
Henipavirus together with Hendra virus [ 7 ]. Like Hendra virus, Nipah virus was 
categorized as a WHO Risk Group 4 Pathogen and thus can only be handled in labo-
ratories of the highest containment level (biosafety level 4). 

 In total, 276 human cases of encephalitis occurred in the 1998–1999 outbreak 
(265 cases in Malaysia; 11 cases in Singapore), of which 106 were fatal; more than 
1,000,000 pigs were killed from close to 900 farms to control the outbreak [ 2 ,  7 ]. 
Human-to-human transmission of Nipah virus in Malaysia or Singapore was not 
described other than four potential cases of nosocomial transmission to health care 
workers [ 8 ,  9 ]. Human cases of Nipah virus have not been detected in Malaysia 
since the end of the original outbreak in 1999.  

  Fig. 7.1    Nipah virus transmission cycle in Malaysia. Pteropid fruit bats are the natural reservoir 
of Nipah virus. Bats roosting in fruit trees on pig farms transmitted the virus to pigs. Pigs transmit-
ted Nipah virus to people in close contact with them       
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1.1.2     India, 2001, 2007 

 An outbreak with 66 human cases of encephalitis in India in January and February 
of 2001 was retrospectively determined to have been caused by Nipah virus [ 10 ]. 
The outbreak occurred in Siliguri, a large city in north eastern India. The outbreak 
centered around four hospitals in the area; Nipah virus cases were hospitalized 
patients, their family contacts, and medical staffs. Seventy-fi ve percent of patients 
were exposed to Nipah virus in a hospital setting [ 10 ]; however, there is no indica-
tion of how or where the zoonotic transmission occurred that started the outbreak. 
The area around Siliguri overlaps with the geographic spread of fruit bats belonging 
to the  Pteropus  genus, but studies to investigate whether an intermediate host was 
involved in this outbreak or whether Nipah virus was transmitted directly from bats 
to humans were not conducted. The disease outcome was unknown for some of the 
cases during this outbreak, but the case-fatality rate was estimated to be around 
74 % [ 10 ]. In 2007, fi ve cases of Nipah virus disease occurred in a village in West 
Bengal, India. Four of these fi ve cases were likely the result of human-to-human 
transmission from the index case; all fi ve cases were fatal [ 11 ].  

1.1.3     Bangladesh, 2001–Present 

 In Bangladesh, outbreaks of Nipah virus disease have occurred repeatedly since 
2001. Two outbreaks of encephalitis with respiratory disease in Bangladesh, one in 
2001 and the other in 2003, were retrospectively diagnosed as having been caused by 
Nipah virus [ 12 ,  13 ]. In 2001, 13 cases were identifi ed with 9 fatalities; in 2003 12 
cases resulted in 8 deaths. In 2004, two outbreaks occurred in Bangladesh, one in 
January involving 29 cases (22 fatalities) [ 14 ] and the other in April involving 36 
cases (27 fatalities) [ 15 ]. Then there was another outbreak from December 2004 to 
January 2005 [ 16 ]. No outbreaks were identifi ed in 2006. Intensifi ed surveillance has 
resulted in the identifi cation of Nipah virus outbreaks and sporadic cases in 
Bangladesh every year since then [ 17 – 23 ]. Although early studies identifi ed contact 
with sick livestock [ 12 ], contact with a herd of pigs [ 13 ], and climbing trees [ 16 ] as 
risk factors for acquiring Nipah virus infection, zoonotic transmission of Nipah virus 
in Bangladesh is most commonly associated with the consumption of raw date palm 
sap [ 16 ,  22 ]. Date palm sap is collected in Bangladesh in the winter months; bats 
have been observed to drink from the date palm collection pots [ 24 ]. Saliva, feces, or 
urine of these bats containing Nipah virus could contaminate the collection pots and 
be transmitted to people through drinking of the sap (Fig.  7.2 ). Another important 
means of acquiring Nipah virus infection in Bangladesh is through human-to-human 
transmission. Respiratory symptoms including coughing are more prevalent in Nipah 
virus patients in Bangladesh than in Malaysia, a factor that is statistically associated 
with human-to-human transmission [ 17 ,  25 ]. In some of the Nipah virus outbreaks in 
Bangladesh, the majority of cases are the result of human-to- human transmission. 
A striking example is a Nipah virus outbreak in Faridpur district in 2004, where 92 % 
of cases were the result of human-to-human transmission; a religious leader who 
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acquired Nipah virus from his aunt subsequently transmitted the virus to 22 family 
members and followers [ 26 ]. Although the outbreaks in Bangladesh are generally 
smaller in size than the outbreak in Malaysia in 1998–1999, the case-fatality rate 
tends to be higher in Bangladesh [ 27 ]. Whether the increased human-to-human 
transmission and case-fatality rate in Bangladesh as compared to Malaysia are due to 
intrinsic differences in transmissibility and pathogenicity between the virus isolate 
that caused the Malaysian outbreak and the Nipah virus isolates in Bangladesh or 
whether this is due to differences in health care practices, route of zoonotic trans-
mission or other factors is currently unclear. Experimental infection of hamsters 
suggests that a Nipah virus isolate from Bangladesh is not more pathogenic or more 
transmissible than an isolate from Malaysia [ 28 – 30 ].    

  Fig. 7.2    Proposed Nipah virus transmission cycle in Bangladesh. Pteropid fruit bats are the natural 
reservoir of Nipah virus. During the collection of date palm sap, fruit bats drink from the sap and 
contaminate the sap with Nipah virus through saliva, urine, or feces. People drinking the date palm 
sap become infected with Nipah virus and transmit the virus to close contacts       
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1.2     The Natural Reservoir of Nipah Virus 

1.2.1     Fruit Bats of the  Pteropus  Genus Are the Natural Reservoir 
of Nipah Virus 

 The genus  Henipavirus  in the family  Paramyxoviridae  contains the species Hendra 
virus, Nipah virus, and a tentative third species, Cedar virus [ 31 ]. The fi rst indica-
tion of the potential involvement of bats in the circulation of henipaviruses came 
shortly after the discovery of Hendra virus as the causative agent of an outbreak of 
acute respiratory disease in horses and humans in 1994 in Australia. To explore the 
potential of a wildlife reservoir from which Hendra virus was transmitted to horses 
a large serosurvey was initiated. More than 5,000 sera were collected from 46 dif-
ferent species; none of these sera contained antibodies against Hendra virus [ 32 ]. 
Comparison of viral sequences from the two Hendra virus outbreak areas in Brisbane 
and Mackay suggested a common source of the outbreak and the potential involve-
ment of specifi c fruit bats, the fl ying foxes ( Pteropus  spp.; Fig.  7.3 ) based on their 
presence and spatial connectivity at both outbreak sites. Serologic investigations 
subsequently revealed the presence of neutralizing antibodies against Hendra virus 
in these fl ying foxes [ 32 ].  

 Because of the close genetic relationship between Nipah virus and Hendra virus, 
the search for the natural reservoir of Nipah virus focused directly on bats [ 33 ]. 

  Fig. 7.3    Flying fox, the 
natural reservoir of Nipah 
virus (photo: Vincent 
Munster)       
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A serosurvey among bats belonging to species in Malaysia revealed the presence of 
neutralizing antibodies in four species of fruit bats and one species of insectivorous 
bats [ 33 ]. Especially fl ying foxes have been identifi ed to play a role in the circulation 
of Nipah virus; evidence of Nipah virus infection has been detected in the island 
 fl ying fox ( Pteropus hypomelanus ), Malayan fl ying fox ( Pteropus vampyrus ), the 
Indian fl ying fox ( Pteropus giganteus ), and Lyle’s fl ying fox ( Pteropus lylei ), con-
fi rming the role of fl ying foxes as natural reservoir for Nipah virus [ 18 ,  33 – 38 ]. 
Compared to Hendra virus, evidence for Nipah virus circulation in fruit bats has 
been detected over a wider geographical range including Malaysia, Bangladesh, 
India, Papua New Guinea, Cambodia, Indonesia, East Timor, Vietnam, and Thailand 
[ 33 ,  35 – 46 ]. Flying foxes are nomadic fruit bats capable of long-distance travel 
[ 47 ,  48 ], thereby connecting populations spread out over large parts of southeastern 
Asia. The short- and long-distance movements by these fruit bats have been impli-
cated in the spread of pathogens and might facilitate intra- and cross-species trans-
mission. The distribution of Nipah and Hendra virus appears to be predominantly 
determined by the range of their host species rather than geographical features such 
as the Wallace line [ 45 ].  

1.2.2     Factors Affecting Zoonotic Transmission of Henipaviruses 

 Human activities, such as deforestation, have likely contributed to the emergence of 
Hendra and Nipah virus [ 49 ,  50 ]. Fruit bat populations are highly mobile and season-
ally nomadic in response to local food abundance. Changes in migratory behavior due 
to resource supplementation by alternative food sources such as mangos on planta-
tions and habitat alteration facilitated close contact with agricultural amplifying hosts 
(horses for Hendra virus and pigs for Nipah virus) and thereby the risk of zoonotic 
transmission [ 51 ]. Additional stress factors, such as nutritional stress, may also impact 
disease dynamics [ 52 ]. Hendra virus seroprevalence was highest in little red fl ying 
foxes ( Pteropus scapulatus ) under nutritional stress [ 52 ], suggesting that alterations in 
food abundance, due to habitat fragmentation and climate change, could increase the 
risk for Hendra virus zoonotic transmission. In Australia, the number of fl ying foxes 
in contact with human and domestic animal populations has increased as a result of 
urban habituation and decreased migration after anthropogenic transformation of bat 
habitat [ 53 ]. Ten of the 14 known Hendra virus outbreaks occurred near urbanized 
or sedentary fl ying fox populations, indicating the potential risk associated with 
anthropogenic habitat transformation. Similar processes could potentially affect 
Nipah virus prevalence and zoonotic transmission as well.  

1.2.3     Nipah Virus Infection of Bats 

 Nipah virus is considered to be nonpathogenic in its natural hosts. Experimental 
infection of Australian grey-headed fl ying foxes ( Pteropus poliocephalus ) with 
Nipah virus did not result in clinical disease, but subclinical infection occurred as 
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indicated by viral shedding, viral isolation, and seroconversion [ 54 ]. These fi ndings 
were confi rmed upon experimental inoculation of Malayan fl ying foxes and black 
fl ying foxes ( Pteropus alecto ) with Nipah virus, with no disease signs and virus 
shedding predominantly in urine [ 18 ,  39 ,  54 – 56 ]. The isolation of Nipah virus from 
the urine of fruit bats, both in the wild and experimentally, and the isolation of 
Nipah virus from partially eaten fruits suggest that direct contact as well as fomite 
transmission are important routes of transmission within the natural host species.  

1.2.4     Geographic Spread of Henipaviruses in Bats 

 Recently, serological and molecular surveys identifi ed the circulation of henipaviruses 
in fruit bats in Africa and South and Central America, suggesting an even larger geo-
graphical circulation of henipaviruses than previously recognized [ 57 – 61 ]. A wide 
variety of different bat species, fruit bats, as well as insectivorous bats appear to harbor 
henipaviruses. However, the pathogenic and zoonotic potential of these henipaviruses 
is currently unknown, nor have these newly discovered viruses been associated with 
any outbreaks in humans or domestic animals. For instance, the recently isolated Cedar 
virus, a close relative of Nipah and Hendra virus circulating in the black fl ying fox 
population of Australia, did not cause any disease in experimentally infected ferrets 
and guinea pigs, suggesting limited pathogenic potential. The question whether these 
newly detected henipaviruses have zoonotic potential remains to be addressed.    

2     Nipah Virus Pathogenesis 

2.1     Nipah Virus Disease in Humans 

 Nipah virus mainly causes encephalitis in infected individuals; a subset of patients 
also suffer from virus-induced respiratory disease. The incubation time for Nipah 
virus disease in Malaysia was estimated to be 10 days; time from onset of symptoms 
to death in fatal cases was approximately 16 days [ 62 ]. During the Nipah virus out-
break in Malaysia and Singapore patients generally presented with fever and altered 
mental status or decreased consciousness [ 6 ,  62 ,  63 ]. Neurological signs of disease 
progressed over time and resulted in coma, and ultimately death in severe cases. 
Mechanical ventilation was required in most of the severe cases [ 6 ,  62 – 64 ]. Magnetic 
resonance imaging during the acute as well as during later phases of illness revealed 
focal lesions disseminated throughout the brain, mainly in the subcortical and deep 
white matter of the cerebral hemispheres [ 6 ,  63 ,  65 ,  66 ]. Nipah virus was isolated 
from throat swabs, nose swabs, urine, tracheal secretions, and CSF collected from 
patients in Malaysia [ 63 ,  67 ]. From day 7 after onset of symptoms onwards, infec-
tious virus could no longer be detected in swabs or urine. There was no correlation 
between shedding of virus and disease outcome [ 67 ]; however, the presence of 
Nipah virus in CSF was correlated with a poor prognosis [ 68 ]. 
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 Clinical disease in patients in Bangladesh was similar to that described in 
Malaysian and Singaporean patients with a few differences. First of all, up to 69 % 
of patients in Bangladesh had respiratory symptoms, whereas only about 25 % of 
patients in Malaysia had these symptoms. Secondly, the time from onset to symp-
toms to death was shorter in Bangladesh (approximately 7 days). Finally, the case- 
fatality ratio was much higher in Bangladesh at about 70 % calculated over all cases, 
with the case-fatality rate reaching 100 % in certain outbreaks, compared of about 
40 % in the outbreak in Malaysia and Singapore [ 27 ,  69 ]. 

 A follow-up study that included 107 patients from the Malaysian outbreak 
showed that 19 % of surviving Nipah virus patients had long-term neurological defi -
cits lasting for more than 5 months [ 62 ]. After the outbreaks in Malaysia and 
Bangladesh, late-onset or relapse encephalitis has been described, that was fatal in 
some cases, anywhere between 4 months and 11 years after the original exposure to 
Nipah virus [ 70 – 73 ]. 

 Postmortem autopsies were only performed on cases from the 1998–1999 out-
break in Malaysia. Histologic changes were mainly observed in the central nervous 
system (CNS) of patients, followed by lungs and spleen, and incidentally heart or 
kidneys [ 64 ,  74 ]. The main observed lesion was vasculitis of small blood vessels 
and capillaries. This vasculitis was characterized by segmental endothelial destruc-
tion, mural necrosis, and karyorrhexis. In the CNS, lesions were observed in blood 
vessels of the grey and white matter. Viral inclusions were detected in neurons. 
In the lungs, besides vasculitis, alveolar hemorrhage, pulmonary edema, and aspira-
tion pneumonia were often observed. There was no vasculitis in the spleen; rather, 
white pulp depletion and acute necrotizing infl ammation were observed [ 74 ].  

2.2     Nipah Virus Disease in Pigs 

 The Nipah virus outbreak in Malaysia in 1998–1999 was the fi rst time this disease 
was observed in pigs. Due to the fact that the Nipah virus lethality in pigs was 
1–5 % and disease signs are similar to those caused by other pig diseases, Nipah 
virus infection in pigs may have gone undetected if it had not occurred simultane-
ously with a disease outbreak in humans [ 2 ]. Indeed, modeling has shown that the 
outbreak in 1998–1999 was unlikely to be the fi rst introduction of Nipah virus in 
pigs on the index farm [ 51 ]. In pigs, Nipah virus disease presentation depended on 
age. Adult boars and sows presented mainly with neurological disease, whereas 
pigs under 6 months of age mainly suffered from respiratory disease. Histologically, 
pigs developed moderate to severe interstitial pneumonia. Like in human Nipah 
virus infections, pigs developed widespread vasculitis in lungs, brain, and kidneys. 
In the brain, nonsuppurative meningitis with gliosis was observed [ 2 ]. Experimentally, 
pigs have been inoculated subcutaneously, orally [ 75 ], or a combination of intrana-
sally, orally, and ocularly [ 76 ]. Although oral inoculation alone did not result in 
disease, subcutaneous as well as combined intranasal, oral, and ocular inoculation 
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resulted in disease that recapitulated the disease observed in naturally infected pigs 
in Malaysia. There was uniform development of disease in all animals; only a subset 
of animals developed neurological signs. Virus was detected in the respiratory tract 
and the CNS [ 75 ,  76 ]. Nipah virus reached the CNS via transport along cranial 
nerves as well as by crossing the blood–brain barrier [ 76 ].  

2.3     Animal Models 

 Unlike most paramyxoviruses, henipaviruses have a very broad host range. Nipah 
virus infection has been identifi ed in humans, bats, pigs, cats, and dogs; experimen-
tally, bats, pigs, cats, Syrian hamsters, ferrets, guinea pigs, squirrel monkeys, and 
African green monkeys have been infected. The use of animal models is essential 
for understanding Nipah virus transmission and pathogenesis and to test potential 
intervention strategies. 

2.3.1     The Syrian Hamster Model: Elucidating Nipah Virus Pathogenesis 
and Transmission 

 Syrian hamsters are currently the most commonly used Nipah virus animal model. 
The outcome of disease in the hamster model generally depends on the route of 
inoculation and inoculum dose: intraperitoneally inoculated hamsters develop dis-
ease faster than intranasally inoculated animals [ 77 ] and a low-dose inoculum 
results in neurological disease whereas a high dose results in respiratory disease 
[ 78 ]. Evidence for virus replication was detected in lungs, trachea, CNS, spleen, 
liver, kidneys, and heart. Histologically, focal vasculitis and endothelial syncytia 
were observed in blood vessels of the lung, brain, liver, kidney, and heart; bron-
chointerstitial pneumonia was observed in the lungs; animals had meningitis; and 
viral inclusions could be detected in neurons [ 77 – 79 ]. The Nipah virus Syrian 
hamster model has been used to study Nipah virus pathogenesis and transmission 
and to test the effi cacy of antiviral treatments and vaccines. Using the Syrian 
 hamster model, it was shown that Nipah virus can be transported by leukocytes, 
without these cells becoming infected, providing an explanation for the systemic 
dissemination of Nipah virus during infection [ 80 ]. Furthermore, Nipah virus was 
transported rapidly into the CNS via olfactory neurons in the nasal cavity, providing 
a route of entry into the CNS that does not require breakdown of the blood–brain 
barrier [ 79 ]. 

 By using reverse genetics techniques, recombinant Nipah viruses were generated 
that lacked the open reading frame for the nonstructural proteins V, C, or W. 
Inoculation of Syrian hamsters with these recombinant viruses showed a reduced 
virulence of viruses lacking proteins V or C, but not W [ 81 ]. The mechanism through 
which nonstructural proteins V and C affect Nipah virus pathogenicity is still unclear; 
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however, in vitro experiments indicated that their effect on pathogenicity is likely not 
related to their interferon-antagonist function [ 81 ]. 

 A virus isolate from a fatal human case in Malaysia was compared to one from 
Bangladesh in the Syrian hamster model; although virus replication and disease 
progressed slower in hamsters inoculated with the Bangladeshi isolate, the clinical 
signs, tissue tropism, histopathology, and virus titers were comparable in the end 
stage of disease [ 29 ]. These results suggest that clinical differences observed in 
humans may not be a result of intrinsic differences in viral pathogenicity, but could 
rather be a result of differences in health care practices and route or dose of acquiring 
the Nipah virus infection. 

 The Syrian hamster was also used to model virus transmission, showing that 
Nipah virus is most likely transmitted between humans through direct contact 
rather than via fomites or aerosols [ 28 ]. Moreover, it was confi rmed that, as sug-
gested by epidemiological investigations of Nipah virus outbreaks in Bangladesh, 
foodborne transmission of Nipah virus via drinking of palm sap containing the 
virus resulted in virus replication in the respiratory tract and neurological disease 
[ 30 ]. Surprisingly, a Nipah virus isolate from Malaysia transmitted as well as an 
isolate from Bangladesh in the Syrian hamster model of human-to-human trans-
mission [ 28 ,  30 ].  

2.3.2    The Ferret Model 

 The ferret model of Nipah virus disease has mainly been used to study the effi cacy of 
antivirals and vaccines. In ferrets, Nipah virus caused respiratory and neurological 
disease upon oronasal inoculation. Histologically, ferrets developed systemic vasculi-
tis, meningitis, and bronchointerstitial pneumonia [ 82 ]. Using the Nipah virus ferret 
model, the pathogenicity of a virus isolate from a fatal human case in Malaysia was 
compared to a virus isolate from a fatal human case in Bangladesh. No obvious differ-
ences in clinical signs caused by the two different isolates were observed; the main 
difference was the amount of virus shed via the throat: more virus was detected in oral 
swabs of ferrets inoculated with a Nipah virus strain from Bangladesh [ 83 ]. Although 
increased shedding of the Nipah virus isolate from Bangladesh could be related to the 
human-to-human transmission observed in Bangladesh, the ferret model has so far not 
been used to model human-to-human transmission.  

2.3.3    The African Green Monkey Model 

 African green monkeys ( Chlorocebus aethiops ) mainly suffered from severe respi-
ratory disease after inoculation with Nipah virus, with neurological signs occurring 
in some infected animals [ 84 ]. Viral RNA was detected in blood, with the peak 
viremia occurring at the time of euthanasia. Viral RNA could also be detected in 
throat and nose swabs. In line with the viremia detected in blood and a resulting 
systemic infection, viral RNA could be isolated from many different organs, including 
lungs and brain [ 84 ].  
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2.3.4    Other Animal Models 

 Experimental inoculation of common squirrel monkeys ( Saimiri sciureus ), guinea 
pigs, cats, and mice lacking the IFN-α/β receptor (IFNAR-KO mice) were performed. 
Intravenous inoculation of squirrel monkeys resulted in respiratory and neurological 
disease; however, disease severity and outcome were not uniform [ 85 ]. Guinea pigs 
inoculated intraperitoneally with a high dose of Nipah virus only showed transient 
fever and weight loss from which they recovered [ 77 ]. 

 Experimental inoculation of cats was performed because of a report of a Nipah virus-
infected cat during the Malaysian outbreak of Nipah virus. In this naturally infected cat, 
generalized vasculitis in multiple organs was the main histological fi nding [ 86 ]. Cats 
inoculated with Nipah virus oronasally or subcutaneously developed a febrile illness, 
with respiratory signs developing 24 h after fever [ 75 ,  87 ]. Vertical transmission was 
observed in a pregnant cat; placental fl uid contained high quantities of infectious virus 
and viral genome copies could be detected in all fetal tissues tested [ 88 ]. 

 Whereas regular laboratory mouse strains are not susceptible to Nipah virus 
disease, intracerebral or intraperitoneal inoculation of IFNAR-KO resulted in uni-
formly lethal disease; intranasal inoculation with the same dose resulted in lethal 
infection of 60 % of animals, indicating an important role of interferon signaling in 
Nipah virus pathogenesis [ 89 ]. Histologically, IFNAR-KO mice had widespread 
vasculitis, meningitis, and lung infl ammation [ 89 ].    

3     Outbreak Intervention Strategies and Treatment Options 

3.1     Outbreak Intervention Strategies 

3.1.1     Successful Implementation of Outbreak Intervention Strategies 
in Malaysia 

 Once it became clear that pigs were the intermediate, amplifying host during the 
Nipah virus outbreak in Malaysia, a stamping out policy was put into effect. Initially, 
more than 900,000 pigs in the outbreak area were culled; when serologic tests became 
available screening of pig farms for the presence of Nipah virus was initiated, result-
ing in the targeted culling of more than 170,000 pigs [ 2 ]. Moreover, the planting of 
fruit trees on or in the vicinity of pig farms is actively discouraged in an attempt to 
prevent Nipah virus transmission from bats to pigs [ 27 ]. 

 No Nipah virus cases have been detected in Malaysia since 1999, indicating the 
effectiveness of the implemented outbreak intervention measures.  

3.1.2    Development of Outbreak Intervention Strategies in Bangladesh 

 Developing outbreak intervention strategies in Bangladesh was not as straightforward 
as in Malaysia. Several outbreaks were not diagnosed until long after they occurred 
and outbreaks were much smaller. Epidemiologically, there is an association between 
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drinking of raw date palm sap and Nipah virus infection [ 16 ,  22 ]. Although Nipah 
virus has so far not been detected in date palm sap, outbreak intervention strategies 
mainly focus on preventing fruit bats from having access to date palm collection pots. 
By working with the date palm sap harvesters, methods to prevent bats from having 
access to the sap were devised [ 90 ]. Two methods were assessed for their usefulness 
in preventing bats drinking from date palm sap by date palm sap harvesters: applica-
tion of lime to the tree and the collection pots and a bamboo skirt covering the collec-
tion pot and sap stream. Only the bamboo skirts were deemed practical and effective 
by the palm sap harvesters [ 91 ]. A randomized control trial to study the effectiveness 
of bamboo skirts in preventing bats’ access to date palm sap collection pots showed 
that these bamboo skirts, when placed correctly over the tree bark and collection pots, 
dramatically reduced the number of bat-sap contacts, proving the effectiveness of this 
method [ 92 ]. 

 An assessment of the cultural health practices in Bangladesh revealed that cultural 
practices in Bangladesh include extensive physical contact with sick patients; more-
over, disease transmission is poorly understood by the general public as well as health 
care workers [ 93 ]. Thus, education of the general population and health care workers 
on prevention of Nipah virus transmission could potentially aid in the prevention of 
human-to-human transmission and thereby reduce the number of Nipah virus cases.   

3.2     The Search for Effective Antiviral Treatments 

 Due to the severity of Nipah virus outbreaks and their sporadic nature, antiviral 
treatment options would be very valuable. Currently, the only treatment available to 
Nipah virus patients is supportive care in hospital settings. Attempts to develop 
antivirals against Nipah virus are under way. An overview of antiviral treatments 
tested in one or more of the Nipah virus animal models is given in Table  7.1 .

   Table 7.1    The effi cacy of antiviral treatments tested in Nipah virus animal models   

 Antiviral  Species  Effi cacy  References 

 Ribavirin  Human (Malaysia 
outbreak) 

 36 % reduction in mortality  [ 95 ] 

 Syrian hamster  No benefi cial effect  [ 96 ,  97 ] 
 Chloroquine  Syrian hamster  No benefi cial effect  [ 96 ] 

 Ferret  No benefi cial effect  [ 104 ] 
 Neutralizing 
antibodies 

 Syrian hamster  100 % survival with pretreatment; 
partial protection with posttreatment 

 [ 100 ] 

 m102.4 antibody  Ferret  100 % survival when treated 24 h after 
inoculation 

 [ 82 ] 

 poly(I)-poly(C 12 U)  Syrian hamster  80 % survival when treated 2 h after 
inoculation and 9 additional days 

 [ 97 ] 

 VIKI-PEG4-chol  Syrian hamster  40 % survival when treated 2 days after 
inoculation 

 [ 105 ] 

E. de Wit and V.J. Munster



137

3.2.1      Ribavirin 

 During the Nipah virus outbreak in Malaysia, patients were treated with oral or 
intravenous ribavirin when it became available in suffi cient quantities. Ribavirin is 
a broad-spectrum antiviral that inhibits replication of many DNA and RNA viruses, 
including the paramyxovirus human respiratory syncytial virus (reviewed in [ 94 ]). 
Comparison of treated vs. non-treated patients indicated a 36 % reduction in lethal-
ity [ 95 ]. However, all treated cases occurred later in the outbreak whereas most 
non-treated patients were from the early stage of the outbreak before ribavirin 
became available. Thus, other confounding factors such as a generally better case 
management later in the outbreak cannot be excluded to have resulted in the reduced 
lethality in ribavirin-treated patients [ 95 ]. In Syrian hamsters, treatment with ribavi-
rin did not reduce Nipah virus lethality [ 96 ,  97 ]. Although the effi cacy of ribavirin 
against Nipah virus has not been tested in African green monkeys, ribavirin was not 
effective in changing disease outcome in the African green monkey model for the 
closely related Hendra virus [ 98 ].  

3.2.2    Antibody Treatment 

 Passive transfer studies using sera from Syrian hamsters vaccinated with recombinant 
vaccinia virus expressing Nipah virus glycoprotein F and/or G resulted in protection 
of animals from lethal Nipah virus infection [ 99 ]. Based on the successful treatment 
of animals with Nipah virus antibodies, this therapeutic option was further explored. 
Treatment of Syrian hamsters with different mouse monoclonal antibodies selected 
to neutralize the Nipah virus glycoproteins G or F before virus inoculation with a 
lethal dose of Nipah virus resulted in 100 % survival. Unfortunately, administration 
of antibodies at 24 h or more after inoculation with Nipah virus only partially pro-
tected animals from lethal disease [ 100 ]. A human monoclonal antibody, m102.4, 
that neutralizes the Hendra virus as well as Nipah virus glycoprotein G was selected 
from a naïve human phage-displayed antibody library [ 101 ]. Treatment of ferrets 
with this m102.4 antibody 10 h after inoculation with Nipah virus protected ferrets 
from lethal Nipah virus infection [ 82 ]. Treatment of African green monkeys with 
m102.4 up to 72 h after challenge with a lethal dose of Hendra virus resulted in sur-
vival, although the animals were not protected from disease [ 102 ]. Moreover, the 
m102.4 antibody has been used as prophylactic treatment in humans exposed to 
Hendra virus in Australia. Although adverse effects of treatment were not noted, it is 
unknown whether the treatment was effi cacious as it was not clear if these people 
were actually infected with Hendra virus (reviewed in [ 103 ]).  

3.2.3    Other Antiviral Treatment Options 

 The effi cacy of chloroquine, an antimalarial agent, was tested in the Syrian hamster 
and ferret models; no effect of treatment on the outcome of disease was detected in 
either of these models [ 96 ,  104 ]. 
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 Treatment of Syrian hamsters with poly(I)-poly(C 12 U), a potent inducer of type I 
interferon, for 10 days, starting at 2 h after inoculation with a lethal dose of Nipah 
virus, resulted in 80 % of animals surviving until 30 days after inoculation [ 97 ]. 
Although poly(I)-poly(C 12 U) has been tested in human clinical trials, it is currently 
not approved for use in humans. 

 A C-terminus heptad repeat peptide, VIKI-PEG4-chol, that binds an intermediate 
form of the Nipah virus glycoprotein F during fusion of the virus membrane with 
the host cell membrane, was designed to inhibit fusion and subsequent entry of the 
virus into the cell. Administration of this peptide at 2 days after inoculation to 
Syrian hamsters with a lethal dose of Nipah virus increased survival to 40 % [ 105 ]. 
Further clinical testing and approval for use in humans would be required before 
this peptide could be used in Nipah virus-infected patients. 

 Several other compounds have been shown to inhibit Nipah virus replication 
in vitro [ 106 – 109 ]. However, since these compounds are not approved for use in 
humans and/or have not been tested in at least one of the available Nipah virus 
 animal models, their application as therapeutic agents in human Nipah virus patients 
is currently unknown.   

3.3     Vaccine Development 

 Since 2012, an equine Hendra virus vaccine is available in Australia. This vaccine, 
Equivac HeV, consisting of soluble glycoprotein G, aims to protect horses from 
acquiring Hendra virus. Since humans are largely exposed to Hendra virus through 
infected horses, the vaccine at the same time aims to prevent transmission of Hendra 
virus to humans (reviewed in [ 103 ]). Since there is no intermediate reservoir 
involved in the transmission of Nipah virus to humans in the Bangladeshi outbreaks, 
a similar vaccination strategy cannot be adopted there. Moreover, Nipah virus out-
breaks in Bangladesh are small and sporadic, thereby making it unlikely that large- 
scale vaccination campaigns will ever be used in the human population. However, 
a Nipah virus vaccine may be useful to employ a ring vaccination strategy during 
Nipah virus outbreaks. For such a strategy to be successful, fast-acting vaccines 
need to be developed. An overview of vaccine candidates tested in one or more of 
the Nipah virus animal models is presented in Table  7.2 .

3.3.1      Viral Vector-Based Vaccine Candidates 

 The fi rst proof-of-principle vaccine consisted of a recombinant vaccinia virus 
expressing Nipah virus glycoprotein F or G. Syrian hamsters vaccinated subcutane-
ously with VV-NiV.F or VV-NiV.G or a combination of the two were completely 
protected from a lethal Nipah virus infection at 3 months after the last vaccination 
[ 99 ]. Moreover, passive transfer of sera from vaccinated hamsters to naïve animals 
at 1 h before and 24 h after lethal Nipah virus challenge also resulted in complete 
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protection of these animals [ 99 ]. Based on the results from this study, subsequent 
Nipah virus vaccines have focused on producing neutralizing antibodies against 
glycoproteins F and/or G. 

 A canarypox virus vector (ALVAC) expressing glycoprotein F or G was tested 
for use as a vaccine in pigs, as several veterinary vaccines based on the canarypox 
virus vector are already licensed. Pigs received two vaccine doses with a 2-week 
interval of ALVAC-F, ALVAC-G, or a combination of both. All animals developed 
neutralizing antibodies; a combination of ALVAC-F and -G induced the highest 
neutralizing antibody titer. When animals were challenged 2 weeks after the second 
vaccination with a nonlethal dose of Nipah virus, none of the vaccinated pigs devel-
oped clinical signs of disease, whereas unvaccinated control animals did [ 110 ]. 

 Several vaccine studies using recombinant vesicular stomatitis Indiana virus 
(VSV) have been performed. Deletion of the VSV glycoprotein and insertion of the 
Nipah virus glycoprotein F or G result in a virus that is replication incompetent, but 
that does induce neutralizing antibodies in mice [ 111 ]. VSV∆G-NiVG/F vaccines 
have been tested in ferrets as well as Syrian hamsters [ 112 ,  113 ]. Ferrets vaccinated 
once with an intramuscular injection of VSV∆G expressing G or F from a Nipah 
virus isolate from a patient in Bangladesh were completely protected from a chal-
lenge with a lethal dose of a heterologous Nipah virus isolate from Malaysia at 
28 days after vaccination [ 113 ]. Syrian hamsters were completely protected from a 

   Table 7.2    The effi cacy of vaccine candidates tested in Nipah virus animal disease models   

 Vaccine  Species  Effi cacy  References 

 Vaccinia virus 
vector 

 Syrian hamster  Protection from lethal challenge after a 
single vaccination 

 [ 99 ] 

 Canarypox virus 
vector 

 Pig  Protection from clinical disease after two 
vaccinations 

 [ 110 ] 

 VSV∆G  Ferret  Protection from heterologous lethal 
challenge after a single vaccination 

 [ 113 ] 

 Syrian hamster  Protection from lethal challenge after a 
single vaccination 

 [ 112 ] 

 Adeno-associated 
virus vector 

 Syrian hamster  Protection from lethal challenge after a 
single vaccination 

 [ 114 ] 

 Measles virus  Syrian hamster  Protection from lethal challenge after two 
vaccinations 

 [ 115 ] 

 African green 
monkey 

 Protection from clinical disease after two 
vaccinations 

 [ 115 ] 

 sG NiV   Cat  Protection from clinical disease after three 
vaccinations 

 [ 87 ] 

 sG HeV   Cat  Protection from clinical disease after two 
vaccinations 

 [ 118 ] 

 Ferret  Protection from lethal challenge up to 1 year 
after two vaccinations 

 [ 120 ] 

 African green 
monkey 

 Protection from lethal challenge after two 
vaccinations 

 [ 119 ] 
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homologous lethal infection at 32 days after intramuscular injection with VSV∆G- 
NiVG/F [ 112 ]. 

 Expression of the Nipah virus glycoprotein G from an adeno-associated virus 
also resulted in complete protection of hamsters with a single intramuscular vacci-
nation [ 114 ]. 

 A recombinant measles virus expressing Nipah virus G was fi rst tested in Syrian 
hamsters; two intraperitoneal vaccinations 3 weeks apart resulted in 100 % survival 
from a lethal Nipah virus challenge 1 week after the second vaccination [ 115 ]. 
Subsequently, the vaccine was tested in two African green monkeys. Two subcuta-
neous vaccinations with a 4-week interval resulted in complete protection from 
clinical disease in a nonlethal Nipah virus challenge model. Although concerns 
likely exist over preexisting measles virus antibodies in the human population, mea-
sles virus-seropositive African green monkeys developed high antibody titers to 
Nipah virus after two vaccinations [ 115 ]. 

 Venezuelan equine encephalitis virus and Newcastle disease virus vectors 
expressing Nipah virus F or G induced neutralizing antibodies in mice, but these 
vaccine candidates were not tested further in a Nipah virus challenge model 
[ 116 ,  117 ].  

3.3.2    Soluble Glycoprotein G-Based Vaccine Candidate 

 A vaccine consisting of recombinant expressed, soluble Nipah virus glycoprotein G 
(sG NiV ) plus adjuvant was shown to protect cats from clinical Nipah virus disease 
after three vaccinations at 2-week intervals; cats similarly vaccinated with soluble 
glycoprotein G from Hendra virus were also protected from clinical disease after 
Nipah virus challenge [ 87 ]. As a result of this cross-protection, subsequent experi-
ments used the soluble glycoprotein G from Hendra virus that is part of the licensed 
Equivac HeV vaccine. When this sG HeV  was tested in cats, it protected cats from 
clinical Nipah virus disease after two vaccinations with the sG HeV  at a dose as low as 
5 μg protein with adjuvant [ 118 ]. Subsequent testing of sG HeV  in African green mon-
keys resulted in complete protection from lethal Nipah virus challenge after two 
vaccinations with doses of sG HeV  as low as 10 μg plus adjuvant [ 119 ]. Long-lasting 
protection after vaccination with sG HeV  was shown in the ferret model, when ferrets 
were completely protected from lethal Nipah virus challenge more than a year after 
receiving two doses of sG HeV  with adjuvant [ 120 ].  

3.3.3    Other Vaccine Candidates 

 DNA vaccination with a pCAGGS vector expressing Nipah virus glycoproteins F 
or G and viruslike particles consisting of Nipah virus matrix protein and glycopro-
teins F and G were shown to induce neutralizing antibodies in mice; however, the 
effi cacy of these vaccination strategies was not tested in a Nipah virus challenge 
model [ 121 ,  122 ].    
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4     Concluding Remarks 

 It has been almost two decades since the fi rst emergence of Nipah virus. Nipah virus 
continues to cause annual outbreaks in Bangladesh, with low case numbers but high 
case fatality rates. Although human-to-human transmission has so far been rela-
tively limited, adaptation of the virus could result in more effi cient human-to-human 
transmission, potentially resulting in large-scale human outbreaks. Effective thera-
peutic or prophylactic treatment options are currently still lacking; however, even 
once these become available their implementation in the resource-poor outbreak 
areas in Bangladesh may be diffi cult. Therefore, efforts should be focused on the 
design of low-cost intervention strategies aimed at blocking zoonotic and human-to- 
human transmission. 

 The detection of Nipah virus in fl ying foxes, animals with a wide geographical 
range partially overlapping with areas of very high human population density, 
 suggests a potential of Nipah virus to cause outbreaks over a large part of southeast-
ern Asia, potentially affecting much larger populations than it has done to date. The 
discovery of henipaviruses closely related to Nipah virus in bats in Africa and South 
and Central America further suggests that with contact between bats and humans 
increasing as a result of habitat destruction and climate change, we could be facing 
more henipavirus zoonotic transmission events in the future.     
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    Chapter 8   
 A Decade of Giant Virus Genomics: 
Surprising Discoveries Opening New 
Questions 

             Hiroyuki     Ogata       and     Masaharu     Takemura    

         Core Message   After the discovery of giant viruses at the beginning of this century, 
viral research started to exert important infl uences in ever-broader areas of biology. 
This chapter presents a review of the discoveries of giant viruses such as mimiviruses 
and pandoraviruses, their spectacular biology, and revolutionary ideas proposed for 
their origin and evolution, by particularly addressing the implications that have been 
brought to reassess our classical perception of a virus.  

1     The Nature of Viruses: A Traditional View 

 Viruses are traditionally regarded as small biological entities, which were once 
termed  fi lterable agents . Since their discovery in the late nineteenth century, and 
particularly after the observation of crystallized tobacco mosaic virus in 1935, they 
have rarely been regarded as living organisms. They have no cellular structure, the 
unit and a common trait of living organisms reproducing by binary division. Viruses 
do not produce energy (i.e., ATPs) required for their reproduction. In contrast, 
viruses fi rst replicate their genomic material in large numbers, and then package the 
genomes into capsids. They cannot replicate autonomously outside their hosts but 
instead hijack host molecular machinery for their replication. 

 Viral particles contain nucleic acids (either DNA or RNA [ 1 ]) as well as proteins 
in most cases, which are enclosed in a capsid. The capsid might in turn be covered 
by an envelope of lipid bilayer membranes for certain viruses. Viruses are classifi ed 
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into DNA viruses or RNA viruses according to the type of nucleic acids they carry in 
their particles. Viruses are too small to be visualized easily using optical microscopy. 
Even the observation of poxviruses (approximately 0.25 μm in length), the largest 
known viruses until the beginning of the twenty-fi rst century, requires electron 
microscopy. Most viruses possess a gene (or genes) for genome replication 
(i.e., DNA polymerase or RNA polymerase), but they often lack genes for transcrip-
tion and they never encode genes for translation machinery. Viruses depend on 
their host proteins for these latter steps of the central dogma (i.e., transcription and 
translation). Therefore, their metabolic capacity is crucially insuffi cient for autono-
mous self-reproduction. 

 A tremendously large body of research has been devoted to understand viruses 
from medical, agricultural, biochemical, and genetics perspectives. There had always 
been a clear-cut boundary between viruses and living organisms (i.e., life). However, 
an extremely large virus now called Acanthamoeba polyphaga mimivirus discovered 
in 2003 triggered a remarkable change in the perception of viruses, at least among 
certain microbiologists [ 2 ].  

2     Discovery of Giant Viruses 

 Acanthamoeba polyphaga mimivirus (APMV) is an amoeba-infecting large DNA 
virus, with virus particles reaching 0.75 μm in diameter, including the glycosylated 
fi brous structure on the surface [ 3 ]. In microbiology laboratories, amoebas are used 
as tools to isolate bacterial pathogens such as  Legionella . APMV was captured in 
this type of effort to isolate human pathogens in water samples from a cooling tower 
of a hospital in England by Timothy Rowbotham [ 4 ]. Its particle propagating in the 
amoeba culture was initially assumed to be an intracellular bacterium because of its 
large size comparable to small bacterial cells and for its Gram-positive staining 
property. The particle was therefore given the tentative name of “Bradford coccus,” 
refl ecting the name of the city of its isolation. However, efforts to amplify rRNA gene 
fragments were unsuccessful, leaving the characterization of the bacterium- like 
particles pending for years. 

 In 2003, the sample was brought to the group of Didier Raoult in France (Aix- 
Marseille University), who painstakingly examined the bacterium-like particles 
using electron microcopy. Unexpectedly, the particles had a regular, icosahedral 
form that was typical for a virion. Their reproduction cycle had an eclipse period, 
which was followed by the sudden emergence of hundreds of particles inside their 
host amoeba cells. The viral characteristics of the large particles were therefore 
revealed, and the virus was formally designated as “Mimivirus” to emphasize its 
size (i.e., a bacterium-“mimicking” virus) before its current name, APMV, was 
assigned. 

 In 2004, the complete genome sequence of APMV was determined [ 2 ]. The linear 
dsDNA genome, which turned out to be 1.18 Mbp in length, was found to encode more 
than 1,000 genes, most of which are transcribed during its infection cycle [ 5 ,  6 ]. The viral 
nature of APMV was also evident from its gene composition (e.g., capsid genes), 
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and gene phylogenies fi rmly placed APMV within the nucleocytoplasmic large DNA 
virus (NCLDV) group [ 7 ], which has been proposed, but not yet approved, as a new 
order, “ Megavirales ” [ 8 ]. Certain members of the NCLDV group, such as poxviruses, 
infecting vertebrates or insects, as well as chloroviruses, infecting unicellular algae 
such as chlorella, are large dsDNA viruses, already recognized as “giant viruses” even 
before the discovery of APMV [ 9 ] (Table  8.1 ). However, these classical giants of 
viruses measure only 0.18–0.25 μm and possess a genome of ca. 300 kbp. Therefore, 
APMV was truly exceptional in terms of its particle size and genome size among 
viruses known at that time.

   Is APMV an intriguing, but unique, exception of the virosphere, standing at the 
extremity in the size spectrum of viruses? Alternatively, have researchers somehow 
missed opportunities to see and capture such giant viruses (now colloquially called 
as “giruses” [ 10 ])? Soon after the genome sequencing of APMV, comparative 
sequence studies of genetic data from environmental microbial samples suggested 
the existence of viruses related to APMV in marine ecosystems [ 11 ,  12 ]. 
Environmental samplings thus started with the aim of hunting the next giant viruses 
in different environments including marine ecosystems, and led to the isolation of 
mimivirus strains from diverse environments [ 13 ] and to the discoveries of new giant 
viruses in the sea, including a large virus infecting bacteriovorus marine nanofl agel-
late  Cafeteria roenbergensis  (CroV, 750 kbp), which confi rmed the predicted pres-
ence of mimivirus relatives in the sea [ 14 ]. In 2011, again using amoeba cultures, 
another virus tentatively named “ Megavirus chilensis ” with a genome (1.26 Mbp) 
slightly larger than that of APMV was isolated from marine sediment sampled at a 
Chilean coast [ 15 ]. In 2013, Philippe et al. reported the discovery of pandoraviruses 
[ 16 ], the largest viruses ever found, with many features that had not been found in the 
giant viruses reported earlier.  

3     Pandoraviruses 

 Pandoraviruses are atypical among large viruses in their virion morphology. Their 
virions are not icosahedral, but instead display an irregular ovoid form measuring 
1 μm by 0.5 μm with a little apical pore, which makes it reminiscent of Pandora’s jar 
in Greek mythology. They were identifi ed as lytic agents of amoeba cultures, as in 
the case of mimiviruses and “ Megavirus chilensis .” Pandoravirions are visible by 
optical microscopy, and were initially given a nickname of “New Life Form (NLF).” 
Two similar particles were isolated: one from a sediment sample taken at the mouth 
of the Tunquen River, Chile, and the other from the bottom of a freshwater pond near 
Melbourne, Australia. Genome sequence analyses revealed that these two parasitic 
particles (respectively tentatively named “ Pandoravirus salinus ” and “ Pandoravirus 
dulcis ”) represent related but distinct members of a newly proposed genus of giant 
virus. Except for regions with repetitive sequences at one extremity, their linear 
dsDNA genomes were sequenced completely. The size of the whole genome was 
estimated as 2.77 Mb (2,556 predicted genes) for “ P. salinus ” and as 1.91 Mbp 
(1,502 predicted genes) for “ P. dulcis .” 

8 A Decade of Giant Virus Genomics: Surprising Discoveries Opening New Questions
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 Pandoraviruses are also unique in terms of their gene contents. Only 401 predicted 
genes from “ P. salinus ” have signifi cant sequence similarity to other sequences in 
the current sequence databases, whereas the remaining 2,155 predicted genes (84 %) 
lack detectable known homologs (i.e., “orphan genes”). A proteomic analysis of 
“ P. salinus ” virions identifi ed 210 proteins originating from its genome, of which 
80 % had no detectable sequence similarity to any other sequence in the public 
databases. The proteomic identifi cation of gene products from “ P. salinus ” orphan 
genes suggests the  bona fi de  gene status for the many of the predicted orphan genes 
in its genome. 

 Electron microscopic analysis revealed the following infection/replication cycle 
in  Acanthamoeba  cultures. Pandoravirions enter the cytoplasm of amoeba host cells 
by phagocytosis, as in the case of mimiviruses. The particle empties its contents 
(genomic DNA and probably associated proteins) into the cytoplasm through its api-
cal pore. The injection process involves the fusion of the internal lipid membrane of 
the viral particle and the phagocytic vacuolar membrane. This genome delivery step 
is followed by an eclipse period during which the contents of the particles become 
invisible, as in other viruses. No binary division was observed. Later, the nuclear 
membranes disappear gradually and numerous newly assembled virion particles 
emerge at the periphery of the region formerly occupied by the nucleus. The location 
of the emergent pandoravirions is therefore different from those produced by 
mimiviruses and “ Megavirus chilensis ,” which create an electron-dense intracellular 
compartment called a “virion factory,” a viral replication and assembly center, in the 
cytoplasm of the infected cell. Therefore, pandoraviruses are assumed to use the host 
nucleus for their replication. The replication cycle lasts for 10–15 h. 

 Another interesting feature of pandoravirus genomes is the presence of spliceo-
somal type introns in many genes. Although precise delineation of exon/intron 
structure requires deep sequencing of transcripts, it is estimated that ca. 10 % of 
“ P. salinus ” genes contain spliceosomal introns. Spliceosomal introns differ from 
self- splicing introns (found in many viruses) and have been found only rarely in 
viral genomes. The presence of spliceosomal introns in pandoravirus genes is also 
 indicative of the use of the host nucleus for their transcription. 

 Pandoraviruses share only a handful of genes with other previously characterized 
large DNA viruses. Therefore, their evolutionary relation with other viruses might 
not be readily apparent. Detailed phylogenetic analyses of a few genes common to 
pandoraviruses and other viruses suggest that they are distantly related to phycod-
naviruses in the NCLDV group [ 17 ].  

4     Are Viruses Alive? 

 Are viruses really non-organisms? The discoveries of these giant viruses strongly 
shook some of the beliefs of microbiologists and evolutionary biologists, and either 
reactivated or initiated old and new issues related to the concept of viruses. Succinctly 
put, a clear boundary that had been perceived between organisms (cellular life forms) 
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and viruses became blurred considerably for the fi rst time in the history of virology. 
Viruses had been thought to represent an ultimate form of parasite that carries a mini-
mal set of genes that are necessary for nucleic acid replication and packaging. 
However, the size ranges of viral genomes and cellular genomes now mutually over-
lap. Mimivirus genome sizes exceed those of parasitic bacterial and archaeal genomes, 
whereas the size of the “ P. salinus ” genome falls in the size range of standard bacterial 
genomes and exceeds the size of parasitic eukaryotic genomes (Fig.  8.1 ).  

 Given the diversity of genes encoded in giant virus genomes, their reproduction 
strategies would not be expected to be simpler than those of cellular organisms. 
Furthermore, the APMV genome was found to encode genes for part of the transla-
tion system, which is regarded as a hallmark molecular apparatus distinguishing 
cellular organisms from viruses. APMV has four aminoacyl-tRNA synthetase genes 
and three genes for translation initiation, elongation, and termination, in addition to 
six tRNA genes. To date, no virus has been found that encodes genes for the ribo-
some, but the presence of these translation-related genes in APMV suggests that 
giant viruses actively participate in the translation process. They are not completely 
dependent on their host at every phase of the central dogma during their reproduc-
tion. CroV and “ Megavirus chilensis ” have several translational genes, although no 
such gene was identifi ed in the genomes of pandoraviruses. In addition, APMV 
particles were found to contain both RNA (mRNAs) and DNA (genomic DNA), 
which further blurred the conceptual barrier between organisms and viruses. 

 The mimivirus DNA delivery system also illustrates how the molecular machin-
eries of giant viruses are sophisticated [ 18 ]. Upon infection of particle contents into 

  Fig. 8.1    Genome size of viruses and cellular organisms       
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the host cell cytoplasm, APMV opens fi ve triangular faces around a vertex of its 
icosahedral capsid. The machinery, called “stargate,” shows no structural similarity 
to the DNA delivery systems in other viruses such as the tails of bacteriophages. 

 The discovery of virophages supports the self-contained characteristics of the 
reproduction machinery of giant viruses, at least to a certain degree. Virophages are 
small viruses with genomes ca. 20 kbp dsDNA in length [ 19 – 22 ]. They are incapa-
ble of infecting cellular organisms independently, but they start reproduction when 
they are co-infected with a giant virus such as APMV. In fact, virophages infect the 
virion factory that giant viruses build inside the cytoplasm of the host. Infection of 
virophages can lead to abortive forms and abnormal capsid assembly of giant 
viruses. Therefore, virophages are small viruses (with their own DNA replication 
genes) that infect other larger viruses. The existence of virophages now appears to 
be a common phenomenon associated with giant viruses of the family  Mimiviridae  
[ 23 ]. These observations indicate a high level of integrity and fl exibility of the virion 
factory, and revived the old contention, that is, “are viruses not alive?” [ 24 ]. 

 These discoveries during the last decade provided opportunities to reexamine the 
concept of viruses and their placement in the evolutionary history of life.  

5     Fourth Domain Hypothesis 

 Mimiviruses possess several genes that are widely conserved in cellular organisms, 
such as RNA polymerase genes and aminoacyl-tRNA synthetase genes. Molecular- 
phylogenetic analyses suggest deep evolutionary origins for those genes, which 
might predate the radiation of the eukaryotic kingdom. Based on this observation, 
Raoult et al. reported that mimiviruses and related giant viruses might constitute a 
fourth domain of life [ 2 ], in addition to the other three established domains of life 
composed of eukaryotes, bacteria, and archaea (a domain is the highest taxonomic 
rank of organisms) (Fig.  8.2 ). This initial proposal was followed by others that sup-
ported the same idea or that extended the hypothesis by providing different evidence 
and arguments [ 25 – 29 ]. However, as expected, several lines of counter- argument 
have been raised by others [ 30 – 32 ].  

 In fact, some mimivirus gene phylogenies that were used to support the viruses’ 
deep evolutionary origins in early studies later supported more recent origins after 
additional data for eukaryotic genomes were added [ 31 ]. Nevertheless, the phyloge-
netic analyses of different genes (including RNA polymerase and DNA polymerase 
gene) still support early branching positions for these genes near the roots of trees 
of cellular homologs. 

 In support of recent origins of giant virus genes, Moreira and Brochier-Armanet 
used phylogenetic analyses to prove that many mimivirus genes were acquired from 
cellular organisms by horizontal gene transfer in the course of evolution, and sug-
gested “giant chimeric” characteristics of mimivirus genomes [ 33 ]. This type of 
result, implying that large virus genomes were derived from smaller virus genomes 
through the accretion of genes, enjoys certain popularity. However, the evidence of 
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lateral gene acquisitions is in fact limited to a rather small subset (i.e., <10 %) of the 
entire gene set encoded in giant virus genomes [ 24 ,  34 ]. Such a level of detection of 
gene transfer is at the same level as that of bacterial genomes. For instance, “ P. salinus ” 
has 92 genes that might be of host amoeba origin, but this corresponds to only 3.6 % 
of the 2,556 genes encoded in its genome [ 16 ]. 

 Giant viruses possess numerous genes with no detectable homologs in any 
cellular organism. Several authors have inferred that this fact might result from deep 
evolutionary origins of giant viruses [ 35 ]. More specifi cally, the existence of those 

  Fig. 8.2    Schematic drawing for the gene composition of typical giant virus genome and evolutionary 
analysis results       
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genes with obscure origins is not compatible with the classical idea that viral 
genomes are (mainly) derived from cellular genomes. A typical counter-argument 
to this invokes the high evolutionary rate of viral genomes that can erase the trace of 
homology between viral and cellular gene homologs. Ogata and Claverie refuted 
this counter-argument by demonstrating that no signifi cant difference exists in the 
relative rates of evolution (more specifi cally, in the levels of functional constraints 
on sequences) between genes found only in closely related large DNA viruses and 
those with cellular homologs [ 36 ]. RNA viruses and ssDNA viruses (albeit at a 
lesser extent than RNA viruses) are known to evolve rapidly, but currently no reli-
able estimate exists for the evolutionary rate of giant virus genomes that can be 
compared directly with those of cellular genomes [ 37 ,  38 ]. 

 The fourth domain issue would be revolutionary if the hypothesis is true, but the 
issue might be more complicated than the third (Archaea) domain proposition by 
Carl Woese in 1977 [ 39 ], which has now become widely established after a long 
debate (but see [ 40 ] for a recent discussion). Several important but different points 
might be readily apparent in the debates on the fourth domain hypothesis. They are 
discussed at different levels: some scientifi c and others epistemological. Crucial 
questions include the following: Are viruses organisms? Are viruses as old as cel-
lular organisms? Even if we accept their deep ancestry, does the evidence from gene 
sequences support their old origins? How are they connected with the early history 
of the evolution of cells? Can we regard all viruses, from small RNA viruses to large 
DNA viruses, as a single biological group? Further characterization of giant viruses 
is expected to contribute to the resolution of these entangled issues.  

6     Viral Origin of the Nucleus 

 Presumably, an important issue in the biology of giant viruses is the elucidation of 
the virion factory, an intracellular compartment for viral replication, and assembly 
that large viruses create inside their host cells. Nearly nothing is known about the 
virion factory, which can be as large as the nucleus and which would involve hun-
dreds of viral proteins and other host factors. Investigation of the composition, 
structure, and function of the virion factory will defi nitely engender a better under-
standing of the nature of giant viruses. Here we briefl y revisit a hypothesis that 
links the ancestor of large DNA viruses (and virion factory) with the origin of the 
nucleus. 

 Before the discovery of APMV, it had been proposed that eukaryotic DNA poly-
merase genes originated from ancient large DNA viruses based on the deep phyloge-
netic positions suggested for DNA polymerase genes of large DNA viruses [ 41 ,  42 ]. 
Takemura [ 42 ] and Bell [ 43 ] independently proposed further that an ancient large 
dsDNA virus infecting an archaeal ancestor of eukaryotes might be the origin of the 
eukaryotic nucleus (i.e., viral eukaryogenesis hypothesis). These authors identifi ed 
several intriguing functional similarities between the nucleus and large DNA viruses 
such as poxviruses. Both poxviruses and the nucleus replicate only inside the 
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cytoplasm of a eukaryotic cell. The translation process requires the translation 
system (ribosomes) located in the cytoplasmic region of the cell in both cases, 
although the spatial arrangement of cytoplasmic ribosomes and the virion factory 
are not known. Both poxviruses and the nucleus possess mechanisms to export 
mRNAs. The presence of repetitive sequences at the extremities of their linear 
dsDNA genomes is common between large DNA viruses and the nucleus. The virion 
factory of poxviruses arranges endoplasmic reticulum (ER) membranes at its periphery 
[ 44 ], reminiscent of the membrane surrounding the nucleus.  

 The viral eukaryogenesis hypothesis is an endosymbiotic hypothesis for the 
nucleus. It has been revisited and extended since the discovery of APMV and its 
large virion factory [ 45 ,  46 ] (Fig.  8.3 ). The endosymbiotic origin of the mitochon-
drion and the chloroplast is now widely accepted among biologists. In contrast, various 
theories have been proposed for the origin of the nucleus by researchers. These are 

  Fig. 8.3    Virion factory and the origin of the eukaryotic nucleus       
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divisible into two categories, symbiotic or non-symbiotic theories, but none has yet 
been widely accepted. Symbiotic hypotheses are based on the symbiosis of organ-
isms belonging to two species, such as archaeal and bacterial cells. The syntrophic 
eukaryogenetic theory, proposed by Moreira and López-García, invokes a syn-
trophic association of a sulfate-reducing δ-proteobacterium and a methanogenic 
archaeon [ 47 ]. However, the non-syntrophic eukaryogenetic theory, proposed by 
Cavalier-Smith, emphasizes the co-evolution of organelles including the nucleus, 
and postulates the fusion of ER membranes as the origin of the nuclear membranes 
[ 48 ]. Martin and Koonin hypothesized that nucleus–cytosol compartmentalization 
occurred to separate an mRNA splicing reaction, which proceeds more slowly, from 
a translation reaction, which proceeds more rapidly [ 49 ]. 

 In spite of the proposal of these hypotheses corroborated by updated biological 
knowledge, an enigma remains. When and how did these events start? Was there a 
critical event that started everything, or did they occur gradually? The viral eukaryo-
genesis hypothesis has acquired more attention because of the discoveries of giant 
viruses and their properties consistent with the hypothesis, as described above. In a 
recent work, Takemura suggests that the infection of an ancestral NCLDV to the 
common ancestor of archaea and eukaryotes was a critical evolutionary event that 
spurred the emergence of the cell nucleus (Takemura, submitted). 

 Another effort to establish evolutionary and conceptual links between viruses 
with cellular organisms is the examination of the defi nition of viruses. For instance, 
Raoult and Forterre suggested the defi nition of viruses as “capsid-encoding organ-
isms” and cellular organisms as “ribosome-encoding organisms” [ 50 ]. Traditionally, 
the term virus refers to a viral particle (i.e., virion) [ 1 ]. Claverie and Forterre  proposed 
that the crucially important characteristics of “metabolically active state” of a virus 
reside in the virion factory [ 46 ] or in the whole infected cell (i.e., the “virocell” 
concept) [ 35 ,  51 ]. It is noteworthy that viral research is changing after the discoveries 
of giant viruses as well as other previously unrecognized viruses such as archaea 
viruses and symbiotic viruses, and now has marked infl uence in ever- broader areas 
of biology [ 52 ]. It is likely that further studies of giant viruses will continue to reveal 
their fascinating biology and will engender a unifi ed evolutionary picture of the viral 
and cellular worlds.     
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    Chapter 9   
 Expanded Host Diversity and Global 
Distribution of Hantaviruses: Implications 
for Identifying and Investigating Previously 
Unrecognized Hantaviral Diseases 

             Richard     Yanagihara     ,     Se     Hun     Gu    , and     Jin-Won     Song   

          Core Message 

•     Discovery of genetically distinct hantaviruses in multiple species of shrews and 
moles (order Eulipotyphla) and insectivorous bats (order Chiroptera) heralds a 
new frontier in hantavirology.  

•   Acquisition of new knowledge about the spatial and temporal distribution, host 
range and genetic diversity of newfound hantaviruses harbored by shrews, moles, 
and bats was accelerated by having access to archival tissue collections.  

•   Newfound hantaviruses in shrews, moles, and bats are genetically more diverse than 
those hosted by rodents (order Rodentia), suggesting that the evolutionary origins of 
hantaviruses are more ancient and complex than previously contemplated.  

•   Phylogenetic analyses indicate four distinct hantavirus clades, with evidence of 
both co-divergence and host switching, and suggest that shrews, moles, and/or 
bats may have predated rodents as the early reservoir hosts of primordial 
hantaviruses.  

•   Detection of hantavirus RNA in ethanol-fi xed tissues greatly expands the pool of 
specimens for future hantavirus-discovery efforts, particularly in other insectivo-
rous small mammals, such as hedgehogs and tenrecs.  

•   The lack of cell culture isolates of the newly detected hantaviruses hosted by 
shrews, moles, and bats has hampered the identifi cation and investigation of 
novel hantaviral diseases.     
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1     Introduction 

 In the spring of 1993, four decades after their forefathers in Korea were faced with 
an epidemic febrile illness with renal failure, a disease then unknown to American 
medicine called Korean hemorrhagic fever [ 1 – 3 ], emergency room physicians 
and health-care workers in the Four Corners region of the southwestern USA were 
confronted with a terrifying outbreak of a rapidly progressive, frequently fatal respi-
ratory disease, now known as hantavirus cardiopulmonary syndrome (HCPS) [ 4 ]. 
No one had the prescience to predict that this previously unrecognized disease 
would be caused by a once-exotic group of rodent-borne viruses, belonging to the 
 Hantavirus  genus of the  Bunyaviridae  family. 

 Present-day hantavirology dates to the seminal discovery of Hantaan virus 
(HTNV) as the prototype virus of hemorrhagic fever with renal syndrome (HFRS) 
in the striped fi eld mouse ( Apodemus agrarius ) [ 5 ]. This milestone made possible 
the identifi cation of other HFRS-causing hantaviruses, such as Puumala virus 
(PUUV) in the bank vole ( Myodes glareolus ) [ 6 ], Seoul virus (SEOV) in the brown 
rat ( Rattus norvegicus ) [ 7 ], and Dobrava virus (DOBV) in the yellow-necked fi eld 
mouse ( Apodemus fl avicollis ) [ 8 ]. Similarly, the identifi cation of Sin Nombre virus 
(SNV) in the deer mouse ( Peromyscus maniculatus ) [ 9 ,  10 ] and Andes virus 
(ANDV) [ 11 ,  12 ] in the long-tailed colilargo ( Oligoryzomys longicaudatus ), as the 
causative agents of HCPS, marked the next major benchmark in hantavirology. 
Several other genetically distinct hantaviruses harbored by neotomine and sigmo-
dontine rodents in the USA, such as New York virus (NYV) in the white-footed 
mouse ( Peromyscus leucopus ) [ 13 – 15 ], Bayou virus (BAYV) in the marsh rice rat 
( Oryzomys palustris ) [ 16 – 18 ], and Black Creek Canal virus (BCCV) in the hispid 
cotton rat ( Sigmodon hispidus ) [ 19 ,  20 ], have been associated with HCPS. 

 Recently, a new frontier in hantavirology has been forged with the discovery of 
highly divergent lineages of hantaviruses in multiple species of shrews and moles 
(order Eulipotyphla) and insectivorous bats (order Chiroptera) from widely separated 
geographic regions. Phylogenetic analyses suggest that ancestral shrews and moles 
and/or bats may have predated rodents as the early reservoir hosts of primordial hanta-
viruses [ 21 ,  22 ]. However, to what extent one or more of these newfound non-rodent-
borne hantaviruses might cause infection and disease in humans is unknown. 

 Nevertheless, both HFRS and HCPS are excellent examples of how the initial 
identifi cation and subsequent investigation of previously unrecognized emerging 
infectious diseases are dependent on the coordinated efforts of collaborative teams, 
comprising clinicians, epidemiologists, microbiologists, mammalogists and fi eld 
ecologists, and pathologists. In such outbreaks, the initial observational acumen and 
clinical experience of medical and paramedical personnel—whether they be in the 
best-equipped tertiary-care referral hospitals or in resource-constrained rural clinics 
or fi eld settings in low-income countries—are critical to suspect that something out 
of the ordinary might be occurring. Moreover, the persistence or stubbornness and 
strong conviction of health-care practitioners, who refuse to readily accept negative 
laboratory tests, is an important prerequisite for identifying new, emerging and 
reemerging infectious diseases. Thus, effective early-warning systems are heavily 
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dependent on individual people, and the importance of this fi rst step in recognition 
of new diseases cannot be over emphasized. Also vital is the unwavering support of 
human resources and public health infrastructure, which are increasingly aided by 
powerful social media applications and sophisticated data-sharing communications 
and information technology platforms. 

 In this chapter, we will not attempt to review the rich diversity of hantaviruses and 
their genotypes in myriad neotomine and sigmodontine rodents of various species in 
the Americas, largely because this has been elegantly summarized, with the clear 
demonstration that the majority of South American hantaviruses segregate into three 
phylogenetic clades, comprising ANDV and ANDV-like viruses, Laguna Negra 
virus (LANV) and LANV-like viruses, and Rio Mamore virus (RIOMV) and 
RIOMV-like viruses [ 23 ]. Instead, we focus mainly on reviewing the host diversity 
and geographic distribution of the newfound non-rodent-borne hantaviruses and 
summarize efforts to identify human infection and to investigate diseases that may 
be caused by these still-orphan hantaviruses. We draw from the detailed studies on 
the fi rst rodent-borne hantavirus from sub-Saharan Africa, namely Sangassou virus 
(SANGV) harbored by the African wood mouse ( Hylomyscus simus ) [ 24 ], and the 
fi rst shrew-borne hantavirus to be isolated in nearly four decades, namely Imjin virus 
(MJNV) hosted by the Ussuri white-toothed shrew ( Crocidura lasiura ) [ 25 ]. We also 
discuss some of the challenges associated with defi nitively linking newly described 
orphan viruses to previously unrecognized infectious diseases in humans.  

2     Reservoir Host Diversity 

 Like all other members of the  Bunyaviridae  family, viruses in the  Hantavirus  genus 
possess a negative-sense, single-stranded RNA genome consisting of three segments, 
designated large (L), medium (M), and small (S), which encode an RNA- dependent 
RNA polymerase, envelope glycoproteins (Gn, Gc) and a nucleocapsid (N) protein, 
respectively [ 26 ,  27 ]. However, unlike the more than 400 other members in this virus 
family, hantaviruses are unique in that they are harbored by small mammals. Whether 
or not arthropod vectors, such as mites, are involved in the transmission dynamics 
and maintenance of the enzootic cycle have again been raised recently [ 28 ], and 
renewed investigations are now underway. 

 Initially, rodents were believed to serve as the exclusive reservoir hosts of hanta-
viruses [ 29 ]. Moreover, the conventional view held that each genetically distinct 
hantavirus is carried by a rodent of a single species, with which it coevolved. This 
now appears to be an overly simplistic paradigm, particularly in light of the expanded 
host range and genetic diversity of hantaviruses [ 21 ,  22 ]. Mounting evidence sup-
ports the concepts of host sharing and host switching. That is, as shown in Table  9.1 , 
the same hantavirus may be harbored by more than one reservoir rodent, such as 
Tula virus (TULV) in the common vole ( Microtus arvalis ), Russian common vole 
( Microtus rossiaemeridionalis ), fi eld vole ( Microtus agrestis ), and European pine 
vole ( Pitymys subterrraneus ) [ 30 – 34 ]. TULV has also been reported in the Eurasian 
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    Table 9.1    Hantaviruses and rodent-host and disease associations a    

 Family  Subfamily  Reservoir host species  Virus name  Disease 

 Muridae  Murinae   Apodemus agrarius   Hantaan  HFRS 
  Apodemus agrarius   Dobrava (Kurkino)  HFRS 
  Apodemus agrarius   Dobrava (Saaremaa)  HFRS? 
  Apodemus fl avicollis   Dobrava (Dobrava)  HFRS 
  Apodemus ponticus   Dobrava (Sochi)  HFRS 
  Apodemus peninsulae   Amur  HFRS 
  Apodemus peninsulae   Soochong  HFRS 
  Hylomyscus simus   Sangassou  Unknown 
  Niviventer confucianus   Da Bie Shan  Unknown 
  Rattus losea   Seoul  HFRS? 
  Rattus norvegicus   Seoul  HFRS 
  Rattus rattus   Seoul  HFRS 
  Bandicota indica   Thailand  HFRS 
  Bandicota savilei   Thailand-like  Unknown 
  Rattus rattus   Thailand (Anjozorobe)  Unknown 
  Rattus tanezumi   Thailand (Serang)  Unknown 
  Rattus tanezumi   Thailand (Jurong)  Unknown 
  Stenocephalemys albipes   Tigray  Unknown 

 Cricetidae  Arvicolinae   Eothenomys miletus   Luxi  Unknown 
  Microtus agrestis   Tatenale  Unknown 
  Microtus agrestis   Tula  Unknown 
  Microtus arvalis   Tula  Unknown 
  Microtus rossiaemeridionalis   Tula  Unknown 
  Pitymys subterraneus   Tula  Unknown 
  Arvicola amphibius   Tula  Unknown 
  Microtus californicus   Isla Vista  Unknown 
  Microtus ochrogaster   Bloodland Lake  Unknown 
  Microtus fortis   Khabarovsk  Unknown 
  Microtus maximowiczii   Khabarovsk  Unknown 
  Microtus fortis   Vladivostok  Unknown 
  Microtus fortis   Yuanjiang  Unknown 
  Microtus pennsylvanicus   Prospect Hill  Unknown 
  Myodes glareolus   Puumala  HFRS 
  Myodes rufocanus   Puumala  HFRS 
  Myodes rufocanus   Hokkaido  Unknown 
  Myodes regulus   Muju  HFRS? 
  Lemmus sibiricus   Topografov  Unknown 

 Neotominae   Peromyscus boylii   Limestone Canyon  Unknown 
  Peromyscus beatae   Montano  Unknown 
  Peromyscus leucopus   Blue River  Unknown 
  Peromyscus leucopus   New York  HCPS 
  Peromyscus maniculatus   Sin Nombre  HCPS 
  Reithrodontomys megalotis   El Moro Canyon  Unknown 
  Reithrodontomys sumichrasti   El Moro Canyon  Unknown 

(continued)
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Table 9.1 (continued)

 Family  Subfamily  Reservoir host species  Virus name  Disease 

  Reithrodontomys mexicanus   Rio Segundo  Unknown 
 Sigmodontinae   Akodon azarae   Pergamino  HCPS 

  Akodon montensis   Ape Aime  Unknown 
  Akodon montensis   Jaborá  Unknown 
  Akodon paranaensis   Jabora  Unknown 
  Akodon serrensis   Jabora  Unknown 
  Bolomys lasiurus   Araraquara  HCPS 
  Bolomys obscurus   Maciel  HCPS 
  Calomys laucha   Laguna Negra  HCPS 
  Calomys callosus   Laguna Negra  HCPS 
  Holochilus chacoensis   Alto Paraguay  Unknown 
  Oligoryzomys chacoensis   Bermejo  HCPS 
  Oligoryzomys fornesi   Anajatuba  HCPS 
  Oligoryzomys longicaudatus   Oran  HCPS 
  Oligoryzomys longicaudatus   Andes  HCPS 
  Necromys benefactus   Andes  HCPS 
  Oligoryzomys nigripes   Araucária  HCPS 
  Oxymycterus judex   Araucária  HCPS 
  Oligoryzomys fl avescens   Lechiguanas  HCPS 
  Oligoryzomys delicatus   Maporal  Unknown 
  Oligoryzomys fulvescens   Maporal  Unknown 
  Oligoryzomys fulvescens   Choclo  HCPS 
  Oligoryzomys costaricensis   Choclo  HCPS 
  Oligoryzomys microtis   Rio Mamore  HCPS 
  Oligoryzomys nigripes   Itapúa  Unknown 
  Oligoryzomys nigripes   Juquitiba  HCPS 
  Oligoryzomys fornesi   Juquitiba  HCPS 
  Oligoryzomys utiaritensis   Castelo dos Sonhos  HCPS 
  Oryzomys couesi   Catacamas  Unknown 
  Oryzomys couesi   Playa de Oro  Unknown 
  Oryzomys palustris   Bayou  HCPS 
  Sigmodon alstoni   Cano Delgadito  Unknown 
  Sigmodon hispidus   Muleshoe  Unknown 
  Sigmodon hispidus   Black Creek Canal  HCPS 
  Zygodontomys brevicauda   Calabazo  Unknown 

   a This table is not meant to be exhaustive or comprehensive. Rather its intent is to display the vast 
diversity of hantaviruses harbored by rodents in the Muridae and Cricetidae families. In particular, 
the large number of hantaviruses hosted by multiple sigmodontine rodent hosts in South America 
is emphasized. However, many of these viruses probably do not represent distinct species but fall 
into one of three phylogenetic clades: ANDV, LANV, and RIOMV. The rodent reservoirs of some 
HCPS-causing hantaviruses, such as Tunari virus, Maripa virus, and Paranoá virus, have not been 
identifi ed. Disease associations, such as HFRS or HCPS, are shown, when known. Otherwise, the 
“Unknown” descriptor is used 
  ANDV  Andes virus,  HCPS  hantavirus cardiopulmonary syndrome,  HFRS  hemorrhagic fever with 
renal syndrome,  LANV  Laguna Negra virus,  RIOMV  Rio Mamore virus  
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water vole ( Arvicola amphibius ) [ 35 ]. It is unclear if this represents spillover from 
common voles or a host switch. Host sharing and/or host switching seems to apply 
also to other rodent-borne hantaviruses, such as Thailand virus (THAIV) in the 
greater bandicoot rat ( Bandicota indica ) [ 36 ,  37 ] and Savile’s bandicoot rat 
( Bandicota savilei ) [ 38 ], as well as THAIV-like hantaviruses in the black rat ( Rattus 
rattus ) and tanezumi rat ( Rattus tanezumi ) [ 39 ,  40 ]. Moreover, genetic variants of 
PUUV, designated Hokkaido virus (HOKV) and Muju virus (MUJV), have been 
reported in the gray red-backed vole ( Myodes rufocanus ) in Japan [ 41 ] and the royal 
vole ( Myodes regulus ) in Korea [ 42 ,  43 ], respectively. In addition, as discussed in 
greater detail later, some hantaviruses harbored by soricine shrews and insectivo-
rous bats have been detected in hosts belonging to more than one species, but further 
research is necessary to better understand these host–virus relationships.

   Spillover of hantaviruses to syntopic rodents and host-switching events, on the 
one hand, are contrasted by the same rodents also hosting more than one hantavi-
ruses. For example, the fi eld vole hosts TULV in Europe and a newly discovered 
hantavirus, named Tatenale virus (TATV), in the UK [ 44 ]; and the striped fi eld 
mouse, which serves as the reservoir of HTNV in Asia, also hosts the Kurkino and 
Saaremaa genotypes of DOBV in Europe [ 45 ]. It is noteworthy that the least viru-
lent genotypes of DOBV are those harbored by the striped fi eld mouse in Europe, 
whereas in Asia, the striped fi eld mouse harbors the prototypic virulent hantavirus, 
known as HTNV. On the other hand, DOBV genotypes Dobrava and Sochi, which 
are hosted by the yellow-necked fi eld mouse and the Caucasus fi eld mouse 
( Apodemus ponticus ), respectively, are more pathogenic and account for the majority 
of HFRS fatalities in Europe [ 45 ]. The molecular basis for this differential virulence 
is unknown. 

 Whereas HFRS- and HCPS-causing hantaviruses are only known to be harbored 
by rodents thus far, the global landscape of hantaviruses has been forever altered by 
the discovery of highly divergent lineages of hantaviruses in shrews, moles, and 
insectivorous bats [ 21 ,  22 ]. As such, the evolutionary origins and phylogeography 
are clearly ancient and far more complex than previously contemplated [ 21 ,  22 ,  46 ]. 
Although unimaginable a few years ago, the entire host diversity has presumably 
not been attained and many more genetically distinct hantaviruses, particularly 
those hosted by shrews, moles, and bats, still await discovery. 

2.1     Hantaviruses in Rodents 

 A rich literature exists on hantaviruses harbored by rodents of the Muridae and 
Cricetidae families. Since most of the attention has understandably been paid to 
hantaviruses that cause HFRS and HCPS, the reader is often left with the mistaken 
impression that all hantaviruses are pathogenic. In fact, the majority of rodent-
borne hantaviruses has not been associated with human infection and disease. 
This is particularly true for hantaviruses carried by arvicoline rodents, and in par-
ticular those harbored by members of the  Microtus  genus, the prototype being 
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Prospect Hill virus (PHV), the fi rst hantavirus isolated from an indigenous wild 
rodent, the meadow vole ( Microtus pennsylvanicus ), in North America [ 47 ]. Other 
prominent examples include Khabarovsk virus (KHAV) and Vladivostok virus 
(VLAV), hosted by the Maximowicz’s vole ( Microtus maximowiczii ) and reed vole 
( Microtus fortis ), respectively, which do not appear to cause infection or disease in 
humans [ 48 ,  49 ]. Also, not all genetic variants or genotypes of the same hantavirus 
appear to have the identical degree of pathogenicity. For example, no human disease 
has been associated with HOKV, harbored by the gray red-backed vole in Japan, 
despite its close genetic and phylogenetic relationship with PUUV [ 41 ]. Also, the 
Saaremaa genotype of DOBV, carried by the striped fi eld mouse in Estonia, seems 
non-pathogenic [ 45 ]. 

 Table  9.1  lists the hantaviruses detected in rodents and indicates which hantavi-
ruses are known to be pathogenic. As previously mentioned, extensive host sharing, 
in which the same hantavirus is harbored by rodents belonging to more than one 
species, is evident. It is not clear in every instance whether this has resulted from 
spillover or host-switching events and subsequent species-specifi c adaptation. 
Examples can be found in rodent-borne hantaviruses of the same rodent host family 
and subfamily. The bewildering constellation of rodents of divergent species and 
designations of hantaviruses, particularly in South America, have recently been sim-
plifi ed by in-depth analysis of hantavirus isolates from HCPS patients and rodents. 
As mentioned earlier, the majority of South American hantaviruses, and in particular 
ANDV, LANV, and RIOMV, belong to three distinct hantavirus species [ 23 ]. 
However, not all strains of ANDV, LANV, and RIOMV appear to cause HCPS. Also, 
hantaviruses carried by closely related rodent hosts, such as Choclo virus (CHOV) 
and Maporal virus (MAPV) in the Costa Rican pygmy rice rat ( Oligoryzomys cos-
taricensis ) and the delicate pygmy rice rat ( Oligoryzomys delicatus ), respectively, 
exhibit vastly different pathogenic potential, with CHOV causing a full spectrum 
from subclinical infection to severe HCPS [ 50 ,  51 ], and MAPV showing no disease 
in humans [ 52 ]. Both CHOV and MAPV were previously thought to be hosted by the 
fulvous colilargo ( Oligoryzomys fulvescens ) [ 53 – 55 ]. 

 Hantavirus infection in the rodent host is subclinical, generally with short-lived 
viremia but with dissemination of virus in multiple tissues, including lung, salivary 
gland and kidney [ 56 – 59 ]. The demonstration of virus antigen in brown fat of over-
wintering live-caught bank voles in the former Soviet Union suggests a possible 
mechanism of virus maintenance [ 60 ]. Virus excretion in urine and feces persists for 
months or possibly lifelong in infected rodents, despite high-titered serum neutral-
izing antibodies. There is no evidence of vertical transmission of hantaviruses in 
rodents [ 29 ,  61 ,  62 ]. Arthropod vectors do not appear to be involved in hantavirus 
infection among humans [ 29 ,  63 ], but questions have again been raised about the 
role of mites in the maintenance of the hantavirus enzootic cycle [ 28 ]. 

 Hantavirus-infected reservoir rodents tend to be localized in small, circum-
scribed foci, rather than being uniformly distributed in any given geographical area 
[ 29 ]. As such, transmission and prevalence rates of rodent-borne hantavirus infec-
tions are regulated within reservoir host populations and typically vary in time and 
space [ 64 ]. 
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 Since the recognition of HCPS in the Americas, the epizootiology of SNV infection 
in deer mouse populations has been intensively studied. Among the more consistent 
fi ndings have been the widespread nature of the SNV enzootic in the reservoir 
rodent species, the greater preponderance of infection in adult male deer mice, the 
decreasing antibody prevalence with age (suggesting passively acquired immunity 
in pups), the higher SNV antibody prevalence in peri-domestic compared to sylvan 
settings, and the correlation between population size and hantavirus-antibody 
prevalence [ 61 ,  65 – 71 ]. In addition, SNV RNA was repeatedly detected in serially 
collected blood samples, particularly in antibody-positive male deer mice, suggesting 
their role in virus shedding for prolonged periods [ 72 ].  

2.2     Hantaviruses in Shrews 

 Shrews have been generally ignored in the transmission dynamics and evolutionary 
origins of hantaviruses, despite the fact that Thottapalayam virus (TPMV), a previ-
ously unclassifi ed virus isolated from the Asian house shrew ( Suncus murinus ), 
captured near Vellore in Tamil Nadu, India [ 73 ,  74 ], predated the isolation of HTNV. 
Also, the early reports of the detection of HFRS antigens in tissues of the Eurasian 
common shrew ( Sorex araneus ), alpine shrew ( Sorex alpinus ), and Eurasian water 
shrew ( Neomys fodiens ) in Russia and the former Yugoslavia [ 60 ,  75 ,  76 ] went 
largely unnoticed. 

 The antigenic relationship between TPMV and 31 other hantavirus isolates has 
been investigated by cross-enzyme immunoassay (ELISA) and cross-plaque- 
reduction neutralization tests (PRNT) using antisera from experimentally infected 
animals [ 77 ]. Antisera prepared against strains of HTNV, PUUV, SEOV, THAIV, and 
PHV, exhibited 16-fold or lower ELISA titers to cell culture-derived TPMV antigen 
than to the homotypic hantaviral antigen [ 77 ]. Of the 32 hantaviruses examined by 
PRNT, TPMV was the only one that displayed no cross-neutralization with any 
other hantavirus; that is, none of the heterologous antisera neutralized TPMV and 
the antiserum to TPMV did not neutralize any other hantavirus [ 77 ]. 

 Recently, TPMV strains have been detected in Asian house shrews captured in 
Nepal [ 78 ] and China [ 79 ]. Phylogenetic analysis of the partial and full genome 
sequences of prototype TPMV and other newfound TPMV strains demonstrate that 
they form a separate phylogenetic clade, suggesting an early evolutionary divergence 
from other hantaviruses [ 80 – 82 ]. Using oligonucleotide primers based on TPMV, a 
novel hantavirus, named MJNV, was detected in Ussuri white-toothed shrews 
( Crocidura lasiura ) captured along the Imjin River, near the demilitarized zone in the 
Republic of Korea [ 25 ]. High prevalence of MJNV infection has been demonstrated 
within discrete foci during the autumn months, with evidence of marked male 
predominance [ 25 ]. The absence of cross neutralization between MJNV and rodent-
borne hantaviruses indicates that it is antigenically distinct. 

 Empowered by the full genomes of TPMV and MJNV, we launched an opportu-
nistic search for hantavirus RNA using reverse transcription polymerase chain reaction 
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(RT-PCR). Initially, we envisioned that the genomes of TPMV and MJNV would 
make fi nding new hantaviruses a trivial exercise. Instead, the unexpectedly vast 
genetic diversity of the shrew-borne hantaviruses posed considerable challenges in 
designing suitable primers for the amplifi cation of their genes. Also, in the belief 
that the probability of success for fi nding novel hantaviruses would be highest in 
frozen tissues, we initially limited our search to such specimens. However, we soon 
learned that this approach placed unnecessary restrictions on our virus- discovery 
attempts, so we expanded our search to include tissues which were either preserved 
in RNAlater® RNA Stabilization Reagent or fi xed in 90 % ethanol. 

 The generosity of museum curators and fi eld mammalogists, who provided access 
to their valuable archival tissue collections, accelerated the acquisition of new 
knowledge about the host range and spatial and temporal distribution of hantavi-
ruses. In analyzing RNA, extracted from more than 1,500 tissues from nearly 50 
shrew species collected throughout Europe, Asia, North America, and Africa, 
between 1980 and 2012, we have discovered multiple genetically distinct hantavi-
ruses, including Seewis virus (SWSV) in the Eurasian common shrew [ 83 – 86 ], Ash 
River virus (ARRV) in the masked shrew ( Sorex cinereus ) [ 87 ], Jemez Springs virus 
(JMSV) in the dusky shrew ( Sorex monticolus ) [ 87 ], Kenkeme virus (KKMV) in the 
fl at-skulled shrew ( Sorex roboratus ) [ 88 ], Amga virus (MGAV) in the Laxmann’s 
shrew ( Sorex caecutiens ) [ 89 ], Sarufutsu virus (SRFV) in the long-clawed shrew 
( Sorex unguiculatus ) [ 90 ], Cao Bang virus (CBNV) in the Chinese mole shrew 
( Anourosorex squamipes ) [ 91 ], Xinyi virus (XYIV) in the Taiwanese mole shrew 
( Anourosorex yamanashi ) [ 92 ], Camp Ripley virus (RPLV) in the northern short- 
tailed shrew ( Blarina brevicauda ) [ 93 ], Iamonia virus (AMNV) in the southern 
short-tailed shrew ( Blarina carolinensis ) (unpublished), Boginia virus (BOGV) in 
the Eurasian water shrew [ 94 ], Azagny virus (AZGV) in the West African pygmy 
shrew ( Crocidura obscurior ) [ 95 ], Jeju virus (JJUV) in the Asian lesser white- 
toothed shrew ( Crocidura shantungensis ) [ 96 ], Bowé virus (BOWV) in the Doucet’s 
musk shrew ( Crocidura douceti ) [ 97 ], Uluguru virus (ULUV) in the geata mouse 
shrew ( Myosorex geata ) [ 98 ], and Kilimanjaro virus (KMJV) in the Kilimanjaro 
mouse shrew ( Myosorex zinki ) [ 98 ] (Table  9.2 ).

   As for rodent-borne hantaviruses, examples of host sharing or spillover have 
been found for SWSV in the Eurasian pygmy shrew [ 86 ,  99 ], tundra shrew 

      Table 9.2    Genetically distinct Hantaviruses detected in shrews (order Eulipotyphla, family Soricidae)   

 Virus name 
 Virus 
abbreviation 

 Reservoir host 
species  Country 

 Year of 
capture  References 

 Azagny  AZGV   Crocidura obscurior   Côte d’Ivoire  2009  [ 95 ] 
 Bowé  BOWV   Crocidura douceti   Guinea  2012  [ 97 ] 
 Imjin  MJNV   Crocidura lasiura   Korea  2004  [ 25 ] 
 Jeju  JJUV   Crocidura 

shantungensis  
 Korea  2007  [ 96 ] 

 Tanganya  TGNV   Crocidura theresae   Guinea  2004  [ 102 ] 

(continued)
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Table 9.2 (continued)

 Virus name 
 Virus 
abbreviation 

 Reservoir host 
species  Country 

 Year of 
capture  References 

 Thottapalayam  TPMV   Suncus murinus   India  1964  [ 73 ,  81 ,  82 ] 
 Nepal  1996  [ 78 ] 
 China  2009  [ 79 ] 

 Kilimanjaro  KMJV   Myosorex zinki   Tanzania  2002  [ 98 ] 
 Uluguru  ULUV   Myosorex geata   Tanzania  1996  [ 98 ] 
 Cao Bang  CBNV   Anourosorex 

squamipes  
 Vietnam  2006  [ 91 ] 

 China  2006  Unpublished 
 Xinyi  XYIV   Anourosorex 

yamashinai  
 Taiwan  1989  [ 92 ] 

 Camp Ripley  RPLV   Blarina brevicauda   USA  1998  [ 93 ] 
 Canada  1983  Unpublished 

 Iamonia  AMNV   Blarina carolinensis   USA  1983  Unpublished 
 Amga  MGAV   Sorex caecutiens   Russia  2006  [ 89 ] 

 Japan  2010  [ 89 ] 
 Ash River  ARRV   Sorex cinereus   USA  1994  [ 87 ] 
 Asikkala  ASIV   Sorex minutus   Czech Republic  2010  [ 104 ] 
 Boginia  BOGV   Neomys fodiens   Poland  2011  [ 94 ] 
 Jemez Springs  JMSV   Sorex monticolus   USA  1996  [ 87 ] 

  Sorex palustris   Canada  2005  Unpublished 
  Sorex trowbridgii   USA  1996  Unpublished 
  Sorex vagrans   USA  1996  Unpublished 

 Kenkeme  KKMV   Sorex roboratus   Russia  2006  [ 88 ] 
 Sarufutsu  SRFV   Sorex unguiculatus   Japan  2006  [ 90 ] 
 Seewis  SWSV   Sorex araneus   Switzerland  2006  [ 83 ] 

 Hungary  1997  [ 84 ] 
 Finland  1982  [ 84 ] 
 Germany  2007  [ 99 ] 
 Czech Republic  2010  [ 99 ] 
 Poland  2010  [ 86 ,  94 ] 
 Slovakia  2008  [ 99 ] 
 Slovenia  1990  [ 100 ,  101 ] 
 Russia  2006  [ 85 ] 

  Sorex daphaenodon   Russia  2006  [ 85 ] 
  Sorex minutus   Germany  2005  [ 84 ] 

 Poland  2012  [ 86 ] 
  Sorex tundrensis   Russia  2006  [ 85 ] 

 Mongolia  2010  Unpublished 
  Neomys anomalus   Austria  2007  Unpublished 

 Poland  2011  [ 86 ] 
 Qian Hu Shan  QHSV   Sorex cylindricauda   China  2005  [ 105 ] 
 Yakeshi  YAKV   Sorex isodon   China  2006  [ 103 ] 
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( Sorex tundrensis ) [ 85 ], large-toothed Siberian shrew ( Sorex daphaenodon ) [ 85 ], 
and Mediterranean water shrew ( Neomys anomalus ) [ 86 ]. Also, JMSV, which is 
harbored by the dusky shrew, has been found in the vagrant shrew ( Sorex vagrans ), 
Trowbridge’s shrew ( Sorex trowbridgii ), and American water shrew ( Sorex palus-
tris ) in North America (unpublished). In addition, other investigators have inde-
pendently reported SWSV among Eurasian common shrews in central Europe 
[ 99 – 101 ], well as additional shrew-borne hantaviruses, including Tanganya virus 
in the Therese’s shrew ( Crocidura theresae ) [ 102 ], Yakeshi virus in the taiga 
shrew ( Sorex isodon ) [ 103 ], Asikkala virus (ASIV) in the Eurasian pygmy shrew 
( Sorex minutus ) [ 104 ], and Qian Hu Shan virus in the stripe-backed shrew ( Sorex 
cylindricauda ) [ 105 ].  

2.3     Hantaviruses in Moles 

 Tissues from moles belonging to 10 of the 40 extant species, tested to date, have 
yielded fi ve genetically distinct hantaviruses, including Asama virus (ASAV) in the 
Japanese shrew mole ( Urotrichus talpoides ) [ 106 ], Oxbow virus (OXBV) in the 
shrew mole ( Neurotrichus gibbsii ) [ 107 ], Nova virus (NVAV) in the European mole 
( Talpa europaea ) [ 108 ], Rockport virus (RKPV) in the eastern mole ( Scalopus 
aquaticus ) [ 109 ], and Dahonggou Creek virus (DHCV) in the long-tailed mole 
( Scaptonyx fusicaudus ) (unpublished) (Table  9.3 ). Undoubtedly, this represents a 
gross underestimation of the number of talpid-borne hantaviruses, because many 
more moles belonging to other species were unavailable for testing and for the ten 
species tested, the sample sizes were small, numbering fewer than ten individuals. 
More targeted searches for hantavirus RNA in moles that share common ancestries 
with the known talpid reservoirs will likely lead to the discovery of additional hanta-
viruses and/or clarify whether or not host sharing occurs among moles. In addition, 
studies of moles, which are sympatric and syntopic with shrews and rodents, are 
warranted to ascertain host-switching events.

   The most highly divergent lineage of hantaviruses is represented by NVAV [ 108 ]. 
Recent studies indicate high prevalences of NVAV infection exceeding 50 % in 

      Table 9.3    Genetically distinct Hantaviruses detected in moles (order Eulipotyphla, family Talpidae)   

 Virus name  Virus abbreviation  Reservoir host species  Country  Year  Reference 

 Asama  ASAV   Urotrichus talpoides   Japan  2008  [ 106 ] 
 Dahonggou 
Creek 

 DHCV   Scaptonyx fusicaudus   China  1989  Unpublished 

 Nova  NVAV   Talpa europaea   Hungary  1999  [ 108 ] 
 France  1912  [ 110 ] 
 Poland  2010  [ 86 ] 

 Oxbow  OXBV   Neurotrichus gibbsii   USA  2003  [ 107 ] 
 Rockport  RKPV   Scalopus aquaticus   USA  1986  [ 109 ] 
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European moles from France and Poland, suggesting effi cient enzootic virus 
 transmission and a well-established, long-standing reservoir host–hantavirus rela-
tionship [ 86 ,  110 ]. Much like SWSV is widespread in the Eurasian common shrew 
throughout Europe, NVAV probably occurs throughout the vast distribution of the 
European mole. The rodent-borne hantavirus counterparts are PUUV in the bank 
vole in Europe and PUUV-like hantaviruses, such as HOKV and MUJV, in other 
arvicoline rodent species in Far East Asia, as well as SNV in the deer mouse and 
SNV-like hantaviruses, such as NYV, in other neotomine rodents in North America.  

2.4     Hantaviruses in Bats 

 Attempts by our group and others to fi nd hantavirus RNA by RT-PCR in more than 
1,500 tissue samples from insectivorous and frugivorous bats belonging to approxi-
mately 100 species have resulted in the identifi cation of six hantaviruses (Table  9.4 ). 
These include Mouyassué virus (MOYV) in the banana pipistrelle from Côte 
d’Ivoire [ 111 ,  112 ], Magboi virus (MGBV) in the hairy slit-faced bat ( Nycteris 
hispida ) from Sierra Leone [ 113 ], Makokou virus (MAKV) in the Noack’s round-
leaf bat ( Hipposideros ruber ) from Gabon [ 114 ], Xuan Son virus (XSV) in the 
Pomona round-leaf bat ( Hipposideros pomona ) from Vietnam [ 112 ,  115 ], Huangpi 
virus (HUPV) in the Japanese pipistrelle ( Pipistrellus abramus ), and Longquan 
virus (LQUV) in the Chinese rufous horseshoe bat ( Rhinolophus sinicus ), Formosan 
lesser horseshoe bat ( Rhinolophus monoceros ), and intermediate horseshoe bat 
( Rhinolophus affi nis ) from China [ 103 ]. Thus far, hantaviruses have not been 
detected in fruit bats (fl ying foxes).

   Compared to the much higher success rates of detecting hantavirus RNA in shrews 
and moles, the very low success rate of similar efforts in bat tissues may be attributed 
to several factors. For one, the genomes of bat-borne hantaviruses may be too different 
to be readily amenable to the current primer-based screening methodologies, and 
primer mismatches and suboptimal PCR cycling conditions need to be overcome 
[ 111 ,  112 ,  115 ]. Also, the very focal nature of hantavirus infection, small sample sizes 
from any given bat species and poorly preserved or degraded RNA may be contributory. 

      Table 9.4    Genetically distinct Hantaviruses detected in insectivorous bats (order Chiroptera)   

 Virus name  Virus abbreviation  Reservoir host species  Country  Year  References 

 Huangpi  HUPV   Pipistrellus abramus   China  2011  [ 103 ] 
 Longquan  LQUV   Rhinolophus sinica   China  2011  [ 103 ] 

  Rhinolophus affi nis   China  2011  [ 103 ] 
  Rhinolophus monoceros   China  2011  [ 103 ] 

 Magboi  MGBV   Nycteris hispida   Sierra Leone  2010  [ 113 ] 
 Makokou  MAKV   Hipposideros ruber   Gabon  2012  [ 114 ] 
 Mouyassué  MOYV   Neoromicia nanus   Côte d’Ivoire  2011  [ 111 ,  112 ] 
 Xuan Son  XSV   Hipposideros pomona   Vietnam  2012  [ 112 ,  115 ] 
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Alternatively, bats may be less susceptible to hantavirus infection or may have 
developed immune mechanisms to curtail viral replication and/or viral persistence. 
While bats of fewer species might serve as reservoirs, the hantaviruses they harbor 
are among the most genetically diverse described to date [ 103 ,  111 – 115 ]. As such, 
intensifi ed studies on the phylogeography and transmission dynamics of hantaviruses 
in bats may provide additional insights into their evolutionary origins. 

 Although frozen tissues are intuitively preferred in virus-discovery efforts, the 
successful detection of hantavirus RNA in ethanol-fi xed tissue from bat tissues 
[ 111 ] should substantially expand the pool of specimens for hantavirus hunting, 
especially in tissues from bats and other small mammals, such as hedgehogs and 
tenrecs, which may also carry hantaviruses. Such studies, currently underway, will 
further explore the host range of hantaviruses.   

3     Geographic Distribution 

 Hantaviruses have now been identifi ed in rodents, shrews, moles, and bats from 
widely separated geographic regions. For rodents and shrews, hantaviruses have 
been found in members of multiple species in four continents. Although far from 
comprehensive, the geographic distribution of hantaviruses is shown in Table  9.5 , 
and the geographic origins of hantaviruses detected in shrews, moles, and bats are 
shown in Figs.  9.2 ,  9.3 , and  9.4 . The hantaviruses in South America have been 

        Table 9.5    Geographic distribution of rodent-, shrew-, mole-, and bat-borne hantaviruses a    

 Hantaviruses in 

 Continent  Country  Rodent  Shrew  Mole  Bat 

 Asia  Cambodia  SEOV, THAIV 
 China  AMRV, DBSV, HTNV, 

KHAV, LUXV, PUUV, SEOV 
 CBNV, MJNV, 
QHSV, TPMV, 
YAKV 

 DHCV  HUPV, 
LQUV 

 India  SEOV  TPMV 
 Indonesia  SEOV, THAIV  TPMV 
 Japan  HOKV, SEOV  SRFV  ASAV 
 Korea  HTNV, MUJV, SEOV, SOOV  JJUV, MJNV 
 Mongolia  SWSV 
 Nepal  TPMV 
 Russia  AMRV, DOBV, KHAV, 

PUUV, SEOV, TULV, VLAV 
 KKMV, 
MGAV, SWSV 

 Singapore  SEOV, THAIV 
 Taiwan  SEOV  XYIV 
 Thailand  SEOV, THAIV 
 Vietnam  SEOV  CBNV, TPMV  XSV 

(continued)
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Table 9.5 (continued)

 Hantaviruses in 

 Continent  Country  Rodent  Shrew  Mole  Bat 

 Europe  Austria  PUUV, TULV  SWSV 
 Belgium  PUUV, SEOV 
 Czech 
Republic 

 DOBV, PUUV, TULV  ASIV, SWSV 

 Finland  PUUV  ASIV, SWSV 
 France  PUUV, SEOV, TULV  NVAV 
 Germany  DOBV, PUUV, TULV  ASIV, SWSV 
 Hungary  DOBV, PUUV, TULV  SWSV  NVAV 
 Poland  DOBV, PUUV, TULV  BOGV, SWSV  NVAV 
 Serbia  DOBV, PUUV, SEOV, TULV 
 Slovakia  DOBV, PUUV, TULV  SWSV 
 Slovenia  DOBV, PUUV, SEOV, TULV  SWSV 
 Switzerland  TULV  SWSV 
 UK  SEOV, TATV 

 Africa  Cote d’Ivoire  AZGV  MOYV 
 Ethiopia  TIGV 
 Gabon  MAKV 
 Guinea  SANGV  BOWV, TGNV 
 Madagascar  THAIV 
 Sierra Leone  MGBV 
 Tanzania  ULUV, KMJV 

 North 
America 

 USA  BAYV, BCCV, BLLV, 
EMCV, ISLAV, MULV, 
NYV, PHV, SEOV, SNV 

 AMNV, ARRV, 
JMSV, RPLV 

 OXBV, 
RKPV 

 Canada  SNV  JMSV 

   a This table is not meant to be exhaustive. For example, the hantaviruses in South America are not 
listed because reservoir hosts other than rodents are not known 
 Rodent-borne hantaviruses:  AMRV , Amur virus;  BAYV , Bayou virus;  BCCV , Black Creek Canal 
virus;  BLLV , Bloodland Lake virus;  DBSV , Da Bie Shan virus;  DOBV , Dobrava virus;  EMCV , El 
Moro Canyon virus;  HTNV , Hantaan virus;  HOKV , Hokkaido virus;  ISLAV , Isla Vista virus; 
 KHAV , Khabarovsk virus;  LUXV , Luxi virus;  MULV , Muleshoe virus;  MUJV , Muju virus;  NYV , 
New York virus;  PHV , Prospect Hill virus;  PUUV , Puumala virus;  SANGV , Sangassou virus; 
 SEOV , Seoul virus;  SNV , Sin Nombre virus;  SOOV , Soochong virus;  TATV , Tatenale virus;  THAIV , 
Thailand virus;  TIGV , Tigray virus;  TULV , Tula virus;  VLAV , Vladivostok virus. Several rodent- 
borne hantaviruses in North America, such as Blue River virus and Limestone Canyon virus, 
detected in  Peromyscus leucopus  and  Peromyscus boylii , respectively, are not listed 
 Shrew-borne hantaviruses:  AMNV , Iamonia virus;  ARRV , Ash River virus;  ASIV , Asikkala virus; 
 AZGV , Azagny virus;  BOGV , Boginia virus;  BOWV , Bowé virus;  CBNV , Cao Bang virus;  JJUV , 
Jeju virus;  JMSV , Jemez Springs virus;  KMJV , Kilimanjaro virus;  MGAV , Amga virus;  MJNV , 
Imjin virus;  QHSV , Qian Hu Shan virus;  RPLV , Camp Ripley virus;  SRFV , Sarufutsu virus;  SWSV , 
Seewis virus;  TGNV , Tanganya virus;  TPMV , Thottapalayam virus;  ULUV , Uluguru virus;  YAKV , 
Yakeshi virus 
 Mole-borne hantaviruses:  ASAV , Asama virus;  DHCV , Dahonggou Creek virus;  NVAV , Nova 
virus;  OXBV , Oxbow virus;  RKPV , Rockport virus 
 Bat-borne hantaviruses:  HUPV , Huangpi virus;  LQUV , Longquan virus;  MAKV , Makokou virus; 
 MGBV , Magboi virus;  MOYV , Mouyassué virus;  XSV , Xuan Son virus  
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  Fig. 9.1    Map of Europe, showing the countries where shrew- and mole-borne hantaviruses have been 
found. Table  9.5  provides a list of the hantaviruses harbored by rodents, shrews and moles in Europe       

  Fig. 9.2    Map of Asia, showing the countries where shrew-, mole-, and bat-borne hantaviruses have been 
found. Table  9.5  provides a list of the hantaviruses harbored by rodents, shrews, moles, and bats in Asia       
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  Fig. 9.3    Map of Africa, showing the countries where shrew- and bat-borne hantaviruses have been 
found. Table  9.5  provides a list of the hantaviruses harbored by rodents, shrews and bats in Africa       

  Fig. 9.4    Map of North America, showing the countries where shrew- and mole-borne hantaviruses 
have been found. Table  9.5  provides a list of the hantaviruses harbored by rodents, shrews and 
moles in North America       
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excluded intentionally because hosts other than rodents have not been identifi ed. 
Similarly, countries in which only SEOV has been detected in rats are not included, 
in part because of their nearly global distribution, possibly accounted for by inter-
national shipping. The distribution of the reservoir host may also result from inten-
tional anthropogenic activities. For example, it is highly likely that the present-day 
distribution of the Asian house shrew is due to human migration (S.D. Ohdachi, 
personal communication).

       Of the 33 genetically distinct hantaviruses identifi ed in shrews, moles, and bats 
(Tables  9.2 ,  9.3 , and  9.4 ), each differs from known hantaviruses by more than 7 % in 
the amino acid sequence of the S segment-encoded nucleocapsid protein, suggesting 
that they may all represent new hantavirus species. However, in the absence of virus 
isolates in tissue culture, all of the current criteria mandated by the International 
Committee on Taxonomy of Viruses (ICTV) [ 116 ] cannot be met. Nevertheless, 
assuming for the moment that the 22 hantaviruses in shrews (Table  9.2 ), fi ve in moles 
(Table  9.3 ), and six in bats (Table  9.4 ) represent distinct species, we can make the 
following observations: the preponderance of 15 hantaviruses in eulipotyphlya and 
chiropterans from Asia [ 25 ,  73 ,  88 – 92 ,  96 ,  103 ,  105 ,  106 ,  112 ] (Fig.  9.2 ), compared 
to the comparatively lower number of four from Europe [ 83 ,  94 ,  104 ,  108 ] (Fig.  9.1 ), 
eight from Africa [ 95 ,  97 ,  98 ,  102 ,  111 ,  113 ,  114 ] (Fig.  9.3 ), and six from North 
America [ 87 ,  93 ,  107 ,  109 ] (Fig.  9.4 ), and the far greater genetic diversity of hanta-
viruses hosted by Asian eulipotyphla and chiropterans and their basal positions in 
phylogenetic trees suggest that hantaviruses originated in Asia [ 22 ,  95 ]. An Asian 
origin was similarly concluded following an analysis of 190 S-segment sequences of 
rodent-borne hantaviruses, found in 30 countries during 1985–2010, retrieved from 
GenBank [ 117 ]. 

 Previously, geographic-specifi c genetic variation has been demonstrated for 
HTNV in the striped fi eld mouse [ 118 ], Soochong virus (SOOV) in the Korean fi eld 
mouse ( Apodemus peninsulae ) [ 119 ], PUUV in the bank vole [ 120 – 124 ], MUJV in 
the royal vole [ 42 ,  43 ], TULV in the European common vole [ 32 ,  125 ], and ANDV 
in the long-tailed colilargo [ 23 ,  126 ]. Similarly, phylogenetic analyses show that 
hantaviruses harbored by shrews [ 84 ,  85 ,  99 ] and moles [ 86 ,  110 ] segregate along 
geographically specifi c lineages, suggesting long-standing associations between 
hantaviruses and their reservoir eulipotyphlan hosts. 

 While long suspected, novel hantaviruses have only recently been detected in 
rodents [ 24 ,  127 ] and shrews [ 95 ,  97 ,  98 ,  102 ], as well as insectivorous bats [ 111 , 
 113 ,  114 ], in sub-Saharan Africa (Table  9.5  and Fig.  9.3 ). Notably, the fi ve 
 hantaviruses detected in African shrews and three detected in African bats, compared 
to only two hantaviruses reported from African rodents, despite the testing of tissues 
from many more rodents than shrews or bats, suggest that rodents may not have been 
the primordial mammalian hosts of ancestral hantaviruses [ 21 ,  22 ]. It is very proba-
ble that many more hantaviruses are extant in Africa, where unique lineages of 
shrews have diversifi ed and evolved [ 95 ,  97 ,  98 ,  102 ]. Thus, more intensifi ed inves-
tigations are warranted, not only in well-recognized biodiversity hotspots in West 
Africa but also in less-studied savannah and desert biomes.  
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4     Hantavirus Evolution 

 Before discussing the evolutionary dynamics of hantaviruses, it needs to be made 
clear that, while the newfound hantaviruses in shrews, moles, and bats are undoubt-
edly viruses, this does not infer that they have been adopted by the ICTV as hantavirus 
species (116). In fact, almost none of these viruses have been isolated in cell culture 
and their existence is inferred from partial or whole genome sequences. However, as 
evidenced by the extent of amino acid sequence differences observed compared to 
ICTV-classifi ed hantaviruses and their unique ecological niches, it is likely that most 
of these newly reported hantaviruses will prove to be distinct hantavirus species. 

 Currently, the genomic database comprises sequences for 33 genetically distinct 
hantaviruses hosted by shrews, moles, and bats (Tables  9.2 ,  9.3 , and  9.4 ). Whole 
genomes are available for only seven (BOWV, CBNV, JJUV, MJNV, RKPV, TPMV, 
YAKV), and full-length S-segment sequences have been completed for 20. None of 
the bat-borne hantaviruses have been fully sequenced, and full-length M-segment 
sequences are generally lacking. The paucity of whole-genome sequences of the 
newfound eulipotyphla- and chiroptera-borne hantaviruses has greatly hampered 
attempts at clarifying their evolutionary origins and phylogeography [ 21 ,  22 ]. And 
thus far, efforts at employing next-generation sequencing technology have been 
largely unsuccessful, primarily because of the limited availability of tissues and 
poor-quality of tissue RNA. 

 Phylogenetic analysis, based on partial or full genome sequences of all three 
 segments, results in trees consisting of four distinct clades (Fig.  9.5 ). One clade 
comprises hantaviruses harbored by rodents of the Muridae family; a second by 
hantaviruses hosted by rodents of the Cricetidae family; a third by hantaviruses in 
eulipotyphlans of the Soricidae family; and a fourth by hantaviruses harbored by 
talpid moles (Talpinae subfamily) and insectivorous bats, which represent the most 
divergent hantaviruses found to date (Fig.  9.5 ). Eulipotyphla-borne hantaviruses are 
divided into two phylogenetic lineages: one that is paraphyletic with murid rodent- 
borne hantaviruses, includes soricine and crocidurine shrew-borne hantaviruses, 
and two hantaviruses carried by shrew moles (ASAV and OXBV); the other lineage 
includes TPMV and MJNV, two crocidurine shrew-associated hantaviruses that are 
phylogenetically more closely related to bat-borne hantaviruses (HUPV, LQUV, 
MGBV, MOYV, XSV).  

 Previously, the segregation of hantaviruses into clades that paralleled the molec-
ular phylogeny of their rodent hosts in the Murinae, Arvicolinae, Neotominae, and 
Sigmodontinae subfamilies suggested the concept of co-divergence [ 128 ]. Recently, 
this concept has been challenged on the basis of the disjunction between the evolu-
tionary rates of the hosts and viruses. Preferential host switching and local host- 
specifi c adaptation have been proposed to account for the largely congruent 
phylogenies [ 129 ]. However, host-switching events alone do not completely explain 
the coexistence and distribution of genetically distinct hantaviruses among hosts of 
different species in three divergent taxonomic orders of small mammals spanning 
across four continents [ 108 ]. Moreover, phylogenetic trees reconstructed for 
 co- phylogeny mapping, using consensus topologies based on amino acid sequences 
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  Fig. 9.5    Phylogenetic tree generated by maximum-likelihood and Bayesian methods, based on the 
alignment of the L-segment sequences of hantaviruses. The phylogenetic positions of Xuan Son 
virus (XSV) and Mouyassué virus (MOYV) are shown in relationship to other bat-borne hantavi-
ruses (shown in  red ), including Magboi virus (MGBV), Longquan virus (LQUV) and Huangpi virus 
(HUPV), and representative shrew-borne hantaviruses (shown in  green ), including Thottapalayam 
virus (TPMV VRC66412), Imjin virus (MJNV Cl05-11), Seewis virus (SWSV mp70), Kenkeme 
virus (KKMV MSB148794), Cao Bang virus (CBNV CBN-3), Ash River virus (ARRV MSB 
73418), Jemez Springs virus (JMSV MSB144475), Qian Hu Shan virus (QHSV YN05-284), 
Tanganya virus (TGNV Tan826), Azagny virus (AZGV KBM15), Jeju virus (JJUV 10-11), Bowé 
virus (BOWV VN1512); mole-borne hantaviruses (shown in  black ), including Asama virus (ASAV 
N10), Oxbow virus (OXBV Ng1453), Nova virus (NVAV MSB95703), and Rockport virus (RKPV 
MSB57412). Also shown are representative Murinae rodent-borne hantaviruses (shown in  orange ), 
including Hantaan virus (HTNV 76-118), Soochong virus (SOOV SOO-1), Dobrava virus (DOBV 
Greece), Seoul virus (SEOV 80-39), and Sangassou virus (SANG SA14); Arvicolinae rodent-borne 
hantaviruses (shown in  blue ), including Tula virus (TULV M5302v), Puumala virus (PUUV 
Sotkamo), and Prospect Hill virus (PHV PH-1); and Neotominae and Sigmodontinae rodent-borne 
hantaviruses (shown in  blue ), Sin Nombre virus (SNV NMH10) and Andes virus (ANDV 
Chile9717869). The numbers at each node are posterior node probabilities ( left ) based on 150,000 
trees and bootstrap values ( right ) based 1,000 replicates executed on the RAxML BlackBox web 
server, respectively. The scale bar indicates nucleotide substitutions per site       
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of the nucleocapsid protein, Gn and Gc glycoproteins and RNA-dependent 
 RNA- polymerase, exhibited congruent segregation of hantaviruses according to the 
subfamily of their eulipotyphlan reservoir hosts, with no evidence of host switching 
except for two hantaviruses carried by shrew moles [ 107 ]. 

 Host-switching events in hantavirus evolution have been documented between 
hosts of the same family (Soricidae and Soricidae), of different families (Soricidae 
and Talpidae) and of separate orders (Eulipotyphla and Rodentia) [ 103 ,  106 ,  107 ]. 
The importance of such virus-host switching lies in the possible emergence of disease- 
causing hantaviruses. The close association between distinct hantaviruses and specifi c 
rodents, shrews, and moles probably resulted from alternating and periodic episodes 
of host/pathogen co-divergence through deep evolutionary time [ 95 ]. That is, as 
 evidenced by the overall congruence between the phylogenies of hantavirus genes and 
their rodent and eulipotyphlan hosts, hantaviruses have likely co- diverged with 
specifi c reservoir hosts during part of their evolutionary history [ 108 ,  109 ].  

5     Hantaviral Diseases 

 In a now classic volume, published in 1953, Gajdusek conjectured that Korean hem-
orrhagic fever in Asia and nephropathia epidemica in Scandinavia, while occurring 
in different geographic locations and exhibiting differential clinical severity, were 
manifestations of the same disease and were caused by the same virus or closely 
related viruses [ 1 ]. This conjecture, made more than a decade before the discovery 
of HTNV, was verifi ed shortly after the isolation of HTNV in cell culture [ 130 – 133 ]. 
And while the literature contains more than 150 synonyms for this clinical syn-
drome, the designation of HFRS has been dominant since the isolation of 
HTNV. With the advent of HCPS, as a disease with predominantly cardiac and 
 pulmonary involvement, the conventional view was that of two clinically distin-
guishable syndromes caused by hantaviruses harbored by rodents belonging to dif-
ferent rodent subfamilies in the Old and New Worlds. That is, HFRS was caused by 
hantaviruses carried by rodents of the Murinae and Arvicolinae subfamilies, while 
hantaviruses hosted by rodents in the Neotominae and Sigmondontinae subfamilies 
caused HCPS. 

 This tidy trans-Atlantic classifi cation may have outlived its usefulness and is 
being subjected increasingly to intense scrutiny, particularly as clinicians in both the 
Old and New Worlds encounter cases of HFRS which lack renal involvement but 
exhibit prominent cardiopulmonary features, and conversely as cases of HCPS with 
renal insuffi ciency but without pulmonary involvement are documented [ 51 ,  134 – 138 ]. 
Once downplayed or sometimes intentionally ignored, the considerable overlap 
between HFRS and HCPS is challenging the long-accepted distinction of two sepa-
rate clinical syndromes. A proposed nosology would entail the moniker “hantavirus 
fever” [ 51 ,  139 ]. Much more discussion is obviously needed for ultimate consensus 
and adoption, but this particular name might not necessarily solve the current 
conundrum. For instance, some diseases, caused by arboviruses, such as dengue 
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fever and West Nile fever, typically refer to the milder, non-life-threatening clinical 
forms of infections with dengue and West Nile viruses. For patients with clinically 
severe diseases with either fl avivirus, different names are typically used, such as 
dengue hemorrhagic fever and dengue shock syndrome, or West Nile virus menin-
goencephalitis, respectively. For dengue, the World Health Organization (WHO) 
has recently issued revised guidelines for classifying dengue virus-infected patients, 
based on clinical severity and laboratory tests [ 140 ], into three levels: dengue; dengue 
with warning signs; and severe dengue. 

 Although there is no unanimity of opinion in accepting the new WHO guidelines 
for dengue [ 141 ,  142 ], a similar nosological approach may be contemplated for 
hantavirus-infected patients: namely, hantavirus fever; hantavirus fever with warn-
ing signs; and severe hantavirus fever. Irrespective of the resultant new classifi ca-
tion, however, it is imperative that the guidelines are concise, clearly stated, easily 
implemented and relevant to the diagnosis and clinical management of patients with 
hantavirus disease. As with dengue, a list of warning signs to alert physicians to 
better identify severe cases, or potentially severe cases, and to make appropriate 
changes in clinical care, especially in resource-poor settings, would be valuable. 

5.1     HFRS and HCPS 

 Outbreaks of HFRS usually follow encroachment of rodent habitats or irruptions 
of reservoir rodent populations with subsequent invasion of human dwellings. The 
respiratory droplet route of aerosolized rodent excreta constitutes the principal mode 
of viral transmission to humans [ 3 ,  29 ]. Humans infected with pathogenic hantavi-
ruses usually develop mild to severe clinical disease, but subclinical infection also 
occurs to varying degrees depending on the hantavirus. In Scandinavia, HFRS is 
often still referred to as nephropathia epidemica, which, while usually mild, may run 
a more fulminant course [ 3 ]. Inapparent or subclinical hantavirus infection is not 
uncommon, depending on the particular virus, as with Choclo and Calabazo viruses 
on the Azuero peninsula of Panama [ 143 ]. Human population- based serosurveys in 
HFRS- and HCPS-endemic geographic areas indicate low (<1–5 %) to very high 
(>30 %) prevalences of anti-hantavirus antibodies [ 143 – 145 ]. Infections among 
children are uncommon, and seroprevalence tends to increase with age. 

 Vascular leak, or increased endothelial permeability, is the principal pathophysi-
ological feature of severe HFRS and HCPS. The principal symptoms and clinical 
features of both syndromes include high fever, chills, headache, generalized myal-
gia, abdominal pain, and nausea and vomiting. In the classical descriptions of 
HFRS, fi ve distinct phases were described [ 3 ,  29 ,  63 ,  146 ]. Febrile phase, which 
begins abruptly; hypotensive phase, on the fi fth day of illness; oliguric phase, on the 
ninth day of illness, with associated thrombocytopenia, proteinuria, hemorrhage 
and plasma leakage; diuretic phase, usually between days 12 and 14; and convalescent 
phase, which is gradual over several months. Depending on the severity of disease, 
not all HFRS patients exhibit all phases, or the phases may overlap [ 147 ]. The early 
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stage of HCPS, which resembles the febrile phase of HFRS, is somewhat nonde-
script and can be easily confused with other, more common, acute-onset febrile 
infectious diseases. But at 4–10 days after the onset of illness, HCPS patients expe-
rience rapidly progressive respiratory distress, characterized by dry cough and 
extreme shortness of breath, or dyspnea [ 4 ,  148 – 150 ]. Multivariate analysis showed 
that the clinical features of dizziness, nausea and vomiting and absence of cough at 
the time of hospital admission, and the initial laboratory abnormalities of thrombo-
cytopenia, low serum bicarbonate level and elevated hematocrit served to identify 
HCPS patients [ 151 ]. 

 The clinical management of HFRS and HCPS is largely supportive, with careful 
fl uid management and monitoring of cardiopulmonary and/or renal function, admin-
istered in an intensive care hospital setting. Dialysis may be required for some patients 
with severe HFRS. For HCPS patients, mechanical ventilation is frequently required, 
and other life-saving measures, such as extracorporeal membrane oxygenation, may 
be necessary [ 4 ,  152 ]. The use of antiviral drugs is uncommon, despite the signifi cant 
benefi t from intravenous ribavirin, as demonstrated in a prospective, randomized, 
double-blind, placebo-controlled clinical trial involving 242 patients with serologi-
cally confi rmed HFRS in China [ 153 ]. In a subsequent study, intravenous ribavirin 
signifi cantly reduced the occurrence of oliguria and the severity of renal insuffi ciency 
in HFRS patients [ 154 ]. Similarly well-controlled trials of intravenous ribavirin in 
HCPS have not been conducted. However, because of the lack of clinical benefi t in an 
open-label trial of ribavirin, conducted during the 1993 HCPS outbreak, a trial which 
was not designed to assess effi cacy [ 155 ], and the partial results from a placebo- 
controlled, double-blind trial that was prematurely terminated because of inadequate 
patient accrual [ 156 ], ribavirin is currently not recommended in the treatment of 
HCPS or available for this use under any existing research protocol. Recent fi ndings 
from  in vivo  studies in the Syrian hamster HCPS model, indicating that ribavirin pro-
vides effective post-exposure prophylaxis against HCPS-causing ANDV infection 
[ 157 ,  158 ], should prompt serious reconsideration of the current, possibly unjustifi ed 
verdict against the use of ribavirin in HCPS. This is more than an academic issue, for 
while the lethality of HFRS ranges from <1 % to more than 20 % [ 3 ,  63 ], the lethality 
of HCPS is much higher, ranging from 30 to 50 % or more in the Americas [ 148 – 150 ]. 
As such, adjunct therapy with ribavirin, or other newly developed antiviral com-
pound, could potentially reduce the number of HCPS-related deaths. A well-designed, 
properly controlled and suffi ciently powered clinical trial of intravenous ribavirin 
for HCPS should be conducted in South America, where more than 4,000 HCPS 
cases have been diagnosed up until 2013 [ 150 ]. 

 A fundamental epidemiological factor in HFRS and HCPS is exposure to rodent- 
infested habitats. Seemingly trivial exposure to environments contaminated with 
rodent excretions can lead to infection and disease. On the other hand, the intimate 
handling of rodents does not necessarily constitute suffi cient exposure. Thus, 
although individuals, such as mammalogists, who have frequent occupational con-
tact with rodents, are presumed at increased risk to rodent-borne pathogens, several 
studies have indicated insignifi cant prevalence of hantavirus infections [ 159 – 162 ]. 
This has been corroborated in a recent study, in which only four of 757 persons who 
had handled neotomine or sigmodontine rodents in North America exhibited serum 
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IgG antibodies against SNV [ 163 ]. Also, during the height of the HCPS outbreak in 
the Four Corners region, forest and park service personnel showed no evidence of 
SNV infection [ 164 ]. By contrast, studies in Eurasia show clear associations 
between hantavirus infection and exposure to rodent excreta among certain high- 
risk occupation groups, such as animal trappers, forestry workers and farmers 
[ 165 – 167 ], and individuals, such as hunters, whose recreational activities encroach 
on wildlife habitats [ 168 ]. 

 No evidence of SNV or ANDV transmission was found among health-care work-
ers exposed to patients with confi rmed HCPS [ 169 ,  170 ]. Similarly, there are no 
reports of hantavirus transmission from HFRS patients to physicians or medical per-
sonnel or to family members. On the other hand, there are well-substantiated reports 
of person-to-person transmission of ANDV in Argentina and Chile [ 171 – 174 ]. In a 
study of household contacts of persons with HCPS in Chile, the risk was highest 
among sex partners [ 174 ]. Also, epidemiological data suggest that prolonged and 
close contact with HCPS patients during the prodromal phase of disease, before 
patients seek medical attention, may constitute the period of increased risk [ 173 ].  

5.2     Identifying and Investigating Previously Unrecognized 
Hantaviral Diseases 

 Not all orphan viruses, or viruses in search of diseases, warrant investigations to 
ascertain their pathogenic potential at the time of discovery. However, selected 
viruses, particularly those related to viruses known to cause severe and life-threat-
ening diseases, such as HFRS and HCPS, are worthy of high research priority. No 
one would have predicted that rodent-borne viruses, previously known to cause 
acute renal insuffi ciency with varying degrees of hemorrhage and shock, would also 
cause an acute respiratory disease. The realization that rodent-borne hantaviruses 
are capable of causing HFRS and HCPS raises the possibility that soricid-associated 
hantaviruses may similarly cause a wide spectrum of febrile illnesses. In this regard, 
prospective studies of neotomine and sigmodontine rodent-borne hantaviruses in 
the early 1980s might have provided important clues about their pathogenicity long 
before the recognition of HCPS in 1993. In much the same way, one or more of the 
newly identifi ed soricid-borne hantaviruses may cause outbreaks of human disease 
and/or serve as surrogate antigens for the diagnosis of previously unrecognized 
hantaviral diseases. Robust serological assays and other sensitive technologies, now 
under development, will assist in establishing if these newest members of the 
 Hantavirus  genus are pathogenic for humans. Also, studies on the genetics, trans-
mission dynamics and disease-causing potential of one or more of the newly identi-
fi ed hantaviruses in shrews, moles, and insectivorous bats, as well as African 
rodents, may better prepare the next generation of health-care workers before the 
next newly recognized hantaviral disease. 

 By focusing too heavily on the syndromic features of renal and/or cardiopulmonary 
dysfunction, the full spectrum of hantavirus disease may be obscured or missed. 
Possibly, a detailed examination of atypical cases of HFRS and HCPS may provide 
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clues about other previously unrecognized diseases caused by hantaviruses, particu-
larly those newly discovered in shrews, moles, and bats. In this regard, before the 
recognition of HCPS, serological surveys were conducted for evidence of hantavi-
rus infection among patients with fever of unknown etiology in the USA, including 
individuals with pneumonia, rickettsial-like illnesses and leptospirosis-negative 
tests [ 175 ]. However, as in any serosurvey, one can be misled into thinking that an 
orphan virus is nonpathogenic if the ‘wrong’ patient groups are studied. In the case 
of HCPS, only HCPS patients had evidence of SNV infection. 

5.2.1     In Search of SANGV Infection and Disease 

 As summarized recently, many thousands of sera from randomly selected human 
populations in Algeria, Benin, Burkino Faso, Cameroon, Central African Republic, 
Chad, Djibouti, Egypt, Gabon, Nigeria, Senegal, and countries in South Africa have 
been tested for evidence of hantavirus infection [ 176 ]. In all such studies across the 
African continent, IgG antibodies against HTNV, and occasionally SEOV, PUUV, 
or PHV, were sought, using either enzyme-linked immunosorbent assay (ELISA) or 
immunofl uorescent antibody test (IFA). Because confi rmatory tests were not 
employed in nearly all of these studies, the reported seroprevalences, which ranged 
from 0.2 to 17 %, cannot be interpreted [ 162 ]. With the recent detection of rodent- 
and shrew-borne hantaviruses in both West and East Africa, and with improvements 
in serological testing, more accurate information about the true burden of hantavirus 
infection and disease in humans may be within reach. 

 In large part, this is being made possible by SANGV, which is the fi rst hantavirus 
discovered in the African wood mouse in sub-Saharan Africa [ 24 ] and the only 
African hantavirus isolated in cell culture [ 177 ]. The whole genome of SANGV has 
been sequenced and studies indicate that SANGV uses β(1) integrin as a cell-entry 
receptor [ 177 ]. Previously, pathogenic hantaviruses, which cause HFRS (HTNV, 
SEOV, PUUV, DOBV) and HCPS (SNV, NYV), have been shown to utilize αvβ3 
integrin for cell entry, compared to nonpathogenic hantaviruses (PHV) which use β1 
integrin [ 178 – 181 ]. β1 integrin usage would suggest that SANGV is nonpathogenic. 
Nevertheless, detailed serological surveys have been conducted to ascertain if 
SANGV causes human infection and disease. 

 In analyzing 717 serum specimens from inhabitants of 29 villages in Forest 
Guinea (including 68 samples from residents of Sangassou village) by ELISA, with 
confi rmation by IFA, western blot (WB), and focus-reduction neutralization test 
(FRNT), Klempa and colleagues found approximately 1 % of tested individuals to be 
antibody positive [ 182 ]. Also, in a separate study of 253 sera from residents of Upper 
Guinea [ 183 ] and in a survey of 1,442 samples from the Republic of South Africa 
[ 176 ], the seroprevalence was 1 %. However, the prevalence was much higher (4.4 %) 
among 68 patients from Sangassou village, who had fever of unknown origin [ 183 ]. 
Two of the three seropositive children had neutralizing antibodies against SANGV 
and had an illness compatible with HFRS [ 183 ]. Although HFRS is usually uncommon 
in children [ 184 – 187 ], SANGV may differ in this regard from other HFRS-causing 
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hantaviruses. Alternatively, the selection of febrile study participants in Sangassou 
village might have skewed the fi ndings.  

5.2.2     In Search of MJNV Infection and Disease 

 The isolation of MJNV from the Ussuri white-toothed shrew also raised questions 
about its pathogenic potential. From one standpoint, however, the objective of demon-
strating MJNV infection in humans might be considered ill conceived for the simple 
reason that shrew populations are generally much smaller than rodent populations, 
making the probability of contact between humans and shrews (and their excretions) 
extremely low. Also, the Ussuri white-toothed shrew is not found in peri-domestic 
habitats, unlike the Asian house shrew, which carries a closely related hantavirus 
known as TPMV, making even less likely exposure to MJNV- infected fomites. While 
this line of thinking is logical, zoonotic microbes, in general, tend to rarely infect 
humans, but they are nevertheless of signifi cant medical importance. In this regard, 
HCPS itself is a rare disease. And quite likely, in the absence of an outbreak of human 
disease caused by MJNV, one would be looking for such a rare event. Placed in proper 
perspective, therefore, HCPS would have probably gone unnoticed, had cases not 
clustered in time and space and had a closely knit group of dedicated and astute 
health-care workers not recognized that something very unusual was happening. 

 Our search for evidence of MJNV infection was focused almost entirely on 
patients with acute febrile illnesses, and in whom other zoonotic infectious diseases 
(such as leptospirosis, scrub typhus, murine typhus and HFRS caused by HTNV 
and SEOV) had been ruled out. A summary of the study populations, comprising 
2,800 participants, is shown in Table  9.6 . Acute-phase sera from clinic and hospitalized 
patients, as well as sera from individuals with HFRS-like symptoms, were screened 

   Table 9.6    Serological survey of MJNV infection   

 Serum 
 ELISA 
MJNV  IFA 

 Study Population  Tested  IgM+  IgG+  MJNV+  TPMV+  RT-PCR +  WB +  PRNT + 

 Paju Adult and 
Pediatric Clinic 

 52  0  ND  0  0  ND  ND  ND 

 Guro Hospital  327  1  ND  3  2  0  ND  ND 
 HFRS-like 
disease 2003 

 593  2  ND  2  0  ND  ND  ND 

 HFRS-like 
disease 2004 

 1074  0  ND  7  7  0  ND  ND 

 HFRS-like 
disease 2006 

 656  5  2  6  3  0  3  0 

 HFRS-like 
disease 2011 

 30  0  ND  0  0  ND  ND  ND 

  Abbreviations:  HFRS , hemorrhagic fever with renal syndrome;  IFA , indirect immunofl uorescence 
antibody test;  IgG , immunoglobulin G;  IgM , immunoglobulin M;  MJNV , Imjin virus;  ND  = test not 
done;  PRNT , plaque-reduction neutralization test;  RT-PCR , reverse transcription polymerase chain 
reaction;  TPMV , Thottapalayam virus;  WB , western blot  
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    Table 9.7    Serological testing of individuals with suspected MJNV infection   

 Study 
group  Patient 

 Age 
 ELISA 
MJNV  IFA  RT-PCR 

 Sex  IgM  IgG  MJNV  TPMV  L  M  S  WB  PRNT 

 Guro 
Hospital 

 1  37 M  −  −  64  −  ND  −  ND  ND  ND 
 2  24 M  200  −  −  −  ND  −  ND  ND  ND 
 3  49 F  −  −  256  −  −  −  −  ND  ND 
 4  58 F  −  −  32  −  −  −  −  ND  ND 

 HFRS-like 
disease 
2003 

 5  79 F  −  ND  32  −  −  −  −  ND  ND 
 6  69 F  −  ND  32  −  −  −  −  ND  ND 
 7  40 M  400  ND  −  −  −  −  −  ND  ND 
 8  56 M  400  ND  −  −  −  −  −  ND  ND 

 HFRS-like 
disease 
2004 

 9  34 M  −  −  64  −  −  −  −  ND  ND 
 10  35 M  −  −  128  −  ND  −  ND  ND  ND 
 11  22 M  −  −  256  −  −  −  −  ND  ND 
 12  35 M  −  −  128  −  −  −  −  ND  ND 
 13  UNK  −  −  256  −  −  −  −  ND  ND 
 14  80 M  −  −  128  −  −  −  −  ND  ND 
 15  UNK  −  −  64  −  −  −  −  ND  ND 

 HFRS-like 
disease 
2006 

 16  33 M  200  −  64  32  ND  −  ND  −  − 
 17  36 M  400  −  −  32  ND  −  ND  −  − 
 18  53 F  400  −  64  −  ND  −  ND  +  − 
 19  26 M  800  −  256  −  ND  −  ND  −  − 
 20  65 F  800  −  32  128  ND  −  ND  −  − 
 21  UNK  −  400  128  −  ND  −  ND  +  − 
 22  45 M  −  400  1024  −  ND  −  ND  +  − 

  Defi nitions: ELISA IgM and IgG: defi ned as <200; IFA MJNV and TPMV: defi ned as <32; PCR: 
defi ned as undetectable hantavirus RNA; WB: defi ned as <40; PRNT: defi ned as <40. ND = test not 
done 
 Abbreviations:  ELISA , enzyme-linked immunosorbent assay;  IFA , indirect immunofl uorescence 
antibody test;  IgG , immunoglobulin G;  IgM , immunoglobulin M;  L , L segment;  M,  M segment; 
 MJNV , Imjin virus;  PRNT , plaque-reduction neutralization test;  RT-PCR , reverse transcription 
polymerase chain reaction;  S , S segment;  TPMV , Thottapalayam virus;  WB , western blot  

for IgM and IgG antibodies against MJNV by ELISA and IFA. Confi rmatory tests 
included WB and PRNT, and sera from some suspect cases were tested by RT-PCR 
for MJNV RNA (Table  9.7 ). The test results of 22 study subjects with suggestive 
evidence of MJNV infection are shown in Table  9.7 . Three patients with HFRS-like 
diseases had detectable antibodies to MJNV, as determined by ELISA, IFA and WB, 
but confi rmation by PRNT was lacking. Overall, no serological evidence of MJNV 
infection was found.

    An important shortcoming of any serological survey in search of a rare infectious 
event is the failure to recruit individuals who are affected by that rare event. On the one 
hand, the inability to fi nd individuals with antibodies against MJNV may indicate 
that MJNV does not cause infection in humans. On the other hand, this same (negative) 
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result could mean that the study population simply failed to enroll subjects with 
MJNV infection. In other words, if MJNV infection is associated with a rare or 
uncommon disease, we would be unable to show infectivity in humans. In this 
regard, even at the height of the 1993 HCPS outbreak in the Four Corners region, no 
serological evidence of SNV infection could be found in patients with a variety of 
diseases or in health-care workers, parks service personnel and mammalogists. 
Only patients with HCPS had evidence of SNV infection. Thus, even with the most 
lethal of infectious agents, one would erroneously conclude that the microbe is 
nonpathogenic or noninfectious, if the “right” patients are not tested.    

6     Concluding Remarks 

 With the expanded host diversity and geographic distribution of hantaviruses has 
come a reexamination of previously long-held dogma about the host range, evolu-
tionary origins and phylogeography of hantaviruses. Many more hantaviruses, pos-
sibly some in hosts belonging to other taxonomic orders and in unanticipated 
geographic regions, await discovery. Textbook chapters on hantaviruses will also 
need to be rewritten, as more information becomes known about the emergence and 
pathogenic potential of newfound hantaviruses. In this regard, some of the uncer-
tainties and conundrums in hantavirus research is a direct consequence of the dearth 
of full-length genomes and hantavirus isolates. In particular, nearly all of the newly 
identifi ed hantaviruses in shrews, moles, and bats have yet to be isolated. In fact, to 
date, there are only two non-rodent-borne hantavirus isolates in cell culture. One is 
TPMV, the prototype shrew-borne hantavirus, isolated from the Asian house shrew 
[ 73 ,  74 ], and the other is MJNV, isolated from the Ussuri white-toothed shrew [ 25 ]. 
There are no hantavirus isolates from moles or bats (or other shrews). Virus isolates 
would dramatically accelerate the acquisition of whole genome sequences of 
recently discovered hantaviruses. 

 The isolation of hantaviruses, however, is fraught with diffi culty, with numerous 
failed attempts. Recently, the isolation of HOKV was achieved only after establishing 
a cell line from the rodent reservoir, the gray red- backed vole [ 188 ]. Whether such 
strategies will prove helpful or become necessary for other hantaviruses hosted by 
shrews, moles, and bats is worthy of serious consideration. In any case, until such time 
that multiple non-rodent- borne hantaviruses are isolated in cell culture, the biology, 
taxonomy and pathogenicity of these newly identifi ed hantaviruses will remain specu-
lative at best. Thus, the road ahead, at the dawn of a new era in hantavirology, is laden 
with challenges, but also innumerable opportunities and unlimited possibilities. Many 
discoveries and giant leaps in newfound knowledge can be anticipated. Above all, 
strong partnerships between health-care providers, public health workers, veterinarians, 
mammalogists, ecologists, and pathologists will be vital for the identifi cation and 
rapid diagnosis of previously unrecognized infectious diseases, caused by newfound 
hantaviruses and other vector-borne and zoonotic microbial agents [ 189 ]. 
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    Chapter 10   
 Family  Bunyaviridae  

             Chris     A.     Whitehouse      ,     Jens     H.     Kuhn      ,     Jiro     Wada     , and     Koray     Ergunay     

          Core Message   The family  Bunyaviridae  is one of the largest and most diverse of 
the established viral families. Viruses within this family infect a wide range of 
organisms including invertebrates, vertebrates, and plants. Bunyaviruses are 
transmitted by mammals or arthropods, including ticks, mosquitoes, biting midges, 
sandfl ies, and thrips. Some viruses within this family are important pathogens 
causing encephalitis or hemorrhagic fever in humans, abortions in pregnant animals, 
or devastating disease in economically important plants.  

1     Introduction 

 The large family  Bunyaviridae  includes more than 400 distinct members (bunyavi-
ruses) that are grouped into fi ve genera— Hantavirus ,  Nairovirus ,  Orthobunyavirus , 
 Phlebovirus , and  Tospovirus . Bunyaviruses possess a tripartite, single-stranded 
RNA genome that encodes four structural and, in some cases, one or two additional 
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nonstructural proteins in a mostly negative-sense (i.e., anti-message) manner. 
Exemplifying the great diversity of the family  Bunyaviridae , viruses in this family 
are known to infect invertebrates, vertebrates, and plants. Indeed, most viruses of 
the family are arthropod-borne, and various mosquitoes, ticks, biting fl ies, and 
thrips are vectors for transmission of orthobunyaviruses, nairoviruses, phlebovi-
ruses, and tospoviruses, respectively. Small mammals serve as amplifying hosts for 
most bunyaviruses, although some members (hantaviruses) use small mammal res-
ervoirs and are transmitted via aerosolized excreta. Bunyaviruses have a worldwide 
geographic distribution, and some of these viruses are associated with signifi cant 
human illnesses, including encephalitides and viral hemorrhagic fevers. Other bun-
yaviruses cause diseases in domestic animals and plants that are associated with 
signifi cant economic impact.  

2     History and Classifi cation 

 Undoubtedly, many bunyaviral diseases were known long before viruses were dis-
covered in the late nineteenth century. As far back as 960 A.D., the Chinese 
described illnesses closely resembling hemorrhagic fever with renal syndrome 
(HFRS) [ 1 ,  2 ], which is now known to be caused by certain hantaviruses. During 
the Napoleonic Wars (1803–1815), soldiers suffered from an epidemic of febrile 
illness, named Mediterranean fever that had symptoms similar to sandfl y fever [ 3 ] 
that is caused by a phlebovirus. Sandfl y fever was fi rst clinically described by 
Alois Pick in 1886 in the Balkans region where the disease was prevalent in an 
endemic form [ 4 ]. 

 In 1943, Smithburn and colleagues initially isolated Bunyamwera virus from 
 Aedes  mosquitoes during studies of yellow fever in Uganda [ 5 ] that is now classifi ed 
in the genus  Orthobunyavirus . Early classifi cation of arboviruses (arthropod-borne 
viruses) relied mostly on serological relatedness, using methods such as complement 
fi xation and neutralization tests. By 1960, eastern equine encephalitis virus, western 
equine encephalitis virus, and certain other viruses were known to be related to each 
other and were referred to as group A arboviruses (which are now classifi ed in the 
genus  Alphavirus  in the family  Togaviridae ). Japanese encephalitis virus, yellow 
fever virus, St. Louis encephalitis virus, West Nile virus, and certain other viruses 
were also known to be related to each other and were referred to as group B arbovi-
ruses (which are now classifi ed in the family  Flaviviridae ). Following the isolation 
of Bunyamwera virus, several other arboviruses were isolated that clearly did not fi t 
into these two antigenic groups. These viruses were subsequently assigned to what 
became known as the group C arboviruses [ 6 ]. The family  Bunyaviridae  was for-
mally established in 1975 to incorporate this group [ 7 ], and its members are now 
grouped into fi ve genera— Hantavirus ,  Nairovirus ,  Orthobunyavirus ,  Phlebovirus , 
and  Tospovirus . Viruses in all genera infect vertebrates, except for those in the genus 
 Tospovirus , which infect plants [ 8 ].  
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3     Physical Properties 

 Bunyavirion morphology varies among viruses of each of the fi ve genera; however, 
virions are generally spherical, 80–120 nm in diameter, and possess surface glyco-
protein projections of 5–10 nm. These peplomers are embedded in a lipid bilayered 
envelope approximately 5 nm thick and are thought to mostly consist of heterodi-
mers of the two viral glycoproteins (Fig.  10.1 ). The previous designations of these 
glycoproteins, G1 and G2, were based on their relative migration in polyacrylamide 
gels. Today, these proteins are referred to as Gn and Gc, referring to the amino- 
terminal and carboxy-terminal coding of the proteins [ 9 ]. Orthobunyavirions have 
surfaces covered with closely packed, knob-like morphologic units with no detect-
able order. Similarly, no obvious order is found for the small surface structures with 
central cavities observed on nairovirions [ 10 ]. In contrast, hantavirions have a sur-
face structure that is distinctly ordered in a square grid-like pattern [ 10 ]. Phlebovirions 
have round, closely packed subunits approximately 10–11 nm in diameter with cen-
tral cavities approximately 5 nm in diameter [ 10 ]. The appearances of tospovirions 
are similar to those of nairovirions in which, other than the presence of glycoprotein 
spikes, distinctive surface structures have not been observed.  

 Bunyavirions consist of 2 % RNA, 58 % protein, 33 % lipid, and 7 % carbohydrate 
(estimated for Uukuniemi virus of the genus  Phlebovirus ) and are sensitive to heat, 
lipid solvents, detergents, and formaldehyde [ 11 ]. Treatment with lipid solvents or 
detergents removes the viral envelope, resulting in loss of infectivity in arthropods and 
mammals [ 11 ]. Interestingly, however, the envelope is not required for viral entry or 
replication in plant cells of the plant-infecting tomato spotted wilt virus [ 12 ].  

  Fig. 10.1    Schematic enveloped, spherical bunyavirion, 80–120 nm diameter. Image courtesy of 
ViralZone, SIB Swiss Institute of Bioinformatics, with permission       

 

10 Family Bunyaviridae



202

4     Genome Structure 

 The bunyaviral genome comprises three segments of negative or ambisense single- 
stranded RNA designated as small (S), medium (M), and large (L). The lengths of the 
genomic segments vary among the genera, with the total genome lengths of approx-
imately 11–19 kb (Table  10.1 ). The 3′ and 5′ terminal nucleotides of each genomic 
segment are highly conserved among viruses of a given genus, but differ among 
viruses of different genera (Table  10.2 ). Stretches of the 3′ and 5′ termini are com-
plementary. Thus, the termini of each segment base-pair, forming noncovalently 
closed, panhandle-like RNAs. Direct support for base-pairing comes from electron 
microscopy studies of extracted RNA from Uukuniemi virions, in which three sizes 
of circular RNAs are evident [ 13 ].

5         Protein Coding and Viral Replication Strategies 

 The S, M, and L genome segments of all bunyaviruses encode a nucleocapsid pro-
tein (N), two envelope glycoproteins (Gn and Gc), and an RNA-dependent RNA 
polymerase (L), respectively (Fig.  10.2 ).  

 The S segment is approximately 1.0–3.0 kb and has one open reading frame 
(ORF) in the negative-sense orientation that codes for N. N is the most abundant 
component of virions and viral product in infected cells. N plays several important 
roles in viral replication, including protecting the RNA from degradation. The S 
segment of the orthobunyaviruses encodes for both the N protein and a nonstruc-
tural (NS)s protein in overlapping reading frames. Likewise, some hantavirus 

   Table 10.1    Approximate length (kb) of the genomic RNA segments of viruses belonging to the 
fi ve genera included in the family  Bunyaviridae    

 RNA segment 

 Genus 

  Orthobunyavirus    Hantavirus    Nairovirus    Phlebovirus    Tospovirus  

 S  1.0  1.7  1.7  1.7  2.9 
 M  4.5  3.9  4.9  3.2  4.8 
 L  6.9  6.5  12.2  6.4  8.9 
 Total  12.4  12.1  18.8  11.3  16.6 

   Table 10.2    Bunyavirus genus-specifi c consensus 3′ and 5′ terminal nucleotide sequences of the 
viral genomic RNAs   

  Orthobunyavirus   3′-UCAUCACAUGA…………………..UCGUGUGAUGA-5′ 
  Hantavirus   3′-AUCAUCAUCUG…………………………AUGAUGAU-5′ 
  Nairovirus   3′-AGAGUUUCU…………………………..AGAAACUCU-5′ 
  Phlebovirus   3′-UGUGUUUC………………………………GAAACACA-5′ 
  Tospovirus   3′-UCUCGUUA…………………………….CUAACGAGA-5′ 
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genomes have an ORF within the N ORF, and an NSs protein has been detected in 
cells infected with some hantaviruses [ 14 ,  15 ]. 

 A single, continuous ORF in the M RNA segment encodes the polyprotein pre-
cursor of the glycoproteins, which is co-translationally cleaved by a cellular prote-
ase into mature Gn and Gc. The M segment of nairoviruses is 30–50 % larger than 
M segments of viruses of the other genera and has the coding potential of up to 
240 kDa of protein [ 16 ]. The M segment of Crimean-Congo hemorrhagic fever 
virus (CCHFV) encodes a precursor Gn (preGn) that undergoes posttranslational 
cleavage to two proteins of unknown functions, a mucin-rich protein, and glycopro-
tein GP38 [ 17 ]. The M segments of some bunyaviruses (but not those of hantavi-
ruses) also encode a NSm protein. NSm is encoded in negative-sense orientation in 
the case of orthobunyaviruses and phleboviruses, but in positive-sense orientation in 
the case of tospoviruses. The nairovirus CCHFV also encodes NSm [ 18 ]. This inte-
gral membrane protein is cleaved off from the C-terminal region of preGn and is 
detected in cells infected with CCHFV, but not in virion pellets [ 18 ]. The function 
of this protein is currently unknown. In fact, the only M segment NS protein to have 
a defi ned role is the NSm of tospoviruses, which aids viral cell-to-cell movement 

  Fig. 10.2    Genome organization of viruses of the fi ve bunyavirus genera. Structural proteins are N 
(nucleocapsid) and the two viral glycoproteins, Gn and Gc, named according to their proximity to 
the N or C termini of the precursor polyprotein, respectively. The L protein possesses RNA- 
dependent RNA polymerase activity. Virus abbreviations:  BUNV  Bunyamwera virus,  CCHFV  
Crimean-Congo hemorrhagic fever virus,  HTNV  Hantaan virus,  RVFV  Rift Valley fever virus, 
 TSWV  tomato spotted wilt virus       
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(see below). The L segment uses a conventional negative- sense (i.e., complemen-
tary to mRNA) coding strategy. 

 The bunyaviral L segments encode the RNA-dependent RNA polymerase (L). 
Hantaviral, orthobunyaviral, and phleboviral L is of similar mass ≈250 kDa, 
whereas tospoviral and nairoviral L is considerably larger (330 kDa and 450 kDa, 
respectively) (Table  10.3 ).

   Bunyavirions gain entry into host cells by mechanisms similar to many other 
enveloped viruses. The viral glycoproteins, Gn and Gc, are primarily responsible 
for attachment to host cells and fusion with cellular membranes. Attachment to the 
host cell is followed by virion endocytosis. Most bunyaviruses assemble and bud 
into the Golgi apparatus (visualized by electron microscopy in the case of 
Bunyamwera virus) [ 19 ]. After budding into the Golgi cisternae, maturing virions 
are transported to the plasma membrane in small vesicles. By a process that resem-
bles normal exocytosis, virion release occurs after fusion of the vesicles with the 
plasma membrane [ 20 ].  

6     Ecology and Epidemiology 

6.1     Orthobunyaviruses 

 The genus  Orthobunyavirus  includes ≈53 species and contains more than 193 
viruses. Most of these viruses are grouped into ≈20 serogroups based on antigenic 
relationships (Table  10.4 ) [ 8 ,  21 ]. The vast majority of the viruses are vectored by 
mosquitoes; however, some orthobunyaviruses have culicoid fl ies (i.e., biting 
midges of the genus  Culicoides ) or ticks as vectors. These viruses are distributed 
worldwide; however, the majority of these viruses are not well studied. The excep-
tions are those viruses that have medical (e.g., La Crosse and Oropouche viruses) or 
veterinary importance (e.g., the newly emerged Schmallenberg virus).

   La Crosse virus (LACV) is a member of the California serogroup and one of the 
most signifi cant bunyaviruses in terms of causing human encephalitis. LACV is 
transmitted by its primary vector, the forest-dwelling, tree-hole-breeding mosquito 
 Aedes triseriatus  [ 22 ] (Fig.  10.3 ). This mosquito is found throughout the northern, 
midwestern, and northeastern USA. LACV is maintained in these mosquitoes by 

   Table 10.3    Approximate mass (kDa) of structural proteins of viruses belonging to the fi ve 
bunyavirus genera   

 Protein 

 Genus 

  Orthobunyavirus    Hantavirus    Nairovirus    Phlebovirus    Tospovirus  

 N  25  50  50  30  30 
 Gn  35  70  35  55–70  45 
 Gc  110  55  75  65  75 
 L  250  250  450  250  330 
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    Table 10.4    Viruses in the genus  Orthobunyavirus    

 Virus species (in italics) and their 
member viruses  Vector  Distribution 

 Disease 
host 

 Anopheles A serogroup 

  Anopheles A virus  
 Anopheles A virus (ANAV)  Mosquitoes  South America  – 
 Arumateua virus (ARTV)  Mosquitoes  South America  – 
 Caraipé virus (CPEV)  Mosquitoes  South America  – 
 Las Maloyas virus (LMV)  Mosquitoes  South America  – 
 Lukuni virus (LUKV)  Mosquitoes  South America  – 
 Trombetas virus (TRMV)  Mosquitoes  South America  – 
 Tucuruí virus (TUCV)  Mosquitoes  South America  – 

  Tacaiuma virus  
 Tacaiuma virus (TCMV)  Mosquitoes  South America  Human 
 CoAr 1071 virus  Mosquitoes  South America  – 
 CoAr 3627 virus  Mosquitoes  South America  – 
 Virgin River virus (VRV)  Mosquitoes  North America  – 

 Anopheles B serogroup 
  Anopheles B virus  

 Anopheles B virus (ANBV)  Mosquitoes  South America  – 
 Boracéia virus (BORV)  Mosquitoes  South America  – 

 Bakau serogroup 
  Bakau virus  

 Bakau virus (BAKV)  Mosquitoes  Asia  – 
 Ketapang virus (KETV)  Mosquitoes  Asia  – 
 Nola virus (NOLAV)  Mosquitoes  – 
 Tanjong Rabok virus (TRV)  ND  Asia  – 
 Telok Forest virus (TFV)  ND  Asia  – 

 Bunyamwera serogroup 
  Bunyamwera virus  

 Batai virus (BATV)  Mosquitoes  Asia  Human 
 Birao virus (BIRV)  Mosquitoes  Africa  – 
 Bozo virus (BOZOV)  Mosquitoes  Africa  – 
 Bunyamwera virus (BUNV)  Mosquitoes  Africa  Human 
 Cache Valley virus (CVV)  Mosquitoes  North America  Sheep, 

cattle, 
human 

 Fort Sherman virus (FSV)  Mosquitoes  South America  Human 
 Germiston virus (GERV)  Mosquitoes  Africa  Human 
 Iaco virus (IACOV)  Mosquitoes  South America  – 
 Ilesha virus (ILEV)  Mosquitoes  Africa  Human 
 Lokern virus (LOKV)  Mosquitoes/culicoid fl ies  North America  – 
 Maguari virus (MAGV)  Mosquitoes  South America  – 
 Mboke virus (MBOV)  Mosquitoes  Africa  – 
 Ngari virus (NRIV) a   Mosquitoes  Africa  Human 

(continued)
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Table 10.4 (continued)

 Virus species (in italics) and their 
member viruses  Vector  Distribution 

 Disease 
host 

 Northway virus (NORV)  Mosquitoes  North America  – 
 Playas virus (PLAV)  Mosquitoes  South America  – 
 Potosi virus (POTV)  Mosquitoes  North America  – 
 Santa Rosa virus (SARV)  Mosquitoes  North America  – 
 Shokwe virus (SHOW)  Mosquitoes  Africa  Human 
 Stanfi eld virus  Mosquitoes  North America  – 
 Tensaw virus (TENV)  Mosquitoes  North America  – 
 Tlacotalpan virus (TLAV)  Mosquitoes  North America  – 
 Tucunduba virus (TUCV)  Mosquitoes  South America  – 
 Xingu virus (XINV)  Mosquitoes  South America  Human 

  Guaroa virus  
 Guaroa virus (GROV)  Mosquitoes  North America, 

South America 
 Human 

  Kairi virus  
 Kairi virus (KRIV)  Mosquitoes  South America  Horse 

  Main Drain virus  
 Main Drain virus (MDV)  Mosquitoes/culicoid fl ies  North America  Horse 

 Bwamba serogroup 
  Bwamba virus  

 Bwamba virus (BWAV)  Mosquitoes  Africa  Human 
 Pongola virus (PGAV)  Mosquitoes  Africa  Human 

 California serogroup 
  California encephalitis virus  

 California encephalitis virus (CEV)  Mosquitoes  North America  Human 
 Chatanga virus  Mosquitoes  Asia, Europe  – 
 Inkoo virus (INKV)  Mosquitoes  Europe  Human 
 Jamestown Canyon virus (JCV)  Mosquitoes  North America  Human 
 Jerry Slough virus 
 Keystone virus (KEYV)  Mosquitoes  North America  – 
 La Crosse virus (LACV)  Mosquitoes  North America  Human 
 Lumbo virus (LUMV)  Mosquitoes  Africa  Human 
 Melao virus (MELV)  Mosquitoes  South America  – 
 Morro Bay virus (MBV) 
 San Angelo virus (SAV)  Mosquitoes  North America  – 
 Serra do Navio virus (SDNV)  Mosquitoes  South America  – 
 Snowshoe hare virus (SSHV)  Mosquitoes  North America  Human 
 South River virus (SORV)  Mosquitoes  North America  – 
 Tahyña virus (TAHV)  Mosquitoes  Europe  Human 
 Trivittatus virus (TVTV)  Mosquitoes  North America  – 

 Capim serogroup 
  Acara virus  

 Acara virus (ACAV)  Mosquitoes  North America, 
South America 

 – 

 Moriche virus (MORV)  Mosquitoes  South America  – 

(continued)
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Table 10.4 (continued)

 Virus species (in italics) and their 
member viruses  Vector  Distribution 

 Disease 
host 

  Benevides virus  
 Benevides virus (BVSV)  Mosquitoes  South America  – 

  Capim virus  
 Capim virus (CAPV)  Mosquitoes  South America  – 

 Gamboa serogroup 
  Alajuela virus  

 Alajuela virus (ALJV)  Mosquitoes  North America  – 
 San Juan virus (SJV)  Mosquitoes  South America  – 

  Gamboa virus  
 Gamboa virus (GAMV)  Mosquitoes  North America  – 
 Pueblo Viejo virus (PVV)  Mosquitoes  South America  – 

 Group C serogroup 
  Caraparú virus  

 Apeú virus (APEUV)  Mosquitoes  South America  Human 
 Bruconha virus (BRUV)  Mosquitoes  South America  – 
 Caraparú virus (CARV)  Mosquitoes  North America, 

South America 
 Human 

 Ossa virus (OSSAV)  Mosquitoes  North America  Human 
 Vinces virus (VINV)  Mosquitoes  South America  – 

  Madrid virus  
 Madrid virus (MADV)  Mosquitoes  North America  Human 

  Marituba virus  
 Gumbo Limbo virus (GLV)  Mosquitoes  North America  – 
 Marituba virus (MTBV)  Mosquitoes  South America  Human 
 Murutucú virus (MURV)  Mosquitoes  South America  Human 
 Nepuyo virus (NEPV)  Mosquitoes  North America, 

South America 
 Human 

 Restan virus (RESV)  Mosquitoes  South America  Human 
 Zungarococha virus (ZUNV)  ND  South America  Human 

  Oriboca virus  
 Itaquí virus (ITQV)  Mosquitoes  South America  Human 
 Oriboca virus (ORIV)  Mosquitoes  South America  Human 

 Guama serogroup 
  Bertioga virus  

 Bertioga virus (BERV)  ND  South America  – 
 Cananeia virus (CNAV)  Mosquitoes  South America  – 
 Guaratuba virus (GTBV)  Mosquitoes  South America  – 
 Itimirim virus (ITIV)  ND  South America  – 
 Mirim virus (MIRV)  Mosquitoes  South America  – 

  Bimiti virus  
 Bimiti virus (BIMV)  Mosquitoes  South America  – 

  Guama virus  
 Ananindeua virus (ANUV)  Mosquitoes  South America  – 

(continued)
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Table 10.4 (continued)

 Virus species (in italics) and their 
member viruses  Vector  Distribution 

 Disease 
host 

 Guama virus (GMAV)  Mosquitoes  North America, 
South America 

 Human 

 Mahogany Hammock virus (MHV)  ND  North America  – 
 Moju virus (MOJUV)  Mosquitoes  South America  – 

 Kongool serogroup 
  Koongol virus  

 Koongol virus (KOOV)  Mosquitoes  Australia  – 
 Wongal virus (WONV)  Mosquitoes  Australia  – 

 Minatitlan serogroup 
  Minatitlan virus  

 Minatitlan virus (MNTV)  ND  North America  – 
 Palestina virus (PLSV)  Mosquitoes  South America  – 

 Nyando serogroup 
  Nyando virus  

 Nyando virus (NDV)  Mosquitoes  Africa  Human 
 Eretmapodites virus (ERETV)  Mosquitoes  Africa  – 

 Olifantsvlei serogroup 
  Bomtambi virus  

 Bomtambi virus (BOTV)  Mosquitoes  Africa  – 
  Olifantsvlei virus  

 Bobia virus (BIAV)  Mosquitoes  Africa  – 
 Dabakala virus (DABV)  Mosquitoes  Africa  – 
 Olifantsvlei virus (OLIV)  Mosquitoes  – 
 Oubi virus (OUBIV)  Mosquitoes  Africa  – 

 Patois serogroup 
  Patois virus  

 Abras virus (ABRV)  Mosquitoes  South America  – 
 Babahoya virus (BABV)  Mosquitoes  South America  – 
 Pahayokee virus (PAHV)  Mosquitoes  North America  – 
 Patois virus (PATV)  Mosquitoes  North America  – 
 Shark River virus (SRV)  Mosquitoes  North America  – 

 “Sedlec serogroup” 
  Sedlec virus  

 I612045 virus  ND  Asia  – 
 Oyo virus  ND  Africa  – 
 Sedlec virus (SEDV)  ND  Europe  – 

 Simbu serogroup 
  Akabane virus  

 Akabane virus (AKAV)  Mosquitoes/culicoid fl ies  Africa, Asia, 
Australia 

 Cattle 

 Sabo virus (SABOV)  Culicoid fl ies  Africa  – 

(continued)
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Table 10.4 (continued)

 Virus species (in italics) and their 
member viruses  Vector  Distribution 

 Disease 
host 

 Tinaroo virus (TINV)  Culicoid fl ies  Australia  – 
 Yaba-7 virus (Y7V)  ND  Africa  – 

 “ Leanyer virus ” 
 Leanyer virus (LEAV)  Mosquitoes  Australia  – 

  Oropouche virus  
 Facey’s Paddock virus (FPV)  ND  Australia  – 
 Madre de Dios virus  ND  South America  – 
 Oropouche virus (OROV)  Mosquitoes/culicoid fl ies  South America  Human 
 Pintupo virus  ND  North America  – 
 Utinga virus (UTIV)  ND  South America  – 
 Utive virus (UVV)  ND  North America  – 

  Sathuperi virus  
 Douglas virus (DOUV)  Australia  – 
 Sathuperi virus (SATV)  Mosquitoes/culicoid fl ies  Africa, Asia  – 

  Simbu virus  
 Simbu virus (SIMV)  Mosquitoes/culicoid fl ies  Africa  – 

  Shamonda virus  
 Peaton virus (PEAV)  Culicoid fl ies  Australia  – 
 Sango virus (SANV)  Mosquitoes/culicoid fl ies  Africa  – 
 Shamonda virus (SHAV)  Culicoid fl ies  Africa  – 

  Shuni virus  
 Aino virus (ANOV)  Mosquitoes/culicoid fl ies  Asia, Australia  – 
 Kaikalur virus (KAIV)  Mosquitoes  Asia  – 
 Shuni virus (SHUV)  Mosquitoes/culicoid fl ies  Africa  – 

  Thimiri virus  
 Thimiri virus (THIV)  ND  Africa, Asia  – 

 Iquitos virus (IQTV) b   ND  South America  Human 
 Jatobal virus (JATV) b   ND  South America  – 
 Schmallenberg virus (SBV) b   Culicoid fl ies  Europe  Cattle 
 Tete serogroup 
  Batama virus  

 Batama virus (BMAV)  ND  Africa  – 
  Tete virus  

 Bahig virus (BAHV)  Ticks  Asia, Europe  – 
 Matruh virus (MTRV)  Ticks  Africa, Asia  – 
 Tete virus (TETEV)  ND  Africa  – 
 Tsuruse virus (TSUV)  ND  Asia  – 
 Weldona virus (WELV)  Culicoid fl ies  North America  – 

 Turlock serogroup 
  M ’ Poko vius  

 M’Poko virus (MPOV)  Mosquitoes  Africa  – 
 Yaba-1 virus (Y1V)  Mosquitoes  Africa  – 

(continued)
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Table 10.4 (continued)

 Virus species (in italics) and their 
member viruses  Vector  Distribution 

 Disease 
host 

  Turlock virus  
 Lednice virus (LEDV)  Mosquitoes  Europe  – 
 Turlock virus (TURV)  Mosquitoes  North America, 

South America 
 – 

 Umbre virus (UMBV)  Mosquitoes  Asia  – 
 Wyemoyia serogroup 
  Wyeomyia virus  

 Anhembi virus (AMBV)  Mosquitoes  South America  – 
 BeAr 328208 virus (BAV)  Mosquitoes  South America  – 
 Cachoeira Porteira virus (CPOV) 
 Iaco virus (IACOV) 
 Macaua virus (MCAV)  Mosquitoes  South America  – 
 Sororoca virus (SORV)  Mosquitoes  South America  – 
 Taiassui virus (TAIAV)  Mosquitoes  South America  – 
 Tucunduba virus (TUCV) 
 Wyeomyia virus (WYOV)  Mosquitoes  South America  Human 

 Ungrouped 
  Bushbush virus  

 Benfi ca virus  Mosquitoes  South America  – 
 Bushbush virus (BSBV)  Mosquitoes  South America  – 
 Juan Diaz virus (JDV)  ND  North America  – 

  Catu virus  
 Catu virus (CATUV)  Mosquitoes  South America  Human 

  Estero Real virus  
 Estero Real virus (ERV)  Ticks  North America  – 

  Guajara virus  

 Guajara virus (GJAV)  Mosquitoes  North America, 
South America 

 – 

  Kaeng Khoi virus  
 Kaeng Khoi virus (KKV)  Nest bugs  Asia  – 

  Manzanilla virus  
 Buttonwillow virus (BUTV)  Culicoid fl ies  North America  – 
 Cat Que virus  Mosquitoes  Asia  – 
 Ingwavuma virus (INGV)  Mosquitoes  Africa, Asia  Pig 
 Inini virus (INIV)  ND  South America  – 
 Manzanilla virus (MANV)  ND  South America  – 
 Mermet virus (MERV)  Mosquitoes  North America  – 

  Timboteua virus  
 Timboteua virus (TBTV)  Mosquitoes  South America  – 

  Zegla virus  
 Zegla virus (ZEGV)  ND  North America  – 

(continued)
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transovarial transmission, which allows overwintering of the virus in mosquito eggs 
[ 23 ]. Squirrels, chipmunks, foxes, and woodchucks often serve as amplifying reser-
voir hosts [ 24 ]. Most cases of La Crosse encephalitis occur in the summer and early 
fall when risk of being bitten by infected mosquitoes is highest. The majority of 
cases occur in the Mississippi and Ohio River basins with over 90 % of cases 
reported from Wisconsin, Minnesota, Iowa, Indiana, Ohio, and Illinois; however, 
cases also occur throughout most of the eastern half of the USA (Fig.  10.4 ).   

 Oropouche virus (OROV) was fi rst identifi ed from Trinidad in 1955 [ 25 ] and was 
later isolated from the blood of a pale-throated sloth ( Bradypus tridactylus ) in 1960 
[ 26 ]. Recently, OROV has become the second most frequent cause of arboviral 
infection in Brazil, surpassed only by dengue viruses [ 26 ]. OROV has been associ-
ated with large and explosive outbreaks of febrile disease in South and Central 

Table 10.4 (continued)

 Virus species (in italics) and their 
member viruses  Vector  Distribution 

 Disease 
host 

 Unclassifi ed 

 Abbey Lake bunyavirus (Ab-BUNV)  Mosquitoes  Asia  – 
 Brazoran virus  Mosquitoes  North America  – 
 Enseada virus (ENSV)  Mosquitoes  South America  – 
 Khurdun virus (KHURV)  ND  Europe  – 
 Kowanyama virus (KOWV)  Mosquitoes  Australia  – 
 Mojuí dos Campos virus (MDCV)  ND  South America  – 
 Murrumbidgee virus (MURBV)  Mosquitoes  Australia  – 
 Salt Ash virus (SASHV)  Mosquitoes  Australia  – 
 Termeil virus (TERV)  Mosquitoes  Australia  – 

   ND  not determined 
  a Includes Garissa virus 
  b It is currently unclear to which species these reassortant Simbu serogroup viruses belong  

  Fig. 10.3     Aedes triseriatus , 
commonly known as the 
“treehole mosquito,” 
obtaining a blood meal from 
a human hand (courtesy of 
James Gathany, obtained 
from the Centers for Disease 
Control and Prevention 
(CDC) Public Health Image 
Library at   http://phil.cdc.gov/
phil/home.asp     [accessed Feb 
25, 2014])       

 

10 Family Bunyaviridae

http://phil.cdc.gov/phil/home.asp
http://phil.cdc.gov/phil/home.asp


212

America, especially in the Amazon Basin. More than half a million cases have been 
reported in the Americas [ 26 ]. In addition to outbreaks, OROV can also cause spo-
radic human infections [ 27 ]. OROV is transmitted to sloths, marsupials, primates, 
and birds by  Aedes serratus  and  Culex quinquefasciatus  mosquitoes. Notably, 
OROV has adapted to an urban cycle involving man, with biting midges ( Culicoides 
paraensis ) as the primary vector [ 28 ,  29 ]. 

 In addition to human pathogens, the genus  Orthobunyavirus  also contains patho-
gens of signifi cant veterinary importance. One example is the recently emerged 
Schmallenberg virus (SBV). In late 2011, a nonspecifi c febrile syndrome occurred in 
dairy cattle that was characterized by decreased milk production and watery diarrhea 
[ 30 ]. The affected farms were located along the German-Dutch boarder in North 
Rhine-Westphalia, near the city of Schmallenberg, Germany. Next-generation 
sequencing and metagenomic analysis was used to identify the novel orthobunyavi-
rus from blood samples of deceased cows from a farm in Schmallenberg [ 30 ]. Since 
the fi rst detection in Germany, SBV has spread rapidly over large parts of northern 
and western Europe (Fig.  10.5 ). In addition to the febrile syndrome initially described 
for the virus, transplacental infection often results in the birth of malformed calves, 
lambs, and goat kids [ 31 ,  32 ]. Based on similarities to other related viruses affecting 
livestock, researchers suspected that Schmallenberg virus was transmitted by biting 
midges ( Culicoides ). In fact, several studies have detected the virus in fi eld-collected 
midges [ 33 – 36 ], and viral replication and dissemination in  C. sonorensis  midges 

  Fig. 10.4    Most reported cases of California serogroup virus neuroinvasive disease (encephaliti-
des, meningoencephalitides, or meningitides) are due to La Crosse virus (LACV). Counties are 
 shaded  according to incidence ranging from less than 0.06, 0.06–0.99, and greater than 1.00 per 
100,000. Most of the counties with the highest incidence are located along the Appalachian range 
and the upper Mississippi River basin (Obtained from the CDC website at   http://www.cdc.gov/lac/
tech/epi.html     [accessed Feb 25, 2014])       
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  Fig. 10.5    Distribution of Schmallenberg virus by country in Europe as of February 2013 (courtesy of 
O. Smooth, obtained at   http://en.wikipedia.org/wiki/Schmallenberg_virus     [accessed Feb 27, 2014])       

have been observed under laboratory conditions [ 37 ]. Interestingly, SBV appears 
to be a reassortant virus, with the M segment from Sathuperi virus and the S and L 
segments from Shamonda virus, both members of the Simbu serogroup of orthobun-
yaviruses [ 38 ].   

6.2     Nairoviruses 

 The genus  Nairovirus  includes ≈50 predominantly tick-borne viruses in eight estab-
lished and four proposed species [ 39 ,  40 ] (Table  10.5 ). The pathogenicity of many of 
these viruses is not known. However, two nairoviruses are known to be serious patho-
gens: Crimean-Congo hemorrhagic fever virus (CCHFV) and Nairobi sheep disease 
virus (NSDV). CCHFV causes severe hemorrhagic fever in humans, and NSDV causes 
severe gastroenteritis in sheep and goats. Case-fatality rates of infections with either 
virus can reach 90 % [ 41 ,  42 ]. CCHF is the most widespread tick- borne viral infection 
of humans, occurring across a vast area including western China through Southern 
Asia, the Middle East to southeastern Europe, and most of Africa [ 43 ]. CCHFV is 
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   Table 10.5    Viruses in the genus  Nairovirus    

 Virus species (in italics) and their 
member viruses  Original source 

 Year of 
description 

 “ Ahun virus ” a  
 Ahun virus  Common pipistrelle ( Pipistrellus 

pipistrellus ), whiskered myotis ( Myotis 
mystacinus ) 

 2014 

 “ Artashat virus ” 
 Artashat virus (ARTSV)  Ticks:  Ornithodoros alactagalis   1972 

  Crimean-Congo hemorrhagic fever virus  
  Crimean-Congo hemorrhagic fever 
virus (CCHFV) 

 Humans  1967 

 Hazara virus (HAZV)  Ticks:  Ixodes redikorzevi   1970 
 Khasan virus (KHAV)  Ticks:  Haemaphysalis longicornis   1978 

  Dera Ghazi Khan virus  
 Abu Hammad virus (AHV)  Ticks:  Argas hermanni   1971 
 Abu Mina virus (AMV)  Ticks:  Argas streptopelia   1963 
 Dera Ghazi Khan virus (DGKV)  Ticks:  Hyalomma dromedarii   1970 
 Kao Shuan virus (KSV)  Ticks:  Argas robertsi   1970 
 Pathum Thani virus (PTHV)  Ticks:  Argas robertsi   1970 
 Pretoria virus (PREV)  Ticks:  Argas africolumbae   1973 

  Dugbe virus  
 Dugbe virus (DUGV)  Ticks:  Amblyomma variegatum   1970 
 Ganjam virus (GANV) b   Ticks:  Haemaphysalis intermedia   1969 
 Kupe virus  Ticks:  Amblyomma gemma , 

 Rhipicephalus pulchellus  
 2009 

 Nairobi sheep disease virus (NSDV)  Domestic sheep  1910 
  Hughes virus  

 Caspiy virus (CASV) c   Ticks:  Ornithodoros maritimus   1970 
 Farallon virus (FARV)  Ticks:  Carios capensis   1964 
 Fraser Point virus (FPV)     ND    ND 
 Great Saltee virus (GRSV)  Ticks:  Ornithodoros  maritimus  1976 
 Hughes virus (HUGV)  Ticks:  Ornithodoros capensis   1962 
 Puffi n Island virus (PIV)  Ticks:  Ornithodoros maritimus   1979 
 Punta Salinas virus (PSV)  Ticks:  Ornithodoros  sp.  1967 
 Raza virus (RAZAV)  Ticks:  Carios denmarki   1962 
 Sapphire II virus (SAPV)  Ticks:  Argas cooley   ND 
 Soldado virus (SOLV)  Ticks:  Ornithodoros  sp.  1963 
 Zirqa virus (ZIRV)  Ticks:  Ornithodoros  sp.  1969 

 “ Issyk-kul virus ” 
 Issyk-kul virus (ISKV)  Bats: noctule ( Nyctalus noctula ); 

ticks:  Argas  sp. 
 1973 

 Kasokero virus (KASV)  Bats: Egyptian rousettes 
( Rousettus aegyptiacus ) 

 1986 

 Keterah virus (KTRV)  Bats: lesser Asiatic yellow house bat 
( Scotophilus kuhli temminckii ) 

 1976 

(continued)
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maintained through vertical and horizontal transmission in ixodid (hard) ticks of 
several genera, which spread the virus to a variety of wild and domestic mammals. 
Affected mammals develop transient viremia without signs of illness. Human infec-
tions occur through tick bite or exposure to the blood or other body fl uids from 
infected animals or humans. Ticks of the genus  Hyalomma  (Fig.  10.6 ) are the princi-
pal source of human infection, probably because both the immature and the adult 
forms of the tick actively seek hosts for their obligate blood meals. Of note, during a 
recent viral metagenomics study, novel nairovirus sequences were detected in France 
in bats belonging to two different species [ 44 ]. These sequences diverge signifi cantly 
from all known nairovirus genomes and thus represent a new nairovirus, Ahun virus, 
which will probably to be assigned to a novel species.

Table 10.5 (continued)

 Virus species (in italics) and their 
member viruses  Original source 

 Year of 
description 

 Yogue virus (YOGV)  Bats: Egyptian rousettes ( Rousettus 
aegyptiacus ) 

 1986 

  Qalyub virus  
 Bakel virus (BAKV)  ND    ND   
 Bandia virus (BDAV)  Multimammate rat ( Mastomys  sp.)  1965 
 Chim virus (CHIMV)  Ticks:  Ornithodoros tartakovskyi   1971 
 Omo virus (OMOV)  Multimammate rat ( Mastomys  sp.)  1971 
 Qalyub virus (QYBV)  Ticks:  Ornithodoros erraticus   1952 

  Sakhalin virus  
 Avalon virus (AVAV) d   Ticks:  Ixodes  uriae  1972 
 Clo Mor virus (CMV)  Ticks:  Ixodes  uriae  1973 
 Finch Creek virus  Ticks:  Ixodes uriae   2009 
 Kachemak Bay virus (KBV)  Ticks:  Ixodes signatus   1974 
 Sakhalin virus (SAKV)  Ticks:  Ixodes putus   1970 
 Taggert virus (TAGB)  Ticks:  Ixodes  uriae  1972 
 Tillamook virus (TILLV)  Ticks:  Ixodes uriae   1970 

 “ South Bay virus ” 
 South Bay virus (SBV)  Ticks:  Ixodes scapularis   2014 

  Tamdy virus  
 Tamdy virus (TDY)  Ticks:  Hyalomma  sp.  1976 

  Thiafora virus  
 Erve virus (ERVEV)  Greater white-toothed shrew ( Crocidura 

russula ) 
 1982 

 Thiafora virus (TFAV)  White-toothed shrew ( Crocidura  sp.)  1971 

  ND not determined 
  a Viruses in quotation marks represent proposed species 
  b Some consider GANV to be an Asian variant of NSDV 
  c Exact taxonomic position is currently unclear 
  d Also known as Paramushir virus (PRMV)  

10 Family Bunyaviridae



216

6.3         Hantaviruses 

 The  Hantavirus  genus contains 36 viruses classifi ed into 24 species and an addi-
tional ≈67 unclassifi ed viruses (Table  10.6 ). Unlike all other members of the family 
 Bunyaviridae , hantaviruses are not arboviruses, but infect rodents, eulipotyphla 
(shrews and moles), and bats [ 45 ]. Human hantavirus infection is thought to occur 
following exposure to excretions from infected mammalian hosts. Researchers gen-
erally agree that hantaviruses have co-evolved with their hosts over the course of 
several hundreds of thousands to millions of years [ 46 ]. Phylogenetic trees visualize 
that most hantaviruses clearly group according to their mammalian hosts (Fig.  10.7 ) 
[ 47 ]. Rodent-borne hantaviruses form two basic lineages, Old World and New 
World, which primarily refl ect the geographic distribution of their rodent hosts. 
Signifi cant human pathogens among the Old World viruses include Hantaan, Seoul, 
Puumala, and Dobrava-Belgrade viruses, which cause HFRS. Hantaan virus, named 
after the Hantaan River in Korea, is the prototype hantavirus and was fi rst isolated 
from the striped fi eld mouse ( Apodemus agrarius ) in 1976 [ 48 ]. After this discov-
ery, other related viruses were characterized and classifi ed including Puumala virus 
from the bank vole ( Myodes glareolus ) [ 49 ], Seoul virus from brown and roof rats 
( Rattus norvegicus  and  R. rattus ) [ 50 ], and Dobrava-Belgrade virus from the yellow- 
necked fi eld mouse ( Apodemus fl avicollis ) [ 51 ].

    Hantaviruses were fi rst recognized in the New World in 1982 (Prospect Hill 
virus) and then again in 1993 when Sin Nombre virus was identifi ed as the causative 
agent of an outbreak of acute respiratory distress, today called hantavirus  (cardio-)
pulmonary syndrome (HCPS), in the Four Corners area of the US Southwest [ 52 ]. 
Sin Nombre virus (Fig.  10.8 ) was ultimately isolated from North American deer-
mice ( Peromyscus maniculatus ), which were confi rmed as the primary rodent reser-
voirs for this hantavirus [ 53 ]. Since the fi rst detection of this Sin Nombre virus in 

  Fig. 10.6     Hyalomma 
marginatum rufi pes  tick, a 
known vector of Crimean- 
Congo hemorrhagic fever. 
This specimen was collected 
from Kenya and has the 
characteristic banded 
coloration pattern on the legs, 
typical of  Hyalomma  ticks 
(courtesy of Alan R. Walker, 
obtained at   http://en.
wikipedia.org/wiki/Ticks_of_
domestic_animals     [accessed 
Feb 26, 2014])       
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  Fig. 10.7    Phylogenetic tree based on the coding sequence of the S segments of hantavirus genomes 
showing coevolution with their mammalian reservoir hosts. Image modifi ed from Guo et al. [ 47 ]       
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the USA, numerous additional hantaviruses have been discovered throughout the 
Americas, some of which (e.g., Andes virus) are clearly pathogenic to humans and 
cause HCPS [ 54 ].  

 Thottapalayam virus was isolated from an Asian house shrew in India in 1964 
[ 55 ], but was not classifi ed as a hantavirus until 1989 [ 56 ]. Since 2006, at least 26 
new hantaviruses have been identifi ed from eulipotyphla [ 8 ,  57 ]. In addition, more 
recently, hantaviruses have been identifi ed in bats from diverse geographic loca-
tions, including Africa [ 58 ,  59 ] and Asia [ 47 ,  60 ]. Until now, none of the 
 non-rodent- borne hantaviruses has been associated with disease.  

6.4     Phleboviruses 

 The genus  Phlebovirus  includes ≈24 species and ≈115 viruses (Table  10.7 ) that can 
be classifi ed based on their antigenic similarities, arthropod vectors, and the pres-
ence of an open reading frame in M segments coding for a non-structural protein. 
Phleboviruses are transmitted by arthropod vectors, namely, sandfl ies, mosquitoes, 
biting midges of the  Culicoides  genus, or ticks [ 8 ]. Infection of the vector is fre-
quently persistent and lifelong. Within the vectors, the viruses multiply and spread 
transovarially (i.e., vertical transmission) and venereally (i.e., horizontal transmis-
sion) [ 61 – 63 ]. Generally, phleboviruses are specifi c with regard to arthropod vectors 
and vertebrate hosts. However, some phleboviruses infect multiple vectors, with 

  Fig. 10.8    Transmission electron micrograph showing the ultrastructure of virions of the hantavirus 
Sin Nombre virus (courtesy of CDC/Brian W.J. Mahy and Luanne H. Elliott, obtained from CDC’s 
Public Health Image Library at   http://phil.cdc.gov/phil/home.asp     [accessed Feb 11, 2014])       
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   Table 10.7    Viruses in the genus  Phlebovirus    

 Virus species (in italics) and their 
member viruses  Vector  Distribution  Disease in humans 

 “ Aguacate virus ” a  
 Aguacate virus (AGUV)  Sandfl ies  South America  – 
 Armero virus (ARMV)  Sandfl ies  South America  – 
 Durania virus (DURV)  Sandfl ies  South America  – 
 Ixcanal virus (IXCV)  Sandfl ies  South America  – 

 “ Bhanja virus ” 
 Bhanja virus (BHAV)  Ticks  Eurasia, Africa  Encephalitis, febrile 

illness 
 Forécariah virus (FORV)  Ticks  Africa  – 
 Heartland virus (HRTV)  Ticks  North America  Febrile illness 
 Hunter Island group virus (HIGV)  Ticks  Australia  – 
 Kisemayo virus (KISV)  Ticks  Africa  – 
 Lone Star virus (LSV)  Ticks  North America  – 
 Malsoor virus  ND  Asia  – 
 Palma virus (PALV)  Ticks  Europe  – 
 Razdan virus (RAZV)  Ticks  Asia  – 
 Severe fever with thrombocytopenia 
virus (SFTSV) 

 Ticks  Asia  Febrile illness, 
hemorrhagic fever 

  Bujaru virus  
 Bujaru virus (BUJV)  ND  South America  – 
 Munguba virus (MUNV)  Sandfl ies  South America  – 

  Candiru virus  
 Alenquer virus (ALEV)  ND  South America  Febrile illness 
 Ariquemes virus (ARQV)  Sandfl ies  South America  – 
 Candiru virus (CDUV)  ND  South America  Febrile illness 
 E(s)charate virus (ESVC)  ND  South America  Febrile illness 
 Itaituba virus (ITAV)  ND  South America  – 
 Jacunda virus (JCNV)  ND  South America  – 
 Maldonado virus (MLOV)  ND  South America  Febrile illness 
 Morumbi virus (MRMBV)  ND  South America  Febrile illness 
 Mucura virus (MCRV)  Mosquitoes  South America  – 
 Nique virus (NIQV)  Sandfl ies  South America  – 
 Oriximiná virus (ORXV)  Sandfl ies  South America  – 
 Serra Norte virus (SRNV)  ND  South America  Febrile illness 
 Turuna virus (TUAV)  Sandfl ies  South America  – 

  Chilibre virus  
 Cacao virus (CACV)  Sandfl ies  South America  – 
 Chilibre (CHIV)  Sandfl ies  South America  – 

  Frijoles virus  
 Frijoles virus (FRIV)  Sandfl ies  South America  – 
 Joa virus (JOAV)  Sandfl ies  South America  – 

(continued)
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Table 10.7 (continued)

 Virus species (in italics) and their 
member viruses  Vector  Distribution  Disease in humans 

 “ Grand Arbaud virus ” 
 Grand Arbaud virus (GAV)  Ticks  Europe  – 

 “ Icoaraci virus ” 
 Belterra virus (BELTV)  ND  South America  – 
 Icoaraci virus (ICOV)  Mosquitoes, 

sandfl ies 
 South America  – 

 “ Karimabad virus ” 
 Gabek Forest virus (GFV)  Sandfl ies  Africa  – 
 Karimabad virus  Sandfl ies  Asia  – 

 “ Manawa virus ” 
 Manawa virus (MWAV)  Ticks  Asia  – 

 “ Murre virus ” 
 Murre virus (MURV)  ND  North America  – 
 RML-105-105455 virus (RMLV)  Ticks  North America  – 
 Sunday Canyon virus  Ticks  North America  – 

 “ Precarious Point virus ” 
 Catch-me-cave virus  Ticks  Australia  – 
 Precarious Point virus (PPV)  Ticks  Australia  – 

 “ Provencia virus ” 
 Provencia virus  Sandfl ies  Europe  – 

  Punta Toro virus  
 Buenaventura virus (BUEV)  Sandfl ies  South America  – 
 Punta Toro virus (PTV)  Sandfl ies  South America  Febrile illness 

  Rift Valley fever virus  
 Rift Valley fever virus (RVFV)  Mosquitoes  Africa, Asia  Encephalitis, febrile 

illness, hemorrhagic 
fever 

  Salehabad virus  
 Adria virus (ADRV)  Sandfl ies  Europe  – 
 Arbia virus (ARBV)  Sandfl ies  Europe  – 
 Arumowot virus (AMTV)  Mosquitoes  Africa  – 
 Odrenisrou virus (ODRV)  Mosquitoes  Africa  – 
 Olbia virus  Sandfl ies  Europe  – 
 Salehabad virus (SALV)  Sandfl ies  Asia  – 

  Sandfl y fever Naples virus  
 Fermo virus  Sandfl ies  Europe  – 
 Gordil virus  ND  Africa  – 
 Granada virus (GRV)  ND  Europe  – 
 Massila virus  Sandfl ies  Europe  – 
 Punique virus (PUNV)  Sandfl ies  Africa  – 
 Saint-Floris virus (SAFV)  ND  Africa  – 
 Sandfl y fever Naples virus (SFNV)  Sandfl ies  Asia  Febrile illness 

(continued)
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Table 10.7 (continued)

 Virus species (in italics) and their 
member viruses  Vector  Distribution  Disease in humans 

 Tehran virus (THEV)  Sandfl ies  Asia  – 
 Toscana virus (TOSV)  Sandfl ies  Eurasia  Febrile illness, 

meningoencephalitis 
 “ Sandfl y fever Sicilian virus ” 

 Chagres virus (CHGV)  Sandfl ies  South America  Febrile illness 
 Chios virus  ND  Europe  Encephalitis 
 Corfou virus (CFUV)  Sandfl ies  Europe  – 
 Sandfl y fever Cyprus virus  Sandfl ies  Eurasia  Febrile illness 
 Sandfl y fever Sicilian virus (SFSV)  Sandfl ies  Eurasia  Febrile illness 
 Sandfl y fever Turkey virus  Sandfl ies  Asia  Febrile illness 

  Uukuniemi virus  
 Chizé virus (CHZV)  Ticks  Europe  – 
 EgAN 1825-61 virus  ND  Africa  – 
 Fin V 707 virus  Ticks  Europe  – 
 Khasan virus (KHAV)  Ticks  Asia  – 
 Oceanside virus (OCV)  Ticks  North America  – 
 Ponteves virus (PTVV)  Ticks  Europe  – 
 Rukutama virus (RUKV)  Ticks  Europe  – 
 St. Abbs Head virus (SAHV)  Ticks  Europe  – 
 Tunis virus (TUNV)  Ticks  Africa  – 
 Uukuniemi virus (UUKV)  Ticks  Eurasia  Febrile illness 
 Zaliv Terpenyia virus (ZTV)  Ticks  Eurasia  – 

 Unclassifi ed 
 Ambe virus (AMBEV)  Sandfl ies  South America  – 
 American dog tick phlebovirus 
(ADTPV) 

 Ticks  North America  – 

 Anhanga virus (ANHV)  ND  South America  – 
 Arboledas virus (ADSV)  Sandfl ies  South America  – 
 Blacklegged tick phlebovirus 
(BTPV) 

 Ticks  North America  – 

 Caimito virus (CAIV)  Sandfl ies  South America  – 
 Itaporanga virus (ITPV)  Mosquitoes  South America  – 
 Komandory virus (KOMV)  Ticks  Asia  – 
 Leticia virus (LTCV)  Sandfl ies  South America  – 
 Mariquita virus (MRQV)  Sandfl ies  South America  – 
 Morolillo virus (MOLV)  ND  South America  – 
 Otter fecal phlebovirus  ND  Eurasia  – 
 Pacui virus (PACV)  Sandfl ies  South America  – 
 Phasi Chaeron-like virus (PCLV)  Flies  Asia  – 
 Phasi Chaeron virus (PhaV)  Flies  Asia  – 
 Red fox fecal phlebovirus  ND  Eurasia  – 
 Rio Grande virus (RGV)  ND  South America  – 

(continued)
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several distinct phleboviruses using the same vectors. This multivirus infection 
provides  considerable opportunity for reassortment of the genome segments and 
therefore results in the evolution of new viruses. The vertebrate hosts or reservoirs 
of most phleboviruses have not been characterized to date. However, the role of the 
amplifying hosts might be minimal or secondary in regard to the horizontal ampli-
fi cation of the viruses in vectors [ 64 ].

   Phleboviruses occupy broad geographic and ecologic niches, defi ned by the 
 distribution, host competency, and biological behavior of their vectors. 
Phleboviruses are endemic in Europe, Africa, Central Asia, and the Americas, 
and have even been found on a subantarctic island [ 65 ,  66 ]. There is considerable 
evidence that phlebovirus habitats, especially for sandfl y-borne viruses and Rift 
Valley fever virus, are expanding, possibly due to climate change and thereby 
changing ranges of vectors [ 64 ,  67 ]. 

 Sandfl y-borne phleboviruses are transmitted by the sandfl ies in the family 
 Psychodidae , which are present in the warm zones of Asia, Africa, Australia, 
Southern Europe, and the Americas [ 68 ]. In the Old World (Figs.  10.9  and  10.10 ), 
the most important human pathogens are sandfl y fever Sicilian virus (SFSV), 
sandfl y fever Naples virus (SFNV), and Toscana virus (TOSV), all of which are 

Table 10.7 (continued)

 Virus species (in italics) and their 
member viruses  Vector  Distribution  Disease in humans 

 Salanga virus  ND  Africa  – 
 Salobo virus (SBOV)  ND  South America  – 
 Tapara virus (TAPV)  Sandfl ies  South America  – 
 Uriurana virus (URIV)  Sandfl ies  South America  – 
 Urucuri virus (URUV)  ND  South America  – 

   ND  not determined 
  a Viruses in quotation marks represent proposed species  

  Fig. 10.9     Phlebotomus 
papatasi  sandfl y, a known 
vector of sandfl y fever Naples 
and sandfl y fever Sicilian 
viruses, taking a blood meal 
(photo courtesy of CDC/
James Gathany, obtained 
from CDC’s Public Health 
Image Library at   http://phil.
cdc.gov/phil/home.asp     
[accessed March 18, 2014])       
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transmitted by  Phlebotomus  sandfl ies and cause febrile disease [ 64 ]. The risk for 
phlebovirus exposure via sandfl ies is high in populations residing in regions south 
and east of the Mediterranean Sea [ 64 ]. Little is known about the epidemiology of 
sandfl y-borne phleboviruses of the New World that are transmitted by  Lutzomyia  
sandfl ies. Several viruses, such as Alenquer, Candiru, Chagres, E(s)charate, 
Morumbi, Punta Toro, and Serra Norte viruses, were isolated from humans with 
clinical febrile disease in Brazil, Panama, Columbia, Peru, and regions of northern 
South America. The phleboviral diseases of tropical America are probably associated 
with rodents living in forests that may act as amplifying hosts [ 69 ,  70 ].   

 Transmission of sandfl y-borne phleboviruses to susceptible humans and animals 
occurs during the blood meal of female sandfl ies, which are the primary reservoirs for 
these viruses [ 64 ,  65 ]. Vertical and horizontal transmissions, demonstrated experi-
mentally and in natural habitats, are contributing mechanisms that assure long-term 
maintenance of phleboviruses in these vectors [ 71 ]; however, the exact role and 
effi ciency of these mechanisms in the transmission cycles of various phleboviruses 
have not been fully explored. Researchers generally agree that humans or other large 
vertebrates are dead-end hosts that do not participate in the natural virus transmission 
cycle. Horizontal transmission among infected vertebrates does not occur. Toscana 
virus was isolated from a Kuhl’s pipistrelle ( Pipistrellus kuhli ) in Italy [ 72 ], but the 

  Fig. 10.10    Transmission 
electron micrograph of 
virions of the phlebovirus 
sandfl y fever Turkey virus 
(50,000× magnifi cation, 
courtesy of Dr. Stefan Frey, 
Bundeswehr Institute of 
Microbiology, Munich, 
Germany)       
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role of bats in virus circulation remains clear. Direct aerosol or parenteral transmission 
of sandfl y-borne phleboviruses has not been demonstrated. 

 Rift Valley fever virus (RVFV) is the best characterized mosquito-borne phlebo-
virus. RVFV is the causative agent of Rift Valley fever (RVF), an acute disease of 
domestic ruminants characterized by deaths of newborn animals and abortion in 
pregnant sheep, goats, and cattle. RVF was initially described in British Kenya in 
1931 [ 73 ]. The disease is endemic in sub-Saharan Africa and has caused major 
outbreaks in several African countries including Egypt, Kenya, Madagascar, 
Mauritania, Tanzania, Senegal, Somalia, South Africa, and Sudan [ 74 ,  75 ]. The larg-
est human epidemic occurred in Egypt in 1977–1978, when there were an estimated 
200,000 human infections, with some 18,000 cases of illness and 600 deaths. In 
2000, an outbreak occurred in Saudi Arabia and Yemen, the fi rst outbreak occurring 
outside of Africa. This outbreak raises concern that the disease could spread further 
into Asia or Europe, or even to the Western Hemisphere where susceptible mosqui-
toes may be present [ 76 ,  77 ]. In its enzootic regions, RVFV persists in the environ-
ment through vertical transmission in mosquitoes and horizontal transmission by 
mosquitoes among domestic and wild herbivores, including cattle, buffalo, sheep, 
and goats. The principal hosts for RVFV have not been identifi ed but presumably 
involve native ungulates and rodents [ 76 ,  78 ]. Bats can also be infected experimen-
tally [ 79 ]. RVFV may replicate in a number of potential vectors, including ticks and 
a variety of fl ies [ 80 – 82 ]. However, various mosquitoes, including  Aedes  and  Culex  
mosquitoes, are the main arthropod vectors in the natural environment [ 77 ]. RVFV is 
transmitted to vertebrates by the bites of infected mosquitoes or by direct contact 
with infected tissues, blood, body fl uids, and fomites, particularly if associated with 
abortions. Aborted materials and placental membranes contain high numbers of viri-
ons, which can either contaminate the local environment or infect animals or humans 
in close contact. In vitro experiments have described the relatively long- term persis-
tence of RVFV in the environment [ 77 ,  83 ]. Because of this persistence and the 
potential for aerosol transmission, biosafety level 3/4 laboratory conditions are rec-
ommended for handling the virus. Due to habitat expansion of competent vectors, 
increases in live animal trade, and impact of climatic and environmental changes, 
the risk of an introduction of RVFV into naive zones and preparedness for a proba-
ble emergence have been considered by several national and international agencies 
[ 77 ,  84 ]. 

 Tick-borne phleboviruses [ 8 ] are transmitted via competent hematophagous hard 
(ixodid) or soft (argasid) ticks to various warm-blooded vertebrates [ 51 ]. Uukuniemi 
virus (UUKV) is the prototype tick-borne phlebovirus in the Old World and was 
originally isolated from a pool of  Ixodes ricinus  ticks collected in southern Finland 
[ 85 ]. Subsequently, UUKV was detected in Scandinavia and central and Eastern 
Europe and from Azerbaijan in Central Asia. Vertebrate hosts for UUKV are forest 
rodents (e.g., bank voles) and ground-feeding passerine birds [ 86 ]. Serological sur-
veys suggest that humans have been exposed to UUKV without serious conse-
quences. In fact, other than UUKV, which has been associated with a self-limiting 
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acute febrile disease in individuals from southern Russia, no human illness has been 
reported with the other Uukuniemi group viruses [ 86 ,  87 ]. 

 Bhanja virus (BHAV) is another tick-borne phlebovirus that was initially isolated 
from  Haemaphysalis intermedia  ticks collected from a paralyzed goat in India. 
BHAV has subsequently been isolated in Europe and Africa from ticks of several 
other species, domestic animals, and humans, and has been associated with febrile 
disease in domestic animals (sheep, goats, and cows) and meningoencephalitis in 
humans [ 86 ]. 

 Novel tick-borne phleboviruses causing disease in humans have recently 
emerged in China and the USA. These include severe fever with thrombocytope-
nia syndrome virus (SFTSV; also known as Huaiyangshan virus or Henan fever 
virus) and Heartland virus [ 88 – 91 ]. SFTSV causes a severe and potentially fatal 
febrile illness with thrombocytopenia and hemorrhagic manifestations. SFTSV 
mainly occurs in the rural areas of eastern, central, and northeastern China, but 
SFTSV has also been reported from South Korea and Japan [ 92 ]. SFTSV has been 
detected in  Haemaphysalis longicornis  and  Rhipicephalus microplus  ticks col-
lected in the endemic region of China [ 93 ]. A wide range of animals, including 
sheep, goats, cattle, pigs, dogs, chickens, and rodents have tested positive for anti-
bodies against SFTSV [ 94 ]. Incidence of livestock infection was signifi cantly 
higher than the incidence in poultry, humans, and rats, suggesting livestock might 
serve as amplifying hosts in human transmission. Heartland virus (HRTV) has 
been associated with human cases of severe febrile illness with thrombocytopenia 
after tick exposure in the central USA [ 88 ]. Ticks are implicated as potential vec-
tors, as the virus was recently detected in fi eld-collected  Amblyomma americanum  
ticks [ 95 ]. Preliminary investigations also suggest exposure to HRTV or an anti-
genically similar virus in cattle, sheep, goats, deer, and elk [ 96 ]. Genetically, Bhanja 
group virus and its close relatives form a clade distinct from those of SFTSV/HRTV 
and UUKV.   

7     Clinical Features of Human and Animal  Bunyaviridae  
Infections 

7.1     Orthobunyaviruses 

 At least 36 orthobunyaviruses have been associated with human disease (Table  10.4 ), 
causing a range of syndromes such as febrile illnesses, encephalitides, or hemorrhagic 
fevers. California serogroup viruses are important causes of disease among humans in 
the USA. For example, La Crosse virus (LACV) is a common cause of arboviral 
encephalitis in children in the midwestern USA, whereas Jamestown Canyon virus 
commonly causes encephalitis in adults [ 97 ]. The onset of illness is usually sudden 
and characterized by fever, headache, malaise, nausea, and vomiting. Within a few 
days, these signs and symptoms are accompanied by meningeal signs and lethargy. 
In severe forms, the disease may progress to seizures (approximately 50 %) and coma 
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(about 10 %) [ 97 ]. The case-fatality rate is approximately 1 % or less, and the total 
duration of the illness rarely exceeds 2 weeks [ 97 ]. Most infected individuals do not 
experience neurologic sequelae. Other orthobunyaviruses (e.g., Cache Valley virus) 
cause abortion or teratogenic effects in pregnant livestock.  

7.2     Nairoviruses 

 Crimean-Congo hemorrhagic fever virus (CCHFV) is the most important of the nai-
roviruses in terms of human disease [ 42 ,  43 ]. CCHFV infection can result in a severe 
hemorrhagic syndrome with a 5–30 % case-fatality rate. The course of the disease is 
divided into four phases: incubation period, prehemorrhagic phase, hemorrhagic 
phase, and convalescent phase. The length of the incubation period appears to depend 
in part on the mode of acquisition of virus. Following a tick bite, the incubation 
period ranges from 1 to 5 days, whereas it is usually 5–7 days (maximum 13 days) 
following contact with infected blood or tissues [ 98 ]. The prehemorrhagic phase 
begins as a sudden and nonspecifi c prodrome that is characterized by fever, myalgia, 
arthralgia, and lower back and abdominal pain [ 98 ]. In patients who progress to hem-
orrhagic signs, the start of the hemorrhagic phase is abrupt and begins approximately 
3–6 days following the onset of signs and symptoms. Bleeding occurs at various sites, 
including the brain and respiratory, gastrointestinal, and urogenital tracts. At this phase, 
the most common manifestation is a petechial rash of the skin, conjunctivae, and other 
mucous membranes, which progresses to large cutaneous ecchymoses. In those patients 
who succumb to infection, death occurs approximately 6–10 days after the fi rst signs 
and symptoms from irreversible shock (e.g., loss of blood pressure, elevated levels of 
proinfl ammatory cytokines, and disseminated intravascular coagulation) [ 98 ,  99 ]. 
In patients who survive CCHF, full recovery may take up to a year [ 98 ].  

7.3     Hantaviruses 

 Hantavirus infections are associated with two clinical disorders in humans: HFRS 
and HCPS. HFRS is associated with Old World viruses (e.g., Hantaan, Seoul, 
Dobrava, and Puumala viruses), whereas, HCPS is associated with New World 
viruses (e.g., Sin Nombre and Andes viruses) (Table  10.6 ). In general, the severity 
of HFRS varies with the causative agent. HFRS caused by Hantaan and Dobrava 
viruses are more severe, while disease caused by Seoul virus is more moderate and 
disease caused by Puumala virus is mild (“nephropathia epidemica”). Hantaan 
virus-associated HFRS, which fi rst came to the attention of western physicians 
 during the Korean War, is among the most severe forms of HFRS, resulting in a 
case-fatality rate of 5–15 % [ 100 ]. Classically, the clinical course of HFRS occurs 
in fi ve distinct phases. First, a febrile phase consists of headache, high fever, and 
chills. A hypotensive phase then follows during which blood platelet numbers drop 
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and petechial hemorrhage can be observed. Abdominal pain and tachycardia are 
also observed during this stage. An oliguric phase may occur next in which decreased 
urine production, proteinuria and may progress to kidney failure. Urine production 
is then increased in the diuretic phase, which can last for months before the patient 
enters the convalescent phase and recovery [ 101 ]. 

 In contrast, HCPS is a severe acute disease associated with a rapid onset of respi-
ratory failure and cardiogenic shock [ 102 ]. HCPS bears some resemblance to HFRS 
except that the lungs are targeted for capillary leakage, instead of the kidneys [ 101 ]. 
As with HFRS, the clinical presentation and case-fatality rate depends on the etio-
logical hantavirus [ 101 ]. The onset of HCPS in the Americas is generally character-
ized by nonspecifi c symptoms such as fever, myalgia, cough, gastrointestinal 
symptoms, chills, and headache. HCPS evolves rapidly (1–3 days) to a lung capil-
lary leak syndrome, resulting in respiratory distress, followed by respiratory failure 
and then cardiogenic shock. These clinical signs are responsible for the majority of 
deaths (case-fatality rate up to 50 %) [ 100 ]. 

 Although in general the Old World hantaviruses target the kidneys (resulting in 
HFRS) and New World hantaviruses target the lungs and heart (resulting in HCPS), 
this distinction is far from absolute. Indeed, controversy exists among hantavirolo-
gists whether the terms HFRS and HCPS should be abandoned in favor of the more 
generic single designation, “hantavirus fever” [ 103 ]. In the last few years, cases of 
hantavirus infection with divergent symptomatology have been reported. For exam-
ple, cases of Puumala virus infection with pulmonary involvement were observed in 
Europe, and acute renal failure has been recognized in patients infected with New 
World hantaviruses [ 104 ,  105 ]. Similarly, in a recent study in China, investigators 
examined the clinical characteristics and outcome of 48 patients with HFRS who 
also had acute respiratory distress syndrome [ 106 ]. Patients in this study were in 
critical condition, with 21 succumbing to the disease (43.8 % case-fatality rate).  

7.4     Phleboviruses 

 The best-known clinical condition associated with phleboviruses is a febrile illness 
known as sandfl y fever (also known as phlebotomus, papatacci, or 3-day fever in the 
Old World). Sandfl y fever is prevalent in the countries in the Mediterranean Basin, 
Northern Africa, and parts of Central, Western, and Southern Asia [ 65 ]. Cases and 
outbreaks of sandfl y fever still occur in non-immune individuals in endemic regions 
[ 107 ,  108 ]. Sandfl y fever has also been described as an important travel-related 
infection, and several cases of imported sandfl y fever have been reported in patients 
following visits to endemic regions [ 107 ,  109 ]. Sandfl y fever is characterized by 
high fever, headache, retroorbital pain, photophobia, generalized aches, malaise, 
and chills. Abdominal pain, discomfort, diarrhea, or constipation may also occur. 
The duration of fever is usually 2–4 days, but may be extended in some cases. 
Following the febrile stage, the affected patients frequently suffer from fatigue and 
weakness. Convalescence may require a few days to several weeks and can be 
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incapacitating. The prognosis is favorable without any complications, sequelae, or 
lethality. In infected individuals, viral replication is controlled by the immune 
response. The immunity to sandfl y fever phleboviruses is specifi c to the virus, and 
neutralizing antibodies produced during exposure are suffi cient to suppress the 
occurence of symptoms upon rechallenge with homotypic agent [ 110 ,  111 ]. In the 
Old World, phleboviruses responsible for sandfl y fever are sandfl y fever Sicilian 
virus (SFSV) and sandfl y fever Naples Virus (SFNV) [ 64 ,  110 ]. Regional SFSV 
variants, sandfl y fever Cyprus virus (SFCV) and sandfl y fever Turkey virus (SFTV), 
are also associated with the clinical picture of sandfl y fever similar to that caused by 
SFSV and SFNV, but induce more prominent gastrointestinal symptoms, including 
elevation of hepatic enzymes and thrombocytopenia, with a more emphasized post- 
infectious asthenic syndrome [ 112 – 114 ]. In the New World, primarily Alenquer, 
Chagres, Candiru, and Punta Toro viruses have been detected in individuals with 
febrile diseases [ 61 ,  70 ]. Tick-borne Uukuniemi virus has also been identifi ed in a 
limited number of cases of acute illness characterized by fever, headache, muscle 
and joint pain, facial hyperemia, and body rash [ 86 ,  87 ].

Toscana virus (TOSV), another sandfl y-borne phlebovirus, transmitted by the 
bites of  Phlebotomus perniciosus  and  P. perfi liewi  sandfl ies, is a signifi cant human 
pathogen due to its distinct neurotropism, causing central nervous system infections 
in endemic regions around the Mediterranean Sea [ 115 ]. TOSV has been pinpointed 
as a major agent of seasonal aseptic meningitis or meningoencephalitis, especially 
occurring during spring-summer months when the activity of vectors increase. 
TOSV infection is also a travel-associated infection in individuals leaving endemic 
regions [ 115 ]. Similar to the other phleboviral infections, the majority of the TOSV 
exposures result in an asymptomatic seroconversion or subclinical infection. 
Clinical manifestations in symptomatic TOSV infections are frequently character-
ized by high fever, severe headache, myalgia, and neurological symptoms of corti-
cal and/or meningeal involvement from which patients generally recover within 
7–10 days [ 64 ,  110 ,  115 ]. Central nervous system involvement in most cases is 
associated with a favorable outcome, but severe and lethal infections have also been 
reported [ 116 ]. Moreover, a variety of clinical signs and symptoms including hydro-
cephalus, impaired speech, paresis, hearing loss, diffuse intravascular coagulation, 
myositis- fasciitis, and testicular manifestations have also been reported [ 116 – 120 ]. 

 RVF is the clinical manifestation of infection with the mosquito-borne RVFV, 
affecting ruminant animals and humans. Outbreaks of RVF in ruminants are often 
recognized initially as an abortion storm in herds of pregnant animals. Sheep are the 
most susceptible mammals, while cattle, goats, and camels demonstrate variations 
in susceptibility. Forty to 100 % of pregnant RVFV-infected sheep abort, and the 
fetuses often have malformations [ 76 ]. Newborn lambs suffer from an acute disease, 
characterized by necrotic hepatitis with 95–100 % lethality. Some breeds of adult 
sheep also exhibit hemorrhagic signs, similar to those seen in humans. In humans, 
exposure to RVFV frequently remains asymptomatic. In those with clinical signs, 
the disease presents with an infl uenza-like febrile disease without complications. 
However, severe manifestations such as hepatitis, retinitis, encephalitis, and hemor-
rhagic disease have been observed in a small number of cases with RVF, with the 
overall case-fatality rate estimated to be between 0.5 and 2 % [ 77 ,  121 ]. 
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 Severe fever with thrombocytopenia syndrome (SFTS) is a recently described 
human clinical disease caused by the emerging tick-borne phlebovirus SFTSV [ 90 ]. 
The disease is characterized by high fever, fatigue, anorexia, vomiting, and diarrhea, 
as well as laboratory fi ndings of thrombocytopenia, leukocytopenia, and elevation 
of certain serum enzymes, including alanine aminotransferase, aspartate amino-
transferase, lactate dehydrogenase, creatine phosphokinase, and creatine kinase. 
The symptoms of SFTS frequently resolve after a week. However, in some cases, 
the patient’s condition progresses to multiorgan dysfunction, disseminated intravas-
cular coagulation, shock, and/or acute respiratory distress syndrome, with neuro-
logic and hemorrhagic manifestations [ 122 ,  123 ]. Case-fatality rates as high as 
30 % have been reported [ 124 ]. HRTV infections present similar to SFTS. However, 
the prognosis is favorable, with no respiratory or kidney involvement or coagulation 
abnormalities [ 88 ].   

8     General Features of Plant-Infecting Tospoviruses 

 Currently, 11 species are included in the genus  Tospovirus , each of which has one 
member virus. Many other tospoviruses have yet to be classifi ed into species 
(Table  10.8 ) [ 8 ]. Thrips of numerous species (Fig.  10.11 ) of the genera  Frankliniella , 
 Thrips ,  Scirtothrips , and  Ceratothripoides  have been reported to transmit tospovi-
ruses to a wide variety of plant species [ 8 ]. Transmission can also occur by mechan-
ical means via infected plant sap. Tomato spotted wilt virus (TSWV) is the prototype 
tospovirus, and, contrary to its name, has a broad host range with susceptible plants 
belonging to more than 925 species of 70 botanical families [ 8 ]. Spotted wilt dis-
ease of tomato was fi rst described in 1915 in Australia. The disease was later shown 
to be transmitted by thrips and caused by TSWV in 1930 [ 125 ]. The worldwide 
dispersal in the 1980s of the western fl ower thrip ( Frankliniella occidentalis ), a 
major vector of TSWV, led to a reemergence of the disease. By 1994, worldwide 
losses of tomato were estimated to be in excess of US $1 billion annually [ 126 ]. In 
addition to tomatoes, other economically important plants affected by TSWV 
include peppers, lettuce, peanuts, and chrysanthemums [ 127 ]. Tospoviruses cause 
variable signs, including necrotic or chlorotic rings and fl ecking on leaves, stems 
and fruits, with early infections leading to one-sided growth, drooping or deformed 
leaves, wilting, stunting, and death [ 127 ] (Fig.  10.12 ). Late in TSWV infection, 
tomatoes produce unmarketable fruit with necrotic ringspots that often appear only 
when the fruit reaches full color (Fig.  10.13 ).

      Molecular and structural studies, mostly performed on TSWV, have shown many 
similarities with animal-infecting bunyaviruses, including particle morphology, 
genomic organization, and replication and transcription cycles [ 128 ]. The presence 
of an envelope membrane is relatively unique among plant viruses, and is only 
found on tospovirions and plant-adapted rhabdovirions [ 128 ]. In contrast to the 
many similarities tospoviruses have with animal-infecting bunyaviruses, some 
interesting differences refl ect tospovirus adaptation to plants. Unlike all other 
 bunyaviruses, the NSm protein of tospoviruses is translated using a genomic ambi-
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   Table 10.8    Viruses in the genus  Tospovirus    

  Virus species  
 Member viruses  Vector  Distribution 

  Groundnut bud necrosis virus  
 Groundnut bud necrosis 
virus (GBNV) a  

 Thrips:  Frankliniella schultzei ,  Scirtothrips 
dorsalis , Thrips palmi  

 Asia 

  Groundnut ringspot virus  
 Groundnut ringspot virus 
(GRSV) 

 Thrips:  Frankliniella gemina ,  Frankliniella 
intonsa ,  Frankliniella occidentalis , 
 Frankliniella schultzei  

 Africa, North 
America, South 
America 

  Groundnut yellow spot virus  
 Groundnut yellow spot 
virus (GYSV) b  

 Thrips:  Scirtothrips dorsalis   Asia 

  Impatiens necrotic spot virus  
 Impatiens necrotic spot 
virus (INSV) 

 Thrips:  Frankliniella fusca ,  Frankliniella 
intonsa ,  Frankliniella occidentalis , 
 Frankliniella schultzei  

 Africa, Asia, 
Australia, Europe, 
North America, 
South America 

  Polygonum ringspot virus  
 Polygonum ringspot virus 
(PolRSV) 

 Thrips:  Dictyothrips betae   Europe 

  Tomato chlorotic spot virus  
 Tomato chlorotic spot 
virus (TCSV) 

 Thrips:  Frankliniella intonsa ,  Frankliniella 
occidentalis ,  Frankliniella schultzei  

 Puerto Rico, 
South America 

  Tomato spotted wilt virus  
 Tomato spotted wilt virus 
(TSWV) 

 Thrips:  Frankliniella bispinosa , 
 Frankliniella cephalica ,  Frankliniella fusca , 
 Frankliniella gemina ,  Frankliniella intonsa , 
 Frankliniella occidentalis ,  Frankliniella 
schultzei ,  Thrips palmi, Thrips setosus , 
 Thrips tabaci  

 Africa, Asia, 
Australia, Europe, 
North America, 
South America 

  Watermelon silver mottle virus  
 Watermelon silver mottle 
virus (WSMoV) 

 Thrips:  Thrips palmi   Asia 

  Zucchini lethal chlorosis virus  
 Zucchini lethal chlorosis 
virus (ZLCV) 

 Thrips:  Frankliniella zucchini   South America 

 Unclassifi ed 
 Alstroemeria necrotic 
streak virus (ANSV) 

 Thrips:  Frankliniella occidentalis   South America 

 Bean necrotic mosaic 
virus (BeNMV) 

 ND  Central America, 
South America 

 Calla lily chlorotic spot 
virus (CCSV) 

 Thrips:  Thrips palmi   Asia 

 Capsicum chlorosis virus 
(CaCV) c  

 Thrips:  Ceratothripoides claratris , 
 Frankliniella schultzei ,  Thrips palmi  

 Asia, Australia 

 Chrysanthemum stem 
necrosis virus (CSNV) 

 Thrips:  Frankliniella gemina ,  Frankliniella 
occidentalis ,  Frankliniella schultzei  

 Asia, Europe, 
South America 

(continued)
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sense strategy [ 129 ] (Fig.  10.2 ). Also, the NSm protein of tospoviruses is the only 
NSm in the family for which a well-defi ned function is known. Unlike the animal-
infecting bunyaviruses, tospovirus particles accumulate in large vesicles within the 
cell and are not secreted from plant cells. Spread of the viruses to neighboring plants 
only occurs after larval-stage thrips have acquired the virus after feeding on infected 
plants [ 130 ]. After a latency period, thrips can transmit the tospovirus during the 
adult stage. Furthermore, due to the presence of a rigid cell wall in plants, plant 
viruses can only spread to neighboring cells through channels connecting the plant 

Table 10.8 (continued)

  Virus species  
 Member viruses  Vector  Distribution 

 Hippeastrum chlorotic 
ringspot virus (HCRV) 

 ND  Asia 

 Iris yellow spot virus 
(IYSV) 

 Thrips:  Frankliniella fusca ,  Thrips tabaci   Africa, Asia, 
Australia, Europe, 
Hawaii, North 
America, South 
America, 

 Lisianthus necrotic 
ringspot virus (LNRV) 

 ND  Asia 

 Melon severe mosaic 
virus (MeSMV) 

 ND  North America, 
South America 

 Melon yellow spot virus 
(MYSV) d  

 Thrips:  Thrips palmi   Asia 

 Mulberry vein banding 
virus (MuVBV) 

 ND  Asia 

 Peanut chlorotic fan-spot 
virus (PCFV) e  

 Thrips:  Scirtothrips dorsalis   Asia, South 
America 

 Pepper necrotic spot virus 
(PNSV) f  

 ND  South America 

 Soybean vein necrosis-
associated virus (SVNaV) 

 ND  North America 

 Tomato necrotic ringspot 
virus (TNRV) 

 Thrips:  Ceratothripoides claratris ,  Thrips 
palmi  

 Thailand 

 Tomato yellow (fruit) ring 
virus (TYRV) 

 Thrips:  Thrips tabaci   Asia, Africa 

 Tomato zonate spot virus 
(TZSV) 

 Thrips:  Frankliniella occidentalis ,  Thrips 
palmi ,  Thrips tabaci  

 Asia 

 Watermelon bud necrosis 
virus (WBNV) 

  Thrips palmi   Asia 

   ND  not determined 
  a Also known as peanut bud necrosis virus (PDNV) 
  b Also known as peanut yellow spot virus (PYSV) 
  c Also known as Gloxinia tospovirus, tomato necrosis virus (TNRV), or Thailand tomato tospovirus 
  d Also known as Physalis severe mottle virus (PhysSMV) 
  e Also known as groundnut chlorotic fan-spot virus (GCFSV) 
  f Also known as pepper Peruvian necrotic virus  
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  Fig. 10.11    A thrip on a 
person’s fi nger. Thrips are 
small insects with a 
distinctive cigar-shaped body. 
They are the primary vectors 
of plant diseases caused by 
tospoviruses (courtesy of 
OpenCage, obtained at   http://
en.wikipedia.org/wiki/Thrips     
[accessed March 18, 2014])       

  Fig. 10.12    Pepper plant infected with tomato spotted wilt virus showing the initial development 
of necrotic spots on the leaves (courtesy of Carlos Gonzalez, obtained at   http://en.wikipedia.org/
wiki/Tospovirus     [accessed March 18, 2014])       

  Fig. 10.13    Tomato infected 
with tomato spotted wilt virus 
showing the development of 
necrotic ringspots on the fruit 
(obtained at   http://en.
wikipedia.org/wiki/
Tospovirus     [accessed March 
18, 2014])       
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cells called plasmodesmata. As TSWV and most other plant viruses have a diameter 
of 80–120 nm, these virus cannot pass through the plasmodesmata that have a 
diameter in the range of only 5 nm. Thus, to facilitate movement, many plant viruses 
have adapted and encode cell-to-cell movement proteins (MPs) that modify plasmo-
desmata to allow passage of macromolecules, including virions [ 131 ]. The NSm 
protein of TSWV has been identifi ed as the cell-to-cell MP that allows virus to 
move between plant cells [ 132 – 134 ].  

9     Unclassifi ed Bunyaviruses 

 At least 28 viruses, mostly isolated from mosquitoes or ticks and with unknown 
pathogenic potential for humans, are possible bunyaviruses, but currently remain 
unclassifi ed (Table  10.9 ).

   Table 10.9    Unclassifi ed Bunyaviruses   

 Virus  Host  Distribution  Disease in humans 

 Antequera virus (ANTV)  Mosquitoes  South America  Unknown 
 Bangui virus (BGIV)  Humans?  Africa  Fever/rash 
 Barranqueras virus (BQSV)  Mosquitoes  South America  Unknown 
 Belem virus (BLMV)  Birds  South America  Unknown 
 Belmont virus (BELV)  Mosquitoes  Australia  Unknown 
 Bobaya virus (BOBV)  Birds  Africa  Unknown 
 Caddo Canyon virus (CDCV)  Ticks  North America  Unknown 
 Chim virus (CHIMV)  Ticks  Asia  Unknown 
 Cumutu virus (CUMV)  Mosquitoes  North America  Unknown 
 Gan Gan virus (GGV)  Mosquitoes  Australia  Arthritis/rash 
 Gouléako virus (GOLV)  Mosquitoes  Africa  Unknown 
 Herbert virus (HEBV)  Mosquitoes  Africa  Unknown 
 Hissar virus  Ticks  Asia  Unknown 
 Kaisodi virus (KSOV)  Ticks  Asia  Unknown 
 KF298274 virus  Mosquitoes  Europe  Unknown 
 Kibale virus (KIBV)  Mosquitoes  Africa  Unknown 
 Kigluaik phantom virus (KIGV)  Biting midges  North America  Unknown 
 Lanjan virus (LJNV)  Ticks  Asia  Unknown 
 Mapputta virus (MAPV)  Mosquitoes  Australia  Unknown 
 Maprik virus (MPKV)  Mosquitoes  Australia  Unknown 
 Nome phantom virus (NOMV)  Biting midges  North America  Unknown 
 Okola virus (OKOV)  Mosquitoes  Africa  Unknown 
 Pacora virus (PCAV)  Mosquitoes  North America  Unknown 
 Para virus (PARAV)  Mosquitoes  South America  Unknown 
 Resistencia virus (RTAV)  Mosquitoes  South America  Unknown 

(continued)
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1     Introduction 

 The term “viral hemorrhagic fever” (VHFs) is clearly inadequate to fully encapsulate 
a single spectrum of either ecologically, pathologically, or clinically defi ned syn-
dromes. The term becomes most inappropriate in a nonhuman context. Some animals 
are poikilothermic (i.e., cold-blooded) and are incapable of producing a fever. Other 
animals might only hemorrhage as a minor occurrence in the spectrum of presenting 
clinical signs. Hemorrhage may occur only after infection with certain virus strains or 
variants (e.g., bovine viral diarrhea virus 2-associated hemorrhagic disease) or when 
a particular constellation of genomic mutations is met (e.g., feline calicivirus) [ 1 ]. 

 Given that none of the viruses generally considered to be causing VHFs are 
primarily neurotropic, the fevers they induce are likely secondary to an infl amma-
tory process and not due to an infection of or primary effect on the hypothalamus 
(i.e., they are not centrally neurogenic fevers). While fever is a common fi nding in 
the originally defi ned group of VHFs (hemorrhagic fever with renal syndrome, 
Crimean–Congo hemorrhagic fever, and Omsk hemorrhagic fever), it is reasonable 
to suppose that fever is secondary to the underlying infectious process(es) and not a 
proximate cause of clinical disease. 

 Assuming that people generally consider hemorrhage (and not fever) to be the 
defi ning characteristic of those serious viral diseases commonly referred to as 
VHFs, we can continue to use the term for hemorrhagic viruses of poikilotherms, 
even though it is recognized as inadequate to that situation. Additionally, if we 
assume that (like humans) overt hemorrhage need not be a major part of the clinical 
spectrum of disease, we can adequately defi ne a set of serious viral diseases of animals 
that could be termed “VHFs.” 

 The set of viruses presented here meet these criteria—they cause hemorrhage, or 
metabolic and/or physiologic defi cits that could lead to hemorrhage, as a typical 
clinical sign. There are many other viruses that can cause severe hemorrhage as an 
infrequent or minor clinical sign, or cause minor hemorrhage as a signifi cant clini-
cal sign (e.g., petechiae in the brain). These “VHF-like viruses” are mentioned 
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briefl y in each of the four chapters describing VHFs of animals other than humans. 
Viruses that induce severe disruptions in fl uid balance (e.g., feline infectious perito-
nitis virus, rotaviruses) or compromise the physical barriers to fl uid loss through 
direct cellular lysis and/or immunological defi cits (e.g., in progressive vaccinia or 
eczema vaccinatum) are not included because the defi ning characteristic of virally 
induced hemorrhage is overt blood loss from the vascular system and not simply a 
tissue- barrier defi cit that leads to fl uid loss (e.g., skin barrier compromise or edema-
tous conditions). 

 Whether Čumakov’s original, geographic criteria of “natural focus infections” 
(see [ 2 ]) should be reintroduced to the discussion can be debated, but we believe 
that clinicopathological features of disease should continue to be the defi ning cri-
teria of the “VHF group.” More focused criteria, such as “only endotheliotropic 
viruses,” would exclude viruses that should clearly be considered, like the hepato-
tropic Rift valley fever virus. Combining a constellation of cellular tropisms may 
lead to a useful VHF defi nition, but would not include those viruses that induce 
defi cits in the hemostatic system, including cytokine disturbances and/or thromob-
ocyte function defi cits. Examining the embryological origin of the affected tissues 
also does not properly delineate the group of affected cellular types, as for instance 
endothelium is of mesodermal origin whereas hepatocytes are derived from endo-
derm. In the fi nal analysis, every classifi cation system has advantages and defi cits, 
as they are black-and-white distinctions applied to the wonderous and varied greys 
of Nature. 

 Having decided that we can use the term VHF to describe some diseases of animals, 
we must also briefl y examine the “animal” part of the phrase “VHFs of animals,” 
especially as it relates to human or ecological health. When considering “public 
health/one health” issues surrounding animal diseases, many authors focus exclu-
sively on their zoonotic potential, and we followed that paradigm here. However, it 
is important to remember that a broader defi nition of both public health and One 
Health issues may be more appropriate—one that considers the effect of animal 
disease on human issues other than direct or indirect infection or disease [ 3 ]. Issues 
such as food security, economic harm that can lead to depression and/or suicide [ 4 ], 
or the ecological effects of losing large grazing animals from monoculture systems 
should be considered in this larger context. For example, a rise in available plant 
matter can favor an increase in arthropod vector concentrations, which can then 
precipitate an increase in the transmission of arthropod-borne diseases of impor-
tance to humans [ 5 ]. 

 One Health issues encompass the assumptions of traditional wisdom. Quite literally, 
the proverbial “teaching a man to fi sh” is predicated on the presence of fi sh, whereas an 
epizootic depopulation due to infectious hematopoietic necrosis virus infection could 
negate the value of that knowledge. Similarly, some charitable organizations are predi-
cated upon the idea that a single animal (or small group of animals) can change the 
economic security of whole families (and perhaps whole villages) in developing 
countries. However, the social equations of such organizations (e.g., Heifer International) 
would be radically altered by a Rift Valley fever virus abortion storm that removed the 
economic benefi t of young animals for an entire season. 
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 Animal diseases can take on an importance to a population of humans that 
exceeds the personal tragedy represented by any single infection (or group of 
 infections) of individual humans. While it may be understandably “specie-ist” to 
feel the disease and loss of humans more than we feel the disease and loss of ani-
mals, we must remember that animals play a vital (and sometimes outsized) impor-
tance in human society. A focus on veterinary issues in the context of human issues 
is an important and necessary allocation of resources that is the basis for the current 
public health focus on One Health. As diseases of societal importance continue to 
emerge (or re-emerge) from natural reservoirs, many of which are mammalian spe-
cies, this focus can and should expand to meet those coming threats.  

2     Infectious Hematopoietic Necrosis Virus 

2.1     Etiologic Agent and Natural History 

2.1.1     Defi nition 

 Infectious hematopoietic necrosis virus (IHNV) is a novirhabdovirus that infects 
and causes hemorrhagic disease in salmon and trout belonging to several species. 
IHNV targets the hematopoietic tissue of the kidneys and spleen, as well as several 
other tissues and organs. The virus is endemic to the North American Pacifi c 
Northwest and has been introduced outside of this range to various countries in 
Europe and Asia by transport of infected fi sh and eggs.  

2.1.2     Etiology and Evolution 

 The disease caused by IHNV was known as Oregon sockeye virus, Sacramento 
River chinook disease, and Columbia River sockeye disease, among others, before 
the etiological agent was fully described. The suspected viral disease was fi rst 
described by Rucker et al. [ 6 ] and Watson et al. [ 7 ] in cultured sockeye salmon 
( Oncorhynchus nerka ) from Washington State, USA. The causative virus was later 
identifi ed and characterized by isolation in fi sh cell culture [ 8 – 10 ] and used experi-
mentally to reproduce the disease [ 11 ]. 

 IHNV has a linear, single-stranded negative-sense RNA genome of approximately 
11,000 nucleotides, containing six genes in the order of 3′-N-P-M-G-Nv- L-5′ that 
encode the nucleocapsid (N), phosphoprotein (P), matrix protein (M), glycoprotein 
(G), nonvirion protein (Nv), and RNA-dependent RNA polymerase (L), respectively 
[ 12 ,  13 ]. The presence of the unique nonvirion protein (Nv) gene and sequence simi-
larity with certain other fi sh rhabdoviruses such as viral hemorrhagic septicemia virus 
are characteristics of viruses of the genus  Novirhabdovirus  [ 14 ,  15 ]. IHNV particles 
are bullet-shaped and enveloped (Fig.  11.1 ) with mean measurements of 150–190 nm 
in length and diameters of 65–75 nm. Virions are sensitive to heat, acid, and ether. The 
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replicating temperature range of IHNV is 4–20 °C with an optimum of 15 °C [ 11 ], 
consistent with its presence in coldwater fi sh.  

 In the 1980s, results of studies using protein electropherotyping [ 16 ], monoclo-
nal antibodies, [ 17 – 20 ] and RNase fi ngerprinting [ 21 ] indicated that IHNV geno-
types are geographically distinct. This hypothesis was further supported by 
phylogenetic analysis of the complete G and Nv gene sequences of 12 IHNV iso-
lates [ 298 ]. The study of IHNV genetic diversity and evolution was continued by 
examining the most variable 303 nucleotide region of the G gene of 323 virus iso-
lates obtained between 1966 and 2001 from the USA and Canadian West Coast. The 
three major genogroups identifi ed occurred in different geographical areas irrespec-
tive of the host, with some overlap, and were designated L (lower), M (middle), and 
U (upper) genogroups [ 22 ]. Specifi cally, the L genogroup was found in California 
and along the Southern Oregon coast; the M genogroup was seen in Idaho (Hagerman 
Valley) and sporadically in the US portion of the Columbia River Basin; and the U 
genogroup was shown to span the national border between the USA and Canada as 
it was present in Alaska, Washington, and Oregon coasts, and the Columbia River 
Basin, including most of British Columbia, Canada. The genetic diversity among 
isolates was relatively low overall (maximum of 3.6 % nucleotide diversity), but was 

  Fig. 11.1       Transmission 
electron micrograph of 
cultured epithelioma 
papulosum cyprini epithelial 
cells (EPC) infected with 
infectious hematopoietic 
necrosis virus (IHNV). IHNV 
particles ( arrows ) are in cell 
debris. Uranyl acetate and 
lead citrate (65,000×)       
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most conserved in the U clade (no subgroups) and most diverse in the M clade, which 
has been divided into subgroups A through E [ 23 – 25 ]. Less diversity was found in 
the L group than in the M group, which was subdivided into subgroups L1 and L2 
[ 26 ]. Subsequent examination of eight IHNV isolates from sockeye salmon in 
Russia indicated they were genetically homogeneous and belonged to the U clade 
[ 27 ]. Similar genetic studies investigating several Italian, German, French, and 
Austrian IHNV isolates indicated they belonged to the M genogroup, suggesting a 
monophyletic origin for all IHNV isolated in Europe, likely originating from rain-
bow trout imported from the USA [ 28 ,  29 ]. These viruses have since evolved in 
rainbow trout farms to form a new European (E) genogroup [ 30 ,  31 ]. 

 Parallel studies with mouse monoclonal antibodies showed there was some vari-
ation in nucleoprotein epitopes that did not fully correlate with genotypic classifi ca-
tion [ 29 ]. Genotyping of Japanese IHNV indicated that fi ve isolates from 1971 to 
1982 clustered with the U genogroup, whereas fi ve others formed a new divergent 
genogroup JRt (Japanese rainbow trout) that shared a common source with the 
North American U genogroup [ 24 ]. The fi rst detection of IHNV in Japan was in 
kokanee salmon fry (land-locked sockeye salmon) at the Mori Hatchery in Hokkaido 
in 1971. Mori Hatchery received eggs from the Chitose Hatchery, where sockeye 
salmon eggs from Alaska had been received in 1969 [ 32 ,  33 ]. Additional genotyping 
of Chinese and Korean IHNV isolates indicated they were closely related to Japanese 
JRt and likely introduced from Japan in or after 1985 (Jia et al.  2013 ) and just prior 
to 1990 [ 34 ,  35 ], respectively. 

 Based on recent phylogenetic studies of novirhabdoviruses [ 36 ], IHNV and 
Hirame rhabdovirus shared a common ancestor that was sister to that of viral hem-
orrhagic septicemia virus and Snakehead rhabdovirus. However, the ancestral origin 
of all IHNV was likely the U genogroup originating from Alaska and British 
Columbia, where the virus had a long-term association with sockeye salmon. The 
virus was inadvertently disseminated to its present U clade range by transplant of 
salmonids and the early practice of feeding raw, unpasteurized sockeye salmon vis-
cera to salmon fry during the 1950s and 1960s [ 22 ]. This diversifying selective 
pressure caused the virus to jump from sockeye salmon to Chinook salmon and to a 
lesser extent to steelhead [anadromous rainbow trout (Oncorhynchus mykiss)], thus 
leading to the current range of the U clade. Further evolutionary and geographical 
divergence occurred, resulting in the L clade that infects mostly Chinook salmon 
and some steelhead populations. The U and L clades likely remained genetically 
isolated and distinct through nonoverlapping ocean migration ranges of their associ-
ated hosts. 

 The greater diversity observed in the M clade also evolved from the U clade 
viruses by adaptation to captive farmed rainbow trout. These adaptive mutations 
occurred at a higher water temperature, along with several other selective pressures 
that signifi cantly increased the replication of IHNV. In this captive population, 
reduced viral competition, reduced transmission, and temporal bottlenecks facili-
tated greater virus diversifi cation at a more rapid rate than would otherwise occur 
in other host populations [ 22 ]. Thus, M clade viruses have lost pathogenicity for 
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sockeye salmon [ 37 ]. The earliest M clade isolate available for genotyping was 
from Hagerman Valley, Idaho in 1978. IHNV epizootics in Hagerman Valley were 
fi rst reported in 1977. By 1980, the virus was endemic throughout this trout farm-
ing area [ 38 ,  39 ]. The fi rst extension of M clade IHNV to the remaining Columbia 
River Basin was reported in anadromous salmonid hatcheries from 1980 to 1982, 
most likely resulting from virus disease outbreaks upstream in Hagerman Valley. 
These occurrences have been transient and sporadic, probably because the environ-
mental adaptations of these viruses for farmed trout render them less fi t for northern 
portions of the IHNV range [ 22 ]. However, since 2007 the M genogroup viruses 
have emerged to infect steelhead trout in the Washington coastal rivers of the 
Olympic Peninsula where salmon comanagers are concerned about further geo-
graphic extension [ 40 ].  

2.1.3     Geographic Distribution and Economic Effects 

 The endemic range of IHNV is the Pacifi c Northwest of California, Oregon, 
Washington, and Columbia River Basin including Hagerman Valley, Idaho, British 
Columbia, Canada, and Alaska (Fig.  11.2 ) [ 11 ]. In 1969, transport of IHNV-infected 
fi sh or eggs to other parts of the USA (Minnesota, then South Dakota, West Virginia, 
Montana, New York, Colorado, Utah) did not establish the virus [ 41 ]. Introduction 
of the virus beyond North America occurred with more shipments of infected eggs 
or fi sh to Japan, Italy, France, Austria, Germany, Belgium, Croatia, Czech Republic, 
Iran, the Netherlands, Poland, Slovenia, Spain, Switzerland, northeast China, 
Taiwan, Korea, and Russia [ 29 ,  41 ,  42 ]. IHNV has become established in most of 
these countries with a high prevalence in major trout growing regions.  

 Infectious hematopoietic necrosis (IHN) has resulted in large losses of fi sh reared 
in freshwater and in seawater net pens, causing signifi cant negative economic 
impact to salmon and trout growers in endemic areas of the Pacifi c Northwest and 
elsewhere. The disease is listed as reportable to the World Organisation for Animal 
Health (OIE). Since the appearance of IHNV in the Columbia River Basin in 1981, 
government hatcheries destroyed well over 70 million fi sh and eggs due to IHN.
A conservative estimate of these lost revenues at that time was well over $350 
 million [ 41 ]. More currently, the rainbow trout farming industry in Hagerman Valley 
is worth approximately $70–90 million US dollars annually, with production rates 
of 18–23 million kg of fi sh per year. IHN epizootics in this industry have resulted in 
1–50 % direct loss of total annual fi sh production with an additional marketing loss 
of 1–4 % due to spinal deformities occurring in surviving fi sh [ 43 ]. Losses of juve-
nile sockeye salmon in Alaska during 1978 and 1992 resulted in conservative esti-
mated losses in adult revenues of $4.7 and $8.6 million, respectively [ 44 ]. A more 
recent outbreak of IHN in 2001–2003, affecting Atlantic salmon ( Salmo salar ) 
farms in British Columbia, caused a loss of 12 million fi sh from mortality or culling, 
with a net worth of USD$40 million in inventory representing $200 million in lost 
sales [ 45 ].  
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2.1.4     Natural History, Transmission, and Host Range 

 The principal fi sh hosts for IHNV are members of the Salmonidae. The three major 
genotypes of IHNV within the endemic range of Pacifi c Northwest and Idaho have 
a strong predilection for naturally infecting the host that each genotype has evolved 
with over time: U clade—primarily sockeye salmon with some chinook salmon and 
steelhead trout; M clade—non-anadromous rainbow trout; L clade—Chinook 
salmon and some steelhead trout (see Table  11.1 ). However, these viruses can infect 
non-preferred fi sh hosts (when provided the opportunity) under selective pressures 

  Fig. 11.2    The geographical ranges of the U, L, and M genogroups of infectious hematopoietic 
necrosis virus in the Pacifi c Northwest of North America. The  star  indicates the rainbow trout 
farming area in Hagerman Valley, Idaho. The  shaded areas  and  arrows  within two of the geno-
group ranges indicate general migrational patterns of anadromous Pacifi c salmon during ocean 
maturation (modifi ed from Kurath) [ 22 ]. The identical U clade strains existing in sockeye salmon 
on the Russian Kamchatka Peninsula (indicated by “Russian U Clade ?” in the fi gure) may extend 
the contiguous range of the U genogroup [ 27 ]       
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present during intensive fi sh culture, sometimes producing severe mortality [ 46 ]. 
However, a genogroup-specifi c virulence pattern has been demonstrated in the U 
and M clades in sockeye salmon and non-anadromous rainbow trout, expressed as 
reduced lethality in non-preferred hosts. The higher lethality in the natural fi sh host 
may involve early replication of the virus to threshold levels beyond the control of 
the host’s innate immune system [ 47 ]. Fish of certain species are completely refrac-
tory to IHNV [ 48 ], whereas others, such as larval Pacifi c herring ( Clupea pallasi ), 
are able to become transiently infected without observable signs of disease [ 49 ]. 
However, results of host susceptibility studies performed prior to the discovery of 
IHNV genotypes in 2003 may be varied due to differences in genogroup-specifi c 
virulence. For example, Arctic char ( Salvelinus alpinus ) exposure to U clade viruses 

     Table 11.1    Host range of IHNV and potential invertebrate vectors   

 Fish  Species  Fish  Species 

 Susceptible to disease 
 Sockeye salmon   Oncorhynchus nerka   Chinook salmon   O. tshawytscha  
 Kokanee salmon   O. nerka   Chum salmon   O. keta  
 Cherry salmon   O. masou masou   Biwa salmon   O. masou rhodurus  
 Amago salmon   O. masou macrostomus   Yamame trout   O. masou  
 Rainbow trout   O. mykiss   Steelhead trout   O. mykiss  
 Cutthroat trout   O. clarki   Atlantic salmon   Salmo salar  
 Brook trout   Salvelinus fontinalis   Brown trout   Salmo trutta  
 Japanese char   S. leucomaenis   Sea bream   Sparus aurata  
 Turbot   Scophthalmus maximus   Burbot a    Lota lota  
 Pike (fry 1–2 mo) a    Esox lucius  
 Limited susceptibility to disease 
 Lake trout   Salvelinus namaycush  
 Refractory to experimental infection b  
 Arctic char   Salvelinus alpinus   Arctic grayling   Thymallus arcticus  
 Pink salmon b    O. gorbuscha   Coho salmon b    O. kisutch  
 White sturgeon b    Acipenser transmontanus   Sea bass b    Morone labrax  
 Northern squawfi sh   Ptychocheilus oregonensis   Pacifi c herring b    Clupea pallasii  
 Largescale sucker   Catostomus columbianus  
 Whitefi sh b    Prosopium williamsoni  
 Lamprey   Entosphenus tridentatus  
 Other transient marine hosts a  
 Tubesnout   Aulorhynchus fl avidus   Shiner perch   Cymatogaster aggregate  
 Transient invertebrate mechanical vectors 
 Salmon leech   Piscicola salmositica   Mayfl y nymph  Callibaetis sp. 
 Parasitic copepods   Salmincola  spp., 

  Lepeophtheirus salmonis  

   a Experimental studies have been conducted with burbot by Polinski et al. [ 295 ], with pike by 
Dorson et al. [ 296 ], and other transient marine hosts by Kent et al. [ 297 ] 
  b May carry the virus transiently  
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did not result in virus infection [ 48 ], whereas another study exposing the same host 
to a rainbow trout IHNV from Idaho (most surely an M clade virus) resulted in 
lethality of up to 41 % with isolation of virus from survivors [ 50 ].

   Several researchers have pursued the hypothesis that invertebrate biological res-
ervoirs of IHNV could be important as intermittent amplifying hosts. However, 
invertebrate amplifying vectors that are essential to the natural history of IHNV 
have not been found. Instead, a few invertebrates have been identifi ed as potential 
mechanical vectors capable of harboring the virus for brief periods of time. These 
vectors obtain the virus when exposed to water contaminated by nearby IHNV- 
infected fi sh, as occurs with mayfl ies ( Callibaetis  spp.) [ 51 ]. Alternatively, leeches 
( Piscicola salmositica ), and ectoparasitic copepods ( Salmincola  sp.) receive virus 
directly with blood meals from IHNV-infected fi sh. IHNV is able to persist without 
replication in leeches for 16 days [ 52 ]. The salmon louse ( Lepeophtheirus salmonis ) 
is able to harbor IHNV for 12 h and successfully transmits IHN to naïve Atlantic 
salmon after uptake of the virus from water-borne exposure or after parasitizing 
Atlantic salmon infected with IHNV [ 53 ]. A list of fi sh hosts and possible inverte-
brate vectors of IHNV is provided in Table  11.1 . 

 In salmonids, signs of IHN are typically seen during the juvenile fry, fi ngerling, 
and smolt stages or when the host becomes sexually mature and ready to spawn. 
In between these life stages the virus generally cannot be detected by conventional 
cell culture methods. In juvenile fi sh, infection is usually followed by disease, 
resulting in moderate to nearly complete mortality. 

 The virus spreads horizontally from fi sh to fi sh through direct contact, and from 
virus shedding into freshwater and less often in seawater, the primary route of trans-
mission in juvenile and adult fi sh [ 54 ,  55 ]. The route of host entry during horizontal 
transmission of the virus is through skin, gills, gastrointestinal tract, and fi n bases 
[ 41 ,  56 ]. Titers of virus as high as 1,000 plaque-forming units (pfu) per ml of water 
were detected when infected fi sh were held at high densities [ 57 ]. In experimental 
infections, virus shedding from exposed juvenile sockeye salmon preceded death at 
7 days post exposure, whereas death occurs at 13 days. Viral shedding peaked at 
14 days post challenge, reaching 4.87 × 10 3  pfu [ 58 ]. Conversely, some asymptom-
atic juvenile sockeye salmon had low virus titers [ 59 ,  60 ], thus supporting the pos-
sibility of a carrier state or subclinical persistence of IHNV. In some instances of 
wild sockeye smolt infections, disease may have been initiated in subclinical carrier 
fi sh by the physiological stress from smolt transformation, passing through weirs to 
enumerate outmigration, and infection by other pathogens [ 60 ,  61 ]. 

 IHNV replicates to high titers in spawning fi sh and is shed externally with urine, 
feces, mucus, and sexual secretions or products, infecting many other adult fi sh in a 
hatchery raceway or on the spawning grounds. Virus concentrations of up to 
1,600 pfu/ml water were measured in a river side channel used to hold maturing 
adult fi sh for spawning [ 55 ]. Outbreaks of IHN have been reported in juvenile wild 
and feral salmonids [ 41 ], in which horizontal transmission of the virus has been the 
major route of infection, either from contaminated spawning substrate or from 
surface egg-associated virus. In most cases, infected adult sockeye salmon usually die 
from spawning senescence before IHNV can overwhelm the host. This observation 
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is typical for clinically normal adult fi sh having virus titers greater than 10 7  pfu/ml 
of ovarian fl uids, which appear normal when sampled during spawning at the hatch-
ery or on natural spawning grounds (TR Meyers, unpublished data). 

 IHNV may also adsorb to organic materials from decaying fi sh and sediments, 
remaining viable for weeks to months [ 55 ,  62 ,  63 ]. A reduction of virus titer of 
10 3  pfu/ml of ambient seawater or freshwater may take 14–25 days, respectively 
[ 64 ]. Transmission of the virus can also occur mechanically when virus particles on 
the surface of an egg infect the hatching embryo, unless particles are destroyed by 
application of a disinfectant. 

 True (biological) vertical transmission within the egg is supported by studies in fi sh 
hatcheries [ 44 ]. In vertical transmission, the virus supposedly enters embryonic tis-
sues from the perivitelline space by pinocytosis through the yolk, or by intra- ovum 
deposition during egg formation. The probability of vertical transmission is enhanced 
in large scale hatchery programs where 20–30 million eggs are spawned from brood-
stock that are test-positive for IHNV [ 65 ,  66 ]. Factors that affect the carrier rate in 
juvenile fi sh include the prevalence of virus in the broodstock and the proportion of 
infected female parent fi sh having high viral titers. A 27-year study of Alaskan sock-
eye salmon hatcheries showed that the occurrence and degree of IHN outbreaks in 
juvenile fi sh closely followed the percentages of virus prevalence and virus titers in 
broodstocks [ 44 ]. This study also found that the overall IHNV prevalence in the ovar-
ian fl uids of spawning female sockeyes averaged 40.4 % with an annual high of 56 % 
to a low of 8.5 %. Higher virus titers (≥10 4  pfu/ml of ovarian fl uid), considered a 
threshold for increasing the risk of vertical transmission, occurred overall in 42.6 % of 
female infected fi sh ranging from an annual high of 65.7 % to a low of 10 %. 
Compelling anecdotal descriptions of vertical transmission are found in several case 
reports [ 41 ,  62 ,  66 ]. IHNV also adsorbs to sperm, giving rise to another potential route 
for vertical transmission (during fertilization) whereby the virus could enter the egg 
through the micropyle while attached to a sperm cell [ 67 ]. Despite numerous experi-
mental studies, vertical transmission has not been demonstrated reliably in the labo-
ratory, most likely because of the randomness of the event and low probability of its 
occurrence (e.g., within a few eggs and from a small number of female test fi sh). 

 The concept of carrier state is another controversy regarding the natural history of 
IHNV and its perpetuation within a population of host fi sh. A popular notion is that 
a water reservoir exists that would account for the survival of the virus during the 
eclipse of IHN after the juvenile stage and before its reappearance again in the adult 
spawning fi sh. A true marine or freshwater fi sh, or nonfi sh reservoir (e.g., an inverte-
brate), that can maintain the virus has never been conclusively demonstrated, other 
than the known, primary fi sh hosts listed in Table  11.1 . Alternatively, a considerable 
body of evidence supports the hypothesis that fi sh surviving epizootics, and progeny 
receiving virus vertically transmitted from overtly virus-positive parents, harbor 
virus that is undetectable by cell culture. This subclinical carrier state may be due to 
colder water temperatures, less stress on the host, exposure to a low infectious dose, 
and increasing age. Specifi c and nonspecifi c immune responses then become more 
effective in controlling virus infection. 
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 Support for a carrier state is both factual [ 41 ] and circumstantial information [ 66 ]. 
The most compelling evidence includes detection of IHNV in tissues of fi sh surviv-
ing experimental IHNV infections, including both the detection of viral proteins 
[ 68 ,  69 ] and detection of viral RNA by PCR [ 70 ]. Additionally, truncated defective 
interfering particles of IHNV from kidneys and livers of surviving fi sh were detected 
by immunogold transmission electron microscopy [ 69 ]. These particles were bio-
logically active when explants of the tissues from survivors were reexposed to 
IHNV. Liver explant tissues from re-exposed fi sh produced more defective particles 
than explant tissues from naïve fi sh that produced standard virus particles, thus signifi -
cantly decreasing virus titers in re-exposed fi sh by comparison [ 41 ,  71 ]. More recently, 
investigators have demonstrated the presence of IHNV in the brains of juvenile 
sockeye salmon that survived a laboratory exposure, and in asymptomatic juvenile 
fi sh from the marine environment. A comparison of the transcriptional responses of 
carrier fi sh and control asymptomatic fi sh revealed different gene expression profi les 
[ 72 ]. Collectively, these results support the hypothesis that some individual fi sh 
within a population can be lifelong carriers of IHNV. This persistence would explain 
the epizootics of unknown origin that affect juvenile fi sh, as well as the presence of 
the virus in adults that were previously test-negative. However, the mechanism of 
defective particle reactivation has yet to be identifi ed.   

2.2     Pathogenesis and Clinical Features 

2.2.1     Pathogenesis and Immunology 

 IHN disease is an acute, systemic infection of mostly juvenile fi sh, primarily targeting 
the hematopoietic tissues and endothelium of the blood capillaries of the kidney and 
spleen. However, the liver, pancreas, gut, and other major tissues and organs also are 
affected. Histologically, the virus causes extensive necrosis of affected tissues, 
beginning with the interstitial cells of the kidney and progressing to full involvement 
of all cellular elements with macrophage infi ltration (Fig.  11.3 ). Extensive necrosis 
is also found in the spleen, pancreas, liver (with ceroid deposition), and gastrointes-
tinal tract, where mucosal sloughing gives rise to externally visible fecal casts. One 
pathognomonic feature of the disease not observed in other fi sh viral infections is 
degeneration and necrosis of the granular cells in the lamina propria, stratum com-
pactum, and stratum granulosum of the alimentary tract [ 11 ,  73 ]. Another clinical 
feature of presumptive diagnostic value is the appearance of necrotic cells and 
debris, known as necrobiotic bodies, observed within peripheral blood smears or 
impression smears of kidney, along with numerous blast cells and poikilocytosis 
[ 11 ]. Other clinical and biochemical changes in the serum and blood include longer 
clotting times, low hematocrit, and a normocytic aplastic anemia accompanied by 
decreases in bicarbonate, bilirubin, calcium, chloride, osmolality, and phosphorous 
[ 11 ,  41 ]. The disease results in systemic organ dysfunction, including renal dys-
regulation with osmotic imbalance that results in high losses of susceptible fi sh in 
the hatchery, as well as in juvenile feral and wild adult fi sh. Upon virus entry into 
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the body, leukocytes (small lymphocytes, monocytes, polymorphonuclear cells) 
may serve as target cells in the early phase of infection [ 75 ].  

 Some surviving fi sh are lifelong carriers of the virus, whereas others may clear 
the virus through innate and adaptive host responses (interferon and T-cells) and 
induction of adaptive humoral immunity. Development of humoral immunity usu-
ally takes several weeks after infection [ 76 ], although transcriptional activation in 
the immune cells may occur as early as 7 days post-exposure [ 77 ]. Based on virus 
detection by cell culture, clearance of virus from fi sh surviving an epizootic may 
take up to 46 days after water-borne exposure [ 71 ]. Rainbow trout surviving experi-
mental and natural IHNV-caused epizootics produce high levels of complement- 
dependent neutralizing antibodies 6 weeks after infection. These antibodies protect 
against similar strains of IHNV, either by reinfection or after passive transfer to 
another host [ 41 ]. Virus-neutralizing activity has also been observed in the cutane-
ous and lower intestinal tract mucus from virus-exposed fi sh and normal, unexposed 
fi sh. This antiviral activity is not associated with humoral antibodies but rather with 
a nonspecifi c innate host resistance that acts as one of the fi rst lines of defense to 
infection [ 78 ]. Antibody production against IHNV in adult fi sh after IHNV expo-
sure is variable, with some fi sh producing increased antibody titers, whereas others 
are unresponsive, including fi sh that tested positive for virus [ 41 ]. Despite this vari-
ability, the overall picture created by the observations to date indicates that adult 
fi sh are immunocompetent against IHNV, and that maternal antibodies are trans-
ferred to progeny fry. Immunization of adult rainbow trout with a fragment of IHNV 
glycoprotein produced increased survival in their 7-day-old-fry after exposure to 
IHNV that persisted for at least 25 days [ 79 ].  

  Fig. 11.3       Histopathology of sockeye salmon smolt infected with infectious hematopoietic necrosis 
virus.  Left fi gure : kidney tissue with intact renal tubules and rounded interstitial hematopoietic 
cells showing nuclear pyknosis ( arrows ) and karyorrhexis ( arrowhead ).  Right fi gure : liver tissue 
with focal necrosis ( circle ) and rounded hepatocytes showing nuclear pyknosis ( arrow ) and kary-
orrhexis ( arrowhead ); Hematoxylin and eosin (400×)       
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2.2.2     Incubation Period, Clinical Signs, and Gross Lesions 

 The incubation period after viral exposure varies for fi sh of different species and is 
also infl uenced by the age of the fi sh, water temperature, viral dose, and exposure 
route (immersion or injection). Younger fi sh are more susceptible (Fig.  11.4 ). The 
optimum water temperature for IHNV replication is 10–12 °C. Fry losses generally 
increase with viral doses from 10 2  to 10 5  pfu/ml of water [ 41 ]. Generally, immersion 
exposure of susceptible fry to a lower viral dose at an optimum water temperature 
results in clinical signs and death within 3–10 days, [ 11 ] with peak mortality occur-
ring in 8–14 days. However, IHN epizootics among incubating alevins in Alaskan 
sockeye salmon hatcheries occur at water temperature(s) as low as 1–2 °C, but time to 
peak mortality may be longer than normal [ 80 ].  

 The disease often causes premature emergence of alevins and fry from incuba-
tors containing substrate and is accompanied by clinical signs of cephalic swelling 
(Fig.  11.5 ), lethargy, and listless drifting in the water column. When stimulated, 
these fi sh may exhibit erratic corkscrew swimming behavior. Affected salmon 
smolts are often darkly pigmented and may have some external hemorrhaging that 
may include fi ns, vent, ventral abdomen, gills, and eyes (Fig.  11.6 ). Gills are pale 
from the anemia caused by hemorrhaging and hyperplastic due to early viral repli-
cation in gill epithelium. Exophthalmia is common, with occasional abdominal 
swelling due to ascites. Internal signs include petechial hemorrhages in the mesentery, 
adipose tissue, and swim bladder. Fingerlings and pre-smolts may present with 
similar but lesser external signs, including trailing fecal casts and yellow watery 

  Fig. 11.4    Acute infectious hematopoietic necrosis mortality of sockeye salmon fry in a hatchery 
raceway       
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fl uid in the intestine. One clinical sign reportedly unique to chinook salmon fry is a 
subdermal hemorrhagic area immediately behind the head [ 73 ,  81 ]. A small (1–4 %) 
percentage of fi sh surviving IHNV epizootics develop scoliosis, which has been a 
marketing problem in the USA Idaho trout industry [ 43 ].    

2.2.3     Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 Morbidity and mortality rates are dependent on fi sh age and size, host species, 
infecting viral genotype, water temperature, viral dose, and exposure route. Under 
optimum host, viral, and environmental conditions, losses in juvenile fi sh may 
approach 100 %. Losses are reduced, and clinical disease is more chronic (i.e., less 
fulminant) in older fi sh and at higher water temperatures equal to or above 15 °C [ 41 ]. 

  Fig. 11.5    Cephalic swelling in sockeye salmon fry infected with infectious hematopoietic necro-
sis virus.  Top fi sh  with relatively normal appearing head. Varying degrees of cranial swelling are 
shown in the fry below       

  Fig. 11.6    Ventral petechial hemorrhages around the vent of a sockeye salmon smolt infected with 
infectious hematopoietic necrosis virus       
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An illustrative example of a natural outbreak of IHN in pen-farmed Atlantic salmon 
is described by Saksida [ 82 ] during which 12 million fi sh were destroyed. The virus 
source was likely migrating wild sockeye salmon passing near the farm sites with 
horizontal transmission among the farm sites, either by seawater or farming practices. 
The overall fi sh case-fatality rate averaged 58 %. The highest mortality occurred in 
smaller smolt populations and decreasing with increases in both fi sh size and age. The 
outbreak of clinical disease within the farms occurred over a period of 20–22 weeks, 
with peak mortality occurring 6–8 weeks after onset of IHN in the index case. 

 The prognosis for infected fi sh is poor, and there is no available therapeutic inter-
vention that is effective against IHN. Infected fi sh generally die, but may recover 
and clear the virus, or become lifelong carriers. In many hatchery operations, 
infected fi sh are destroyed to contain virus transmission regardless of mortality rate.   

2.3     Diagnosis and Control 

2.3.1     Diagnosis and Epidemiology 

 The current gold standard for diagnosis of IHN is isolation of the virus from infected 
fi sh by use of cell culture, followed by genetic identifi cation with molecular meth-
ods such as RT-PCR or quantitative RT-PCR, with possible sequencing for genotype 
identifi cation [ 42 ]. Virus isolation is accomplished by inoculating supernatants of 
homogenized and centrifuged kidney/spleen pools from infected juvenile fi sh or 
centrifuged ovarian fl uids from spawning adult female fi sh into cultures of suscep-
tible cell lines. Such lines include the fathead minnow (FHM), epithelioma papulo-
sum cyprini (EPC) epithelial cells or Chinook salmon embryonic cells (CHSE-214). 
Detection of virus occurs by observation of cytopathic effect (CPE) in the inocu-
lated cell monolayer, followed by harvest of the supernatant containing progeny 
virions for nucleic acid-based tests. Several antibody-based tests are available that 
have also been used for virus identifi cation, either directly from infected tissues or 
from infected cell cultures, including virus neutralization, immunofl uorescence, 
immunohistochemistry, ELISA, staphylococcal co-agglutination, immunoblot, and 
western blot [ 41 ]. Detection of virus becomes problematic in subclinically infected 
carrier fi sh, therefore cell culture and PCR or other molecular methods used in par-
allel may or may not be useful for surveillance. 

 The occurrence of IHNV within fi sh populations is unpredictable, but several 
circumstances and variables are important to better understand the epizootiology of 
the virus. Not surprisingly, if the virus is present in the untreated water supplies of 
fi sh culture operations, susceptible host populations will become infected with 
IHNV in a random and unpredictable fashion. 

 In fi sh hatcheries with secure water supplies, future broodstock populations may 
become infected as progeny through vertical transmission despite surface egg disin-
fection and water hardening in iodophor. When IHNV is present in an unknown 
number of asymptomatic carrier juvenile fi sh, environmental variables such as 
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water temperature, interrupted or low water fl ows, low dissolved oxygen, high fi sh 
densities, gas supersaturation, and handling are stressors that can precipitate IHN 
outbreaks [ 66 ]. Complacency by hatchery staff in following proper disinfection pro-
cedures (i.e., failed biosecurity) is also directly correlated with IHN incidence and 
severity [ 44 ]. 

 Among sexually mature adult salmonids, the prevalence of IHNV is most studied 
in adult sockeye salmon [ 41 ]. A retrospective study of IHNV in Alaskan sockeye 
salmon from 1978 to 2000 indicated that all anadromous sockeye stocks tested posi-
tive for IHNV using cell culture at varying levels, with no predictable cycle from year 
to year [ 44 ,  65 ]. The annual virus prevalence in ovarian fl uids of spawning fi sh and 
titers in such fl uids paralleled each other closely during most years of the study. 
A subsample of post-spawned fi sh, when compared to spawning fi sh during the same 
time period, had signifi cantly higher virus prevalence and titers, indicating continued 
virus replication after spawning. An earlier study in Alaska found that milt from male 
fi sh had signifi cantly lower prevalences of virus than female ovarian fl uids, but viral 
titers of infected males were comparable to females [ 65 ]. The different levels of virus 
present in sexual secretions from males and females may be related to hormonal 
differences during spawning or lack of detection in males due to viral sequestration 
by adsorption to sperm. Additionally, physical factors of the spawning habitat may 
increase or decrease horizontal transmission of IHNV, leading to variable prevalence 
and titers. A factor that leads to a low prevalence of IHNV is high gradient fl ow in 
short spawning tributaries that may be tidally infl uenced, causing more fl ushing of 
adult carcasses, organics and/or virus from the system and less organic substrate 
overall to adsorb virions. In addition, virus dilution occurs in larger lakes where 
sockeye migrate to mature, spawn, and sometimes just to die and decompose. Factors 
that lead to a high prevalence of IHNV include low water fl ows and higher water 
temperatures, both of which increase stress, fi sh densities, and (initial) virus concen-
trations in the spawning grounds. 

 Genetic timing of maturation and spawning could also infl uence fi sh densities 
and other environmental variables. Such timing could be compressed into a short 
period (results in more fi sh) or prolonged (results in less fi sh), or occur earlier in the 
summer (produces warmer temperatures, lower fl ows) or later in the fall (produces 
cooler temperatures, higher fl ows). Although minor increases of overall virus preva-
lence and titers in Alaska sockeye salmon populations have occurred over the last 
20 years, these changes have not been attributed to any selective effect from hatch-
ery practices. Both wild and hatchery virus isolates have been genetically stable 
during the time of these studies [ 83 ,  84 ].  

2.3.2     Vaccination, Control, and Eradication 

 The development of a vaccine for IHN has been a high research priority for the last 
32 years. Despite investigations of live attenuated vaccines (LAV), whole inacti-
vated vaccines, purifi ed subunits (proteins or glycoproteins) of the virus, purifi ed 
proteins from cloned genes, and DNA vaccines, at this writing no commercial, 
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licensed vaccine is on the market in the USA. Some of these formulations have been 
 experimentally successful in the laboratory and in fi eld trials, but failed in large 
scale production testing. The DNA vaccines are the most promising and are highly 
effective in stimulating early neutralizing antibodies that protect vaccinated rain-
bow trout from disease (100 % survival at 3 months post vaccination). This immu-
nity declines, but 47–69 % of fi sh survive virus challenges after 6–25 months post 
vaccination [ 85 ]. Injection is an impractical delivery method for fi sh, and this route is 
an impediment for use of these vaccines in juvenile stages of fi sh. Another signifi cant 
regulatory obstacle involves public perception of nucleic acid vaccines. Perception 
varies among countries regarding whether a DNA-vaccinated animal becomes a 
genetically modifi ed organism or not. A complete review of the vaccines used in 
aquaculture is provided by Lorenzen and LaPatra [ 86 ]. Autogenous killed and DNA 
vaccines are licensed by Canada for use in the Atlantic salmon pen farming industry 
on the west coast of North America, where injection of larger fi sh is practical [ 42 ]. 
Although the bacterin and autogenous vaccines available during the 2001–2003 
IHN outbreak in British Columbia, were not effective in protecting vaccinated farm 
populations [ 82 ], the currently approved DNA vaccine is considered effective by the 
Canadian government and commercial industry [ 87 ]. 

 Effective control of IHNV and the disease can only be achieved through avoid-
ance of the virus, since there is no therapeutic treatment once fi sh are exposed. 
Simple biosecurity measures are exemplifi ed by the Alaska Sockeye Salmon Culture 
Policy (SSCP) that was initiated in 1981 to control losses from IHNV in sockeye 
salmon hatcheries operated by the Alaska Department of Fish and Game [ 44 ,  88 ]. 
The cornerstones of this policy include a virus-free water supply (either fi shless or 
depurated), rigorous surface disinfection of spawned broodstock, and single family 
egg disinfection/iodophor water hardening to eliminate surface-associated virus and 
reduce vertical transmission. To contain inevitable disease outbreaks due to vertical 
virus transmission, eggs and fry are compartmentalized, and infected fi sh are 
destroyed regardless of the severity of mortality or clinical signs followed by rigor-
ous disinfection to prevent infection of the remaining hatchery production and 
release of virus into the environment [ 44 ,  88 ]. These procedures do not eliminate the 
virus from the hatchery but provide control to reduce losses of fi sh during produc-
tion. This strategy has allowed the US state of Alaska to successfully “farm around” 
IHNV, and to conduct the largest sockeye salmon production program worldwide 
over the last 32 years. 

 Other control procedures used in Canadian pen farming of Atlantic salmon to 
reduce the possibility of IHN outbreaks (or control those in progress) include main-
taining fi sh in single-year (age) class and single-species sites with fallowing before 
restocking with new inventory. Restricting movement or judicious disinfection of 
boats, utensils, and external clothing of personnel moving between farms are other 
common-sense precautions [ 82 ]. 

 There has been some success regarding development of salmonid hybrids that 
are resistant to IHNV. However, most hybrids would be unlikely candidates for 
commercial culture. These hybrids have more value in studying mechanisms of 
resistance to IHN [ 41 ]. 
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 Eradication of IHNV may be possible if stringent biosecurity measures are followed. 
This has been demonstrated in Denmark with the related rhabdovirus viral hemor-
rhagic septicemia virus (VHSV) [ 74 ]. One major difference between the two viruses’ 
natural histories is that IHNV can be vertically transmitted in the egg. Therefore, fi sh 
stocks must originate from virus-free sources, and a virus-free water supply must be 
available. The importance of this virus-free concept was demonstrated by an exchange 
of sockeye salmon from the Fraser River in Canada as a single shipment of eggs to 
New Zealand in 1901. Although IHNV had been indigenous in the Fraser sockeye, 
subsequent use of the progeny from those eggs resulted in a virus-free stock of fi sh at 
the Glenariffe Hatchery and for the non-anadromous kokanee salmon established in 
the Waitaki River system of New Zealand. IHNV continues to be exotic to New 
Zealand and apparently was not introduced with the small number of eggs imported, 
leading to the conclusion that they were likely free of the virus [ 89 ]. 

 In cases of IHNV introduction outside its geographic range in the USA, the virus 
apparently never became established. Eradication has never been reported in other 
countries into which IHNV was introduced and became enzootic in wild fi sh 
population.  

2.3.3     Public Health/One Health Crossover 

 IHNV is a poikilothermic virus. The virus poses no human or animal health threat 
from contact with or from consuming potentially infected fi sh.    

3     Infectious Salmon Anemia Virus 

3.1     Etiologic Agent and Natural History 

3.1.1     Defi nition 

 Infectious salmon anemia (ISA) is a signifi cant, generalized viral disease of farmed 
Atlantic salmon and was fi rst reported in Norway in 1984 [ 90 ]. Outbreaks of ISA 
have had severe effects on the farmed salmon industry.  

3.1.2     Etiology and Evolution 

 ISA is caused by infectious salmon anemia virus (ISAV), the only known member of 
the genus  Isavirus  in the family  Orthomyxoviridae . The two glycoproteins embedded 
in the ISAV particle envelope, the hemagglutinin esterase (HE) glycoprotein and 
the fusion (F) glycoprotein, are important for virus uptake and cell tropism [ 91 ]. 
The receptors of ISAV are 4- O -acetylated sialic acids [ 92 ], expressed on endothelial 
cells and red blood cells in the host [ 93 ]. 
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 The segmented ISAV genome is highly conserved. The two gene segments with 
the highest variability are those coding for HE and F. Phylogenetic analyses of ISAV 
isolates have revealed two major clades, one European clade and one North 
American clade [ 94 ]. In addition, ISAV has been characterized and typed based on 
amino acid patterns of a highly polymorphic (HPR) region, consisting of 11–35 
amino acid residues in HE [ 91 ]. The HPR variants may be explained as differential 
deletions [ 95 ] of a putative full length ancestral sequence (HPR0), fi rst identifi ed in 
a wild salmon in Scotland [ 96 ]. Whereas all ISAV isolates from ISA disease out-
breaks have deletions in the HPR region, the HPR0 subtype has not been associated 
with clinical or pathological signs of ISA [ 91 ,  97 ]. Furthermore, the HPR0 type is 
frequently detected in gills during RT-PCR surveys of farmed Atlantic salmon [ 97 , 
 98 ]. Thus, it seems that the highly pathogenic variant causing the severe anemia is 
less common than the gill-associated HPR0. The transformation of HPR0 subtype 
into virulent HPR-deleted types remains to be fully elucidated, including the risk 
associated with this transition.  

3.1.3     Geographic Distribution and Economic Effects 

 Spontaneous outbreaks of ISA have only been found in farmed Atlantic salmon, and 
the majority of cases have occurred during the seawater stage of the salmon lifecy-
cle. However, virus replication without clinical disease has been demonstrated 
experimentally in a range of fi sh of other species, including brown trout ( Salmo 
trutta ), rainbow trout, Arctic char, chum salmon ( Oncorhynchus keta ), Coho salmon 
( O. kisutch ), herring, and Atlantic cod ( Gadus morhua ) [ 91 ]. ISAV has also been 
detected in healthy wild Atlantic salmon and sea or brown trout [ 99 ,  100 ]. As sub-
clinical infections are diffi cult to detect in the marine environment, these wild fi sh 
or fi sh of other species may act as carriers or reservoirs of the virus. 

 Epizootics of ISA have had signifi cant impact on the economy of the Atlantic 
salmon aquaculture industry, and have led to implementation of large scale biosecu-
rity measures. Outbreaks have been reported in most Atlantic salmon farming areas 
including the east coast of Canada and the USA, Scotland, Norway, the Faroe 
Islands, and in Chile [ 91 ]. In Chile and the Faroe Islands, the disease caused major 
economic setbacks, leaving the entire industry with an uncertain future, similar to 
Norway in and after 1989 [ 91 ]. ISA is now listed as a reportable disease by the 
World Organisation for Animal Health (OIE).  

3.1.4     Natural History, Transmission, and Host Range 

 ISA epidemics often start as small, local outbreaks separated in time and space, 
 suggesting horizontal transfer [ 98 ,  101 ]. Biosecurity measures targeting horizontal 
transfer through management practices are successful in curbing epidemics. 
However, the mechanism by which the infection is fi rst introduced into the farmed 
salmon population is unknown. Unknown reservoirs, maintenance vectors, and/or 
vertical transmission of asymptomatic/subclinical infections in Atlantic salmon are 
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possibilities. Alternatively, episodic, in situ emergence of virulent ISAV (through 
deletions in the HPR region) from the enzootic, low virulence HPR0 (full length HPR) 
is considered likely.   

3.2     Pathogenesis and Clinical Features 

3.2.1     Pathogenesis and Immunology 

 ISA is a systemic disease affecting the blood and the circulatory system. Examination 
of blood from moribund fi sh during fi eld outbreaks revealed leukopenia, in particular 
lymphocytopenia and thrombocytopenia, and increased red blood cell fragility with 
an increased number of degenerate, “smudge” erythrocytes [ 102 ]. Hepatocellular 
necrosis and/or renal tubular necrosis with hemorrhage in the surrounding tissue are 
often observed histologically. 

 Using immunohistochemistry, we have recently documented that the major tar-
get cells for the virus are endothelial cells lining blood vessels of all organs, includ-
ing sinusoids, endocardium, and scavenger endothelial cells in the hematopoietic 
compartment of the kidney [ 93 ]. In addition, we also documented that this cell tro-
pism could largely be explained by the cellular distribution of the 4- O -acetylated 
sialic acid receptors [ 93 ]. The necrotic parenchymal cells in the liver and kidney 
tubules do not express the sialic acid receptor and appear to be uninfected in other-
wise heavily infected fi sh. The specifi c mechanistic link from the initial endothelial 
infection to the severe anemia and necrosis remains to be resolved; however, necro-
sis is likely due to ischemia as a result of the progressing anemia. 

 ISAV isolates from both fi eld outbreaks and experimental trials vary in virulence, 
as observed by differences in disease development, fatality and clinical signs 
[ 103 – 105 ]. However, specifi c virulence factors or markers other than the HPR dele-
tion pattern have not yet been identifi ed. 

 Both innate and adaptive cellular and humoral immune responses against ISAV 
have been experimentally demonstrated in Atlantic salmon [ 105 – 109 ]. Partial protec-
tion against experimental ISAV infection was demonstrated in fi sh injected with sera 
from fi sh that had previously survived an ISAV infection (i.e., passive immunization), 
suggesting the signifi cance of humoral factors for immunity [ 106 ]. Experiments with 
DNA vaccines expressing the HE-protein have also demonstrated the importance of 
this antigen for a protective immune response [ 110 ,  111 ].  

3.2.2     Incubation Period, Clinical Signs, and Gross Lesions 

 The incubation period in natural outbreaks has been estimated to be as low as a few 
weeks to several months [ 112 ,  113 ]. A peculiarity of ISA is that clinical disease 
often spreads slowly from net-pen to net-pen within a farm, possibly refl ecting the 
extended time from infection to development of severe anemia and clinical disease. 
ISA can be experimentally reproduced in Atlantic salmon by intraperitoneal injection, 
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cohabitation with intraperitoneally infected fi sh, or by immersion challenge [ 114 ]. 
The incubation period for experimental infection is usually 10–20 days [ 91 ]. 

 Diseased fi sh appear physically normal, but swim sluggishly at the water surface 
or hang listlessly at the net-pen wall. The progressive anemia results in “watery 
blood” with a hematocrit below 10 %. Prominent disease fi ndings refl ect the anemia 
and circulatory disturbances. Externally, these fi ndings may include pale gills, local-
ized hemorrhage of eyes and skin, exophthalmia, and scale edema (Fig.  11.7 ).  

 Necropsy reveals ascites, swollen spleen, edema, and petechial bleeding on serosa 
as constant fi ndings. More variable, but very obvious when present, are severe hemor-
rhagic lesions in liver, kidney, or gut. The liver may turn almost black and show zonal 
hemorrhagic necrosis histopathologically (Fig.  11.8 ). The fi sh kidney contains hema-
topoietic tissue which is primarily affected by the hemorrhages, but kidney tubules 
can become necrotic in severe cases. The kidney hemorrhages are most easily 

  Fig. 11.7    Hemorrhages in skin and exophthalmia ( lower right fi gure ) in moribund Atlantic salmon 
from a confi rmed outbreak of infectious salmon anemia in Norway       

  Fig. 11.8    Hemorrhagic necrosis: Hematoxylin-eosin stained tissues from Atlantic salmon naturally 
infected with infectious salmon anemia virus. Liver ( a ) and gut ( b )       
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discovered by histology as the kidney is normally diffusely dark in color. Intestinal 
hemorrhages may resemble hemorrhagic enteritis. However, on fresh specimens no 
blood is present in the lumen, but histological sections are characterized by exten-
sive bleeding within the lamina propria in the absence of infl ammation, Fig.  11.8 . 
These fi ndings elegantly demonstrate that ISA is a disease of the blood and circula-
tory system with different organ manifestations. For unknown reasons, some ISA 
outbreaks can be dominated by just one or a subset of specifi c organ manifestations, 
but in other outbreaks a mixture of all  manifestations can be found [ 91 ].   

3.2.3     Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 At the farm level, ISA is a slowly developing disease. Initially, diseased fi sh are only 
found in a few net-pens on a farm, and daily fatality is typically 0.05–0.1 %. However, 
if nothing is done to limit disease development, spread to other cages will occur, and 
accumulated fatality in a farm may reach more than 80 % during a period of several 
months. Episodes of high, sudden fatality occur, but are rare. Factors contributing to 
sudden fatalities are not known, and these infections could be due to a more malignant 
infection, or (for example) stress-induced mortality in a population of already anemic 
fi sh. Transportation of highly infected fi sh to slaughter has led to high fatality rates. 

 Implementation of general biosecurity measures aimed at lowering infection 
pressure and interrupting spread of infection have proven to be effi cient in control-
ling the disease. These measures include early detection, isolation and slaughter of 
diseased populations, general restrictions on transport, disinfection of offal and 
waste from slaughterhouses, year-class separation at farming sites, and improved 
health control and certifi cation [ 115 ].   

3.3     Diagnosis and Control 

3.3.1     Diagnosis and Epidemiology 

 Diagnosis is based on clinical signs, gross lesions, and histopathological fi ndings 
supplemented with immunohistochemical examinations for endothelial infection. 
Positive immunohistochemical fi ndings are confi rmed by qPCR testing and virus 
isolation. The ISAV HE gene (i.e., HPR type) is sequenced for use in epidemiological 
evaluations.  

3.3.2    Vaccination, Control, and Eradication 

 An experimental trial using an adjuvanted, inactivated ISAV cell culture preparation 
prior to challenge with ISAV via cohabitation with infected fi sh [ 116 ] resulted in 
relative percent survival (RPS) of 84–95. Lauscher et al. [ 109 ] also tested a virus 
cell culture preparation in experimental infections, and found an RPS of 86. 
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 Vaccination against ISAV was fi rst attempted on the East Coast of Canada in 
1999. Vaccination has also been implemented in the Faroe Islands (since 2005) and 
in Chile. However, the effi cacy of the vaccine was questioned when ISA outbreaks 
were recorded among vaccinated populations, 

 Large scale sanitation was seemingly successful in Scotland and the Faroe 
Islands, as ISA outbreaks are no longer found in these countries, and the salmon 
industry has recovered. In Norway, the number of outbreaks fell sharply following 
introduction of biosecurity measures. A few outbreaks still occur yearly, and affected 
fi sh are usually diagnosed early and contained effectively.  

3.3.3    Public Health/One Health Crossover 

 The virus poses no human or animal health threat from contact with or from con-
suming potentially infected fi sh.    

4     Nairobi Sheep Disease Virus 

4.1     Etiologic Agent and Natural History 

4.1.1    Defi nition 

 Nairobi sheep disease (NSD) is a tick-borne viral disease of sheep and goats 
caused by Nairobi sheep disease virus (NSDV). NSD presents as an acute hemor-
rhagic gastroenteritis associated with high case fatality rates [ 117 – 120 ]. NSDV is 
capable of causing rare, mild disease in humans and is classifi ed as a Risk Group 
3 agent [ 121 ].  

4.1.2    Etiology and Evolution 

 NSDV is the prototype of the NSDV serogroup in the genus  Nairovirus , family 
 Bunyaviridae  [ 117 ]. The  Nairovirus  genus is comprised of 46 mostly tick-borne 
viruses classifi ed into 12 presumed serogroups [ 122 ]. The most important of these 
serogroups are the Crimean–Congo hemorrhagic fever virus (CCHFV) group and the 
NSDV group, which includes NSDV, Dugbe, and Kupe viruses [ 117 ,  118 ,  122 ,  123 ]. 
Nairovirions are small, spherical or pleomorphic, enveloped particles containing 
single-stranded negative-sense RNA arranged in three segments known as S (small), 
M (medium), and L (large) [ 117 – 119 ,  124 ]. The S segment encodes the viral nucleo-
capsid protein, the M segment encodes the viral glycoproteins, and the L segment 
encodes the viral RNA-dependent RNA polymerase [ 119 ,  122 ,  125 ]. NSDV is sensi-
tive to lipid solvents and detergents, and it is rapidly inactivated at high and low pH 
[ 120 ]. The half-life of NSDV at optimal pH (7.4–8) is 6.8 days at 0 °C and 1.5 h at 
37 °C [ 120 ].  
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4.1.3    Geographic Distribution and Economic Effects 

 NSD can cause large economic losses during outbreaks due to its high pathogenicity 
in naïve sheep and goats [ 126 ]. NSDV was fi rst isolated from sheep in 1910 in 
Nairobi, Kenya [ 117 ,  119 ,  122 ,  127 ] by inoculating sheep with the blood of sheep 
suffering from acute gastroenteritis [ 119 ]. The virus was later found to be prevalent 
in Uganda and the Congo basin [ 122 ] and is now considered endemic in Eastern and 
Central Africa [ 119 ,  122 ]. In addition, serologic surveys suggest that NSD may also 
occur in Botswana, Ethiopia, Mozambique, and Somalia [ 117 ]. 

 Serologic and genetic analyses have recently confi rmed the existence of an Asian 
variant of NSDV, known as Ganjam virus (GANV). Serologic evidence indicates 
that GANV is present in India and Sri Lanka, but outbreaks of GANV infection on 
the same scale as NSD outbreaks in Africa have not been reported [ 117 ,  118 ,  122 , 
 128 ]. GANV was fi rst isolated in 1954 from ticks collected from goats suffering 
from lumbar paralysis in Orissa, India [ 117 ,  125 ]. The virus is antigenically and 
genetically closely related to NSDV; the two viruses differ by only 10 % at the 
nucleotide level and 3 % at the amino acid level [ 125 ].  

4.1.4    Natural History, Transmission, and Host Range 

 Sheep and goats are the only known vertebrate reservoirs and amplifying hosts of 
NSDV [ 117 ,  129 ], although a few human cases of mild fi eld and laboratory-related 
NSD have been reported [ 119 ,  130 ]. Other domestic animals, including cattle, 
horses, donkeys, pigs, poultry, and dogs, are not susceptible to NSDV infection [ 129 ]. 
Goats are generally regarded as less susceptible than sheep, but lethality may still be 
high [ 120 ]. 

 In Africa, NSDV is transmitted primarily by the hard tick  Rhipicephalus 
 appendiculatus  [ 118 ,  119 ], although it has also been isolated from  Rhipicephalus pul-
chellus ,  Rhipicephalus simus , and  Amblyomma variegatum  [ 118 ]. A large number of 
ixodid ticks are possibly involved in the maintenance of the virus in nature [ 125 ]. 
NSDV is transmitted transstadially and transovarially by  Rhipicephalus appendicula-
tus  and can survive for at least 871 days in adult ticks [ 131 ]. In India, GANV has been 
most commonly isolated from ticks of the  Haemaphysalis  genus, primarily 
 Haemaphysalis intermedia  [ 117 ,  125 ,  128 ]. GANV was isolated from a  Rhipicephalus 
haemaphysaloides  tick and from a pool of 100 mosquitoes of the  Culex vishnui  com-
plex [ 122 ,  125 ]. NSDV and GANV are shed in the urine and feces of sheep and goats, 
but are not spread by contact, aerosolization, or fomites [ 118 ].   

4.2     Pathogenesis and Clinical Features 

4.2.1    Pathogenesis and Immunology 

 NSD is the most pathogenic viral disease of sheep in Eastern Africa [ 131 ]. 
NSDV targets the reticuloendothelial system, multiplying in the lymphoid tissue, 
liver, lungs, spleen, and vascular endothelium [ 120 ]. In endemic areas, young animals 
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are protected by maternal antibodies until natural immunity develops after early 
(subclinical) infection [ 118 ,  132 ]. NSDV antagonizes the innate immune system by 
inhibiting interferon induction and action [ 119 ] and induces a Th 1  pro- infl ammatory 
response [ 133 ].  

4.2.2    Incubation Period, Clinical Signs, and Gross Lesions 

 NSD is characterized by fever that develops after an incubation period of 2–6 days 
[ 118 ]. NSD may persist for 2–8 days, and leukopenia may develop [ 120 ,  131 ]. 
A severe gastroenteritis develops 1–4 days after the onset of fever [ 118 ,  131 ] and is 
characterized by diarrhea. Diarrhea is initially watery but becomes mucoid and 
bloody [ 118 ,  120 ]. Other clinical signs include depression, dyspnea, collapse, 
injected conjunctiva, serosanguinous nasal discharge, enlarged and palpable lymph 
nodes, and inappetence that progresses to anorexia [ 118 ,  120 ,  131 ]. Pregnant ani-
mals may abort during or after the febrile phase [ 131 ]. 

 Death may occur at any time after the onset of fever, although most deaths occur in 
the fi rst few days [ 131 ]. Animals dying in the early stages of disease may have unre-
markable gross lesions [ 118 ]. When present, gross lesions may include congestion of 
most organs, including petechial and ecchymotic hemorrhages on the serosal surfaces 
of organs and lymph nodes. Enlarged and edematous lymph nodes and splenomegaly 
may also occur [ 120 ]. Animals that die later in the course of disease may also exhibit 
infl ammation of the gastrointestinal tract, including mucoid or hemorrhagic ulcerative 
enteritis of the abomasum, duodenum, cecum, or colon [ 118 ,  120 ].  

4.2.3    Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 NSD lethality in sheep may range from 75 to 90 % during outbreaks in naïve popu-
lations [ 122 ,  124 ]. Disease in goats is usually less severe, although 90 % lethality 
has been reported [ 120 ]. In Eastern Africa, indigenous breeds of sheep, such as hair 
sheep and Persian fat-tail sheep, are most susceptible to the disease. Imported wool 
sheep, such as the Romney and Corriedale, appear less susceptible to disease (lethal-
ity 30–40 %) [ 118 ,  120 ]. In contrast, native breeds of sheep and goats in India are 
less susceptible to GANV, whereas cross-bred and exotic breeds are more suscep-
tible and die more often [ 120 ].   

4.3     Diagnosis and Control 

4.3.1    Diagnosis and Epidemiology 

 Infestation with the primary tick vectors, notably  Rhipicephalus appendiculatus , is 
an important fi nding in support of a diagnosis [ 120 ]. In Eastern Africa, animals born 
in areas where the primary vector is present appear to be immune to NSD [ 119 ], as 
the majority of sheep and goats in these areas have serological evidence of infection 
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without disease [ 118 ]. Epizootics occur when naive animals from nonendemic areas 
move into endemic areas [ 118 ,  119 ], often following natural trade movements from 
drier surrounding pastures to population centers with high densities of infected 
 Rhipicephalus appendiculatus  [ 127 ]. Outbreaks may also occur when increased 
rains allow for expansion of the vector tick into areas with previously naïve animals 
[ 118 ,  129 ]. NSD should be considered whenever clinical signs consistent with NSD 
and lethality are seen along with tick infestation in a population of sheep or goats, 
especially those recently transported to an endemic area. 

 Virus isolation and serology are the primary tools available for laboratory diagno-
sis. Appropriate samples for submission include blood, mesenteric lymph nodes, 
lung, and spleen [ 118 ,  120 ]. Virus isolation may be performed on serum, plasma, or 
a 10 % homogenate of mesenteric lymph node, liver, or spleen collected post mortem 
[ 118 ]. NSDV may only be isolated from the blood during acute stages of illness 
[ 118 ]. Laboratory sheep, newborn mice, or cell culture (baby hamster kidney [BHK], 
lamb testis and kidney, or Vero cells) can be used for primary viral isolation [ 118 , 
 134 ]. CPE can often be seen on the fi rst passage of NSDV in BHK cells at 3–6 days 
post inoculation [ 118 ,  134 ]. Other cell lines may require multiple subinoculations 
before CPE develops [ 134 ]. Immunofl uorescent staining can detect the virus as soon 
as 1–3 days postinoculation [ 118 ]. Serological tests include indirect immunofl uores-
cence, complement fi xation, ELISA, immunodiffusion, or hemagglutination inhibi-
tion tests [ 118 ,  134 ]. One disadvantage of serology is that cross-reactions can occur 
with other nairoviruses, including Dugbe and Crimean–Congo hemorrhagic fever 
viruses [ 117 ,  118 ]. Recently, a NSDV/GANV-specifi c real-time PCR has been devel-
oped for use in research [ 133 ]. Real-time PCR is reportedly more sensitive than virus 
isolation and may have diagnostic applications in the future [ 133 ].  

4.3.2    Vaccination, Control, and Eradication 

 There is currently no treatment or vaccine available for NSD. Routine treatment 
with costly acaricides is not recommended due to the negative environmental 
impact, as well as the development of resistance among tick populations [ 120 ,  129 ]. 
Experimental vaccines have been developed, but none have been tested in fi eld trials 
[ 127 ]. In endemic areas, control is best achieved by establishing high levels of herd 
immunity through continuous, low-level exposure to the tick and virus [ 118 ,  127 ]. 
In non-endemic areas where climatic factors may encourage the spread of nearby 
infected tick populations, aggressive tick control can be a useful short-term strategy 
to protect naïve populations [ 118 ,  127 ]. NSD is an OIE notifi able disease and is 
considered a foreign animal disease by many countries [ 118 ,  127 ].  

4.3.3    Public Health/One Health Crossover 

 NSDV and GANV can cause infections in humans in laboratory settings, whereas 
naturally occurring disease is rare [ 118 ,  125 ]. Human infections are characterized 
by a self-limiting, mild febrile disease [ 117 ], but may include other symptoms such 
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as fever, shivering, abdominal pain, back pain, and headache [ 129 ]. Neutralizing 
antibodies to GANV have been found in serological surveys of humans in southern 
and northern Indian states [ 122 ] and in workers on a goat farm in Sri Lanka [ 118 ]. 
Neutralizing antibodies to NSDV have been found in laboratory workers and the 
general population in Uganda [ 118 ]. Whereas laboratory infections with NSDV in 
Africa are apparently rare despite reports of accidental needle sticks [ 127 ], a num-
ber of laboratory-acquired infections with GANV have been recorded in India 
[ 129 ]. Some infections were attributable to needle sticks [ 119 ] whereas others were 
associated with handling contaminated glassware [ 118 ]. There is one report of a 
naturally acquired clinical case in a 16-year old Ugandan boy [ 130 ]. Overall, the 
cause of differences in laboratory-acquired infections rates between India and 
Africa are unclear but may be due to varying levels of surveillance, variations in 
virulence between NSD and GANV, or other host factors. 

 In India, GANV is likely to be circulating more widely than has been recorded. 
The virus can be isolated from a variety of tick vectors found across the country, 
and there is wide serological evidence of infection in both humans and animals 
[ 125 ]. In Africa, the greatest challenge to restricting geographic spread of NSDV 
is preventing movement of infected vectors, either on imported animals or through 
expansion of range from climatic change, such as increases in temperature and/or 
rainfall. Finally, NSD and Ganjam disease might be considered or may become 
emerging diseases in sub-Saharan Africa and the Indian subcontinent, respec-
tively, due to the complex interactions between the hosts and the environment. 
The ability of NSDV to replicate in multiple arthropod vectors, an anticipated 
expansion of tick habitats due to climatic change, and an increase in small rumi-
nant populations to meet growing demand for animal protein could lead to a favor-
able environment for expansion of NSDV into areas previously considered free 
from the disease.    

5    Reston Virus 

5.1     Etiologic Agent and Natural History 

5.1.1    Defi nition 

 Reston virus (RESTV) infection is a viral disease characterized by acute onset of 
generalized illness, with or without hemorrhage, in captive macaques and domes-
tic pigs. RESTV was fi rst discovered in captive crab-eating macaques ( Macaca 
fascicularis ) imported from the Philippines during a VHF epizootic in the USA in 
1989. Outbreaks involving this disease are rare, but recent recognition of domes-
tic swine as possible hosts raises concerns about introduction of RESTV into the 
human food chain.  
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5.1.2    Etiology and Evolution 

 RESTV is a member of the  Ebolavirus  genus, family  Filoviridae , order 
 Mononegavirales  [ 135 ]. Its virions are enveloped and have a distinct fi lamentous 
shape characteristic of all fi loviruses.  

5.1.3    Geographic Distribution and Economic Effects 

 RESTV is one of only two members of the family  Filoviridae  that has not been 
associated with clinical disease in humans (the other being Lloviu virus). Until its 
re-emergence in 2008 in swine in the Philippines, RESTV was only known to 
infect captive crab-eating macaques. All three outbreaks, recorded in the USA and 
in Italy, were associated with crab-eating macaques imported from the Philippines 
islands, making this fi lovirus the only known ebolavirus that routinely circulates 
outside of Africa.  

5.1.4    Natural History, Transmission, and Host Range 

 The fi rst documented outbreak occurred in 1989 and was associated with a primate 
research facility in Reston, Virginia, USA. Outbreaks occurred simultaneously in 
Alice, Texas and Philadelphia, Pennsylvania. The source of the virus was traced 
back to a primate breeding and export facility in the Philippines. Coinfection of 
nonhuman primates with the arterivirus simian hemorrhagic fever virus (SHFV) 
was also noted during this outbreak. 

 In 1992, a similar incident occurred in Siena, Italy. This outbreak also involved 
crab-eating macaques purchased from the same vendor in the Philippines involved 
in the 1989 epizootics. Two individuals that worked on the farm during this time 
were found to have immunoglobulin G antibodies to RESTV, but they did not 
develop clinical disease [ 136 ,  137 ]. 

 RESTV was once again imported into the USA from the same vendor in the 
Philippines in 1996. This outbreak involved a private quarantine facility in Alice, 
Texas. SHFV was once again isolated from a proportion of the RESTV-positive 
animals. This outbreak was discovered through laboratory testing requirements 
instituted after the 1989 outbreak and was contained by strict quarantine measures. 
No illness or seroconversion occurred in humans at the facility [ 136 ]. 

 In 2008, RESTV re-emerged in domestic swine ( Sus scrofa domesticus ) in the 
Philippines. The animals involved in this outbreak were concurrently infected with 
a highly pathogenic strain of porcine reproductive and respiratory syndrome virus 
(PRRSV), an arterivirus related to SHFV. Coding-complete RESTV genome 
sequences were obtained for several isolates during this outbreak, but no discern-
ible evolutionary relationship to the RESTV isolates from macaques was evident 
[ 138 ,  139 ]. 

11 Viral Hemorrhagic Fevers of Animals Caused by Negative-Strand RNA Viruses



276

 As both SHFV [ 140 ] and PRRSV [ 138 ] have been isolated from animals infected 
with RESTV, researchers speculate that arteriviruses may act as facilitators of 
RESTV infection or (severe) disease.   

5.2     Pathogenesis and Clinical Features 

5.2.1    Pathogenesis and Immunology 

 Because of the nature and hazard of animal experiments involving live fi lovirus 
work, the pathogenesis and immunological response to RESTV infection has not 
been fully elucidated [ 136 ,  141 ]. 

 Generally, RESTV pathogenesis is related to an impairment of the immune 
response along with vascular dysfunction, the degree of which is correlated with the 
severity of the clinical signs. Compared to experimental infection with other ebolavi-
ruses, RESTV lesions appear less severe in nonhuman primates. Viral replication 
occurs in macrophages, interstitial fi broblasts, intestinal epithelial cells, hepatocytes, 
salivary gland epithelium, transitional epithelium of the urinary bladder, and renal 
tubular epithelial cells. Viral inclusions have been infrequently found in eosinophils, 
adrenal cortical cells, and villous or crypt epithelial cells of the gut. Antigen has been 
detected in splenic mononuclear cells. Experimentally challenged animals have 
exhibited hepatocytic inclusion bodies and extensive fi brin deposition in the splenic 
red pulp. Systemic coagulopathy was demonstrated by the observation of fi brin 
thrombi in the hepatic and splenic sinuses and the capillaries of the renal medullae. 
Vascular dysfunction and loss of endothelial barrier function contributes to the 
outcome of RESTV infections. Ischemic necrosis is generally present upon gross 
examination of the carcass and is related to the extent of viral replication in the tissues 
[ 136 ,  141 ,  142 ].  

5.2.2    Incubation Period, Clinical Signs, and Gross Lesions 

 During the Reston outbreak in 1989, clinical manifestations of disease in nonhuman 
primates included an abrupt onset of depression, lethargy, anorexia, diarrhea, swollen 
eyelids, enlarged spleens and kidneys, and generalized respiratory signs, including 
cough and nasal exudates. Hemorrhage was only present in 1 % of the animals 
infected. Death typically occurred within 2–7 days after the onset of clinical dis-
ease. Leukocytosis with accompanying lymphopenia was also a prominent fi nding 
[ 137 ,  143 ]. Experimental challenge studies in nonhuman primates have documented 
dramatic increases in blood urea nitrogen values when the animals became mori-
bund, suggesting that renal failure is a terminal event in RESTV disease. Few of the 
experimentally infected animals survived long enough to develop a neutralizing 
antibody response [ 136 ]. 

 Viral challenge studies in pigs have demonstrated replication and shedding of 
RESTV from the nasopharynx in the absence of clinical disease, confi rming the 
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possibility of asymptomatic infection. Nasopharyngeal involvement in shedding of 
the virus suggests an aerosol route of transmission from pig to pig. In six of eight 
infected animals, the highest levels of virus replication were observed in the lung 
and lymphoid tissues, with infectious virus also being isolated from muscle tissue 
samples. Linking the outbreak in pigs to the challenge study, fi ndings suggest that 
preexisting respiratory disease might facilitate an increase in RESTV viral replication 
in pulmonary tissue [ 139 ]. Fecal shedding of virus was also observed.  

5.2.3    Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 A wide range of clinical outcomes has been demonstrated through both natural and 
experimental infections with a number of fi loviruses, including RESTV. Relatively 
minor genetic differences between variants of the ebolavirus may result in signifi -
cantly different outcomes of infection. Rapid changes associated with the virulence 
of a number of variants have been documented following relatively few passages in 
either cell culture or animal models [ 144 ]. During the Reston outbreak in 1989, 
nonhuman primate lethality was greater than 80 %.   

5.3     Diagnosis and Control 

5.3.1    Diagnosis and Epidemiology 

 Bats are suspected as potential reservoirs for RESTV. The host range of RESTV has 
not been fully elucidated. Based on available data, nonhuman primates, pigs, bats, 
and humans should all be considered as potential hosts. In the laboratory setting, an 
extensive range of cell lines originating from a wide variety of vertebrates can be 
infected by the virus [ 144 ,  145 ]. 

 RESTV infections can be diagnosed by detecting antigens with immunostaining 
or with an antigen-capture ELISA. Viral RNA can be detected by RT-PCR, and 
numerous cell lines are useful for viral isolation. Electron microscopy can be used 
for virus particle identifi cation in tissues. Serologic tests include IFA, ELISA, and 
immunoblotting techniques. The current recommendation is to work with potentially 
infectious RESTV under Biosafety level-4 (BSL-4) precautions [ 146 ].  

5.3.2    Vaccination, Control, and Eradication 

 Clinically approved and reliable RESTV pre- and/or post-exposure prophylaxis is not 
currently available. Guidance for infection control measures for VHFs, including 
ebolavirus infections, are available [ 144 ]. 

 Quarantine of nonhuman primates and strict biosecurity measures during impor-
tation protect healthy nonhuman primates and humans from potential exposure. 
During epizootics, suspect animals should be isolated and then euthanized once 
infection has been confi rmed. 
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 Effective measures to prevent infection of domestic swine have not yet been 
established. Normal biosecurity measures, with the addition of protection from bats 
and nonhuman primates, are recommended.  

5.3.3    Public Health/One Health Crossover 

 The emergence of RESTV in the human food chain, through the involvement of 
domestic pigs, has prompted public health concerns. Serologic studies indicate the 
virus can be transmitted to humans, mainly those occupationally exposed to infected 
pigs. To this date, no clinical disease in humans has been described; exposure has 
only been documented through serological testing. Differences in the swine isolates 
from the 2008 outbreak from previous nonhuman primate isolates suggest either a 
distinct spillover event from an unidentifi ed host, or that pigs could possibly act as 
asymptomatic reservoir hosts. The studies performed by Marsh et al. demonstrate 
the need to further understand RESTV infection in pigs to better assess the potential 
risks posed to humans [ 139 ,  147 ]. 

 The World Health Organization’s expert consultation group concluded that 
RESTV should be considered potentially pathogenic for humans [ 144 ].    

6     Rift Valley Fever Virus 

6.1     Etiologic Agent and Natural History 

6.1.1    Defi nition 

 Rift Valley fever (RVF) is an arthropod-borne viral disease caused by Rift Valley 
fever virus (RVFV) that may be an acute, severe disease in animals and humans 
characterized by high rates of abortion, fever, and weakness. The disease results in 
signifi cant economic losses due to “abortion storms” in RVFV-infected livestock 
(Fig.  11.9 ).   

6.1.2    Etiology and Evolution 

 RVFV is an ambisense, single-stranded RNA virus of the family  Bunyaviridae , 
genus  Phlebovirus . All isolates to date are serologically similar, but strains exhibit 
variable virulence. RVF was fi rst described in sheep in the African Rift Valley 
around 1900, but the virus was not isolated until 1930 [ 148 – 151 ]. 

 RVFV appears to evolve signifi cantly during interepidemic periods, as well as 
during outbreaks [ 152 ,  153 ]. However, strains of RVFV are surprisingly closely 
related given the evolutionary potential of the virus [ 150 ,  151 ]. This relatively low 
sequence variation in RVFV strains could be due to the constraints of replication in 
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phylogenetically diverse species to complete the alternating host (chordates and 
arthropods) cycle [ 150 ,  154 ], a long-term maintenance strategy of RVFV under dry 
conditions (i.e., extended survival of transovarially infected eggs from  Aedes  
mosquitos), recent dispersal [ 150 ,  151 ], or other as yet unrecognized factors.  

6.1.3    Geographic Distribution and Economic Effects 

 RVFV can be found throughout Africa, including the island of Madagascar 
[ 149 ,  151 ,  155 ]. Endemic areas are mostly in Southern and Eastern Africa [ 156 ]. 
Endemic boundaries are defi ned by the location of infected mosquito eggs. 
Outbreaks occur in endemic areas following conditions of heavy rain and sustained 
fl ooding that favor hatching and growth of transovarially infected mosquito eggs 
(see below). In the past, outbreaks of RVF occurred in Africa at 5–15 year intervals. 
In 1950–1951, a major epizootic occurred in South Africa that resulted in 500,000 
sheep abortions and 100,000 sheep deaths [ 267 ]. The fi rst RVF cases affecting large 
numbers of livestock and humans identifi ed outside of Africa occurred in Saudi 
Arabia and Yemen in 2000. Serologic evidence in domestic and wild ruminants sug-
gests that unrecognized outbreaks or low-level transmission may occur between 
mosquitos and wild ruminants in interepidemic periods [ 157 – 159 ]. 

 The economic effects of RVF are due to abortion and direct losses of adult 
animals (mostly sheep and goats). Additionally, the trade restrictions and ancil-
lary effects on agriculturally related industries (e.g., transport, slaughter, feed) are 
signifi cant, as well as the costs of rebuilding devastated herds [ 160 ,  161 ]. The 
2007 outbreak in Kenya was estimated to have cost the economy KSH 2.1 billion 
(US$ 32 million) in total [ 161 ], and these losses prompted fears of proportional 
losses in the USA [ 162 ].  

  Fig. 11.9    Aborted bovine fetus and fetal membranes, edema and hemorrhage (hydramnion) from 
cattle infected with RVF.  Source : Plum Island Animal Disease Center       
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6.1.4    Natural History, Transmission, and Host Range 

 RVFV can infect many animals of many species, including sheep, cattle, goats, 
camels, primates, wild ruminants (e.g., African buffalo, wildebeest, antelopes), and 
some rodents (e.g., gray squirrels). The primary amplifying hosts are wild and 
domestic ruminants. Viremia without severe disease has been described in adult 
cats, dogs, horses, and some nonhuman primates, but severe disease can occur in 
newborn puppies and kittens. Rabbits, pigs, guinea pigs, chickens, and hedgehogs 
do not become viremic. RVFV has also been isolated from bats, but their role in the 
natural cycle remains unclear [ 149 ,  163 ]. 

 RVFV is arthropod-borne and infects a wide range of vectors. However, differ-
ences in vector competence probably condition the geographical distribution of the 
disease. Host selection by epidemic vectors clearly conditions the exposure of 
humans or animals by arthropods, and will affect incidence rates in an outbreak 
[ 164 – 166 ]. 

 RVFV is transmitted primarily by mosquitos and is amplifi ed in ruminant hosts. 
Serological surveys indicate that RVFV regularly circulates silently in endemic 
areas between wild ruminants and susceptible mosquitos of various species [ 157 , 
 159 ]. However, the principal mechanism of long-term maintenance of the virus in 
dry endemic regions is hypothesized to be through viral survival in transovarially 
infected mosquito eggs that require a period of dehydration before the eggs will 
hatch [ 151 ]. Barriers at any step can decrease or eliminate transovarial transmission, 
and physical or biological barriers probably defi ne which mosquitos are responsi-
ble for long-term maintenance and/or epidemic transmission of RVFV [ 151 ]. 
Mosquitos of many different species (e.g.,  Aedes ,  Anopheles ,  Culex ,  Eretmapodites , 
 Mansonia ) can act as epidemic vectors of RVFV, with varying levels of compe-
tence. However, certain  Aedes  species most likely act as reservoirs for RVFV during 
interepidemic periods. 

 Long-term maintenance of RVFV in endemic locations begins when transovari-
ally infected eggs are laid by infected mosquitos and survive extended dry periods 
(many years). Grassland depressions known as “dambos” are thought to play a role 
in this process, as they fl ood and retain water during heavy rains, and are ideal egg- 
laying locations for  Aedes  mosquitoes [ 151 ]. Other areas that may experience alter-
nating fl ooding periods and dry periods such as rainwater drainage (i.e., “wadi”) 
agricultural systems or other fi elds play a role in outbreaks as well [ 160 ,  166 ,  167 ]. 

 A “typical” outbreak scenario for RVFV begins with large numbers of infected 
mosquito eggs hatching after a period of unusually heavy rains and sustained fl ood-
ing. Then, RVFV is amplifi ed in wild or domestic ruminants, spreads to the larger 
constellation of secondary transmission (epidemic) vectors, and spreads through 
local animal and (possibly) human populations. The 2007 outbreak in Kenya linked 
to fl ooding in the affected area provides a good example for this scenario [ 165 ]. 

 Transovarial transmission from mosquitos is most likely not suffi cient to main-
tain the virus over time [ 168 ]. Infected mosquitos must hatch and infect ruminant 
amplifying hosts to ensure broad horizontal spread to populations of local arthro-
pods, which will then lay infected eggs at a rate probably less than 10–15 % [ 169 ]. 
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 Culex  and  Anopheles  mosquitoes likely serve as the main secondary biological 
vectors [ 165 ]. Ticks and biting fl ies such as ceratopogonids, phlebotomids, stomox-
ids, and simulids may serve as mechanical vectors of the virus. RVFV has also been 
found in raw milk from infected animals [ 170 ,  171 ].   

6.2     Pathogenesis and Clinical Features 

6.2.1    Pathogenesis and Immunology 

 Wild and domestic ruminants are exposed by the bite of an infected vector. After 
exposure, the virus travels to and infects many tissues, but the hemorrhagic effects 
are due to the infection of the liver [ 149 ]. In neonatal lambs, gross lesions include 
an enlarged, yellow to orange, friable liver with subcapsular hemorrhages, extend-
ing to a severe necrosis sometimes called “hepatic liquefaction” [ 172 ]. The livers of 
infected adult sheep and cattle are typically darker with scattered small pale foci of 
necrosis (Fig.  11.10 ). Multifocal hepatic necrosis spreads to include the entire liver, 
and hemorrhage occurs secondary to consumption of clotting factors in the absence 
of replacement by normal hepatic metabolism.  

 Widespread cutaneous hemorrhages may be present. Hemorrhagic enteritis, 
petechial to ecchymotic hemorrhages and edema, and/or hemorrhagic diathesis may 
be present on the visceral serosa (Fig.  11.11 ). Edema, hemorrhage, and necrosis 
may be present in the gallbladder and lymph nodes. In rare instances, latent neurot-
ropism can lead to hydranencephaly [ 35 ,  36 ,  76 ]. High viral loads can be found in 
infected animals (allowing infection of naïve vectors), aborted fetuses, and fetal 
membranes.  

 A strong innate immune response is critical for control of the initial phase of 
virus replication [ 173 – 175 ]. An adaptive immune response develops rapidly follow-
ing infection, and is necessary for prevention of neurological disease in mice 
injected subcutaneously with RVFV [ 176 ]. By approximately days 4–8 post inocu-
lation, neutralizing antibodies are detectable, and they are critical to clearance of 

  Fig. 11.10    Adult bovine liver, massive necrosis from cattle infected with Rift Valley fever virus. 
 Source : Plum Island Animal Disease Center       
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virus from tissues. Neutralizing antibodies are also an easily measurable correlate 
of response to vaccines in sheep and mice [ 176 – 178 ], but they are not prognostic. 
Rather, it would appear that a well-regulated proinfl ammatory cytokine response is 
necessary to the overall resolution of RVFV infection [ 175 ,  176 ].  

6.2.2    Incubation Period, Clinical Signs, and Gross Lesions 

 Several studies have detailed the clinical and pathological course of disease and 
symptoms in naturally infected humans and animals [ 179 – 181 ]. The incubation 
period of RVF can be as long as 3 days in sheep, cattle, goats, and dogs. In newborn 
lambs, the incubation period is approximately 12–48 h [ 296 ]. Experimental infec-
tions usually become evident after 12 h in newborn lambs, calves, kids, and puppies 
[ 149 ,  182 – 184 ]. 

 Clinical signs of RVF vary with the age, species, and breed of the animal [ 149 ], 
and can range from a mild or asymptomatic infection to a severe and lethal acute 
infection. Long-term sequelae may occur in survivors with either type of initial 
infection [ 151 ]. In endemic regions, epidemics of RVF can be recognized by high 
lethality in newborn animals and abortions in adult sheep and cattle (i.e., “abortion 
storms”). In young lambs and calves, a biphasic fever, anorexia, lymphadenopathy, 
and hemorrhagic diarrhea may be followed by weakness and death within 36 h. 
Hemorrhagic diarrhea may be observed. 

 Abortion storms are the most characteristic sign in adult sheep and cattle (Fig.  11.9 ) 
[ 181 ]. Both adult sheep and cattle may have nasal discharge, excess salivation, loss of 
appetite, weakness, and/or diarrhea [ 17 ,  54 ,  224 ]. More severe symptoms that may 
occur in adult sheep include fever, weakness, a mucopurulent nasal discharge (some-
times bloodstained), melena, hemorrhagic or foul-smelling diarrhea, and vomiting. 
Compared to cows and goats, viremia in adult sheep was highest, and therefore sheep 

  Fig. 11.11    Adult bovine intestine, marked mesenteric and serosal edema from cattle infected with 
Rift Valley fever virus.  Source : Plum Island Animal Disease Center       
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pose the greatest risk for human or vector infection [ 172 ]. In adult cattle, fever, 
anorexia, weakness, excessive salivation, fetid diarrhea, and decreased milk produc-
tion have been reported. Icterus may also be seen, particularly in cattle [ 149 ]. 

 Similar but milder infections occur in adult goats [ 185 ]. Adult camels do not 
develop signs other than abortion, but young animals may have more severe disease. 
Viremia without severe disease may be seen in adult cats, dogs, horses and some 
monkeys, but severe disease can occur in newborn puppies and kittens [ 184 ,  186 ]. 

 The livers of infected adult sheep and cattle are typically darker with scattered 
small pale foci of necrosis. There may be widespread cutaneous hemorrhages. 
Petechial to ecchymotic hemorrhages may be present on the visceral serosa. 
Hemorrhagic enteritis and hemorrhagic diathesis may also be present. Edema, hem-
orrhage, and necrosis may be present in the gallbladder and lymph nodes. In rare 
instances, latent neurotropism can cause hydranencephaly.  

6.2.3    Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 RVF is most consistently known for presentation with abortion storms and high 
lethality that can approach 100 % in neonatal lambs and can range from 10 to 70 % 
in calves [ 17 ,  224 ]. For animals over a week of age, lethality is typically reduced to 
20–30 %. A similar lethality is seen in infected ewes, and the case-fatality rate is 
about 10 % in adult cattle [ 179 ,  180 ,  187 ].   

6.3     Diagnosis and Control 

6.3.1    Diagnosis and Epidemiology 

 In areas where the disease is known to occur, RVF may be suspected based on clinical 
signs, insect activity, concurrent disease in animals and humans, rapid spread of the 
disease, and the presence of environmental factors that favor hatching of infected 
mosquito eggs. Laboratory tests are required to confi rm the diagnosis. 

 RVF can be diagnosed by isolation of the virus from the blood of febrile animals. 
RVFV can also be recovered from the tissues of dead animals and aborted fetuses; 
the liver, spleen, and/or brain are generally used. RVFV can be grown in numerous 
cell lines including BHK cells, grivet kidney (Vero) cells, chicken embryo reticu-
lum, and primary cultures from cattle or sheep. Hamsters, adult or suckling mice, 
embryonated chicken eggs, or 2-day-old lambs can also be used for virus isolation 
[ 151 ,  188 ]. 

 Viral titers in tissues are often high in infected animals, and a rapid diagnosis can 
sometimes be made with complement fi xation, neutralization, or agar gel diffusion 
tests on tissue suspensions. Viral antigens can also be detected by immunofl uorescent 
staining of impression smears from the liver, spleen, or brain. RT-PCR testing can 
detect viral RNA [ 149 ,  188 ,  189 ]. 
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 Commonly used serologic tests include virus neutralization, ELISA, and hem-
agglutination inhibition tests. Immunofl uorescence, complement fi xation, radioim-
munoassay, and immunodiffusion are used less frequently. Cross-reactions with 
other phleboviruses can occur in serologic tests other than virus neutralization 
[ 149 ,  151 ,  190 ,  191 ]. 

 The epidemiology of RVFV is defi ned by its natural history. The genome struc-
ture and promiscuous host range of RVFV would seemingly indicate a large, but as 
yet unrealized, evolutionary potential for RVFV. However, viral spread seems 
restricted, possibly by interepidemic maintenance in mosquitos of one or a few spe-
cies, or host selection by insects during endemic and epidemic periods. Outbreaks 
“burn out” by killing or generating immunity in susceptible hosts (thereby removing 
amplifi cation of the virus).  

6.3.2    Vaccination, Control, and Eradication 

 Vaccines are generally used to protect domestic animals from RVF in endemic 
regions. LAV and inactivated RVF vaccines are both available. Administration of 
LAVs produce better immunity than inactivated RVF vaccines, but abortions and 
birth defects can occur in pregnant animals [ 192 ]. Development of a reverse genet-
ics system for RVFV [ 193 ] led to the generation of novel LAV based on natural 
mutants (e.g., clone 13) that are safer than previous LAVs such as MP-12 [ 174 ,  194 ]. 
Recent tests of one “second generation” vaccine in pregnant sheep indicate both 
safety and effi cacy [ 177 ]. Subunit, inactivated, and virus-like particle (VLP) vaccines 
are also in development [ 178 ,  195 ]. 

 Surveillance to monitor RVF in animal populations and immediate notifi ca-
tion upon detection are essential elements for the prevention and control of RVF 
[ 196 ]. However, human cases have been known to occur before the recognition 
of cases in animals [ 197 ]. Less commonly used preventative measures include 
vector control efforts (e.g., larvicides, dips, sprays), movement of stock to higher 
altitudes, and the confi nement of stock in insect-proof stables. Spraying and 
management of mosquito breeding grounds have both been tried, but these mea-
sures require a long-term commitment to be effective. Vector control efforts are 
often impractical or are ineffective because the efforts are instituted after an out-
break has begun. However, systems used to monitor variations in climatic condi-
tions can provide advance warning of conditions that favor mosquito hatching 
and signal the need to implement enhanced vector control measures in endemic 
areas [ 156 ]. 

 The movement of animals from endemic areas to RVF-free regions can result in 
epidemics through spread of the virus to local vectors [ 198 ]. During epidemics, 
vaccination of susceptible animals can prevent amplifi cation of the virus and protect 
people as well as animals [ 151 ].  
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6.3.3    Public Health/One Health Crossover 

 RVF is a zoonosis. Humans are susceptible to RVFV infection and may become 
infected through bites from infected mosquitos, through contact with the blood, 
other body fl uids, or tissues of infected animals, as well as consumption of uncooked 
meat or raw milk from infected animals. Humans working in slaughter facilities in 
endemic areas, laboratories, or hospitals are therefore at high risk of acquiring 
infections [ 149 ,  151 ,  199 ,  200 ]. 

 The use of the RVFV as a bioterrorism agent has been examined, and RVFV was 
found to have similar characteristics to other possible biothreats [ 201 ]. However, 
unintentional introduction of RVFV by an infected human or animal movement is a 
more likely scenario. Several researchers have examined this possibility, especially 
in the context of annual religious pilgrimages or festivals that bring travelers and 
animals from many different areas into a single, concentrated focus. Additionally, 
some of these activities involve the ritual slaughter of animals, increasing the risk of 
RVFV transmission to humans through tissue or blood exposure [ 159 ,  202 ,  203 ]. 

 Although rare, the hemorrhagic fever form of RVF is very serious. Signs appear 
2–4 days after the onset of illness, and are related to the severe liver dysfunction 
caused by massive hepatocellular lysis due to RVFV infection. Blood-tinged vomit 
and/or feces, ecchymoses on the skin, frank bleeding from the nose or gums, menor-
rhagia, and bleeding from venipuncture sites can all be seen, but none of these signs 
are characteristic of RVFV infection [ 196 ]. Case-fatality rates for humans in out-
breaks can be as high as 50 %, with death occurring 3–6 days after the onset of severe 
symptoms. The overall case-fatality rate for RVFV in humans is generally recognized 
as less than 1 % in documented outbreaks, with fatalities occurring mostly in patients 
who develop the hemorrhagic form of the disease [ 196 ].    

7     Viral Hemorrhagic Septicemia Virus 

7.1     Etiologic Agent and Natural History 

7.1.1    Defi nition 

 Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus infecting a wide range 
of fi sh of different species in both the marine and freshwater environments in 
Europe, Japan, and North America. The disease is listed as reportable to the World 
Organisation for Animal Health (OIE).  

7.1.2    Etiology and Evolution 

 VHSV has a linear, single-stranded negative-sense RNA genome of 11,158 nucleo-
tides with six genes in the order of 3′-N-P-M-G-Nv-L-5′ encoding nucleoprotein 
(N), phosphoprotein (P), matrix protein (M), glycoprotein (G), non-virion protein 
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(Nv), and RNA-dependent RNA polymerase (L) [ 204 ]. Similar to other rhabdovi-
ruses, G is the most effective antigen for producing neutralizing and protective anti-
bodies [ 205 – 207 ]. The presence of the unique Nv gene places this virus into the 
 Novirhabdovirus  genus of the family  Rhabdoviridae  along with infectious hemato-
poietic necrosis virus (IHNV) [ 15 ]. The bullet-shaped virus particles that measure 
70 nm in width by 180 nm in length are enveloped (Fig.  11.12 ), heat, acid and ether 
labile, and have a replicating temperature range of 4–20 °C with an optimum repli-
cating temperature of 10–15 °C [ 74 ].  

 The disease caused by VHSV was fi rst described in 1931 by Schaperclaus in 
rainbow trout ( Oncorhynchus mykiss ) known then as “infectious kidney swelling” 
[ 208 ]. Schaperclaus suspected the disease was caused by a virus based on his trans-
mission studies using fi ltered homogenate from infected fi sh. The viral etiology was 
confi rmed in 1962 by isolation of the virus in cell culture by Jensen [ 209 ,  210 ]. 
Jensen reproduced the disease in inoculated rainbow trout, fulfi lling Koch’s postu-
lates, and the disease became known as Egtved Disease, named after the village in 
Denmark where the disease was fi rst recognized. VHS is widely known as an infec-
tious disease of rainbow trout in Europe, where the virus causes signifi cant losses in 
commercial aquaculture [ 74 ,  211 ]. 

 Before the late 1980s, VHSV was considered to be a freshwater virus of rainbow 
trout restricted to continental Europe. In 1988, VHSV was detected in the ovarian 
fl uids of hatchery-spawned Chinook and coho salmon in Washington State, 
USA. This isolate was not of European origin based on ribonuclease fi ngerprinting 

  Fig. 11.12    Transmission electron micrograph of epithelioma papulosum cyprini (EPC) epithelial 
cells inoculated with viral hemorrhagic septicemia virus type IVa from a Pacifi c cod. Virions on the 
outside of an EPC cell and within cytoplasmic vacuoles ( arrows ). Unassembled nucleocapsid pro-
tein near the cell surface in the cytoplasm ( arrowheads ). Uranyl acetate and lead citrate (10,000×)       

 

K. Falk et al.



287

and comparative differences in the NP gene [ 212 ]. DNA probes were constructed 
based on this information to examine the identity of other virus isolates [ 213 ]. 
Subsequent isolation of the same virus (subsequently designated VHSV type IVa) 
from Pacifi c cod ( Gadus morhua ) and from Pacifi c herring ( Clupea pallasii ) [ 214 ] 
in the early 1990s and later in other marine forage species established that the virus 
was enzootic in the Pacifi c Northwest. This discovery prompted European investi-
gators to examine marine fi sh species in their home waters [ 212 ]. In early 2000, 
VHSV was isolated from dead marine and freshwater fi sh species in eastern Canada, 
forming a distinguishable subgroup [ 215 ] later designated as IVc [ 36 ,  216 ]. By 
2005, VHSV was recognized as the cause of extensive epizootics in freshwater fi sh 
in four of the fi ve Laurentian Great Lakes, including Lake St. Clair and fi ve of the 
inland lakes outside the Great Lakes Basin in Wisconsin, Michigan, New York, and 
Ohio [ 216 ,  217 ]. Additionally, viral nucleic acid was detected by qRT-PCR in the 
5th Great Lake— Lake Superior—in 2009 [ 218 ]. Archived samples indicated the 
virus had been present in the USA as early as 2003 [ 219 ]. Viral isolates from the 
2005–2007 outbreaks show very low genome diversity [ 217 ] and were genetically 
distinct from all other VHSV. They were subsequently classifi ed as a new sublin-
eage known as VHSV IVb [ 219 ,  220 ]. 

 Earlier phylogenetic analyses suggested that VHSV diverged into two primary 
clades about 500 years ago, forming the North American strain IV in the Northwest 
Atlantic and strains I–III in the Northeast Atlantic near Europe [ 221 ,  222 ]. Additional 
sequencing investigations using three genes that have high mutation rates (G, N, and 
Nv) supported the earlier phylogenetic analyses, but further elucidated the biogeo-
graphical evolution of VHSV that has produced the observed diversity of popula-
tions and/or sublineages [ 216 ]. However, more recent phylogenetic analysis [ 36 ] 
using the entire G gene sequences of the four known novirhabdoviruses suggests 
that VHSV and snakehead rhabdovirus (SHRV) likely share a common ancestor that 
is sister to that of infectious hematopoietic necrosis virus (IHNV) and Hirame rhab-
dovirus (HIRRV). Estimated bifurcation between VHSV and SHRV may have 
occurred about 1,000 years ago following a more ancient divergence of the genus. 
Because these two divergences involved relatives endemic to the Pacifi c (IHNV, 
SHRV, HIRRV), the bifurcations likely occurred in the Pacifi c Ocean rather than the 
North Atlantic as previously postulated. The primary clade divergence of the 
European VHSV lineages and that of the North American genotypes is now postu-
lated to have occurred less than 300 years ago. The virus then disseminated from the 
Pacifi c westward to East Asia, eastward to the North Atlantic/Baltic Sea, the Great 
Lakes, Atlantic Canada watersheds, and the Atlantic coast. Although the North 
Atlantic is still considered to be a major viral reservoir for continental Europe, it is 
much less so for North America [ 36 ] as suggested by isolations of the European 
genotype III from the nearby offshore Flemish Cap in 1994 [ 221 ,  223 ]. Spread of 
the virus to North America has not been reported since all North American isolates 
have been genetically type IV [ 36 ]. Regardless of where VHSV originated, dis-
semination and divergence are likely associated with natural fi sh migrations, 
human fi sh culture activities and transport of invasive fi sh, such as the round goby 
( Neogobius melanostomus ) as is implicated for transport of genotype IVb into the 
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Great Lakes [ 224 ]. Although contaminated ballast water is another possible source 
for VHSV, this route has not been implicated [ 225 ]. Collectively, this information 
provides credible evidence to support earlier hypotheses that the ancestral VHSV 
was likely of marine origin, and gave rise to the four genotypes [ 212 ]. 

 Varying reports estimate the divergence of the European freshwater and marine 
strains to have occurred between 60 [ 226 ] and 150 years ago [ 36 ] from a basal 
member of marine strain II, again indicating a marine origin of the European clade. 
Strain II diverged in the Baltic Sea while strains I and III are united by a common 
ancestor from which strain III diverged in the North Atlantic and North Sea, while 
strain I evolved in both freshwater and marine waters, producing several sublin-
eages. Strain I has been divided into fi ve sublineages, 1a–e [ 227 ]. Sublineage 1a 
may be the most divergent, probably due to rapid evolution driven by selective pres-
sures in aquacultured freshwater fi sh and might have originated in France [ 36 ]. This 
sublineage occurs in brown trout ( Salmo trutta ) and rainbow trout in freshwaters of 
several European countries and may represent three different subgroups. Sublineage 
1c occurs in rainbow trout exclusively from Denmark [ 216 ] and may have been the 
second subtype to diversify before the fi rst VHSV isolate DK-F1 was reported [ 36 ]. 
Further studies may place the Denmark sublineage in sublineage 1a but other stud-
ies using the full length G gene report that Danish isolates are distinct from other 
trout isolates originating in other European countries [ 228 ]. Sublineage 1b appar-
ently originated from asymptomatic marine fi sh and includes the rhabdovirus iso-
late associated with cod ulcus syndrome, one of the fi rst VHSV variants to be 
isolated from a marine fi sh that was originally thought to be a laboratory contami-
nant [ 229 ,  230 ]. Subtype 1b is likely a sister to 1a rather than a progenitor. Both 
possibly originated from a pathogenic freshwater rainbow trout strain that diverged 
around 1950 [ 36 ]. Sublineage 1d is a group of isolates largely from marine sources 
and likely evolved from the progenitor of the two sister taxa, 1a and 1b [ 36 ]. 
Sublineage 1e likely originated from marine fi sh in the Black Sea and is closely 
related to a rainbow trout isolate from Denmark [ 231 . Further sequence analysis is 
warranted to verify this conclusion [ 216 ]. Apparently, sublineage 1e may have been 
the fi rst subtype that had already diversifi ed before VHS was reported in the litera-
ture in 1938 [ 36 ]. 

 The divergence of the New World strain IV sublineages a, b, and c are less clear 
but IVb and IVc are possibly sisters diverging during the late 1980s from an ances-
tor that diverged from that of IVa 20 years earlier [ 36 ]. The occurrence of sublin-
eages IVa (from the east) and Ib (from the west) in Japan and Korea likely occurred 
from two separate introductions in the mid-to-late-1990s [ 216 ,  232 ].  

7.1.3    Geographic Distribution and Economic Effects 

 VHSV type I sublineage 1a occurs in fi sh of 13 species in Europe, mostly in freshwa-
ter brown and rainbow trout. Sublineage 1b occurs in fi sh of ten marine and estuarine 
species of the Baltic and North Seas. A single Japanese isolate from farmed Japanese 
fl ounder ( Paralichthys olivaceus ), identifi ed as Type Ib, was accidentally introduced 
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into Japan [ 233 ]. Sublineage 1c occurs in rainbow trout in Denmark. Sublineage 1d 
includes isolates from rainbow trout at a marine site and from Baltic herring ( Clupea 
harengus ). Sublineage 1e occurs in marine and estuarine brown trout and turbot 
( Scophthalmus maximus ) in the Black Sea [ 231 ]. VHSV type II infects fi sh of 
several marine species in Baltic Sea estuarine waters [ 231 ,  234 ]. VHSV Type III 
infects marine and estuarine fi sh of several species in the North Sea from the Flemish 
Cap [ 235 ] to the Norwegian coast [ 236 ], Skagerrak, and Kattegat, but has caused 
epizootics in marine-farmed rainbow trout in Norway [ 236 ]. 

 VHSV type IVa infects Northeastern Pacifi c salmonids [ 237 ,  238 ] and several 
marine fi shes [ 212 ,  239 ,  240 ]. The southernmost hosts of type IVa in the Pacifi c 
Northwest are likely to be Pacifi c sardine ( Sardinops sagax ) and Pacifi c mackerel 
( Scomber japonicas ) from southern California, where the transition to higher 
 seawater temperatures restricts viral replication further south [ 239 ]. In Asia, type 
IVa was fi rst detected in the Japanese olive fl ounder [ 241 ,  242 ], and subsequently 
the virus has been detected in fi sh of several other species in Japanese and Korean 
waters [ 233 ,  243 ,  244 ]. Type IVb is enzootic in freshwater fi sh of at least 31 species 
in the Great Lakes [ 234 ], and a newly designated subtype—IVc [ 216 ]—occurs in 
marine and estuarine fi shes in North Atlantic waters. 

 Fish of approximately 82 species are susceptible to VHSV and encompass the 
bony fi sh orders of: Salmoniformes (salmon, trout, whitefi sh, grayling); Esociformes 
(pike, muskellunge); Clupeiformes (herring, pilchard, sprat); Gadiformes (cod, 
hake, burbot, pollock); Pleuronectiformes (fl ounders, soles, plaice, dab, halibut, 
turbot); Osmeriformes (smelt); Perciformes (perch, drum, sand lance, sand eels, 
gobies, temperate basses and sunfi sh); Scorpaeniformes (rockfi shes, sculpins); 
Anguilliformes (eels); Cypriniformes (minnows, carp); Cyprinodontiformes (mum-
michog); and Gasterosteiformes (sticklebacks, tubesnouts). Many of these fi sh 
develop only subclinical infections. 

 In addition to fi sh, VHSV IVb has been isolated from a leech ( Myzobdella lugu-
bris ) [ 245 ] and from  Diporeia  amphipods [ 246 ]. Experimentally, freshwater turtles 
could be infected by feeding them infected bluegills ( Lepomis macrochirus ) [ 247 ]. 
However, the ubiquity of natural fi sh hosts infected by VHSV likely precludes non-
fi sh vectors as important hosts in the natural history of VHSV, either for transmission 
or maintenance. A complete list of known and suspected VHSV hosts is provided by 
the OIE [ 234 ]. 

 VHS has caused serious economic losses in the rainbow trout industry within 
continental Europe, resulting in estimated annual losses of £40 million in sterling 
[ 211 ]. In Denmark, VHS has been virtually eradicated [ 228 ] through the application 
of strict biosecurity measures, but these measures have also been costly, sometimes 
causing a 50 % decrease in rainbow trout production [ 248 ]. The cost of VHS out-
breaks at two Danish Farms in 2000 has been estimated at €211,000 [ 249 ]. The 
Pacifi c herring roe fi shery in Prince William Sound, Alaska traditionally supported 
fi ve commercial fi sheries with an annual ex-vessel value of USD $8.3 million. The 
fi shery collapsed in 1993 due to several different factors [ 250 ], but some analyses 
have indicated that VHSV type IVa was a minor contributing factor [ 251 ]. Although 
in subsequent years VHSV has only been sporadically detected in Prince William 
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Sound herring, the fi shery has never recovered from those initial losses. The 2005–2007 
epizootic emergence of VHSV type IVb in the Laurentian Great Lakes region of the 
USA caused losses of tens of thousands of native fi sh, and caused the US and 
Canadian governments to place stringent restrictions on the movement and sale of 
live food fi sh, baitfi sh, and sport/game fi sh that might disseminate the virus. This 
caused a signifi cant economic hardship industry-wide in the Great Lakes states and 
Canadian provinces, which likely cost hundreds of thousands of US dollars in lost 
sales. This is a conservative estimate based on the most recent year available (1998 
agriculture census). Additionally, these data described the value of the industry in 
only four states bordering the lower Great Lakes (New York, Pennsylvania, 
Michigan, and Ohio) where VHSV was isolated. Total industry sales in these states, 
consisting of live food fi sh, baitfi sh and sport/game fi sh, were estimated to be worth 
$17.4 million in a 2006 analysis of the industry [ 252 ].  

7.1.4    Natural History, Transmission, and Host Range 

 Transmission of VHSV is primarily horizontal via contaminated fomites, through 
direct contact from fi sh to fi sh, or from virus released into ambient fresh or seawater 
from decomposing infected fi sh. The virus can be fairly stable for short periods of 
time outside the host, which facilitates environmental transmission. In a study 
investigating the transmission of VHSV subtype IVb via fomites, glass beads, two 
kinds of fi shing line, plastic bottle pieces, and metal pieces from soft drink cans 
could sustain infectious virus (when kept wet) for up to 10 days [ 253 ].   Urine and 
female sexual secretions from clinically diseased or carrier fi sh may also transmit 
the virus. Juvenile fi sh are usually more susceptible than older fi sh. 

 The average time to inactivate 99 % of VHSV particles (strains I and IV) in raw 
freshwater was 13 days at 15 °C and 4 days in raw seawater. VHSV survival was 
greatly enhanced in fi ltered freshwater held at 4 °C, in which some of the strains 
remained infectious for 1 year [ 254 ]. In a similar study, infectivity of subtype IVa 
virus in seawater at 15 °C was reduced by 50 % after 10 h, but viable virus could still 
be recovered after 40 h [ 255 ]. Naturally infected herring can shed up to 10 6.5  pfu/h 
while the minimum concentration required for horizontal transmission is much less 
at 10 1.5 –10 2.0  pfu/ml [ 255 ]. The titer of recoverable virus is also reduced by 90 % 
when VHSV-infected fi sh are subjected to commercial freezing and thawing [ 256 ]. 
Sexual secretions of Pacifi c herring are a potential source of horizontal transmis-
sion, where type IVa has been found at concentrations of 15 pfu/ml in seawater near 
spawning free-ranging herring [ 257 ]. Vertical transmission within fi sh eggs has not 
been demonstrated, but egg-associated virus on the surface does occur in trout. This 
surface-associated virus takes about 10 days to be eluted by fl owing water during 
incubation, promoting water-transmission to other susceptible hosts [ 258 ]. The primary 
portal of entry of VHSV in trout is considered to be the gills. 

 VHSV has not been isolated from fecal material of either sex, nor from male 
seminal fl uids in trout [ 74 ]. Experimental oral transmission in juvenile pike 
( Esox lucius ) [ 74 ] and juvenile rainbow trout [ 259 ] is possible using infected fi sh or 

K. Falk et al.



291

infected feed homogenate. VHSV replication in the stomach was suspected to be 
the portal of entry for systemic infection and suggests the potential for infectious 
virus to be shed in the feces [ 259 ]. The presence of VHSV subtype IVa in the feces 
of juvenile Pacifi c herring is unknown, but the virus replicated in the submucosa of 
the intestinal tract [ 260 ]. Should the virus gain entry into the intestinal lumen of 
Pacifi c herring, the virus may be capable of surviving passage through the gut. 
VHSV-infected fi sh regurgitated by piscivorous birds are still infectious, but the 
virus does not survive passage through the avian gastrointestinal tract [ 261 ].   

7.2     Pathogenesis and Clinical Features 

7.2.1    Pathogenesis and Immunology 

 Some of the marine strains of VHSV are relatively apathogenic, whereas others are 
highly virulent for some of their hosts. The occurrence of VHS in general is depen-
dent on the optimum host, life stage, and water temperature. Sublineages Ia and Ic 
affecting rainbow trout are highly virulent and represent most of the descriptions in 
the older literature. In trout, VHSV is endotheliotropic, causing a systemic infection 
and producing histopathological changes in affected organs. Pyknosis and karyor-
rhexis occur in tissues of the kidney, pancreas, and spleen. Focal necrosis of liver 
hepatocytes (coagulative) and pancreatic acinar cells (lesser degree than liver) is 
noted. Some accompanying hemorrhage in the dorsal skeletal musculature may be 
present, but necrosis of muscle bundles is not apparent [ 74 ].   

 The disease caused by sublineage IVa in the extremely susceptible Pacifi c her-
ring exposed to water-borne virus is an acute systemic infection that transitions into 
a chronic neurologic phase. Immunohistochemical staining demonstrates the pres-
ence of the virus in affected tissues (Fig.  11.13 ) [ 260 ]. In the acute phase, epidermal 
thickening is followed by infection of fi broblasts within the fi n bases and dermis, 
causing severe cell necrosis and some hemorrhaging (Fig.  11.14 ) [ 260 ]. At this 
stage, systemic infection causes cell necrosis of the kidney interstitial cells, diffuse 
splenic necrosis, and focal necrosis of liver hepatocytes (coagulative), exocrine aci-
nar cells of the pancreas, and connective tissues cells of the submucosa. Minor cell 
degeneration is also present in the meninges of the brain. Immunohistochemical 
staining demonstrates viral persistence in the meninges and parenchyma of the 
brain (Fig.  11.13 ) and sometimes peripheral nerves with clearance of the virus from 
other tissues [ 260 ]. Cellular changes in the brain may consist of varying degrees of 
diffuse nuclear pyknosis and karyorrhexis to very small multifoci of necrosis in the 
granular layer of the optic tectum, most often near lobe attachment to the cerebellar 
valvula (TR Meyers, unpublished). 

 The systemic disease caused by subtype IVb results in histopathological changes 
that include general vasculature congestion of the fi ns, gills (with necrosis in some 
species), spleen, and ovary. Skeletal muscle and subcutaneous hemorrhages are 
noted (e.g., swimbladder). Other manifestations include multifocal vacuolation and 
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  Fig. 11.13    Immunohistochemical staining (brown foci) demonstrating viral hemorrhagic septicemia 
virus (VHSV) type IVa antigen in tissues of experimentally infected juvenile Pacifi c herring at 7 and 
8 days post-exposure.  Top left : exocrine pancreas with abundant viral antigen ( arrows ) and pyknotic 
cells ( arrowhead ) (400×);  Top right : several hepatocytes in liver containing viral antigen ( arrows ) 
(200×);  Bottom left : optic lobe of the brain with viral antigen in cells of the outer granular layer 
( arrows ), in neurons of the myelinated parenchyma ( arrowhead ), and meninges ( fi lled arrow ) (200×). 
 Bottom right : trabecular muscle fi bers of the heart ventricle with viral antigen ( arrows ) (200×). 
Procedure: Primary anti-VHSV monoclonal antibody, biotin conjugated secondary anti- mouse IgG, 
streptavidin horseradish peroxidase and color development with 3,3′-diaminobenzidine [ 260 ]       
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  Fig. 11.14    Histopathology of juvenile Pacifi c herring experimentally infected with VHSV type 
IVa sampled at various days post-exposure (PE).  Top left : intact epidermis ( arrowhead ) with hem-
orrhage ( arrows ) in the dermis, subcutis, and underlying skeletal musculature at 8 days PE (200×). 
 Top right : nuclear pyknosis and necrosis of renal interstitial hematopoietic cells ( arrows ) at 7 days 
PE, normal glomerulus in  center , and tubule  top left corner  (1,000×).  Bottom left : focal coagulative 
necrosis ( oval ) in liver at 21 days PE (400×).  Bottom right : focal necrosis of exocrine pancreas 
( oval ) and single cell nuclear pyknosis ( arrow ) at 7 days PE (40×). Hematoxylin and eosin       
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necrosis of liver hepatocytes, and interstitial edema and congestion with tubular 
necrosis in the kidney [ 262 ,  263 ]. The muskellunge ( Esox masquinongy ) was found 
to be the most susceptible host for this subtype [ 263 ]. 

 Type III VHSV in 1- and 3-year-old tank-reared turbot causes hepatocellular 
necrosis and hemorrhage, vacuolation of kidney tubules, and focal hemorrhaging 
behind the retina and within skeletal musculature. A feature not reported in 
other VHSV infections is marked necrosis of the ventricular muscle fi bers of the 
heart [ 264 ]. 

 Early on, trout growers in Europe learned that fi sh surviving VHS were immune 
to reinfection. Experimental work in France found that trout produced nonspecifi c 
interferon early in the infection (peak at 3 days), followed later by specifi c acquired 
immunity with signifi cant titers of both non-neutralizing and neutralizing antibod-
ies [ 74 ,  76 ]. Standardization of infection procedures reproduced the disease with 
predictable results and facilitated immunological investigations [ 265 ]. Early 
attempts at developing vaccines by immersion with inactivated or attenuated virus 
were successful in producing protection against challenge with virulent virus. 
However, not all of the virus strains generated protective immunity by these meth-
ods. In later studies, three serological subgroups of VHSV (I, II, III) emerged based 
on a panel of four monoclonal antibodies and one polyclonal neutralizing antibody, 
indicating that VHSV subgroups share several antigenic epitopes [ 266 ]. This sero-
grouping does not correspond to the genotypes determined by nucleic acid sequenc-
ing. More recently, specifi c monoclonal antibodies have also been developed for 
genogroup isolates IVa and I-1b [ 233 ]. 

 Naïve juvenile Pacifi c herring are highly susceptible to VHSV sublineage IVa by 
immersion exposure [ 267 ], but fi sh that survive infection are refractory to the dis-
ease [ 257 ,  268 ]. Unlike rainbow trout, DNA vaccination of herring against VHSV 
infection has not produced early nonspecifi c protection due to interferon, nor has it 
resulted in signifi cant measurable neutralizing antibody [ 269 ]. However, injection 
of plasma of herring that survived experimental epizootics of VHSV confers passive 
immunity to the disease to naïve herring, thus providing strong evidence for the 
presence of an adaptive humoral immune response [ 270 ]. 

 Neutralizing antibodies against type IVb have been detected in experimentally 
infected muskellunge that produced peak titers at 11–17 weeks post-exposure [ 271 ]. 
Additional fi eld studies testing the sera from 13 fi sh species collected from Lake St. 
Clair, Michigan, found neutralizing antibodies against sublineage IVb in fi sh of four 
of the species. These results demonstrated that detection of neutralizing antibodies 
may prove useful as a nonlethal approach for assessing the prevalence of prior IVb 
exposure in wild fi sh of several species in the Great Lakes [ 271 ].  

7.2.2    Incubation Period, Clinical Signs, and Gross Lesions 

 Clinical signs of VHSV infection (for sublineages Ia and Ic) by water exposure in 
rainbow trout occur within 4 days of infection, with shedding of virus in urine by 
3 days [ 211 ]. The disease in rainbow trout can occur in three forms: acute infection 
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with high mortality, chronic infection, and infection affecting the nervous system. 
External signs for acute infection include anorexia and lethargy to hyperactive 
swimming, darkened body, pale gills due to anemia, exophthalmia in one or both 
eyes, ascites, and petechial hemorrhages in the eye orbits, fi n bases, and the skeletal 
musculature. Internal signs vary with the severity of the disease, from mild petechial 
hemorrhages in the internal organs, body wall, and cavity to profuse bleeding. The 
kidney may be swollen, pale, and grossly necrotic, the spleen may be red and 
enlarged, and the liver may appear mottled with hyperemic areas or petechial hem-
orrhages. The gut is usually empty and contains a yellow mucoid cast. No external 
signs are present in rainbow trout with chronic infection, but some visceral pathol-
ogy is present. Infection affecting the nervous system is indicated by aberrational 
swimming behavior and viral tropism for the brain, where the virus may be detected 
in very high titers. Survivors of any form become carrier fi sh from which virus can 
be isolated from tissues, such as the kidney and brain [ 211 ]. 

 The incubation period for water exposure to a high dose (10 5.5–6.5  pfu/ml) of VHSV 
sublineage IVa in Pacifi c herring is 4–6 days. At the peak of infection at day 7, exter-
nal signs include 1–2 mm hemorrhages on the lower jaw, isthmus (throat), and around 
the eye. This dose is associated with very high mortality. Occasionally, fi sh exhibit 
extensive subcutaneous hemorrhaging. Fish exposed to a low dose of virus (10 1.5–

2.5  pfu/ml) die later, at 6–12 days post-exposure with peak mortality at 10–11 days. 
Those fi sh surviving to 21 days post-exposure have low or undetectable levels of 
virus [ 267 ]. Neurologic signs of erratic swimming behavior and darkened dorsal skin 
develop in the chronic phase in surviving infected fi sh [ 260 ]. Fish surviving the dis-
ease either clear the virus or become asymptomatic carriers [ 257 ,  268 ]. 

 The progression of disease caused by sublineage IVb varies in susceptible fi sh 
hosts, but generally occurs within 4–7 days of water exposure to high virus concen-
trations (10 5  pfu/ml). Lower exposure concentrations (10 3  pfu/ml) resulted in 
c linical disease in 8–26 days. In peracute mortal disease, clinical signs may be 
absent. In acute and chronic mortal infections, external signs may include lethargy, 
petechial hemorrhages on most fi ns, diffuse dermal erythema on the ventral abdo-
men, perianal swelling with partial anal prolapse, focal hemorrhages of the gill 
arches, and pale gills. Internal signs may include intramuscular hemorrhages, pete-
chial hemorrhages of the swimbladder, serosanguinous ascites, swollen testes and 
ovaries, and severe hepatomegaly [ 262 ,  263 ]. 

 VHSV in trout causes a hypochromic normocytic anemia with low erythrocyte 
counts, low hematocrit, and low hemoglobin values when compared to normal 
fi sh [ 272 ].  

7.2.3    Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 Disease and mortality caused by VHSV has occurred mostly in farmed European 
trout, turbot, and Japanese fl atfi sh, in wild marine fi sh in the Northeast Pacifi c, and 
wild freshwater fi sh in the Great Lakes region of North America. Morbidity and 
mortality rates are dependent on host age, size, and species, infecting viral 
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genotype, water temperature, viral dose, exposure route, and stress level from 
environmental conditions. Such conditions include as capture and handling, high 
population densities, spawning, nutritional deprivation, harassment by predators, 
and infection by other pathogens [ 214 ]. Generally, VHS causes greater losses in 
smaller, younger fi sh, the exception being reported in rainbow trout, turbot, and 
some Great Lakes fi sh in which VHS outbreaks caused signifi cant mortality in 
larger fi sh that were suspected to be naïve hosts. With the presence of a susceptible 
host for a given viral genotype and under optimum viral and environmental condi-
tions, mortality in juvenile rainbow trout, Pacifi c herring and various Great Lakes 
fi sh may approach 90–100 %. Case-fatality rate in turbot may range from 0 to 68 % 
when exposed to freshwater and marine VHSV isolates [ 249 ]. In disease outbreaks 
in Japanese fl ounder, mortality can reach 50–70 % [ 242 ]. In general, salmonids 
have very low or no mortality when exposed to marine and North American VHSV 
isolates, whereas injection may cause high mortality [ 249 ]. Experimental immer-
sion exposure of juvenile Atlantic cod ( Gadus morhua ) and Atlantic halibut 
( Hippoglossus hippoglossus ) to various types of VHSV (Ia, Ib, II, III, IVa) demon-
strated that these fi sh can become infected at a very low incidence with almost no 
VHSV-related fatality (0.12–0.08 %) [ 273 ], whereas injection of type III into cod 
produced mortality over 80 % [ 274 ]. Observed mortality has been somewhat higher 
in one outbreak of VHSV in captured juvenile Pacifi c cod ( Gadus macrocephalus ) 
naturally infected with type IVa. Affected fi sh developed external hemorrhages 
(Fig.  11.15 ) and sustained a cumulative mortality of 9 % from a population of 450 

  Fig. 11.15    Captive Pacifi c cod that died from natural infection from viral hemorrhagic septicemia 
virus type IVa infection. External hemorrhage ( arrows ) of the anal fi n and caudal peduncle ( left 
fi gure ) and ventral opercular area ( right fi gure )       
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over a 12 day period (TR Meyers, unpublished case report). Additional exposure and 
lethality/mortality studies for VHSV are further reviewed in Skall et al. [ 249 ].  

 The prognosis for infected fi sh is poor as no therapeutic option is available for 
treatment of disease caused by VHSV. Infected fi sh generally die, may recover and 
clear the virus, or become lifelong carriers. In many farmed operations, infected fi sh 
must be destroyed regardless of mortality rate to contain the spread of virus.   

7.3     Diagnosis and Control 

7.3.1    Diagnosis and Epidemiology 

 Standard diagnosis of VHS is by isolation of the virus based on viral CPE in suscep-
tible fi sh cell lines, and identifi cation of the virus by serological or nucleic acid 
detection methods. Cell lines used include the bluegill fry (BF-2) and EPC [ 249 ] that 
are inoculated with homogenized kidney/spleen pools, heart, or brain encephalon 
from larger affected fi sh, or homogenized whole fry less than 4 cm in length, or cen-
trifuged ovarian fl uids from spawning fi sh. BF-2 and EPC cells are typically more 
sensitive for the European genotypes or North American genotypes, respectively. 
Cell cultures are maintained in a slightly alkaline environment, with pH minimums 
of 7.6 for European strains and 7.0 for North American strains. Common serologic 
methods to identify VHSV include virus neutralization, immunofl uorescence, and 
ELISA using antisera that have been validated for sensitivity and specifi city. For 
instance, the monoclonal antibody IP5B11 [ 275 ] recognizes all VHSVs that have 
been isolated to date [ 276 ]. Current molecular methods used consist of standard 
RT-PCR and quantitative RT-PCR. 

 Detection of virus becomes problematic in subclinically infected carrier fi sh for 
which cell culture and PCR or other molecular methods used in parallel may or may 
not be useful for surveillance. Quantitative RT-PCR with confi rmatory cell culture 
has been validated for surveillance of type IVb in the Great Lakes [ 277 ]. 

 Natural outbreaks of VHS have been reported in farmed rainbow trout [ 74 ], 
farmed turbot [ 264 ], in both farmed and wild Japanese fl ounder [ 241 ,  242 ], in wild 
Pacifi c herring, pollock ( Theragra chalcograma ), hake ( Merluccius productus ), 
black cod ( Anoplopoma fi mbria ), pilchards in the Pacifi c Northwest [ 214 ,  240 , 
 278 ], and in wild fi sh of various species in the Great Lakes region of the USA. Mass 
mortalities in wild marine fi sh from which VHSV has been isolated have not been 
reported from Europe [ 249 ]. 

 VHS is a cool water disease most frequently occurring in the spring during fl uc-
tuating water temperatures. Temperatures above 15 °C are largely nonpermissive 
for viral replication [ 74 ]. The requirement for cool temperatures shortens the time 
course of the disease and decreases the cumulative lethality of outbreaks in warmer 
regions or times of year. 

 Rates of endemic, subclinical virus in wild marine fi sh of several species have 
varied from zero to upwards of 69 % (found in Atlantic herring) based on qRT-PCR 
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testing of samples, some of which were confi rmed by isolation of virus in cell cul-
ture [ 249 ]. These reservoirs represent point sources for infection and occasional 
disease for farmed trout and other susceptible cultured fi sh in a marine net-pen 
environment. The population effect of VHSV infection in wild marine fi sh is also 
relatively unknown. 

 The epizootiology of VHS in wild marine fi sh populations is probably best stud-
ied in Pacifi c herring in Prince William Sound, Alaska. VHSV is most prevalent in 
large schools of young-of-the-year herring during springtime transitional  seawater 
temperatures, sometimes causing disease and mortality. At the same time, sexually 
mature fi sh that are spawning on kelp may also be positive for the virus with no 
overt disease [ 279 ]. By the fall, the virus cannot be detected in either juvenile or 
adult fi sh [ 251 ]. Several factors may help to perpetuate the virus in the population: 
cohabitation of juvenile infected herring in nursery and spawning areas; shedding of 
virus from small numbers of adult infected herring and other reservoir species; and 
increased viral shedding during the spring spawning or other times of stress. 
Conversely, other factors infl uence the early stages of VHSV infection and deter-
mine whether or not epizootics in juvenile fi sh will occur at all, such as exposure to 
low virus concentrations in water, effect of ambient water temperature on virus 
amplifi cation, rates of fi sh-to-fi sh transmission, and herd immunity [ 280 ,  281 ]. 

 VHSV subtype IVb emerged in the Great Lakes in 2005, causing a large, multi-
species epizootic in wild fi sh through 2007. In 2008 and through 2010, endemic 
areas had overall lower rates of overt disease (detected by cell culture and qRT- 
PCR) than that occurring during the epizootic. This disease pattern suggests an 
initial outbreak in naïve populations of fi sh, which then developed some degree of 
acquired immunity. This hypothesis is supported by a medium-to-high prevalence 
of neutralizing antibodies in fi sh of some susceptible species [ 271 ]. Currently, 
VHSV subtype IVb has not been detected in any hatchery or cultured stocks of fi sh.  

7.3.2    Vaccination, Control, and Eradication 

 Despite investigations of killed vaccines, LAV, a recombinant vaccine in both pro-
karyotic and eukaryotic expression systems, and DNA-based vaccines, no commer-
cial vaccine is approved for use. Among the vaccines tested, the G-gene DNA 
plasmid constructs have been the most promising. Administration of 1 μg of vaccine 
to rainbow trout fi ngerlings (3–4 g) signifi cantly protected against disease as early 
as 8 days post vaccination (pv) to 168 days when the experiment was terminated. 
Early protection is attributed to activation of nonspecifi c defense mechanisms (such 
as interferon) associated with elevated Mx gene transcription. Later protection was 
assumed to be due to stimulation of the adaptive immune system and production of 
neutralizing antibodies [ 282 ]. This rapid activation of nonspecifi c innate immunity 
of short duration was further illustrated by another vaccination study in which fi n-
gerlings vaccinated with either VHSV or IHNV vaccines were protected from VHS 
at 4 days pv. This cross-protection was either lost or present at intermediate levels 
in IHNV-vaccinated fi sh at 60 days pv, depending on fi sh size [ 283 ,  284 ]. Later 
investigations established that VHSV DNA vaccination in 100 g rainbow trout 
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resulted in protection up to 9 months after an injection dose of 0.5 μg [ 285 ]. Similar 
DNA vaccination studies conducted with Pacifi c herring did not result in early pro-
tection, and much less robust overall protection at 6 and 15 weeks pv. The observed 
responses were assumed to be due to some form of adaptive immunity, although 
neutralizing antibodies have yet to be confi rmed in Pacifi c herring surviving infec-
tion by VHSV [ 269 ]. 

 The need for a mass delivery system (rather than impractical manual injection) 
has been an impediment to the use of vaccines in juvenile fi sh, in which the disease 
is most acute and economically debilitating. The success of intramuscular injection 
of nanogram doses of vaccine in conferring very high protection in fry as small as 
0.5 g could spur further development of an alternative delivery system [ 286 ]. 
Another signifi cant regulatory obstacle involves the varied public perception as to 
whether a DNA-vaccinated animal becomes a genetically modifi ed organism 
(GMO). A complete review of vaccines used in aquaculture is provided by Lorenzen 
and LaPatra [ 86 ]. 

 As with all infectious diseases, avoidance of VHSV provides the most reliable 
control strategy. Denmark has been exemplary regarding successful eradication in its 
rainbow trout industry, where the fi rst outbreaks of VHS were observed in the 1950s. 
An eradication program started in 1965 required biosecurity measures including 
virus-free water supplies, removal of infected fi sh stocks, fallowing, and disinfection 
of facilities and eggs, repopulating with fi sh stocks from registered VHSV-free pro-
ducers, and annual surveillance inspections for the virus [ 74 ]. There has not been a 
case of VHSV detected in Norway since 2009 [ 228 ] despite to active surveillance 
systems. Denmark’s eradication of the virus has been an example which reemphasizes 
that VHSV is mostly disseminated by transport of infected farmed fi sh and that the 
current trade regulations and biosecurity programs are working successfully to main-
tain approved VHSV-free zones [ 249 ]. Since the disease is not transmitted vertically, 
egg disinfection with iodophor compounds (50 mg/l) provides reasonable assurance 
of inactivation of any surface virus [ 287 ]. However, care must be exercised when rely-
ing on strict biosecurity to control a disease. In the Great Lakes region of the USA, 
investigators have found that the tannic acid used as an anticlumping agent for eggs 
destroys the virucidal properties of iodophor against VHSV sublineage IVb unless it 
is thoroughly rinsed from the eggs [ 287 ]. 

 Eradication of VHSV has been achieved in various rainbow trout farming loca-
tions in Europe through very stringent biosecurity measures. In other areas without 
such biosecurity, VHSV has become established in farmed fi sh stocks and in associ-
ated watersheds, where the virus and disease becomes enzootic in both cultured and 
wild carrier fi sh. 

 Selective breeding of rainbow trout is a promising approach for developing 
stocks resistant to VHS, but no resistant stocks are available commercially [ 234 ]. 
Various genetic crosses of rainbow trout with other char, trout, and salmons have 
generally resulted in varying degrees of resistance to VHSV [ 288 ,  289 ]. Most 
hybrids developed to date would be unlikely candidates for commercial culture and 
have more value in studying resistance mechanisms. 

 Control of the risk of reintroduction of VHSV from sea water net-pen culture of 
fi sh to freshwater aquaculture requires measures designed to minimize this risk. 
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Circumstantial evidence indicates that avirulent strains of VHSV could mutate into 
virulent forms by acquiring only a few amino acid substitutions [ 249 ]. Proposed 
control measures include the prohibition of raw fi sh used as feed despite the absence 
of an alternative artifi cial diet for certain fi sh species (trout are tolerant to artifi cial 
diets). Additionally, prohibitions on co-cultivation of rainbow trout with 
 VHSV- susceptible marine fi sh and the introduction of farmed fi sh from seawater to 
freshwater are important elements of a control program, even though broodstock 
can be spawned in seawater and the eggs disinfected before transfer to freshwater 
areas. Finally, approved virus-free status of coastal zones should remain unaltered 
to prevent any free trade between marine and freshwater approved or unapproved 
sites. If the virus-free status is removed, the resultant trade could easily introduce 
virus into areas that are free of virus. However, a “virus-free coastal zone” should 
be further defi ned to both protect the industry, as well as facilitate the detection of 
and response to legitimate outbreaks of disease.  

7.3.3    Public Health/One Health Crossover 

 VHSV is a poikilothermic virus. Contact with or consumption of infected fi sh poses 
no human or animal health concern. 

8     Other Negative-Stranded RNA Viruses Causing Viral 
Hemorrhagic Fever-Like Diseases 

8.1    Avian Infl uenza Virus (AIV) 

 Avian infl uenza (AI) ranges from an asymptomatic or mild infection up to a fatal 
disease of domestic and wild fowl (e.g., chickens, turkeys, migratory waterfowl), 
Generally, AI is considered a gastrointestinal disease in fowl [ 290 ]. However, with 
a highly pathogenic subtype of the virus, severe or fatal disease can occur. In chick-
ens, vascular disturbances can occur in many organ systems, and edema of the face 
and neck and associated structures (e.g., swollen combs, wattles, periorbital tissues) 
is a common clinical fi nding in affected fl ocks. However, petechiae, ecchymoses, 
cyanosis, and/or necrotic foci of those same structures can occur. Areas of diffuse 
hemorrhage on the legs and a hemorrhagic tracheitis similar to that seen with infec-
tious laryngotracheitis may be observed. Similarly, petechiae may be observed on 
the internal surfaces of many structures in or associated with the gut, and kidneys 
can be congested, indicating a fl uid disturbance in the tissue itself with a secondary 
effect on the body (i.e., dehydration). Ovaries may be hemorrhagic and/or necrotic. 
Lesions in turkeys and domestic ducks are similar, but may be less severe than that 
observed in chickens [ 291 ].  
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8.2    Bovine Ephemeral Fever Virus (BEFV) 

 Bovine ephemeral fever (BEF) is a severe disease that paradoxically usually 
resolves with a rapid recovery in the majority of cases. Part of a group of antigeni-
cally related rhabdoviruses, BEF has only been observed to cause disease in cattle 
and water buffalo. The disease is less severe in water buffalo ( Bubalus bubalis ), 
whereas many other wild ruminants have neutralizing antibodies and therefore 
appear to be protected. Bovine ephemeral fever virus is endemic in tropical, sub-
tropical, and temperate countries in Africa, Asia, Australia, and Japan, and follows 
the range of its arthropod vectors from the genera  Culex  or  Anopheles  (mosquitos) 
or  Culicoides  (gnats) [ 292 ]. 

 Clinical signs can be quite severe, and generally follow the signs seen with any 
severe infl ammatory disease. Vascular disturbances may be commonly seen as sub-
mandibular edema or foci of edema anywhere on the head or neck. In a small num-
ber of cases, greater hemostatic disturbances are evidenced by fi brin-rich fl uid in 
body cavities, including the pericardium and joint capsules. Petechial hemorrhages 
in lymph nodes are rare, as is necrosis of muscle. These fi ndings are likely second-
ary to the rise in serum fi brinogen concentrations seen in clinical disease, but these 
concentrations return to near normal within 2 weeks of recovery. Inappropriate clot-
ting could lead to exhaustion of the hemostatic system and to overt hemorrhage 
similar to that seen in other VHF-causing pathogens that attack the liver. Given the 
infl ammatory source of the signs, cattle usually respond to intensive treatment with 
anti-infl ammatory drugs and/or calcium to counteract the paralysis that develops 
secondary to calcium imbalances [ 291 ].  

8.3    Peste Des Petits Ruminants Virus (PPRV) 

 PPRV, a morbillivirus, causes a subacute/acute disease of goats and sheep that rarely 
exhibits hemorrhagic enteritis, consistent with its relationship to another morbillivi-
rus, rinderpest virus. PRR is generally considered a disease of the upper respiratory 
and gastrointestinal tract [ 293 ]. 

 In the acute form, the incubation period is 4–5 days, leading to a high fever for 
5–8 days before occasionally returning to normal. Coincidentally, a serous nasal 
discharge evolves, which may progress to a mucopurulent discharge. This dis-
charge can be severe enough to physically impair breathing. Small areas of necro-
sis may be seen on the nasal mucous membranes or the stoma, which may spread 
but rarely involve the basal layer of epithelium. In the upper respiratory tract, small 
erosions and petechiae can be seen on several structures, probably due to attack of 
lymphatic structures. The conjunctivae are usually congested, and severe diarrhea 
is often present. 

 Of the four chambers of the stomach, the abomasum will commonly have 
regularly outlined erosions that will ooze frank blood. Defi cits in the small 
intestine are generally limited to small streaks of hemorrhages, probably sec-
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ondary to the (sometimes severe) necrosis and/or ulceration seen in Peyer’s 
patches. In the posterior colon and rectum, “zebra stripe” lesions may form, 
similar to those seen in rinderpest. In fatal cases, death may occur 5–12 days 
after onset of disease. 

 PPRV transmission requires close contact. Upper GI or ocular secretions, 
and feces, are the main sources of transmissible particles. There is no known 
carrier state; infected animals only transmit the disease during clinical epi-
sodes [ 291 ].  

8.4    Rinderpest Virus (RPV) 

 RPV is a highly contagious virus of domestic and wild cloven-footed animals 
(ruminants and pigs) causing disease with a high case-fatality rate. Field strains of 
RPV vary widely in virulence, sometimes leading to self-limited disease outbreaks 
caused by virulent strains, but endemic maintenance of mild strains. Depending on 
multiple virus and host factors (e.g., virus strain, innate or acquired resistance of the 
animal, concurrent infections), RPV infection is associated with peracute, acute, or 
mild clinical signs. Hemorrhagic manifestations may be only present in the acute 
form as hemorrhagic diarrhea or gastroenteritis with intestinal mucosal hemor-
rhages. However, similar to PPR, the walls of the cecum and colon become edema-
tous, with blood possible in the lumen, and adherent blood clots on the mucosa. 
These signs are usually more severe in the upper colon and/or concentrated at the 
cecocolic junction. “Tiger striping” occurs at the colonic ridges due to congestion. 
In contrast to PPR, the omasum is the part of the stomach that will rarely show ero-
sions and hemorrhage [ 291 ]. 

 RPV has only one serotype, and immunity is lifelong, which allowed an eradica-
tion effort that was declared successful in 2011 [ 5 ]. No natural reservoir, vertical 
transmission, arthropod vector, or carrier state is recognized for RPV.  

8.5    Spring Viremia of Carp Virus (SVCV) 

 Also called infectious dropsy of carp or infectious ascites, SVC is a severe viral 
disease of some coolwater and warmwater fi sh which may have serious economic 
consequences. Morbidity can be as high as 100 %, and lethality of 70 % has been 
observed. Clinical signs include infl ammation, congestion, and hemorrhage of the 
swim bladder and some other internal organs, ascites, and petechial hemorrhages of 
gills and skin. Vasculitis and necrosis may be seen microscopically. However, these 
signs are not specifi c to SVCV (see IHNV, ISAV, and VHSV sections), complicat-
ing fi eld diagnosis [ 294 ]. 
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 SVCV spreads by horizontal transmission through diseased or dead fi sh, and some 
fi sh may become carriers with variable virus shedding and/or recrudescence (usually 
related to stress). Additionally, vector transmission through fomites, birds, or arthro-
pods may be important. Finally, water temperature affects transmission, probably 
through its effect on the host immune system. Prevention of SVC (in aquaculture 
facilities) occurs through stringent biosecurity and complete depopulation of affected 
populations as there are no effective vaccines or treatments for SVC [ 291 ].         
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             Core Message   Here we outline serious diseases of food and fi ber animals that cause 
damaging economic effects on producers all over the world. The only vector-borne 
DNA virus is included here (i.e., African swine fever virus), and the herpesviruses 
discussed have a complex epidemiology characterized by outbreaks that are linked to 
differing susceptibility of related animals to infection and/or disease. Much work 
remains to be done to fully explain the genetic and ecological determinants of disease 
for these complex viruses.  
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1     African Swine Fever Virus 

1.1     Etiologic Agent and Natural History 

1.1.1     Defi nition 

 African swine fever (ASF, also East African swine fever) is a contagious hemorrhagic 
viral disease of swine.  

1.1.2     Etiology and Evolution 

 ASF is caused by African swine fever virus (ASFV), a large and complex double- 
stranded (ds) DNA virus that produces enveloped virions. ASFV is classifi ed as 
the sole member of the species  African swine fever virus , genus  Asfi virus  (sigil 
 asfi  :  A frican  s wine  f ever v i rus), family  Asfarviridae  (sigil  asfar :  A frican  s wine 
 f ever  a nd  r elated [viruses]) [ 1 ]. 

 The ASF virion, approximately 200 nm in diameter, is complex with an icosahe-
dral shape, and is composed of several structural layers containing more than 50 
polypeptides [ 2 – 5 ]. This structure contains a core (“nucleoid”) that is approximately 
80 nm in diameter [ 6 ] and that is surrounded by two lipid bilayers [ 6 ,  7 ]. The icosa-
hedral capsid is mainly composed of the structural protein p72 [ 6 ,  8 ,  9 ]. An external 
membrane that originates from the plasma membrane coats the capsid during the 
budding process [ 2 ,  3 ,  10 ,  11 ].  
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1.1.3     Geographic Distribution and Economic Effects 

 ASF is classifi ed as a reportable disease by the OIE (World Organisation for Animal 
Health). The disease is of a worldwide concern due to its detrimental effect on swine 
breeding in enzootic areas or on international pork trading with countries free of 
the disease. 

 ASF was fi rst described in Kenya during the 1920s and was then recognized in 
other sub-Saharan countries [ 12 ], where the virus is endemic. During the 1950s, the 
virus spread from Africa to the Iberian Peninsula, where it remained endemic until 
its eradication in the mid-1990s [ 13 ]. Since then the European Union (EU) has been 
considered free of the disease, with the exception of the island of Sardinia. Outbreaks 
of ASF were reported in countries in the Western hemisphere including Haiti and 
the Dominican Republic (1978), Cuba (1971), and Brazil (1978). These outbreaks 
were successfully controlled and the disease was eradicated each time there was an 
outbreak in the West. Recent ASF outbreaks (2007) in domestic and wild pigs that 
originated in the Caucasus region, including Georgia, Azerbaijan, and Armenia, and 
southern and western Russia, Ukraine, Belarus, and Iran have brought concerns 
about the disease re-emerging outside the African continent. 

 The spread of ASF outside of Africa has resulted in important economic losses 
to swine industries wherever it occurred, mainly due to bans on international trading 
of pigs and pork products from affected countries, together with the implementation 
of costly control measures necessary to eradicate the disease [ 13 ]. The cost of 
 control and eradication of ASF in Cuba during 1980s is estimated to have totaled 
$9.4 million USD [ 13 ,  14 ], whereas the last 5 years of the eradication program in 
Spain led to expenditures of $92 million USD [ 13 ,  15 ]. Preventing the introduction of 
ASF into the USA is estimated to lead to a net benefi t of $450 million per potential 
outbreak [ 13 ,  16 ].  

1.1.4     Natural History, Transmission, and Host Range 

 Two types of transmission cycles are recognized in ASF epidemiology: “sylvatic” and 
“domestic” cycles [ 13 ]. In the sylvatic cycle, ASFV is maintained in the environment 
by actively circulating between desert warthogs ( Phacochoerus africanus) , bushpigs 
 (Potamochoerus larvatus) , and soft ticks of the genus  Ornithodoros . The presence or 
absence of competent ticks of various species in a particular geographical area condi-
tions the distribution and maintenance of ASFV in that environment [ 17 ]. Warthogs 
and red bushpigs only develop inapparent, subclinical infections with intermittent 
viremia [ 18 – 20 ]. The sylvatic cycle may occasionally be spread into domestic swine 
herds by infected ticks or direct contact with infected wild suids [ 21 ,  22 ]. In the 
domestic cycle, ASFV is maintained in swine herds mainly due to effi cient direct 
transmission of the virus among animals (for review, see [ 23 ]). 

 Persistent infections with ASFV are observed in warthogs and bushpigs, and in 
domestic pigs surviving acute viral infections [ 24 ,  25 ]. Similar long- term persistent 
infections in domestic pigs can also be generated by experimental inoculation [ 26 ]. 
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In these animals, genomic DNA (but not infectious virus) can be detected in periph-
eral blood monocytes by polymerase chain reaction (PCR) for up to 500 days 
post-inoculation.   

1.2     Pathogenesis and Clinical Features 

1.2.1     Pathogenesis and Immunology 

 The severity of the clinical presentation of ASF in domestic pigs depends on the 
virulence of the circulating virus. Presentations of ASF in infected herds range from 
acute and highly lethal to subclinical infections. The clinical appearance of ASF in 
swine herds may resemble that of other pig diseases such as classical swine fever, 
thus hampering diagnostic efforts that depend solely on clinical signs [ 12 ,  23 ,  27 ]. 

 In domestic pigs, ASFV infection mainly occurs via the oronasal route, with 
primary replication of the virus in tonsils followed by a period of viremia and further 
replication of the virus in organs of the hemolymphatic system. The primary cell 
types targeted by ASFV belong to the mononuclear-phagocytic system, including 
tissue macrophages and specifi c reticular cells [ 28 – 31 ]. 

 The role of various genes in the virulence of ASFV is not well understood. 
For instance, specifi c genes within the multigene families (MGFs) act as virulence 
determinants. A large deletion, in the left variable region of the genome, encom-
passing several genes within MGF360 and MGF530, signifi cantly reduces viral 
replication in macrophages and virulence in pigs [ 32 ]. Similarly, deletion of the 
thymidine kinase (TK) genes from ASFV reduced viral replication in macrophages 
and led to virus attenuation in pigs, suggesting an association between the ability 
to replicate in macrophages in vitro and virulence [ 33 ]. Besides some of the MGFs 
and TK, other ASFV genes have been linked to virus virulence, but do not affect 
virus replication in macrophages in vitro. Deletion of UK (DP96R), a gene 
expressed early in replication, from virulent ASFV isolates results in marked atten-
uation of the virus in pigs [ 34 ]. Similarly, deletion of the 23-NL gene from ASFV 
isolate E70 signifi cantly reduces virulence of ASF in swine. 23-NL, which encodes 
the NL protein, is similar to the human herpesvirus 1 (herpes simplex virus 1) neuro-
virulence factor ICP34.5, but does not affect in vitro ASFV replication in macro-
phages [ 35 ,  36 ].  

1.2.2     Incubation Period, Clinical Signs, and Gross Lesions 

 In the acute form of ASF, the incubation period ranges from 5 to 15 days. Affected 
animals exhibit fever and anorexia followed by congestion, ecchymoses, hemor-
rhage, and cyanosis of the skin, increased respiratory and heart rates, nasal dis-
charge, incoordination, bloody diarrhea, vomiting, and fi nally coma, followed by 
death (Fig.  12.1 ). The duration of survival after the development of clinical signs for 
animals infected with virulent ASFV isolates ranges from 2 to 9 days [ 37 – 41 ]. 
Typical hematological and clinical chemistry fi ndings in acute ASF include leukopenia 
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[ 25 ,  42 ,  43 ], B and T cell lymphopenia [ 44 ,  45 ], thrombocytopenia [ 42 ,  46 ,  47 ], and 
increases in concentration of acute-phase proteins [ 48 ,  49 ]. Pathological fi ndings 
include lymphocyte and mononuclear cell apoptosis [ 8 ,  50 – 53 ]; hemorrhage in 
lymph nodes, spleen, kidneys, heart, and respiratory and gastrointestinal tracts; 
congested serosae; and severe interlobular lung edema (Figs.  12.2 ,  12.3 , and  12.4 ) 
[ 12 ,  24 ,  54 – 60 ]. The extensive necrosis observed in affected tissues and the severe 

  Fig. 12.1    Swine: Multifocal cutaneous ecchymosis and hemorrhages associated with thrombocy-
topenia, with moderate to severe congestion, and cyanosis of the ears.  Source : Plum Island Animal 
Disease Center       

  Fig. 12.2    Spleen: Marked splenomegaly with severe splenic congestion.  Source : Plum Island 
Animal Disease Center       
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hemostatic and hemodynamic changes caused by the infection are likely the leading 
causes of death.     

 The duration of subacute ASF usually is 3–4 weeks. The most prominent clinical 
signs include remittent fever, loss of body condition, pneumonia, dyspnea, cardiac 
insuffi ciency, and swelling of the joints. Hemorrhages in lymph nodes and other 
tissues may be observed at necropsy but are not as prominent as those present in 
acute ASF [ 31 ].  

1.2.3     Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 Acute, subacute, and persistent forms of ASF can occur. Morbidity rates in outbreaks 
can approach 100 % in previously unexposed herds, and case fatality rates range 
from 0 to 100 % depending on the virus isolate, immune status of the herd, and other 
uncharacterized factors.   

  Fig. 12.3    Lymph node, 
gastrohepatic: Marked 
enlargement with diffuse 
hemorrhage.  Source : Plum 
Island Animal Disease Center       

  Fig. 12.4    Heart: Moderate, 
multifocal, ecchymotic 
epicardial hemorrhages. 
 Source : Plum Island Animal 
Disease Center       
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1.3     Diagnosis and Control 

1.3.1     Diagnosis and Epidemiology 

 Phylogenetic typing of ASFV strains based on the  (p72)  ( B646L ),  (p54)  ( E183L ), 
and  B602L  genes segregates temporally and geographically distinct ASFV isolates 
into 22 genotypes [ 61 ,  62 ]. Additionally, genomic heterogeneity has been reported 
among African isolates of ASFV associated with disease outbreaks in swine relative 
to isolates from ticks [ 63 ,  64 ]. Phylogenetic studies revealed relative strain homoge-
neity among isolates from all sources in Western Africa, Europe, and America, 
but relative strain heterogeneity among isolates from Southern and Eastern Africa 
[ 61 ,  65 ,  66 ]. A correlation between ASFV virulence, induction of heterotypic pro-
tection from infection with different ASFV strains, and ASFV genotype(s) has not 
been established. Outside the African continent, only isolates belonging to the West 
African p72 genotype I were usually detected until June 2007 when an ASF out-
break was reported in the Republic of Georgia, in the Caucasus region, presumably 
originating from feeding pigs with ASFV-contaminated pork [ 67 ]. The Georgia 
2007 isolate is related to p72 genotype II that is usually circulating in southeastern 
Africa. This outbreak confi rmed that the threat of ASF spreading to countries 
outside the African continent is high, and such a spread could be potentially devas-
tating for the global pig industry. 

 A variety of techniques are available for detecting ASFV virions, nucleic acid, or 
antibodies to ASFV. ASFV can be readily detected in samples from several tissues, 
including lymph nodes, kidney, spleen, lung, blood, or serum by means of virus 
isolation, hemadsorption, viral antigen detection (direct immunofl uorescence, DIF), 
or viral DNA detection (PCR). Serum is the preferred sample for antibody detec-
tion. Tissue exudates can also be used for viral detection by PCR and for antibody 
detection. 

 The persistence of anti-ASFV IgG antibodies for long periods of time in infected 
pigs provides the primary strategy for detection of subacute and/or chronic forms of 
the disease, which is essential for ASF eradication programs. Several techniques 
have been adapted to ASF antibody detection, but those most commonly used are 
enzyme-linked immunosorbent assay (ELISA), followed by confi rmatory tests such 
as immunoblotting, indirect immunofl uorescence, and the immunoperoxidase test. 
The most commonly used techniques for virus detection and identifi cation are the 
hemadsorption test, direct immunofl uorescence test, and molecular detection by 
PCR [ 68 ,  69 ].  

1.3.2    Vaccination, Control, and Eradication 

 Currently, no vaccine is available against ASF. Therefore, detection with elimination 
of infected pigs and preemptive slaughter of animals in contact with infected pigs 
are the only methods available to control/eradicate ASF [ 13 ,  15 ]. 
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 To date, experimental inactivated and/or subunit vaccines based on crude or 
semi-purifi ed extracts have been consistently unsuccessful in protecting pigs against 
ASF [ 30 ,  70 – 72 ]. However, pigs administered live-attenuated vaccines (LAV) such 
as low-virulence ASFV isolates, or tissue culture-adapted or genetically modifi ed 
viruses can develop protective immunity to challenge with homotypic viruses [ 13 , 
 33 ,  34 ,  36 ,  73 ]. Protective immunity induced through survival of disease or by vac-
cination rarely induces long-term resistance to heterotypic virus infection [ 74 ,  75 ]. 
Both antibodies and cellular immunity are thought to be important in the develop-
ment of a protective immune response against ASFV. Passive protection can be 
achieved by transferring ASFV-specifi c antibodies into animals [ 74 – 76 ]. While the 
overall importance of ASFV-neutralizing antibodies in protection is controversial 
[ 77 ,  78 ], there is evidence that CD8 +  lymphocytes are important in the protective 
response to ASFV infection [ 79 ]. 

 The ASFV genome encodes for proteins that both affect the degree of cytopa-
thology and modulate the host immune response. Changes in the secretion of che-
mokines play a role in pathogenesis by inducing altered states of coagulability and 
changes in vascular permeability [ 80 – 82 ]. ASFV infection of pig macrophages 
interferes with the innate immune response by affecting expression of interleu-
kin-8 (IL-8), interferon-α, and tumor necrosis factor-α [ 83 ]. These effects have 
been confi rmed in studies using ASFV deletion mutants. Deletions in the MGF 360 
or MGF 530 genes render viruses attenuated through stimulation rather than down-
regulation of interferon-α expression [ 84 ,  85 ]. The ASFV hemagglutinin (8DR), an 
analog of cellular surface T-lymphocyte antigen CD2, inhibits peripheral blood 
mononuclear cell response to mitogens [ 86 ,  87 ]. pA238L, a cellular Iκ-B analog 
[ 83 ,  88 ], affects NF-κB function leading to changes in the expression of several 
host antiviral mechanisms [ 89 ]. 

 ASF control programs are based on early detection of infected animals and 
depopulation of susceptible animals in the affected area. Depopulation is the primary 
countermeasure aimed at limiting viral “shed and spread” from infected animals. The 
speed with which infected herds and contacts are slaughtered, including proper dis-
posal of carcasses and disinfection of premises, may have an effect on disease spread, 
duration of the outbreak, and overall effectiveness of the control measures [ 90 ]. At a 
minimum, control measures should include elimination of infected herds, active sur-
veillance of herds within an established control zone, and restriction of animal and 
human movement within those zones. Eventually, depopulation of contact herds 
and/or neighboring herds might be necessary. Depopulation as a control measure will 
be effective in countries or geographic areas where pigs are housed in well-defi ned 
premises or pig farms. In areas where domestic pigs are kept in free-range systems 
or engage in scavenging, control through depopulation will be more difficult 
to achieve.  

1.3.3    Public Health/One Health Crossover 

 ASFV is not a zoonotic threat.    
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2     Malignant Catarrhal Fever-Causing Viruses 

2.1     Etiologic Agents and Natural History 

2.1.1    Defi nition 

 Malignant catarrhal fever (MCF) is an acute systemic viral disease caused by mem-
bers of the so-called MCF virus (MCFV) group [ 91 ]. MCF is primarily a disease of 
ungulates of the order Artiodactyla, primarily those of the families  Bovidae , 
 Cervidae , and  Giraffi dae  [ 91 ,  92 ]. MCF occurs worldwide wherever reservoirs are 
sympatric with clinically susceptible animals.  

2.1.2    Etiology and Evolution 

 At least 10 members of the MCFV group have been identifi ed, all of which are 
closely related gammaherpesviruses assigned to the genus  Macavirus  [ 91 ,  93 ]. The 
viruses coevolved with and are well adapted to their respective natural (reservoir) 
hosts. Adaptation of the viruses to clinically susceptible hosts varies signifi cantly, 
likely due to the duration of this coevolution. The adaptive process in non-reservoir 
hosts is generally expected to decrease the virulence of the disease, similar to the 
adaptation to coexistence of the virus with its reservoir host. Of the 10 MCFV mem-
bers, six are pathogenic in susceptible, non-reservoir hosts under natural conditions 
(Table  12.1 ) [ 94 ]. Additional members are likely to be recognized in coming years 
as ungulates are examined for MCFV-type viruses. The range of known susceptible 
animals is likely to expand given the increasing availability of specifi c laboratory 
tests to identify MCFVs. Membership in the MCFV group is defi ned by the pres-
ence of the 15A antigenic epitope and appropriate similarity in conserved regions of 
the DNA-dependent DNA polymerase gene [ 91 ]. The recent rapid growth of mem-
bership in the MCFV group notwithstanding, most natural outbreaks of MCF are 
still due to the two viruses originally incriminated in early outbreaks: alcelaphine 
herpesvirus 1 (AlHV-1) and ovine herpesvirus 2 (OvHV-2) [ 92 ,  95 ]. AlHV-1 is 
responsible for wildebeest ( Connochaetes )-associated (“African”) MCF [ 93 ,  96 ] 
and OvHV-2 causes sheep ( Ovis aries )-associated MCF [ 91 ,  92 ].

2.1.3       Geographic Distribution and Economic Effects 

 Wildebeest-associated MCF distribution corresponds to the distribution of free-
ranging black ( C. gnou ) and blue ( C. taurinus ) wildebeest in Eastern and Southern 
Africa (see Fig.  12.2  of [ 93 ]). Sheep-associated MCF occurs worldwide wherever 
sheep are raised alongside clinically susceptible end-stage hosts. Relative economic 
effects of the disease are listed in Table  12.1 . Morbidity as high as 50 % in herds of 
American bison and cervids can be economically catastrophic to producers.  
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        Table 12.1    Members of malignant catarrhal fever virus group   

 Virus 
(abbreviation)  Reservoir host 

 Clinically 
susceptible hosts a  

 Virus 
isolated 

 Economic 
importance 

 Alcelaphinae/Hippotraginae subgroup 
 Alcelaphine 
herpesvirus 1 
(AlHV-1) 

 Black and blue wildebeest 
( Connochaetes taurinus  
and  C. gnou , respectively) 

 Domestic cattle ( Bos 
taurus ) 

 Yes  Moderate 

 Alcelaphine 
herpesvirus 2 
(AlHV-2 b ) 

 Hartebeest ( Alcelaphus 
buselaphus ) 

 Barbary red deer 
( Cervus elaphus 
barbarus ) c  

 Yes  Minimal 

 Common tsessebe 
( Damaliscus lunatus ) 

 American bison 
( Bison bison ) 

 NA  NA 

 NA  Domestic cattle ( Bos 
taurus ) 

 NA  NA 

 Hippotragine 
herpesvirus 2 
(HipHV-1) 

 Roan antelope 
( Hippotragus equinus ) 

 NA  Yes  Minimal 

 Scimitar-horned oryx 
( Oryx dammah ) 

 NA  NA  NA 

 Gemsbok-MCFV  Gemsbok ( Oryx gazella )  NA  No  None 
 Caprinae subgroup 
 Ovine herpesvirus 
2 (OvHV-2) 

 Sheep ( Ovis aries )  Domestic cattle ( Bos 
taurus ) 

 No  Moderate 

 Wild sheep including 
moufl on ( Ovis aries  
orientalis group) 

 Most cervids  No  NA 

 Bighorn sheep ( Ovis 
canadensis ) 

 Eurasian elk ( Alces 
alces ) 

 No  NA 

 NA  American bison 
( Bison bison ) 

 No  Potentially 
severe 

 NA  European bison 
( Bison bonasus ) 

 No  NA 

 Red deer ( Cervus 
elaphus ) 

 No  Important 

 NA  Domestic pigs ( Sus 
scrofa domesticus ) 

 No  NA 

 NA  Water buffalo 
( Bubalus bubalis ) 

 No  Possible 

 NA  Banteng ( Bos 
javanicus ) 

 No  Important 

 Caprine 
herpesvirus 2 
(CpHV-2) 

 Domestic goats ( Capra 
hircus ) 

 Domestic pig ( Sus 
scrofa domesticus ) 

 No  Minimal 

 NA  Sika ( Cervus nippon )  NA  NA 
 NA  European roe 

( Capreolus 
capreolus ) 

 NA  NA 

(continued)
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2.1.4    Natural History, Transmission, and Host Range 

 The range of MCF-susceptible animals is remarkably broad. Each member of the 
MCFV group asymptomatically infects a particular reservoir host and (for those 
which are known to be pathogenic) one or more animals that develop clinical 
disease (Table  12.1 ). This division is not absolute. Lesions and/or disease can be 
induced in some reservoirs when the challenge dose is suffi ciently high [ 97 ]. 
Nevertheless, as general rule, reservoir hosts are well adapted to their specifi c 

Table 12.1 (continued)

 Virus 
(abbreviation)  Reservoir host 

 Clinically 
susceptible hosts a  

 Virus 
isolated 

 Economic 
importance 

 NA  Eurasian elk ( Alces 
alces ) 

 NA  NA 

 NA  White-tailed deer 
( Odocoileus 
virginianus ) 

 NA  NA 

 NA  Water buffalo 
( Bubalus bubalis ) 

 NA  NA 

 NA  Pronghorn 
( Antilocapra 
americana ) 

 NA  NA 

 MCFV-WTD d   Domestic goats ( Capra 
hircus ) 

 White-tailed deer 
 (Odocoileus 
virginianus ) 

 No  Minimal 

 South American red 
brocket ( Mazama 
americana ) 

 NA  NA 

 Ibex-MCFV  Nubian Ibex ( Capra 
nubiana ) 

 Bongo ( Tragelaphus 
eurycerus ) 

 No  Minimal 

 NA  Mountain anoa and 
anoa ( Bubalus 
quarlesi  and  Bubalus 
depressicornis , 
respectively) 

 NA  NA 

 Muskox-MCFV  Muskox ( Ovibos 
moschatus ) e  

 NA  No  None 

 Aoudad-MCFV  Barbary sheep 
( Ammotragus lervia ) 

 NA  No  None 

   Abbreviations :  NA  not available 
  a Additional information about clinically susceptible animals in [ 128 ] 
  b AlHV-2 from hartebeest and tsessebe may be different viruses [ 93 ] 
  c It is unclear whether the AlHV-2-like agent causing MCF in Barbary red deer and American bison 
is identical to original isolates of AlHV-2 from hartebeest and topi [ 130 ]; the agent causing MCF 
in bison was a topi isolate 
  d Proposed name is caprine herpesvirus 3 (CpHV-3) [ 91 ] 
  e There is circumstantial evidence that muskox-MCFV may be pathogenic in some muskox  
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MCFV, have only subclinical infections, and effi ciently shed cell-free virus, while 
MCF-susceptible animals are poorly adapted and shed little or (more commonly) no 
cell-free virus. This absence of viral shedding is the reason that the latter are consid-
ered end-stage hosts [ 93 ,  96 ]. 

 Although the classical forms of MCF due to AlHV-1 and OvHV-2 are essentially 
identical in clinical and pathological presentation, the natural epidemiology of the 
two agents is signifi cantly different. AlHV-1 is transmitted to cattle by newborn 
wildebeest calves during calving season [ 93 ,  96 ]. Most newborn wildebeest calves 
are infected and continuously shed virus via oculonasal secretions until 3–4 months 
of age. Those calves are the primary source of AlHV-1 for transmission. Essentially 
all age classes of wildebeest are infected, but adult wildebeest usually do not shed 
virus [ 96 ]. Sheep-associated MCF can occur any time in clinically susceptible ani-
mals are exposed, particularly when sheep are present in large numbers. Unlike 
wildebeest, and contrary to long-standing assumptions, the majority of lambs are 
not infected with OvHV-2 under natural fl ock conditions until after 2 months of age. 
Lambs aged 6–9 months are the most important source of virus in outbreaks [ 98 , 
 99 ]. Adult sheep can shed virus at any time in unpredictable patterns. Nasal shed-
ding is the predominant mode for transmission; each shedding episode from nasal 
secretions is short lived, typically less than 24 h [ 91 ,  99 ].   

2.2     Pathogenesis and Clinical Features 

2.2.1    Pathogenesis and Immunology 

 Researchers generally agree that MCF is a disease of dysregulated cell-mediated 
immunity [ 95 ,  100 ]. Beyond this point there is little agreement about the precise 
mechanisms resulting in clinical illness and lesions. A widely accepted hypothesis is 
that infection results in T-lymphoblast hyperplasia with unregulated cytotoxic activ-
ity by natural killer cells [ 95 ]. The failure of cyclosporine A to modulate the outcome 
of infection suggests that the pathogenesis is more complex than simple, unregulated 
lymphoid hyperplasia [ 93 ]. An interesting observation is that lesions of MCF mimic 
those seen in IL-2-knockout mice that develop infl ammatory autoimmune disease, 
indicating a possible role for IL-2 (or other cytokine modulators) in the pathogenesis 
for MCFV [ 101 ,  102 ]. Experimental studies using different viruses and hosts have 
generated confl icting results with regard to viral gene expression. Gene expression is 
either minimal with a latent profi le (e.g., AlHV-1 in cattle or laboratory rabbits) [ 95 , 
 100 ,  102 ] or progresses to the point of lytic viral gene expression (OvHV-2 in rabbits, 
domestic pigs, bison, or laboratory rabbits) [ 91 ,  103 ].  

2.2.2    Incubation Period, Clinical Signs, and Gross Lesions 

 In general, MCF is characterized by high fever, depression, ulceration of mucosal 
surfaces, and a progressive clinical course generally culminating in death or 
requirement for euthanasia [ 96 ]. The incubation period following natural exposure 
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or experimental intranasal challenge in most clinically susceptible hosts is 1–2 
months [ 104 ]. The incubation period of the disease during outbreaks varies. Two 
factors affecting the length of the incubation period are host genotype and challenge 
dose [ 105 ,  106 ]. Intravenous challenge results in a shorter incubation period (2–3 
weeks) [ 93 ,  96 ,  104 ,  107 ]. Initial signs in symptomatic animals are depression and 
fever (40–42 °C) followed by mucoid-to-mucopurulent nasal discharge, dyspnea 
with open-mouthed breathing, pharyngitis, mucosal lesions of the palate and tongue, 
and progressive bilateral keratitis (Figs.  12.5  and  12.6 ). Severe progressive bilateral 
keratitis starting at the limbus is considered a classical feature of the disease 
[ 108 ,  109 ]. Ulcerative colitis, typhlocolitis, and diarrhea may occur with passage of 
blood-tinged feces; these signs are particularly common in bison and most cervids 
(Fig.  12.7 ). Some animals display neurological signs [ 108 ]. Lymphadenopathy is 
prominent in domestic cattle [ 93 ,  96 ], but not other hosts (most cervids, American 
bison) [ 110 ]. The development of ulcers on the muzzle and in the oral cavity is a 
helpful clinical feature.    

 Terminally ill animals experience a fall in body temperature. Gross lesions 
involve multiple organs and refl ect three basic changes: generalized arteritis- 
phlebitis of medium caliber vessels, lymphoid proliferation with generation of atyp-
ical lymphoblastoid cells, and mucosal ulceration in the digestive, urinary, and 
respiratory tracts [ 93 ,  96 ]. The fl oridity of these features tends to be species-specifi c, 
but the histological presence of this trifecta, regardless of severity, should prompt 
the diagnostic consideration of MCF. Among other changes, hemorrhagic cystitis is 

     Fig. 12.5    Bison with acute 
MCF (experimental disease, 
as are Figs.  12.6 ,  12.7 , and 
 12.8 ): Ocular lesions are 
characteristic and bilateral. 
In this animal there is a zone 
of limbal edema (blue- 
discolored area) at 
corneoscleral junction due to 
keratoconjunctivitis       

  Fig. 12.6    Bison with acute 
MCF: Acute multifocal 
pharyngitis. Oral lesions are 
generally present, particularly 
in mucosa of pharynx, palate, 
and tongue       
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a useful diagnostic feature since it is uncommon to occur in other febrile diseases 
of ungulates presenting with MCF-like disease (Figs.  12.8 ) [ 92 ]. Most cattle die or 
are euthanized after a clinical course of 2–7 days [ 104 ].  

 A proportion of acutely affected cattle survive to develop chronic disease or to 
make an apparent recovery [ 108 ,  111 ]. Characteristic lesions of acute infection 
persist in such animals, particularly arteritis in medium-caliber arteries. Resolution 
with scar formation in infl amed vessels leads to a disseminated obliterative arteri-
opathy. “Recovered” cattle remain latently infected. A poorly understood aspect of 
MCF is the occurrence of asymptomatic, serologically positive animals with low 
concentrations of circulating MCFV DNA in blood and no antecedent history of 
clinical MCF [ 112 ]. Clinical signs in ungulates such as bison and deer are often 
behaviorally masked as an anti-predatory survival instinct (i.e., attempting to 
appear healthy, so one is not targeted by predators). In such cases, a common his-
tory upon presentation is a seemingly rapid course of disease that was actually a 
masked, normal course of disease. Such animals may one day go off food, stand 
separate from herdmates, and display dysuria and/or hematuria. The next day, the 
animal dies [ 98 ,  112 ]. On the other hand, truly atypical forms of MCF can occur in 
some animals when infected with viral agents other than OvHV-2 and AlHV-1 [ 94 , 
 113 ,  114 ] (   Fig.  12.9 ).     

  Fig. 12.7    Bison with acute 
MCF: Acute multifocal 
ulcerative colitis. 
Typhlocolitis is characteristic 
of MCF in some species, 
including bison and most 
cervids       

  Fig. 12.8    Bison with acute 
MCF: Acute multifocal 
hemorrhagic ulcerative 
cystitis. Few other viral 
diseases cause this lesion. Its 
presence should be 
considered of presumptive 
evidence that death was due 
to MCF, with appropriate 
samples taken to confi rm the 
diagnosis using molecular 
probes (PCR)       
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  Fig. 12.9    Ox with acute 
MCF (natural disease, as are 
Figs.  12.10  and  12.11 ): 
Lymph node. Moderate 
diffuse lymphoid hyperplasia 
in paracortical zone. 
Lymphoid hyperplasia is 
prominent in affected cattle. 
Hematoxylin and eosin (HE)       

  Fig. 12.10    Ox with acute 
MCF: Kidney. Moderate 
necrotizing arteritis with 
periarteritis. Arteritis is one 
hallmark of MCF, affecting 
multiple organs (HE)       

  Fig. 12.11    Ox with acute 
MCF: Skin. Severe acute 
dermatitis with scattered 
apoptotic keratinocytes 
throughout epidermis. Similar 
epithelial lesions in digestive, 
respiratory, and urogenital 
tracts result in widespread 
erosions and ulcers (HE)       

 

 

 

12 Viral Hemorrhagic Fevers of Animals Caused By DNA Viruses



334

2.2.3    Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 Morbidity in cattle herds is typically low (<5 %) [ 93 ,  96 ]. Higher morbidity 
 occasionally occurs in cattle herds, but is atypical and for that reason tends to be 
overrepresented in the veterinary literature. By contrast, morbidity in herds of 
American bison and most cervids is generally around 50 % or more [ 98 ,  110 ,  112 , 
 115 – 117 ]. Case-fatality rates are high for all affected animals. Those exhibiting 
clinical signs are likely to die or require euthanasia. Researchers used to assume that 
death was invariant in domestic cattle showing clinical signs. Recent investigations 
of natural outbreaks show that a proportion of affected cattle can recover (some 
completely) and remain persistently infected. Recovery is rare in bison and cervids, 
and an attempt to experimentally defi ne a low challenge dose that establishes 
infection in the absence of disease was unsuccessful [ 105 ]. Major histocompati-
bility complex (MHC) class IIa polymorphisms appear to determine susceptibility 
to fatal clinical disease in American bison [ 106 ]. Extending this observation to 
domestic cattle would be interesting, as they are relatively resistant to infection 
with OvHV-2 [ 118 ] (Fig.  12.12 ).    

2.3     Diagnosis and Control 

2.3.1    Diagnosis and Epidemiology 

 The most common clinical form of MCF in domestic cattle is “head and eye,” a 
clinically distinctive presentation. Once owners or veterinarians have seen a 
confi rmed case they are unlikely to confuse this form of MCF with other diseases 
presenting with high fever, depression, and oculonasal signs. Differential diagnoses for 

  Fig. 12.12    Bison with acute 
MCF (experimental disease): 
Rumen. Expression of 
caspase 3 in epithelium and 
in scattered lymphoid cells in 
lamina propria. Apoptosis is 
one basis for ulcerative 
lesions in epithelium in 
affected animals. Red 
stain = immunohistochemical 
demonstration of caspase 3       
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cattle in temperate climates are bovine viral diarrhea-mucosal disease, infectious 
bovine rhinotracheitis (“red nose”), epizootic hemorrhagic disease,  bluetongue, and 
foot-and-mouth disease. By contrast, in bison and most cervids, the clinical onset is 
acute, signs are masked, and animals are typically found dead or dying. Differential 
diagnostic considerations are similar to those in cattle and include any acutely fatal 
disease, including anthrax. 

 The development of molecular diagnostic assays has improved the detection and 
differentiation of MCF-causing viruses and increased the accuracy of laboratory 
assays to confi rm MCFV infection and/or disease in animals of various species 
[ 119 – 122 ]. Since a signifi cant percentage of clinically susceptible animals of differ-
ent species can be subclinically infected with MCFV, the presence of circulating 
antibody supports a diagnosis of disease only when antibodies are associated with 
clinical and/or histopathological evidence suggestive of MCF. As few other viral 
diseases include hemorrhagic cystitis, detection of this lesion should be considered 
presumptive evidence that death was due to MCF. Appropriate samples should be 
taken to confi rm the diagnosis using molecular probes (PCR). When using PCR to 
confi rm a clinical diagnosis of MCF, especially in mixed species operations such as 
zoological collections or game farms, it is helpful to use multiplex PCR or several 
PCRs specifi c for multiple MCF-causing viruses. The development of improved 
assays has been a major factor in increasing our understanding of the biology of 
MCFV infection, and in recognizing additional susceptible hosts. 

 Serological assays are valuable for epidemiological studies, especially of asymp-
tomatic animals in the fi eld; a positive result is indicative of infection. Large out-
breaks of MCF often have a long, tapering epidemiological tail after point-source 
exposure [ 98 ,  123 ] due to the variation in incubation period.  

2.3.2    Vaccination, Control, and Eradication 

 No commercially available vaccines exist for wildebeest-associated or sheep- 
associated MCF [ 93 ,  96 ], and earlier attempts (1960–1970s) to develop vaccines were 
unsuccessful. Recently, interest in vaccine development for both diseases has been 
renewed due to their potential value to bison producers in North America and cattle 
farmers in Africa [ 124 – 126 ]. Control efforts (at present) are based on spatial separa-
tion of clinically susceptible animals from reservoirs. Appropriate safe distance(s) 
varies (vary) depending on many factors infl uencing transmission, such as number 
of reservoir animals, age, and climate [ 98 ,  115 ,  123 ]. Given the high proportion of 
infected domestic sheep and wildebeest, eradication is not practical at this time. 
However, OvHV-2-free fl ocks of sheep have been generated [ 127 ,  128 ].  

2.3.3    Public Health/Animal Health Crossover 

 No members of the MCFV group are known to be zoonotic.    
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3     Other DNA Viruses Causing Viral Hemorrhagic 
Fever- Like Diseases 

3.1     Lumpy Skin Disease Virus 

 Lumpy skin disease is a skin disease of cattle that exhibits vascular disturbance as 
focal necrosis of the typical “inverted conical” lesion. The disease is caused by a 
capripoxvirus, lumpy skin disease virus (LSDV), and is characterized by high mor-
bidity but a low case-fatality rate. The virus can persist in necrotic skin for approxi-
mately 1 month, and is viable in hides for half that time at room temperature. 
Arthropods can transmit the virus mechanically, and are considered the main route 
of transmission. 

 LSDV can cause nodules anywhere on the body that involve all the layers of the 
skin, the subcutis, and occasionally underlying muscle and/or draining lymph 
nodes. In severe disease, the presentation of nodules is a continuum of disease 
from minor lesions to congested, hemorrhagic, edematous nodules that may exhibit 
vasculitis that leads to necrosis. Nodules are called “sitfast” after the scab forms. 
If the disease becomes generalized, widespread edema can occur. In mucous mem-
branes in the oronasal area, lesions can coalesce, leading to hemorrhage. While 
severe LSD cases could lead to overt blood loss, these large lesions are more likely 
to “weep” as no overt hemostatic defi ciency is present [ 129 ].  

3.2     Sheeppox and Goatpox Viruses 

 Sheeppox and goatpox are acute-to-chronic, subclinical-to-clinical diseases of 
domestic and wild sheep and goats. Sheeppox and goatpox are caused by two dis-
tinct capripoxviruses closely related to LSDV, sheeppox virus and goatpox virus, 
and the two viruses cannot be distinguished serologically. Strains of the two viruses 
vary widely in that some cause disease in both sheep and goats, and some only cause 
disease in sheep but not in goats or vice versa. The viruses replicate in cattle but do 
not cause disease. Both viruses can be transmitted by many routes, including 
mechanical transmission by arthropod vectors, but direct contact is the main means 
of transmission. 

 While the incubation period of sheeppox/goatpox ranges between 4 and 8 days, 
recovery may take up to 90 days for full resolution of lesions. Within a few days of 
the prodrome, sheeppox and goatpox lesions will develop. As a general rule, more 
severe skin lesions are correlated with increasingly severe disease. Adult sheep and 
goats with underlying defi ciencies or lambs and kids under 1 month of age may 
 suffer from a very severe generalized form of disease. Vasculitis with congestion, 
hemorrhage, edema, and necrosis will develop in all layers of the skin and in severe 
cases the muscle layer. Lymph nodes will show similar gross pathological fi ndings, 
including hemorrhage [ 129 ].      
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    Chapter 13   
 Viral Hemorrhagic Fevers of Animals 
Caused by Double-Stranded RNA Viruses 
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             Core Message   Here we outline serious diseases of both wildlife and food and fi ber 
animals that cause damaging economic effects on producers all over the world. All 
of these diseases are vector- borne (i.e., transmitted by arthropods). Their 
epidemiology is complex in that outbreaks are often linked to importation of animals 
and to particular geographic strains of animals (e.g., “North American” sheep vs. 
“European” sheep) that differ in their susceptibility to infection and/or disease. The 
genetic and ecological determinants of the described diseases remain to be fully 
explained.  
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1     African Horse Sickness Virus 

1.1     Etiologic Agent and Natural History 

1.1.1     Defi nition 

 African horse sickness (AHS) is a noncontagious arthropod-borne viral disease of 
equids, European horses, mules and donkeys (in order of decreasing severity of 
disease), which can have a case-fatality rate as high as 95 %. The principal vector 
for the virus causing AHS, African horse sickness virus (AHSV), are biting midges 
in the genus  Culicoides  that can be found between western sub-Saharan and 
Eastern Africa.  

1.1.2     Etiology and Evolution 

 AHSV is a member of the genus  Orbivirus , family  Reoviridae . The virus has a 
double-stranded RNA genome consisting of ten segments surrounded by a double 
capsid composed of four viral proteins [ 1 ], and produces virions that lack enve-
lopes. There are nine serotypes of AHSV.  

1.1.3     Geographic Distribution and Economic Effects 

 AHS was fi rst recognized in what is now South Africa in 1791 where it caused high 
fatality in imported European equids, including horses, mules, and donkeys. Today, 
AHSV is endemic in the central and southern tropical regions of Africa, with AHS 
occurrence and prevalence infl uenced by climate and conditions affecting popula-
tions of the biological vectors  Culicoides imicola  and  Culicoides bolitinos  [ 2 ]. 
Incursions have occurred into Northern Africa and countries of the Iberian Peninsula, 
where the disease was imported through an infected zebra [ 3 ,  4 ]. Culicoid vectors 
that are competent to harbor and transmit AHSV have been found throughout other 
parts of the world, including the USA and Canada, in the absence of recognized 
AHSV transmission. Other insects, such as mosquitoes, have been found to be 
infected with AHSV but are not known to be important in the natural virus transmis-
sion cycle [ 5 ]. Economic impacts of AHS result from direct loss from death, debili-
tating disease of animals, and movement restrictions on live animals and animal 
products. AHS is reportable to the World Organisation for Animal Health (OIE), 
and can result in serious economic consequences inside established containment 
zones, which may extend across international boundaries. In endemic countries, the 
added expense of vaccination programs to control disease further impacts producers 
and equine hobbyists [ 6 ,  7 ].  
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1.1.4     Natural History, Transmission, and Host Range 

 AHSV infects equids, causing disease of increasing severity from zebra’s to donkeys to 
horses [ 8 ,  9 ]. Zebras are thought to be a reservoir host and are important in the epi-
demiology of the disease in Africa. Antibodies to AHSV have been found in a variety 
of non-equid Africa-specifi c mammals, including elephants [ 10 ], but these animals do 
not play a signifi cant role in the epidemiology of AHS. Mortality in dogs has been 
associated with ingestion of AHSV-infected meat. AHSV antibodies in wild carnivores 
are thought to be induced through exposure to meat of infected prey [ 11 ].   

1.2     Pathogenesis and Clinical Features 

1.2.1     Pathogenesis and Immunology 

 AHSV infects endothelial cells of the microvasculature, resulting in loss of cellular 
junctional integrity and formation of microthrombi, factors thought to be the source 
of severe pulmonary edema, pleural and pericardial effusions, and/or edema of sub-
cutaneous tissues [ 12 ]. Like bluetongue virus, pro-infl ammatory and vasoactive 
mediators may also play a role [ 22 ]. Animals surviving infection form neutralizing 
antibodies that protect against reinfection with the same serotype, and limited cross- 
protection against different serotypes exists in vaccinated horses [ 13 ].  

1.2.2     Incubation Period, Clinical Signs, and Gross Lesions 

 Four clinical forms of AHS occur: pulmonary, cardiac, mixed (cardiac and pulmo-
nary manifestations), and febrile. The pulmonary form has an incubation period of 
3–5 days and is characterized by rapid onset fever, severe respiratory distress, and 
death in nearly 100 % of cases [ 14 ]. Upon death, copious frothy fl uid exudes from 
the nose. Gross lesions include dramatic pulmonary edema and occasionally pleural 
effusion. The subacute, cardiac form is characterized by fever and edema, and results 
in death in 50–70 % of the cases 4–8 days following onset of disease. Edema may be 
found in the conjunctivae, supraorbital fossa, and subcutaneous tissues of the inter-
mandibular space and anterio-dorsal regions. Gross lesions include hydropericar-
dium, petechial and ecchymotic hemorrhages of the epicardium and endocardium, 
and pronounced edema in subcutaneous, facial, and intermuscular regions in the 
head and neck [ 15 ]. Myocardial necrosis develops occasionally [ 16 ]. The mixed 
form of disease has characteristics of both the cardiac and pulmonary disease. A mild 
or subclinical form of disease can also occur with a variable incubation period from 
4 to 14 days, and a low grade fever that may be accompanied by congestion of the 
mucous membranes, anorexia, and depression. No gross or microscopic lesions are 
usually found with this form of AHS.  
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1.2.3     Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 Case-fatality rates of 0–90 % have been observed in horses. This broad spectrum is 
primarily due to variations in viral virulence determinants, but host susceptibility 
factors also contribute [ 14 ,  17 ]. Zebras and African Wild Donkeys may be infected 
but are refractory to disease.   

1.3     Diagnosis and Control 

1.3.1     Diagnosis and Epidemiology 

 Diagnosis of AHS is based on clinical signs and laboratory testing. Tests available 
for virus detection include sensitive and specifi c RT-PCR, ELISA, and virus isola-
tion. AHSV serotypes can be determined using serum neutralization assays and 
type-specifi c RT-PCR. Serologic testing for antibodies includes ELISA, serum neu-
tralization, and hemagglutination inhibition tests.  

1.3.2     Vaccination, Control, and Eradication 

 One of the best methods to control AHS is prevention of vector contact with suscep-
tible animals, including housing equids in insect-proof barns. Vaccines are com-
mercially available and widely used in high-risk areas. Modifi ed live virus vaccines 
and killed virus vaccines are in use, and subunit vaccines are currently in develop-
ment [ 18 ,  19 ].  

1.3.3    Public Health/One Health Crossover 

 Under natural conditions, AHSV has not been found to cause disease in humans.    

2     Bluetongue Virus 

2.1     Etiologic Agent and Natural History 

2.1.1    Defi nition 

 Bluetongue virus (BTV) causes hemorrhagic disease in domestic and wild ruminants, 
and is transmitted by biting midges of the genus  Culicoides . Infections are associated 
with high case-fatality rates in infected European breeds of sheep and wild cervids, 
especially white-tailed deer. Recently emerged BTV strains have dramatically 
increased the global distribution of infections and display an altered host range and 
virulence.  
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2.1.2    Etiology and Evolution 

 BTV is a member of the genus  Orbivirus , family  Reoviridae , and therefore has the 
same physical characteristics as AHSV. The wide genetic and phenotypic diversity 
of BTV is exemplifi ed by 24 established serotypes. Novel viral strains emerge 
through genetic variation that arises from a combination of genetic drift and genetic 
shift caused by genome segment reassortment between members of a serogroup 
[ 20 – 24 ]. These processes generate subpopulations that can be selected for optimal 
fi tness. However, the need for the virus to remain fi t in both the insect and animal 
host restricts the mutation rate. Random fi xation of specifi c genetic variants through 
genetic bottlenecking occurs as the culicoid vectors ingest small numbers of virus 
particles in a blood meal [ 22 ].  

2.1.3    Geographic Distribution and Economic Effects 

 The distribution of BTV is limited to climates suitable for its culicoid vectors. 
Historically, BTV has a worldwide distribution between latitudes 35°S and 
40–50°N. However, in the past decade, virus distribution has extended into Northern 
Europe [ 1 ]. The extension is due to northern expansion of competent vectors into 
areas with warmer climate and to transmission of novel strains by new vectors resi-
dent in colder regions. Bluetongue can be severe in European breeds of sheep and 
livestock, resulting in a high case-fatality rate and signifi cant economic losses to the 
producers. As bluetongue is a “List A” disease according to the World Organisation 
for Animal Health (OIE), the trade barriers imposed on the export of live animals 
and semen have severe economic impact [ 25 – 27 ].  

2.1.4    Natural History, Transmission, and Host Range 

 Bluetongue was fi rst recognized in Africa after importation of European breeds of 
sheep [ 28 ]. Severity of disease varies with the susceptibility of the host and strain of 
the virus [ 69 ,  21 ], and large outbreaks may occur in naïve populations [ 25 ]. The virus 
is transmitted by Culicoides of diverse species [ 29 ,  30 ]. Domestic and wild rumi-
nants are susceptible to infection [ 31 ]. Dogs and wild canids may be infected with 
BTV through eating meat of infected animals, but these animals are not thought to be 
part of the natural transmission cycle.   

2.2     Pathogenesis and Clinical Features 

2.2.1    Pathogenesis and Immunology 

 BTV preferentially infects microvascular endothelial cells, but can also infect 
mononuclear phagocytes and dendritic cells [ 32 ,  33 ]. Direct vascular damage, as 
well as cytokine response(s), result in increased vascular permeability, thrombosis, 
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tissue infarction, necrosis, and hemorrhage [ 34 ]. Surviving animals develop 
neutralizing antibodies [ 35 ] and lifelong immunity against reinfection with viruses of 
the same serotype but have little or no cross-protection against other serotypes. As 
BTV closely associates with the surface of red blood cells during late infection, 
long-term viremia can occur even in the presence of neutralizing antibodies [ 36 ].  

2.2.2    Incubation Period, Clinical Signs, and Gross Lesions 

 The incubation period ranges from 5 to 10 days. Clinical disease is typically most 
severe in naïve sheep of European breeds and mild or asymptomatic in cattle and 
goats [ 31 ]. Severe disease and high lethality is also possible in some wild ruminants, 
including North American cervids and pronghorns [ 37 ,  38 ]. Clinical signs can vary 
from mild to severe, and include fever, bloody oral/nasal discharge, pulmonary and 
facial edema, oral erosions and ulcers, hyperemia of the coronary band, and lameness. 
Lesions include ulcerations; hemorrhage; and necrosis of the mucosal lining of the 
upper gastrointestinal tract, and edema and hemorrhage of subcutaneous tissues, 
lymph nodes, and fascial planes of muscles; pleural and pericardial effusions; and 
muscle necrosis [ 31 ]. Cattle may develop oral erosions and ulcers, conjunctivitis, and 
subcutaneous edema. New BTV strains with increased virulence in cattle have 
recently emerged, such as BTV-8 in Europe [ 39 ]. This new virus and some attenuated 
vaccine strains can also cross the placenta causing abortions, still births, or malformed 
offspring with severe central nervous system deformities [ 40 ,  41 ].  

2.2.3    Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 In animals developing clinical disease, case fatality rate may range from 2 to 30 % and 
may be as high as 70 % in some outbreaks [ 31 ,  38 ].   

2.3     Diagnosis and Control 

2.3.1    Diagnosis and Epidemiology 

 Clinical signs caused by BTV can mimic other diseases, so laboratory confi rmation 
is required for diagnosis. Assays for viral detection include virus isolation in cell 
culture or in embryonated chicken eggs, RT-PCR, and antigen detection with 
ELISA. Serologic tests, such as agar gel immunodiffusion (AGID), may cross-react 
with related orbiviruses, such as epizootic hemorrhagic disease virus. ELISA has 
improved sensitivity and specifi city for antibody detection. 

 In tropical regions, BTV circulates between vectors and animal hosts through all 
or most of the year. In temperate climates, infections are distinctly seasonal with 
prolonged periods without any observed transmission. Adult vectors maintain 
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bluetongue infection for life, but this population does not survive through most 
winters. Researchers are not clear how the virus “overwinters” (i.e., is maintained in 
these regions). A small adult population can possibly survive in protected hiber-
nacula, perhaps even inside of buildings [ 42 ]. Transovarial transmission in culicoids 
was suggested after detection of viral RNA in pools of larvae from fi eld collection 
sites. However, BTV was not isolated from these samples, and the epidemiological 
relevance of this fi nding remains to be determined [ 43 ]. The possibility of a reser-
voir animal host has been investigated; however, infection in ruminants (particularly 
cattle) has been found to be prolonged but not persistent [ 44 ].  

2.3.2    Vaccination, Control and Eradication 

 Modifi ed live and killed virus vaccines are used widely in areas with high risk for 
infection or regions with recent BTV incursions [ 45 ]. Of concern is the potential for 
attenuated live virus vaccine strains to cause abortions and fetal defects [ 46 ] and to 
reassort with endemic viruses resulting in new strains with altered biological prop-
erties [ 47 ]. New recombinant subunit vaccines are in development [ 48 ].  

2.3.3    Public Health/One Health Crossover 

 Bluetongue is not a zoonotic disease.    

3     Epizootic Hemorrhagic Disease Virus 

3.1     Etiologic Agent and Natural History 

3.1.1    Defi nition 

 Epizootic hemorrhagic disease virus (EHDV) is an arthropod-transmitted virus that 
can infect many wild and domestic ruminants. In wild ungulates, infection can 
result in severe disease with high lethality, particularly white-tailed deer ( Odocoileus 
virginianus ) in Northern America. In domestic ruminants, most infected cattle 
may have mild or unrecognized disease, but cattle-virulent strains can cause severe 
disease [ 49 ,  50 ].  

3.1.2    Etiology and Evolution 

 EHDV is a member of the genus  Orbivirus , family  Reoviridae , and therefore has the 
same physical characteristics as AHSV and BTV. EHDV is less studied than BTV 
and AHSV. Genotyping of EHDV indicates heterogeneity in fi eld samples [ 51 ]. 
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Genetic diversity arises through a combination of genetic drift and genetic shift 
through reassortment of gene segments between related viruses. An example of 
virus reassortment is a new virus that was recognized in the USA in 2006 with gene 
segments from an endemic EHDV-2 and an exotic EHDV-6 virus [ 52 ]. New strains 
produced by point mutations or genetic reassortment have the potential for altered 
virulence, host and vector preference, and environmental distribution.  

3.1.3    Geographic Distribution and Economic Effects 

 EHDV can be found throughout much of the world, including the Americas, Africa, 
Australia, and Asia between the latitudes 35°S and 49°N. In the USA, EHD was 
fi rst described in 1955 in white-tailed deer in Virginia [ 53 ], but the disease was 
likely recognized by hunters as early as the 1800s in the southeastern states as 
“black-tongue.” Distribution and seasonality of outbreaks is determined by condi-
tions that support the breeding success of the vector populations. Cattle-virulent 
strains include an EHDV-2 serotype (Ibaraki virus) found in Japan and Asia [ 50 , 
 54 ], EHDV-7 strains that emerged in 2006 in Israel [ 55 ], and EHDV-6 (strain 318) 
in Mediterranean countries (2004 and 2006) [ 56 ]. Occasional outbreaks of cattle- 
virulent disease have been reported in the USA. Disease in cattle can mimic foreign 
animal vesicular diseases, such and foot-and-mouth disease and vesicular stomati-
tis. Recent outbreaks of EHD in cattle had major economic impact on the livestock 
industry in multiple countries bordering the Mediterranean Basin, including 
Morocco, Turkey, and Israel [ 25 ,  56 ]. These strains and emerging new strains can 
cause economic losses to beef cattle and dairy industries [ 49 ,  50 ,  57 ,  58 ].  

3.1.4    Natural History, Transmission, and Host Range 

 EHDV infects wild and domestic ruminants and wild cervids. Domestic livestock 
found to be susceptible to infection include cattle and sheep. Like the orbiviruses 
BTV and AHSV, EHDV is transmitted by arthropod vectors, the biting midges of 
the genus  Culicoides . Thus, distribution of the disease is limited to regions with 
competent vectors. Disease outbreaks in North America occur in the late summer or 
autumn, coinciding with the highest vector populations, and tend to continue until 
the fi rst frost reduces or eliminates insect transmission [ 27 ].   

3.2     Pathogenesis and Clinical Features 

3.2.1    Pathogenesis and Immunology 

 Following infection by the bite of the biological vector, EHDV replicates in endothelial 
cells of the lymphatic system and local lymph nodes [ 59 ] and then disseminates 
throughout the body by hematogenous spread. Secondary sites of infection include the 
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spleen and lymph nodes. As EHDV closely associates with the surface of red blood 
cells during late infection, long-term viremia occurs even in the presence of neutraliz-
ing antibodies [ 60 ]. In most infected deer, the virus could be detected in the blood for 
less than 3 weeks, but in a few animals it could be found for up to 56 days postexposure 
[ 61 ,  62 ]. In cattle, viremia is typically detectable for less than 2 weeks, but in a minority 
of infected animals viremia is present for up to 50 days postexposure [ 63 ,  64 ]. After 
infection, serotype-specifi c antibodies are produced that protect against future infec-
tions and may be detected over the entire lifespan of the animal. The number of EHDV 
serotypes is not clearly defi ned, but seven to eight serotypes are generally accepted. 
There is limited cross protection between US serotypes 1 and 2 [ 65 ].  

3.2.2    Incubation Period, Clinical Signs, and Gross Lesions 

 The incubation period ranges from 5 to 10 days postexposure. Clinical signs vary 
depending on the host. Disease is especially severe in wild cervids, with highest 
lethality in Northern American white-tailed deer. In deer, three disease forms have 
been described; peracute, acute, and chronic. These forms cannot be clinically dis-
tinguished from disease caused by bluetongue virus. Deer suffering from the per-
acute form die rapidly, typically within 6–36 h of onset of disease. Signs can include 
high fever, anorexia, respiratory distress, and rapid onset of swelling due to edema 
of the head and neck. Hemorrhagic diathesis with bloody diarrhea, hematuria, 
and dehydration are found post mortem. Animals are often found dead with no 
apparent sign of illness in or near bodies of water such as creeks or ponds (Fig.  13.1 ). 

  Fig. 13.1    A white-tailed deer found dead in a creek with no outward signs of disease. This is a 
typical presentation of peracute death caused by epizootic hemorrhagic disease virus or bluetongue 
virus       
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This phenomenon is thought to be due to animals seeking relief from a high fever in 
the cool water. The acute form of EHD has the same signs and lesions seen among 
peracute cases, but the deer (and other close relatives such as pronghorn) typically 
live longer and develop more extensive hemorrhages in many tissues, including the 
skin, heart, and the gastrointestinal tract (Fig.  13.2 ). There may be swelling, hyper-
emia, and/or ulceration in the oral cavity; excessive salivation; and nasal discharge. 
Chronic disease is seen in some acutely ill deer that recover. Clinical signs include 
growth interruption in the hoof wall, lameness, and potential sloughing of the hoof. 
Gross lesions may include scarring from healed ulcers in the mouth, rumen, and 
other portions of the gastrointestinal tract. Histologic lesions include widespread 
vasculitis and thrombosis, endothelial swelling, hemorrhages, degenerative changes, 
and/or necrosis in many organs.   

 In endemic areas, clinical disease may be infrequent due to a combination of 
herd immunity and differences in host genetic susceptibility [ 66 ]. Most cattle infec-
tions are mild, but disease caused by cattle-virulent strains can cause abortions; 
signs of fever; swollen conjunctiva and tongue; redness, ulceration, or erosions of 
the nose and lips; dyspnea; diffi culty swallowing; lameness; and decreased milk 
production [ 50 ,  67 ]. Lesions may include oral ulceration, degeneration of muscles 
of the esophagus or throat, or edema and hemorrhages in the mouth, lips, and diges-
tive tract [ 25 ,  58 ]. These lesions and signs mimic those caused by foot-and-mouth 
disease and vesicular stomatitis (Fig.  13.3 ), possibly triggering a foreign animal 
disease investigation and quarantine of affected farms.   

  Fig. 13.2    Discrete 
hemorrhage on the heart of a 
pronghorn. Widespread 
hemorrhages are typical of 
hemorrhagic disease in 
cervids caused by epizootic 
hemorrhagic disease virus or 
bluetongue virus       
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3.2.3    Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 Since EHD occurs primarily in wild ruminant populations and since outbreaks 
occur in epizootic cycles, good estimates of morbidity and lethality are not avail-
able. A population survey of one outbreak allowed an estimation of certain epide-
miological parameters. A total population infection rate was estimated at 29 % with 
a mortality of 20 %, leading to a case fatality rate of 67 % [ 68 ]. However, anecdotal 
reports describe die-offs of over 90 % of a local population, such as in Montana in 
2012 and 2013 (USA Today News posted 1/8/2012).   

3.3     Diagnosis and Control 

3.3.1    Diagnosis and Epidemiology 

 EHD lesions are indistinguishable from BTV infection in wild ruminants, making 
laboratory testing necessary to establish the diagnosis. Virus isolation from blood 
cells or tissues [ 69 ] or RT-PCR can be used to detect the virus [ 70 – 72 ]. The serotype 
of virus can be determined using serum neutralization assays or RT-PCR targeting 
serotype-specifi c genes [ 73 ]. For EHDV antibody testing, AGID assays are avail-
able, but they lack sensitivity and may cross-react with BTV antibodies [ 74 ]. 
ELISAs are more sensitive and specifi c for detection of EHDV than AGID, and do 
not cross-react with BTV [ 75 ,  76 ].  

  Fig. 13.3    Cow infected with epizootic hemorrhagic disease virus. Hypersalivation, oral ulcers, 
and swollen tongue mimic foreign animal diseases, such as foot-and-mouth disease and vesicular 
stomatitis       
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3.3.2    Vaccination, Control, and Eradication 

 Modifi ed live virus and killed virus vaccines have been used in Israel and Mediterranean 
countries. In the USA, cervid grower organizations use killed virus autogenous vac-
cines. Vector control methods may be attempted in the case of outbreaks involving 
cattle, but are not practical for wildlife.  

3.3.3    Public Health/One Health Crossover 

 EHD is not a zoonotic disease.       
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             Core Message   Here we outline serious diseases of wildlife, food and fi ber animals, and 
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world. While some zoonotic viruses that occasionally cause serious disease and death in 
humans are mentioned, the positive sense RNA viruses generally cause economic damage 
that can have serious societal implications for humans. Finally, honorable mention is 
given to yellow fever virus, a success of vaccine development efforts. This virus once 
caused similar serious effects (in humans) during the construction of the Panama Canal, 
but has been relegated to a footnote in textbooks because of a cheap and effective vaccine.  
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1     Bovine Viral Diarrhea Virus 

1.1     Etiologic Agent and Natural History 

1.1.1     Defi nition 

 Bovine viral diarrhea (BVD) was fi rst described as a distinct acute febrile disease of 
cattle in 1946 [ 1 ]. The presence of blood in diarrheic feces and nasal exudate was 
noted in these early reports along with a fever (40–42 °C) and leukopenia, followed 
by abortions and the birth of congenitally deformed and weak, nonviable calves. 
The disease was associated with erosive, ulcerative lesions of the gastrointestinal, 
oral, and pharyngeal mucosae, and hemorrhages in lymph nodes, gastrointestinal 
mucosa, subcutaneous tissues, pericardium, and vaginal mucosa. This early associa-
tion of BVD with bleeding manifestations was overshadowed by the discovery of 
fetal infections, and the role of immune tolerance in the generation of persistently 
infected (PI) animals. Cases of hemorrhagic syndrome (HS) associated with BVD 
likely occurred in the interim, but were not reported again until 1989 and in 1993–
1995 [ 2 ,  3 ]. As a result of these outbreaks of severe hemorrhagic disease with sig-
nifi cant lethality, interest in BVD HS was reinvigorated [ 3 ,  4 ]. Sequencing of the 
viruses isolated from HS cases revealed a distinct genotype of BVD viruses, BVDV- 
2, associated with this syndrome. HS cases are typically caused by BVDV-2 [ 5 ].  

1.1.2     Etiology and Evolution 

 BVDV-1 and BVDV-2 are positive-sense, single-stranded RNA viruses with 
genomes approximately 12.3 kb in length contained within enveloped icosahedral 
capsids. BVD viruses are members of the genus  Pestivirus  within the family 
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 Flaviviridae , but are classifi ed in two distinct species. BVDV-1 and BVDV-2 are 
further classifi ed into several subtypes and multiple strains thereof [ 6 ]. Each pesti-
virus appears to have evolved with its primary ruminant host, but is capable of 
infecting additional ungulate species. Both viruses occur as two distinct biotypes, 
noncytopathic (ncp) and cytopathic (cp). Most isolates are ncp viruses (i.e., they do 
not cause morphologic changes or cell death in infected cell cultures). In animals 
that are persistently infected with ncp viruses, various spontaneous mutations ren-
der the ncp viruses cytopathic in cell culture. Isolation of pairs of cp and ncp viruses 
is associated with the development of mucosal disease (MD) in PI animals [ 6 ]. The 
BVDV-2 isolates from HS cases are ncp.  

1.1.3     Geographic Distribution and Economic Effects 

 BVD viruses are distributed in cattle worldwide with the exception of countries 
from which the viruses have been eradicated [ 7 ,  8 ]. On an individual herd basis, 
monetary losses range widely according to the specifi c circumstances. The fi nancial 
losses due to BVD in an individual dairy herd were calculated to be £2,295 and 
£4,115 in 1982 [ 9 ]. Economic losses specifi cally due to BVDV HS cases have not 
been calculated. Estimates for the economic impact of BVD at the national level 
vary from $20 million per million calvings in Danish cattle to a conservative esti-
mate of greater than $400 million for US cattle based on approximately 34 million 
calves born in 2012 and 2013 [ 10 ,  11 ].  

1.1.4     Natural History, Transmission, and Host Range 

 The persistence of BVDVs in bovine populations is due to the ncp replication and 
immunosuppressive qualities of the viruses and their ability to be transmitted from 
susceptible female hosts to developing fetuses with great effi ciency. The conse-
quences of fetal BVDV infection include infertility, abortion, stillbirth, weak calves, 
congenital defects, and growth retardation in calves [ 12 ]. Most importantly, infection 
of the fetus during the fi rst 125 days of gestation results in the generation of PI 
calves. The survival of PI animals into the breeding season is the key to the mainte-
nance of virus in cattle populations. PI animals shed large quantities of BVDVs in 
secretions throughout life, and are the source of the infection for susceptible cattle. 
In nature, infection of cattle occurs via the inhalation of BVDVs in aerosolized respi-
ratory secretions, or ingestion of urine, feces, or saliva from PI-animals, or from 
contact with aborted infected fetuses and fetal fl uids. Inadvertent infection can occur 
through the administration of live vaccines, contaminated biological products, or 
through contaminated insemination equipment or semen. BVDVs infect cattle, other 
domestic and wild ruminants, camelids, pigs, and wallabies [ 13 ]. Rabbits can be 
infected experimentally, but do not develop disease.   
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1.2     Pathogenesis and Clinical Features 

1.2.1     Pathogenesis and Immunology 

 In acute BVDV infections, virus is inhaled or ingested and replicates in the lymphoid 
tissues of the nasopharynx. Virus-infected lymphocytes and macrophages spread 
the virus to other lymphoid tissues via the blood, including the bone marrow. 
Specifi cally regarding the mechanisms of the hemostatic disorders involved in BVD 
HS, evidence exists for: (1) direct infection and damage to blood vessels by the 
virus, and (2) virally induced thrombocytopenia with alteration of platelet function. 
Evidence for the fi rst mechanism is the localization of BVDV-2 antigen in endothe-
lial cells and smooth muscle cells in blood vessels that may be accompanied by 
necrotizing vasculitis [ 14 ,  15 ]. Infection and damage to the endothelium triggers 
thrombus formation and consumption of platelets and other clotting factors. 
Indirectly, cytokines, such as interleukin-1 and tumor necrosis factor α, produced by 
monocytes during infection [ 16 ] alter the expression of endothelial cell surface 
proteins, favoring development of disseminated intravascular coagulation (DIC) 
and vascular leakage. 

 In naturally occurring BVD HS, the number of platelets is severely diminished 
(2,000–33,000/μl) with little effect on clotting times (PT, aPTT) and fi brinogen plasma 
concentrations [ 4 ]. In experimental studies, platelets decreased 4–8 days after intrave-
nous inoculation, reaching a nadir at 14–16 days post-inoculation. Hemorrhage was 
noted when platelet numbers were <5,000/μl [ 17 ]. Potential mechanisms for BVDV-
2-induced thrombocytopenia include: (1) viral infection of megakaryocytes resulting 
in decreased production and function of platelets, (2) DIC with consumption of plate-
lets and clotting factors, and (3) immune-mediated destruction or sequestration of 
platelets. The fi rst mechanism is supported by the identifi cation of viral antigen on 
platelets by immunofl uorescent antibody (IFA) and on megakaryocytes by immuno-
histochemical (IHC) staining [ 17 – 20 ], and by the observation of decreased numbers 
of megakaryocytes with degenerative, necrotic changes in the bone marrow [ 4 ,  20 ,  21 ]. 
Infection and necrosis of megakaryocytes, however, have not been observed in all 
studies [ 18 ]. Megakaryocyte hyperplasia, possibly compensatory due to platelet con-
sumption and without evidence of virus infection, has been reported by other investi-
gators. These contrasting results may refl ect various factors, such as a difference 
between virus strains in their tropism for megakaryocytes [ 20 ,  22 ,  23 ], the time post-
inoculation at which bone marrow was examined, and/or the age and breed of calves 
examined [ 22 ,  24 ]. In addition to direct effects of BVDVs on megakaryocytes, plate-
lets from infected calves have altered morphology [ 20 ] and a decrease in the aggre-
gation response compared to controls [ 25 ]. Recreating BVD HS experimentally is 
diffi cult, evidenced by the fact that the hemorrhagic lesions are inconsistently pro-
duced even with viruses isolated from HS cases [ 23 ]. Clearly, additional factors 
such as nutritional management and environmental conditions may infl uence the 
development of hemorrhagic lesions and the outcome of infection in nature. 

 The impact of BVDVs on the bovine immune system was initially observed by 
noting the decrease in leukocyte counts and depletion of lymphoid tissues in the fi rst 
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reports of the disease [ 26 ]. Later, the systemic nature of infections and the viral 
tropism for T- and B-lymphocytes and macrophages was determined [ 27 ,  28 ]. 
Acutely infected cattle respond with specifi c T helper cell, CTLs, and B cell 
responses. However, the detection of BVDV-specifi c antibodies in serum may be 
delayed for 24–49 days in acute infections with HS strains [ 18 ]. Once the virus is 
cleared, surviving cattle maintain strain-specifi c immunity for years. 

 In general, viruses that infect these key cells of the immune system signifi cantly 
reduce the host’s defense against a variety of infectious organisms. Consequently, 
multiple concurrent bacterial, parasitic, and/or viral infections occur in BVDV- 
infected animals that are not responsive to treatment. The isolation and culture of 
mixed populations of microbes from cases of pneumonia and enteritis in cattle 
should trigger suspicion of BVDV infection [ 29 ]. 

 The consequences of fetal infection depend on the specifi c pathogenicity to the 
fetus of the virus strain, and on the gestational and developmental age of the fetus 
[ 30 ]. Pathogenicity in the fetus is not necessarily similar to infection with the same 
BVDV strain in adult cattle, and can be unrelated to the biotype of the viral strain as 
well. Early in gestation, the fetus responds to infection with elements of both the 
innate and adaptive immune responses; however, these immune functions are not suf-
fi cient to clear the BVDV infection [ 31 ]. Importantly, the lack of viral clearance 
results in a PI fetus. When the infection occurs after approximately 150 days of gesta-
tion, the fetus is able to develop virus-specifi c antibodies, mount a virus-specifi c 
response, and clear the infection. These are present at birth virus-specifi c antibodies.  

1.2.2     Incubation Period, Clinical Signs, and Gross Lesions 

 The majority of BVD HS cases occur as a result of acute, postnatal infections 
following an incubation period of 2–12 days, and should be considered when cattle 
present with a high fever (40–42 °C), depression, and death within 24–48 h after the 
onset of signs [ 15 ,  18 ,  23 ]. Affected animals may also exhibit dyspnea and diarrhea 
with or without blood in the feces. A complete blood count (CBC) may reveal lym-
phopenia within 3–18 days [ 18 ] and thrombocytopenia within 14 days post expo-
sure [ 17 ]. 

 At necropsy, petechial and ecchymotic hemorrhages may be noted on oral or vagi-
nal mucosae, in subcutaneous tissues, and on serosal surfaces of multiple organs [ 4 , 
 32 ,  33 ]. The grossly visible hemorrhages of HS may be accompanied by thymic 
atrophy in young animals; diffusely reddened, fl uid fi lled lungs refl ective of an inter-
stitial pneumonia; and diffusely red segments of the small intestines. The wall of the 
intestine is thickened by edema and the intestinal contents are scant, blood- tinged, 
and mucoid in consistency. Peyer’s patches are translucent refl ecting depletion of 
lymphoid populations accompanied by small hemorrhages. Mesenteric lymph 
nodes may be enlarged and edematous. None of these lesions are pathognomonic 
for BVDV infections and may be mistaken for a number of diseases caused by bac-
terial and toxic agents. The primary alternative (differential) diagnosis of extensive 
hemorrhagic lesions in aborted fetuses and neonatal calves is dicoumarol toxicosis 
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following ingestion of moldy sweet clover hay by the dams [ 34 ]. In adults and older 
calves, clostridial diseases, salmonellosis, leptospirosis, anthrax, and other bacterial 
septicemias should be considered. 

 In general, the clinical signs of acute BVD are dependent on the strain of virus and 
the epizootiological status of the herd. Distinguishing between acute, chronic, and 
fetal infections, based on clinical signs and gross or histopathologic lesions, is often 
diffi cult [ 17 ,  32 ]. For each clinical outcome (e.g., abortion), the list of differential 
diagnoses is lengthy, and lesions (if present) are not pathognomonic. BVD should 
be suspected when multiple diseases occur within a herd, such as infertility, abor-
tion, or weak calves with diarrhea and pneumonia. Clinical disease that is refractory to 
treatment should raise suspicion of underlying immunosuppression and, therefore, 
BVDV infection.  

1.2.3     Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 As BVD is not a reportable disease in the USA, information on prognosis, morbidity, 
and lethality of BVD cases with HS is scant. A 1977–1987 retrospective case review 
of 146 cattle with acute BVDV infection at New York State College of Veterinary 
Medicine revealed that 15 (10 %) had BVD associated with thrombocytopenia and 
bleeding and that 9 of the 15 died or were euthanized [ 4 ]. Another study demonstrated 
that an ncp-BVDV could induce thrombocytopenia that was severe enough to observe 
a morbidity rate of 50 % and case-fatality rate of 20 % [ 18 ].   

1.3     Diagnosis and Control 

1.3.1     Diagnosis and Epidemiology 

 An array of laboratory diagnostic tests for detecting BVDV proteins (IFA, IHC, 
antigen-capture enzyme-linked immunosorbent assay [ELISA]), viral RNA (reverse 
transcriptase-polymerase chain reaction [RT-PCR], real-time RT-PCR) or infectious 
virus (virus isolation) from individual animal serum, whole blood, ear notch sam-
ples, and/or pooled milk is available, as well as serologic tests (serum neutralization, 
ELISA) [ 35 ]. The appropriate choice of samples and tests and the selection of ani-
mals to be tested are dependent on the peculiarities of each case. Individual case 
factors that affect the choice of tests and testing strategies include the management 
system (dairy, feedlot, beef cow-calf) of the herd, the manifestation of disease (enter-
itis, bovine respiratory disease, abortions), and whether one is attempting to detect 
BVDVs in PI or acutely infected animals. In HS cases resulting from acute infection 
with BVDV-2, whole blood samples from multiple live animals during the febrile 
phase of disease, or lung and lymphoid tissues obtained from necropsy, should be 
tested for the presence of infectious virus, viral proteins or viral RNA. BVDV may 
be detected in the buffy coat of whole blood or tissue samples by virus isolation, 
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RT-PCR, or real-time RT-PCR in as few as one of ten acutely infected cattle in a HS 
outbreak, whereas antigen may not be detected by ELISA, IFA or IHC staining in 
this same scenario. Further evidence of infection may be demonstrated by a four-
fold or greater increase in BVDV-specifi c antibody titers (by serum neutralization 
or ELISA) in surviving animals. However, interpretation of serologic data is fre-
quently complicated by the prior or concurrent use of BVDV-containing vaccines 
in cattle. 

 The epidemiology of BVDV centers on the PI animal, which sheds BVDV in 
oral and respiratory secretions, feces, and placental fl uids and milk, all in high con-
centrations. PI animals are generated through the infection of susceptible pregnant 
cows during in the fi rst 125 days of gestation. For this to occur, PI cattle must sur-
vive into the breeding season of the herd. PI animals may be inadvertently pur-
chased or be introduced into a herd through the purchase of previously infected 
female cattle that later give birth to PI calves. Cows may also become infected while 
pregnant when they encounter PI animals from other herds in shared pasture. 

 In herds in which breeding is synchronous (as in the US beef industry), one PI 
animal can infect a large number of cows. The results of this fi rst event can be cata-
strophic, with losses due to abortions, stillbirths, and weak, non-viable calves. The 
high proportion of BVDV-associated disease is characteristic of the epidemic phase 
of herd infection. Any PI calves that are born in this event cause additional morbid-
ity and mortality due to acute BVDV-induced diarrhea and pneumonia within their 
cohort. Infection with BVDV renders the cow herd largely immune to the specifi c 
strain of virus. Births of female offspring by immune dams in subsequent years 
provide a new generation of cows susceptible to infection. This susceptible cohort 
serves as the continual source of PI calves in the endemic phase of the herd infection 
as these heifers are bred and become infected with BVDV. 

 In herds with year round breeding (e.g., dairy herds), cows are in different stages of 
gestation. The introduction of PI animals into the herd will result in fewer losses due to 
abortion, but with the occurrence of characteristic and more easily recognized congeni-
tal defects. The reproductive losses may be preceded by a spike in cases of pneumonia 
and diarrhea in adults and young stock 4–7 months before the birth of defective and PI 
calves. The epidemiology of BVDV is reviewed by Van Campen in [ 36 ].  

1.3.2     Vaccination, Control, and Eradication 

 Ultimately, BVD control is achieved by the identifi cation and removal of PI ani-
mals, thereby preventing further infection of pregnant cattle and the perpetuation of 
PIs. Where instituted, BVD control programs have successfully eradicated BVDVs 
from domestic cattle [ 7 ,  8 ]. In North America, BVDV-containing vaccines are com-
monly used to prevent BVD [ 37 – 39 ], but control programs based on PI identifi ca-
tion and removal are voluntary. However, under fi eld conditions, BVDV vaccines do 
not provide complete fetal protection in all vaccinated cows; therefore, PI cattle 
continue to be generated and perpetuate the infection. Despite a large array of 
BVDV-containing inactivated or modifi ed live vaccines, the viruses continue to 
infect cattle and cause disease [ 36 ].  
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1.3.3     Public Health/One Health Crossover 

 Pestiviruses are uniquely adapted to ruminants of various species, and to pigs. 
Although humans have been exposed to pestiviruses via viral vaccines contaminated 
with BVDV through fetal bovine serum, there is no evidence that humans can become 
infected by them [ 40 ].    

2     Classical Swine Fever Virus 

2.1     Etiologic Agent and Natural History 

2.1.1     Defi nition 

 Classical swine fever, also known as hog cholera, is caused by classical swine fever 
virus (CSFV), a virus of great economic and health importance to the global swine 
industry. CSFV, discovered in 1903, is enzootic in much of the world, persists in 
wild swine populations, but has been eradicated from the USA and several other 
countries.  

2.1.2     Etiology and Evolution 

 CSFV is a member of the genus  Pestivirus , family  Flaviviridae  [ 41 ] along with 
BVDV-1, BVDV-2, and border disease virus (BDV) [ 42 ]. 

 As is the case for all pestiviruses, the spherical CSFV particle (40–60 nm diam-
eter) is comprised of an icosahedral nucleocapsid enclosed by a lipid membrane that 
contains three structural glycoproteins [ 43 ,  44 ]. The approximately 12.5 kb CSFV 
genome is a single-stranded RNA of positive polarity. The genome consists of a 
single large open reading frame that encodes four structural and eight nonstructural 
proteins [ 45 ]. Structural proteins, encoded in the 5′ third of the genome, include 
capsid protein C and envelope (E) glycoproteins E rns , E1, E2. Nonstructural (NS) 
proteins include N pro , p7, NS2, NS3, NS4A-B, NS5A-B [ 45 ]. E2 and E rns  play 
important roles in the attachment of the virion to the cell surface [ 46 ,  47 ], and each 
protein interacts with a different cell receptor involved in virion attachment and 
cell-to-cell spread [ 46 ].  

2.1.3     Geographic Distribution and Economic Effects 

 CSF was fi rst reported in 1833 from Ohio in the USA [ 48 ]. By 1889, 36 US states 
had reported a disease in pigs with clinical presentation similar to CSF. In the same 
time frame, outbreaks of a disease resembling CSF were affecting pig herds in Great 
Britain and across continental Europe. 
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 CSF is classifi ed as a reportable disease to the OIE (World Organisation for 
Animal Health). CSF is a global concern due to the effect of the disease on pig 
breeding activities in enzootic areas and as a threat to the pork industry and interna-
tional pork trading in countries free of the disease. 

 CSF has been eradicated from Australia, Canada, the USA, and almost all mem-
ber states of the European Union (EU). Routine vaccination of pig herds has been 
banned in these countries. However, outbreaks of CSF still occur intermittently in 
European domestic pigs, leading to signifi cant economic losses. In the EU, from 
1992 to 2008, close to 20 million pigs were euthanized due to control measures 
imposed to combat CSF epizootics, causing total costs of about 5 billion euros. In 
many countries, CSF is still a major problem [ 49 ,  50 ], and vaccination of pig herds 
is applied to control spread. Currently, CSFV is considered enzootic in domestic 
herds in Eastern European countries and Russia, Asia (predominantly in Southeast 
Asia), in some countries of South and Central America, southern Mexico, and in the 
Caribbean.  

2.1.4     Natural History, Transmission, and Host Range 

 The only known natural hosts for CSFV are all members of the Suidae [ 51 ]. While 
transmission in domestic pigs is relatively well studied, the epidemiological role of 
European wild boar is the best understood among wild suids. Wild boars are a 
source of direct or indirect infection for domestic pigs [ 52 – 54 ]. CSFV infections of 
wild boar populations can be self-limiting or persistent, with virus circulating within 
infected populations for years [ 55 ]. In wild boars, CSF has a similar clinical presen-
tation as in domestic pigs, including transplacental transmission of CSFV followed 
by the birth of persistently infected piglets [ 56 ,  57 ]. The most frequent cause of 
spread of CSFV into a population is probably due to swill feeding [ 58 ]. 

 Direct transmission (either horizontal or vertical) is the primary mode of CSFV 
spread. Horizontal transmission occurs via pig-to-pig by direct contact. In both 
acute and chronic forms of the disease, virus is constantly shed from infected ani-
mals via secretions and excretions even before the onset of clinical signs. 
Additionally, in adult boars, infections with CSFV lead to excretion of the virus in 
semen [ 59 ]. Subsequently CSFV can be transmitted via artifi cial insemination. 
Inseminated sows seroconvert, and virus can be detected in both sows and fetuses 
[ 59 ]. Vertical transmission of CSFV is also common and may occur at any time 
during gestation when pregnant sows become infected. During an outbreak of CSF 
in the Netherlands (1997–1998), it was estimated that 17 % of CSFV spread 
between an infected herd and neighboring herds during the high-risk period (i.e., 
before the detection of the fi rst infected herd) was due to direct contact. After the 
high risk period, direct contact transmission decreased to about 1 %, mainly due to 
the implementation of control measures [ 60 ]. Regardless of the source of the virus, 
it has been observed that during a natural CSF outbreak, the probability of second-
ary outbreaks of the disease decreases with increased distance from an infected 
herd [ 61 – 63 ]. 
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 Transmission rates for CSFV can be quantifi ed by estimating the reproductive 
ratio ( R  0 ), described as the average number of secondary cases caused by one 
infected animal in a fully susceptible population. Experimentally,  R  0  values ranging 
from 81.3 to 100 were estimated for weaned pigs [ 64 ,  65 ]; 13.7 to 15.5 for slaughter 
pigs [ 64 ,  65 ]; and 13.0 for gilts [ 66 ]. From interpen transmission rates of CSFV in 
weaned and slaughter pigs,  R  0  values were estimated to range from 3.39–7.77 [ 64 ]. 

 Indirect transmission of CSFV from wild boars to domestic pig herds is a com-
mon event [ 67 ,  68 ]. Common sources of infection for domestic pigs are: feed con-
taining meat from wild pigs, silage originating from areas frequented by wild pigs, 
contact with hunters, and contaminated vehicles. In addition, other indirect modes 
of CSFV transmission include artifi cial insemination, swill feed, livestock trucks, 
personnel, and pig slurry from infected farms. Indirect transmission mediated by 
animals other than suids, such as ruminants, rodents, birds, or insects has not been 
documented. 

 Experimentally, airborne transmission of CSFV over short distances is possible 
[ 69 – 71 ]. The precise distance that the virus can spread via air is still unknown.   

2.2     Pathogenesis and Clinical Features 

2.2.1     Pathogenesis and Immunology 

 Historically, CSF has been characterized by sudden death of pigs or by CSF’s most 
common appearance of red to purple discoloration (hemorrhage) of the skin cover-
ing the nose, abdomen, inside of limbs, ears, and pubic regions (Fig.  14.1 ). 

  Fig. 14.1    Skin: numerous petechial and ecchymotic hemorrhages along the caudal aspect of the 
hind limbs in a pig with classical swine fever. Conjunctivitis is present in the second pig pictured 
( left pig ).  Source : Plum Island Animal Disease Center       
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Postmortem fi ndings are characterized by hemorrhage and congestion in the spleen 
(Fig.  14.2 ), lymph nodes (Fig.  14.3 ), cecum, colon (Fig.  14.4 ), and lungs.     

 CSFV primarily causes a hemorrhagic fever characterized by vascular lesions, 
including splenic infarcts (Fig.  14.2 ), hemorrhages in lymph nodes (Fig.  14.3 ) and 
the urinary system, and disseminated microthrombosis with necrosis of lympho-
cytes, particularly in the B-cell areas of the lymphoid organs. 

 The clinical presentation of CSF varies depending mainly on the virulence of the 
infecting virus. After infection via the oronasal route, CSFV actively replicates in 
tonsils [ 72 ]. Within 2–6 days post exposure, CSFV antigen can be detected in 
tonsilar crypt epithelium, lymphoid follicles, and para-follicular regions. The virus 
spreads through the lymphatic vessels into regional lymph nodes, and from there 
into the bloodstream. Viremia is readily detected between 4 and 6 days post expo-
sure. A second wave of virus replication takes place in several organs, particularly 

  Fig. 14.2    Spleen: severe multifocal splenic infarcts in a pig with classical swine fever.  Source : 
Plum Island Animal Disease Center       

  Fig. 14.3    Lymph node, 
mesenteric: swollen 
edematous cut surface with 
typical cortical congestion in 
a pig with classical swine 
fever.  Source : Plum Island 
Animal Disease Center       
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in spleen, bone marrow, and visceral lymph nodes. Lymphoid depletion in the 
spleen is generally observed with poorly defi ned peri-arteriolar lymphoid sheaths, 
and abundant viral antigen accumulation in peri-arteriolar regions and follicles. 
At this stage of the infection, CSFV is excreted into the environment via nasal, 
conjunctival, and oral (saliva) routes, as well as via urine and feces. 

 A hallmark of the infection is the progressive lymphopenia and thrombocytope-
nia observed during the course of the disease [ 73 ]. During the infection, there are 
profound changes in the bone marrow that may account for decreased white blood 
cell (WBC) counts [ 74 – 78 ]. The decrease in WBCs also may be mediated by active 
replication of CSFV in mononuclear cells [ 79 – 81 ], as virus replication leads to 
changes in monocyte/macrophage gene expression that results in the release of 
cytokines, some of which can be immunomodulatory or immunosuppressive. At 
later stages of the disease, infected lymphocytes (as well as granulocytes) are 
observed. Infected monocytes and macrophages release factors that coincide with 
the observed onset of fever and coagulation disorders in infected pigs [ 74 ]. Observed 
hemorrhages are the result of vascular changes that affect arterioles, postvenules, 
and capillaries [ 82 ], including a direct effect of CSFV on endothelial cells [ 83 ], on 
platelets leading to thrombocytopenia [ 73 ], or by inducing DIC [ 83 ,  84 ] and micro-
thrombosis leading to endothelial damage [ 84 ]. Although the mechanisms of CSFV 
pathogenesis are not well understood, the development of infectious full-length 
copies of CSFV genomes have led to a better understanding of the role of viral pro-
teins in mechanisms of attenuation and virulence [ 85 – 90 ], and will provide insights 
into mechanisms of disease progression. 

 General immunosuppression occurs early after infection with CSFV as indicated 
by dramatic decrease of peripheral B- and T-cells.   Knowledge about the innate 
immune response triggered by CSFV infection is limited. As with other viral infec-
tions, pigs infected with virulent CSFV isolates react with a signifi cant increase in 
serum concentrations of interferon-α (IFN-α) (500–4,500 U/ml) that is detectable 

  Fig. 14.4    Colon: severe 
multifocal ulcerative colitis 
(“button ulcers”) in a pig with 
classical swine fever.  Source : 
Plum Island Animal Disease 
Center       
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days 2–5 post-exposure [ 91 ,  92 ]. A viral protein (N pro ) has a well described role in 
inhibiting the type I IFN response [ 93 – 95 ]. Transcriptional analyses of tonsil, retro-
pharyngeal lymph node, and spleen tissues obtained from pigs infected with CSFV 
strains of different virulence revealed differential expression of 44 host genes by 
day 3 post exposure [ 96 ]. Gene expression changes included those involved in 
mechanisms of innate and adaptive immune response (including specifi c antiviral 
genes), regulation of IFN, apoptosis, ubiquitin- mediated proteolysis, oxidative 
phosphorylation, and cytoskeleton formation. 

 Three CSFV proteins are the main targets of antibody response elicited after 
exposure: envelope glycoproteins, E rns  and E2, and a nonstructural protein, NS3. 
The envelope E2 glycoprotein is the most immunogenic viral protein and induces a 
strong viral neutralizing antibody response. The neutralizing antibodies induced by 
envelope glycoprotein E rns  are more limited in their avidity than E2 glycoprotein, 
whereas NS3 protein induces non-neutralizing antibodies. The antibody response is 
usually detected 2 to 3 weeks post exposure/vaccination, increasing until 4–12 
weeks post exposure [ 97 – 99 ]. The critical role of glycoproteins E2 and E rns  in the 
induction of a protective immune response has been elucidated using recombinant vac-
cinia viruses expressing envelope protein E2 and/or E rns  [ 100 ]. Based on these fi nd-
ings, subunit vaccines have been developed by expressing the E2 envelope protein 
in baculovirus/insect cells systems [ 51 ]. 

 In contrast to observations of antibody-based protective immunity, pigs vaccinated 
with live attenuated vaccines (LAV), such CSFV C-strains, mount an early protec-
tive cellular immunity (3 days post vaccination) in the absence of circulating neu-
tralizing antibodies. Inoculation of pigs with CSFV C-strain induces virus- specifi c 
T-cell responses [ 101 ,  102 ] targeting the E2 and NS3 proteins [ 103 – 107 ]. 
Furthermore, a close temporal correlation between T-cell responses and the rapid 
protection induced by a CSFV C-strain inoculation has been observed as early as 3 
days post vaccination [ 108 ,  109 ].  

2.2.2    Incubation Period, Clinical Signs, and Gross Lesions 

 The incubation period in individual animals is usually 3–10 days [ 72 ]. The course 
of a CSFV infection varies depending on host characteristics and the virulence of 
the infecting virus [ 72 ]. Acute, chronic, or prenatal forms of the disease are recog-
nized in pigs. At early stages of the acute infection animals show nonspecifi c signs 
of disease, such as anorexia, lethargy, increased body temperature, huddling, con-
junctivitis, respiratory distress, vomiting and diarrhea. After few days, reddened and 
purple skin discoloration (hemorrhage) manifest (Fig.  14.1 ). Some animals may 
develop signs of neurological disorders evidenced by staggering gait, weakness of 
hind legs, incoordination, and convulsions. 

 Chronic forms of CSF are often fatal and usually develop in a low proportion of 
infected animals [ 72 ]. Animals harbor the infection for up to 2–4 months before death. 
Initially, infected animals develop signs similar to those observed in acute forms of the 
disease. Skin hemorrhage(s) are manifested as purple discoloration on the ears, tail, 
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abdomen, and the lower parts of the limbs, usually during the second or third week 
post exposure. Later, generalized signs of disease may be seen sporadically, but 
chronic diarrhea and progressive wasting of the animals is consistently observed 
through to the terminal stage. The severe leukopenia and immunosuppression caused 
by CSFV infection often leads to secondary enteric or respiratory infections. 

 In acute cases of CSF, hemorrhage is the predominant manifestation of vascular 
compromise. Pathological changes can be readily visible in tonsils, lymph nodes, 
spleen, and kidneys (Figs.  14.2 ,  14.3 ,  14.5 , and  14.6 ). Petechial hemorrhages, and 
even necrotic foci, may be detected on the palatine tonsils (Fig.  14.6 ). Lymph nodes 

  Fig. 14.5    Kidney: multifocal 
cortical petechial 
hemorrhages referred to as 
“turkey egg kidney” in a pig 
infected with classical swine 
fever.  Source : Plum Island 
Animal Disease Center       

  Fig. 14.6    Tonsil: multifocal crypt necrosis and diffuse congestion in a pig with classical swine 
fever.  Source : Plum Island Animal Disease Center       
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are usually enlarged, edematous, and hemorrhagic; the mandibular, retropharyngeal, 
gastro-hepatic, and mesenteric lymph nodes (Fig.  14.3 ) are usually the most affected. 
Enlargement of the spleen and the presence of infarcts in the periphery of the organ 
are frequently observed (Fig.  14.2 ). The parenchyma of kidneys may display a 
yellowish- brown discoloration and petechial hemorrhages (Fig.  14.5 ) might be 
observed. Petechial hemorrhages or ecchymoses are also often present in the urinary 
bladder, heart, and serosae of the abdominal and thoracic cavities. Gross lesions 
associated with encephalitis include hyperemic and congested blood vessels of the 
brain. Non- suppurative encephalitis might be observed microscopically in brains of 
animals showing signs of neurological disorders.   

 In chronic cases of CSF, gross pathological changes tend to be less accentuated 
than in acute cases of the disease. Purple skin discoloration might be observed due to 
hemorrhages in subcutaneous tissues. At this stage, infl ammation in the respiratory, 
gastrointestinal, and urinary tract are often seen as the consequences of secondary 
infections. Animals usually display chronic diarrhea as a consequence of necrotic and 
ulcerative lesions on the ileum, the ileocecal valve, and the rectum. “Button” ulcers 
in the large intestine and colon are considered typical (Fig.  14.4 ) [ 72 ]. 

 In cases of congenital infection, a proportion of piglets may show incomplete 
development of the cerebellum or other developmental abnormalities, such as atro-
phy of the thymus [ 72 ]. Fetal mummifi cations, malformations, and stillbirth are a 
consequence of transplacental infections [ 110 ].  

2.2.3    Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 The severity of pathological lesions caused by CSFV depends on time of infection, 
age of the animal, and virulence of the infecting virus [ 111 ]. Case-fatality rates in 
acute cases of CSF tend to be high particularly among young animals. Acute forms 
of CSF are associated with virulent isolates of the virus; however, the chronic form 
of CSF is associated with virus isolates of moderate-to-low virulence. Congenital 
forms of CSF caused by transplacental infections may occur at any stage of the 
pregnancy. The course of CSFV infections in sows is mainly subclinical, with ani-
mals having transient anorexia and reproductive failures. Infections during the fi rst 
trimester of gestation often lead to abortions, and repeat breeding could lead to 
subsequent abortions. Persistently viremic piglets are born to sows that became 
exposed to CSFV, usually during the second trimester of gestation. These piglets 
are clinically normal although they may show poor growth, wasting, and tremors. 
These animals survive for a long period of time (30 days or more) while constantly 
shedding virus [ 112 ]. The outcome of this type of infection, known as “late onset 
of CSF,” is always fatal. Pregnant sows or “carrier sows” usually do not manifest 
the disease, although they shed virus, particularly at farrowing. Infections that 
occur in the third trimester of gestation result in abortion, fetal malformation, or 
birth of weak or dead litters.   
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2.3     Diagnosis and Control 

2.3.1    Diagnosis and Epidemiology 

 CSF is diagnosed tentatively on clinical grounds. However, this approach is rather 
limited since CSF clinically resembles other diseases of pigs such as African swine 
fever, erysipela, porcine reproductive and respiratory syndrome, coumarin poison-
ing, purpura hemorrhagica, postweaning multisystemic wasting syndrome, porcine 
dermatitis and nephropathy syndrome,  Salmonella  or  Pasteurella  infections, or any 
enteric or respiratory syndrome with fever not responding to antibiotic treatment. 

 Techniques for the detection of CSFV and virus-specifi c antibodies are estab-
lished and described in the OIE’s Manual of Diagnostic Tests and Vaccine for 
Terrestrial Animals [ 113 ]. Traditionally, virus isolation and detection of viral anti-
gens in frozen tissue sections using antibodies have been used to diagnose 
CSF. Currently, antibody-detection ELISA, targeted to anti-E2 antibodies, is com-
monly used for CSF surveillance and for diagnostic purposes. ELISAs based on the 
detection of antibodies against E rns  have also been developed, mainly for distin-
guishing vaccinated animals from naturally infected animals when subunit vaccines 
are used to immunize pigs. Antigen detection ELISAs are also available for detect-
ing CSFV antigens in tissue samples. The advent of nucleic acid-based tests, such 
as RT-PCR and qRT-PCR, has signifi cantly improved the simplicity and sensitivity 
of tests for detecting CSFV. These techniques are rapid and highly sensitive, capable 
of detecting low amounts of virus even before the onset of clinical signs. 

 Genetic typing of CSFV [ 49 ,  114 ,  115 ] targeting the 5′ untranslated genomic 
region [ 49 ] or E2 and NS5B genes [ 116 ,  117 ] has been widely used for identifying 
and comparing isolates. Phylogenetic analysis grouped CSFV isolates of different 
chronological and geographical origins into three distinctive groups, with three or 
four subgroupings: groups 1.1, 1.2, and 1.3; groups 2.1, 2.2, and 2.3; and groups 
3.1, 3.2, 3.3, and 3.4 [ 72 ]. Group 1 includes historic CSFV isolates and vaccine 
strains. Most of these viruses were isolated from around the world in the period dat-
ing from 1920s to 1990s, although CSF outbreaks caused by these isolates have 
been reported in Cuba and Colombia in the early 2000s. Group 2 includes all CSFV 
isolates that have been circulating in the EU in the last 30 years. The earliest appear-
ance of subgroup 2.3 viruses was reported in West Germany in 1982 [ 49 ]. 
Subsequently, isolates with the characteristics of subgroups 2.1 and 2.2 have been 
detected in domestic and wild pig populations in different EU countries. The 2.1 
viruses have been only sporadically reported in Europe. These isolates were fi rst 
reported in West Germany in 1989, and thereafter in the Netherlands (1992) and 
Switzerland (1993). During the major CSFV outbreak in the EU in 1997 and 1998, 
the virus is believed to have been introduced from Germany into the Netherlands, 
with subsequent spread to Italy, Belgium, and Spain [ 118 ,  119 ]. Isolates from this 
group have been detected in Africa and Asia. Group 3 isolates are the most diverse 
CSFV isolates, and seem to be confi ned to Asia, particularly Southeastern Asia, 
where all groups and subgroups have been detected at one point in time.  
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2.3.2    Vaccination, Control, and Eradication 

 The fi rst attempts to develop a vaccine against CSF in the USA were made in 1907 
by the US Department of Agriculture Bureau of Animal Industry. Vaccination con-
sisted of the inoculation of pigs with anti-CSF serum, followed by inoculation with 
virulent virus. In 1935, Dorset et al. developed a vaccine killed with crystal violet. 
In 1965, Baker developed a live attenuated vaccine (LAV) that conferred effective 
protection against the disease [ 120 ]. In 1961, the US Congress authorized a CSF 
eradication program, but no diagnostic test for CSF was readily available. In 1963, 
Mengeling et al. developed and described a fl uorescence-based rapid diagnostic test 
for CSF that took less than a day to perform. 

 LAVs were derived from wild-type CSFVs that were attenuated through repeated 
passages in either cell culture or experimental animals [ 98 ,  121 ,  122 ]. CSFV sub-
unit marker vaccines have been developed using recombinant E2 envelope protein 
[ 86 ,  123 ,  124 ]. A key feature is that these subunit vaccines induce an antibody 
response that  d ifferentiates  i nfected from  v accinated  a nimals ( DIVA  principle). 
However, these subunit vaccines are not as effi cacious as traditional LAVs, particu-
larly when animals are exposed shortly after vaccination [ 86 ,  123 ,  124 ]. Solid protec-
tion is usually observed after 14 days post vaccination, evidenced by the appearance 
of circulating neutralizing antibodies. 

 Other experimental vaccines against CSFV have been designed including 
 peptides, DNA vaccines, vectored vaccines, and trans-complemented, deleted 
CSFV genomes (replicons; for review see ref. [ 125 ]. Vaccines based on immuno-
genic peptides (mostly derived from the E2 glycoprotein) have been used experi-
mentally [ 126 – 129 ]. DNA vaccines based on the E2 protein have been formulated 
in combination with cytokine genes to enhance their immunogenicity [ 130 – 134 ]. 
Vaccinia virus vector-based vaccines have been constructed expressing E2 and/or 
E rns  glycoproteins [ 100 ]. E2-bearing viral vectors, including pseudorabies virus 
[ 135 – 138 ], porcine adenovirus [ 139 – 142 ] swinepox virus [ 143 ], and parapoxvi-
ruses [ 144 ], have been used in pigs. In general, viral vector-based vaccines have 
DIVA capabilities and induce protection against clinical disease. Alternatives to the 
use of LAVs (e.g.,  trans -complemented viruses) have been constructed due to the 
hypothetical potential of any live virus to revert back to its virulent parental strain 
[ 145 – 148 ]. These viruses lack the E rns  or E2 proteins and are complemented in  trans  
after their RNA is transfected into helper cell lines expressing the lacking viral gene 
[ 146 ]. When inoculated in pigs, these viruses can enter cells, but they are unable to 
produce viable viral progeny. 

 CSF control programs in enzootic areas are based on vaccination of domestic pigs. 
The most currently used vaccines are LAVs. Vaccination with LAV strains C, GPE−, 
Thiverval, or PAV-250 induces protective immunity in pigs within a few days after vac-
cination. In general, these LAV vaccines provide lifelong immunity against disease 
[ 98 ]; however, they do not allow serological differentiation of vaccinated from infected 
animals. This makes eradication efforts and demonstration of freedom of disease 
diffi cult, both of which are prerequisites for removing barriers to animal trade. 
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 With the advent of reverse genetics, experimentally improved LAVs with DIVA 
capabilities have been developed. Chimeric pestivirus vaccines (CP7_E2alf) and 
genetically modifi ed FlagT4v CSFV vaccines were constructed [ 145 ,  149 – 153 ] and 
included some combination of positive antigenic markers and/or negative markers 
suitable for differentiation from natural infection. These vaccines confer protection 
against CSF as with conventional LAV while allowing distinction between vacci-
nated and infected animals. 

 In countries free of CSFV, control policies involve depopulation (slaughter) of 
exposed animals [ 51 ]. In the EU, outbreaks of CSF lead to depopulation of infected 
farms and the destruction of cadavers. During outbreaks, protection zones (3 km 
radius) and surveillance zones (10 km radius) are established in affected areas, 
restricting pig movements. An epidemiological investigation is established with the 
purpose of tracing a CSFV isolate to the source of infection. If considered appropri-
ate, emergency vaccination could be an option for controlling an outbreak of the 
disease in countries previously free of CSFV. 

 April 1973 was the fi rst month over a period of 100 years without a CSF outbreak 
in the USA. In January of 1978, the US was declared free of CSF [ 79 ]. Similarly, 
after implementation of strict control measures, several countries, including 
Australia, Canada, New Zealand, and member states of the EU, were able to eradi-
cate the disease.  

2.3.3    Public Health/One Health Crossover 

 CSFV is not a risk to humans, other than those public-health effects induced by the 
economic hardship associated with an outbreak response.    

3     Rabbit Hemorrhagic Disease Virus and European Brown 
Hare Syndrome Virus 

3.1     Etiologic Agent and Natural History 

3.1.1    Defi nition 

 Rabbit hemorrhagic disease (RHD) is caused by the calicivirus rabbit hemorrhagic 
disease virus (RHDV). RHD was fi rst described in 1984 as a disease of European 
rabbits ( Oryctolagus cuniculus ) imported from Germany into the People’s Republic 
of China [ 154 ], but whether these rabbits were carrying the virus or exposed to a 
local virus is unclear. The case-fatality rate in these rabbits was over 90 %. 

 European brown hare syndrome (EBHS) is also caused by a calicivirus, European 
brown hare syndrome virus (EBHSV), and was fi rst reported in Sweden in 1980 
[ 155 ]. EBHSV infects European brown hares ( Lepus europeus ) and mountain hares 
( Lepus timidus ), causing an acute hepatitis with lower case-fatality rate compared to 
that of RHD in rabbits.  
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3.1.2    Etiology and Evolution 

 Both RHDV and EBHSV are single-stranded, positive-sense RNA viruses in the 
genus  Lagovirus  within the family  Caliciviridae  [ 156 ]. The genomes of both viruses 
are approximately 7.5 kb long and code for nine viral proteins [ 157 – 160 ]. 

 The hepatotropic, lethal RHDV has likely evolved from closely related but non-
pathogenic lagoviruses, which are widely distributed in wild and domestic rabbits 
[ 161 – 164 ]. These viruses replicate in the gut causing little or no pathology [ 162 , 
 165 ,  166 ]. The mutation or mutations that have altered the cellular tropism of the 
virus and allowed the very rapid replication in the liver have not been defi ned. 
Additionally, the timeframe of this evolutionary step is unclear; researchers still 
debate whether the switch to pathogenic forms happened once or several times dur-
ing the evolutionary history of the RHDV [ 167 – 169 ]. Recently, moderately patho-
genic lagovirus strains have also been described [ 170 – 172 ]. 

 The origins of EBHSV are unclear. However, viral antigen was detected in tissues 
of healthy European brown hares in Argentina. The absence of notable hare lethality 
[ 173 ] suggests that non-pathogenic lagoviruses may also exist in hares.  

3.1.3    Geographic Distribution and Economic Effects 

 RHDV was fi rst described in farmed European rabbits in the People’s Republic 
of China in 1984. Over the next few years, RHD occurred in South Korea, 
Europe, the Americas, Northern and Western Africa, Western Asia, Cuba, and 
Réunion, and was probably spread by trade of rabbits and rabbit products [ 154 ]. 
Coincident with the emergence of RHD in rabbits, EBHS was reported in 
Northern Europe in 1980 [ 155 ]. 

 RHD causes substantial commercial losses in rabbitries due to the direct costs 
of deaths in outbreaks. Millions of rabbits have died, and when combined with the 
associated costs of control and eradication, RHDV is a signifi cant economic bur-
den to producers [ 154 ,  174 ,  175 ]. RHDV has been established in the wild European 
rabbit populations of Europe where it has been responsible for an ecologically 
signifi cant decline of free-living wild rabbit populations [ 154 ,  176 ]. This decline 
has impacted higher order predators, such as the Spanish imperial eagle ( Aquila 
adalberti ) and Iberian lynx ( Lynx pardinus ), recreational hunting, and maintenance 
of traditional landscapes through rabbit grazing [ 177 ]. In contrast, RHDV was 
released in Australia and subsequently New Zealand as a biological control for 
wild European rabbits, which are major introduced vertebrate pests causing serious 
agricultural and ecological damage [ 178 ,  179 ]. In these countries, RHDV has had 
a signifi cant positive economic and ecological benefi t [ 180 ]. In addition, RHDV 
appears to have maintained high virulence after its introduction, unlike myxoma 
virus which was deliberately spread in Australia and Europe in the 1950s [ 181 ]. 
However, emerging genetic resistance to RHDV in Australian rabbits has been 
reported [ 182 ,  183 ].  
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3.1.4    Natural History, Transmission, and Host Range 

 The only known host of RHDV is the European rabbit. Other animals of more than 
20 species, including many animals native to Australia, were experimentally 
infected as a prerequisite for the release of RHDV as a biocontrol agent for rabbits, 
but no productive infection was observed [ 178 ]. Lagomorphs other than European 
rabbits, including American leporids such as the volcano rabbit ( Romerolagus 
diazi ), black-tailed jackrabbit ( Lepus californicus ), and eastern cottontail ( Sylvilagus 
fl oridanus ), also were not susceptible [ 184 ]. This observation suggests that RHDV 
is unlikely to become endemic in the Americas outside of commercial rabbitries or 
possibly free-living feral European rabbit populations. 

 EBHSV has been reported to be less species-specifi c. While the main host of the 
virus is the European hare, EBHSV can also infect mountain hares where the host 
ranges of the two leporids overlap [ 185 ], as well as eastern cottontails [ 178 ]. Recently, 
a new lagovirus genetically distinct from RHDV and EBHSV has been described in 
Europe [ 171 ,  172 ] that causes lethal infections in both European rabbits and Cape 
hares ( Lepus capensis ) [ 186 ]. 

 RHDV is infectious orally, nasally, and conjunctively, as well as by injection. 
Virus is present in most discharges from infected rabbits, including feces and urine, 
and in the carcasses of infected dead animals. International spread occurs by direct 
contact between infected and susceptible rabbits, contaminated rabbit products or 
other fomites, or by virus present in the environment. Mechanical transmission by 
fl ies, especially Australian bush fl ies ( Musca vetustissima ) and blowfl ies 
( Calliphora  spp.), is of particular importance for distance transmission in the fi eld 
in Australia and also other countries [ 154 ,  187 ,  188 ]. Virus can adhere to the legs 
and mouthparts of fl ies, and also pass through the gut unchanged [ 187 ]. Under 
laboratory conditions, RHDV could also be transmitted by mosquitoes or fl eas that 
fed on infected rabbits [ 189 ]. 

 RHDV is highly stable in the environment. Virus in rabbit carcasses can remain 
infectious for more than 3 months, particularly inside rabbit warrens [ 190 ]. As rab-
bit carcasses with extremely high virus loads effectively transmit RHDV, selective 
pressure is probably low for attenuation of RHDV in the fi eld. This hypothesis could 
explain why fi eld isolates continue to be highly virulent. The frequent reemergence 
of RHD in rabbit populations, together with detection of viral RNA in recovered 
rabbits, has led to suggestion of persistent infection [ 191 ,  192 ]. However, although 
viral RNA can be detected in rabbit tissues months after recovery from disease 
[ 193 ], viral antigen or virus transmission could not be demonstrated. Virus could 
also not be reactivated by immunostimulation or immunosuppression [ 194 ]. Results 
from recent epidemiological studies suggest that viruses initiating natural outbreaks 
vary genetically between years in the same location, indicating that the virus does 
not persist on-site between outbreaks [ 195 ].   
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3.2     Pathogenesis and Clinical Features 

3.2.1    Pathogenesis and Immunology 

 The major target organ of RHDV is the liver, but hemorrhage due to DIC and loss 
of clotting factors is an inconsistent feature of clinical disease seen in the fi eld. 
RHDV binds in a strain-specifi c manner to oligosaccharide histo-blood group anti-
gen (HBGA) receptors expressed by epithelial cells of the gut and upper respiratory 
tract [ 183 ,  196 ,  197 ]. Researchers have suggested that these receptors provide an 
initial site of attachment for RHDV. However, the role of these potential receptors 
has not been clearly defi ned. These receptors on epithelial cells are not expressed at 
high levels in young rabbits [ 196 ] even though these animals are readily infected 
[ 189 ,  198 ,  199 ], and these antigens are also not expressed in the liver. 

 The sites of initial replication following oral/nasal inoculation have not been iden-
tifi ed. RHDV can be detected in hepatocytes as early as 8 h after oral/nasal inoculation 
[ 200 ]. Rapid virus replication to extremely high titers causes massive hepatic necrosis 
and fulminant liver failure within 36–96 h after infection. Hepatic encephalopathy 
may occur as a result of the liver failure. Histopathologically, coagulative necrosis of 
hepatocytes is observed, starting at the periphery of the lobule and moving inward as 
the disease progresses. Over 60 % of hepatocytes may be positive for viral antigen 
[ 201 ], and viral RNA can be detected by PCR in the liver [ 194 ]. 

 DIC has been observed with thrombus formation in the blood vessels of the liver, 
kidneys, and lungs, as well as widespread ecchymotic and petechial hemorrhages. 
Hemorrhage and edema of the alveoli may also be present in the lung [ 202 ,  203 ]. 
Virus antigen can be detected in alveolar macrophages by in situ hybridization, and 
viral RNA can be detected by PCR in the lungs [ 194 ,  204 ]. 

 Nephrosis with impaired renal function (elevated BUN and serum creatinine con-
centrations) occurs late in infection, characterized by congestion of glomerular tufts 
and the renal medulla, hemorrhages within the renal corpuscles and the interstitium 
of the cortex, hyaline thrombi within small blood vessels, and hydropic degeneration 
of the tubules [ 202 ,  205 ]. Depletion of lymphocytes from the white pulp of the spleen 
is characteristic of RHD. Virus antigen also can be detected in macrophages and 
lymphocytes in the spleen, blood monocytes, and glomerular mesangial cells by 
immunohistochemistry or in situ hybridization [ 201 ,  204 ] and in the feces and bile 
by hemagglutination [ 194 ]. Viral RNA can be detected by PCR in bile, spleen, 
lymphoid tissues, kidneys, WBCs, urine, and feces [ 194 ].  

3.2.2    Incubation Period, Clinical Signs, and Gross Lesions 

 The incubation period can be as short as 12–24 h following injection of RHDV. 
Clinical presentation can be peracute, expressed as sudden death with no premonitory 
signs: rabbits may be observed grazing then squeal, convulse, and die. In the acute 
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form of the disease, the infected rabbit may appear depressed and reluctant to move 
around. These animals will show elevated temperature (up to 42 °C, 107.6 °F), and 
heart and respiratory rate may be increased. Ataxia, lateral recumbency, convul-
sions, and coma may occur prior to death and 2–5 days after exposure. Blood-
stained discharge from the nose and bloody diarrhea or hematuria may be seen. 

 Infected rabbits that survive longer than 4–5 days are considered to express a 
subacute form of the disease during which obvious icterus may be present. 
Depending on the degree of hepatic damage in these rabbits, death may occur days 
to weeks later; hepatic cirrhosis has been described in subacutely affected rabbits 
[ 202 ,  206 ]. Subclinical infection may occur in a small proportion of infected adult 
rabbits and in young rabbits under 10 weeks of age. These rabbits are infected and 
seroconvert, but clear the virus with few or no clinical signs of disease. An age- 
related resistance to disease occurs; infected kits less than 4–5 weeks old rarely 
show clinical disease although they shed virus [ 189 ,  198 ,  199 ]. Mild hepatic pathol-
ogy is present with elevated liver enzyme serum concentrations, and occasional 
deaths do occur [ 199 ]. This resistance is gradually lost, and by 10 weeks of age, 
rabbits are fully susceptible [ 207 ]. 

 The most consistent fi nding at autopsy is a pale swollen liver, usually with a 
strong lobular pattern. The spleen is enlarged and black, and the kidneys may be 
dark. Lungs may be congested and hemorrhagic, with fl uid or froth in the trachea 
and bronchi, and the walls of the trachea are commonly hyperemic due to dilation 
of the blood vessels. Ecchymotic and petechial hemorrhages may be scattered over 
all the internal organs, mucosal surfaces, subcutaneous tissues, and muscle, but are 
not a consistent fi nding [ 189 ]. In subacutely infected rabbits that have survived for 
some days, the subcutaneous tissue may be yellowish. 

 Clinical hematology and hemostasis fi ndings include lymphopenia, neutropenia, 
decreased thrombocytes, increased prothrombin time, and decreased factor V and 
Factor VII. Clinical chemistry fi ndings include extremely elevated liver transami-
nase concentrations in serum (aspartate amino transferase >100 times normal; ala-
nine amino transferase >10 times normal), marked elevation of total bilirubin 
concentrations, elevated BUN and serum creatinine concentrations, elevated serum 
Na +  and K +  concentrations, hypoglycemia, and hyperlipidemia [ 199 ,  203 ,  205 ,  208 ].  

3.2.3    Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 Historically, case-fatality rates in RHD-infected adult rabbits were generally 
90–95 %. Recently, a complex interaction between clinical outcome, virus geno-
type, and HBGA receptor type has been demonstrated. Rabbits of particular HBGA 
types are more likely to survive infection at low doses of particular RHDV strains, 
although this resistance can be overcome at higher virus doses [ 183 ]. In addition, 
evidence from France and Australia indicates that this natural resistance may be 
leading to selection in wild populations of rabbits that are negative for the HBGA 
receptor type that facilitates infection of the predominant virus strain in a specifi c 
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geographic region [ 182 ,  183 ]. Emerging genetic resistance to RHDV has been 
described in Australian wild rabbits, which manifested as resistance to infection 
rather than resistance to disease [ 182 ].   

3.3     Diagnosis and Control 

3.3.1    Diagnosis and Epidemiology 

 In commercial rabbitries, RHDV exposure typically leads to a history of rapid onset 
of high fatality in unvaccinated adult rabbits and survival of younger animals. Gross 
autopsy fi ndings are largely confi rmatory. RHDV does not replicate in cell cultures 
tested to date [ 113 ], so laboratory diagnosis is based on detection of virus, virus anti-
gen, or viral nucleic acid. Virus can be detected in virtually all tissues and secretions 
using RT-PCR. Liver is the most useful tissue for diagnosis because of the extremely 
high titers of RHDV in this tissue. Virus can also be demonstrated in liver extracts 
using antigen-capture ELISA, western blot or by hemagglutination using human 
erythrocytes. However, some RHDV strains have been reported not to hemagglutinate 
possibly due to variations in HGBA binding [ 113 ,  183 ]. RHDV RNA can be detected 
by RT-PCR for prolonged periods in recovered animals, and cross- reaction can also 
occur with related rabbit lagoviruses. Indirect or competition ELISA can demonstrate 
antibody to RHDV. Isotype ELISAs are used for detection of IgG, IgM and IgA but 
are less specifi c and can cross-react with other rabbit lagoviruses. IgM can be detected 
as early as 3–4 days after infection. Hemagglutination inhibition can also be used for 
antibody detection [ 113 ]. 

 In Europe, Australia, and New Zealand, RHD is enzootic in wild rabbit popula-
tions [ 178 ]. The timing of outbreaks is closely linked to the immune status of a popu-
lation, juvenile resistance, and rabbit breeding patterns, which in turn strongly 
depend on climatic factors [ 154 ]. Young rabbits are resistant to lethal RHDV infec-
tion but can become infected and acquire lifelong immunity. Therefore, natural out-
breaks of RHD are usually observed towards the end of the breeding season, when a 
suffi cient density of seronegative rabbits of a susceptible age is available [ 154 ]. 
Maternal antibodies can prevent infection [ 207 ]. Such antibodies also help to delay 
exposure of rabbits until they have reached a susceptible age, thereby delaying, 
but not preventing, outbreaks. Acquired immunity to RHDV is life-long, but boosts 
in antibody titers have been observed, indicating that rabbits probably get reinfected 
and mount an anamnestic immune response [ 209 ]. 

 Avirulent rabbit lagoviruses related to RHDV occur in both wild and domestic 
rabbit populations in Australia and Europe. Some avirulent strains may provide a 
degree of cross-protection against RHD, thus further modifying the epidemiology 
of the disease. This protection is seen in areas where these avirulent relatives of RHDV 
are present, which in Australia are predominantly the cooler temperate climatic 
zones [ 161 – 164 ]. Serological studies are often confounded by the presence of these 
nonpathogenic lagoviruses, such as rabbit calicivirus (RCV)-A1 in Australia [ 164 ]. 
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These nonpathogenic lagoviruses cross react in serological assays for RHDV 
[ 209 ,  210 ], so specifi c serological assays have been developed for studying the 
epidemiology of RHDV in areas where these viruses circulate [ 211 ,  212 ].  

3.3.2    Vaccination, Control, and Eradication 

 In countries where European rabbits are uncommon in the wild, such as the USA, 
eradication following entry of RHDV has been successful, although further incur-
sions have occurred [ 174 ]. In Europe, where wild European rabbits provide a reser-
voir of infection, eradication is not feasible. Control in commercial rabbitries relies 
largely on quarantine and vaccination. For meat breeding, control of infection may 
mean vaccinating the breeders and relying on maternal antibody to protect the meat 
rabbits prior to slaughter. Inactivated, adjuvanted whole virus vaccines produced 
from infected rabbit livers are commercially available and provide good protection 
following a single injection at 8–12 weeks of age, followed by an annual booster. 
It is not clear if maternal antibody can interfere with vaccination, so delaying vaccina-
tion until 12 weeks of age or boosting vaccination at 10–12 weeks may be sensible 
depending on the situation. A combination of a live myxoma virus vaccine with inac-
tivated RHDV is available commercially (Dercunimix, Merial), and a recombinant 
attenuated live myxoma virus expressing the RHDV capsid protein was released in 
2013 (Nobivac Myxo-RHD, MSD Animal Health). Vaccination in the face of an 
outbreak is considered effective [ 113 ] but should be combined with isolation/cull-
ing of affected rabbits, strenuous hygiene, and other biosecurity measures. As 
noted above, kits may not show clinical signs but will shed virus. 

 An antigenic variant of RHDV termed RHDVa appears to be replacing RHDV 
throughout most of its range [ 167 ,  213 ]. Conventional RHDV vaccines are still protec-
tive against this variant, although it can overcome suboptimal vaccine doses [ 214 ]. 
However, vaccines appear largely ineffective against the recently described variant 
strain RHDV2 [ 172 ], and immune responses to natural infection with this strain are 
only partially protective against challenge with classical RHDV [ 215 ]. Antigenic vari-
ants that overcome vaccination against RHDVa are present in China [ 216 ]. 

 Vaccination to protect wild rabbit populations is logistically and economically 
infeasible although recombinant myxoma viruses expressing RHDV capsid protein 
have been tested in the fi eld [ 217 ]. Nonpathogenic rabbit caliciviruses that provide 
some cross-protection against RHDV and spread naturally could provide a possible 
means of immunization of wild rabbits [ 218 ,  219 ].  

3.3.3    Public Health/One Health Crossover 

 The deliberate release of RHDV in Australia as a biological control agent generated 
controversy because of the broad host range of some caliciviruses and the perception 
(at the time) that the virus had possibly jumped species into rabbits [ 174 ,  220 ,  221 ]. 
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However, specifi c testing and nearly 30 years of experience have demonstrated that 
RHDV is highly specifi c for European rabbits, and that it is closely related to 
(and probably evolved from) a nonpathogenic rabbit calicivirus. The only exception 
is a recent report describing RHDV2 infection of European rabbits and Cape hares, 
but not other hares [ 186 ]. Despite this, the emergence of a highly virulent virus from 
an apparently avirulent progenitor provides a warning of how easily new viruses 
may emerge.    

4     Simian Hemorrhagic Fever Virus 

4.1     Etiologic Agent and Natural History 

4.1.1    Defi nition 

 Simian hemorrhagic fever virus (SHFV) is classifi ed as an arterivirus in the family 
 Arteriviridae , order  Nidovirales . Like other arteriviruses, SHFV has a positive- sense 
RNA genome approximately 15 kb in length, and differs from other arteriviruses by 
having three additional open reading frames [ 222 ].  

4.1.2    Etiology and Evolution 

 SHFV is a relatively uncharacterized virus that causes simian hemorrhagic fever (SHF), 
a severe disease of Asian macaques ( Macaca  spp.) characterized by fever, facial 
edema, anorexia, adipsia, petechiae, diarrhea, hemorrhages, and up to 100 % lethal-
ity. All outbreaks of SHF have occurred at primate research facilities, but the means 
of introduction into primate colonies remains undefi ned. Dependent on the strain, 
the virus causes subclinical, persistent infection in Kibale red colobus ( Piliocolobus 
rufomitratus ), red-tailed monkeys ( Cercopithecus ascanius ), and possibly patas mon-
keys ( Erythrocebus patas ), grivets ( Chlorocebus aethiops ), and Guinea baboons 
( Papio papio  spp.), which serve as natural hosts in Africa [ 223 – 227 ].  

4.1.3    Geographic Distribution and Economic Effects 

 Asian macaques, which probably are not exposed in nature to SHFV, are highly 
susceptible to SHFV infection and disease, whereas African monkeys may carry the 
virus persistently without clinical signs. The overall distribution of SHFV in wild 
primates remains unclear. SHFV was a major concern for primate research centers 
in the past, but physical separation of Asian from African monkeys and improved 
screening methods have been effective control measures. The last outbreak of SHF 
was recorded in 1996.  
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4.1.4    Natural History, Transmission, and Host Range 

 Much of what is known about SHFV is derived from experiments with the prototype 
variants LVR 42-0/M6941 and Sukhumi-64. These prototypes were fi rst identifi ed in 
1964 during almost simultaneous outbreaks of febrile hemorrhagic disease in Asian 
macaques that occurred at the Sukhumi Institute of Experimental Pathology and 
Therapy in the Georgian Soviet Socialist Republic and at the National Institutes of 
Health (NIH) in Bethesda, MD, USA [ 224 ,  228 ,  229 ]. Macaques in both institutes 
were housed in close proximity to African primates, including patas monkeys, 
baboons, and grivets [ 226 ,  229 ,  230 ]. During the Sukhumi outbreak, animals pre-
sented clinically with a hemorrhagic diathesis and encephalomyelitis. Lethality 
reached 100 % over 2 months [ 228 ,  229 ]. Conversely, the macaques housed at NIH 
also presented with hemorrhagic diathesis, but had high fevers in the absence of 
encephalomyelitis. Transmission was thought to have occurred as a result of reusing 
needles while tattooing and/or tuberculosis testing the African-origin primates and 
macaques [ 224 – 226 ]. The lethality during the NIH outbreak did not reach quite the 
extent seen in the USSR, as there were a few animals that survived infection. Blood and 
tissue samples from a such a survivor successfully induced hemorrhagic fever in 
macaques not associated with the initial outbreak, satisfying Koch’s postulates [ 226 ]. 

 Sporadic SHFV outbreaks of iatrogenic origin have occurred semi-regularly 
since 1964 [ 226 ,  230 – 232 ]. During SHFV outbreaks in 1972 and 1989, the virus 
was thought to be spread by both direct and indirect contact between macaques 
[ 232 ,  233 ]. Curiously, there seems to be a connection between SHFV and ebolaviruses, 
as SHFV was found together with Reston virus (RESTV) in macaques with viral 
hemorrhagic fever in four out of fi ve RESTV emergences [ 234 ].   

4.2     Pathogenesis and Clinical Features 

4.2.1    Pathogenesis and Immunology 

 Initial exposure of a nonhuman primate colony occurs through infected blood or tissue 
from carrier animals. The virus is transmitted through direct contact and fomites. 
Specifi c subsets of macrophages are the principal target cell for viral infection. 

 Very little is published characterizing the pathogenesis or immune response to 
SHFV in English [ 222 ,  235 ,  236 ]. Similar to other arteriviruses, SHFV principally 
replicates in macrophages, although there is considerable variation in the cellular 
tropism, virulence, and immunogenicity of individual strains of SHFV in African 
monkeys. 

 Infected monkeys produce complement-fi xing and neutralizing antibodies. 
The humoral immune response of persistently infected patas monkeys varies with 
the infecting strain of SHFV. Patas monkeys infected with low virulence variants 
(P-248 and P-741) had minimal or no antibody response and persistently low vire-
mia, whereas a more virulent variant (LVR 42-0/M6941) induced antibodies within 
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7 days after infection [ 237 ,  238 ]. Additionally, the appearance of these antibodies was 
associated with clearance of the virus from blood circulation 21 days post inoculation. 
Neutralizing antibodies against one variant of SHFV do not completely neutralize 
other variants, suggesting that variation in the neutralization determinants of individual 
variants of SHFV exists. However, these determinants have yet to be characterized.  

4.2.2    Incubation Period, Clinical Signs, and Gross Lesions 

 The incubation period of SHFV is approximately 3 days, and most animals suc-
cumb to the infection within 10–15 days post exposure. Clinical signs begin with 
depression, ataxia, anorexia, dehydration, edema, cyanosis, and petechial rash. 
Hemorrhage in the form of epistaxis, hematemesis, ecchymosis, retrobulbar hem-
orrhage, and melena is common. Hematologic signs of coagulopathy including 
abnormal coagulation factors with fi brin degradation products are typical. 
Concentrations of liver enzymes, including LDH, GGT, AST, may be elevated. 
Elevations of BUN and creatinine concentrations may indicate kidney involve-
ment, but the elevations are variable. Typical gross lesions include random hemor-
rhage and congestion throughout the gastrointestinal tract, liver, renal capsule, 
retrobulbar tissue, subcutis, and lung. The proximal duodenum may contain focally 
extensive congestion, hemorrhage, and necrosis with sharp demarcation at the 
pylorus. Splenic infarction with signifi cant absence of white pulp may be present. 
Microscopically, extensive lymphoid necrosis in the spleen is observed, with peri-
follicular hemorrhage and fi brinous exudate. A unique feature of SHFV is cortical 
thymic necrosis of the spleen, with sparing of the medulla. Systemic lesions consis-
tent with DIC, including necrosis, fi brin thrombi in glomeruli, hepatic sinusoids, 
and lung are also present in severe cases.  

4.2.3    Morbidity and/or Case-Fatality Rates and Prognostic Factors 

 Asian macaques are very susceptible to even small doses of SHFV, and usually 
uniformly develop disease with lethality usually reaching close to 100 %. Other 
nonhuman primates (NHPs) either do not get infected at all or develop subclinical 
infections.   

4.3     Diagnosis and Control 

4.3.1    Diagnosis and Epidemiology 

 Serologic tests cannot distinguish carriers from previously infected animals, and 
virus isolation is generally unreliable for diagnosis. Molecular detection by RT-PCR 
has become the method of choice for detection of SHFV.  
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4.3.2    Public Health/One Health Crossover 

    SHFV has not been linked to human disease.     SHFV and RESTV were isolated con-
currently and repeatedly in crab-eating macaques ( Macaca fascicularis ) maintained 
in Philippine and US quarantine facilities.     SHFV has caused sporadic outbreaks of 
hemorrhagic fevers in macaques at primate research facilities [ 234 ,  239 ]. Any severe 
disease of closely related animals such as NHPs must be viewed with caution, as the 
potential for adaptation of the virus to humans should always be a concern given the 
common phenotypic and genotypic features of both animals.       

5     Other Positive-Stranded RNA Viruses Causing Viral 
Hemorrhagic Fever-Like Diseases 

5.1     Feline Calicivirus 

 A strain of feline calicivirus (FCV-Ari, named for the second observed case) was 
observed by Pederson et al., to cause disease in domestic cats with hemorrhagic fea-
tures and this disease could be induced in experimental infections [ 240 ]. While vascu-
litis was an inconsistent fi nding, severe edema and local necrosis of skin and 
subcutaneous tissues were present. “Loss of vascular integrity” was considered to be 
the best explanation for the observed gross and biochemical fi ndings in both the natu-
rally and experimentally infected animals. This loss was supported by fi nding viral 
antigen in endothelial cells [ 241 ] and identifying a cellular junctional adhesion mol-
ecule as a putative cellular receptor [ 242 ]. However, it was unclear whether the vascu-
lar disruption was due to direct cytopathology by live virions, disruption of tight 
junctions, or simply antigen uptake and cellular damage in the context of signifi cant 
epithelial damage. Persistence of viremia appeared to be a prognostic factor. The 
genetic sequence of FCV-Ari was shown to be within the predicted range of variabil-
ity when compared to either vaccine or fi eld strains of FCV, but commercial vaccines 
against FCV were shown to be only partially protective. In an outbreak of FCV-Ari, 
the virus was suspected to have been transmitted from a shelter cat to the cats of 
employees and a client of a veterinary practice.  

5.2     Venezuelan Equine Encephalitis Virus 

 Venezuelan equine encephalitis virus (VEEV) is an arthropod-borne zoonotic virus 
affecting both horses and humans [ 243 ]. Vectors are typically mosquitoes of the 
genus  Culex , but during epidemics members of the genera  Aedes ,  Anopheles , 
 Deinocerites ,  Mansonia , and  Psorophora  may also transmit the virus. The disease 
in equids can be severe, resulting in a fulminant fatal disease before encephalitic 
signs have time to develop. In less severe cases, encephalitis with neurological signs 
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develops during disease progression. In horses that express neurological signs, CNS 
lesions can be extensive, with necrosis and hemorrhage. Hemorrhage is likely sec-
ondary to endothelial destruction and not vascular leakage, as necrotic lesions have 
been seen to involve the walls of small-to-medium vessels. In fulminant and less 
severe cases, the viremias in horses are very high, and these horses act as critical 
amplifying hosts in epizootics. In humans, infl uenza-like signs and symptoms with 
a fever and severe headache are seen in the proportion of cases that show any clini-
cal signs (attack rates can be as high as 0.02 %). The virus is normally maintained 
in a sylvatic (enzootic) cycle, with few differences seen between enzootic viruses 
and the epidemic (epizootic) viruses recognized in horses or humans.  

5.3     Yellow Fever Virus 

 The disease caused by yellow fever virus (YFV) in nonhuman primates (NHPs) is 
essentially indistinguishable from the disease in humans, including the hemorrhagic 
manifestations observed [ 244 ]. The main difference is that the disease in NHPs 
appears to have a more rapid course, with death occurring at 7 days post exposure, 
instead of the typically longer recurrent fever course seen in fatal human cases. Due 
to both hepatic and immunologic consequences of infection, yellow fever appears to 
resemble an inappropriate and overwhelming immune response, similar to that seen 
in severe sepsis. Conversely, experimental YFV infection of hamsters more closely 
resembles the hepatic impairment of yellow fever in humans, during which the 
degree of liver insult is prognostic for lethal disease.      
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    Chapter 15   
 Flaviviruses: Introduction to Dengue Viruses 

             Margot     Carocci      ,     Jens     H.     Kuhn      , and     Priscilla     L.     Yang     

          Core Message   Flaviviruses are a major concern of the World Health Organization, 
and dengue virus is now the most widespread arthropod-borne viral disease infecting 
humans. Currently no vaccine or specifi c antiviral drugs are available to combat 
dengue fever. Thus, investigations and research to better understand this virus and 
its relation with its host are of great importance.  

1     Flaviviruses 

1.1     Etiologic Agent and Natural History 

1.1.1     Defi nition 

 Flaviviruses  sensu lato  are all the members of the viral family  Flaviviridae , which 
includes the four genera  Flavivirus ,  Hepacivirus ,  Pegivirus , and  Pestivirus . 
Members of these different genera are distantly related but their genomes share a 
similar gene order and conserved nonstructural protein motifs [ 1 ]. Important and 
well-known members of the family are bovine viral diarrhea virus, classical swine 
fever virus, dengue viruses, hepatitis C virus, and yellow fever virus.  
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1.1.2     Etiology and Evolution 

 This chapter addresses the members of the genus  Flavivirus  (fl aviviruses  sensu 
stricto ). The fi rst bona fi de fl avivirus characterized was yellow fever virus (YFV), 
the causative agent of yellow fever (named after the prominent icterus of infected 
patients). Together with YFV, more than 70 viruses are currently classifi ed in the 
genus, which also is the taxonomic home of other important human and animal 
pathogens such as dengue viruses (DENV1-4), Japanese encephalitis virus, Murray 
Valley encephalitis, St. Louis encephalitis virus, tick-borne encephalitis virus 
(TBEV), and West Nile virus (WNV) [ 1 ]. Flaviviruses can be categorized into three 
groups based on phylogenetic analysis of genomic sequences, and these groups cor-
relate largely with their respective insect vector: the mosquito-borne viruses, the 
tick-borne viruses, and viruses for which no vector has been identifi ed and that may 
spread without a vector. Table  15.1  summarizes the major characteristics of some 
well-known fl aviviruses. Dengue fever, transmitted by mosquitoes, is currently the 
most widespread arthropod-borne viral disease of humans. Due to this prevalence, 
we here use DENV as an example to discuss, introduce, and describe fl aviviruses.

1.1.3        Geographic Distribution and Economic Effects of Dengue 
Virus Infection 

 In the past 50 years, dengue viruses have become a major global human health 
threat. The World Health Organization estimates that about 100 million human 
infections occur annually, whereas a recent study estimated this number to actually 
be closer to 300 million [ 2 ]. Dengue fever is predominantly found in tropical and 
subtropical regions. In 2013, more than half of the world’s human population lived 
in areas at risk of infection [ 3 ,  4 ]. Currently, there is no specifi c treatment for or 
vaccine against these viruses. Control of the primary DENV vector, the  Aedes 
aegypti  mosquito, is currently the principal measure available to prevent and control 
DENV transmission.   

1.2     Pathogenesis and Clinical Features 

1.2.1     Pathogenesis and Immunology 

 Four antigenically and phylogenetically distinct dengue viruses are known to be 
established in humans although sylvatic viruses that lie outside of these four sero-
types can also infect humans. Immunoglobulin M (IgM) can be detected at the end 
of the febrile phase of dengue fever, followed by a moderate IgG response that is 
thought to confer lifelong protection against that DENV serotype. During subse-
quent infection with a heterologous serotype of dengue virus, IgG against both sero-
types arise rapidly, but antibody titers are higher against the fi rst virus serotype than 
against the second virus serotype [ 5 ]. 
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 Clinical signs of dengue fever appear 3–14 days after a bite by a DENV-infected 
female mosquito. These signs vary from unapparent, mild febrile illness to severe 
dengue infection that can result in complications and death. About 1–70 % of the 
infections lead to infl uenza-like disease characterized by high fever, rash, joint and 
muscle pain, and mild hemorrhagic manifestations, such as petechiae, purpura, 
ecchymoses, and nose bleeds [ 3 ,  6 – 8 ]. Dengue fever can progress to a painful and 
debilitating disease commonly referred to as “break bone fever.” Severe dengue, 
formerly referred to as dengue hemorrhagic fever (DHF) and dengue shock syn-
drome (DSS), is characterized by a signifi cant increase in vascular permeability, 
plasma leakage, microvascular bleeding, and reduced functioning of the coagulation 
cascade. Hemorrhages occur in multiple organs, frequently including the gastroin-
testinal tract, and fl uids may pool within body cavities. Severe dengue is character-
ized by a sudden drop in blood pressure due to vascular leakage that leads to 
hypovolemia and collapse of the vascular system. Since there is currently no spe-
cifi c antiviral treatment for DENV infection, supportive care that maintains the 
patient’s body fl uid volume is critical [ 9 ]. Under the supervision of experienced 
medical personnel, supportive care can reduce fatality rates for severe dengue from 
more than 20 % to less than 1 %. 

 Despite much study, the determinants of disease severity in dengue infection are 
complex, and the absence of a fully immunocompetent animal model that faithfully 
reproduces all aspects of human dengue virus infection has delayed scientifi c prog-
ress in this area. Considerable evidence exists that disease is correlated with greater 
viral burden [ 7 ], although some patients experiencing secondary infection with a 
heterologous serotype of DENV exhibit high viremia in the absence of severe dis-
ease [ 3 ]. Prior infection with a heterologous serotype of DENV has been identifi ed 
as a major risk factor for severe dengue fever. Enhancement of secondary dengue 
fever is thought to be due to non-neutralizing antibodies that promote uptake and 
productive entry of virions (reviewed in ref.  10 ). The antibody-dependent enhance-
ment (ADE) of viral infection is a phenomenon that has been described for several 
fl aviviruses [ 11 – 13 ]. In particular, antibodies that recognize the DENV structural 
precursor membrane protein (prM) are thought to promote ADE by increasing 
uptake of immature virions. Since the presence of infection-enhancing antibodies is 
not always correlated with disease severity [ 14 ], other variables including viral [ 13 ,  14 ] 
and host genetics [ 11 ,  12 ] and kinetics (i.e., time between infections) are also likely 
to be important.   

1.3     Flavivirus Characteristics 

1.3.1     Flavivirions 

 Flavivirions are spherical particles of approximately 50 nm in diameter. Each virion 
contains a single copy of the positive-sense RNA genome surrounded by multiple 
copies of the viral core protein to form the viral nucleocapsid. This nucleocapsid is 
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protected by a lipid bilayer bearing 180 copies of the viral envelope protein (E) 
arranged as a well-ordered lattice of 90 homodimers organized in a herringbone 
pattern on the virion surface [ 15 ]. A glycoprotein, E, functions in viral entry by 
mediating the virion’s interactions with entry factors and receptors and undergoing 
conformational changes. These conformational changes catalyze fusion of viral and 
cellular membranes following exposure to acidic pH in the endosome (see below). 
On immature virions, the E glycoprotein forms trimers in which each E monomer is 
protected by a copy of the chaperone premembrane protein, prM [ 16 ]; each trimer 
of E-prM heterodimers forms a “spike” on the virion surface [ 17 ] (schematic repre-
sentation in Fig.  15.1 ). This association of E with prM prevents premature fusion of 
immature virions with cellular membranes in the acidic environment of the Golgi 
[ 18 ,  19 ]. The prM protein is processed to pr and M by furin, and pr is released by 
the virion once in the neutral pH of the extracellular space. This release produces 
the smooth-surfaced, mature virion observed in cryo-electron microscopy recon-
structions [ 20 ,  21 ]. Studies using neutralizing antibodies indicate that E protein on 
the virion surface undergoes dynamic structural changes at physiological tempera-
tures, and these changes have a signifi cant effect on the accessibility of epitopes and 
neutralization of virus [ 22 ].   

1.3.2    Flavivirus Genomes 

 The DENV genome is a single-stranded linear RNA of positive polarity ((+)ssRNA)) 
of approximately 11 kb (Fig.  15.2 ). Like that of other fl aviviruses, the genome 
encodes a single open reading frame (ORF) fl anked by highly structured 5′ and 3′ 
untranslated regions (UTRs) of about 100 and 400 nucleotides, respectively. The 5′ 
end bears a type I cap structure (m 7 GpppAmG) for cap-dependent translation of a 
single polyprotein. The 3′ UTR terminus lacks a polyadenylated tail but ends with 
a highly conserved stem loop structure (3′SL). A high number of  cis -acting RNA 
elements, located in the coding and noncoding regions of the genome, act as pro-
moters, enhancers, and circularization signals that are required for effi cient RNA 
replication or translation (for reviews see refs. [ 23 – 25 ]). A RNA hairpin structure in 
the capsid-coding region (cHP) directs start codon selection and is also required for 
viral replication [ 26 ]. The highly conserved 3′SL is required for viral RNA replica-
tion [ 27 – 29 ] but also promotes translation by facilitating binding of the RNA to 
polysomes [ 30 ].   

1.3.3    Flavivirus Proteins 

 The single polyprotein encoded by fl avivirus genomes is cleaved into ten individual 
proteins by a combination of viral and cellular proteases and peptidases. For DENV, 
these cleavages are catalyzed by the viral NS2B-NS3 protease, host signal peptidase 
(a protease of the  trans -Golgi network), and by furin [ 31 ,  32 ]. Collectively, these 
cleavage events lead to the production of ten mature viral proteins: three structural 
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  Fig. 15.1    Dengue cycle. Mature virus particles bind to host cell receptors and coreceptors and are 
internalized by clathrin-mediated endocytosis.  In the late endosome, acidic pH triggers structural rear-
rangements of E that catalyze fusion of the viral and endosomal membranes. This fusion process is also 
affected by the presence of negatively charged lipids in the target endosomal membrane. The decapsida-
tion process is not well known, but the released viral genomic RNA ( light pink ) is directly translated by 
the cellular ribosomes ( green ) to produce viral polyproteins ( blue ). The polyprotein is cotranslationally 
and posttranslationally processed by viral and host proteases. The nonstructural (NS) proteins produced 
from the polyprotein induce membrane rearrangement (invagination in the endoplasmic reticulum) to 
form the specialized compartment in which the replication complex is assembled and genome replica-
tion occurs. The viral genomic (+)ssRNA (light pink) is a template for the synthesis of a negative-sense 
RNA by NS5 and leads to the formation of double-stranded RNA (dsRNA) intermediates called the 
replication form (RF). The newly synthesized (−)ssRNA (dark pink) is used in turn as a template for the 
synthesis of multiple (+)ssRNA via a replication intermediate (RI). Newly synthesized (+)ssRNA can 
either serve as a template for translation or replication or undergo encapsidation. During encapsidation, 
RNA interacts with the capsid protein and buds into the lumen of the endoplasmic reticulum, 
thereby acquiring lipid bilayer and the precursor membrane (prM) and envelope (E) viral proteins. 

 



  Fig. 15.2    Flavivirus genomic 
organization. The genome of 
Dengue viruses is a positive, 
5′-capped, single-stranded 
RNA. The genomic RNA 
consists of a single ORF that 
encodes a polyprotein ( dark 
grey ) fl anked by 5′ and 3′ 
untranslated regions (UTRs). 
The polyprotein is cleaved 
during and after translation 
by the viral NS2B-NS3 
proteases ( open triangles ) or 
host proteases, such as furin 
( arrow ), signal peptidase 
( closed triangles ), or 
unknown factors. 
Abbreviations:  AUG  
translation initiation codon, 
 C  capsid,  cHP  capsid hairpin, 
 E  envelope,  NS  nonstructural, 
 PK  pseudoknot,  prM  
precursor membrane,  SL  stem 
loop,  UAR  upstream of the 
AUG region       

Fig. 15.1 These immature viral particles, recognized by the spikes of prM-E heterodimers on the 
particle surface, are transported along the secretory pathway to the Golgi. Proteolytic processing 
of prM by the host furin protease ( orange )  produces a pr peptide that remains associated with the 
viral particle until it reaches the neutral pH of the extracellular environment, where it is released 
from mature viral particles (smooth surface with E homodimers)       
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proteins (core/capsid (C), pre-membrane (prM), and envelope (E)) and seven 
 nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). 
An overview of the characteristics of these structural and nonstructural proteins is 
provided in Tables  15.2  and  15.3 , respectively.

1.4          Flavivirus Replication Cycle 

1.4.1    Flavivirus Cell Entry 

 Flavivirion entry is complex, and the exact mechanisms involved are still not fully 
elucidated. The general events leading to productive fl avivirus entry include attach-
ment of the virion to the cell surface, particle endocytosis, fusion with the endo-
somal membrane, movement of the nucleocapsid into the cytoplasm, and delivery 
of the viral genome to the site of translation (Fig.  15.1 ). 

 The E glycoprotein mediates DENV entry and functions at several steps during 
this process, beginning with attachment of the viral particle to the plasma membrane 
of the target cell. This attachment to the cell surface is mediated by the putative 
receptor binding domain located in domain III of the E glycoprotein [ 33 ]. Domain II, 
which contains the hydrophobic fusion loop, is protected between domains I and III 
in mature virions. Exposure to acidic pH leads to signifi cant structural changes 
including insertion of the fusion peptide into the target endosomal membrane and 
refolding of E as a post- fusion trimer. While conserved histidine residues in the E 
protein of TBEV function as a “switch” triggering membrane fusion upon proton-
ation [ 34 ], this protonation is not required for WNV entry [ 35 ]. Likewise, fusion 
catalyzed by the DENV E protein appears to be regulated by networks of residues 
located (1) proximal to the fusion loop, (2) in the “latch” between E and M, and (3) 
in the hinge regions between domains I–II and domains I–III. Collectively, these 
residues stabilize the pre-fusion dimer with the fusion peptide protected at neutral pH 
and promote refolding of E into its post-fusion trimeric conformation upon exposure 
to acidic pH [ 36 ]. In vitro, an acidic pH is suffi cient to trigger fusion and nucleocap-
sid release of DENV and other fl aviviruses [ 37 ,  38 ]. In vivo, DENV fusion is 
thought to occur within a small endosomal vesicle in the late endosome via a pro-
cess that requires the presence of negatively charged lipids [ 39 ]. Anionic lipids act 
downstream of the low-pH- dependent step and promote the steps of fusion from the 
earliest hemi-fusion intermediates to opening of the fusion pore [ 39 ]. 

 Although DENV has broad cell tropisms, the target cells in humans are primarily 
dendritic cells (DC), monocytes, macrophages, and hepatocytes. Many different 
cellular proteins facilitate entry of DENVs including, heparan sulfate expressed at 
the surface of most cell types [ 40 ,  41 ], dendritic-cell-specifi c intercellular adhesion 
molecule 3-grabbing nonintegrin (DC-SIGN) expressed by immature DCs [ 42 ], 
heat-shock proteins 70 and 90 [ 43 ], glucose-regulated protein 78 [ 44 ], laminin 
receptor [ 45 ], mannose receptor [ 46 ], and the T-cell immunoglobulin and mucin 
domain (TIM) and tyrosine 3-, AXL-, and MER-tyrosine kinase (TAM) family of 
phosphatidylserine receptors [ 47 ,  48 ]. The prevailing model today suggests a 
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   Table 15.2    Overview of dengue virus structural proteins   

 Protein 

 Genomic sequence, 
protein properties and 
domains  Function  Ref. 

 Capsid (C)  • nt 97 – 396/438 
 • Immature C: 114 aa 
 • Mature C: 

 – 100 aa / 11 kDa 
 – Central 

hydrophobic 
region 

 • 3 NLS 
 • N- and C-terminal 

charged residues 

 • Forms nucleocapsid with viral genomic 
RNA 

 • Immature C: anchored to ER membrane 
by 14 aa in C-terminal, cleaved by 
NS2B-3 to form mature C 

 • Mature C: associates with ER 
membrane through internal hydrophobic 
region 

 • 18 basic N-terminal aa required for viral 
encapsidation and possibly interaction 
with RNA 

 • Binding to lipid droplets required for 
viral particle formation 

 • Interacts with nucleolin during virion 
morphogenesis. Inhibition of nucleolin 
decreases viral titer but not RNA 
synthesis 

 • Interacts with hSec3 to delay DENV 
translation and replication possibly 
through sequestration of eEF1α 

 • 3 NLS interact with DAXX and induces 
apoptosis 

 [ 80 ,  81 , 
 106 – 111 ] 

 Precursor 
membrane 
(prM) 

 • nt 439 – 936 
 • 166 aa / 34 kDa 
 • pr: 91 aa / 26 kDa 
 • M: 75 aa / 8 kDa 

 • Interacts with claudin-1 for effi cient 
virus entry 

 • Forms heterodimer with E protein to 
prevent premature fusion of immature 
virion with host membrane 

 • His residue at M39 in M protein 
infl uences virus assembly 

 • Host furin in post-Golgi vesicles cleaves 
the prM into “pr” and “M” for virus 
maturation 

 • prM and vacuolar-ATPase interaction 
infl uences effi cient virion egress 

 [ 16 , 
 112 – 114 ] 

 Envelope 
(E) 

 • nt 937–2421 
 • 495 aa/50 kDa 
 • 3 domains (I–III) 

 • Class II fusion protein
• Mediates attachment to cell surface 

entry factors 
 • Undergoes structural changes at low 

pH that are coupled to fusion of viral 
and endosomal membranes during viral 
entry 

 • Interacts with ER resident chaperones 
for folding and virus assembly 

 • Among fl aviviruses, Asn 67 (in DENV) 
associated with hemorrhagic fever 

 • Major immunogenic protein; interacts 
with NKp44, a NK surface receptor, and 
activate NK cells 

 [ 16 , 
 115 – 118 ] 

  Abbreviations:  Aa  amino acids, kDa kiloDalton,  DAXX  death domain-associated protein,  EF1α  
elongation factor 1 alpha,  ER  endoplasmic reticulum,  His  histidine,  NLS  nuclear localization sig-
nal,  NS  nonstructural,  NK  natural killer,  nt  nucleotide  
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   Table 15.3    Overview of dengue virus nonstructural proteins   

 Protein 

 Genomic sequence, 
protein properties and 
domains  Function  Ref. 

 NS1  • nt 2422–3477 
 • 352 aa/46–55 kDa 
 • Glycosylated 

 • Cell-membrane-bound form: intracellular 
vesicular compartments, cell surface 

 • Soluble form: secreted as hexameric 
lipoparticle 

 • Implicated in disease pathogenesis and 
protection 

 • Circulates in sera of DENV-infected 
patients 

 • Important biomarker for early diagnosis 
 • Interacts with NS4A, co-localizes with 

dsRNA 
 • Involved in RNA replication but exact role 

undetermined 

 [ 71 ,  72 , 
 122 ,  123 ] 

 NS2A  • nt 3478–4131 
 • 218 aa/22 kDa 

 • Transmembrane protein, associates with the 
ER membrane 

 • Component of the viral replication complex 
 • Functions in virion assembly 
 • Along with NS4A and NS4B, inhibits type 

1 IFN signaling upstream of STAT1 
activation 

 [ 119 ,  120 ] 

 NS2B  • nt 4132–4521 
 • 130 aa/14 kDa 

 • Transmembrane protein, associates with the 
ER membrane 

 • Component of the viral replication complex 
 • Hydrophobic loop of NS2B necessary for 

NS2B-NS3 serine protease activity 
 • NS2B-NS3 cleaves human adaptor 

molecule STING and inhibits type I IFN 
production 

 • NS2B-NS3 interacts with IKKε to block 
IFN induction pathway 

 [ 121 – 123 ] 

 NS3  • nt 4522–6375 
 • 618 aa/70 kDa 
 • C terminus domain: 

 – NTPase/RNA 
helicase 

 • N-terminal domain: 
 – Serine protease 
 – RNA 5’ 

triphosphatase 

 • RNA helicase and NTPase important for 
replication of the viral RNA genome 

 • Activates fatty acid synthase and induces 
fatty acid production at the RC 

 • NS2B-NS3 impairs type 1 IFN production 
 • Interacts with La protein 

 [ 69 ,  124 , 
 125 ] 

 NS4A  • nt 6376–6756 
 • 127 aa/16 kDa 
 • C-terminal: 2 K 

fragment 

 • Associates with ER membrane 
 • Component of the viral RC; may serve as a 

scaffold for formation of RC 
 • Up-regulates autophagy in epithelial cells 
 • Induces intracellular membrane 

rearrangements 
 • Along with NS2A and NS4B, inhibits type 

1 IFN signaling upstream of STAT1 
activation 

 [ 67 ,  119 , 
 126 ] 

 2 K  • nt 6757–6825 
 • 23 aa 

 • Regulates induction of intracellular 
membrane rearrangements by NS4A 

 [ 67 ] 

(continued)
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multistep process in which E protein interacts sequentially with at least two cellular 
entry factors. Which host factor serves as the bona fi de receptor for cell entry 
remains unclear. The initial interaction on the plasma membrane concentrates viri-
ons on the cell surface and thereby facilitates interaction of the virion with a high 
affi nity, second receptor that mediates virion internalization through receptor- 
mediated endocytosis [ 49 ,  50 ]. The phenomenon of ADE, in which non- neutralizing 
antibodies increase infectivity by concentrating virus on the plasma membrane, is 
consistent with this model. 

 Following receptor binding, uptake of virions is a clathrin-dependent process 
[ 51 ,  52 ], and traffi cking from early to late endosomes requires actin and microtubules 
[ 53 – 56 ]. Receptor binding of DENV on endothelial cells activates the RHO- family 
GTPases Rac1 and cell division control protein 42 (CDC42), which induce actin 
reorganization and formation of fi lopodia required for effi cient virus entry [ 57 ,  58 ]. 
Following membrane fusion and creation of the fusion pore, the viral nucleocapsid 
traffi cs to the cytosol and is disassembled, and the RNA genome is delivered to the 
site on the endoplasmic reticulum (ER) membrane for translation. Although these 
events almost certainly are regulated by host factors, the specifi c molecular mecha-
nisms remain poorly understood.  

Table 15.3 (continued)

 Protein 

 Genomic sequence, 
protein properties and 
domains  Function  Ref. 

 NS4B  • nt 6826–7569 
 • 248 aa/27 kDa 

 • Transmembrane protein 
 • Component of the viral RC 
 • Colocalizes with NS3, dissociates NS3 

from ssRNA, and enhances the helicase 
activity of NS3 in vitro 

 • Along with NS2A and NS4A, inhibits type 
1 IFN signaling upstream of activation of 
STAT1 

 [ 119 ,  127 ] 

 NS5  • nt 7570–10269 
 • 900 aa/103 kDa 
 • 2 NLS 
 • 1 NES 
 • RNA polymerase 
 • MTase 

 • Mostly in nucleus (possesses 2 NLS), only 
hypophosphorylated NS5 in cytoplasm 

 • RNA-dependent RNA polymerase, 
synthesizes positive and negative sense 
viral RNA 

 • Caps 5′ end of viral genomic RNA through 
2′O methyltransferase (MTase) activity 

 • Interacts with and activates NS3 
 • Inhibits IFNα signaling via binding and 

inhibition of phosphorylation STAT2 
 • Interacts with La protein 
 • CRM1-mediated nuclear export of NS5 

modulates IL-8 induction and virus 
production 

 [ 73 – 76 , 
 125 ,  128 ] 

  Abbreviations:  Aa  amino acids,  ds  double stranded, kDa kiloDalton  ER  endoplasmic reticulum, 
 IL  interleukin,  IFN  interferon,  NES  nuclear export signal,  NLS  nuclear localization signal,  NS  
nonstructural,  nt  nucleotide,  RC  replication complex,  ss  single stranded,  STAT  signal transducer 
and activator of transcription,  STING  stimulator of interferon genes  
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1.4.2    Flavivirus Translation 

 Flaviviruses, like most viruses, utilize the host cell machinery for translation of 
 protein-coding ORFs. Flaviviruses have a capped, (+)ssRNA genome that is directly 
translated as a single polyprotein. DENV translation occurs mostly via cap- dependent 
initiation [ 59 ] although noncanonical initiation of translation has been described 
under conditions that inhibit cap-dependent translation in an internal ribosomal entry 
site (IRES)-independent manner [ 60 ]. During cap-dependent translation, initiation 
occurs when the eukaryotic initiation factor 4E (eIF4E) recognizes and binds the 
DENV genomic 5′ cap. Recruitment of the 43S preinitiation complex (composed of 
the 40S ribosomal subunit, eIF1A, eIF3, Met-tRNA-GTP) by eIF4F (composed of 
eIF4E, eIF4G, eIF4B, and the helicase eIF4A) leads to formation of the 48S complex. 
The 48S complex scans the viral 5′UTR, unwinding secondary structures until it 
reaches a start codon. Interestingly, the poly(A)-binding protein (PABP) can bind to 
the DENV genome 3′UTR (especially 3′SL) despite the absence of a poly(A) tail 
[ 61 ]. This fi nding suggests that circularization of the genome by the interaction of 
PABP with eIF4G is important for effi cient translation. DENV and other mosquito-
borne fl aviviruses initiate translation of the C protein from a start AUG codon in a 
suboptimal context, and multiple additional in-frame AUGs are downstream from the 
start codon [ 26 ]. An RNA hairpin structure in the capsid coding region (cHP) 
(Fig.  15.2 ) directs translation start site selection [ 26 ]. The optimal distance from the 
start codon to the cHP is about 15 nucleotides [ 25 ], which corresponds to the footprint 
of a ribosome paused over a start codon [ 62 ]. Thus, the scanning initiation machinery 
is thought to pause at the structural cHP to unwind the cHP and, in this poor initiation 
context, the scanning initiation complex stalls momentarily over the fi rst AUG [ 25 ,  26 ]. 
Association of the 60S subunit with eIF3 at the initiation codon forms the 80S ribo-
somal complex that is needed for translation elongation to proceed. The 3′SL present 
at the very end of the 3′UTR (Fig.  15.2 ) facilitates mRNA binding to polysomes and 
promotes effi cient DENV mRNA translation, notably during the fi rst round of transla-
tion in the absence of synthesized viral proteins [ 30 ]. 

 Effi cient translation of incoming genomes early in infection is an essential step 
in the fl avivirus virus replication cycle. Synthesis of nonstructural proteins is a 
requirement for fl avivirus replication since the cells do not possess an RNA-
dependent- RNA polymerase capable of replicating fl aviviral RNA. Defi ciencies in 
translation can therefore signifi cantly reduce viral replication and production of 
infectious particles [ 63 ].  

1.4.3    Flavivirus Replication 

 The viral (+)ssRNA genome (light pink in Fig.  15.1 ) initially serves as the template 
for translation of the viral polyprotein, but eventually serves as a template for RNA 
replication. The transition between these two processes is not fully understood. 
The incoming (+)ssRNA is a template for the synthesis of a negative-stranded RNA 
that leads to the formation of double-stranded RNA (dsRNA) intermediates called 
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the replicative form (RF) [ 25 ]. The newly synthesized (−)ssRNA (dark pink in 
Fig.  15.1 ) is used in turn as a template for the synthesis of multiple (+)ssRNA via a 
replication intermediate (RI). Approximately fi ve nascent (+)ssRNAs are present 
on an RI and 12–15 min are necessary to synthesize each strand [ 64 ]. This process 
leads to the production of ≈10–100-fold more (+)ssRNA than (−)ssRNA [ 29 ]. 
Thereafter, the (+)ssRNAs serve as substrates for a new round of translation, tem-
plates for production of (−)ssRNA, or are encapsidated for assembly into new viri-
ons. Replication of the fl aviviral genome does not occur freely in the cytoplasm, 
probably to limit recognition of the dsRNA intermediates by intracellular cytosolic 
innate immune sensors such as retinoic acid-inducible gene 1 (RIG-1) and mela-
noma differentiation-associated protein 5 (MDA5). Concentration of the necessary 
substrates and catalysts within these specialized membrane-bound compartments 
also serves to increase the effi ciency of RNA replication. 

 Extensive intracellular membrane rearrangement takes place in fl avivirus- 
infected cells [ 65 ], and electron tomography, immuno-electron microscopy, and 
transmission electron microscopy have been used to characterize the architecture of 
DENV-induced membrane alterations [ 66 ]. DENV replication occurs inside repli-
cation complexes (RC) formed by membranous invaginated vesicles (≈90 nm in 
diameter) that are derived from the ER and are associated with most of the DENV 
NS proteins (schematic representation of the RC in Fig.  15.1 ). NS4A, along with 
additional viral and host factors, induces the membrane curvatures and rearrange-
ments for invaginated vesicle formation [ 67 ,  68 ]. 

 During DENV infection, fatty acid synthase re-localizes to the RC and is acti-
vated by interaction with NS3. The newly produced lipids are incorporated into RC, 
as these lipids co-purify with viral RNA in biochemical fractionation experiments. 
[ 69 ]. This incorporation may facilitate the extension of membranes and the forma-
tion of the RC. Virus-induced autophagy also leads to liberation of fatty acids from 
lipid droplets, and these fatty acids undergo beta-oxidation, producing ATP that fuel 
the energy demands of replication [ 70 ]. The hydrophobic NS2A, NS4A, and NS4B 
proteins are thought to anchor the RC to the ER membrane [ 67 ,  71 ,  72 ] although the 
molecular details of these interactions are still subject to investigation. Likewise, 
although the NS1 protein is known to interact with NS4B and to be essential for 
viral RNA replication, its function in this process remains obscure [ 71 ,  72 ]. 

 NS5, a bifunctional protein with N-terminal methyl transferase and C-terminal 
RdRp-dependent RNA polymerase (RdRp), possesses two nuclear localization sig-
nals (NLS) [ 73 ] and a nuclear export signal (NES) [ 74 ]. NS5 is mostly located in the 
nucleus as a phospho-protein and only the hypophosphorylated form is located in 
the cytoplasm. Within the cytoplasm, NS5 replicates viral RNA and also interacts 
and modulates the enzymatic activity of NS3 [ 74 – 76 ]. NS3 is a multifunctional 
protein required for polyprotein processing and RNA replication. Besides its 
N-terminal protease activity, NS3 has RNA-stimulated nucleoside triphosphatase 
(NTPase), RNA helicase, and RNA triphosphatase (RTPase) activities that are abso-
lutely required for viral RNA replication. RTPase activity is believed to be respon-
sible for the dephosphorylation of the 5′ end of the genomic RNA before cap 
addition by NS5 [ 77 ]. NS3 binds to the 3′SL and NS5 enhances NS3’s NTPase 
activity [ 78 ]. 
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 A number of  cis -acting RNA elements, located in the coding and noncoding 
regions of fl avivirus genomes, act as promoters, enhancers, and circularization 
signals necessary for effi cient RNA replication [ 23 – 25 ]. The two inverted pairs of 
complementary sequences (5′-3′ CS and 5′-3′ upstream of AUG region [UAR], 
Fig.  15.2 ) at both extremities of the genome are required for genome circularization. 
The replication process begins with 5′-3′ UAR and 5′-3′ CS hybridization, which 
triggers circularization of the genome. NS5 binds specifi cally to the 5′ stem-loop A 
(SLA), and through this long range RNA- RNA interaction the 5′ promoter and the 
3′ end of the genome are brought together. This enables transfer of NS5 to the site 
of initiation at the 3’ end of the genome and the initiation of RNA synthesis. 
Circularization of the viral genome may also play an important role during ORF 
translation. Although both circular and linear forms of DENV RNA are necessary for 
virion production, viral RNA replication is highly vulnerable to changes that alter 
the balance between circular and linear forms of the RNA [ 79 ].  

1.4.4    Flavivirion Egress 

 The last steps of the fl avivirus replication cycle are the encapsidation of genomic 
progeny RNA, envelopment of the viral nucleocapsid, maturation of the virion sur-
face proteins, and egress of infectious particles. Encapsidation of fl avivirus genomes 
is thought to be directly linked to genome replication, as only nascent (+)ssRNAs 
from the RC are encapsidated [ 71 ]. Indeed, the presence of budding vesicles that may 
correspond to the formation of viral particles at the ER membrane is directly apposed 
to the RC [ 66 ]. Two clusters of basic amino acids that confer a high density of positive 
charges at the N-terminus of the C protein are essential for genome encapsidation in 
human cells [ 80 ]. Since encapsidation in mosquito cells still occurs when these resi-
dues are deleted, albeit in a less effi cient fashion, interaction of the N-terminus of the 
C protein with a host factor likely differs between humans and mosquitoes. 

 The DENV C protein accumulates on the surface of lipid droplets (LD), and loss 
of LD targeting results in abrogation of particle formation [ 81 ]. This observation 
indicates a role of LD in virion assembly or release. In contrast to hepatitis C virus, 
no evidence of recruitment of lipid droplets to the RC or DENV RNA to the lipid 
droplets has been reported [ 66 ,  82 ]. An alternate explanation for the sequestration 
of C protein by LD is that this sequestration prevents the binding of C to newly 
synthesized viral RNA and thus averts premature encapsidation of the viral genome 
and the inhibitory effect this would have on replication of the viral genome [ 82 ]. 
Interestingly, DENV induces autophagy and degradation of the LD in autophago-
somes to liberate fatty acid and produce energy [ 70 ,  82 ]. Although the kinetics and 
the sequence of these events have not yet been described in detail, coupling of virus-
induced autophagy to the release of C protein is hypothesized to provide a mecha-
nism for delaying viral assembly until suffi cient genome replication has occurred. 

 Virus assembly occurs at the surface of the ER. The DENV C protein associates 
with newly synthesized RNA genomes liberated from the RC through a pore-like 
structure [ 66 ]. Newly formed immature virions contain a genomic RNA within an 
icosahedral capsid. Budding of this capsid into the lumen of the ER in close proximity 
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to the RC results in its envelopment within a lipid bilayer, yielding immature virions 
in which trimers of E and prM heterodimers appear as spikes on the particle surface. 
Individual virions travel toward distal sites of the ER lumen and are thought to be 
collected in dilated ER cisternae [ 66 ]. Maturation of these immature particles occurs 
as they traffi c through the host secretory system. Processing of the N-linked glycan 
on the E protein by host enzymes in the ER and Golgi is required for effi cient secre-
tion of infectious virions in mammalian but not insect cells [ 83 ]. The prM portion 
of the trimer with E is cleaved by furin. The pr protein, corresponding to the 
N-terminal 91 residues of prM, dissociates from the virion upon exposure to neutral 
pH in the extracellular space while the M protein remains in the virion [ 16 ]. 
Processing of the dengue virion is ineffi cient, as a large proportion of secreted viri-
ons have unprocessed prM [ 84 ,  85 ].   

1.5     Vaccines and Antiviral Agents 

 Vector control has been the most widely used strategy to prevent dengue virus infection. 
No FDA-approved vaccine is currently available to prevent dengue fever. The risk that 
an ineffective vaccine might exacerbate infection through ADE has provided an addi-
tional challenge to efforts to develop a vaccine providing pan-serotype protection. 
Several candidate antivirals show promise in vitro and in animal models of DENV 
infection (reviewed in ref.  86 ,  87 ). These include agents that act against viral targets, 
such as ST-148, which targets the C protein, and NITD-008, a nucleoside that inhib-
its the NS5 RNA-dependent RNA polymerase. NITD-451 and other benzomorphans 
are specifi c inhibitors of DENV translation. Some antisense morpholino- oligomers 
that directly or indirectly affect translation of DENV [ 88 ,  89 ] and other fl aviviruses 
[ 90 – 92 ] are potent inhibitors of these viruses in cell culture. 

 Compounds that inhibit DENV translation and replication are currently under 
investigation as potential antivirals [ 93 ,  94 ]. Although some of these agents (e.g., 
NITD-008, NITD-451) have demonstrated antiviral activity in a mouse model of 
DENV infection, their therapeutic window is limited [ 87 ,  94 ]. In addition, fen-
retinide, a synthetic retinoid, has been shown to inhibit the replication of DENV and 
other fl aviviruses in cell culture and in mouse models through effects on genome 
replication [ 95 ,  95b ]. Celgosivir, which targets the host alpha-glucosidase, is 
thought to inhibit DENV pathogenesis and replication by causing misfolding of E, 
prM, and NS1 proteins [ 96 ,  97 ]. Now being tested in a phase Ib trial for treatment 
of dengue fever, celgosivir is currently the most advanced clinical candidate.      
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    Chapter 16   
 Flavivirus Encephalitis: Immunopathogenesis 
of Disease and Immunomodulation 

             Caryn     van     Vreden    ,     Paula     Niewold    ,     Luan     vu     Dinh    ,     Luis     Munoz-Erazo    , 
    Daniel     Getts    , and     Nicholas     J.C.     King    

          Core Message   This chapter outlines innate and adaptive immune changes in the 
brain associated with fl avivirus encephalitis. It reviews the data from various 
currently used models in vivo and in vitro and highlights some of the issues with 
interpretation of these. In the approaches to disease, it is argued that a carefully 
timed immunological intervention is possible by specifi cally reducing the massive 
infl ux of macrophages into the brain in encephalitis to ameliorate the often fatal 
immune damage done by these cells and enable normal immune components to 
clear the virus.  

    1 Background 

 The Flaviviridae are a family of single-stranded, positive-sense RNA viruses, repre-
sentatives of which are found on all inhabited continents. Most have an enzootic 
cycle between an arthropod host, usually a mosquito, and an amplifying mammalian 
or bird reservoir, with humans inadvertently intersecting this. Although humans 
may themselves transmit these viruses to arthropod vectors, for some fl aviviruses 
humans are incidental, or dead-end hosts, as they are thought in the main not to 
generate high enough viremias for transmission to arthropod vectors [ 1 ]. The abun-
dance of mosquitoes in high-risk regions, the inability to restrict migration of 
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reservoir hosts (mainly birds), the increasing extent of vector habitats due to expansion 
of human habitation and the effects of global warming, as well as the increased 
availability and ease of world travel, make it virtually impossible to prevent fl avivi-
rus spread [ 2 ]. Moreover, effective treatment and prevention options are lacking for 
many fl avivirus infections, which include severe neurotropic or viscerotropic dis-
ease, depending on the particular virus and its target organ. Thus, fl aviviruses pose 
both an emerging and ongoing global health threat. In this review we will focus on 
the neurotropic aspects of fl avivirus infection involved in driving disease pathogen-
esis in encephalitis that offer possibilities for intervention. 

 The medically relevant neurotropic fl aviviruses include West Nile virus (WNV), 
found in Africa, the Middle East, Europe, the Americas and Western Asia, Japanese 
encephalitis virus (JEV), restricted to Asia and the Subcontinent, Tick-borne 
encephalitis virus (TBEV), in Central Europe, Murray Valley encephalitis virus 
(MVEV), in Northern Australia and St Louis encephalitis virus (SLEV), in North 
America. Except for TBEV, these viruses are all members of the JE serogroup [ 1 , 
 3 ]. Although non-pathogenic, the Kunjin strain of WNV (KUNV), also a member 
of the JE serogroup found in Northern Australia, is of interest, since it is genetically 
very similar to the Lineage I NY99 strain of WNV and induces an immune response 
in mice that cross-protects against this virulent strain [ 4 ]. 

 WNV is probably the most widely spread fl avivirus, geographically. However, 
while Lineage I WNV is now active in most regions, signifi cant outbreaks of 
Lineage II WNV encephalitis in animals and man periodically occur in Africa and 
Europe and other lineages of WNV also cause neurotropic disease [ 5 – 8 ]. The inci-
dence of Lineage I WNV infection has seen a substantial increase in the USA since 
a novel outbreak of encephalitis in New York in 1999, fi rst attributed to SLEV [ 9 , 
 10 ]. Within 10 years it had spread to all states of the USA and into Canada and 
Mexico. Recent estimates indicate that approximately three million people were 
infected with WNV between 1999 and 2010 in the USA, resulting in around 1,100 
deaths [ 11 ,  12 ]. As most infections are asymptomatic and therefore not reported, 
these data are based on the number of WNV +  blood bank donations, with the irony 
that in the early phases of the outbreak in the USA, the unwitting transfusion of 
infected blood demonstrated unequivocal human-to-human transmission, despite 
viremias being too low to transmit to arthropod vectors [ 13 ,  14 ]. 

 JEV is closely related to WNV, has a similar disease course and is endemic to 
more remote regions, making prevalence hard to determine, with estimates ranging 
between 20,000 and 68,000 cases a year, with up to 30 % fatality in encephalitis. 
Estimates suggest up to 50 % of survivors suffer from severe neurological sequelae 
and/or permanent disability [ 15 ,  16 ]. MVEV, also closely related to JEV, is endemic 
to Australia, generally confi ned to the northern part of the country, with occasional 
outbreaks related to periods of heavy rainfall [ 17 ]. Registered cases of KUNV infec-
tion are sparse and may be confused with MVEV infection, due to their serological 
cross-reactivity. However, MVEV causes more severe encephalitis and may be fatal, 
while none of the reported cases of KUNV infection have had a fatal outcome [ 18 ]. 

 In contrast, the organotropic dengue virus (DENV), most prevalent in Asia, 
causes an estimated 50–100 million infections a year [ 12 ], with fatality rates for 
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patients with dengue hemorrhagic fever (DHF) ranging between 1 and 20 %, 
depending on the availability of medical care [ 19 ]. Furthermore, in recent years, 
infections with Yellow fever virus (YFV), the prototypic fl avivirus endemic in 
Central Africa and Latin America, have risen dramatically, with about 200,000 
reported cases a year, after relatively low occurrence in the past two decades [ 20 ]. 

    1.1 Clinical Presentation 

 While most neurotropic fl avivirus infections are asymptomatic, the clinical presen-
tation of disease ranges from mild fl u-like symptoms to severe encephalitic disease, 
which may be lethal, or result in life-long neurological sequelae. After a 2–14 day 
incubation period, approximately 20 % of WNV-infected individuals develop WNV 
fever, with symptoms such as headache, fatigue, fever and occasionally swollen 
lymph nodes. Ophthalmological symptoms may include blurred vision and vision 
loss, while chorioretinal streaks, chorioretinitis and occlusive retinal vasculitis may 
be seen on examination [ 21 ,  22 ]. These occur with greater frequency in patients 
with pre-existing ocular conditions, such as diabetic retinopathy [ 23 ]. The develop-
ment of encephalitis, which occurs in about 1 % of infected individuals and has 
approximately 10 % mortality (~0.04 % of total infected), represents the most 
severe form of the disease. This is generally accompanied by high fever, disorienta-
tion, lack of coordination, convulsions and fl accid paralysis [ 24 ]. Similar to WNV, 
only about 1 % of JEV-infected individuals develop symptomatic encephalitic 
disease, but it usually presents more severely than WNV, with symptoms such as 
neck rigidity, convulsions and hemiparesis. About 1:500–1:1,000 MVEV-infected 
individuals develop encephalitis, but fatality rates of encephalitis are between 15 
and 30 %, and only 40 % of patients recover fully, leaving many survivors with 
permanent neurological sequelae [ 18 ]. 

 DENV infection can be asymptomatic, cause dengue fever or more severe DHF 
and dengue shock syndrome (DSS). With recent changes in the classifi cation of 
DENV infection, disease is now ranked according to severity: dengue without signs, 
dengue with warning signs (elevated hematocrit, mucosal bleeding, persistent vom-
iting, liver enlargement) and severe dengue, (cases with extreme plasma leakage, 
bleeding or organ failure). Ocular complications have also been seen in DENV 
infection, with ocular pain being the most frequently reported symptom [ 25 ,  26 ], 
although macular haemorrhage and edema have also been observed [ 27 ]. However, 
cross-observational studies have not found any ocular manifestations in DENV 
cases, and it has been postulated that the development of DENV-mediated ocular 
conditions may be specifi c to certain dengue serotypes [ 28 ]. Although DENV is 
classically regarded as a hemorrhagic disease, infection can also have neurological 
complications, including encephalitis, neuro-ophthalmic disease and muscle dys-
function as well as immune-mediated syndromes. These have only recently begun 
to be recognised and studied in any detail.  
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   1.2  Route(s) of Infection 

 Infection is initiated by the bite of an infected mosquito, which transfers virus to the 
dermis and the blood via its saliva. Mosquito saliva is argued to be immunosuppres-
sive and may thus give the virus a replicative advantage before detection by the 
immune system [ 29 ], but this is still debated. Both Langerhans cells (LC) and 
dendritic cells (DC), derived from infi ltrating Ly6C lo  monocytes in the skin, can be 
infected and may migrate to the draining lymph nodes (DLN) as the main carrier of 
viral antigen [ 30 – 32 ]. While WNV-productive replication in LC or DC has not been 
shown, DENV-infected DC support active replication of virus [ 33 ]. Although the 
exact mechanism of viral spread from the initial site of infection has not been 
defi ned, virus undoubtedly spreads via the bloodstream, resulting in systemic infec-
tion and febrile illness. There is much debate on the mechanism of subsequent viral 
entry into the brain. Three main possibilities exist: (1) immune- or virus-mediated 
breakdown of the blood–brain barrier (BBB), (2) “Trojan horse” transmission by 
infected monocytes and (3) centripetal nerve spread of virus from the periphery. 

 The BBB separates the CNS from the blood and is selectively permeable, pre-
venting the entry of unwanted molecules and organisms. However, as fl aviviruses 
evidently infect neurons in the brain, it is argued that the BBB may be breached 
directly or indirectly to achieve this. In JEV, direct endothelial infection has been 
shown in post-mortem brains [ 34 ] and this virus is transcytosed by CNS endothe-
lium in suckling mice [ 35 ]. To our knowledge, WNV infection of endothelium 
in vivo has not been reported, despite its obvious susceptibility to infection in vitro 
[ 36 ] and the signifi cant viremias that occur after intravenous (i.v.) or intraperitoneal 
(i.p.) inoculation in mouse models [ 37 ,  38 ] (King, Unpublished). 

 Indirectly, activation of toll-like receptor 3 (TLR3) during WNV infection has 
been implicated as a possible mediator of BBB disruption. Increased tumour necro-
sis factor (TNF) expression, induced by TLR3 activation, was implicated in BBB 
breakdown and TLR3 knockout (KO) mice displayed reduced BBB leakiness and 
lower viral titres in the brain than in wild type (WT) control mice [ 39 ]. Further fi nd-
ings in human monocyte-derived macrophages were taken to support this. Despite 
their much higher baseline levels of TLR expression, WNV inhibited in vitro mac-
rophage expression of TLR3 in individuals in the third and fourth decade of life 
(20–36 years old), who are less prone to develop WNV encephalitis, while increas-
ing TLR3 expression in cells from a more susceptible elderly (>55 years old) cohort 
[ 40 ]. The use of in vitro-differentiated adherent macrophages limits the conclusions 
of this study, however, since infected monocytes are more likely to participate in 
endothelial interactions in vivo. Moreover, replication of the murine work, using 
various routes of inoculation, as well as WNV grown in insect or mammalian cells, 
showed that TLR3 KO mice were more susceptible to infection, with increased viral 
loads in the brain, contradicting these fi ndings [ 41 ]. A further problem with the 
involvement of TLR3 in BBB breakdown is that the correspondence of breakdown 
and CNS infection is poor in fl avivirus models, indeed, it may not occur even after 
CNS infection [ 42 – 44 ], strongly suggesting that virus entry occurs via a different 
route than across the BBB and that breakdown of the BBB is not temporally 
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associated with the entry of virus, but rather the entry of infl ammatory cells into the 
brain well after virus ingress. 

 Finally, astrocytes form a supportive component of the BBB, but have also been 
implicated as a possible mediator of BBB breakdown. WNV infection of astrocytes 
in vitro results in upregulation of matrix metalloproteinases (MMP), host proteases 
involved in the restructuring of tight junction proteins [ 45 ]. Therefore, it has been 
suggested that astrocyte infection results in MMP-mediated BBB breakdown. 
However, while astrocyte infection clearly occurs in vitro [ 46 ], in vivo infection has 
not been convincingly shown. 

 The second, so-called “Trojan Horse” scenario, 1  proposes that virus-infected 
monocytes cross the BBB, thus allowing the virus to enter the CNS undetected. This 
is thought to occur in HIV infection, where infection of the brain is argued to be due 
to the homeostatic replacement of HIV-infected perivascular macrophages from the 
bone marrow [ 47 ]. However, WNV infection is comparatively acute and although 
macrophages are susceptible to infection in vitro, these cells quickly control WNV, 
unlike HIV, making further spread unlikely [ 48 ]. Neutrophils are also susceptible to 
WNV infection and contain more WNV virions than infected macrophages and 
could be a more likely Trojan Horse for CNS entry by WNV [ 49 ]. However, neutro-
phils make up <3 % of the leukocyte infi ltrate into the CNS, and while certainly 
present in the meningeal vasculature, are rare in the parenchyma [ 50 ]. We have 
never seen infection of T or B cells by WNV and to our knowledge, none has been 
reported, making lymphocytes dubious candidates for a Trojan Horse mechanism. 
While activated T cells are capable of circulating through the brain parenchyma 
[ 51 ], myeloid lineage cells are rare under normal homeostasis and are likely to be 
replenished in situ [ 42 ,  52 ,  53 ]. Furthermore, were leukocytes to transmit WNV into 
the brain by this route, it seems unlikely that only neurons would be infected, con-
sidering the susceptibility of virtually all cell types in the brain to infection in vitro. 
Finally, ignoring the likely altered function of an infected myeloid cell [ 54 ] and 
possible perturbation of its migratory capacity, in order for viral entry into the CNS 
to occur via a true Trojan Horse mechanism, chemokines for infected monocytes or 
neutrophils would have to be produced in the brain prior to viral entry into the 
CNS. To our knowledge, soluble factor profi les consistent with this scenario have 
not been reported. 

 The third hypothesis, centripetal nerve spread, suggests that virus spreads from 
the initial peripheral location of infection to the CNS via the nervous system. 
Evidence in support of this is seen in multiple models of infection. The footpad 
model of injection is used to mimic infection via the skin. Sensory fi bres of the 
dorsal root ganglia of the peripheral nervous system innervate this part of the body. 
The capacity of WNV to infect both the dorsal root ganglia and peripheral nervous 
system neurons has been shown in vitro [ 55 ,  56 ] and use of microtubule inhibitor 

1   named after the giant wooden horse of Greek mythology, famously left outside the gates of Troy 
by the warring Greeks, ostensibly as an offering to the goddess, Athena, for their safe passage 
home after a 10 year siege of the city, in a ruse to make the Trojans think the Greeks had given up 
the war. Against the better judgment of some, the “Trojan Horse” was drawn into the city as a 
trophy, hiding in it a detachment of Greek soldiers who subverted the defences of Troy by night to 
let in the hidden Greek army and vanquish Troy. 
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nocodazole, which prevents axonal transport, was shown to signifi cantly delay the 
distribution of WNV to the CNS, further supporting retrograde transport [ 57 ]. 
Intraperitoneal infection of mice showed detectable virus in the cervical cord 1–2 
days before detection in the brain, thereafter spreading from caudal to rostral in the 
brain (King, unpublished). Detection of WNV in the brains of mice infected via the 
intranasal (i.n.) route, in which the virus is deposited onto the olfactory nerve, also 
indicates retrograde spread via known neural connections between different parts of 
the brain [ 42 ,  58 ]. 

 Although evidence favours centripetal nerve spread as the most likely mecha-
nism for viral infection of the CNS, several factors, such as viral strain, host age and 
especially immune status make more than one mechanism likely.  

   1.3  Experimental Models 

 The main in vivo model used to study fl avivirus infection is the mouse. However, in 
addition to standard differences in experimental approaches by different investiga-
tors and the investigative modalities used, variations in mouse strain (e.g. BALB/c 
and C57BL/6 mice in TBEV [ 59 ] and WNV models [ 60 ]), mouse age (whether the 
BBB has fully formed, the maturity of the immune system), peripheral route of inoc-
ulation (subcutaneous [ 61 ], intravenous [ 37 ], intraperitoneal [ 62 ], intradermal [ 30 ,  31 ], 
intranasal [ 58 ], intravaginal [ 60 ] and oral [ 63 ] routes are all used for different 
reasons) and gene status (the use of transgenic mice or mice with inactivated, mostly 
immune response-related, genes), as well as virus strain, dose and provenance can 
make generalizable conclusions diffi cult. Peripheral inoculation at different sites 
with the same virus can produce markedly different results on rechallenge at a single 
site [ 60 ]. High and low dose inoculation produces immunologically different out-
comes [ 37 ] and unlike infection by most other viruses, where mice survive accord-
ing to a standard virus dose response curve, unless fl aviviruses have direct access to 
the CNS they tend to produce ragged, unpredictable survival outcomes [ 64 ,  65 ]. 
Nevertheless, as models for WNV, TBEV and JEV disease, mice reliably develop 
active infection and CNS pathology similar to that observed in humans, with neuro-
nal damage and mononuclear infi ltration being the most prominent constituents of 
encephalitic disease [ 66 ]. In JEV peripheral inoculation models, the i.p. route may 
be more reliable if mice develop resistance to subcutaneous (s.c.) infection with age, 
although some results do not support this [ 67 ]. In DENV infection, on the other 
hand, one of the main obstructions to the study of neurological disease is the diffi -
culty in establishing a suitable animal model. DENV is quickly controlled in immu-
nocompetent mice and in order to study this virus, mouse-adapted virus strains, 
immunocompromised mice lacking Type-1 and -2 interferon (IFN) receptors, and 
humanised mice have been used to date, with consequent inconsistencies and diffi -
culties in interpretation amongst published studies [ 68 ]. Thus, a suitable murine 
model for in vivo studies of neurologic DENV disease is still needed. 

 Other models for fl aviviral disease include non-human primates, for example, 
i.n. inoculation of macaques with JEV resembles human encephalitic disease occurring 
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after natural infection, while other routes usually result in asymptomatic infection. 
Thus, these animals have been used for surrogate studies of viral persistence in the 
blood of asymptomatic human WNV infection [ 69 ]. Their closer genetic kinship to 
humans justifi es the choice of macaques to test vaccines and other antiviral thera-
pies [ 67 ] and much of the earlier work on YFV was done in macaques and other 
non-human primates, since they develop symptoms most closely resembling human 
disease. Stricter regulations and ethical concerns have driven the search for alterna-
tive models that have included the golden hamster as a model for YFV [ 70 ], as well 
as persistent WNV [ 71 ,  72 ]. Limitations associated with virus adaptation, however, 
have also resulted in the use of A129 mice, defi cient in IFN-α/β receptor, in which 
viscerotropic disease is achieved without requiring YFV adaptation [ 73 ]. 

 Although few animal models perfectly replicate human disease, much has been 
achieved using animal models, mainly mice, to study fl aviviral disease. The use of 
genetically defi cient mice has certainly contributed to the mechanistic understand-
ing of disease process, but genetic absence of function throughout the disease course 
makes it diffi cult to understand what contribution(s), and in what disease time 
frame, are made by particular elements of the immune response in the normal course 
of virus control in the large majority of individuals infected by fl aviviruses. 
Furthermore, the lack of reliable in vivo models for investigating some manifesta-
tions of human disease, for example fl avivirus-induced retinal pathology, still 
largely restricts studies to in vitro approaches.   

    2  Role of Immunopathology vs. Virus-Induced Damage 
in Disease 

 Much discussion revolves around whether the main contributor to fl avivirus- 
associated pathology in the CNS occurs via direct viral damage to neurons or by 
immune-mediated pathology. While it is accepted by defi nition that the immune 
system is central to tissue destruction in autoimmune disease, it has only relatively 
recently assumed its deserved importance in non-autoimmune diseases. This 
includes infectious diseases of all kinds, including viral infection, where the adap-
tive immune response is crucial to the eradication of the invading organism, and 
non-infectious infl ammatory disease, typifi ed by various models of tissue ischemia 
and/or reperfusion. The extent to which an over-enthusiastic immune response, par-
ticularly by innate immune cells, such as those of the myeloid lineage, can drive 
pathology, is only now becoming clear, but this understanding is providing exciting 
opportunities for the development of novel and potentially life-saving therapies. 

   2.1  Role of Virus 

 Although many cell types are permissive for fl avivirus infection in vitro [ 31 ,  36 ,  46 , 
 48 ,  64 ,  74 – 83 ] and occasional human post mortem studies have shown evidence of 
low level WNV infection of astrocytes, neurons remain the principle target for most 
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fl avivirus infections in the CNS in mammals [ 9 ,  42 ,  58 ,  84 – 86 ]. Neurons have 
extremely limited regenerating capacity and exhibit the highest rates of apoptosis, 
compared to other CNS cell types when infected with fl avivirus [ 84 ]. 

 The capacity of fl aviviruses to infect neurons and induce cell death in vitro sug-
gests that encephalitis may be directly virus-induced [ 87 ,  88 ]. Apoptosis of human 
medulloblastoma cells directly correlates with JEV infection in a concentration- and 
time-dependent manner and administration of isolated viral protein NS2B-NS3 
results in caspase-3 activation and mitochondrial-mediated apoptosis [ 89 ]. Similarly, 
JEV and WNV infection of neuronal cell lines induced a caspase cascade with an 
ensuing mitochondria-mediated apoptosis and the generation of reactive oxygen 
species (ROS) [ 90 – 92 ]. Death of DENV-infected neuroblastoma cells was linked to 
endoplasmic reticulum (ER) stress induced by the accumulation of viral proteins 
[ 86 ,  88 ], a result replicated in JEV infection of neurons [ 93 ]. Furthermore, WNV 
capsid protein induces ER stress to activate GADD153, a death-related ER stress 
gene, thereby inducing apoptosis [ 84 ]. On the other hand, Langat NS3 binding to 
caspase-8 in a neuronal cell line can also trigger apoptosis [ 94 ]. Thus, both virus 
and/or isolated viral components can act as a potent inducer of apoptosis in neural 
cells in the absence of additional immune stimulation and these mechanisms can be 
present even in a relatively non-pathogenic fl avivirus, such as Langat. 

 While caution in interpretation of results in neuronal cell lines is important, since 
these cells are often immortalised and/or transformed and anatomically isolated, 
there is good evidence of virus-induced cell death in in vivo models. Injection of 
WNV capsid protein into muscle resulted in apoptosis as a consequence of the 
disruption of mitochondrial transmembrane potential and caspase-9 and -3 activation 
[ 95 ]. Neonatal mice infected with mouse brain-adapted DENV induced neuronal 
apoptosis concentrated in areas with high levels of viral replication [ 96 ] and demon-
strable neuronal death also occurred in a hamster model of WNV infection [ 72 ]. In 
both cases there was little sign of CNS infl ammation when virus was initially 
detected, emphasising the virus contribution to neuronal destruction. However, 
these few examples of in vivo fl avivirus infection where pathological viral effects 
occur in the absence of, or before immune infi ltration into the CNS contrasts with 
the overwhelming association of infection and leukocyte infi ltration, making it dif-
fi cult to determine if disease symptoms are primarily the result of virus-induced 
damage or mediated by infl ammatory/immune responses to virus-induced neuronal 
stress and/or death.  

    2.2 Role of Immune Responses 

 The dual role of the immune system in combating infection and contributing to 
pathology was clearly inferred almost four decades ago [ 97 ]. Flavivirus encephalitis 
in mammals generally presents with neuronal infection and damage associated with 
a signifi cant infi ltration of virtually all leukocyte subsets, in particular, lymphocytes 
and macrophages, as well as the accompanying activation of CNS resident cells 
(microgliosis and astrogliosis) and a concomitant pro- and anti-infl ammatory 
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mediator release, variously, from all cell types [ 9 ,  66 ,  84 ,  85 ,  98 – 100 ]. This cascade 
of events is triggered early by neuronal infection and is ultimately responsible for 
lethal encephalitis or survival and immunity [ 42 ,  50 ,  58 ,  101 ]. In humans, high 
levels of infl ammatory mediators such as TNF, IL-8, IL-6, nitric oxide (NO) and 
CCL5 (RANTES) in the cerebrospinal fl uid (CSF) and serum of JEV-infected 
patients are associated with a fatal outcome, whereas high IgM levels correlate with 
survival [ 102 ,  103 ]. 

    2.2.1 Responses of Resident Cells of the CNS 

   Neurons 

 Although neuronal death is clearly a consequence of viral infection and/or ensuing 
bystander damage from activated infl ammatory cells, pro-infl ammatory mediators 
released by infected neurons also contribute directly, by potentially inducing apop-
tosis of neighbouring neurons or indirectly, by recruitment of pathological immune 
components. In vitro, neurons respond to WNV by producing pro-infl ammatory 
cytokines such as CXCL10, TNF, IL-1β, -6 and -8, on infection. Neutralisation of 
TNF and IL-1β decreased apoptosis of WNV-infected neurons. These cytokines 
also induce activation of astrocytes, which are further implicated in disease patho-
genesis [ 84 ,  104 ]. 

 Infected neurons in vivo also produce signifi cant amounts of the chemoattractant 
CCL2 (MCP-1), which recruits pathogenic Ly6C hi  infl ammatory monocytes [ 42 ]. 
This may be a stereotypic response by infected cells, as large amounts of this che-
mokine are also secreted in vivo by infected fi broblasts outside the brain and recruit-
ment of infl ammatory monocytes to the skin and draining lymph node is similarly 
dependent on this chemokine [ 30 ]. Although neuronal contribution to pathogenesis 
may be limited, in an extended disease course, continuous recruitment of infl amma-
tory cells mediating ongoing non-specifi c tissue damage in the brain may tip the 
balance from protective to pathogenic.  

   Astrocytes 

 Astrocytes are the main glial cell of the CNS, playing a supportive role in homeo-
static conditions and producing myriad infl ammatory mediators capable of regulat-
ing the surrounding CNS milieu in a neuro-stimulatory or -inhibitory manner, as 
refl ected in distinct gene expression profi les [ 105 ,  106 ]. The intimate anatomical 
and functional relationship between astrocytes and neurons makes these cells obvi-
ous contributors to an immunopathogenic response during fl avivirus infection. 

 Astrocytes are susceptible to fl avivirus infection in vitro, producing Type-1 IFN 
and upregulating both Class I and II major histocompatibility complex antigens 
(MHC-I and -II) [ 46 ,  83 ,  107 ] and as mentioned above, occasional co-localization 
of WNV antigen with astrocytes has been observed in post-mortem human brain 
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from patients succumbing to WNV encephalitis [ 84 ]. However, astrogliosis is 
triggered principally by cytokines, such as IL-1β and TNF, released from infected 
neurons, rather than by infection with replicating virus [ 104 ]. Activation of astro-
cytes by JEV and WNV induces the secretion of several pro-infl ammatory media-
tors, including CXCL10, CCL2, IL-1β and CCL5 [ 83 ,  84 ,  100 ,  107 – 110 ], although 
the extent to which this contributes to CNS protection or pathology is unclear. In 
vitro binding of CXCL10 to its cognate receptor, CXCR3, on foetal neurons results 
in elevated Ca 2+  from the ER, the uptake of which by mitochondria leads to membrane 
permeabilisation, with cytochrome c release and its association with initiator cas-
pase- 9 that in turn activates effector caspase-3, ultimately inducing neuronal apop-
tosis [ 111 ]. Although IL-1β production by astrocytes has been shown to stimulate 
neurogenesis in homeostatic conditions [ 106 ], it may have the opposite effect dur-
ing fl avivirus infection. These cytokines activate glial cells and induce an array of 
other pro-infl ammatory cytokines and chemokines whilst increasing their own pro-
duction via an auto-feedback loop. Several studies have also implicated the IL-1 
family of pro-infl ammatory cytokines in the pathogenesis of acute and chronic neu-
rodegenerative diseases such as Alzheimer’s and stroke (Reviewed in refs. [ 112 , 
 113 ]). The dysregulated production of these pro-infl ammatory mediators induces 
apoptosis of neurons [ 107 ]. On the other hand, IL-1β-induced activation of astro-
cytes has also been shown to be protective against neuronal apoptosis [ 114 ], high-
lighting the intricate balance of neuroprotective versus pathogenic roles of various 
cytokines produced by astrocytes. IL-6 is also signifi cantly upregulated in WNV 
encephalitis [ 58 ] and the production of IL-6 by astrocytes enhances the infl amma-
tory immune response and subsequent pathology during experimental autoimmune 
encephalomyelitis (EAE), a murine model of multiple sclerosis [ 115 ]. 

 In vitro, supernatant from activated astrocytes induces apoptosis in neurons, 
indicating that some of the products released by astrocytes are likely neurotoxic. 
However, activated microglia seem to be more toxic in this regard than activated 
astrocytes [ 100 ,  107 ], making it unlikely that astrocytes are the primary contributor 
to pathogenesis during fl avivirus encephalitis. Nevertheless, their infl ammatory 
mediators may amplify the pathogenic immune response, thus increasing the risk of 
neurodegeneration.  

   Microglia 

 Microglia are the resident innate immune cells of the CNS and populate the brain in 
early embryogenesis, replenishing themselves from this in situ population through-
out life [ 116 ]. They function as local tissue macrophages and are activated to express 
cell surface markers and infl ammatory mediators, similar to macrophages immi-
grating from the blood, in response to any processes causing infl ammation, includ-
ing necrosis, infection or autoimmunity. In the brain, microglia and immigrant 
infl ammatory monocytes can be distinguished fl ow cytometrically by their differen-
tial CD45 and Ly6C expression. During infection, microglia upregulate CD45 
expression from low to intermediate and become CD45 int CD11b + Ly6C int , whereas 
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macrophages are CD45 hi CD11b + Ly6C hi  [ 42 ,  117 ]. The presence of pathogen induces 
morphological changes in microglia associated with migration and secretion of vari-
ous pro-infl ammatory mediators. Although microglia play a signifi cant role in neu-
roprotection and repair, there is a strong reported correlation between microglial 
infl ammatory mediator expression and neurodegeneration during fl avivirus infection. 

 Microglia in culture are permissive to fl avivirus infection but do not support 
replication [ 83 ]. Infection activates microglia and induces several infl ammatory 
mediators, including cytokines (TNF, IL-1β, IL-6, IFN-γ), chemokines (CCL5, 
CCL2), inducible nitric oxide synthase-2 (NOS2), cyclooxygenase-2 (Cox-2) and 
ROS [ 39 ,  50 ,  83 ,  100 ,  109 ,  118 ,  119 ]. Perhaps not surprisingly, supernatant from 
JEV-infected microglia induces more extensive neuronal death in vitro than that 
from infected astrocytes [ 100 ]. 

 TNF and IL-18 released by lipopolysaccharide-activated microglia inhibited the 
neurogenesis of neural precursor cells (NPC) in vitro [ 120 ], as did the administra-
tion of TNF and IFN-γ, with IFN-γ increasing the rate of apoptotic cell death. 
Interestingly, TNF partially inhibited this apoptotic effect, indicating that at certain 
concentrations, TNF may have a neuroprotective role [ 121 ]. However, in a WNV 
model of infection, TNF and IL-6 directly mediated bystander damage to neurons; 
reduced TNF output in TLR3-KO mice coincided with reduced CNS infl ammation 
and neurodegeneration [ 39 ], suggesting a role for TNF initiated by TLR3 in the 
immunopathogenic response to WNV infection. Raised TNF levels also were asso-
ciated with mortality in TBEV infection [ 122 ]. Thus, while TNF is antiviral [ 123 ] 
high concentrations clearly facilitate disease pathogenesis in vivo. 

 Although direct viral activation of microglia is possible [ 100 ], it is more likely 
that initial virus-induced neuronal death and subsequent infl ammatory mediator 
release is the main activator of glial cells. TNFR-1 associated death domain 
(TRADD) is a critical component of neuronal death in the CNS during JEV infec-
tion. Inhibiting TRADD synthesis resulted in decreased neuronal apoptosis and 
reduced activation of microglia and astrocytes. Attenuation of microgliosis resulted 
in reduced infl ammatory mediator production and leukocyte infi ltration [ 109 ]. 

 Cox-2 and NOS2 both directly induce apoptosis in a JEV model of infection and 
minocycline-mediated inhibition of these products signifi cantly reduces apoptotic 
neuronal cell death [ 119 ]. Signifi cant NOS2 mRNA is also seen in the brain of 
WNV-infected mice with high levels of NO observed in both activated microglia 
and immigrating macrophages at the peak of infection. Inhibition of NO outputs 
using aminoguanidine extended survival in mice by several days, indicating a sig-
nifi cant contribution of these soluble factors to immunopathogenesis [ 50 ].  

   Involvement of Cells in the Eye 

 In the eye, an extension of the brain, it is worth pointing out that the retinal pigment 
epithelium (RPE), which forms and maintains an outer blood-retinal barrier, sepa-
rating the eye from the peripheral circulation, in particular, the fenestrated choroid 
plexus, is permissive for WNV infection. Microarray analysis of WNV-infected 
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RPE isolated from human cadaveric eyes showed upregulation of various infl amma-
tory cytokines involved in innate and adaptive immunity. These include CCL5, 
CCL2, CXCL10, CXCL11, IL-6 and IL-8 and may play a role in oculopathies seen 
in WNV and DENV infection. Of particular interest is the signifi cant upregulation 
of complement factor B (CFB) [ 79 ], which results in the deposition of complement 
factors C3a and C3 between the basal aspect of RPE and Bruch’s membrane [ 124 ], 
creating a highly pro-infl ammatory environment. The causative link between com-
plement activation and age-related macular degeneration [ 125 ] implicates this as a 
likely contributor to ocular manifestations present in fl avivirus infection. Moreover 
TNF, which positively regulates CFB [ 124 ], was also upregulated in infected 
RPE. Apart from exhibiting pro-angiogenic properties [ 126 ], TNF also increases 
MMP production [ 127 ] and apoptosis [ 128 ], which may be responsible for 
haemorrhage and edema in the vicinity of the compromised outer barrier, further 
encouraging damaging neovascular growth. Multiple MMP are also produced by 
WNV-infected human brain cortical astrocytes, and might play a role in compromis-
ing the BBB, thus contributing to immune infi ltration and subsequent immunopa-
thology [ 129 ].   

    2.2.2 Infi ltrating Immune Cells 

 Leukocyte infi ltration into the CNS is a hallmark of fl avivirus encephalitis and is a 
result of the secretion of chemotactic infl ammatory mediators by neurons as well as 
activated microglia and astrocytes, triggered by neuronal infection and viral induced 
death [ 87 ]. In humans, this infi ltrate includes neutrophils and mononuclear cells like 
T-lymphocytes and macrophages in the most severely affected sites in the CNS and 
is often associated with a fatal outcome [ 98 ,  130 ]. This leukocyte infi ltrate, with 
activation of glial cells, is thought to cause the clinical symptoms in fl avivirus 
encephalitis. Mice developing meningoencephalitis during DENV infection show 
distinct behavioural changes occurring at the peak of infl ammation in the CNS 
[ 131 ] and many studies show the close association of infl ammation and develop-
ment of clinical symptoms during fl avivirus infection of mammals. 

   Myeloid Subsets 

   Monocytes and Macrophages 

 Flow cytometric identifi cation of monocytes in humans and mice defi nes two principal 
CD115 +  CD11b +  populations, based on further cell surface marker expression. 
Classical or “infl ammatory” monocytes are defi ned as CD14 hi CD16 −  in humans and 
Ly6C hi  (CD43 lo CCR2 hi CXC3CR1 − ) in mice, whereas non-classical or “patrolling” 
monocytes are CD14 lo CD16 hi  in humans and Ly6C lo  (CD43 hi CCR2 lo CX3CR1 hi ) in 
mice [ 132 ,  133 ]. Circulatory monocytes can differentiate into either DC or macro-
phages in tissues, with this decision likely determined by signals encountered as 
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monocytes enter the target organ. In our laboratory we have used the i.n. model of 
WNV encephalitis to examine the anti-viral responses of the CNS, while minimising 
potentially confounding effects of the systemic immune response. In this model, 
nearly 50 % of leukocytes infi ltrating the brain are monocyte-derived macrophages, 
almost 90 % of which are Ly6C hi . There is minimal proliferation of resident microglia 
in vivo, but adoptive transfer of Ly6C hi  monocytes show a proportion of these cells 
differentiating into a phenotype indistinguishable from activated microglia, thus 
adding to the resident population [ 42 ]. 

 The high concentration of CCL2 produced in the CNS during WNV infection is 
responsible for recruiting infl ammatory monocytes, via CCR2, the cognate receptor 
expressed at increased levels on these cells. Neutralisation of CCL2 is associated 
with signifi cant reduction in infl ammatory monocyte immigration into the CNS, 
prolongation of survival by 2 days, with ameliorated clinical symptoms [ 42 ]. 
Immigration of Ly6C hi  monocytes into the CNS across the endothelium evidently 
occurs mainly via the integrin, VLA-4, on monocytes, since VLA-4 antibody block-
ade inhibits infi ltration of these cells by approximately 60 %, resulting in the long 
term survival of 60 % of animals, with protective immunity in a group that would 
otherwise uniformly succumb. Interestingly, LFA-1 antibody blockade has no effect 
on survival notwithstanding some 30 % reduction in macrophage infi ltration into 
the CNS. In these studies there was no reduction in viral titre, despite the reduction 
in infi ltrating macrophages, thus relegating the notion that carriage of virus into the 
brain is mediated by these cells. Endothelial expression of VCAM-1, the ligand for 
VLA-4, and ICAM-1, the ligand for the integrin, LFA-1, increase substantially on 
the CNS during WNV infection in vivo in both i.n. and i.p. mouse models [ 50 ,  134 ]. 
Moreover, studies in vitro with WNV-infected human umbilical vein endothelial 
cells (HUVEC) show Th1 and infl ammatory cytokines further increase the expres-
sion of VCAM-1, as well as ICAM-1, and E and P-selectin, crucial for rolling adhe-
sion after leukocyte margination. Thus, a combination of neuronal infection, 
promoting specifi c recruitment via secreted chemokines, and cytokine-induced 
adhesion molecule upregulation on CNS endothelium, enabling diapedesis, evidently 
drives leukocyte infi ltration into the CNS [ 36 ]. 

 As mentioned above, many of these macrophages produce NO, which is in part 
responsible for pathology. NO is a highly reactive species, toxic for a wide variety 
of viruses, as well as bystander cells (reviewed in ref. [ 135 ]). In vitro, the potential 
role in bystander neuronal damage during JEV infection was studied in a population 
of thioglycollate-induced peritoneal exudate macrophages, in the supernatant of 
which, infl ammatory mediators, IL-12, CCL2, TNF and IFN-γ were detected. As 
discussed, these factors can contribute to neuronal degradation, either by direct 
cytotoxicity, or indirectly by recruiting infl ammatory cells. As with WNV [ 81 ], NO 
was also produced at high levels by JEV-infected macrophages, along with ROS and 
Cox-2. These soluble factors directly induced apoptosis of neuroblastoma and 
primary cortical neurons in culture [ 136 ]. 

 In a DENV model of infection also, infl ammatory macrophages produced sig-
nifi cant levels of IFN-γ-dependent NOS2. High levels of NOS2 were associated 
with pathogenesis, as NOS2 KO mice exhibited improved survival, compared to 
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WT controls [ 137 ]. In contrast, IFN-γ-mediated NOS2 expression and NO production 
were crucial for survival in a mouse adapted DENV-3 infection [ 138 ]. NO produc-
tion plays a crucial antiviral role against DENV in monocytes [ 139 ] and the antiviral 
function of NO protects against lethal JEV infection [ 140 ,  141 ] and WNV [ 64 ]. On 
the other hand, NO did not exhibit antiviral effects against TBEV in vitro and 
TBEV-infected mice treated with aminoguanidine showed no increase in survival 
rates but did have a longer mean survival time (MST), suggesting a contribution to 
immunopathology by NO [ 142 ]. Likewise, treatment of C57BL/6 WNV-infected 
mice with aminoguanidine at the peak of monocyte infi ltration prolonged survival 
for approximately 3 days [ 50 ]. In contrast, in human DENV infection, low NO levels 
were associated with poor outcomes and development of the hemorrhagic form of 
disease, compared to patients with elevated NO [ 143 ]. In encephalitis, the concen-
tration of NO in the CNS likely determines whether it exerts a protective or patho-
genic role. This is related in turn to the number of IFN-γ- producing activated 
lymphocytes in the CNS and the number of infl ammatory macrophages responding 
by producing NO. Discrepancies in animal models may be due to the use of different 
mouse strains, different fl aviviruses or different strains of the same virus, different 
virus doses, as well as the temporal window of functional presence or absence of 
NOS2 during disease. 

 More recently, we have investigated another IFN-γ effector pathway, that of 
indoleamine 2,3 dioxygenase (IDO) induction in macrophages. Interestingly, 
although both IDO and NOS2 are strongly induced by IFN-γ, they appear to be 
tightly reciprocally regulated. IDO catalyses the destruction of  L -tryptophan, a rate- 
limiting amino acid required for replication of lymphocytes and many viruses [ 144 ] 
Interestingly, work in vitro indicates that IDO is antiviral for WNV [ 48 ] and IDO 
upregulation has been found in the human CNS post mortem [ 84 ]. Of particular 
interest here is that in contrast to NOS2, IDO does not produce a highly, reactive, 
damaging chemical species and thus may exert its anti-viral and anti-proliferative 
effects with minimal bystander tissue damage and less infl ammation as a result. 
This would be especially important in the CNS that is for the most part in G 0 , since 
IDO would be expected to have little or no metabolically inhibitory effect on these 
cells. The temporal interaction of these two anti-viral effector pathways clearly 
could thus have important consequences for survival in encephalitis. However, how 
the decision is made at the cellular level as to which is differentially expressed and 
when, has yet to be elucidated.  

   Neutrophils 

 Neutrophils may contribute up to 3 % of the infl ammatory infi ltrate during lethal WNV 
encephalitis infection in mice [ 50 ] and have been implicated in pathology of fl avivirus 
infection. High neutrophil numbers and IL-8 production are found in JEV- infected 
patients with severe forms of disease [ 98 ] and neutrophils recruited in an IL-1- and 
CXCL2-mediated manner are highly cytopathic in the ischemic brain [ 145 ]. 

 Neutrophils, CD8 +  and CD4 +  T cells were present in signifi cant numbers in the 
CNS of a lethal model of intracranial DENV infection, their presence was 
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accompanied by increases in several cytokines and chemokines, including IFN-γ, 
TNF, CCL2, CCL5, CXCL1, and CXCL2 [ 131 ]. Neutrophil infi ltration and NOS2 
expression were correlated with development of encephalitis in MVEV-infected 
young mice and neutrophil depletion resulted in signifi cantly prolonged MST and 
decreased mortality, although the depleting antibody used also depletes monocytes. 
The inhibition of NOS2 with aminoguanidine also prolonged survival, but to a 
lesser extent than neutrophil depletion [ 62 ], emphasising the multifarious nature of 
disease pathogenesis and that where this population contributes signifi cantly to 
disease, additional neutrophil-derived factors are likely to be involved [ 49 ].   

   Lymphoid Subsets 

   CD8 +  T Cells 

 CD8 +  cytotoxic T cells (CTL) are the main specifi c anti-viral effector of the adaptive 
immune response in fl avivirus infections. They recognise specifi c viral peptide anti-
gens presented by MHC-I on infected host cells and release perforin and granzymes, 
which induce apoptosis of the infected or otherwise abnormal cells [ 46 ,  65 ,  146 ]. 
Effective lysis of infected host cells limits the spread of virus, but inevitably also 
affects the host and potentially leads to (irreversible) damage to tissue. This especially 
provides a challenge to fragile organs with slow or non-renewing cell populations, 
such as the CNS. 

 In TBEV, CD8 +  T cells producing granzyme B were found in close proximity to 
neurons expressing caspase-3 [ 147 ], suggesting that these cells may contribute to 
immune-mediated damage to neurons. A number of fl aviviral models have shown 
CD8 +  T cells to have detrimental effects on disease outcome. In a s.c. model of 
TBEV infection, CD8 −/−  and SCID mice, which lack both B and T cells, survived 
3–5 days longer than WT mice, despite having a higher viral titre in the brain [ 148 ]. 
MVEV-infected mice with gene deletions of perforin, granzyme and FasL, indepen-
dently or combined, displayed better survival than WT mice for doses between 10 2  
and 10 8  pfu of i.v. inoculated virus. Both NK cells and CTL produce these lytic 
factors and the authors do not distinguish between the two cell types; however, NK 
cell function is inhibited by MHC-I upregulation in fl avivirus encephalitis, making 
CD8 +  T cells the likely mediators of pathology in this model [ 65 ]. 

 In high dose i.v. infection with WNV Sarafend, mice that were antibody-depleted 
or genetically defi cient in CD8 +  T cells showed increased survival and longer MST 
than WT mice. In low dose infections, however, WT mice had a survival advantage 
over mice defi cient in CTL [ 37 ,  61 ]. Similar observations have been made in 
diseases without CNS involvement. In infl uenza virus infection, CD8 +  T cells, as in 
WNV, are detrimental in high dose infection, but benefi cial to survival in low dose 
infection [ 149 ]. This suggests that the CD8 +  T cells recruited in low dose infection 
effi ciently clear virus and have well-regulated cytokine production. In contrast, 
large amounts of virus attract enough CD8 +  T cells to result in overwhelming 
production of cytokines and non-specifi c cytotoxicity, which negates the benefi t of 
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viral elimination. This is supported by research done in our laboratory, where 
uninfected mouse embryonic fi broblasts, on which MHC-I was upregulated by IFN-
γ, were more effi ciently lysed by anti-viral CD8 +  T cells than untreated, uninfected 
cells [ 150 ]. In an in vivo scenario, this could translate to neighbouring cells upregu-
lating recognition molecules for CD8 +  T cells, as a result of the infl ammatory milieu 
and proximity to infected cells, to such an extent that they become targets of low 
affi nity CTL generated by the anti-viral immune response [ 151 ]. Transfer of virus-
specifi c CTL accelerates viral clearance from the lungs of respiratory syncytial 
virus- infected mice but a direct positive correlation was found between the increas-
ing amounts of transferred cells and respiratory distress in the mice [ 152 ]. Thus, the 
immune system has to manage a precarious balance between viral clearance and 
organ function and the cytopathic effect of CD8 +  T cells. On the other hand, in the 
i.n. model of WNV encephalitis, the depletion of T cells does not result in extended 
survival, unlike the blockade of monocyte immigration. In this model, however, 
VLA-4 blockade also decreases T cell numbers by almost half, presumably dimin-
ishing any T cell-mediated immunopathology present, with the remaining T cells 
evidently able to clear the virus to produce permanent, protective immunity [ 50 ]. 

 A comparison between the blood of children suffering from dengue fever and 
DHF showed that CD4 +  T cells are activated in both forms of disease, though DHF 
patients show higher activation. However, CD8 +  T cells were only found to be active 
in DHF and not in dengue fever patients, suggesting they may contribute to worsen-
ing disease [ 153 ]. In order to establish whether CD8 +  T cells contribute to DENV 
pathology, SCID mice, which are normally resistant to DENV, were transplanted 
with DENV susceptible human HepG2 cells and i.p. infected with a DENV-2 strain 
isolated from a human patient. Simultaneously mice were injected with naïve thy-
mocytes, DENV-specifi c CD8 +  T cells or vehicle. Mice receiving naïve thymocytes 
showed the poorest survival with 100 % mortality within 14 days p.i. Transfer of 
DENV-specifi c CD8 +  T cells resulted in 80 % mortality after 15 days, but the 
remaining 20 % survived long-term. Although there was a 100 % mortality rate in 
vehicle-treated experimental group, the disease course was extended signifi cantly, 
compared to the other two groups. These results indicate that although virus- specifi c 
T cells are crucial for viral eradication, they may ultimately contribute to a more 
severe form of disease [ 154 ]. 

 The role of CD8 +  T cells is likely determined by a multitude of factors including 
severity of disease, phase of disease in which CD8 +  T cells become activated and 
whether or not the recruitment of specifi c CD8 +  T cells become dysregulated during 
the course of disease. Controlling the magnitude of the CTL response is key to man-
aging the benefi t of viral clearance against irreversible and potential fatal damage to 
the host. Of interest here is the upregulation of MHC-I by certain fl aviviruses such 
as WNV [ 76 ,  77 ]; whilst increasing the likelihood of CD8 +  T cell recognition and 
cytolysis, this also results in inhibition of NK cells. This highlights a controversial 
aspect of fl avivirus infection, as the upregulation of MHC-I aids in immune evasion 
by inhibiting NK cell-mediated viral clearance, whilst also increasing CD8 +  T cell 
immune-mediated pathology.  
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   CD4 +  T Cells 

 CD4 +  helper T cells function mainly in enabling and enhancing the activation of 
CD8 +  T cells and class switching of B cells. Although there is evidence of direct 
CD4 +  T cell cytotoxicity [ 155 ], raising the possibility of helper T cell-induced 
immunopathological damage, either directly, or indirectly via stimulation of CD8 +  
T cells, CD4 +  T cells appear to have a predominantly positive effect on survival and 
MST during fl avivirus infection. For example, the transfer of CD4 +  T cells to TBEV- 
infected SCID mice increased both MST and survival rate [ 148 ]. Indeed, CD4 +  T 
cells are required for WNV clearance, as depleted or defi cient mice show increased 
mortality and persistent infection [ 156 ]. Moreover, transfer of CD4 +  T cells alone 
was shown to be suffi cient for viral clearance and survival of RAG-1 −/−  mice infected 
s.c. with WNV. CD4 +  T cells upregulated granzyme B expression and specifi cally 
lysed WNV-infected targets in a perforin- and FasL-dependant manner [ 155 ]. This 
suggests that CD4 +  T cells may have a much greater role in the immune response 
than just mediating CD8 +  activation: they may alone be suffi cient to clear virus, 
while mitigating the potential immunopathological damage caused by CD8 +  T cells. 

 On the other hand, in DENV infection, CD4 +  T cells may contribute to immuno-
pathology as well as viral clearance. Gagnon et al. isolated 6 CD4 +  CTL clones, 
with cytotoxic activity, from a donor infected with DENV-4, which had cross- 
reactivity with DENV-2 to analyse target and lysis mechanisms. They found that the 
clones lysed bystander cells as well as target cells. Specifi c inhibition of either 
FasL-mediated cytotoxicity or perforin release indicated that lysis of cells present-
ing antigen was more strongly affected by perforin blockade, whereas bystander 
cell lysis was reduced more by FasL blockade [ 157 ]. These results were obtained 
in vitro and with a limited number of CD4 +  CTL clones but suggest there may be an 
interesting difference between the targeting of infected and bystander cells via 
perforin- induced lysis and FasL-mediated lysis, respectively. The ability to differ-
entiate benefi cial and pathogenic actions of immune cells therapeutically in the 
pandemonium of responses during virus-mediated CNS infl ammation could mean 
the difference between successful resolution of infection or a fatal outcome as a 
result of immunopathogenesis.  

   Regulatory T Cells 

 As regulatory T cells (Tregs) mainly suppress immune responses, they are not 
commonly implicated in immunopathology. However, evidence for lethal immuno-
pathology driven by a dysregulated or amplifi ed immune response during fl avivirus 
encephalitis, stresses the crucial need for properly functioning Treg-mediated 
suppression. Defi ning the targets of inhibitory Tregs in patients effectively fi ghting 
off fl avivirus infection may provide clues as to which subsets become dysregulated 
when Tregs fail to control the immune response. 

 The high proportion of asymptomatic WNV infections in humans prompted 
research trying to defi ne what immune component differentiates between individuals 
with susceptibility to WNV (approximately 20 % of the population) and asymptomatic 
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infections. Comparison of the number of circulatory Tregs present in the blood of 
WNV +  donors with asymptomatic and symptomatic infection showed that patients 
suffering from symptomatic infection had fewer Tregs up to 1 year post infection, 
compared to asymptomatic patients. This correlation was supported by a s.c. model 
of WNV infection, in which Treg-mediated suppression of CD8 +  T cell recruitment 
increased survival, while Treg depletion resulted in increased lethality [ 158 ]. 

 The importance of Tregs in reducing immunopathology in other neurotropic 
virus infections, also, such as in ocular herpes simplex virus infection, which unlike 
WNV infection, causes recurrent infection due to latency in sensory ganglia [ 159 ] 
emphasise the importance of immune regulation by Tregs and may ultimately provide 
useful guidance for immune targeted treatment design.  

   NK Cells 

 NK cells can recognise and kill “abnormal” cells without being activated by antigen- 
presenting cells. They have both inhibitory and activating receptors, with their fi nal 
status being determined by the balance of stimulating and supressing signals 
encountered. Viral infection of cells results in the expression of stress factors, which 
are ligands for NK cell activating receptors such as NKG2D. Binding of NK cells to 
the target cell via these receptors result in lysis of the infected cell. The function of 
NK cells in fl avivirus infection is unclear, and a number of other viruses manage to 
avoid detection by this subset. Ligands of NKG2D were upregulated in the CNS of 
animals infected with a neurotropic strain of mouse hepatitis virus. Blocking of 
NKG2D in SCID mice (which although B and T cell-defi cient, retain NK cell func-
tionality) did not affect survival and the authors concluded that NK cells play neither 
a protective nor detrimental role in viral encephalitis [ 160 ]. In the case of fl avivi-
ruses, a likely explanation for this is the ability of fl avivirus to upregulate MHC-I, 
which represents “self”. Generally, virus-infected cells downregulate MHC-I 
expression, enabling NK cell recognition and activation. Flaviviruses, however, 
may have evolved to avoid NK cell detection by upregulating MHC-I expression on 
infected cells to inhibit NK cell activation by engaging inhibitory receptors. Indeed, 
experiments blocking the single inhibitory receptor present on NK92-44 cells 
resulted in NKp44-mediated activation of NK cells and subsequent lysis of WNV-
infected Vero cells [ 161 ]. In vivo, NK cell depletion experiments have not shown 
any effect on survival in WNV infection, presumably because they are not essential 
in resolving infection [ 146 ]. However, NK cells make up a signifi cant portion (up to 
10 %) of the CNS infi ltrating leukocyte population in WNV encephalitis and show 
a large infl ux into the CNS in an intracranial DENV infection model (King, unpub-
lished results). Such a signifi cant NK cell infl ux in the CNS seems too sizeable to 
be merely a side effect of the massive leukocyte recruitment and infi ltration and 
suggests a possible cytokine helper function in fl avivirus encephalitis. Indeed, these 
cells may contribute to the control of WNV replication in the liver in vivo [ 162 ]. 
However, in the current models it is possible that this function is concealed in the 
avalanche of bigger infi ltrating cell populations that, once abrogated, have an obvi-
ous role in survival. Thus, a benefi cial or immunopathological role for NK cells may 
remain to be discovered. 
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 A genome wide association study attempted to identify genetic predisposing 
factors for DSS, the most severe form of DENV. Comparison of almost 2,000 
children suffering from DSS and nearly 3,000 controls found a signifi cant correla-
tion between occurrence of DSS and presence of a single nucleotide polymorphism 
(SNP), MICB (major histocompatibility complex (MHC) class I polypeptide-related 
sequence B). The authors suggest that since MICB is a ligand for the activating 
NKG2D type II receptor, this mutation will result in strong activation of cytolytic 
NK cell responses, inducing severe immunopathology responsible for DSS [ 163 ]. 
A follow-up study by a different group included patients suffering from less severe 
dengue, as well as adults, whereas the original comparison only included children. 
They showed that the SNP in MICB also correlated to less severe dengue, albeit less 
strongly than DSS. Moreover, they suggest that the genotype may be more prone to 
DSS as a result of impaired, rather than enhanced, NK cell activity [ 164 ]. Thus, 
while some fl aviviruses appear to avoid NK cell lysis, with the result that they 
appear to have little or no role in the pathogenesis of disease, clearly, further functional 
experimentation is needed to clarify the clinical signifi cance of NK cells in fl avivi-
rus infection. While the possibility of clinically activating NK cells [ 165 ] at particular, 
e.g. early, time points in fl avivirus disease may be attractive, as with monocytes and 
T cells, the benefi t of such activation on the host in vivo should outweigh the poten-
tial detrimental effect.      

    3 Immunomodulatory Therapeutic Approaches 

 While it is clear that the ideal control of human infection by viruses that have 
multiple hosts and in which humans are often incidental to its life cycle, is an effec-
tive programme of immunisation, currently no approved vaccine for humans exists 
against WNV, and infections with other fl aviviruses such as JEV and YFV, which 
have approved vaccines, still occur frequently. Clinically, the appearance of symptoms 
is often associated with signifi cant immune system involvement, i.e. once there is 
already a well-established infection, shifting the focus of treatment from primary 
antiviral to immunomodulatory approaches. 

 Several studies have used minocycline, which not only exhibits antiviral proper-
ties but also signifi cantly reduces infl ammatory cytokine (IL-6, IL-12p70, IFN-γ), 
chemokine (CCL2), and ROS production by microglia and macrophages during 
JEV infection in vitro [ 82 ,  119 ], promotes neurogenesis [ 119 ], as well as effectively 
inhibiting WNV- and JEV-induced apoptosis of neurons [ 108 ,  166 ]. In vivo, promis-
ing results have been obtained with minocycline treatment of JEV-infected mice. 
Treatment prior to disease onset resulted in reduction of viral titre, neuronal death 
and subsequent microgliosis and pro-infl ammatory mediator levels. Importantly, 
administration of minocycline after disease onset also promoted survival. Clearly, 
the ability to ameliorate established infection with developed clinical symptoms is 
relevant in a clinical setting. Recent studies with Simian immunodefi ciency virus 
infection in non-human primates showed minocycline treatment resulting in less 
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severe encephalitis. The authors hypothesised that this was due to decreased CCL2 
production and subsequent reduction of cytopathic monocyte recruitment [ 167 ]. As 
this tetracycline derivative has good penetration of BBB and is clinically approved 
it is a strong potential candidate for immunomodulatory therapy of fl avivirus 
encephalitis. 

 Promising inhibitors of CCL2 such as Bindarit, have also been used to reduce the 
effects on monocyte infi ltration in alphavirus diseases [ 168 – 170 ] and EAE [ 171 ] 
and several other infl ammatory scenarios. This drug acts through modulating NF-κB 
[ 172 ], translocation of which is signifi cantly increased by WNV [ 123 ,  173 ]. We 
have tested this agent in WNV encephalitis, but without observable ameliorative 
effect (King, Unpublished). This may not be surprising, as the direct inhibition of 
CCL2 by antibody neutralisation extended the life of mice with WNV for only 2 
days [ 42 ] and likely emphasises the complexity of immunopathogenesis and 
perhaps the infl ammatory intensity of fl avivirus encephalitis. 

 Targeting soluble factors with inhibitors against ROS, Cox-2 and NOS2 has also 
been effective in reducing neuronal apoptosis during JEV infection [ 136 ]. 
Neutralising antibodies against TNF and IL-1β during WNV infection have a 
protective effect on neuroblastoma cells and reduce apoptosis of infected cells 
in vitro [ 104 ], but the importance of these innate cytokines in the initiation of the 
immune response may not make them ideal targets in vivo. 

 Inhibition of NO production with aminoguanidine proved to be protective in 
several models of fl avivirus infection as determined by longer MST [ 50 ,  62 ] but did 
not improve fi nal survival outcome. It is likely the sustained action not just of NO, 
but of a combination of infl ammatory mediators produced by macrophages and 
possibly neutrophils ultimately skew the balance from a protective antiviral immune 
response to a pathogenic one. NO acts a neurotransmitter and high levels in the brain 
may in part be responsible for the generation of seizures that occur in mice with 
fl avivirus encephalitis, leading to death, especially considering the high levels of 
IFN-γ and numbers of infl ammatory macrophages in the brain at this time and the 
dependence of seizure generation on this cytokine [ 58 ]. In our model of WNV 
infection, Ly6C hi  infl ammatory monocyte-derived macrophage infi ltration into the 
CNS correlated with viral load, weight loss and increased severity of clinical symp-
toms. As mentioned above, blockade of this population by VLA-4 antibody at the 
onset of weight loss prevents these cells from getting across the BBB and results in 
60 % long-term survival with protective immunity [ 50 ]. Importantly, however, 
VLA-4 blockade does not improve survival when administered prior to the devel-
opment of clinical signs, emphasising the crucial nature of timing in immune 
responses to lethal infection. Furthermore, clodronate liposome-mediated monocyte/
macrophage depletion throughout infection does not increase survival either [ 174 ], 
and despite widespread ablation of the myeloid lineage [ 42 ,  101 ], administration at 
particular time points does not improve survival as much as VLA-4 blockade 
(King, Unpublished). This indicates the importance of other, as yet undefi ned sub-
populations in the control of infection and potentially immunopathology. In a recent 
breakthrough study from our laboratory, we have targeted Ly6C hi  infl ammatory 
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monocytes prior to entering their target organs, i.e. prior to blockade at the endo-
thelium, by using intravenously administered, negatively charged immune-
modifying microparticles (IMP). These are phagocytosed by Ly6C hi  monocytes in 
the circulation of WNV-infected mice and quickly cleared from the blood. 
Experiments show that signifi cant numbers of monocytes that phagocytose IMP 
subsequently express phosphatidylserine, a marker of incipient apoptosis and are as 
a result sequestered by the spleen as dying cells, and thus do not reach the focus of 
infl ammation, resulting in signifi cantly reduced infl ammatory macrophage immi-
gration into the brain. As in VLA-4 blockade, IMP are infused when animals have 
lost ~5 % weight. This approach results in up to 60 % survival of mice that would 
otherwise certainly succumb, with complete virus clearance within 3 days and 
protective immunity [ 101 ]. Interestingly, the reduction in infl ammatory macro-
phages in the brain, like VLA-4 blockade, is also associated with a modest reduction 
in T cell numbers and this may also reduce the possible immunopathology caused 
by T cells [ 37 ]; irrespective, there are clearly suffi cient T cells to clear the virus 
from the CNS. Notably, unlike VLA-4 blockade, IMP do not target T cells and their 
effect is dependent on the spleen. Thus, in WNV-infected splenectomised mice, 
monocytes are still recruited to the brain even when IMP are administered. 

 Interestingly, this approach rescues more animals inoculated with low dose virus, 
which exhibit slower kinetics of disease onset, than with high dose virus, which 
show accelerated disease onset. This emphasises the immunopathological nature of 
disease pathogenesis and the balance between the pathogenic macrophage popula-
tion and the clearance of virus by T cells. Remarkably, this therapy has proven to be 
successful in other models of disease where there is signifi cant contribution of 
infl ammatory monocytes to pathology, such as EAE, myocardial infarction, 
ischemia- reperfusion injury and infl ammatory bowel disease [ 101 ]. To our knowledge, 
this is the fi rst time that temporally targeted interference with a cell subpopulation 
in a lethal virus infection has resulted in survival with protective immunity and this 
highlights the point that precise immunomodulatory therapies, an ideal just beginning 
to be realised in autoimmune therapy [ 175 ], may also be deployed in infections with 
a signifi cant immunopathological component.  

   4  Conclusion 

 Despite massive urgent effort mobilised in the generation of safe vaccines for 
emerging fl avivirus disease, progress has been slow. Notwithstanding the availabil-
ity of vaccines for JEV, for example, many individuals remain unimmunised and are 
thus a target for infection in endemic areas. In many of these diseases, treatment is 
only supportive. Effective treatment design for fl avivirus encephalitis requires a 
critical understanding of the cascade of events leading to and following virus- 
induced neuronal death. While viral infection of neurons may induce apoptosis, the 
infl ammatory mediator release with subsequent activation of glial cells, as well as 
chemotactic recruitment of leukocytes ultimately concatenate to exert the greatest 
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pathological challenge to crucial organs like the brain. Bystander damage, induced 
directly by CNS resident cells can certainly be targeted by inhibitors that cross the 
BBB. However, the dramatic improvement in survival obtained by treatments 
diverting infi ltrating Ly6C hi  infl ammatory subsets in the peripheral circulation away 
from the CNS, places this subset in the spotlight for future treatment design. 
Moreover, the fi ne attenuation of peripheral immune subsets possible with this form 
of therapy will enable a rational, staged approach to a wide range of clinical disease 
potentially relegating the coarser subset deletion approaches used in non-infectious 
scenarios like autoimmunity or organ transplantation, that may leave patients 
immune defi cient, with all its attendant infectious risks.     
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    Chapter 17   
 West Nile Virus 

             Sally     F. Alrabaa      ,     Charurut     Somboonwit     , and     Paul     Shapshak    

          Core Message      West Nile virus is the most common cause of arboviral encephalitis 
in the USA at this time. The virus, originally discovered in 1937 in Uganda in 
Africa, west of the Nile, was of low virulence initially causing only minor illnesses 
in humans; however, since then a more virulent strain had emerged and spread to 
most continents, causing epidemics of severe central nervous disease. The evolution 
and spread of West Nile virus was studied extensively since its emergence in the 
western hemisphere in 1999 and this has provided an opportunity to better understand 
the factors that contribute to viral mutation and migration.  

1     Introduction 

 It has been more than a decade since the fi rst human case of West Nile virus (WNV) 
in the Western Hemisphere was documented. Before 1999, WNV was almost 
unknown to the public in North America. Today, it is widely distributed in the USA 
and has been detected in all continents except Antarctica, making WNV one of the 
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most widely distributed arboviruses in the world [ 1 ]. Viruses constantly mutate, 
strains that are more virulent emerge, and West Nile Virus is no exception. 

 With the well-deserved attention toward other high virulence viruses such as 
infl uenza A and human immunodefi ciency viruses (HIV), West Nile virus is begin-
ning to slip from the attention of the public and health care providers. At a time of 
reemerging viral threats, this arthropod-borne illness remains important. This review 
summarizes what is known about WNV since it was fi rst reported in New York 
more than a decade ago.  

2     Virology 

2.1     Classifi cation and Structure 

 West Nile virus belongs to the family  Flaviviridae , genus  Flavivirus . It is a single 
stranded, positive sense, enveloped RNA virus with a genome that is approximately 
11 kb [ 2 ]. Other members of the  Flaviviridae  family that are major human pathogens 
include Japanese encephalitis virus (JE), Saint Louis encephalitis virus (SLEV), 
Dengue viruses 1–4, and yellow fever virus. The WNV genome contains nine major 
proteins that are implicated in replication and pathogenesis [ 3 ]. Three proteins are 
structural including the capsid protein (C) that binds viral RNA, a premembrane 
protein (prM) that blocks premature viral fusion, and a protein (E) that mediates viral 
attachment, membrane fusion, and viral assembly [ 3 ].    Five other proteins are 
 non-structural (NS1, NS2A, NS2B, NS3, NS4A, and NS5) and those regulate viral 
transcription, replication and attenuate the host antiviral responses [ 4 – 9 ]. 

 Two major Lineages of WNV, 1 and 2, have been described. Lineage 1 covers a 
large geographic area including Africa, Middle East, Southern Europe, Australia, 
Asia, and the Americas [ 10 ]. Lineage 1 is more pathogenic with the potential to cause 
severe central nervous system infection and death. Lineage 2 is mostly confi ned to 
sub-Saharan Africa and its pathogenesis in humans is relatively low, mostly causing 
self-limited febrile illness.  

2.2     Genotype Introduced to Western Hemisphere 

 Studies have shown that WNV Genotype NY99 was responsible for the 1999 
New York City outbreak and that it was in Lineage 1 [ 11 ]. The subsequent spread of 
WNV across North America, however, was caused by a new genotype “North 
American dominant” or WN02 that emerged from the NY99 strain [ 12 ,  13 ]. WN02 
genotype is characterized by 13 conserved nucleotides changes, 1 of which results 
in an amino acid substitution, Valine to aniline in position 159 (V159A), in the 
envelope (E) protein. This single amino acid change was shown to decrease the 
incubation period of the virus in mosquitoes and increase the virulence of the virus, 
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hence increasing transmission, infectivity rates, and the severity of the infection and 
can be viewed as a successful adaptation of the virus in its new environment [ 13 ]. 

 More recent genomic sequences studies demonstrate further evolution of WNV, 
and potential emergence of a new genotype in the southwestern USA (SW/WN03 
genotype); however, further experiments are needed to investigate potential pheno-
typic changes that occur in conjunction with the genotype changes and to deter-
mine if the SW/WN03 genotype will replace the current dominant NA/WN02 
genotype [ 12 ].   

3     Epidemiology 

3.1     Virus Journey and Spread 

 WNV was fi rst isolated in the West Nile region of Uganda in 1937 from a woman 
with fever [ 14 ]. Soon after that, mosquito transmission among vertebrate hosts was 
elucidated. Although at that time, the virus caused only self-limited febrile illness it 
was noted to be serologically related to the previously identifi ed neurotropic viruses, 
Japanese Encephalitis and Saint Louis encephalitis viruses (JE and SLEV). 

 Between 1950 and 1990, periodic outbreaks with mild self-limited febrile illness 
and rare central nervous system involvement were documented [ 1 ]. In addition, 
sporadic cases and larger outbreaks were documented in rural areas in the Middle 
East, Israel, and southern France. Moreover, a WNV subtype (Kunjin virus) was 
isolated in Australia. After 1990, the epidemiology of WNV changed further with 
larger epidemics in Romania, Russia, Tunisia, and Israel [ 1 ,  10 ]. These strains now 
manifest with severe CNS involvement and high mortality. The fi rst outbreak in the 
Western Hemisphere occurred in Northeastern USA. In New York City in 1999, 62 
cases of encephalitis were reported including seven deaths [ 16 ]. The strain causing 
the epidemic, denoted as NY99, was in lineage 1 and similar to a strain circulating 
then in Israel (Isr98) [ 17 ]. The specifi c mode of introduction of WNV to the USA is 
still unknown, although infected birds are thought to be the most likely vehicle of 
transport. Possible theories of introduction include infected bird migration, illegal 
or legal importation of vertebrate hosts or vectors, intentional introduction as a bio-
terrorism attempt, or less likely by an infected human host [ 11 ,  17 ]. Soon thereaf-
ter the Virus rapidly spread across the continent, reaching the Pacifi c coast in less 
than 3 years (Fig.  17.1 ). By 2003, more than 2,000 cases of CNS disease and 200 
deaths were reported in the USA. Although, since then, the incidence started to 
decline, mostly due to improved control measures, there are still more than 1,000 
neurological cases per year. One interesting epidemiological phenomenon is that 
WNV appears to be displacing SLEV in its ecosystem in parts of western USA. 
WNV and SLE virus exploit the same avian host and vector species; however, the 
NS3 helicase mutation present in the WNV genotype confers elevated virulence for 
avian hosts and appears to have provided WNV a competitive advantage in this 
region [ 18 ,  19 ].  

17 West Nile Arbovirus



460

 Cases of WNV have also been reported in Canada. In addition, enzootic 
 transmissions occurred in the Caribbean and Central America. Of note WNV activity 
has not been reported in tropical South America as yet. This may be due to cross- 
protection from other fl aviviruses circulating in tropical regions, less competent 
arthropod and avian hosts than in temperate regions, and the greater diversity of host 
species in the tropics or reduced virulence of WNV in the tropics [ 1 ,  20 ]. Similarly, 
there have been no overt cases in the UK, although there is evidence of serological 
conversion in sentinel chickens. However, since the year 2000, WNV has been 
detected regularly in France, in the southern regions, with signifi cant morbidity in 
horses. The lack of human cases in northern Europe, compared to southern Europe, 
may possibly be attributed to the feeding behavior of the predominant vector,  Culex 
pipiens  that exists as two strains in North Europe. One strain feeds primarily on 
humans and the other strain feeds on birds only, whereas hybrid mosquitos feed on 
both hosts in Southern Europe facilitating viral transmission [ 1 ,  21 ]. Additional fac-
tors, such as climate, likely play an important role in viral transmission; for example 
lower temperatures in northern Europe are not usually suitable for the development 
of large populations of competent mosquitoes capable of effective viral transmis-
sion to humans [ 22 ]. 

 The dynamic relationship between vectors and hosts, including mosquito 
feeding and avian migratory patterns, has facilitated the distribution of WNV as one 
of the most widespread arboviruses in the world (Table  17.1 ). Currently WNV has 
been reported on all continents, with the exception of Antarctica. In North America 
alone, there are approximately 59 species of mosquitoes (predominantly the  Culex  
species) and 284 species of birds that have been reported as having been infected 

  Fig. 17.1       Map showing origin and migration of West Nile Virus. Data to create Map obtained 
from [ 1 ,  10 ,  22 ]       
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with WNV. The virus is maintained in nature in an enzootic cycle between birds 
and mosquitoes. Some mammals (such as horses and squirrels) and reptiles (such as 
alligators) have also been shown to be viremic [ 1 ].

3.2        Virus Transmission 

 The majority of human infections are due to mosquito bites. Humans and many 
other vertebrates are accidental hosts with low-grade, transient viremia insuffi -
cient to infect mosquitoes and are considered “dead-end” hosts. The amplifying 
hosts are birds including crows ( particularly Corvus brachyrhynchos ), jays, 
blackbirds, fi nches, warblers, and sparrows, which generally remain asymptomatic. 
Crows and blue jays are particularly susceptible. Indeed, increased mortality in 
such birds can predict increased risk for human cases and can be a crude indicator 
of virus activity [ 23 ]. 

   Table 17.1       Summary of epidemiology of WNV   

 Year 
 Geographical 
location  Viral strain  Clinical properties 

 1937  Uganda—region 
west of the Nile 

 WNV of lineage 2  WNF; low virulence virus. 

 1937–1949  Africa, Eurasia, 
Australia and the 
Middle East 

 WNV of lineage 2  Sporadic cases of disease and 
outbreaks of WNF mostly in rural 
population; low virulence virus. 

 1950–1990  Egypt and the 
upper Nile delta 

 WNV of lineage 2  Epidemics of WNF with rare 
CNS disease; low virulence virus. 

 1990–1998  Middle east, 
Romania, Southern 
Europe and 
Australia 

 Emergence of WNV of 
lineage 1, WNV 
subtype (Kunjin virus) 
was isolated in 
Australia 

 Frequent outbreaks associated 
severe disease including viral 
encephalitis, now with case- 
fatality rate of nearly 10 %; high 
virulence virus. 

 1999–2003  New York city, 
USA, Israel, 
Russia, and Tunisia 

 WNV of lineage 1, 
(NY99) 

 Outbreaks occurred now in major 
metropolitan cities with CNS 
disease and a case fatality rate of 
about 10 %; High virulence virus. 
 Virus spread to Canada and parts 
of South America. 

 2003–2011  Virus spread across 
continental USA 
reaching 
endemicity level 
with periodic out 
breaks. 

 New genotype had 
arisen, denoted as 
North American or 
WN02 from, the 1999 
introduced (NY99) 
genotype and had 
displaced the 
introduced virus. 

 Seasonal (Summer) outbreaks 
with CNS disease in about 1 % of 
infections and mortality of about 
10 %. The WN02 dominance 
appears to be related to increased 
transmission effi ciency in  Culex  
spp. mosquitoes. 

  Summarized from [ 1 ,  10 ,  22 ]  
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 The  Culex  mosquito appears to be the most important mosquito species in the 
enzootic cycle, although the species varies by geographic location. Transovarial 
transmission of the virus in mosquitoes likely provides for viral over-wintering. 
After female mosquito takes a blood meal from an infected bird, the virus penetrates 
the gut, replicates, and travels to the mosquito’s salivary glands. Then during subse-
quent feedings, mosquito injects virus-laden saliva into warm-blooded hosts and the 
cycle continues. Transmission season is more often from July to September. Multiple 
factors infl uence WNV transmission and infectivity, including advanced age, host 
immune and genetic susceptibility, and behavioral and environmental factors. 
Mortality among patients with meningitis and encephalitis is approximately 10 % 
and often in the elderly. The most signifi cant outbreaks described in the 1990 sero-
logic survey showed that severe complications are infrequent with only 1/150 infec-
tions resulting in WNV meningitis or WNV encephalitis. From data up to 2007, it 
has been estimated that from the 11,000 cases reported of invasive neurological 
disease in the USA that 1.6 million person were most likely infected. Serological 
surveys indicate that even in areas experiencing outbreaks, less than 10 % of the 
population is infected with WNV [ 24 – 29 ]. 

 Rare but documented routes of viral transmission include transplantation of 
infected organs, the use of infected blood products, transplacentally, and possibly, 
through breast milk [ 30 ,  31 ]. At the peak of the 2002 epidemic in the USA, the risk 
for infection by transfusion was estimated to be as high as 21 per 10,000 donations 
[ 30 ]. Since then, blood-screening using real-time polymerase chain reaction (PCR) 
has been instituted and has signifi cantly decreased the risk for contaminated blood. 

 Up to 2012 in the USA there were more than 37,000 reported (>350,000 
 estimated) human cases and over 1,500 (mostly in neuroinvasive cases) reported 
deaths since it was fi rst detected in New York in 1999 [ 33 ] (Table  17.2 ).

MOSQUITO

BIRD

HUMAN HORSE

  Fig. 17.2    West Nile Virus Transmission; the virus is maintained in nature in an enzootic cycle 
between birds and mosquitoes. Some mammals (such as humans and horses) are accidental “dead 
end” hosts       
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    Although patients with WNV disease reported onset of illness throughout 
the year, more than 90 % of patients had onset of illness during July to September. 
The annual epidemic peak in the USA consistently occurs in August [ 33 ]. WNV has 
become endemic in the USA, with ongoing potential for seasonal epidemic trans-
mission at the local, regional, or national level. Although annual WNV disease inci-
dence varies substantially, the pattern of recurrence indicates that transmission is 
likely to continue [ 33 ].   

4     Pathogenesis 

 WNV is maintained in nature in an enzootic cycle of mosquito-bird-mosquito. 
Mosquitoes serve as maintenance vectors in the cycle. The most common mosquito 
species responsible for transmitting WNV is the  Culex  species but this varies with 
geographic area. Of these,  Cx pipiens molestus ,  Cx univittatus  and  Cx tarsalis  have 
been implicated as important vectors of transmission in Africa, Middle East and the 
outbreaks in the USA [ 34 ]. Birds serve as amplifying hosts and usually remain 
asymptomatic, despite continuous viremia; however, occasionally high levels of 
viremia will lead to the bird’s demise. Studies have shown a higher incidence of 
WNV infections in humans residing in high avian mortality areas, as avian mortality 
rates correlate with West Nile virus activity [ 23 ,  35 ]. The exact pathogenesis of 

   Table 17.2    West Nile virus disease cases and deaths reported to CDC by year and clinical 
presentation, 1999–2012   

 Year 
 Neuroinvasive 
disease cases 

 Neuroinvasive 
disease deaths (%) 

 Non‐
neuroinvasive 
disease cases 

 Non‐
neuroinvasive 
deaths (%) 

 Total 
cases 

 Total 
deaths 
(%) 

 Total  16,196  1,443 (9)  20,892  106 (1)  37,088  1,549 (4) 
 2012  2,873  270 (9)  2,801  16 (1)  5,674  286 (5) 
 2011  486  42 (9)  226  1 (<1)  712  43 (6) 
 2010  629  54 (9)  392  3 (1)  1,021  57 (6) 
 2009  386  32 (8)  334  0 (0)  720  32 (4) 
 2008  689  41 (6)  667  3 (<1)  1,356  44 (3) 
 2007  1,227  117 (10)  2,403  7 (<1)  3,630  124 (3) 
 2006  1,495  162 (11)  2,774  15 (1)  4,269  177 (4) 
 2005  1,309  104 (8)  1,691  15 (1)  3,000  119 (4) 
 2004  1,148  94 (8)  1,391  6 (<1)  2,539  100 (4) 
 2003  2,866  232 (8)  6,996  32 (<1)  9,862  264 (3) 
 2002  2,946  276 (9)  1,210  8 (1)  4,156  284 (7) 
 2001  64  10 (16)  2  0 (0)  66  10 (15) 
 2000  19  2 (11)  2  0 (0)  21  2 (10) 
 1999  59  7 (12)  3  0 (0)  62  7 (11) 

   Source : CDC; ArboNET, Arboviral Diseases Branch, Centers for Disease Control and Prevention 
  http://www.cdc.gov/westnile/resources/pdfs/cummulative/99_2012_CasesAndDeathsClinical
PresentationHumanCases.pdf      
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WNV in humans is not yet well understood but animal studies have shed some light 
into the interaction of the virus and the host immune system. Following  Culex  mos-
quito inoculation, the virus replicates in Langerhans  dendritic  cells and then dis-
seminate to the regional lymph nodes where replication continues [ 36 ]. WNV then 
spreads to other peripheral organs including liver and spleen via the blood stream. 
As the virus is recognized by innate and adaptive immune responses, replication is 
limited in the periphery in most cases. Interferon-alpha and beta restrict viral trans-
lation and replication early in infection [ 37 – 41 ]. Both the humoral and cell- mediated 
immune systems are important in virus control [ 36 ]. 

 Early CNS spread and high viremia are limited by B cells and primary IgM anti-
bodies in conjunction with the complement systems. Specifi c activation of comple-
ment via innate recognition of proteins and secreted antibody interacts with a wide 
range of cell surface receptors on myeloid, lymphoid, and stromal cells [ 42 – 44 ]. 
Interferon-gamma-producing gamma-delta T cells also play a role in controlling 
viral replication, by stimulating the adaptive immune response. CD4 and CD8 T cells 
help viral clearance in the peripheral tissues [ 45 – 47 ]. If this peripheral control of 
the virus is inadequate, the virus travels to the CNS, via the blood or by retrograde 
axonal transport, where neuronal bodies are the primary target. In the CNS, 
INF alpha and beta with the aid of chemokines CXCL10 and CCL5 are responsible 
for controlling WNV infection and prolonging neuronal survival [ 37 ,  41 ,  48 ]. 

 West Nile virus utilizes multiple mechanisms to survive, infect, and evade immune 
system recognition. Some of these mechanisms include the capacity to induce rapid 
cell death, diverse cellular tropism including the immune cells of the peripheral blood 
that may also serve in the early dissemination of the virus, masking of the virus RNA 
from the immune cells and the capacity to induce IFN resistance [ 49 – 51 ]. 

 Human genetic factors are thought to infl uence the severity and outcome of the 
infection. For example in humans a 32-bp deletion in the coding region of the CC che-
mokine receptor 5 ( CCR5Δ32 ) was reported to be associated with both increased sus-
ceptibility to WNV infection and death [ 52 ]. Certain single nucleotide polymorphisms 
(SNPs) of the genes that encode the antiviral enzyme 2′–5′ oligo-adenylate synthetase 
(OAS),  OAS1  and  OASL , were found to be associated with WNV susceptibility or 
WNND [ 53 ]. Similarly, genetic SNPs in the interferon regulatory factors ( IRF3  and 
 MX1 genes ) alter the human interferon response to the virus pathway and were found 
to be associated with symptomatic WNV infection and disease progression [ 52 ].  

5     Clinical Manifestations 

 WNV disease is a nationally notifi able disease with standardized case defi nitions. 
State and metropolitan heath departments report cases to CDC through ArboNET, 
an electronic passive surveillance system. The spectrum of WNV disease ranges 
from asymptomatic (~80 %) to neuroinvasive disease with morbidity and mortality 
of about 10 % of cases [ 10 ,  54 ]. When symptoms occur, they develop after an incu-
bation period that typically lasts 2–6 days but may extend to 14 days, or even longer 
in immunosuppressed persons. 
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5.1     West Nile Fever 

 Roughly 20 % of those exposed to the virus develop West Nile Fever (WNF), symp-
toms of which include sudden onset of an acute, nonspecifi c, infl uenza-like illness 
lasting 3–6 days, with high fever, chills, malaise, headache, backache, arthralgia, 
myalgia, and retro-orbital pain, without overt neurologic signs [ 55 ]. In addition, 
generalized lymphadenopathy and a maculopapular or pale measles-like rash were 
reported. Incidence of rash is about 50–15 % of the cases, reported more frequently 
in children than adults and in WNF than with neuroinvasive disease which may point 
to a more robust host immune response to the virus. The rash usually presents 
approximately 5 days after the onset of symptoms, and lasts for about 1 week. 
Hepatomegaly, splenomegaly, myocarditis, pancreatitis, and hepatitis have also been 
described occasionally in severe WN virus infection [ 56 ].  

5.2     West Nile Neuroinvasive Disease 

 Less than 1 % of those infected develop West Nile Neuroinvasive Disease (WNND), 
which may include encephalitis, meningitis, or meningo-encephalitis and fl accid 
paralysis (poliomyelitis-like syndrome) [ 10 ,  54 ]. WNND more frequently affects 
the elderly and immunocompromised population [ 57 ]. Patients typically have a 
febrile prodrome of 1–7 days, which may be biphasic, before developing neurological 
symptoms. Although in most cases, the prodrome is nonspecifi c, 15–20 % of 
patients have features suggestive of WN fever, including eye pain, and or a rash and 
about 5 % have lymphadenopathy [ 58 ,  59 ]. 

5.2.1     Meningitis and Encephalitis 

 Of those exhibiting WNND, roughly 40 % develop meningitis and 60 % encephalitis. 
Clinical features of meningitis include fever, nuchal rigidity, photophobia, headache, 
retro-orbital pain, and cerebrospinal fl uid pleocytosis [ 55 ,  58 ,  59 ]. On the other 
hand, signs and symptoms such as altered mental status, focal weakness/numbness, 
seizures, or visual disturbances and diagnostic evidence of brain parenchymal 
involvement point towards the diagnosis of encephalitis [ 56 ].  

5.2.2     Acute Flaccid Paralysis 

 Acute fl accid paralysis (poliomyelitis-like) caused by virus infection of the anterior 
horn of the spinal cord (myelitis) has been recognized and once paralysis is estab-
lished, little long-term improvement has been described. Paralysis is frequently 
asymmetrical and may be associated with meningoencephalitis. Other neurological 
features include cranial neuropathies, optic neuritis, and ataxia. Stiffness, rigidity, 
spasms, bradykinesia, and tremors, associated with basal ganglia damage, have also 
recently been recognized in WNND [ 56 – 58 ] (Table  17.3 ).
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6          Diagnosis 

 Diagnosis of West Nile virus infection (WNF and WNND) is based on clinical presen-
tation, and confi rmed with serologic or nucleic acid amplifi cation testing [ 33 ,  60 ]. 

6.1     Clinical Criteria 

 Clinical Criteria for Diagnosis of Neuroinvasive disease requires the presence of 
fever and at least one of the following in the absence of a more likely clinical expla-
nation: (1) acutely altered mental status (e.g., disorientation, obtundation, stupor, or 
coma), (2) other acute signs of central or peripheral neurologic dysfunction (e.g., 
paresis or paralysis, nerve palsies, sensory defi cits, abnormal refl exes, generalized 
convulsions, or abnormal movements), or (3) pleocytosis (increased white blood 
cell concentration in cerebrospinal fl uid) associated with illness clinically compat-
ible with meningitis (e.g., headache or stiff neck) [ 33 ]. 

 Non-neuroinvasive disease requires, at a minimum, the presence of fever, the 
absence of neuroinvasive disease, and the absence of a more likely clinical explana-
tion for the illness. Involvement of non-neurologic organs (e.g., heart, pancreas, or 
liver) should be documented using standard clinical and laboratory criteria [ 33 ].  

6.2     Laboratory Criteria 

 Laboratory Criteria for Diagnosis of neuroinvasive disease include at least one of 
the following: (1) Isolation of virus from or detection of specifi c viral antigen or 
genomic sequences in tissue, blood, cerebrospinal fl uid, or other body fl uid by 
PCR or (2) Detection of virus-specifi c immunoglobulin M (IgM) antibodies 

   Table 17.3    Clinical Manifestations of WNV infection   

  West Nile Fever : 
 Fever, chills, Flu-like illness; myalgia, arthralgia, retro orbital pain. Rash, lymphadenopathy, 
hepatomegaly, splenomegaly, myocarditis, pancreatitis, hepatitis. 
  West Nile Neuroinvasive disease  ( 1 % of infections ) :  
 Flaccid (polio-like) paralysis 
 Meningitis syndrome 
 Encephalitis syndrome 
 Seizures 
 Extrapyramidal signs (tremors, ataxia, Parkinson’s’ like features) 
 Optic neuritis 

  Summarized from CDC; West Nile clinical evaluation 

   http://www.cdc.gov/westnile/healthCareProviders/healthCareProviders-ClinLabEval.html      
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demonstrated in cerebrospinal fl uid by antibody-capture enzyme immunoassay 
(EIA); or (3) A fourfold or greater change in virus-specifi c serum antibody titer; or 
(4) Virus- specifi c IgM antibodies demonstrated in serum by antibody-capture EIA 
and confi rmed by demonstration of virus-specifi c serum immunoglobulin G (IgG) 
antibodies in the same specimen or a later specimen by another serologic assay 
(e.g., neutralization or hemagglutination inhibition) [ 33 ]. 

 Probable cases of infection have (1) a stable (twofold or smaller change) but ele-
vated titer of virus-specifi c serum antibodies or (2) virus-specifi c serum IgM antibod-
ies detected by antibody-capture EIA but with no available results of a confi rmatory 
test for virus-specifi c serum IgG antibodies in the same or a later specimen [ 33 ]. 

 On average IgM and IgG develop rapidly after WNV viremia (about 4–7 days 
respectively) and viral RNA persist for about 2 weeks before becoming undetectable 
[ 61 ]. IgM may persist for 3–6 months and IgG will persist for many years, likely 
conferring immunity against new WNV infections [ 62 ]. 

 Some trends in basic laboratory tests, although non-specifi c, may point towards 
West Nile Virus infection. For example, elevated white blood cell count (greater 
than 10,800/mm 3 , but rarely greater than 20,000/mm 3 ), mild decrease in hemoglo-
bin (less than 13.5 g/dL in males and less than 12.0 g/dL in females), hyponatremia 
(less than 135 mm/L), elevated creatinine kinase, abnormal liver function tests 
(aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, biliru-
bin), or transiently elevated lipase (usually asymptomatic) [ 57 ]. 

 Cerebrospinal fl uid shows a moderate lymphocytic pleocytosis (greater than 
5 cells/mm 3  or a mean cell count of approximately 225/mm 3 ), with up to half the 
patients have a neutrophil predominance and sometimes there are no cells [ 55 ,  57 ]. 
The protein is moderately elevated (greater than 40 mg/dL), and the glucose ratio is 
typically normal. 

 Radiologically, in most cases of WNND Magnetic resonance imaging shows 
high signal intensities in the deep gray matter of the nervous system. Such abnormal 
signals can be found in thalamus, basal ganglia, mesial temporal structures, brain 
stem, cerebellum and the spinal cord [ 63 ]. Patients with WNND may sometimes 
have normal neuroimaging studies [ 57 ,  63 ]. 

 As mentioned above, studies that defi nitively diagnose or confi rm WNV infec-
tion includes viral isolation, amplifi cation of viral nucleic acid and antigens with 
polymerase chain reaction, or enzyme-linked immunosorbent assay to detect 
WNV IgM or IgG antibodies [ 10 ,  33 ,  54 ]. It is to be noted however that some 
WNV- infected patients have persistent WNV IgM serum and/or cerebrospinal 
fl uid after recovery without ongoing disease and hence interpretation of serologi-
cal tests needs to be done carefully in conjunction with the clinical syndrome and 
careful consideration of other deferential diagnosis especially in cases of atypical 
presentation [ 64 ]. 

 Other diagnostic studies include electroencephalography for patients with seizures 
and electromyogram studies for nerve conduction abnormalities [ 57 ]. These studies, 
although sensitive, are less specifi c than the traditional serologic studies mentioned 
above. Electroencephalograms show diffuse slowing and, in some cases, focal sei-
zure activity. Nerve conduction studies typically show the reduced motor axonal 
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amplitudes consistent with anterior horn cell damage, although there may also be 
some slowing of conduction velocities and some changes to sensory nerves [ 57 ,  65 ]. 
Nerve conduction studies are helpful to differentiate WNND from Guillain- Barre 
syndrome (Table  17.4 ).

7         Treatment 

 There is no current approved specifi c treatment for West Nile Virus infection. The cur-
rent recommendation is supportive treatment. Yet three major therapeutic approaches 
are leading the research in fi nding a defi nitive treatment for this disease. These are 
Interferons, Ribavirin and intravenous Immunoglobulin. 

7.1     Interferons 

 Interferon Alpha has been shown in vitro to be effi cient in inhibiting WNV replication. 
It protects, restricts and enhances cellular and neuronal response to WNV infection 
[ 37 ]. Although some studies have shown that virulent WNV of lineage one, exhibits 
inherent resistance to interferon Alpha and Beta [ 41 ], Kalil, et al reported two cases 
of successful neurologic improvement after treatment with interferon Alpha 2b 
when given within 72 h of presentation [ 66 ]. On the other hand, there have been 
case reports showing ineffectiveness and poor outcomes with patients treated with 
interferon during an outbreak in Israel [ 67 ]. The therapeutic role of interferons is yet 
to be established.  

   Table 17.4       West Nile Neuroinvasive disease diagnosis   

 Clinical criteria  Laboratory criteria  Other tests 

  Fever  and  –  Isolation of virus  
(specifi c viral antigen or 
genomic sequences in 
tissue by PCR, blood, 
cerebrospinal fl uid); or 

 – Brain MRI: abnormal 
signals in the basal 
ganglia, thalamus, 
cerebellum, and 
brainstem. 

 – Acute confusion, or Acute signs 
of central or peripheral neurologic 
dysfunction (e.g., paresis or 
paralysis, nerve palsies, 
convulsions, or abnormal 
movements). 

 – Virus-specifi c 
immunoglobulin M 
(IgM) antibodies 
demonstrated in CSF or 
blood, or 

 – Nerve conduction 
studies show reduced 
motor axonal 
amplitudes. 

 – CSF pleocytosis consistent with 
viral meningitis syndrome 

 – A fourfold or greater 
change in virus-specifi c 
serum immunoglobulin 
G antibody titer. 

  Summarized from: CDC. Surveillance for human West Nile virus disease—United States, 1999–
2008. Surveillance summaries. MMWR April 2, 2010;59(SS02);1–17  
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7.2     Ribavirin 

 Some in vitro studies indicated that high doses of Ribavirin in animal model can be 
protective against the effects on WNV on the animal cell [ 68 ]. Ribavirin is an anti-
viral agent that Inhibits replication of RNA and DNA in wide range of viruses (non-
specifi c) and can be associated with serious side effects in high doses. Ribavirin in 
some animal studies was shown to be associated with increased mortality in the 
context of WNV infection and hence there is not yet a consensus of the effi cacy and 
safety of this drug in WNV infection in humans [ 69 ].  

7.3     Intravenous Immunoglobulins 

 The use of intravenous immunoglobulins for WNV infections is also under research 
with the rational that high titers of WNV antibodies can mount a protective effect 
against the WNV [ 70 ,  71 ]. Several clinical trials are underway for the treatment of 
WNV. Nevertheless, to date studies showing effi cacy and responses to these differ-
ent therapies in humans remain inconclusive and treatment remains mostly 
supportive.   

8     Prognosis 

 The prognosis of WNV infection appears to be variable but favorable in general, 
depending mostly on the presentation ranging from West Nile fever to neuroinvasive 
disease. The most common symptoms post-infection were fever and fatigue lasting 
for several days. Aching, general malaise, and weakness lasting weeks to months 
were reported in some series [ 58 ,  64 ,  72 ]. The prognosis of patients with WNV men-
ingitis and encephalitis, is also generally favorable but persistent headaches, fatigue, 
focal neurological defi cits may persist for months to years [ 73 ]. Important predictive 
risk factors such as age, use of immunosuppressants, and persistent comorbidities 
play an important role in the overall outcome [ 29 ,  74 ,  76 ,  77 ]. 

 Longitudinal cohort studies of long term outcome and prognosis of WNV 
infected individuals showed that on average physical and mental function as well as 
mood and fatigue, appear to return to normal within 1 year of symptom onset. 
Patients with WNND took slightly longer to recover, and the recovery rate of men-
ingitis and encephalitis cases were about the same. Patients without preexisting 
comorbidities had faster recovery of physical function [ 76 ]. A slower recovery rate 
is associated with WNV paralysis (poliomyelitis-like syndrome) where recovery 
was found to be much slower and sometimes rare [ 78 ,  79 ].The overall case-fatality 
rate with WNND is about 9–10 %; highest in older individuals and those with 
comorbidities [ 76 ].  
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9     Vaccination and Prevention 

 WNV has caused, and certainty has the potential to cause, large epidemics of arboviral 
illness in the Western Hemisphere. Consequently, the need for effi cient modes of 
prevention and the development of a human vaccine are mandatory. At this time the 
most effective prevention methods remain as mosquito avoidance, vector control 
and personal protection measures [ 79 ] 

 Mosquito repellants, elimination of breeding sites and barrier methods such as 
window screens are emphasized during epidemic seasons. 

 Previous efforts for the early detection and monitoring of WNV activity have 
used dead bird density or spatial scan statistic as a proxy for transmission risk for 
humans [ 80 ]. Another, perhaps more accurate, approach is the DYCAST system 
(The Dynamic Continuous-Area Space-Time system). This is a biologically based 
spatiotemporal model that uses statistical and geographical analysis of public 
reports of dead birds to identify areas at high risk for West Nile virus transmission 
to humans, implemented in New York City in 2001 and Chicago, IL in 2002 [ 81 ]. 
Results from prospective implementation of the DYCAST system in California 
showed that this model provided accurate and early identifi cation of areas at high 
risk for human WNV transmission during an epidemic in 2005, and was used to 
assist public education campaigns, surveillance, and mosquito control programs 
[ 73 ,  82 ]. Early warning of high-risk areas for West Nile Virus activity allows pre-
ventative measures to be implemented in a timely and effective manner. 

 Public health education programs should target older adults, people who are immu-
nosuppressed and those with co morbidities, because they are at increased risk for 
neuroinvasive disease and death. In the absence of an effective human vaccine, the 
cornerstones of WNV disease prevention will continue to be (1) community- level 
mosquito control (larviciding, adulticiding, and breeding-site reduction), (2) perido-
mestic measures (repairing and installing door and window screens, using air condi-
tioning, and reducing breeding sites), and (3) personal protection measures (use of 
repellents, use of protective clothing, and avoidance of outdoor exposure when mos-
quitoes are most active). WNV surveillance continues to be important for monitoring 
seasonal WNV activity and targeting prevention and control activities [ 33 ]. 

 The improved screening of banked blood with the use of Minipool nucleic-acid 
amplifi cation testing (MP-NAT) and Individual Donation NAT (ID-NAT) signifi -
cantly reduced WNV transmission via blood transfusion [ 83 ]. 

 A major emphasis remains to produce a human vaccine. Although no human 
vaccine is available yet, the future remains optimistic, given the substantial impact 
made in veterinary public health with the currently licensed four equine WNV vac-
cines in the USA. These include a formalin-inactivated virus, a recombinant 
Canarypox virus expressing prM/E proteins of WNV [ 84 ]. A chimeric virus vaccine 
from an infectious clone of yellow fever 17D virus [ 85 ], and a DNA vaccine, the 
fi rst DNA vaccine to be licensed in any country [ 86 ]. Promising data regarding a 
human vaccine is being analyzed since reports of results of a phase one human clini-
cal trial in subjects receiving WNV DNA vaccine documented the development of 
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neutralizing antibodies to the WNV [ 87 ]. If a human vaccine becomes available and 
in conjunction with proper preventions methods, the risk of WNV infection and its 
complications can be substantially be reduced.  

10     West Nile Virus and Bioterrorism 

 There has been growing concern about the use of microbes as weapons for a number 
of reasons [ 88 ,  89 ]. First, microbes have the potential of killing or harming a large 
number of people in a short period of time. Second, their deliberate spread can be 
hidden or go unnoticed until large numbers of people get sick and present to hospi-
tals, emergent care facilities, and doctors’ offi ces. Third, even the slightest suspicion 
of a bioterrorism attack, can cause signifi cant panic and havoc among people and 
have signifi cant fi nancial consequences. Fourth, bioweapons are relatively inexpen-
sive to create and sometimes referred to as the “poor man’s atomic bomb.” Finally 
yet importantly, as the power of biological sciences grow it seems inevitable that 
more potent and diverse bioweapons will be created. West Nile Virus can be tar-
geted for such use; it is moderately easy to disseminate by infected mosquitoes and 
birds, has moderately high virulence with signifi cant morbidity and mortality with 
CNS disease and has the potential of even higher virulence with genetic manipula-
tion. As matter of fact, when the virus fi rst appeared in the USA the US government 
and the CDC have considered the act of bioterrorism, but further investigations 
showed that the virus activity was consistent with its natural behavior. It is believed 
that the introduction of the virus was work of nature by bird migration or accidental 
by imported infected birds. It is important however to understand the potential of 
using WNV as a bioterrorism agent and physicians in the USA should be familiar 
with the various clinical presentation and means of diagnosing illnesses caused by 
West Nile Virus [ 90 ].  

11     Global Warming and West Nile virus 

 There are several indications that the rising temperatures of the planet had aided the 
spread of vector borne infections, including WNV [ 22 ]. Similar to other arboviral 
diseases, the spread of the virus is infl uenced by vector spread. Climate, such as 
temperature and rain fall have signifi cant impact on vectors’ geographic habitats, 
life cycles, feeding behavior, and evolution. As mentioned above, nucleotide 
sequencing studies have showed that WNV introduced to New York in 1999 (NY99) 
was closely related to a strain of WNV from Israel (Isr98) at the time. The weather 
in New York during the spring and summer of 1999 had been particularly warm and 
humid which favored intensive mosquito breeding and effi cient arbovirus transmis-
sion, resulting in the epidemic [ 22 ,  91 ,  92 ]. WNV then evolved and adapted to its 
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new environment and is now expected to continue to be an endemic virus with fre-
quent outbreaks in the USA [ 92 ]. Climate change is a current global concern and its 
consequences on health and human diseases should be regarded with greater impor-
tance and urgency.  

12     Conclusion 

 West Nile virus is one of the most widely distributed of all arboviruses in the world 
and has been reported in all continents except Antarctica. West Nile Virus belongs 
to the family Flaviviridae together with Japanese encephalitis viruses (JE), Saint 
Louis Encephalitis viruses (SLE), Dengue and Yellow fever viruses. The virus is 
maintained in nature in an enzootic cycle of mosquito–bird–mosquito with humans 
and other vertebrates as incidental dead end hosts. The journey of West Nile virus 
from Africa where it was fi rst discovered, in Uganda west of the Nile, in 1937 till it 
reached the Western hemisphere in 1999, has been intriguing, interesting and exem-
plifi es the evolution and migration of viruses. To date, globally, there are over 
350,000 estimated human cases and in the USA, approximately 37,000 cases 
reported with 1,500 deaths. The incidence has since declined due to improved vec-
tor control efforts, but is still detectable, making WNV an endemic pathogen to the 
USA, with the potential of forming seasonal epidemics (July to September). 
Currently, WNV is the most common cause of arboviral CNS infection in the 
USA. Up to 80 % of human infections however are asymptomatic. Both of the 
humoral and cell-mediated immune systems are important in controlling the virus, 
and are usually effi cient and terminate the virus in the peripheral organs in the 
majority of immune-competent individuals. The virus however is neurotropic and in 
certain high-risk individuals (elderly or immunocompromised) can cause devastat-
ing neurological disease with mortality approximately around 10 %. Other milder 
presentations include West Nile fever, which presents as a self-limited Flu-like ill-
ness. Diagnosis is confi rmed serologically or by PCR technology and treatment is 
supportive at this time. Prevention is by vector control and personal protective mea-
sures against mosquitos bite. Vaccines for veterinarian use are available and has 
signifi cantly reduced incidence in horses. Vaccines trials for human are under way 
and are promising. Although it is less likely that the introduction of the virus to the 
western hemisphere is a deliberate act of bioterrorism and more likely to be acci-
dental or work of Nature, the potential for the West Nile Virus to be weaponized is 
there and should not be ignored by the health care establishment. The changing 
climate effect on the spread of arboviral viruses, exemplifi ed by WNV, is evident, 
cannot be ignored and should be regarded with greater urgency.     
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 Zika Virus 
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    Todd     Wills     , and     John     T.     Sinnott    

          Core Message   Although Zika virus is generally considered a relatively benign 
fl avivirus, it is hypothesized that the study of this virus is useful as an indicator of 
other more virulent viruses. The increased spread and prevalence of Zika virus thus 
may be indicative of similar changes in more virulent viruses. It is also hypothesized 
that Zika may mutate into a more virulent form than what has hitherto occurred.  

1     Introduction 

 Among many public health alerts, the global spread of arboviruses is of concern and 
alarm. The hypothesis in this chapter is that the inclusion of Zika virus in arbovirus 
monitoring is a well-justifi ed expense because its spread may be diagnostic for the 
spread of fl aviviruses, its spread is largely unexplained, and the virus has the poten-
tial to mutate into strains that are more virulent. Moreover, such evolutionary stud-
ies are of importance in and of themselves for the same reasons.  
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2     Epidemiology: Temporal and Geographical Associations 

 Zika virus is a fl avivirus and is related to other arboviruses such as yellow fever virus, 
Japanese encephalitis virus, dengue virus, and West Nile virus [ 1 ]. The Eighth 
Report of the International Committee on Taxonomy of Viruses describes several 
neglected species of mosquito-borne fl avivirus, some of which are without apparent 
pathogenicity in animals, but which are pathogenic in humans. This group includes 
Zika virus, lineage-2 West Nile virus, and Usutu virus [ 2 ]. 

 In 1947, Zika virus was originally isolated from a febrile sentinel rhesus monkey 
and from a pool of  Aedes africanus  mosquitoes in the Zika forest in Uganda during 
a yellow fever study [ 3 ]. Zika virus was fi rst detected in humans 5 years later in 
1952 using neutralizing antibody testing in sera from East Africa [ 3 – 5 ]. Zika virus 
was fi rst isolated from a human in Uganda [ 6 ]. 

 In specimens from humans in Nigeria, from 1964 to 1970, there were 15 types of 
arboviruses among 171 isolations. The majority of isolations were from children 
below 4; however, isolations were made from all age groups. Zika virus was isolated 
at low frequency in comparison to yellow fever, Chikungunya, dengue types 1 and 
3, and Tataguine (endemic in Ibadan). Additional viruses isolated were Bwamba, 
and Bunyamwera group viruses that were isolated from humans for the fi rst time. 
Isolation rates varied from peaks in 1969 to lows in 1965 and 1967. Zika virus isola-
tion rates also varied by season: peaks in rainy seasons (June to August) and lows in 
dry seasons (January to February). Zika virus was also detected in a study in Ibadan, 
Nigeria, in 1975 [ 5 ]. 

 In 1954, Zika virus was detected during viral serological survey studies. In 38 
localities in 6 states in India 15 arboviruses were studied including yellow fever, 
Bwamba fever, Bunyamwera Ilhéus Semliki Forest virus, St. Louis encephalitis 
virus, West Nile virus, dengue types 1 and 2, West Nile virus, Uganda S, Nitaya, 
Japanese B, Murray Valley virus, and Russian spring-summer encephalitis virus [ 7 ]. 

 Between 1977 and 1978, in Malaysia and Indonesia, there were clusters of Zika 
virus infection towards the end of the rainy season when  Aedes aegypti  fl ourish. 
Thirty patients had serological tests for alpha and fl avivirus infections including 
Zika—MR766, Japanese encephalitis—Nakayama, dengue type 2—New Guinea 
C, Tembusu—MM1775, and Murray Valley encephalitis—original [ 8 ]. 

 Three strains of Zika virus were isolated as part of yellow fever studies in the Ivory 
Coast in 1999. Amaril, yellow fever, and dengue viruses were prevalent among vector 
and human populations in this study [ 9 ]. The fi rst known isolation of yellow fever 
from  Aedes africanus  mosquitoes was in Africa, in Touba, the Ivory Coast. 

 In Sabah, Malaysia, Zika virus infection was shown in some of 60 semi-captive 
and 84 free-ranging orangutans ( Pongo pygmaeus pygmaeus ). Both groups showed 
evidence of exposure to 10 of 46 additional viruses including Japanese encephalitis 
virus [ 10 ]. 

 This confi rmed earlier studies in North Bornean forests where arbovirus transmis-
sion in wild orangutans was studied and included three virus families (Flaviviridae, 
Alphaviridae, and Bunyaviridae). Viruses detected included Zika, Japanese encephalitis, 
dengue 2, Langat, Sindbis, Tembusu, Batai, and Chikungunya viruses [ 11 ]. 
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 How far had the virus spread? Surprisingly, Zika virus spread further, beyond the 
confi nes of Africa and Asia as it was detected on Yap Island in Micronesia in 2007 in 
the southwestern Pacifi c Ocean [ 1 ]. In June 2007, Zika virus appeared in Southeast 
Asia and Federated States of Micronesia, in Yap state, more than 60 years since its 
detection in 1947 in Uganda [ 12 ]. The illness was characterized by conjunctivitis, 
arthralgia, and rash affecting 100 individuals whereas prior studies had detected 
only 14 infected individuals. No deaths, hospitalizations, or hemorrhagic manifesta-
tions were found. It was estimated that 74 % (95 % CI, 68–77 %) of residents of 
Yap, 3 years and older, were recently virus infected. The predominant mosquito 
species vector was  Aedes hensilli . Public health offi cials and clinicians were alerted 
as Zika virus had expanded outside Africa and Asia. In this outbreak, no dengue 
virus or other arboviral RNAs were detected [ 13 ]. 

 Zika virus is one of the arboviruses that have spread in Southeast Asia including 
dengue, Japanese encephalitis, and Kunjin as well as alpha viruses such as 
Chikungunya, Sindbis, and Getah. The increase and spread of these viruses has been 
overall exponential since 2009 and generally is linked to several complex factors 
(as discussed below) [ 12 ]. 

 Zika virus infections were also detected among people in Nigeria, Uganda, Egypt, 
India, Pakistan, North Vietnam, Thailand, Malaysia, Indonesia, and the Philippines. 
Sentinel animal and mosquito studies also supported the endemic presence of Zika 
virus in Africa and Southeast Asia. In addition, Zika virus was detected north and 
west of the Wallace line (a biogeographical line situated between Borneo and Java 
demarcating a syzygy of species between Australia and South East Asia) [ 14 ]. 

 Occupational infection of Zika virus was reported in a scientist who contracted 
the virus in the laboratory after having had yellow fever virus vaccination. This indi-
vidual demonstrated an anamnestic response related to yellow fever virus that com-
plicated virus identifi cation. The problem was resolved after isolation of Zika virus 
during the acute phase of disease [ 15 ]. An Australian traveler upon returning from 
Indonesia had been infected with Zika virus [ 16 ]. Another publication reported that 
two American scientists contracted Zika virus when working in Senegal in 2008. 
One of them upon returning to the USA transmitted the arbovirus to his wife. Clinical 
and serologic evidence helped identify Zika virus. The route of transmission from the 
scientist to his wife was concluded to be sexual [ 17 ]. 

 Table  18.1  provides a brief outline of the chronology and geography of Zika 
virus studies.

3        Vectors and Reservoirs 

3.1     Mosquitoes 

  Aedes  mosquitos play a signifi cant role in Zika virus transmission. In 1972 in Sierra 
Leone during an entomological and serologic survey, sera from children up to 
14 years were analyzed for 12 antigens from viruses including Zika, Chikungunya, 
West Nile, and yellow fever using HI and CF testing. The prevalence was much 
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greater than the incidence for arboviruses but varied among different geographical 
sites. In most areas, Zika virus abounded and was active whereas, for example, 
Chikungunya virus was active in Northeast savannas and plateaus. The entomological 
survey indicated that pools of water and  Ae. aegypti  larvae were present in greater 
abundance in urban dwellings near mines than in rural areas. It was concluded that 
conditions were ripe for epidemic outbreaks within a few years [ 25 ]. 

 There are potential additional mechanisms of spread of Zika virus because of its 
relatedness to other viruses. In Central and West Africa, arbovirus survival was stud-
ied during interepidemic periods. Several yellow fever strains were isolated from 
 Aedes africanus ,  Aedes furcifer - fylori ,  Aedes opol , and  Aedes luteocephalus . 
Savannas (including savannas without forest and differentiated savannas with for-
ests) that have abundant  Isoberlinia doka  (a hardwood tree) were associated with 
sylvatic yellow fever circulation. The primary endemic areas of yellow fever include 
equatorial moist forests, termed the emergence zone. The sylvatic yellow fever cir-
culation in this forest zone was concluded a major threat and source of yellow fever 
for humans via penetrating epizootics into the savannas. A case in point supporting 
this model was the 1978 Gambia outbreaks. Several additional observations further 
support this approach and model for the spread of such arboviruses. Transovarial 
transmission (TOT) was demonstrated for mosquitos including  Aedes aegypti  and 
 Aedes furcifer - fylori , and explained an emergent zone for survival of virus in the dry 
season. The size of monkey populations appears to further infl uence the degree of 
virus propagation. In addition, tick eggs and adults were sources of yellow fever 
virus. This reservoir acts as a tributary adding to the vertebrate-mosquito cycle 
promoting arbovirus survival [ 26 ]. 

 TOT of arboviruses is a serious concern and was demonstrated for Culex fl avivirus 
(CxFV). CxFV was detected using reverse transcription-polymerase chain reaction 

    Table 18.1    Chronology and geography of Zika virus studies   

 Study year  Study locations  References 

 1947  Zika forest, Uganda, Nigeria, and East Africa  [ 1 ,  3 – 5 ] 
 1954  India  [ 4 ] 
 1970  Nigeria  [ 5 ] 
 1978  Malaysia, Indonesia  [ 8 ] 
 1999  Ivory Coast  [ 9 ] 
 2001  Sabah, Malaysia  [ 10 ,  11 ] 
 2007  New World, Easter Islands, Nepal, Argentina, Hawaii, Scandinavia, 

Saudi Arabia 
 [ 18 ] 

 2007  Micronesia  [ 13 ] 
 2008  Southeast Asia, Australia  [ 19 ] 
 2009  Southeast Asia  [ 12 ] 
 2008–2011  Senegal, Nigeria, Uganda, Egypt, India, Pakistan, North Vietnam, 

Malaysia, Indonesia, the Philippines, Borneo/Java, Micronesia, USA 
 [ 1 ,  14 ,  17 ] 

 2012–2013  Indonesia, Singapore, Australia, Tahiti, Germany  [ 16 ,  20 – 24 ] 
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(RT-PCR) in  Culex pipiens  (L) mosquitos captured in the fi eld. Their progeny 
were viral infected as well and viral RNA was detected in several progeny tissues 
(salivary glands, ovaries, testes, head, fat bodies, and midgut) [ 27 ]. Previously, TOT 
had been proposed as a mechanism contributing to the spread of Zika and yellow 
fever viruses in Uganda [ 28 ]. Thus, TOT should be studied in greater detail and 
therapies developed to combat the fail-safe mechanism that allows seasonal survival 
of arboviruses. 

 There was also an interesting dynamic of Zika virus spread by  Aedes  ( stegomyia ) 
 africanus  ( theobald ) arboreal mosquitoes in the Zika forest in Uganda. Between 
November 1961 and June 1963, on a 120-ft (36.5-m) tower, twelve Zika virus 
strains and one strain of a different Group B arbovirus were isolated. Pools of mos-
quitoes were used for the virus isolations. Serum antibodies from Zika virus forest 
small animals did not show any reactivity with Zika virus. It was stated that some 
other virus reservoir was responsible for the infected mosquitos and that convection 
currents above the forest canopy could spread virus-infected mosquitoes during the 
fi rst few hours after sunset [ 29 ]. 

 Yellow fever virus-resistant and susceptible phenotype inbred (isofemale) 
 Aedes aegypti  mosquito lines were produced. Resistance was due to a block in the 
virus life cycle that prevented virus passage beyond the mosquito midgut during its 
life cycle. In addition to yellow fever virus, other fl aviviruses that were restricted 
included Zika, dengue 1–4, and Uganda S viruses. Further mosquito genetics 
studies indicated that the midgut resistance phenomenon is due to a group of genes 
that includes a major gene and several minor genes or several genes in a group that 
are linked [ 30 ]. 

 A recent Chikungunya virus pandemic in the Singapore area prompted further 
study of mosquito vectors. More than 20 arboviruses are transmitted by sylvatic 
 Aedes albopictus  mosquitoes in and around Singapore. Further studies 
 demonstrated that  Aedes albopictus  mosquitoes were capable of transmitting Zika 
virus. In Singapore and environs, the same  Aedes  mosquito vector is shared among 
dengue and Chikungunya viruses as well as Zika virus. Existing programs in 
Singapore to control dengue and Chikungunya viruses may help control Zika virus 
as well [ 20 ,  21 ,  31 ]. 

 Several methods in use to control mosquito vectors that transmit arboviruses 
include insecticides, genetically modifi ed sterile insects, and draining swamps [ 32 ]. 
A recent novel approach was described by Darbro et al. [ 33 ], which utilizes the 
fungus,  Beauveria bassiana . In laboratory conditions, this fungus reduces  Aedes 
aegypti  longevity and fecundity, whereas egg batch size and viability were unaf-
fected. In semi-fi eld conditions in northern Queensland, Australia, mosquito sur-
vival was reduced in cages of various sizes and there was some reduction in blood 
feeding [ 33 ]. This approach requires some caveats as fungi can mutate, immune- 
compromised humans may be susceptible to fungal infections, and fungal infected 
mosquitos may develop resistance with unpredicted consequences. Identifying 
the effective molecules that affect the mosquito life cycle may be most specifi c and 
effective in applying this method of control towards arbovirus control.  
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3.2     Monkeys 

 In 1947 Zika virus was originally isolated from a febrile sentinel monkey in Uganda 
during a yellow fever study [ 3 ]. In Uganda, monkeys serve as two types of sylvan 
hosts for yellow fever (YF). (1) As an enzootic state in the Zika forest in Western 
Uganda (Bwamba County) and (2) as epizootics in central Uganda zone of forest 
savannas. However, an epizootic for Zika virus occurred in two episodes in the Zika 
forest near Entebbe: (1) in 1969, post-epizootic of 1962–1963, with consequent 
accumulation of nonimmune monkeys and (2) in 1970, when biting densities 
increased for  Aedes africanus . Eighteen months after that, an intensive epizootic for 
YF developed. This contradicted the hypothesis that subsequent YF epizootics 
would be subdued by Zika virus infections in nature for red-tail monkeys. Two fac-
tors important for further study of fl avivirus mosquito are transovarial and phleboto-
mine sand-fl y transmission [ 28 ]. 

 During the Zika forest yellow fever epizootic in 1972, several other arbovirus 
antibodies were discovered as well in monkeys near Entebbe, Uganda. The viruses 
in addition to yellow fever included Zika, West Nile (WN) O’nyong-nyong (ONN), 
Chikungunya (CHIK), and Wesselsbron (WESS). That these viruses are immuno-
logically cross-reactive was known at the time of the study. In addition, it was found 
that although YF virus is deadly for humans it is mild in monkeys in their sylvan 
natural habitat [ 34 ,  35 ].  

3.3     Additional Species 

 Many species have been under the radar with unsuspected potential fl avivirus infec-
tions. However, several different species are implicated in their susceptibility to 
viruses related to Zika virus and function as potential reservoirs: West Nile virus—
cat, dog, horse, alligator, deer, primate, rodent, rabbit, reptile, opossum, bird, and 
raccoon; Japanese encephalitis virus—bird, pig, cow, horse, monkey, and rodent; St. 
Louis encephalitis virus—bird, armadillo, rodent, opossum, raccoon, and squirrel; 
yellow fever virus—monkey, opossum, rodent, kinkajou (an arboreal raccoon-like 
mammal with a prehensile tail but NOT a primate), bat, hedgehog, wild dog, mon-
goose, wild bird, anteater, and squirrel; dengue virus—bat, chipmunk, rabbit, guinea 
pig, mouse, Yucatan miniature pig, and horse [ 36 ]. 

 Recent work indicates that snakes are a reservoir for EEEV in North America. 
This adds to the list of animal reservoirs for EEEV and possibly related viruses and 
may have an impact on our understanding of additional reservoirs for fl aviviruses 
and Toga viruses [ 37 ]. 

 Thus, the jury is still out related to Zika virus reservoirs as well.  
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3.4     Cell Culture Susceptibility Profi le 

 A study of several strains of dengue virus infectivity of cell cultures derived from 
various species demonstrated a wide ability of these strains to infect various cell 
types, although no correlation from in vitro and in vivo situations could be made. 
However, it was proposed that dengue virus strains might be more prevalent in bats 
than had been hitherto considered. The virus strains were DENV-1 Hawaii, DENV-2 
New Guinea C, DENV-3H87, DENV-4H241, DENV-1 BC-89/94, DENV-2 
BC-100/98, DENV-3 BC-14-97, DENV-1 WestPac-74, DENV-2s16803, DENV-3 
CH5548904500, and DENV-4 341750. The species were free-tailed bat, chicken, 
cottontail rabbit, human, domestic cat, horse, grey fox, raccoon, North American 
mule deer, Virginia opossum, sheep, nine-banded armadillo, domestic pig, rhesus 
monkey, cow, domestic dog, and eastern woodchuck [ 38 ].   

4     Conditions for Spread 

4.1     Ecology and Geography 

 During the last 20 years, human actions have been pinpointed as profound infl u-
ential variables in virology and vector-driven diseases of viral origin. This has 
become most evident in Oceania and in Southeast Asia. Viruses, their vectors, 
their geographical distributions, increased demographic and ecologic dysgene-
sis, and increased travel and trade are contributory factors. Barboza et al. [ 19 ] 
also review emergent viruses in the Pacifi c and Southeast Asia including Zika 
virus, dengue, Chikungunya, and Japanese encephalitis viruses. Likewise, the 
steady annual increase in Ross River and Barmah viruses in Australia, the Nipah 
virus deadly epidemics in Southeast Asia, and lyssavirus including Kunjin and 
Murray Valley viruses are examples of consequences of ecologic and geographic 
alterations [ 19 ]. 

 Many fl aviviruses cause diseases in humans, livestock, and wildlife. Vector- borne 
fl aviviruses have spread globally at increased rate during the last two decades. This 
occurred outside the bounds of the traditional geographical ranges of these viruses. 
For example, there are increased cases of introduction of West Nile virus into the 
New World and Easter Islands in the Pacifi c; outbreaks of dengue in Nepal, Argentina, 
and Hawaii; Usutu virus into Europe; tick-borne encephalitis in Scandinavia; and 
tick-borne Alkhurma Kyasanur Forest disease virus in Saudi Arabia [ 18 ]. One may 
well ask whether these events are due to global warming. See below for a discussion 
in regard to the impact of global warming and viral spread.  
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4.2     Global Warming 

 Zika virus as an emergent virus is refl ective of the emergence and spread of other 
viruses as mentioned. It is thus important to describe the global setting, as it 
exists for the spread of Zika and related viruses and this setting is global warming. 
The following is a brief description of the effects of global warming on the spread 
of infectious diseases. 

 The Copenhagen United Nations Climate Change Conference in 2009 produced 
important information related to global climate change. This conference took place 
to continue the work of the Kyoto protocol that went into effect in 2005 and expired 
in 2012. The Kyoto protocol, although ratifi ed by 187 countries, was not ratifi ed by 
the USA. Climate change is due to an imbalance of inbound vs. outbound terres-
trial radiation energy. However, unfortunately, the conference ended without a 
resolution addressing global climate change and vector-borne and waterborne 
infectious diseases [ 39 ]. 

 The spread of mosquito-borne viruses into geographical zones that have had 
temperate climates (e.g., Usutu virus in Central Europe) appears to be associated 
with global warming. Moreover, a rise in international trade and travel further facili-
tated permanent establishment of mosquito-borne viruses. This is occurring in 
industrialized countries worldwide and facilitates spread from competent mosquito 
vectors to less competent vectors [ 2 ].  

4.3     Social Change and Urbanization 

 The main arbovirus vectors are  Aedes aegypti  and  Aedes albopictus  mosquitos. 
Their spread is due to human behaviors including the slave trade from the fi fteenth 
to nineteenth centuries, economic enterprises and expansion, more recent globaliza-
tion of trade and economics, urbanization of Latin America and Asia, increased 
concentrations of human populations, and concomitant sanitary issues that promote 
the spread of mosquito vectors. Arboviruses refl ect this vector spread and across 
100 countries, for example, there is a pandemic of 50 million dengue infections 
annually with spread continuing [ 40 ]. 

 The term climate change is a euphemism for global warming. The damage that is 
occurring and projected to occur is actually due to the increased temperature. This 
process results in increased vector activity and disease transmission. For example, 
the Anopheles mosquito that transmits malaria needs temperatures of just 16 °C and 
above to complete its life cycle. As global warming increases, so do deleterious 
results increase as well, including vector-borne disease, diarrheal disease, malnutri-
tion, and injury from natural disasters. A major consequence of these effects is an 
increase of premature deaths. Premature deaths and disability are measured in 
disability- adjusted life-years (DALYs) per million population as follows: Africa 
3,071.5; Eastern Mediterranean 1,586.5; Latin America and Caribbean 188.5; 
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Southeast Asia 1,703.5; Western Pacifi c 111.4; developed countries 8.9; and global 
average 1,111.7 [ 39 ]. 

 The golden toad ( Bufo periglenes ) and Monteverde harlequin frog ( Atelopus sp .) 
became extinct 23 years ago in Costa Rica. In addition, it is estimated that 67 % of 
approximately 110 or so species of  Atelopus  that are endemic to the American tropics 
are also extinct. A pathogenic chytrid fungus ( Batrachochytrium dendrobatidis ) is 
primarily to blame. This ecologic “writing on the wall” is due to global warming 
[ 41 ]. Thus, the spread of infectious disease can have profound and unanticipated 
effects on ecology, biology, and evolution. 

 The distribution, transmission, and abundance of vectors that bear and transmit 
diseases are being enhanced by global warming. Encephalitic viruses as well as 
dengue, malaria, and plague are increasing due to the infestation of such vectors and 
their cognate arthropods into geographical regions that were hitherto too cool for 
their presence. Likewise, south of the Southwest US-Mexican border, Mexican 
states show a 500-fold increase in dengue disease. West Nile virus has taken up resi-
dence in the USA near stagnant water, golf courses, waterways, swamps, and ponds. 
St. Louis and Equine encephalitis viruses are spreading as well. The increased 
spread of typhoid and cholera into Zimbabwe and Ethiopia also exemplifi es and 
supports the contention of such deterioration—due to hygiene and water quality 
deterioration in conjunction with global warming [ 42 ]. 

 The mean global temperature increased approximately by 1° centigrade during 
the last several hundred years. However, during the next 20 years it is anticipated 
to increase by 2–3° centigrade. Consequently, it is expected, for example, that the 
global malaria risk population will increase from 3 to 5 % and diarrheal diseases 
will increase by 10 %. The increased prevalence of malaria will be due to the 
vector- borne spread of this disease into geographical areas including the East 
African highlands where it has not yet been endemic [ 39 ]. Thus, warnings are dire 
and expectations grim.   

5      Clinical 

5.1     Clinical Findings and Neurological Disease 

 Zika virus is not as benign as it is sometimes considered to be and may be one of the 
most commonly reported human illnesses where it occurs. Most of the cases are 
described with relatively mild disease. Initial clinical descriptions indicate fever, 
headache, body pains, and rash as the manifestations of Zika virus infection. It can 
present with a syndrome reminiscent of infl uenza infection and thus may be under-
reported. Symptoms include lymphadenopathy, edema, retro-orbital pain, and diar-
rhea. In addition, common presentations accompanying the febrile illness include 
maculopapular rash, arthralgia, and conjunctivitis and are frequently confused with 
dengue virus infection that may also result in underreporting Zika virus infection. 
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Other symptoms range from fever and headache to fatigue, malaise, stomachache, 
dizziness, anorexia, hematospermia, prostatitis, dizziness, and lightheadedness 
[ 1 ,  5 ,  6 ,  8 ,  18 ,  43 – 45 ]. Although severe neurologic manifestations have not as yet 
been reported, misdiagnosis or underdiagnosis cannot be excluded. 

 In a mouse model, newborn and 5-week-old mice were inoculated intracere-
brally with Zika virus. Astrocytes became enlarged and there was some destruction 
of pyriform cells of the hippocampus. Virions were produced within the endoplas-
mic reticulum in both neurons and astrocytes [ 46 ]. 

 There are indications that the Zika-related viruses do indeed cause invasive neu-
rological infections and disease including encephalitis due to Japanese encephalitis 
virus and encephalitis/meningitis due to West Nile virus and Chikungunya virus 
[ 47 ]. Whether Zika virus causes or has the ability to cause neurologic disease in 
humans is still unclear. More work needs to be done to investigate the effect of Zika 
and other related viruses on the central nervous system (CNS).  

5.2     Diagnosis 

 There is still some diffi culty in clinically diagnosing Zika virus infection because it 
is easily mistaken for other arbovirus infections including Chikungunya and dengue 
fever [ 44 ]. 

 Differential diagnosis of Zika virus infection includes other arboviral diseases 
causing fever, headache, rash, and arthralgia; in addition tick-borne encephalitis 
(TBE) fl avivirus infection causes severe hemorrhagic fevers, meningitis, and 
encephalitis. Molecular and immunological methods are important concerning the 
question of specifi city of diagnosis. PCR and serologic studies have been used to 
make diagnosis of Zika virus infection. For example, in 2010, Zika virus infection 
of a child was confi rmed in Cambodia using PCR in addition to immunological 
methods in specimens taken in the fi eld. Furthermore, dengue, West Nile virus, and 
yellow fever virus infections were excluded [ 44 ]. Zika virus infection has similar 
manifestations to other arboviral infections. Clinicians should be aware of this and 
utilize additional confi rmatory tests to make the diagnosis in patients who live in or 
have recently visited Zika virus endemic areas. See also Sect.  5 , below.   

6     Molecular biology 

6.1     Viral Molecular Pathogenesis 

 Complete genome sequences were produced for the fi rst time for Zika virus (as well 
as Bagaza and Kedougou viruses). Open reading frames (ORFs) were characterized 
including protein cleavage sites, gene sizes, distribution of cysteine residues, 
potential glycosylation sites, and unique motifs. Genetic relatedness was studied 
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using alignment procedures for full-length ORFs of the viruses vs. selected reference 
viruses and other African fl aviviruses. Specifi c conserved organizational patterns 
were found for 3′-terminal noncoding regions that correlated with virus grouping. 
Zika virus is representative of the Spondweni virus group. Kedougou virus is only 
slightly more distantly related to Zika and Spondweni. Bagaza virus is interrelated 
to West Nile virus in several segments of its genome and representative of another 
distinct group (Ntaya). 

 Of the sequenced mosquito-borne fl aviviruses, Zika virus has a 3′-noncoding 
region (NCR) with conserved sequences (CS) organized in a CS1-CS2-CS3 pattern. 
This is new for the Spondweni virus group. Kedougou and Bagaza viruses have also 
been sequenced, with GenBank accession numbers AY632540 and AY632545, 
respectively. Based on the partial sequence of the NS5 protein, Bagaza virus is 98 % 
identical to Israel turkey virus (ITV) GenBank EU303198; both viruses show a high 
degree of immune (neutralization) similarity [ 18 ]. 

 Highly conserved universal primers from sequences in the 3′-coding region of the 
NS5 gene were used in reverse transcription/polymerase chain reaction (RT/PCR) 
for the rapid detection of mosquito-borne fl aviviruses (Zika, West Nile, Japanese 
encephalitis, yellow fever, dengue 1, dengue 2, dengue 3, and dengue 4 viruses). This 
region of the NS5 gene showed less amino acid identity (20–36 %) across viruses 
than sequences in the C-terminus of the NS5 gene (56–76 % amino acid identity). 
In addition, recombinant plasmids containing fl avivirus cDNA (derived from RNA 
from experimentally infected mosquitoes) were used in dot-blot membrane and 
digoxigenin detection methods. Zika virus classifi cation was  confi rmed using 
serology [ 48 ]. 

 Zika virus is a single-stranded positive-sense RNA virus and is approximately 
11,000 nucleotides in length. Its relationship to Spondweni, Kedougou, and Bagaza 
viruses is illustrated in the phylogenetic tree, Fig.  18.1 . There are 5′- and 3′-untrans-
lated regions on either side of one ORF encoding a polyprotein in the genome. 
Phylogenetic analysis places Zika virus in three groups, West African (three strains 
analyzed), East African (two strains analyzed), and Asian (three strains analyzed) 
[ 14 ,  18 ]. A PCR amplicon 100 bp fragment from a 2010 Cambodian child patient had 
100 % identity to accession number EU545988 Zika virus NS5 gene. The phyloge-
netic position of the patient’s Zika virus was not stated [ 44 ].  

 Severe hemorrhagic fevers, meningitis, and encephalitis can be caused by tick- 
borne encephalitis (TBE) fl aviviruses. The viruses that cause these diseases are 
pathogenic with a high mortality rate and are pathogenic due to inhibition of the 
interferon (IFN) response in the infected individual. Langat virus (LGTV) is a mem-
ber of this group and is highly sensitive to the effects of IFN. A luciferase reporter 
gene driven by each of IFN-α/β and -γ-responsive promoters was inhibited by this 
virus in infected cells via the IFN-mediated JAK-STAT (Janus kinase-signal trans-
ducer and activator of transcription) signal transduction pathway. Several mecha-
nisms of inhibition were IFN-α signaling blocks of Jak1 and Tyk2 Janus kinases and 
IFN-γ stimulation-associated Jak1 phosphorylation. Of all viral nonstructural (NS) 
proteins, NS5 alone inhibited IFN-γ-induced STAT1 phosphorylation. Moreover, 
NS5 forms complexes with IFN-α/β and -γ receptors. These observations were 
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  Fig. 18.1    Phylogenetic tree of Zika virus with related fl aviviruses. Sequences were obtained from 
GenBank. Complete viral genome sequences were aligned with MAFFT, and a maximum likeli-
hood phylogenetic tree was constructed from the DNA alignment using DNAML [ 49 ]       
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confi rmed in LGTV-infected human monocyte-derived dendritic cells [ 50 ]. It should 
be noted that LGTV and Zika virus share additional molecular novelties in terms of 
their replication pathways.  

6.2     Life-Cycle Observations 

 Unexpectedly, the detection of virus-specifi c antigen in the nuclei including nucleoli 
of Zika and Langat virus-infected cells brought into question fl avivirus replication 
and the role of the nucleus. Overall, MAb 541 was specifi c for fl avivirus ENV 
(envelope proteins) and MAB 109 specifi c for fl avivirus NS1 (nonstructural glyco-
proteins). The detection of Zika virus proteins with the nucleus and nucleolus o 
virus-infected cells may be due to early transient transport of the polyprotein from 
cytoplasm into the nucleus followed by protein processing and transport back into 
the cytoplasm where viral maturation occurs later. Very careful experiments were 
done to rule out artifacts and viral contamination in these studies, thus providing 
greater credence that Zika virus may have some different viral properties compared to 
other fl avi-arboviruses including WNV (West Nile virus), YFV (yellow fever virus), 
Bussuquara virus, and Ntaya virus [ 51 ].  

6.3     Molecular Epidemiology, Evolution, and Phylogenetic 
Analyses 

 Zika arbovirus has been known since the 1950s to be dispersed in Asia as well as 
Africa. Based on phylogenetic analysis of complete genomes, two genetic lineages 
exist for Zika virus that correspond to African and Asian geographical regions. 
Genetic relationships and sources of Zika strains that occurred in the Federated 
States of Micronesia (Yap Island) in 2007 and in Cambodia (a pediatric case) in 
2010 were investigated. Between 1947 and 2010, isolates had been accumulated 
and stored from Nigeria, Senegal, Uganda, Cambodia, and Malaysia. 

 The complete genome sequences of these isolates and additional published 
sequences were used for phylogenetic analysis. Two main Zika virus lineages were 
identifi ed, African and Asian. It was concluded that the Cambodian case and Yap 
outbreak were Southeast Asian in origin. The virus proteins appear to lose glycosyl-
ation sites over time. It may be inferred that Zika virus made its way from Africa 
where it was fi rst discovered to Southeast Asia whence it spread further including 
Yap [ 45 ]. 

 Table  18.2  summarizes the Zika virus complete genomes that have been 
sequenced. The accession numbers are provided from GenBank. Figure  18.1  shows 
a phylogenetic tree of the complete Zika virus sequences and related fl aviviruses. 
The phylogenetic tree in Fig.  18.1  indicates that the Zika viruses circulating in Asia 
(Malaysia, Micronesia, and Cambodia) are distinct from those circulating in Africa 
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(Nigeria, Senegal, and Uganda), but the two populations are no more diverse than 
those found within a single serotype of dengue fever viruses. The sequences (cf. 
Table  18.2 ) of the 1947 and 2004 Uganda isolates are 99.89 % identical to each 
other, indicating that Zika virus evolves rather slowly over time and that the African 
and Asian populations have been evolving for many decades. Similarity plots across 
the genomes (not shown) exhibited no evidence of recombination within or between 
isolate genotypes. However, recombination between dengue viruses has recently 
been detected [ 52 ].

   Sequencing of many additional isolates of Zika virus would be needed, in order 
to estimate a true date of divergence between the African and Asian lineages, but a 
comparison can be made to dengue viruses, which have been more heavily sampled 
and sequenced.  

6.4     Serology 

 Lanciotti et al. [ 14 ] describe genetic and serologic properties of Zika virus during 
the Yap state (Micronesia) epidemic. 

 The fundamental immunological fi nding in this study of the Yap state outbreak is 
that IgM antibodies had cross-relativities against other arbovirus fl aviviruses. 
One interpretation of these fi ndings is that Original Antigen Sin is being exhibited. 
This would suggest that the immune response is under some restriction and implies 
that there could be developing and spreading evolutionary changes of Zika virus 
that could lead to states of greater pathogenicity. 

 An epidemic of arthralgia, rash, and conjunctivitis was described by physicians 
in Yap state, Federated States of Micronesia in April 2007. Dengue virus was indi-
cated as the cause using rapid ELISA. However, specimens sent to the Arbovirus 
Diagnostic Laboratory at the Centers for Disease Control and Prevention (CDC, 
Fort Collins, CO, USA) for confi rmatory testing in June 2007, using IgM capture 

    Table 18.2    Genetic sequences of Zika viruses (as of July 2013) [ 49 ,  52 ]   

  a Country  Year  Isolate  GenBank accession number 

 Uganda  1947  MR766 a   HQ234498 
 Nigeria  1968  IbH_30656  HQ234500 
 Senegal  1984  ArD_41519  HQ234501 
 Uganda  2004  –  NC_012532 
 Micronesia  2007  –  EU545988 
 Malaysia  1966  P6-740  HQ234499 
 Cambodia  2010  FSS13025  JN860885 

   a It should be noted that several additional viral passages of the same Ugandan 
isolate, MR766, were sequenced and produced identical sequences (AY632535, 
EU303241, EU074027, AY326412, and AF372422). − = no isolate name  
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dengue antigen ELISA, confi rmed recent fl avivirus infection. However, Zika virus 
reverse transcription-PCR (RT-PCR) assays followed by DNA sequencing supported 
90 % nucleotide identity with Zika virus. Therefore, the Yap epidemic was due to 
Zika virus [ 14 ,  53 ,  54 ]. 

 Zika, yellow fever, Chikungunya, and dengue type 2 viruses were identifi ed as 
arboviruses with highest prevalence in humans in Nigeria. Antibodies to six arbo-
viruses were surveyed in 267 human sera from the Kainji Lake region of Nigeria. 
One hundred and fi fty-eight (59 %) had fl avivirus hemagglutination-inhibiting 
(HI) antibody and 139 (52 %) had alphavirus HI antibody. The prevalence of anti-
bodies was Zika—56 %, dengue type 2—46 %, yellow fever—31 %, 
Chikungunya—45 %, Semliki Forest—25 %, and Sindbis—33 % [ 55 ]. 

 Sera randomly selected from 446 individuals across various age groups in Nigeria 
were tested for fl avivirus IgM antibodies using hemagglutination inhibition (HI). 
Sixty-nine percent (314 sera) tested positive for three or more fl aviviruses including 
Zika, West Nile, Potiskum, Uganda S, and yellow fever viruses. The prevalence was 
greater in younger than in older individuals [ 56 ]. 

 Earlier studies using serological techniques (cross-hemagglutination inhibition 
and cross-complement fi xation) and reactions did not fi nd many antigenic differ-
ences distinguishing Zika viruses vs. fl aviviruses such as Uganda S, Potiskum, 
Banzi, dengue type 1, and dengue type 2 viruses. However, differences were observed 
comparing Zika, Banzi, and Uganda S viruses vs. yellow fever, Wesselsbron, and 
Potiskum viruses in these studies [ 57 ]. 

 The detection of serum IgM antibodies against Zika virus (using ELISA) is indica-
tive of infection 2–5 months previously. This methodology was used in addition to 
viral isolation from mosquitoes for comparisons across several villages in southeast-
ern Senegal 1988–1990. Human infections with Zika virus occurred in 1990 and 
epizootic outbreaks occurred annually. In addition, dengue 2 virus was isolated from 
mosquitoes and humans over the years of the study. However, other fl aviviruses were 
isolated including Wesselsbron, Ked Kedougou, Westle, Chikungunya, Crimean-
Congo hemorrhagic fever, and Rift Valley fever viruses as well as viruses that were 
not considered of public health concern during that period [ 58 ]. 

 Serology studies (hemagglutination inhibition and immunofl uorescence tests) 
in the Karamoja district, Uganda, using sera from 132 resident adults collected in 
1984 detected 47 % positive for Chikungunya virus (and Semliki Forest alpha 
viruses (Togaviridae)) and 16 % positive for fl aviviruses. It is stated that the latter 
were most likely mainly due to West Nile virus and included Zika and Wesselsbron 
viruses. A few individuals had antibodies against Marburg, Ebola-Zaïre, Ebola- 
Sudan viruses ( Filoviridae ), Lassa virus (Arenaviridae), and Crimean-Congo 
hemorrhagic fever virus. Yellow fever and dengue type 2 viruses were absent as 
were Ilesha, Tahyna, Sicilian sand fl y fever phlebovirus, and Bunyamwera 
(Bunyaviridae) [ 59 ]. 

 In Southeast Gabon, 197 adult human sera, 28 paired sera of mothers and their 
newborns, and 34 simian sera were surveyed for arbovirus HI and CF antibodies. 
Eighty-eight percent of the human sera had yellow fever virus due to vaccination, 
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58 % against Orungo virus, and 20 % against Chikungunya virus (that was a recent 
infection demonstrated by CF). Zika, Chikungunya, yellow fever, Uganda S, and 
Orungo viruses were transmitted transplacentally. Zika virus and Chikungunya 
viruses were detected as well in simian sera [ 60 ]. 

 In April 1979, a survey of human sera was done in southeast Central African 
Republic. HI was studied in 459 sera and CF in 50 sera. Eighty-nine percent of the 
tested population had antibodies to Zika, yellow fever, West Nile, Chikungunya, 
Semliki forest, Sindbis, Uganda S, Bunyamwera, and Zinga viruses. Zika and 
Chikungunya viruses were active primarily in adults. CF assay detected Orungo 
virus antigens in 88 % sera. Ilesha, Bwamba, CHF-Congo, Dugbe, Bhanja, 
Tataguine, Nyando, and Bangui antigens were not detected. CF assay also detected 
antibodies for CHF-Congo and Bhanja viruses [ 61 ]. 

 A study in Pakistan detected complement-fi xation antigen for eight Toga viruses 
in 372 serum samples (43 humans, 172 domestic animals, and 157 rodents). The 
prevalence rates were Zika 2.4 %, West Nile (WN) 7.8 %, Japanese encephalitis (JE) 
3.2 %, and Sindbis (SIN), Chikungunya (CHIK), Uganda S (UGS), and Royal Farm 
(RF) viruses 1.6–1.3 %. Dengue 1 (DEN) virus antigen was present in serum of one 
human patient. In human sera, antibodies were detected to all viruses except for RF 
that was detected in domestic animals and rodent sera. Studies in the epidemiology 
of Zika, JE, and WN viruses should include the role of rodents [ 62 ]. 

 Between October 1977 and December 1977, in North-West Ivory Coast, at the 
end of the rainy season, an unexpected high number of deaths occurred among 100 
patients with febrile hemorrhagic jaundice. This is an area with a high prevalence of 
yellow fever. Serological and epidemiological surveys indicated that during this 
period, vectors that could potentially carry yellow fever were detected. However, no 
viruses had been isolated and neutralization, complement fi xation, and hemaggluti-
nation inhibition tests were then performed using antigens from six fl aviviruses, i.e., 
Zika, yellow fever, West Nile, Uganda S, Wesselsbron, and Ntaya. These analyses 
were performed on two to three sera from 49 school children and 29 adults who had 
a recent history of jaundice, some with hemorrhagic symptoms. For comparison, 
sera were analyzed from 402 inhabitants of surrounding villages as well as 53 young 
rural workers. Twenty-one cases defi nitely had yellow fever, 20 cases probably had 
yellow fever, 15 cases were inconclusive, and 476 individuals defi nitely did not 
have yellow fever [ 63 ]. 

 During 1985–1987, at the Dan refugee camp near Hargeysa, Somalia, malaria- 
like illness epidemics affected a few thousand residents. In some patients, head-
ache, back and joint pains, fever, chills, and sweats were described, lasting up to 10 
days. Malaria was not detected in blood smears from acutely ill patients. Zika, 
Chikungunya, Rift Valley fever, Crimean-Congo hemorrhagic fever, yellow fever, 
and Sindbis viruses were all absent in 10 convalescent and 28 acute sera using 
indirect fl uorescent antibody (IFA) and hemagglutination inhibition (HI) tests. 
However, IFA and HI tests demonstrated dengue 2 antibody in 39 % (15/38) and 11 
of 29 (38 %) sera, respectively. In 60 % (17/28) and 14 % (4/28) of the sera, using 
enzyme immunoassay (EIA), IgG and IgM antibody to dengue 2, respectively, was 
detected [ 64 ].  
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6.5     Antibody Enhancement of Viral Infection 

 In a serological study, suboptimal concentrations of several antibodies that did not 
neutralize their viral targets enhanced viral infection in murine macrophage cell 
culture. In addition, some heterologous combinations of antibodies and viruses 
showed such infection enhancement as well. Homologous enhancement was greater 
than heterologous enhancement. These effects were observed for Zika, West Nile, 
Wesselsbron, and Uganda S viruses, Dakar yellow fever, Potiskum, and dengue 2 
viruses. Potiskum virus antibody showed the widest ability for heterologous virus 
infection enhancement [ 65 ,  66 ]. 

 It was initially hypothesized that in regions of Nigeria where Zika virus is 
endemic other fl aviviruses are less prevalent because of some serological cross- 
reactivity among these viruses, and thus some cross-resistance [ 67 ]. However, as 
the current hypothesis indicates, cross-reactive antibodies may enhance viral 
infection.  

6.6     Multiple Viruses Present Contemporaneously 

 The presence of multiple related viruses with varying degrees of pathogenicity is 
more than a clinical diagnostic problem as this is also a problem in pathology and 
treatment. For example, many additional arboviruses have been found in conjunction 
with Zika virus in Lombok, Indonesia [ 68 ], adding to the danger of heterologous 
antibody-enhanced infections. The arboviruses that infect humans included in the 
study were Zika, Japanese encephalitis (JE), MVE, Tembusu (TMU), LGT, KUN, 
SEP, dengue type 2 (DEN-2), CHIK, RR, GET, SIN, BUN, BAT New Guinea C, 
Murray Valley encephalitis (MVE), MM 1775, and BAK. Testing was also done for 
infections in ducks, chickens, wild birds, bats, cattle, horses, goats, and rats. 
Infections of domestic animals included JE, MVE, KUN and SEP, BAT, and BUN 
[ 68 ]. Thus, there is a danger posed by the multiple virus infections, immunity, and 
cross-reactivity. Moreover, the utilization of vaccines in this context adds to the 
complexity. Due to cross-reactivity and antibody-virus infection enhancement, Zika 
virus vaccination would help or hinder a virus vaccination program. 

 Another study further supported the occurrence of contemporaneous multiple 
virus infections. Between 1971 and 1975, virology and seroepidemiology of Zika, 
yellow fever, dengue, West Nile, and Wesselsbron viruses were studied in four locales 
in Oyo State, Nigeria. Zika virus was isolated from two human cases with mild 
febrile illness. Percentage positive sera (measured by hemagglutination inhibition 
tests) were 31 % Zika, 50 % yellow fever, 46 % West Nile, and 59 % Wesselsbron. 
Forty percent Nigerians tested had neutralizing antipodes to Zika virus. Fifty percent 
individuals positive for Zika virus were positive for Zika virus alone or Zika virus 
and one other fl avivirus, 40 % were positive for Zika virus and two other viruses, and 
10 % were positive for Zika virus and at least three other fl aviviruses. Of the other 
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viruses in these Zika antibody-positive individuals, 81 % were positive for dengue 
type 1, 58 % were positive for yellow fever, 7 % were positive for Wesselsbron, 6 % 
were positive for West Nile, and 3 % were positive for Uganda S [ 67 ]. 

 Numerous additional studies support the occurrence of Zika virus with a high 
prevalence in several regions in Africa (approximately 40–50 %) contemporaneous 
among several additional fl aviviruses. For example, in south-eastern Gabon these 
additional viruses have included yellow fever, Chikungunya, Koutango, and 
Wesselsbron viruses [ 69 ]; in Upper Casamance and in Eastern Senegal these 
included yellow fever, Chikungunya, West Nile, Bunyamwera, and Sindbis viruses 
(and related to where migrating birds rest) [ 70 ]; and in Igbo-Ora, Nigeria, dengue 
types 1 and 2, yellow fever, Chikungunya, West Nile, and Wesselsbron [ 71 ].  

6.7     Vaccination and Superinfection, Multiple Infections 

 It had been hypothesized prior to 1980 that 17D yellow fever vaccine did not induce 
complement-fi xing antibodies and that wild yellow fever virus infection did induce 
complement-fi xing antibodies. However, the following studies demonstrated that 
this vaccine does produce such antibodies in specifi c situations and permitted dis-
tinction between natural yellow fever infection and vaccination. Yellow fever virus 
seroepidemiological studies were being done during a yellow fever vaccination 
campaign using 17D strain yellow fever in Gambia, West Africa, in 1979, during 
which a yellow fever epidemic ensued. Fifty-eight vaccinated participants were 
studied in three groups (see Table  18.3 ): group 1 had participants with pre- 
vaccination yellow fever-neutralizing antibodies; group 2 had participants without 
any pre-vaccination yellow fever-neutralizing antibody or hemagglutination- 
inhibiting antibodies to heterologous fl aviviruses (including Zika, Uganda S, Ntaya, 
West Nile, dengue 1, or Spondweni); and group 3 had participants who lacked pre- 
vaccination yellow fever-neutralizing antibodies. However, group 3 participants 

   Table 18.3    Flavivirus vaccination outcomes [ 72 ]   

 Group 
 Prior exposure to wild 
yellow fever virus 

 Prior exposure to Zika, 
Uganda S, Ntaya, West 
Nile, dengue 1, or 
Spondweni viruses  Yellow fever vaccination outcome 

  Group 1   Pre-vaccination 
neutralizing antibodies 

 No prior exposure to 
HI antibodies 

 No response. But 24 % had 
complement-fi xing (CF) antibodies 

  Group 2   No prior exposure to 
neutralizing antibodies 

 No prior exposure to 
HI antibodies 

 Seroconverted. Produced 
neutralizing antibodies and/or 
HIV but no CF antibodies 

  Group 3   No prior exposure to 
neutralizing antibodies 

 With prior exposure to 
HI antibodies 

 46 % produced homologous CF 
antibodies. Nine patterns of HI 
and homologous and heterologous 
CF antibodies 
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nonetheless had heterologous fl aviviral hemagglutination-inhibiting antibodies. 
The fi ndings were that group 1 participants sustained no vaccination response 
except for production of complement-fi xing antibodies in 24 % of this group of vac-
cines. Group 2 participants upon vaccination seroconverted and sustained yellow 
fever-neutralizing and/or hemagglutination-inhibiting but no complement-fi xing 
antibodies. Group 3 participants (46 %) produced homologous CF antibodies. There 
were nine patterns of HI and homologous and heterologous CF antibodies [ 72 ].

   These studies demonstrate a high prevalence of fl avivirus exposure (including 
Zika virus) that obscures what might have been expected to be a clear response to 
vaccinations on a wide scale. Moreover, the yellow fever vaccine anamnestic 
response did result in CF antibodies that were indistinguishable from natural yellow 
fever virus infection-induced CF antibodies [ 72 ].  

6.8     RT-PCR 

 Zika fever diagnosis entails serology and virus isolation that are time-consuming 
procedures. In addition, serology frequently shows cross-reactivity and is not spe-
cifi c. Thus, tests that are more specifi c are required. A single-step reverse transcrip-
tase polymerase chain reaction (RT-PCR) procedure was thus developed for the 
detection of Zika virus RNA. The assay targeted the envelope protein-coding region 
and was evaluated for sensitivity, specifi city, and reproducibility. Additionally, the 
test was evaluated for its ability to detect Zika virus isolates preserved during the 
prior 40 years from a variety of hosts from several African countries. The RT-PCR 
test can be clinically helpful to detect Zika virus infection in regions where 
other clinically related arboviruses including dengue and Chikungunya viruses 
 co- circulate. The fi rst-generation RT-PCR test detected 7.7 pfus per reaction. The test 
was 100 % reproducible in patient serum and in cell cultures. Moreover, 19 other 
fl aviviruses were undetected [ 43 ]. The same investigators developed a rapid single- 
step RT-PCR test that can be performed in less than 3 h using sequences from the 
NS5 protein-coding region of African Zika virus based on representative sequences 
from GenBank [ 49 ]. This assay is able to detect 37 Zika virus isolates from mosqui-
toes. It remains to validate the test for clinical use [ 73 ]. 

 In Singapore, an initial analysis of 88 specimens of patient plasma from patients 
who had dengue-like disease but not Chikungunya did not show any Zika virus 
RNA. The newly devised PCR assay had a sensitivity of 140 copies of synthetic 
RNA per reaction. Further testing on known Zika virus plasma aliquots is needed. 
In addition, a wider and larger sample of patients needs to be studied in the com-
munity [ 31 ]. In this regard, it should be noted that Zika virus infection could be 
masked and not easily confi rmed. Past circulation of arboviruses that had been silent 
(undetected) is the case in the Cameroons (Fako Division). In related studies, 
although virus isolation was not accomplished, serological studies detected Zika 
virus antibodies [ 74 ].   
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7     Conclusions 

 Prior to the 1980s, it was generally considered that the world had entered a new era 
of increased health and reduced infectious disease because of the defeat of small-
pox, TB, and polio. What is the magnitude of the novel contemporaneous changes 
in arbovirus and vector evolution that appear to be occurring? Remarkable changes 
have occurred since the 1990s in arbovirus evolution (fl aviviruses, mosquito-borne). 
Since 1999, West Nile virus completely occupied the Americas and since 1995, 
Japanese encephalitis virus extended its grip to Australia (northeastern). 
Subsequently, since 2001, Usutu virus occupied Europe; since 2010, Tembusu virus 
invaded duck farms in China; Bagaza virus caused encephalitis in India and reached 
Spain (southern). It is also remarked that new vertebrate hosts and mosquito species 
have become involved in the complex recent proliferation [ 75 ]. Similarly, Zika 
virus has been spreading as remarked in Table  18.1 . 

 The hypothesis based on the data presented in this work is that detection and 
emergence of Zika virus has been associated with an upsurge of other more patho-
genic fl avivirus infections including for example dengue 1 and 2, JEV, and yellow 
fever. Some of these pathogenic viruses are proliferating and not yet fully con-
trolled. The fi ndings reported here of emergent viruses increasingly detected raise 
many health concerns as to what havoc emergent viruses may play in the future 
given what has happened with the spread of HIV and HCV, since the 1980s. 

 Furthermore, in Africa and tropical America, due to fl avivirus superinfections 
including the high prevalence of Zika virus, with high backgrounds of fl avivirus 
immune responses, seroepidemiological studies need to be conducted prior to 
institution of vaccination programs. An additional caveat is that such tropical risk 
regions are expanding due to global warming [ 72 ]. 

 Clearly, much molecular and epidemiological work needs to be done. 
Unfortunately, contemporaneous economics and social structures are unable to 
support properly the work that is needed to understand and rectify current global 
health issues. 

  Postscript   Consistent with the hypotheses presented in this chapter, as of 1-5-2014, 
Zika virus has demonstrated continuous spread. On 12-20-2013, the CDC issued a 
health advisory in regard to visiting French Polynesia (Tahiti) due to Zika virus. Zika 
virus spread to the islands of Arutua, Bora Bora, Fakarava, Hao, Hiva Oa, Huahine, 
Moorea, Nuku Hiva, Raiatea, Rangiroa, Tahaa, Tahiti, Takaroa Ahe, Tikehau, and Ua 
Pou. There were 35,000 suspected cases and 99 confi rmed cases reported [ 22 ]. In 
addition, Zika virus was detected in an individual in Germany who had traveled in 
Thailand [ 23 ,  24 ]. Recent studies further support the need for continued surveillance 
due to the persistent spread of Zika virus under the radar and concomitant with other 
fl aviviruses. Moreover, the possibility is raised that the prevalence of this virus is 
under-reported. Moreover, a range of symptoms is denoted, from mild to more severe 
disease including Guillain-Barre syndrome [ 76 ,  77 ].      
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    Chapter 19   
 Arenaviruses 

             Anna     N.     Honko      ,     Peter     B.     Jahrling      ,     Jens     H.     Kuhn      ,     Sheli     R.     Radoshitzky      , 
and     Joshua     C.     Johnson     

          Core Message   As research models, arenavirus infections such as those induced by 
Junín virus and lymphocytic choriomeningitis virus (LCMV) have been central to 
the discovery and characterization of many features of the immune system. In 
addition, these models have been used to study the establishment of persistent viral 
infections and relationships between viruses and rodent reservoirs. From the human 
perspective, several arenaviruses are important as zoonotic pathogens with 
signifi cant consequences, causing viral encephalitis and meningitis and severe and 
often fatal hemorrhagic disease.  

1     Introduction 

 In a general sense, geographic distribution may be used to separate the arenaviruses into 
Old World (OW) and New World (NW) viruses. With the exception of Tacaribe virus 
(TCRV), a NW arenavirus possibly associated with bats, all currently classifi ed arenavi-
ruses have a natural rodent reservoir (“mammarenaviruses”). The geographic distribu-
tion of these reservoirs generally correlates to a restriction of the distribution of the 
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viruses and endemic disease. Recently, several novel arenaviruses were identifi ed in 
snakes (“reptarenaviruses”), and whether an intermediate rodent or mite is involved in 
their transmission is not known (Tables  19.1 ,  19.2 , and  19.3  and references within).

     Arenaviruses were originally characterized ultrastructurally through electron 
micrographs of lymphocytic choriomeningitis virus (LCMV) particles and LCMV- 
infected cells about 45 years ago    [ 53 ]. Virions were found to be of variable size and 
shape, budding from the plasma membranes with visible spikes and ribonuclease- 
resistant electron-dense bodies within the particles (also shown with Lassa particles 
in Fig.  19.1 ). On the basis of these morphological features, in 1969 researchers ini-
tially suggested that LCMV, Machupo virus (MACV), and TCRV should be reorga-
nized in a single taxonomic group with LCMV as the prototype virus [ 54 ]. This was 
quickly followed by serological studies confi rming cross-reactivity between LCMV, 
TCRV, MACV, Amaparí virus, Junín virus (JUNV), Paraná virus, Pichindé virus 
(PICHV), Tamiami virus, and Latino virus, but not other arthropod-borne viruses or 
mouse viruses [ 55 ]. Several biological properties of arenaviruses were also listed as 
evidence for their separation from arthropod-borne viruses: (1) arenaviruses are 
RNA and not DNA viruses, (2) rodent vectors play a role in arenaviral disease trans-
mission, (3) arenaviruses produce persistent carrier state in rodents, and (4) they do 
not require arthropods in their life cycle. A more formal naming proposal was pre-
sented in 1970 [ 56 ] naming this virus group “Arenoviruses,” from the Latin word 
“arena” (= sand) based on the characteristic electron-dense granules in arenavirions. 
This name was later changed to Arenavirus (and later to  Arenavirus ), ostensibly to 
prevent confusion with “Adenovirus.” Lassa virus (LASV) was classifi ed as an 
 arenavirus in 1970 after in vitro characterization of several isolates [ 2 ,  57 ].  

 Smaller arenavirions tend toward being spherical, whereas larger particles are 
pleomorphic or “cup-shaped” [ 53 ,  54 ,  58 ]. The typical mean particle size is approx-
imately 110–130 nm in diameter, although individual particles may range from 50 
to over 350 nm in diameter. Particles are spotted with electron-dense granules of 
approximately 20 nm in diameter, later determined to be host ribosomes. Often, the 
formation of large intracytoplasmic inclusion bodies is observed in vitro in tissue 
culture and in vivo [ 53 ,  54 ,  56 ,  59 – 61 ]. These tubuloreticular inclusion structures 
(shown in Fig.  19.2 ) are also seen in cells infected with other viruses, such as 
Epstein Barr virus or Ebola virus [ 62 ], and have recently been the starting point of 
the discovery of a novel group of arenaviruses in snakes associated with inclusion 
body disease (IBD) [ 50 ,  51 ,  63 – 66 ].   

2     Genome Organization, Viral Proteins, and Replication 
Strategy 

2.1     Genome Structure 

 Arenaviruses have bisegmented, single-stranded ambisense RNA genomes. These 
segments are designated by their length: small, S (approximately 3.5 kb) and large, 
L (approximately 7.3 kb) [ 67 ,  68 ]. The L segment encodes a viral RNA-dependent 

A.N. Honko et al.



503

   Ta
bl

e 
19

.1
  

  O
ld

 W
or

ld
 a

re
na

vi
ru

se
s 

(“
O

ld
 W

or
ld

 M
am

m
ar

en
av

ir
us

es
”)

   

 C
la

ss
ifi 

ed
 O

ld
 W

or
ld

 a
re

na
vi

ru
se

s 

 V
ir

us
 

 A
bb

re
vi

at
io

n 
 D

is
tr

ib
ut

io
n 

 R
es

er
vo

ir
 s

pe
ci

es
 (

re
se

rv
oi

r(
s)

) 
 Y

ea
r 

id
en

tifi
 e

d 
 H

um
an

 d
is

ea
se

 
 R

ef
er

en
ce

(s
) 

 Ip
py

 v
ir

us
 

 IP
PY

V
 

 So
ut

h 
A

fr
ic

a 
  A

rv
ic

an
th

is
  s

p.
 (

un
st

ri
pe

d 
gr

as
s 

ra
ts

) 
 19

70
 

 [ 1
 ] 

 L
as

sa
 v

ir
us

 
 L

A
SV

 
 G

ui
ne

a,
 L

ib
er

ia
, 

M
al

i, 
N

ig
er

ia
, 

Si
er

ra
 L

eo
ne

 

  M
as

to
m

ys
 n

at
al

en
si

s  
(N

at
al

 m
as

to
m

ys
) 

 19
69

 
 L

as
sa

 f
ev

er
 

 [ 2
 ,  3

 ] 

 L
uj

o 
vi

ru
s 

 L
U

JV
 

 So
ut

h 
A

fr
ic

a,
 

Z
am

bi
a 

 U
nk

no
w

n 
(i

so
la

te
d 

fr
om

 h
um

an
) 

 20
08

 
 V

ir
al

 h
em

or
rh

ag
ic

 
fe

ve
r 

 [ 4
 ] 

 L
un

a 
vi

ru
s 

 L
U

N
V

 
 Z

am
bi

a 
  M

as
to

m
ys

 n
at

al
en

si
s  

( N
at

al
 m

as
to

m
ys

 ) 
 20

09
 

 [ 5
 ] 

 ly
m

ph
oc

yt
ic

 
ch

or
io

m
en

in
gi

tis
 v

ir
us

 
 L

C
M

V
 

 W
or

ld
w

id
e?

 
  M

us
 m

us
cu

lu
s  

(h
ou

se
 m

ou
se

) 
 19

33
 

 ly
m

ph
oc

yt
ic

 
ch

or
io

m
en

in
gi

tis
, 

as
ep

tic
 m

en
in

gi
tis

 

 [ 6
 – 1

0 ]
 

 M
ob

al
a 

vi
ru

s 
 M

O
B

V
 

 C
en

tr
al

 A
fr

ic
an

 
R

ep
ub

lic
 

  P
ra

om
ys

  s
p.

 (
so

ft
-f

ur
re

d 
m

ic
e)

 
 19

83
 

 [ 1
1 ]

 

 M
op

ei
a 

vi
ru

s 
 M

O
PV

 
 M

oz
am

bi
qu

e,
 

Z
im

ba
bw

e 
  M

as
to

m
ys

 n
at

al
en

si
s  

(N
at

al
 m

as
to

m
ys

) 
 19

77
 

 [ 1
2 ]

 

 M
or

og
or

o a   
 M

O
R

V
 

 Ta
nz

an
ia

 
  M

as
to

m
ys

 n
at

al
en

si
s  

(N
at

al
 m

as
to

m
ys

) 
 20

04
 

 [ 1
3 ]

 
 U

nc
la

ss
ifi 

ed
 O

ld
 W

or
ld

 a
re

na
vi

ru
se

s 
 D

an
de

no
ng

 v
ir

us
 

 D
A

N
V

 
 A

us
tr

al
ia

 
 U

nk
no

w
n 

(i
so

la
te

d 
fr

om
 h

um
an

) 
 20

08
 

 Po
ss

ib
ly

 
 [ 1

4 ]
 

 G
ba

gr
ou

be
 a   

 C
ôt

e 
d’

Iv
oi

re
 

  M
us

 s
et

ul
os

us
  (

Pe
te

rs
’s

 m
ou

se
) 

 20
05

 
 [ 1

5 ]
 

 Ji
ra

nd
og

o 
 G

ha
na

 
  M

us
 b

ao
ul

ei
  (

B
ao

ul
e’

s 
m

ou
se

) 
 20

11
 

 [ 1
6 ]

 
 K

od
ok

o 
vi

ru
s 

 K
D

K
V

 
 G

ui
ne

a 
  M

us
 m

in
ut

oi
de

s  
(A

fr
ic

an
 p

ig
m

y 
m

ou
se

) 
 20

06
 

 [ 1
7 ]

 
 L

un
k 

vi
ru

s 
 L

N
K

V
 

 M
en

ek
re

 v
ir

us
 b   

 C
ôt

e 
d’

Iv
oi

re
 

  H
yl

om
ys

cu
s 

sp
 . (

A
fr

ic
an

 w
oo

d 
m

ic
e)

 
 20

05
 

 [ 1
5 ]

 
 M

er
in

o 
W

al
k 

V
ir

us
 

 M
R

W
V

 
 So

ut
h 

A
fr

ic
a 

  M
yo

to
m

ys
 u

ni
su

lc
at

us
  s

p.
 (

B
us

k 
K

ar
oo

 r
at

) 
 19

85
 

 [ 1
8 ]

 

   H
F

  h
em

or
rh

ag
ic

 f
ev

er
,  s

p.
  s

pe
ci

es
 

  a  O
nl

y 
se

qu
en

ce
 a

nd
 s

er
op

re
va

le
nc

e 
da

ta
 a

va
ila

bl
e,

 n
ot

 v
ir

us
 is

ol
at

io
n 

  b  O
nl

y 
se

qu
en

ce
 d

at
a 

av
ai

la
bl

e,
 n

ot
 v

ir
us

 is
ol

at
io

n  

19 Arenaviruses



504

   Ta
bl

e 
19

.2
  

  N
ew

 W
or

ld
 a

re
na

vi
ru

se
s 

(“
N

ew
 W

or
ld

 M
am

m
ar

en
av

ir
us

es
”)

   

 C
la

ss
ifi 

ed
 N

ew
 W

or
ld

 a
re

na
vi

ru
se

s,
 C

la
de

 A
 

 V
ir

us
 

 A
bb

re
vi

at
io

n 
 D

is
tr

ib
ut

io
n 

 R
es

er
vo

ir
 s

pe
ci

es
 (

re
se

rv
oi

r(
s)

) 
 Y

ea
r 

id
en

tifi
 e

d 
 H

um
an

 d
is

ea
se

 
 R

ef
er

en
ce

(s
) 

 A
llp

ah
ua

yo
 v

ir
us

 
 A

L
LV

 
 Pe

ru
 

  O
ec

om
ys

 b
ic

ol
or

  (
w

hi
te

-b
el

lie
d 

oe
co

m
ys

) 
an

d 
 O

ec
om

ys
 p

ar
ic

ol
a  

(B
ra

zi
lia

n 
oe

co
m

ys
) 

 19
97

 
 [ 1

9 ]
 

 Fl
ex

al
 v

ir
us

 
 FL

E
V

 
 B

ra
zi

l 
  O

ry
zo

m
ys

  s
p.

 (
ri

ce
 r

at
s)

 
 19

75
 

 [ 2
0 ]

 
 Pa

ra
ná

 v
ir

us
 

 PR
A

V
 

 Pa
ra

gu
ay

 
  O

ry
zo

m
ys

 a
ng

ou
ya

  (
A

ng
ou

ya
 o

ry
zo

m
ys

) 
 19

65
 

 [ 2
1 ]

 
 Pi

ch
in

dé
 v

ir
us

 
 PI

C
H

V
 

 C
ol

om
bi

a 
  O

ry
zo

m
ys

 a
lb

ig
ul

ar
is

  (
w

hi
te

-t
hr

oa
te

d 
or

yz
om

ys
) 

 19
65

 
 [ 2

2 ]
 

 Pi
ri

ta
l v

ir
us

 
 PI

R
V

 
 V

en
ez

ue
la

 
  Si

gm
od

on
 a

ls
to

ni
  (

A
ls

to
n’

s 
co

tto
n 

ra
t)

 
 19

97
 

 [ 2
3 ,

  2
4 ]

 
 C

la
ss

ifi 
ed

 n
ew

 w
or

ld
 a

re
na

vi
ru

se
s,

 C
la

de
 A

/B
 (

ak
a.

 A
/r

ec
, o

r 
N

or
th

 A
m

er
ic

an
 T

ac
ar

ib
e 

Se
ro

co
m

pl
ex

) 
 B

ea
r 

C
an

yo
n 

vi
ru

s 
 B

C
N

V
 

 U
SA

: C
al

if
or

ni
a 

  Pe
ro

m
ys

cu
s 

ca
li

fo
rn

ic
us

  (
C

al
if

or
ni

a 
de

er
m

ou
se

) 
 19

98
 

 [ 2
5 ]

 

  N
eo

to
m

a 
m

ac
ro

ti
s  

(b
ig

-e
ar

ed
 w

oo
dr

at
s)

 
 B

ig
 B

ru
sh

y 
Ta

nk
 

vi
ru

s 
 B

B
T

V
 

 U
SA

: A
ri

zo
na

 
  N

eo
to

m
a 

al
bi

gu
la

  (
w

hi
te

-t
hr

oa
te

d 
w

oo
dr

at
) 

 20
02

 
 [ 2

6 ]
 

 C
at

ar
in

a 
vi

ru
s 

 C
T

N
V

 
 U

SA
: T

ex
as

 
  N

eo
to

m
a 

m
ic

ro
pu

s  
(s

ou
th

er
n 

pl
ai

ns
 w

oo
dr

at
) 

 20
07

 
 [ 2

7 ]
 

 Sk
in

ne
r 

Ta
nk

 v
ir

us
 

 SK
T

V
 

 U
SA

: A
ri

zo
na

 
  N

eo
to

m
a 

m
ex

ic
an

a  
(M

ex
ic

an
 w

oo
dr

at
) 

 20
02

 
 [ 2

8 ]
 

 Ta
m

ia
m

i v
ir

us
 

 T
M

M
V

 
 U

SA
: F

lo
ri

da
 

  Si
gm

od
on

 a
ls

to
ni

  (
A

ls
to

n’
s 

co
tto

n 
ra

t)
 

 19
63

 
 [ 2

9 ,
  3

0 ]
 

 To
nt

o 
C

re
ek

 v
ir

us
 

 T
T

C
V

 
 N

or
th

 A
m

er
ic

a 
(U

SA
: 

A
ri

zo
na

) 
  N

eo
to

m
a 

al
bi

gu
la

  (
w

hi
te

-t
hr

oa
te

d 
w

oo
dr

at
) 

 20
01

 
 [ 2

6 ]
 

 W
hi

te
w

at
er

 
A

rr
oy

o 
vi

ru
s 

 W
W

A
V

 
 U

SA
: N

ew
 M

ex
ic

o,
 

O
kl

ah
om

a,
 C

al
if

or
ni

a,
 

C
ol

or
ad

o,
 U

ta
h 

  N
eo

to
m

a 
al

bi
gu

la
  (

w
hi

te
-t

hr
oa

te
d 

w
oo

d 
ra

ts
) 

 19
93

 
 C

on
tr

ov
er

si
al

 
 [ 3

1 –
 33

 ] 

 C
la

ss
ifi 

ed
 N

ew
 W

or
ld

 a
re

na
vi

ru
se

s,
 C

la
de

 B
 

 A
m

ap
ar

í v
ir

us
 

 A
M

A
V

 
 B

ra
zi

l 
  N

ea
co

m
ys

 g
ui

an
ae

  (
G

ui
an

an
 n

ea
co

m
ys

) 
 19

64
 

 [ 2
0 ,

  3
4 ]

 
 C

ha
pa

re
 v

ir
us

 
 C

H
A

PV
 

 B
ol

iv
ia

 
 U

nk
no

w
n 

(i
so

la
te

d 
fr

om
 h

um
an

) 
 20

04
 

 V
ir

al
 h

em
or

rh
ag

ic
 

fe
ve

r 
 [ 3

5 ]
 

A.N. Honko et al.



505

 C
la

ss
ifi 

ed
 N

ew
 W

or
ld

 a
re

na
vi

ru
se

s,
 C

la
de

 A
 

 C
up

ix
i v

ir
us

 
 C

U
PX

V
 

 B
ra

zi
l 

  O
ry

zo
m

ys
 m

eg
ac

ep
ha

lu
s  

(A
za

ra
’s

 b
ro

ad
-

he
ad

ed
 o

ry
zo

m
ys

) 
 19

70
 

 [ 3
6 ]

 

 G
ua

na
ri

to
 v

ir
us

 
 G

T
O

V
 

 V
en

ez
ue

la
 

  Zy
go

do
nt

om
ys

 b
re

vi
ca

ud
a  

(s
ho

rt
- t

ai
le

d 
zy

go
do

nt
) 

 19
90

 
 “V

en
ez

ue
la

n 
he

m
or

rh
ag

ic
 f

ev
er

” 
 [ 3

7 ]
 

 Ju
ní

n 
vi

ru
s 

 JU
N

V
 

 A
rg

en
tin

a 
  C

al
om

ys
 m

us
cu

li
nu

s  
(d

ry
la

nd
s 

la
uc

ha
) 

 19
58

 
 Ju

ní
n/

A
rg

en
tin

ia
n 

he
m

or
rh

ag
ic

 f
ev

er
 

 [ 3
8 ,

  3
9 ]

 

 M
ac

hu
po

 v
ir

us
 

 M
A

C
V

 
 B

ol
iv

ia
 

  C
al

om
ys

 c
al

lo
su

s  
(b

ig
 la

uc
ha

) 
 19

63
 

 M
ac

hu
po

/B
ol

iv
ia

n 
he

m
or

rh
ag

ic
 f

ev
er

 
 [ 4

0 ,
  4

1 ]
 

 Sa
bi

á 
vi

ru
s 

 SA
B

V
 

 B
ra

zi
l 

 U
nk

no
w

n 
(i

so
la

te
d 

fr
om

 h
um

an
) 

 19
90

 
 “B

ra
zi

lia
n 

he
m

or
rh

ag
ic

 f
ev

er
” 

 [ 4
2 ]

 

 Ta
ca

ri
be

 v
ir

us
 

 T
C

R
V

 
 T

ri
ni

da
d,

 W
es

t I
nd

ie
s 

  A
rt

ib
eu

s 
ja

m
ai

ce
ns

is
 tr

in
it

at
is

  (
Ja

m
ai

ca
n 

fr
ui

t-
ea

tin
g 

ba
t)

 
 19

56
 

 [ 4
3 ]

 

 C
la

ss
ifi 

ed
 N

ew
 W

or
ld

 a
re

na
vi

ru
se

s,
 C

la
de

 C
 

 L
at

in
o 

vi
ru

s 
 L

A
T

V
 

 B
ol

iv
ia

 
  C

al
om

ys
 c

al
lo

su
s  

(b
ig

 la
uc

ha
) 

 19
73

 
 [ 4

4 ,
  4

5 ]
 

 O
liv

er
os

 v
ir

us
 

 O
LV

V
 

 A
rg

en
tin

a 
  N

ec
ro

m
ys

 b
en

ef
ac

tu
s  

(A
rg

en
tin

e 
ak

od
on

t)
 

 19
90

 
 [ 4

6 ,
  4

7 ]
 

 U
nc

la
ss

ifi 
ed

 n
ew

 w
or

ld
 a

re
na

vi
ru

se
s 

 O
co

zo
co

au
tla

 d
e 

E
sp

in
os

a a   
 O

C
E

V
 

 M
ex

ic
o 

  Pe
ro

m
ys

cu
s 

m
ex

ic
an

us
  (

M
ex

ic
an

 
de

er
m

ou
se

) 
 20

00
 

 [ 4
8 ]

 

 R
ea

l d
e 

C
at

or
ce

 a   
 R

C
T

V
 

 M
ex

ic
o 

  N
eo

to
m

a 
le

uc
od

on
  (

W
hi

te
-t

oo
th

ed
 w

oo
dr

at
) 

 20
05

 
 [ 4

9 ]
 

   H
F

  h
em

or
rh

ag
ic

 f
ev

er
,  s

p.
  s

pe
ci

es
 

  a  O
nl

y 
se

qu
en

ce
 d

at
a 

av
ai

la
bl

e,
 n

ot
 v

ir
us

 is
ol

at
io

n  

19 Arenaviruses



506

   Table 19.3    Newly detected or isolated arenaviruses (“Reptarenaviruses”) from snakes   

 Unclassifi ed arenaviruses from snakes 

 Virus  Abbreviation  Distribution 

 Reservoir 
species 
(reservoir(s)) 

 Year 
identifi ed  Reference(s) 

 CAS virus a   CASV  USA: 
California 

  Corallus 
annulatus  
(annulated tree 
boa) 

 2012  [ 50 ] 

 Collierville 
virus a  

 CVV  USA: 
California 

  Boa constrictor  
(boa constrictor) 

 2012  [ 50 ] 

 Golden Gate 
virus 

 GOGV  USA: 
California 

  Boa constrictor  
(boa constrictor) 

 2012  [ 50 ] 

 ROUT virus a   ROUTV  Netherlands   Boa constrictor  
(boa constrictor), 
 Corallus caninus  
(emerald tree 
boa) 

 2013  [ 51 ] 

 University of 
Helsinki 
virus 

 UHV  Germany, 
UK, Costa 
Rica 

  Corallus 
annulatus  
(annulated tree 
boa),  Corallus 
hortulanus  
(common tree 
boa),  Boa 
constrictor  (boa 
constrictor) 

 2012  [ 52 ] 

  ROUTV was previously known as Boa Av NL B3 
  a Only sequence data available (no virus isolate)  

  Fig. 19.1    Lassa virus particles budding from a stellate cell of a crab-eating macaque. Electron 
micrographs of virions (90–100 nm in diameter) budding from a presumed dendritic cell from an 
inguinal lymph node of a crab-eating macaque. Tissue was harvested 10 days following aerosol 
exposure to Lassa virus, Josiah strain. ( a ) Low magnifi cation at 25,000× and ( b )  inset , shown at 
high magnifi cation at 150,000×       
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RNA polymerase (L), as well as the matrix protein Z. The S segment encodes the 
nucleoprotein (NP) and the glycoprotein precursor (GPC) [ 69 ]. With such limited 
genome coding capacity, each expressed viral protein must play more than one role 
in the virus life cycle and suppression of the host immune response.  

2.2     Role of Viral Proteins 

2.2.1     NP 

 During viral infection, NP is the most abundantly produced viral protein. NP is 
involved in genomic RNA encapsidation and formation of viral ribonucleoprotein 
complexes (RNPs). NP binds to both genomic and antigenomic RNA and has 
immunosuppressive effects via the C-terminal domain [ 70 ,  71 ] that contains 3′–5′ 
exoribonuclease activity [ 72 ]. NP is encoded by the S segment, and translated from 
the subgenomic viral complementary mRNA [ 73 ]. The interaction of NP and L may 
be involved in the transient release of the RNA template from the nucleocapsid and 
in the movement of L during transcription [ 74 ].  

2.2.2      L 

 Based on sequence [ 75 ] and mass (greater than 200 kDa), researchers presumed that 
the L protein was an RNA-dependent RNA polymerase consisting of multiple 
domains, which was later confi rmed by mutational analysis and crystallographic 

  Fig. 19.2    Tubuloreticular structures in Lassa virus-infected circulating lymphocytes from a crab- 
eating macaque. Electron microscopy reveals burlap-like tubuloreticular structures (TRS) in a 
 circulating lymphocyte collected 8 days following aerosol exposure to Lassa virus, Josiah strain. 
( a ) Low-magnifi cation (30,000×) shows multiple, highly ordered TRS in the cytoplasm. ( b ) Higher 
magnifi cation (80,000×) of  boxed area , showing cross-sectional detail of a single TRS       

 

19 Arenaviruses



508

studies [ 76 – 80 ]. L has at least four conserved regions with separate transcription, 
cap-snatching, and genome replication functions [ 76 ,  78 ,  80 ,  81 ]. L also interacts 
with Z and NP. The interaction of NP and L may be required for the release of tem-
plate RNA during transcription [ 74 ].  

2.2.3      Z 

 Z is a self-associating protein forming dimers that can form virion-like particles 
(VLPs) with myristoylation sites for membrane targeting. The primary function of 
Z is to serve as a viral matrix protein, recruiting NP and the GP to the site of bud-
ding particles at the plasma membrane [ 71 ,  82 ,  83 ]. The release of viral particles 
from the cell requires the intracellular cargo receptor ERGIC-53 and its associated 
machinery [ 84 ], and the budding process has been modeled in vitro [ 85 ]. Also, Z 
appears to have an immune-modulatory role, as a domain was identifi ed in NW 
arenaviruses (but not LASV or LCMV) that inhibited type I interferon (IFN) induc-
tion of the retinoic acid-inducible gene 1 (RIG-I) signaling pathway [ 86 ]. Z inhibits 
viral RNA synthesis by directly binding to L [ 71 ] and exerts inhibitory effects on 
polymerase activity.  

2.2.4     GPC 

 GPC is expressed as a single polypeptide precursor that is cleaved in the lumen of 
the endoplasmic reticulum. The cleaved stable signal peptide (SSP) remains stably 
associated with the GP spike complex. SSP plays essential roles in endosomal traf-
fi cking and pH-mediated fusion and interacts with Z [ 87 – 89 ]. Further proteolytic 
processing cleaves GP to separate GP1 and GP2, producing a globular head domain, 
a transmembrane region, and spontaneous trimer formation [ 90 ,  91 ]. 

 The trimeric GP spike complex on the virion surface mediates cell entry of arena-
virions; GP1 mediates cell attachment and receptor binding, whereas GP2 mediates 
membrane fusion within the endosome [ 92 ,  93 ]. GP2 is typical class I fusion protein 
and, during fusion, undergoes a conformational change involving a characteristic 
six-helix bundle [ 94 ]. The association of GP with membrane microdomains and 
Z promotes effi cient budding at the plasma membrane [ 95 ].   

2.3     Receptor Usage, Attachment, Entry, and Uncoating 

 Cellular entry of arenavirions is mediated by at least two defi ned receptors. The primary 
OW cellular receptor is the highly conserved cell surface protein α-dystroglycan 
(α-DG). This receptor is the entry receptor for LCMV, LASV, Mobala virus, Mopeia 
virus, Ippy virus, Oliveros virus, and Latino virus [ 92 ,  96 ]. Transferrin receptor 1 
(TfR1) was fi rst identifi ed as the cellular receptor for the pathogenic NW arenavi-
ruses JUNV, MACV, Guanarito virus, and Sabiá virus (SABV) [ 93 ]. Later studies 

A.N. Honko et al.



509

examined and compared arenavirus usage of TfR1 from hosts of different species 
[ 74 ,  97 ,  98 ], and preference of virion binding to human TfR1 correlated directly 
with pathogenicity. Lujo virus (LUJV) appears to enter cells via both α-DG- and 
TfR1-independent mechanisms, suggesting the existence of a third arenavirus 
receptor [ 99 ]. 

 Following attachment, virion internalization occurs via clathrin-dependent or 
clathrin-independent mechanisms depending on receptor usage and virus. Similarly, 
differences in endosomal traffi cking are also observed. However, a pH-dependent 
fusion step of the viral and cellular membrane is required [ 100 – 102 ]. Once virions 
are internalized and uncoated, virus replication is restricted to the cytoplasm where 
L initiates transcription at the 3′ end of each genomic RNA segment.  

2.4     Ambisense Coding Strategy and Replication 

 Arenaviruses use an ambisense coding strategy, whereby each single-stranded RNA 
genome segment has two open reading frames in opposite orientation (viral genomic 
sense versus the viral complementary sense). The noncoding intergenic regions 
(IGR) between the two open reading frames of each segment of most arenaviruses 
are predicted to form one- or two-stem-loop hairpin structures (SABV segments are 
predicted to have three-stem loop structures [ 103 ]). This G:C rich hairpin confi gura-
tion was fi rst identifi ed in the S segment of PICHV [ 104 ,  105 ], and its role as a puta-
tive terminator of L was suggested [ 105 ]. Both the L and S segments also have 
terminal noncoding untranslated regions (UTRs) at their extremities; these conserved 
regions of reverse complementary sequence promote the circularization of each 
genome segment into “panhandle” structures via base pairing [ 106 ]. The coiled, 
circular fi laments of viral RNA genome have been made visible by electron micros-
copy using purifi ed TCRV nucleocapsid [ 107 ]. The 3′ UTR of each segment also 
serves as a conserved promoter for L. 

 Arenavirus RNA synthesis is initiated after delivery of each of the two genomic 
segments, each associated with L, into the cytosol. Primary transcription from the 
3′ end of each genomic template results in mRNA transcribed from the NP and L 
genes in antigenomic orientation, terminating at nonspecifi c sites within the distal 
end of the stem loop in the IGR. As an example of the ambisense strategy for the S 
segment, NP mRNA would be transcribed directly in this fashion from the viral 
genome. However, transcription of GPC gene would not occur until the replication 
intermediate step of viral complementary RNA has been completed. Regulation of 
the switch from transcription to replication is controlled by the local abundance of 
particular viral proteins. At early times after uncoating, gene expression of NP and 
L is favored as the limiting amounts of NP reduce the read-through capability of 
L. Viral RNA synthesis is also promoted at this time, when low concentrations of 
Z protein are present. As the intracellular concentrations of Z increase following 
transcription and translation, the functions of Z might be modulated to increase the 
inhibition of viral RNA synthesis by directly interacting with L [ 71 ]. Z directly binds 
to L and exerts inhibitory effects on the polymerase activity in a dose- dependent 
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manner, potentially driving the shift from viral replication to virus assembly and 
budding. This interaction of Z with L would also ensure that L is packaged into 
virions prior to release. 

 The arenavirus ambisense coding strategy is hypothesized to play a role in the 
establishment of persistence in the rodent host, as well as immune evasion by 
limiting and regulating transcription and replication at critical times during the 
arenavirus replication cycle.   

3     Human Disease 

3.1     Transmission 

 Humans usually become infected via direct contact with rodents by inhaling dried 
excreta (feces, urine) during occupational exposure (laboratory workers, rodent 
sellers, farm workers) or from keeping rodents as pets [ 108 ]. Destruction of natural 
habitat due to human expansion increases the potential for human contact with 
infected rodents and may be a factor in zoonotic transmission.  

3.2     Clinical Presentation and Pathogenesis 

 The incubation period for human arenavirus infections ranges from 7 to 21 days 
followed by onset of infl uenza-like clinical signs and symptoms, including general 
malaise, sore throat, high fever, headache, myalgia, and lymphadenopathy. 
Progression of disease typically includes gastrointestinal symptoms such as nausea, 
vomiting, and diarrhea [ 109 – 113 ]. Disease presentation may range widely, from 
very mild to severe disease. More severe disease and poorer prognosis is generally 
associated with higher viral loads [ 114 ]. 

 In cases that resolve, recovery typically occurs within 8–10 days of disease onset 
and is usually concomitant with appearance of circulating antibody and measurable 
cellular responses [ 112 ]. Severe disease is characterized by deterioration in the 
patient’s condition that includes facial edema, severe pulmonary effusion, and 
bleeding from mucosal surfaces. Neurological signs, including tremors, disorienta-
tion, hyporefl exia, and ataxia may also present. Patients who succumb to disease 
(approximately 15–30 % of cases of viral hemorrhagic fever-causing arenaviruses) 
may experience respiratory distress, as a result of pulmonary edema, and/or enceph-
alopathy, which sometimes results in seizures and coma, followed by shock [ 115 ]. 
In the case of Lassa fever, nosocomial outbreaks are sometimes associated with 
higher incidence of fatality, ranging from 36 to 65 % [ 116 ]. Survivors of Lassa fever 
may experience diffuse hair loss and changes in nail beds. Sensorineural deafness, 
a common clinical feature that occurs during convalescence and late stage of dis-
ease, is noted in approximately 15 % of cases [ 117 ]. 

 Unlike other highly virulent hemorrhagic fever viruses, such as Ebola virus, 
arenaviruses are not distinguished by causing prominent hemorrhagic features or 
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disseminated intravascular coagulation (DIC) [ 111 ]. However, viral infection of 
endothelia and disruption of vascular function plays a prominent role in pathogen-
esis caused by hemorrhagic fever-causing arenaviruses, particularly in the case of 
LASV. Impaired vascular regulation is the causative underlying mechanism of facial 
erythema or edema, conjunctivitis, hypotension, pulmonary and pericardial edemas, 
and shock. In some cases, petechial or macular rash likely results from increased 
vascular permeability [ 116 ]. 

 LASV and JUNV are perhaps the best characterized of the OW and NW hemor-
rhagic fever viruses, respectively, and diverge in their histological and pathological 
features of disease. Lassa fever is characterized by a viral hepatitis [ 118 ] that is not 
as prominent in patients with Junín hemorrhagic fever. Renal necrosis is more pro-
nounced in patients with Junín hemorrhagic fever than in patients with Lassa fever, 
and these necrotic sites correspond to presence of high viral replication [ 113 ]. 
Other OW arenaviruses, such as LUJV, and NW arenaviruses, such as Chapare 
virus, MACV, GTOV, and SABV, cause diseases with very similar presentation. 

 Prominent differences in OW and NW arenavirus infections become more 
 readily apparent in regard to the immune response. Lassa fever results in general-
ized immune suppression [ 119 ,  120 ], whereas Junín hemorrhagic fever promotes 
development of a deregulated systemic infl ammation resulting from uncontrolled 
cytokine production [ 121 – 123 ]. Survival from Lassa fever is dependent on a strong 
cellular response whereas humoral immunity is less important [ 114 ]. Conversely, 
neutralizing antibodies are much more important for controlling NW arenavirus 
disease. Results from animal modeling of arenavirus infection suggest that comple-
ment fi xation is a critical component of the effectiveness of the humoral immune 
response, although cellular immunity is important [ 124 ]. 

 Pathogenesis is thought to partially result from virus damage to the endothelial 
system. Endothelial cells support high levels of virus replication without causing cell 
death, as arenaviruses do not undergo lytic cell replication. This replication initiates 
release of infl ammatory mediators such as prostaglandins and nitric oxide, which 
promote vascular permeability [ 125 ]. Additionally, arenaviruses are known to cause 
thrombocytopenia as a result of abnormal platelet aggregation [ 126 ] and reduced 
complement activity [ 127 ], both of which contribute to coagulopathy and tissue 
edema. Generally, severity of arenaviral disease is proportional to concentrations of 
IFN-α, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), particularly in 
Junín hemorrhagic fever [ 121 – 123 ].   

4     Animal Models of Highly Pathogenic Arenaviruses 

4.1     Rodents 

4.1.1     Laboratory Mice 

 Since the almost simultaneous discovery of LCMV by three groups [ 6 – 10 ], the use 
of LCMV in vitro and in laboratory mice as a research model [ 128 – 133 ] has been 
critical to the fundamental understanding of the immune system, particularly in 
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regard to cellular immunity. LCMV models have allowed investigators to study all 
aspects of the T lymphocyte response. These aspects include early interactions of T 
cells with dendritic cells in the context of major histocompatibility complex (MHC) 
restriction, the determination of immunodominant peptides and development of 
tetramer reagent systems, the phases of T cell expansion and contraction, and 
establishment of memory cells that occur following infection. Most of this research 
compared the dynamics of the murine immune response induced by the LCMV 
Armstrong isolate, which results in an acute infection of 7–10 days, to the clone 13 
isolate, which establishes a chronic infection (≥3 months) of laboratory mice. 

 For the pathogenic arenaviruses, rodent models of disease provide an economi-
cal way to characterize pathogenesis, vaccine immunogenicity, host-range restric-
tion, and therapeutic drug evaluation. Infection of laboratory mice with arenaviruses 
generally leads to a transient or persistent infection without characteristic pathogen-
esis seen in primates and requires  extensive virus adaptation to promote virulence. 
As a result, most mouse models of highly pathogenic arenavirus infections typically 
rely on gene-knockout variants that produce mice with an immune-compromised 
status rendering them more susceptible to viral infections in general. 

 Two gene knockout models utilize either signal transducer and activator of tran-
scription 1 (STAT1) or type I interferon (IFNαβR) receptor knockout mice to cripple 
the IFN response and establish a pathogenic model without the requirement for 
virus adaptation to the host. The STAT1 gene family is activated in response to type 
I IFN triggered by viral infection and regulates expression of a variety of genes 
important for cell viability and immune function regulation. 

 STAT1 knockout mice have previously been utilized for both wild-type LASV 
[ 134 ] and MACV [ 135 ] exposures resulting in lethal disease characterized by 
weight loss, disseminated infection, high serum and tissue viral titers, and death. 
Additional models have also been developed with similar results by eliminating the 
gene for IFN-α- and IFN-β-receptors, effectively disabling the IFN response. 
IFNαβR knockout mice have been used for a variety of both OW and NW arenavi-
ruses with success [ 136 ,  137 ]. 

 Laboratory mice that are typically not susceptible to LASV infection become 
unable to control viral replication and present with severe Lassa fever-like disease 
when murine MHC class I is replaced with a humanized ortholog. Depletion of 
T cells revokes the conferred lethality and development of signifi cant disease, 
despite the ability of the virus to maintain high-level replication, suggesting an 
important role for T-cells in LASV pathogenesis. The absence of T cells may lead 
to an abolition of appropriate activation of antigen-presenting cells, i.e., T cells may 
be contributing to deleterious infl ammatory responses mediated by monocytes/
macrophages [ 138 ]. 

 T cells are also important for JUNV pathogenesis. Murine models that make use 
of athymic mice persistently infected with JUNV have been described. The neuro-
virulence of JUNV in laboratory mice has been previously hypothesized to depend 
on the presence of T lymphocytes [ 139 ]. To achieve virulence in suckling mice, 
splenocytes from persistently infected athymic animals were passively transferred 
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via the intracranial route. Transfer of virus-infected cells results in brain lesions and 
establishment of acute disease, followed by death within 25 days [ 140 ]. Normal 
splenocytes did not affect viral burden in the brain nor result in pathology. Results 
of these studies highlight the role for T cells in neurovirulence and pathogenesis, at 
least in the murine model. The establishment of persistent infection is also critical 
for pathogenesis as splenocytes taken from athymic mice just after infection were 
unable to confer disease, whereas those harvested 30–45 days postinoculation pro-
duced a lethal outcome [ 141 ].  

4.1.2     Guinea Pigs 

 Guinea pig models of arenavirus infections have been widely used to study patho-
genesis and to evaluate the effi cacy of potential vaccines and therapeutics. Current 
guinea pig models of arenavirus infection caused by both NW and OW hemorrhagic 
fever-causing arenaviruses appear to closely resemble human disease, but do not 
epitomize its neurological aspects. Strain 13 guinea pigs have been the primary animal 
model to date, presumably because they are more susceptible to arenavirus infections 
than Hartley guinea pigs [ 142 ]. Both LUJV and LASV infection of strain 13 guinea 
pigs results in uniform susceptibility and high lethality with similar pathological 
features [ 142 ,  143 ]. Animals rapidly develop high fever and weight loss progressing 
to lethargy, reduced grooming, and death. Viremia and tissue titers are consistent 
with disseminated viral disease involving most visceral and lymphatic organs. 
Histologic fi ndings from animals infected with LUJV include hepatic infarction with 
associated necrosis and fi brin deposition, whereas the most prominent histologic 
feature in LASV infection is interstitial pneumonia. 

 JUNV infection models utilizing strain 13 guinea pigs are characterized by 
prominent hematologic and lymphatic involvement including necrosis and cellular 
depletion and hemorrhage [ 144 ,  145 ]. Further study of the hematological changes 
of bone marrow during the course of infection revealed a signifi cant increase in cells 
with abnormal morphology [ 145 ,  146 ].   

4.2     Nonhuman Primates 

4.2.1     Common Squirrel Monkey 

 Walker et al. fi rst described a nonhuman primate model of Lassa fever in the 
common squirrel monkey ( Saimiri sciureus ) [ 147 ]. Four monkeys were inoculated 
intramuscularly and serially sampled post-exposure on days 7, 12, 14, and 28 to 
both evaluate the clinical course and characterize progression of disease pathology. 
Animals exhibited a variable clinical course with an incubation period between 8 
and 18 days. Early clinical signs included development of anorexia, polydipsia, and 
lassitude. Early presence of detectable virus in the tissues involved lymph nodes, 
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liver, and kidneys followed by dissemination through various other organs in a 
pantropic manner. Histopathological fi ndings suggested similarities between the 
common squirrel monkey model and human disease pathology that included germi-
nal necrosis in lymphoid organs, myocarditis, acute arteritis, renal tubular necrosis, 
hepatocytic regeneration, and chronic infl ammation of the choroid plexus, ependy-
mal, and meninges with cerebral perivascular cuffi ng.  

4.2.2     Tufted Capuchins 

 Intracerebral JUNV infection of tufted capuchins ( Cebus apella ) [ 148 ] results in 
clinical signs after a 2-week incubation period, including weight loss and mild-to- 
moderate central nervous system involvement that resolves in most animals. Despite 
resolution, some animals still have detectable viral antigen in the brain as long as 
5 months post exposure. Hemorrhagic manifestations do not develop. The clinical 
response to infection is not uniform, though all animals develop high antibody 
responses. Although the model does not reproduce the human disease faithfully, it 
may have utility to study effects of the virus on the central nervous system or to 
evaluate viral persistence.  

4.2.3     Common Marmoset 

 Both JUNV and LASV infection models utilizing the common marmoset ( Callithrix 
jacchus ) have been described [ 149 – 154 ]. Except for microscopic neurological irreg-
ularities [ 155 ], JUNV infection in common marmosets shares pathological and 
hematological characteristics with human disease. Common marmosets infected 
with JUNV intramuscularly developed characteristic disease [ 156 ]. Animals initially 
presented with anorexia, lassitude, weight loss, thrombocytopenia, and leukocytope-
nia, followed by progression to severe fatal neurological and hemorrhagic disease 
approximately 3 weeks after exposure. Histologically, development of multifocal 
hemorrhage, microscopic lesions of the central nervous system, interstitial pneumo-
nia, lymphocytic depletion, hepatocytic necrosis, and loss of bone marrow cellularity 
correlate with high virus concentrations [ 155 ]. 

 Further evaluation of the hematological values of JUNV-infected marmosets 
revealed anemia and alteration of blood coagulation as evidenced by reduction of 
platelets and disruption of enzymatic activation of thrombin. These alterations ulti-
mately led to a state of DIC [ 157 ,  158 ]. Complement activation was independent of 
clotting abnormalities, though this fi nding is inconsistent with what is known about 
human disease and remains to be further evaluated in nonhuman primate models. 

 A later study also described LASV infection in experimentally infected com-
mon marmosets that echoed human disease [ 149 ]. Following subcutaneous inocu-
lation with LASV strain Josiah, common marmosets developed a systemic illness 
including fever, weight loss, high viremia and viral tissue loads, liver damage, and 
substantial morbidity. Virus tissue tropism was extensive as indicated by extremely 
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high viral titers in the spleen, lymph nodes, lung, liver, kidney brain, and adrenal 
glands. The most prominent microscopic features included hepatic necrosis, inter-
stitial nephritis, and depletion of lymphoid cells. Additionally, these histologic 
fi ndings suggested impairment of adaptive immune responses by depletion of T 
and B cells and ablation of macrophage expression of MHC class II. The common 
marmoset therefore appears to be a suitable model for further characterization of 
Lassa fever pathogenesis.  

4.2.4     Rhesus Monkey 

 The disease caused by LASV in rhesus monkeys ( Macaca mulatta ) shares many 
striking similarities with human Lassa fever, including onset of high fever, general 
weakness and malaise, pleural and pericardial effusion, hemorrhagic manifestations 
(e.g., bleeding from mucosal surfaces), shock, and death [ 116 ]. Several authors 
reported on LASV Josiah exposure of rhesus monkeys via the subcutaneous route 
of exposure with very similar fi ndings [ 159 – 162 ]. Animals developed clinical signs 
(high fever, anorexia, reduced responsiveness) 4–12 days post exposure. This model 
was not uniformly lethal, and survivors tended to present with signs of disease later 
than their moribund counterparts. As disease progressed, animals became increas-
ingly lethargic and presented with petechial skin rash, recumbency, elevated liver 
enzyme concentrations, and weakness. Although not ubiquitously reported, some 
cases involved aphagia, constipation, conjunctivitis, and hiccups. End-stage disease 
involved hypotension and hypothermia just prior to death. 

 Gross pathology and histological studies of LASV-infected rhesus monkeys 
resembled human disease, including pulmonary congestion, pleural effusion, peri-
cardial edema, fi brin deposition, and gross visceral hemorrhage. The most prominent 
histological fi ndings included necrotizing hepatitis and interstitial pneumonia [ 161 ]. 
While coagulopathy consistent with DIC was not observed, increased time for sam-
ple clotting was observed occasionally, suggesting a clotting abnormality consistent 
with viral hemorrhagic diseases with associated platelet aggregation [ 160 ,  162 ]. 
High virus titers in tissues were consistently reported in excess of serum viremia and 
included liver, lung, adrenal glands, pancreas, spleen, kidneys, lymph nodes and neu-
rological tissues, with liver, spleen, and lungs generally yielding the highest virus 
titers. With the exception of a single animal that developed hind leg paralysis fol-
lowing apparent recovery from clinical signs at day 58 [ 162 ], no other neurological 
fi ndings were reported. This fi nding is in contrast to the smaller primate models 
described previously (such as common marmosets and common squirrel monkeys). 
Intravenous inoculation of LASV strain Josiah into rhesus monkeys led to similar 
clinical presentation and pathological fi ndings as those recorded after subcutaneous 
inoculation [ 163 ]. 

 JUNV infection in rhesus monkeys can be established by the intramuscular and 
aerosol routes of exposure. McKee et al. compared several strains of JUNV (Romero, 
Espindola, Ledesma, and P-3551) in rhesus monkeys to characterize differences in 
disease course and outcome [ 164 ,  165 ]. Animals initially presented with similar 
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onset independent of strain, including progressive anorexia, lassitude, and diarrhea 
or constipation. JUNV infection in macaques infected with the Romero strain 
spontaneously resolved without developing more substantial illness. 

 In macaques infected with the other three strains (i.e., Espindola, Ledesma, 
P-3551), JUNV infection progressed to debilitating illness and, in most cases, death. 
These strains induced a pronounced loss of body weight, facial erythema developing 
into macular rash, conjunctivitis, oral ulcerations, and in some cases hypothermia 
precluding death by 24–48 h. 

 All three strains evolved into distinct disease phenotypes. Espindola strain infec-
tion induced a primarily hemorrhagic disease, including widespread petechial rash, 
mucous membrane and/or nasal bleeding prior to death, and was associated with 
severe bacteremia [ 164 – 166 ]. In contrast, animals infected with the Ledesma strain 
developed early bacteremia and a prominent neurological disease, including 
encephalopathy, tremors, spontaneous and isolated limb paralysis, and balance dis-
turbances. Animals infected with the P-3551 strain presented with a disease that 
shared components of both JUNV Espindola and Ledesma strain infections, but 
disease was generally milder (all animals infected with the Espindola strain suc-
cumbed to disease, whereas infection with the other two strains did not necessarily 
have a lethal outcome). 

 Investigators of a study assessing the aerosol route of exposure used the Espindola 
strain of JUNV but induced disease was similar to disease seen in intramuscularly 
inoculated animals [ 167 ]. All macaques developed acute signs 2–3 weeks post 
exposure, including anorexia, malaise, and weight loss, followed by development of 
rash, thrombocytopenia, lymphadenopathy, oral hemorrhage, and mucosal bleed-
ing. Animals surviving beyond 3 weeks experienced a wasting illness prior to death. 
Interestingly, no distinct neurological signs were noted following aerosol exposure 
in rhesus monkeys. 

 MACV, the causative agent of Machupo/Bolivian hemorrhagic fever in humans, 
was also studied in rhesus monkeys. Initials signs were present within a week of 
subcutaneous inoculation and included depression, progressive anorexia followed 
by constipation, and intermittent diarrhea [ 168 ,  169 ]. Animals generally either suc-
cumbed to disease in this initial phase or progressed to develop neurological mani-
festations (tremors, nystagmus, lack of coordination, paresis, coma). Most animals 
succumbed during this neurological phase of disease, but some recovered. Animals 
that survived the fi rst phase of disease typically developed neutralizing antibodies 
[ 168 ]. The mean time to death was also partially dependent on age and weight, with 
younger animals succumbing earlier. The mean time to death for smaller and larger 
rhesus monkeys was 19.3 days and 30.5 days, respectively. 

 Viremia in animals exposed to MACV was highest during the initial 2 weeks of 
infection but was still present in animals that had neurological signs. Interestingly, 
in an experiment in which complement was selectively depleted, viremia increased 
overall, highlighting the importance of complement fi xation for clearance of the 
virus by antibodies [ 168 ]. These fi ndings indicate that clinicians should exercise 
caution when passive transfer of convalescent serum is considered to treat human 
disease. 
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 Gross and microscopic lesions included lymphocytic infi ltrates in brain, spinal 
cord, pancreas, intestine, liver, kidneys, adrenals, heart, and skeletal muscle. 
Additional lymphocytic infl ammation was noted in the nervous system [ 170 ]. 

 Disease in rhesus monkeys, unlike NW monkeys, appears to correlate well with 
human disease induced by both the OW and NW arenaviruses (specifi cally LASV, 
JUNV, and MACV). Progression of the clinical phase for the rhesus monkey model 
is well mirrored in human case reports, making these models particularly well suited 
for studies exploring pathogenesis or evaluating medical countermeasures,  including 
both vaccine and therapeutic approaches.  

4.2.5     Crab-Eating (Cynomolgus) Macaque 

 Crab-eating macaques ( Macaca fascicularis ) have been used as models for infection 
caused by highly virulent arenaviruses, including LASV and MACV. As with rhesus 
monkeys, arenavirus disease in crab-eating macaques caused by LASV and MACV 
share major defi ning characteristics with human disease. 

 Following intramuscular inoculation of LASV, animals develop high fever, 
anorexia, mild-to-moderate depression, and dehydration between days 3 and 10. 
Facial edema occurs in some animals. Progressive anorexia and severe dehydration 
are followed by development of neurological signs, including convulsions and sei-
zures, which rapidly increase in duration and severity until death [ 171 ]. 

 Signifi cant clinical parameters of LASV infection included increases in 
D-dimer and protein C plasma concentrations followed by elevation of liver 
enzyme and blood urea nitrogen concentrations in late stages of disease. Viremia 
occurred early in disease, starting as early as day 3, and peaked at approximately 
2 weeks prior to death. 

 Increases in peripheral cytokine concentrations were signifi cant for IL-6, IL-1β, 
eotaxin, and monocyte chemoattractant protein-1 (MCP-1) [ 171 ]. Baize et al. dem-
onstrated that production of large quantities of IL-6 was correlative with fatal out-
come. Survivors tended to have early and robust cell-mediated immune responses, 
further supporting the pivotal role of T cells over humoral responses in survival of 
Lassa fever [ 120 ]. Other studies supported these fi ndings by demonstrating substan-
tial increases in chemokines and cytokines in crab-eating macaques  following inoc-
ulation with LASV, including those associated with immunosuppressive activities 
[ 172 ,  173 ]. 

 Gross necropsy fi ndings of LASV infection revealed lymphadenopathy with 
associated congestion, pale and friable livers, enlargement of the adrenal glands and 
pancreas, renal congestion, and pericardial effusion. Focal, petechial hemorrhage 
was noted on the mucosal surface of the urinary bladder, and congestion of the ileo-
cecal junction suggested gastrointestinal involvement. 

 Histology supported gross pathological fi ndings with antigen staining primarily 
associated with antigen-presenting cells in lymph nodes, spleen, and thymus. 
Hepatic and renal changes included lymphoplasmacytic and neutrophilic infl amma-
tion with substantial immunostaining in animals sacrifi ced during late-stage d isease. 
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Fibrin deposition was also noted in both tissues. Mild interstitial pneumonia 
occurred in a single animal, and cardiac involvement was evident by neutrophilic 
infl ammation of the pericardium. LASV antigen staining was present in all tissues 
evaluated, indicating systemic dissemination of virus. Microscopic examination of 
neurological tissue indicated meningoencephalitis in the cerebrum, cerebellum and 
brain stem with neuronal necrosis and gliosis. Endothelial and histiocytic cells were 
antigen positive in terminal cases [ 171 ]. 

 Crab-eating macaques inoculated subcutaneously with MACV (Carvallo strain) 
exhibited clinical progression and pathogenesis similar to rhesus macaques with a 
biphasic disease character consisting of initial fever, anorexia, and depression fol-
lowed by development of neurological symptoms often leading to death. Unlike 
rhesus monkeys, however, crab-eating macaques succumbed to disease without 
development of signs equal in severity to those in rhesus monkeys inoculated with 
an equivalent dose of virus. The mean time to death for MACV-infected crab-eating 
macaques was 17 days post-exposure [ 168 ]. 

 Aerosol and intramuscular exposure of macaques with the Chicava strain of 
MACV caused a similar disease course as seen with the Carvallo strain in crab- 
eating macaques [ 174 ]. Animals exhibited similar biphasic disease, and death 
occurred within 3 weeks of exposure. Similar to previous studies, lymphadenopathy 
with associated congestion, viral hepatitis, and gastrointestinal hemorrhage were 
present. Histologic fi ndings consisted of necrosis and apoptosis of cells of affected 
tissues, including liver, pancreas, adrenal glands, lymph nodes, stomach, and intes-
tines. Interstitial pneumonia was also present in some cases. As expected, infl am-
mation within the central nervous system was also histologically confi rmed.   

4.3     Use of Surrogate Models of Highly Virulent Arenaviruses 

 Work with OW and NW arenaviruses that cause viral hemorrhagic fevers in humans 
(LASV, Lujo virus, MACV, JUNV, SABV, GTOV, and Chapare virus), is restricted 
to biosafety level 4 conditions, limiting the work to a few specialized facilities. 
As a result, surrogate models utilizing related viruses in both rodent and primates 
have been developed for disease modeling purposes [ 175 – 186 ]. Several arenavi-
ruses (e.g., TCRV, PICHV, MOPV, LCMV) or attenuated varieties of parental 
viruses that do not cause substantial disease in humans (except immunocompro-
mised individuals) have been used in the development of both rodent and primate 
models with less inherent risk to researchers. 

 While these surrogate models can and have provided a wealth of information in 
advancing understanding of their highly pathogenic relatives, caution should be 
exercised with the extent to which these models can be used to identify pathogenic 
mechanisms and correlates of human disease. Most rodent models are based on 
gene knockouts that fundamentally alter the immune response, and nonhuman pri-
mate models rarely completely recapitulate the disease resulting from more virulent 
arenavirus members. These models are best suited to be used to specifi cally explore 
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pointed questions about aspects of these diseases that the models can faithfully 
reproduce. Alternatively, surrogate models can be used to ask more general questions 
about arenavirus replication applicable to all family members.   

5     Vaccines and Therapeutics 

5.1     Vaccines 

5.1.1    Live Attenuated or Nonpathogenic Viruses 

 Currently, the only licensed, yet not FDA-approved, vaccine for use in the prevention 
of disease caused by an arenavirus is Candid#1. This vaccine has been clinically 
demonstrated to be save and effi cacious against JUNV infection [ 187 ]. Using 
recombinant viruses in a laboratory mouse model of JUNV infection, the parental 
JUNV XJ44 strain was shown to be attenuated via a single amino acid change in 
GPC at position 427 (phenylalanine to isoleucine) [ 188 ,  189 ]. Vaccine safety and 
immunogenicity were demonstrated in rabbits, guinea pigs, and rhesus monkeys, 
and fi nally in randomized clinical trials in humans [ 190 ]. The vaccine has been suc-
cessful in reducing both disease magnitude and severity of Junín hemorrhagic fever 
and is licensed in Argentina for vaccination of people living in high-risk areas where 
JUNV virus is endemic [ 187 ]. 

 Another live attenuated vaccine candidate with substantial promise is the chimeric 
virus ML-29 containing the LASV S segment and the MOPV L segment. This recom-
binant virus was generated by coinfection of Vero cells with both viruses followed by 
plaque purifi cation of the ML-29 virus clone [ 191 ]. In guinea pigs vaccinated with 
ML-29 and inoculated with LASV, disease did not develop. Immunogenicity was then 
evaluated in rhesus monkeys, and virus-specifi c cellular immunity to LASV and 
MOPV antigens, as well as LCMV, was demonstrated. The rhesus monkeys did not 
develop overt disease, nor were there histological lesions following vaccination, 
suggesting that ML-29 could be used for prevention of Lassa fever [ 192 ]. 

 Nonpathogenic arenaviruses have also been evaluated as vaccine candidates 
against disease caused by more virulent arenaviruses. Early studies using MOPV 
indicated cross-protection against LASV infection in rhesus monkeys, as the mon-
keys had no signs of disease and survived otherwise fatal infection [ 193 ]. However, 
liver and kidney histological alterations were noted in rhesus monkeys infected with 
MOPV in the absence of overt clinical signs of disease, indicating that arenaviruses 
thought to be apathogenic may not be entirely safe [ 163 ]. Thus, caution should be 
exercised when evaluating the safety of closely related viruses thought not to cause 
disease in humans. 

 Similar approaches with TCRV have also been used successfully in the common 
marmoset primate model of JUNV disease [ 153 ,  154 ,  194 – 196 ]. Intramuscular or 
intranasal inoculation of marmosets with TCRV prior to injection with a lethal 
dose of JUNV provided protection from disease development and death. 
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Additionally, intrathalamic inoculation of animals with TCRV caused no clinical 
signs of disease, histopathologic changes, or viremia up to 480 days post-inoculation. 
Common marmosets developed measurable, protective immune responses as early 
as 3 weeks following exposure to TCRV. Results of these studies suggest TCRV may 
be a  viable and safe candidate for vaccination against the pathogenic JUNV. 

 XJC13, an attenuated variant of JUNV derived from the parental XJ strain, was 
tested for effi cacy as a vaccine candidate in common marmosets [ 151 ]. Following 
intramuscular inoculation of XJC13, no fatality or signs of overt illness were 
observed in animals up to 420 days post-inoculation. The only evidence of patho-
genicity was slight weight loss between days 18 and 40 post-inoculation, after 
which animals’ weight rapidly normalized. Viremia was detectable between day 6 
and 22 post-inoculation with virus spread limited to lungs, spleen, lymph nodes, 
and bone marrow. Ganglionic hypertrophy with immunoblast proliferation was 
detected in animals sampled approximately 3 weeks after inoculation without 
recovery of virus. Measureable infectious virus could not be isolated at sampling 
time points greater than 1 year post-inoculation, although viral antigen staining 
was present in some organs. 

 All animals developed neutralizing antibody responses from week 3 onward. 
At days 60 or 380 following XJC13 inoculation, animals were inoculated with a lethal 
dose of the parental JUNV strain. XJC13 exposure conferred protection to all animals, 
whereas all control animals died. This study provides evidence that common marmo-
sets may be useful in evaluating attenuated vaccines for JUNV infection.  

5.1.2    Recombinant Vaccine Vector Approaches 

 More targeted approaches for the development of recombinant vaccine virus vectors 
have also been used. Vaccinia virus vectors modifi ed to express LASV NP or GPC 
successfully protected guinea pigs against lethal LASV infection [ 197 ,  198 ]. Multiple 
vaccinia virus vaccines expressing different LASV antigens were tested in nonhu-
man primates, including vectors expressing only N-terminal (GP1) or C-terminal 
(GP2) parts of GPC, whole GPC or NP. Only whole GPC or administration of both 
GP1 and GP2 provided signifi cant protection against disease and death in both rhe-
sus monkey and crab-eating macaque models [ 199 ]. All animals receiving either 
GP1 or GP2 vaccines succumbed to disease, and 80 % of NP-vaccinated animals 
died despite development of high antibody titers. In comparison, all animals receiv-
ing both the GP1 and GP2 vaccines simultaneously survived, and 90 % of the ani-
mals receiving whole GPC survived even in the absence of signifi cant antibody 
responses. The results of these studies suggest that a predominant cellular response 
is important in conferring protection and that whole GPC of LASV is necessary in 
eliciting a protective outcome. 

 A similar strategy was used for the development of a candidate vaccine against 
JUNV infection. A recombinant vaccinia virus expressing either GPC or NP of 
TCRV or GPC of JUNV was used to vaccinate guinea pigs. This approach resulted 
in partial protection of guinea pigs following lethal JUNV injection in both groups 
(50 % for TCRV GPC and 72 % for JUNV GPC) [ 200 ]. Interestingly, while recombinant 
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vaccinia virus expressing NP protein elicited a neutralizing antibody response, the 
vaccine was not protective. Conversely, both GPC vaccines were protective in the 
presence of low or undetectable neutralizing antibodies. Protection with  recombinant 
vector vaccines against LASV and JUNV infection without appreciable antibody 
responses suggest that cell-mediated immunity (e.g., T cell responses) may play a 
prominent role in protection of animals from arenavirus infection. 

 Vesicular stomatitis Indiana virus (VSV) has also been used as a recombinant 
vaccine vector. Replication-competent VSV expressing LASV GPC protected 
 nonhuman primates from lethal LASV infection. Transient viremia developed fol-
lowing inoculation, but no outward clinical signs of disease were noted [ 201 ,  202 ]. 
As was seen with the vaccinia virus vector, the VSV vaccine elicited strong cellular 
immune responses in vaccinated monkeys. In contrast to other vaccines, however, 
rVSV expressing LASV GP also induced a humoral response, although the contri-
bution of this response to the positive outcome was impossible to determine. 

 Vaccination with the well-described yellow fever virus 17D backbone modifi ed to 
express LASV GP1 and GP2 has resulted in partial protective effi cacy in guinea pigs. 
Approximately 6 weeks post vaccination, fi ve of six guinea pigs inoculated subcuta-
neously with 1,000 PFU of LASV survived; however, all animals developed clinical 
signs of disease (e.g., fever, loss of body weight and viremia) [ 203 ]. The vaccine also 
successfully elicited CD8+ T-cell responses in both CBA/J+ mice and strain 13 
guinea pigs. As the vaccine failed to protect common marmosets from lethal LASV 
infection, the likelihood of effi cacy in humans may be questionable [ 204 ]. 

 A Venezuelan equine encephalitis virus replicon particles (VRP)-based vaccine has 
also been tested and found effective in protecting guinea pigs from lethal LASV infec-
tion [ 205 ]. Both individual vaccine strategies, VRPs expressing LASV GP or NP, were 
protective, as was vaccination with both vaccines simultaneously. None of the vacci-
nated animals developed signs of disease, and the majority of guinea pigs did not 
develop viremia as a consequence of LASV inoculation. Unlike previous vaccine strat-
egies in which the use of NP did not lead to protection, results of this study provide 
evidence that an NP vaccine strategy may be viable. None of the vaccinated animals 
developed signifi cant neutralizing antibody responses following vaccination, again 
suggesting a central role for cellular immunity in prevention of arenavirus disease. 

 Perhaps one of the most interesting approaches to development of a vaccine 
against LASV infection has been the expression of LASV NP in  Salmonella  
Typhimurium. Mucosal immunization of mice elicited both virus NP-specifi c 
humoral and T cell responses [ 206 ]. Further evaluation of effi cacy in an LCMV 
laboratory mouse model suggested that protection against LCMV infection could be 
achieved with the strategy. Experiments using this strategy with LASV, both in 
rodents and nonhuman primates, remain to be performed [ 207 ].  

5.1.3    Inactivated and Virion-Like Particle Vaccines 

 Inactivated vaccine strategies for the prevention of arenavirus disease are underex-
plored. Virion-like particles (VLPs) containing LASV GP1, GP2, Z, and NP have been 
evaluated for their ability to induce antibody responses [ 208 ]; however, they have 
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yet to be evaluated for effi cacy. LASV particles inactivated by gamma- irradiation 
failed to protect rhesus monkeys from lethal infection with live LASV, despite 
development of a humoral antibody response. This failure is attributed to a lack of 
an adequately induced cellular immunity following vaccination [ 209 ]. Likewise, 
guinea pigs vaccinated with formalin-inactivated JUNV developed neutralizing 
antibodies, but these animals were not protected from lethal disease [ 210 ]. Taken 
together, results of these studies suggest that non-replicating approaches are unlikely 
to provide protective immunity against arenaviral infections.  

5.1.4    DNA Vaccines 

 Electroporation of DNA plasmids encoding viral genes and uptake by host cells can 
induce immunity to targets by promoting host cell expression of viral proteins. 
Cross-presentation of these antigens by antigen-presenting cells thus may elicit a 
potentially protective immune response. To evaluate this approach for vaccination 
against LASV infection, both the immunogenicity and effi cacy of electroporation of 
DNA plasmid vaccine expressing LASV NP was evaluated in mice using LCMV or 
PICHV inoculant. A single inoculation induced cellular CD8+ immune responses 
and resulted in lower viral titers in vaccinated mice euthanized 4 days post-virus 
inoculation as compared to non-vaccinated controls [ 211 ]. While these results are 
encouraging, it remains to be demonstrated that these vaccines can provide protec-
tion against LASV infection. Furthermore, DNA vaccines are known to elicit rather 
weak immune responses and often require multiple dosing in prime-boost strategies 
or additional adjuvants to provide both protection and durability. As mice were 
inoculated with virus 3 weeks post-vaccination, the duration of protection with this 
DNA vaccine approach is unclear. 

 A DNA plasmid expressing LASV GPC was effi cacious in protecting both 
guinea pigs [ 212 ] and nonhuman primates [ 213 ] from otherwise lethal LASV infec-
tion. In initial studies, 5/6 guinea pigs were protected, although the vaccine did not 
provide sterilizing immunity. Subsequent improvements in delivery and codon opti-
mization of the GPC gene resulted in complete protection, and no viremia devel-
oped in vaccinated animals. Similarly, this strategy also completely protected 
crab-eating macaques.   

5.2     Therapeutics 

5.2.1    Passive Transfer Using Immune Sera 

 Multiple studies have highlighted the protective value of immune sera treatment to 
counter JUNV infection in both common marmoset and guinea pig models. Guinea 
pigs were protected from illness as many as 6 days post-challenge, though develop-
ment of viremia and neurological complications (encephalitis, meningitis detected 
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at necropsy) did occur [ 214 ,  215 ]. Similar results were seen in common marmosets 
inoculated with JUNV—a 75 % survival rate following treatment with immune sera 
6 days post-inoculation [ 152 ]. All animals developed clinical signs. Some survivors 
also developed neutralizing antibody titers following convalescence. Collectively, 
these studies suggest that passive immune therapy may be a promising approach for 
treatment of NW arenavirus infections. 

 The effectiveness of passive immune treatment has also been shown in nonhuman 
primate and guinea pig models of LASV infection. Multiple methods were used to 
characterize the neutralizing antibody components of animal or human convales-
cent serum, including immunofl uorescent and standard plaque reduction neutraliza-
tion titer techniques. The quality and concentration of neutralizing antibodies was 
clearly correlated with favorable outcome [ 216 – 218 ], and therapeutic cut-off values 
predictive of a favorable outcome were established. Treatment with neutralizing 
antibodies coupled with ribavirin therapy resulted in enhanced protection in the 
crab-eating macaque models of LASV and JUNV infections, underlining the advan-
tages of combinational therapy approaches [ 219 ,  220 ]. A single study assessed the 
role of complement in neutralization of JUNV [ 221 ]. Presence of complement was 
critical for neutralization of virulent JUNV strains, but not for attenuated strains, 
suggesting that complement activation may play an important role in the quality of 
the neutralizing antibody response. 

 Passive transfer of immune sera has also been tested experimentally in rhesus 
monkeys or crab-eating macaques inoculated with MACV [ 222 ]. Immunoglobulin 
of human origin was given either pre- or post-virus inoculation. Animals receiving 
sera were protected from developing initial clinical illness; however, some survivors 
later developed neurological signs and subsequently succumbed to disease. 
Neurological development may have had a greater association with high doses of 
immunoglobulin, suggesting that neurological pathology may be at least in part 
mediated by delivery of treatment.  

5.2.2    Drugs Targeting Viral Entry 

 Preventing virion cell entry in theory prevents a virus from establishing infection 
and therefore subsequent replication. Cell entry begins with engagement of attach-
ment factors present on the target cell surface by arenaviral GP1, leading to internal-
ization, endosomal traffi cking, and virus uncoating. Thus, targeting cell-surface 
receptors involved in engagement of arenaviral glycoproteins and host pathways 
involved in permitting access of virus to the cell following attachment is an attrac-
tive therapeutic strategy. 

 Virulent NW arenaviruses (all of which belong to clade B) utilize human hTfR1 
by recognition of structures distinct from the transferrin- binding site [ 74 ,  93 ,  223 ]. 
Understanding the binding site necessary for arenavirion attachment presents the 
possibility of targeting the site for therapeutic intervention. Using a monoclonal 
antibody to hTfR1 targeting the region necessary for arenavirus GP1 binding, but 
dispensable for transferrin binding, Helguera et al. successfully blocked infection of 
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HEK293 cells by all NW arenaviruses. The antibody may be promising for studies 
in nonhuman primates as the antibody is cross-reactive with transferrin receptor 
orthologs of primates belonging to several species. 

 OW arenaviruses are thought to utilize extracellular matrix ligands for attach-
ment and entry, presenting a more diffi cult challenge for inhibiting entry at the cell 
surface. Despite this possible hurdle, phosphorothioate DNA oligonucleotides can 
potently inhibit LCMV infection by interfering with the virus–αDG interaction, 
thus preventing viral entry by steric blockade [ 224 ]. 

 Small molecule inhibitors are capable of blocking entry by preventing pH- 
mediated fusion of the arenaviral GP1 with cellular entry receptors that are rela-
tively specifi c to arenaviruses in multiple cell types [ 225 ]. High-throughput 
screening of various compounds yielded lead candidate small molecule inhibitors, 
ST-193 and ST-294, which are effective at blocking LASV, JUNV, MACV, and 
GTOV GP-mediated entry by inhibiting membrane fusion [ 226 ,  227 ]. ST-193 tested 
in the guinea pig model of LASV infection signifi cantly reduced fatality [ 228 ]. 

 Lassa virus GPC is proteolytically cleaved by cellular site 1 protease (S1P) to 
generate the attachment protein GP1 and the fusion-active transmembrane protein 
GP2. PF-42942, a small molecule inhibitor of S1P, had no impact on transcription, 
translation, or budding of LCMV and LASV, but had a modest effect on virus cell 
entry [ 229 ]. Thus, the anti-arenavirus activity of PF-42942 is primarily related to 
inhibition of S1P-mediated processing of GPC. More recent studies indicate that 
PF-42942 may work against NW arenaviruses as well [ 230 ]. Using small molecule 
inhibitors of S1P may therefore hold promise as a novel antiviral strategy in pre-
venting arenavirus infection. 

 Imidazothiazole carbohydrate derivatives also have potential utility in blockade 
of JUNV at the point of infection [ 231 ]. Cells were preincubated with varying con-
centrations of these compounds, compounds were premixed and incubated with 
virions prior to cell infection, or cells were treated at time of infection. Pre- 
incubation with virions yielded little reduction in infectivity, but both pretreatment 
of cells or simultaneous addition of drug and virions reduced infection. 

 Trifl uoperazine and chlorpromazine, both drugs in the phenothiazine class, proved 
effi cacious in vitro against JUNV, TCRV, and PICHV. These effects were achieved at 
IC 50  concentrations ranging from 7.7 to 23 μM. Time-of-addition experiments 
revealed that the drugs acted early in the replicative cycle, likely by modulating actin 
microfi laments and affecting viral entry [ 232 ].  

5.2.3    Drugs Targeting Viral Replication 

 Ribavirin, the only off-label drug for treatment of arenavirus infections, is a nucleo-
side analogue and still remains the treatment drug of choice, despite its well-known 
toxicity [ 233 – 237 ]. Ribavirin reduces morbidity and fatality in both clinical and 
experimental conditions of Old and New World arenavirus infections when pro-
vided early in course of clinical disease [ 161 ,  219 ,  238 – 242 ]. Ribavirin is thought 
to exert its antiviral activity by negatively regulating RNA synthesis. While the 
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precise mechanism remains elusive, ribavirin may inhibit inosine monophosphate 
dehydrogenase activity, leading to depletion of intracellular GTP pools [ 243 ], 
although results of some studies have challenged this idea [ 244 ]. Another possible 
explanation for ribavirin’s antiviral effect may be direct mutagenesis of viral RNA 
[ 245 ]. Other drugs targeting inosine monophosphate dehydrogenase, which may be 
as effi cacious as ribavirin but be less toxic, may be worth investigating. 

 T705, also known as favipiravir, is a pyrazine derivative that is effective in vitro 
against arenavirus infections. The mechanism of action involves disruption of the 
early intermediate phase of virus replication by inhibition of L activity [ 246 ,  247 ]. 
In vivo studies using PICHV rodent models yielded promising results. Twenty and 
seventy eight percent of guinea pigs treated with favipiravir by the oral or peritoneal 
routes, respectively, survived inoculation with PICHV when treatment occurred 
with 48 h [ 248 ]. Those animals who succumbed to disease experienced a prolonged 
disease course, and surviving animals presented with less severe disease overall. In 
hamsters, initiating treatment during the most severe stage of disease still altered 
disease outcome. These results suggest that T705 is an exceptional candidate for 
further preclinical development to treat arenavirus disease [ 249 ,  250 ]. Most of the 
studies described above incorporated ribavirin as a comparative treatment control. 
Not only did T705 outperform ribavirin in direct studies, but it also was signifi -
cantly less toxic [ 246 ,  248 ,  250 ]. 

 The antibiotic pyrazofurin was tested both in vitro and in guinea pigs inoculated 
with PICHV [ 251 ]. Results in cell culture were promising as relatively low concentra-
tions of the drug, 2 μg/ml, markedly inhibited plaque formation of multiple arenavi-
ruses. The mechanism of action is attributed to inhibition of de novo synthesis of 
nucleotides by blocking the activity of orotic acid monophosphate decarboxylase and 
preventing formation of uridine. Unfortunately, results in guinea pig studies were dis-
appointing as treatment did not prevent lethal outcome or alter viral loads. 

 A few studies have also evaluated the use of type I IFNs, specifi cally IFN-α, as a 
treatment for arenavirus infection. Generally speaking, results of these studies indi-
cated arenavirus infections to be relatively insensitive to IFN treatment [ 252 – 255 ]; how-
ever, at least one study suggested that treatment with type I IFNs can reduce LASV 
replication in HuH7 and Vero cells [ 256 ]. Additionally, therapeutic benefi t has also 
been achieved by treating hamsters with IFN alfacon-1 immediately following and 
up to 2 days after exposure to PICHV [ 257 ]. A protective effect in the same hamster 
model was also achieved using the non-replicating recombinant adenovirus plat-
form DEF201 encoding consensus IFN alfacon- 1 in pre- and post-prophylaxis 
approaches. These results suggest that IFN treatment may be at least partially benefi -
cial to controlling arenavirus infections [ 258 ]. 

 Several other compounds, including  S -adenosyl- L -homocysteine (SAH) hydro-
lase inhibitors [ 259 – 262 ], brassinosteroids [ 263 ], myristic acid [ 264 ], carboxamide 
derivatives [ 265 ], and zinc-fi nger-reactive compounds [ 266 ], have anti-arenaviral 
activity. Zinc-fi nger-reactive compounds are thought to act via inhibition of Z, pre-
senting yet another viral replication cycle target. To date, none of these compounds 
have been evaluated in animals or demonstrated to have signifi cant advantages over 
ribavirin as a therapeutic alternative. 
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 Kinase inhibitors have also been evaluated for effi cacy in treating both NW and 
OW arenavirus infections. Genistein is a general tyrosine kinase inhibitor that 
blocks infection of cells by PICHV, likely at the step of entry. Activation of tran-
scription factor-2 protein (ATF-2) and cyclic adenosine monophosphate response 
element binding protein (CREB) in Vero cells by PICHV was inhibited following 
treatment with genistein, and this inhibition correlated with decreased viral entry 
[ 267 ]. A similar suppression of infection was observed when genistein was paired 
with tyrphostin, another kinase inhibitor. The drugs both demonstrated individual 
effi cacy and a synergistic effect when combined [ 268 ]. Genistein was also tested in 
the Syrian golden hamster model of PICHV infection with successful reduction in 
fatality and improved clinical profi le [ 269 ].       
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    Chapter 20   
 Ebola Virus Disease 

             Steven     B.     Bradfute      ,     Peter     B.     Jahrling      , and        Jens     H.     Kuhn     

          Core Message   Ebola virus disease (EVD) is caused by four ebolaviruses: 
Bundibugyo virus (BDBV), Ebola virus (EBOV), Sudan virus (SUDV), and Taï 
Forest virus (TAFV). Contrary to oft-repeated messages in the public press and 
some scientifi c review articles, ebolaviruses are naturally not airborne, and mutations 
are unlikely to result in airborne mutants. Although bats are repeatedly brought up 
in discussions as possible natural host reservoir(s) of ebolaviruses, scientifi c 
evidence for any bat association is currently lacking for BDBV, SUDV, and TAFV. In 
the case of EBOV, antibody and genomic fragment detection thus far, at best, 
indicate exposure of certain bats to the virus, thus emphasizing the gaps in knowledge 
regarding ebolavirus reservoirs. Incorrect beliefs about ebolaviruses both in the 
Western world (“massive blood loss”, “liquefying organs”) and African countries 
(“witchcraft”, “sorcery”) hinder EVD outbreak control efforts and often lead to 
stigmatization of infected individuals and their relatives. While the development of 
effi cacious medical countermeasures against EVD is of paramount importance for 
future preparedness, spread of EVD could be prevented by avoidance of direct 
person-to-person contact, proper use of personal protective equipment, and 
improved education of government offi cials, public and health-care professionals, 
and religious leaders about the disease.  
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1     General Information 

 The mononegaviral family  Filoviridae  includes three genera:  Cuevavirus , 
 Ebolavirus , and  Marburgvirus  [ 1 ,  2 ] .  Infections with ebolaviruses and marburgvi-
ruses cause Ebola virus disease (EVD) and Marburg virus disease (MVD), respec-
tively [ 3 ], both of which are frequently lethal in humans. EVD and MVD outbreaks 
have previously been rare, sporadic, and limited (reviewed in ref. [ 4 ]), but a massive 
EVD outbreak in heavily populated areas of West Africa beginning in late 2013 [ 5 ], 
accompanied with exported cases to multiple countries, has highlighted fi lovirus 
infections as a global concern [ 6 ]. This chapter focuses on EVD. 

 There are fi ve ebolaviruses: Bundibugyo virus (BDBV), Ebola virus (EBOV), 
Reston virus (RESTV), Sudan virus (SUDV), and Taï Forest (TAFV) (Fig.  20.1 ) [ 2 ]. 
EBOV and SUDV were discovered in 1976, whereas RESTV, TAFV, and BDBV 
were discovered in 1989, 1994, and 2002, respectively (reviewed in ref. [ 4 ]). With the 
exception of RESTV, all ebolaviruses cause EVD in humans (11 presumable human 
infections with RESTV were shown by post-hoc antibody responses, but clinical 
signs were not apparent). The lethality of EVD tends to vary by geographic location 
and the involved ebolavirus, but little statistical evidence supports the idea that one 
ebolavirus, excluding RESTV, is more virulent than another [ 7 ]. The natural host 
reservoirs of ebolaviruses are unclear, and, therefore, how ebolaviruses are introduced 
into the human population is not known. EBOV is speculated to circulate in certain 
healthy pteropid bat populations, but live EBOV has not yet been isolated from a bat, 

  Fig. 20.1    Bayesian coalescent analysis of representative isolates of all currently known fi lovirus 
clades (i.e., cuevaviruses, marburgviruses, ebolaviruses). Maximum clade credibility tree is shown 
with the MRCA number at each node. Posterior probability values are shown beneath MRCA 
estimates in years. Scale is in substitutions/site based on an analysis performed by Dr. Serena 
Carroll, Centers for Disease Control and Prevention (CDC).  BDBV  Bundibugyo virus,  EBOV  
Ebola virus,  LLOV  Lloviu virus,  MARV  Marburg virus,  MRCA  most recent common ancestor, 
 RAVV  Ravn virus,  RESTV  Reston virus,  SUDV  Sudan virus,  TAFV  Taï Forest virus       
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nor have full-length EBOV genomes been detected in any of these  animals (reviewed 
in ref [ 8 ]). Accidental hosts of ebolaviruses include nonhuman primates (in the case of 
TAFV and possibly in the case of EBOV) and humans [ 7 ].   

2     Molecular Biology 

 Ebolaviruses, like other fi loviruses, produce enveloped virions that assume pleo-
morphic and often fi lamentous shapes (width ≈ 80 nm; length ≈ 800–19,000 nm 
[ 9 ]). An ebolavirion contains one or possibly several copies of a linear, monopartite, 
single-stranded RNA genome of negative polarity. This genome is, on average, 
≈19 kb long and contains seven genes in the order 3′- NP-VP35-VP40-GP-VP30- 
VP24-L -5′ that encode the seven structural proteins NP, VP35, VP40, GP 1,2 , VP30, 
VP24, and L, respectively [ 10 ,  11 ]. In addition, the  GP  gene encodes three addi-
tional, soluble proteins that are produced via cotranscriptional editing [ 12 ,  13 ]. The 
function of these soluble factors, sGP [ 14 ], ssGP [ 15 ], and Δ-peptide [ 16 ,  17 ] has 
yet to be determined. 

 Together with the genome, the nucleoprotein (NP), polymerase cofactor (VP35), 
transcriptional activator (VP30), and RNA-dependent RNA polymerase (L) form 
the ribonucleoprotein complex. In these complexes, the genome wraps around a 
helix of self-associated NP [ 18 ]. Polymerase complexes of VP35, VP30, and L 
move along the genome (or are fi xed at particular location in virions). While NP 
provides structural integrity, the polymerase complexes are responsible for tran-
scribing genes into mRNAs or replicating the entire genome [ 19 ,  20 ]. The matrix 
protein (VP40) is, next to NP, another major structural protein. VP40 recruits the 
ribonucleoprotein complexes and drives virion morphogenesis and budding from 
the host cell [ 21 – 24 ]. Both VP40 and the secondary matrix protein (VP24) regulate 
mRNA transcription and genome replication [ 25 ]. The glycoprotein (GP 1,2 ) is inte-
grated into the virion envelope. GP 1,2  is a trimer of GP 1 –GP 2  heterodimers and func-
tions as a typical class I membrane fusion protein [ 26 ]. GP 1,2  determines ebolavirus 
cell, tissue, and host tropism by engaging with specifi c ebolavirus receptors on and 
inside of host cells [ 27 ,  28 ]. 

 VP35, GP 1,2 , and VP24 also mediate immune suppression. For instance, VP35 
inhibits production of interferon (IFN) α/β by binding double-stranded RNA (syn-
thesized as an intermediary product during ebolavirus infection) and shielding this 
RNA from recognition by pattern recognition receptors, such as retinoblastoma 
inhibiting gene 1 protein (RIG-1) and melanoma differentiation associated protein-
 5 (MDA-5) [ 29 ,  30 ]. In addition, VP35 inhibits phosphorylation of IFN response 
factors 3 and 7 [ 31 ] and functions as a host-cell RNA silencing suppressor [ 32 ]. 
VP24 compliments VP35 by inhibiting host-cell signaling downstream of IFN-α/
β/γ via karyopherin trapping in the cytoplasm [ 33 – 35 ]. Finally, GP 1,2  has been iden-
tifi ed as a viral factor that antagonizes the antiviral effects of the cellular restriction 
factor tetherin [ 36 ]. 
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  Ebolavirus life cycle.  The ebolavirus life cycle begins with attachment of the 
e bolavirion to cognate receptors on host-cell surfaces. Mediated by GP 1,2 , this 
attachment triggers endocytosis of the virion [ 37 ,  38 ]. Subsequently, GP 1,2  binds to 
Niemann-Pick C1 in the endo/lysosome, which results in fusion of the virion enve-
lope with the endo/lysosomal membrane. After fusion, the ribonucleoprotein com-
plex is released into the cytosol, where ebolavirus replication occurs exclusively 
[ 27 ,  28 ]. The polymerase complex synthesizes nine distinct mRNAs that encode the 
ten nonstructural and structural ebolavirus proteins [ 19 ,  20 ]. Following mRNA 
translation, the intracellular concentration of these proteins (in particular NP), 
determines when transcription is switched to genome replication, which occurs via 
intermediate synthesis of fully encapsidated antigenomes. Genomes, NP, VP35, 
VP30, and L assemble into progeny ribonucleocapsids [ 19 ,  20 ] that are then 
recruited by VP40 and possibly VP24 for assembly of progeny virions [ 21 – 24 ]. 
GP 1,2  synthesis occurs in the endoplasmic reticulum. New synthesized and correctly 
processed GP 1,2  trimers are then transported to and inserted into host-cell mem-
branes [ 39 ]. Progeny virions then bud from the host-cell surface, thereby acquiring 
their envelopes and GP 1,2  [ 22 ].  

3     Pathogenesis 

 The current understanding of EVD pathogenesis is based largely on in vitro experi-
ments and the use of in vivo models of EBOV infection (reviewed in ref. [ 4 ]). EBOV 
can infect a wide variety of mammalian cell types of vastly divergent species. 

 EBOV infects macrophages early in the disease course, as evidenced by the pres-
ence of inclusion bodies in these cells in infected nonhuman primates [ 40 ,  41 ]. In 
vitro experiments with human macrophages suggest that after EBOV infection, 
macrophages support viral replication and produce large amounts of pro- 
infl ammatory cytokines and chemokines [ 42 ]. Dendritic cells are also infected 
in vitro ,  but do not appear to produce cytokines or become activated, although they 
do support virion production [ 43 ,  44 ]. In vivo data on dendritic cells as early targets 
of infection are suggestive but not conclusive. Regardless, EBOV infection results 
in rapid replication, spreads via the blood stream and lymphatic system, and infects 
multiple other cell types, including hepatocytes, fi broblasts, epithelial cells, adrenal 
cortical cells, endothelial cells, and reproductive cells [ 45 ]. 

 EBOV replication is aided by its ability to inhibit type I IFN production and 
signaling by the action of VP24 and VP35 [ 46 ]. This inhibition abrogates an impor-
tant early anti-viral arm of the immune response and results in enhanced viral repli-
cation and spread throughout multiple tissues. 

 Additionally, inhibition of type I IFN likely results in hyper-infl ammatory cyto-
kine responses [ 47 ]. Systemic production of large amounts of interleukin (IL)-1, 
IL-6, IL-8, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein 
(MCP)-1, macrophage infl ammatory protein (MIP)-1α, and other pro-infl ammatory 
mediators, along with increased production of tissue factor, likely leads to 
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 widespread coagulation [ 48 – 52 ]. Disseminated intravascular coagulation is induced, 
as evidenced by generation of fi brin degradation byproducts (D-dimers), 
 thrombocytopenia, depletion of clotting factors, and declining protein C concentra-
tions [ 52 ]. As a result, widespread deposition of microthrombi blocks small blood 
vessels, leading to extensive hypoxemic infarcts in affected tissues (e.g., liver, 
spleen, kidneys, reproductive organs). Other signs of coagulopathy include pete-
chial rash, easy bruising, bleeding from mucous membranes and other internal and 
external sites, and extensive visceral effusions in internal organs [ 45 ]. Note, how-
ever, that external blood loss rarely reaches volumes that are life-threatening. 
Furthermore, EBOV- induced increase in endothelial permeability occurs later in 
infection. This increase then leads to (probably extensive) third spacing, resulting in 
interstitial and myocardial edema. 

 B and T cell responses are not suffi cient to control infection. Originally, such 
insuffi cient responses were thought to possibly be due to severe bystander lympho-
cyte apoptosis that is induced in lethal EBOV infection However, later animal 
experiments showed that inhibition of lymphocyte apoptosis did not affect animal 
survival, at least in a mouse model [ 53 ]. Furthermore, activated T cells are found in 
late stages of lethal EBOV infection in mice and nonhuman primates. Mouse studies 
showed that this cell population contains EBOV-specifi c CD8+ T cells that confer 
protection after adoptive transfer [ 54 ]. Therefore, impaired innate immune responses 
combined with hyper-infl ammatory cytokine production are likely to dampen B and 
T cell responses that develop too late to control infection. 

 Together, disseminated intravascular coagulation, hypovolemic shock, and 
 multiple organ failure are thought to be the main causes of death in ebolavirus-
infected experimental animals and, by extrapolation, in infected humans. 

  Clinical presentation.  EVD cannot be diagnosed merely by observation of clinical 
manifestations, as they are unspecifi c and common to many infections and, there-
fore, easily confused with those of numerous other more prevalent diseases. The 
incubation period of EVD is thought to vary from 2 to 21 days, after which a bipha-
sic syndrome develops. The fi rst phase, lasting 5–7 days, is similar to common viral 
infections or falciparum malaria, including sudden onset of fever and chills, mal-
aise, joint pain and muscle aches, headache, cough, and development of a maculo-
papular rash. The second phase (sometimes following a 1–2 day period of relative 
remission after the fi rst phase) is characterized by gastrointestinal tract abnormali-
ties (e.g., abdominal pain, vomiting, diarrhea), vascular system involvement (e.g., 
edema, orthostatic hypotension), and central nervous system signs (confusion, 
tremors, coma). Importantly, clinical presentation varies and while typical, many of 
the above-mentioned clinical signs may not develop. Hemorrhagic manifestations 
include conjunctivitis, bleeding from mucosal surfaces and venipuncture sites, and 
blood in vomit, urine, and feces. Clinical laboratory signs of EVD include leukope-
nia (typically due to loss of lymphocytes) with a left shift followed by leukocytosis 
(caused by an increase in granulocytes). Platelet loss also does occur, as do signs of 
liver and pancreas dysfunction (elevated serum enzyme concentrations of AST, 
ALT, GGT, and amylase). Other clinical indicators in the blood include low potas-
sium concentrations and elevated protein and creatinine concentrations. 
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Coagulopathy fi ndings are frequent, and include thrombocytopenia and prolonged 
prothrombin and partial thromboplastin times [ 55 – 58 ]. 

 Patients who succumb to disease usually do so 4–14 days after onset of clinical 
signs. Those who survive often undergo prolonged and sometimes incapacitating 
sequelae characterized by a wide range of clinical signs, including hearing loss, 
joint pain, fatigue, psychosis, hair loss, skin peeling, and infl ammation of the eyes, 
testes, salivary glands, liver, or spinal cord [ 59 ]. In rare cases, EBOV can persist in 
the testes of survivors, possibly transmitting EVD via sexual intercourse to the part-
ner long after the original patient’s recovery [ 59 – 61 ]. Whether such persistence is 
also possible in infections with the other ebolaviruses remains to be determined.  

4     Diagnosis 

 Due to the nonspecifi c clinical signs, EVD is diffi cult to diagnose based on clinical 
presentation alone. Multiple diseases with similar signs are more prevalent in ebola-
virus-endemic regions, including falciparum malaria, typhoid fever, viral hepatitis, 
measles, certain systemic bacterial infections, and even other hemorrhagic fevers 
such as Lassa fever and yellow fever. Thus, these diseases are more frequently 
included in a differential diagnosis for a febrile patient (reviewed in ref. [ 4 ]). For 
instance, at the beginning of the ongoing 2014 EVD epidemic in West Africa, EVD 
was not at the top of the list of possible causes of the observed viral hemorrhagic 
fever. Ebolaviruses were only theorized to be endemic in West Africa but, with the 
exception of TAFV, had never been encountered there. However, epidemiological 
anamnesis can be helpful in establishing a preliminary diagnosis. For example, those 
with a history of direct contact with nonhuman primates or bush meat or extended 
excursion into tropical rain forests are at a heightened risk for ebolavirus infection, 
as are those with contact with known ebolavirus-infected patients. 

 Confi rmatory diagnosis of active ebolavirus infection is primarily achieved 
through the use of reverse transcriptase polymerase chain reaction (RT-PCR) [ 62 ], 
which has a detection limit of 1,000–2,000 virus genome copies per ml of serum. 
An alternative method is the use of an antigen capture enzyme-linked immunosor-
bent assay (ELISA) for the detection of ebolavirus proteins [ 63 ]. Detection of previ-
ous ebolavirus infections can be accomplished using IgG (or IgM, for recent 
infections) ELISA for detection of antibodies against ebolavirions. This method can 
also be used to detect infection in actively infected patients, but is less sensitive than 
RT-PCR, since antibody concentrations may be variable in patients and may develop 
days after onset of clinical signs. All these assays can be performed on sterilized 
samples to render ebolaviruses noninfectious, thereby diagnostic assays can be per-
formed in regular laboratories without the risk of infecting laboratory workers. 
Ebolaviruses can also be isolated in cell culture using untreated clinical samples and 
plaque assays [ 64 ,  65 ], which are relatively simple to perform for virus quantifi ca-
tion. However, these types of assays must be conducted in maximum-containment 
(biosafety level 4) laboratories.  
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5     EVD Outbreak History 

 Overviews of all recorded human EVD outbreaks and total human case numbers are 
presented in Tables  20.1  and  20.2 . Almost all outbreaks began with a single ebolavi-
rus introduction. Direct contact with the index case then led to unrecognized 

   Table 20.1    Overview of recorded Ebola virus disease (EVD) outbreaks   

 Virus  Country  Year(s) 
 Number 
of deaths 

 Number of 
infections 

 Case- fatality 
rate (%) 

 BDBV  Uganda  2007–2009  39  116  33.62 
 Democratic Republic of the 
Congo 

 2012  13  36  36.11 

 EBOV  Zaire  1976  280  318  88.05 
 Zaire  1977  1  1  100.00 
 Gabon  1994–1995  32  52  61.54 
 Zaire  1995  245  317  77.29 
 Russia  1996  1  1  100.00 
 Gabon  1996  21  31  67.74 
 Gabon→South Africa  1996–1997  46  62  74.19 
 Gabon, Republic of the 
Congo 

 2001–2002  97  124  78.23 

 Gabon, Republic of the 
Congo 

 2002  10  11  90.91 

 Republic of the Congo  2002–2003  128  143  89.51 
 Republic of the Congo  2003–2004  29  35  82.86 
 Russia  2004  1  1  100.00 
 Republic of the Congo  2005  9  11  81.82 
 Democratic Republic of the 
Congo 

 2007  186  264  70.45 

 Democratic Republic of the 
Congo 

 2008–2009  15  32  46.88 

 Guinea→Liberia, Nigeria, 
Sierra Leone, Senegal, Mali, 
Spain, USA, UK a  

 2013–2015  10,460  25,213  41.49 

 Democratic Republic of the 
Congo 

 2014  49  66  74.24 

 SUDV  Sudan  1976  151  284  53.17 
 UK  1976  0  1  0 
 Sudan  1979  22  34  64.71 
 Uganda  2000–2001  224  425  52.71 
 Sudan  2004  7  17  41.18 
 Uganda  2011  1  1  100.00 
 Uganda  2012  3  6  50.00 
 Uganda  2012  4  11  36.36 

 TAFV  Côte d’Ivoire→Switzerland  1994  0  1  0 

  Arrows (→) indicate international case exportation 
  a As of January 21, 2015  
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secondary and tertiary infections. Outbreaks were usually terminated by outside 
intervention once ebolavirus infection was recognized and the transmission chains 
were interrupted. Such interruption was accomplished by preventing direct (skin-to-
skin) contact between people in affected areas; introducing proper personal protec-
tive equipment for health-care workers; introducing proper disinfection methods for 
bodily fl uids, tissues, and clinical materials [ 66 ]; and ensuring that syringes/needles 
were not used multiple times in the often underequipped hospitals of Equatorial 
Africa. Until 2014, outbreak termination was aided by the often (but not always) 
rural location of EVD outbreaks as the mobility of EBOV-infected people was over-
all limited [ 4 ]. The current EVD outbreak in West Africa, by far the largest fi lovirus 
disease outbreak ever observed, has reached tens of thousands of EVD cases because 
of the urban distribution of the infection, de facto absent border control between the 
affected countries (mainly Guinea, Liberia, and Sierra Leone), and better roads that 
increased mobility of their inhabitants. Yet unpublished laboratory experiments 
suggest that the EBOV variant responsible for the 2014 EVD outbreak does not dif-
fer in any signifi cant way from previous variants.

6         Animal Models 

 Nonhuman primates seem to be generally susceptible to ebolavirus infection and 
are considered the gold standard for evaluation of medical countermeasures. EBOV 
infects and causes severe disease in rhesus monkeys ( Macaca mulatta ), crab-eating 
macaques ( Macaca fascicularis ), grivets ( Chlorocebus aethiops ), hamadryas 
baboons ( Papio hamadryas ), and common marmosets ( Callithrix jacchus ) [ 41 , 
 67 – 70 ]. Data for the other ebolaviruses are more scant as baboon and marmoset 
experiments have not yet been undertaken or reported, although SUDV is patho-
genic in rhesus monkeys and crab-eating macaques [ 69 ]. Widely used laboratory 
mouse and guinea pig ( Cavia porcellus ) models for EBOV infection are available 
using laboratory mouse-adapted and guinea pig-adapted EBOV, respectively [ 71 ,  72 ]. 
These models are used for early evaluations of candidate countermeasures and 

   Table 20.2    Total case numbers of recorded human ebolavirus infections   

 Virus 
 Total number of deaths 
(1976 to present) 

 Total number of infections 
(1976 to present) 

 Case-fatality 
rate (%) 

 BDBV  52  152  34.21 
 EBOV a   11,610  26,682  43.51 
 SUDV  412  779  52.89 
 TAFV  0  1   0 
 All ebolaviruses 
combined a  

 12,074  27,614  43.72 

   a As of March 29, 2015  
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understanding of molecular pathogenesis. Both adapted viruses are characterized 
by a few genomic mutations compared to wild-type EBOV. More recently, 
 laboratory mice lacking the type I IFN receptor are being used more frequently for 
wild-type EBOV, SUDV, and RESTV infection [ 73 ,  74 ]. Golden hamsters 
( Mesocricetus auratus ) infected with laboratory mouse-adapted EBOV develop 
substantial coagulopathy [ 75 ].  

7     Outbreak Control 

 It is extremely important to remember that ebolaviruses are not naturally airborne 
pathogens. Under certain artifi cial conditions, however, generation of airborne par-
ticles may occur, such as during centrifugation of samples and clinical or pathologi-
cal procedures involving suctioning, drilling, or sawing. Ebolaviruses are transmitted 
almost exclusively through direct person-to-person contact. A number of measures 
have proven effective in containing the spread of EVD in previous outbreaks, which 
have mostly occurred in sparsely populated areas. Such measures include: isolation 
of patients; patient contact tracing with subsequent isolation; appropriate use of 
simple personal protective equipment (PPE), such as gloves, gowns, and mouth 
protection by health-care workers; non-reuse of syringes/needles and other possible 
contaminated equipment; and modifi ed patient burial practices. During the current 
outbreak in heavily populated areas such as the spillover of cases from Liberia into 
Nigeria, containment of EVD was successful using patient isolation and patient 
contact tracing [ 76 ].  

8     Vaccines 

 Several candidate vaccines are effi cacious against ebolavirus infection in nonhu-
man primate animal models (reviewed in ref. [ 77 ,  78 ]). Protection from EBOV-
induced disease or death has been described using vesicular stomatitis Indiana virus 
(VSV) [ 79 ], adenovirus (AdV) [ 80 ], virus-like particles (VLP) [ 81 ], Venezuelan 
equine encephalitis virus-like replicon particles (VRP) [ 82 ], and human parainfl u-
enza virus vaccine platforms [ 83 ], along with prime-boost platforms. In addition, 
VSV, AdV, and VRP-based vaccines are protective against SUDV [ 82 ,  84 ,  85 ], 
whereas VSV-based vaccine is effective against TAFV [ 84 ]. Both VSV and DNA 
prime/AdV boost vaccines are protective against BDBV infection [ 86 ,  87 ]. Human 
clinical trials have begun with VSV-based vaccines against EBOV and AdV-based 
vaccines against EBOV and SUDV. In addition, plasmid DNA vaccine trials against 
EBOV and SUDV are also in progress.  
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9     Therapeutics 

 Many therapeutics have been tested against ebolaviruses, and some have shown 
encouraging effi cacy in animal models. 

  Antisense therapies.  Two types of antisense therapies have been studied in ebolavi-
rus infections. These therapies are based on targeting and degrading or inhibiting 
translation of ebolaviral mRNAs. small interfering RNAs (siRNAs) formulated in 
liposomes and directed against EBOV protect guinea pigs and macaques from 
EBOV infection [ 88 ,  89 ]. 

 Phosphorodiamidate morpholino oligomers (PMOs) are synthetic, single-
stranded RNA antisense molecules that are remarkably stable and can be formulated 
in saline. PMOs function by binding to target mRNAs and inhibiting translation at 
the ribosome. PMOs have shown effi cacy when targeting EBOV genes in labora-
tory mice, guinea pigs, and macaques [ 90 ,  91 ]. 

  Small molecule inhibitors.  Results of mouse studies show the effi cacy of small mol-
ecules against EBOV and confi rm the effi cacy of in vitro screening using eGPF- 
expressing EBOV as a starting point for drug discovery. The antioxidant compound 
NSC 62914 is protective against EBOV infection [ 92 ], as are the small molecules 
FG-103 and FG-106 [ 92 ,  93 ]. A synthetic adenosine analog, BCX4430, shows 
remarkable effi cacy against Marburg virus infection in nonhuman primates and also 
protects mice from EBOV infection [ 94 ]. The adenosine analog 3-deazaneplanocin 
A is effective in mice against EBOV infection in a type I-IFN-dependent manner 
[ 95 ,  96 ]. Favipiravir (T-705), a pyrazinecarboxamide derivative that has broad- 
spectrum antiviral activity, is protective against EBOV infection in two different 
laboratory mouse models [ 97 ,  98 ]. 

  Anti-clotting factors.  Anti-clotting factors have been tested for controlling EBOV-
induced coagulopathy. The recombinant nematode anticoagulant protein c2 
(rNAPc2), which inhibits coagulation initiated by tissue factor, showed modest pro-
tection in EBOV-infected rhesus monkeys [ 99 ]. Administration of the human anti-
coagulant activated protein C (APC) was protective in 2 out of 11 EBOV-infected 
rhesus monkeys [ 100 ]. 

  Vaccines as post-infection therapy.  Vaccines that are protective when given pre- 
exposure have also been tested as post exposure therapeutics against ebolaviruses. 
When given 20–30 min after challenge, the VSV SUDV vaccine protected 4/4 
SUDV-infected rhesus monkeys [ 101 ], and the VSV EBOV vaccine protected 4/8 
EBOV-infected rhesus monkeys [ 102 ]. An AdV vaccine protected mice from EBOV 
when administered 30 min after challenge [ 103 ]. Furthermore, a VLP EBOV vaccine 
rescued mice when given 24 h after challenge [ 104 ,  105 ]. Together, these data suggest 
vaccines may be useful as post-exposure therapeutics. 

  Antibody therapy.  Results from an uncontrolled experiment performed in 1995 sug-
gested that passive transfer of whole blood (used because serum isolation equip-
ment was unavailable) protected seven of eight patients suffering of EVD from a 
lethal outcome, while non-treated patients died at an 80 % rate [ 106 ,  107 ]. In 1995, 
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Russian researchers reported that passive transfer of hyperimmune equine serum 
from EBOV-vaccinated horses was able to protect hamadryas baboons from EBOV 
infection [ 108 ,  109 ]. A different batch of hyperimmune equine serum was sent to 
researchers in the US, who were unable to confi rm these fi ndings in EBOV-infected 
macaques receiving a higher dose of a different variant of EBOV [ 110 ]. Additionally, 
monoclonal antibody therapies that were effective in mouse or guinea pig models of 
EBOV did not show success in initial macaque studies. This led many investigators 
to question the validity of using antibodies in EVD treatment. However, in 2012, 
Dye et al. demonstrated that passive transfer of concentrated IgG from immune 
macaques rescued naïve EBOV-infected macaques from high-dose EBOV infec-
tion, even when treated 48 h after challenge [ 111 ]. Following this study, results of 
several studies confi rmed protection against EBOV infection in macaques receiving 
two- or three-component monoclonal antibody cocktail preparations. Animals 
treated with two monoclonal antibodies resulted in limited protection before and 
after EBOV challenge [ 112 ], whereas those receiving three monoclonal antibodies 
after EBOV challenge were moderately protected [ 113 ,  114 ]. Different combina-
tions of three-monoclonal cocktails resulted in complete protection in macaques 
after EBOV challenge when given 1–5 days after infection, depending on the cock-
tails used [ 115 ,  116 ]. Antibody preparations based on these latter studies have been 
used experimentally in human EVD patients, but, at this time, the effi cacy of these 
preparations in controlling EVD is unknown. In addition, convalescent serum trans-
fers are currently being tested in the current EVD outbreak in humans.  

10     Future Directions 

 The very large number of cases and case contacts (at the time of writing more than 
25,000) could lead to the identifi cation of humans that are relatively or even abso-
lutely resistant to ebolavirus infection. Study of these individuals could thereby 
provide valuable hints in regard to key events in EVD pathogenesis. A more com-
plete understanding of EVD pathogenesis, in turn, could lead to the development of 
novel antiviral agents. In addition, the clinical evaluation in humans of already 
promising candidate vaccines or therapeutics, previously deemed unethical, is now 
not only possible but by many deemed obligatory to contain the outbreak and pos-
sibly save countless lives. The “export” of EVD from West Africa into North 
America and Europe via air travel also emphasizes the potential of EVD to develop 
into a pandemic. This threat in turn may move fi lovirus research from a niche spe-
cialty into the virology mainstream, thereby increasing the likelihood of discoveries 
that may rapidly and effectively counter fi lovirus infections.     
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    Chapter 21   
 XMRV: Emerging Human Infection 
or False Alarm  

             Charurut     Somboonwit      ,     John     T.     Sinnott     , and     Paul     Shapshak    

1             Background 

 XMRV is closely genetically related to xenotropic murine leukemia virus (MLV or 
MuLV), a ubiquitous rodent gamma-retrovirus. XMRV was discovered in 2006 
during analysis of the association of gene single nucleotide polymorphisms (SNPs) 
in the 2′,5′-A-dependent Ribonuclease L gene (RNaseL) with prostate cancer [ 1 ]. 
It was proposed that XMRV was the fi rst gamma-retrovirus that might be related to 
human disease. Later, it was claimed that XMRV might be associated with chronic 
fatigue syndrome (CFS) as well. The prevalence of XMRV in the general popula-
tion was unknown; however, its putative prevalence was reported in specifi c disease 
populations [ 2 ]. Research on the epidemiology, risk, and pathogenesis of some 
prostate cancers supported the involvement of XMRV in association with allelic 
variants of the RNaseL locus [ 3 ]. These early reputed discoveries of XMRV were 
from prostate secretions as well as prostate tissues [ 1 ,  4 – 6 ]. XMRV infection was 
linked to high-grade prostate cancer with putative evidence for the presence of 
XMRV DNA and protein expression. Immunohistochemistry (IHC) showed XMRV 
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proteins in malignant prostate epithelial cells but were not correlated with XMRV 
infection and RNaseL SNPs. It was proposed that there might be a more widespread 
population at risk for XMRV infection and prostate cancer [ 7 ]. In addition, in a 
serum-based assay to detect neutralizing antibodies to XMRV in prostate cancer 
patients, neutralizing antibodies against XMRV were found that correlated with 
PCR and fl uorescence in situ virus detection in prostate tissue [ 8 ]. 

 XMRV was also implicated in chronic fatigue syndrome (CFS). Many studies had 
searched for viral causes of CFS that had remained unconfi rmed and the supposed link-
age of CFS with XMRV took the fi eld by surprise [ 9 ]. In the new studies, XMRV was 
putatively detected by culture from blood and blood component of patients with CFS 
and in their respiratory secretions [ 10 ,  11 ]. In addition, MLV-like  gag  sequences were 
detected in 86.5 % of PBMCs from CFS patients vs. 6.8 % from healthy volunteers [ 12 ]. 
These studies also suggested XMRV infections could be transmitted to permissive cell 
lines from CFS patient plasma [ 13 ]. However, additional studies failed to show any cor-
relation of XMRV and CFS using quantitative PCR and neutralizing antibodies [ 14 – 17 ]. 
Indeed, many XMRV studies showed cumulative evidence for laboratory contamination 
as discussed later in this chapter [ 18 ]. In this regard, Table  21.1  summarizes literature 
that dealt with XMRV detection and    Table  21.2  summarizes literature indicating that 
purported detection of XMRV was due to laboratory contamination.

   Table 21.1    XMRV association with disease   

 Disease  XMRV associated  XMRV unassociated 

 Prostate cancer  Urisman (2006) [ 5 ] 
 Dong (2007) [ 4 ] 
 Kim (2008) [ 71 ] 
 Fischer (2008) [ 32 ] 
 Hong (2009) [ 6 ] 
 Knouf (2009) [ 69 ] 
 Arnold (2010) [ 8 ] 
 Schlaberg (2009) [ 7 ] 
 Bhosle (2010) [ 72 ] 

 Sfanos (2008) [ 73 ] 
 D’Arcy (2008) [ 74 ] 
 Hohn (2009) [ 36 ] 
 Martinez-Fierro (2010) [ 75 ] 
 Cornelissen (2010) [ 76 ] 
 Verhaegh (2010) [ 77 ] 
 Switzer (2011) [ 39 ] 
 Sakuma (2011) [ 40 ] 
 Khodabendehloo (2013) [ 43 ] 
 Rezai (2013) [ 44 ] 

 Chronic fatigue syndrome  Lombardi (2009) [ 10 ]  Erlwein (2010) [ 47 ] 
 Groom (2010) [ 17 ] 
 Van Kuppeveld (2010) [ 49 ] 
 Hong (2010) [ 78 ] 
 Switzer (2010) [ 16 ] 
 Henrich (2010) [ 48 ] 
 Hohn (2011) [ 15 ] 
 Shin (2011) [ 27 ] 
 Satterfi eld (2011) [ 50 ] 
 Schutzer (2011) [ 68 ] 

 ALS  McCormick (2008) [ 62 ] 
 Lymphoid malignancies  Waugh (2011) [ 63 ] 
 SLE  Balada (2011) [ 64 ] 
 Autistic disorders  Lintas (2011) [ 65 ] 
 Fibromyalgia  Luczkowiak (2011) [ 67 ] 
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2         General Virology 

 XMRV is a gamma-retrovirus with a positive single-stranded RNA genome, 95 % 
sequence similarity to endogenous MLV, and 93–94 % similarity to several exoge-
nous murine viruses [ 2 ,  5 ,  19 ]. Using RNA from prostate tissues, an XMRV molec-
ular clone was constructed that was replication-competent in a few PC cell lines, 
e.g. DU145 and LNCaP. The XMRV-long terminal repeat (LTR) was expressed as 
well [ 4 ,  20 ]. Purported XMRV infection of primary prostatic epithelial and stromal 
cells was enhanced by acid phosphatase semen-derived enhancer of virus infection 
(SEVI). In addition, XMRV RNA was detected in prostatic secretions of some men 
with PC. It was thus proposed that XMRV might be spreading in the human popula-
tion [ 6 ]. However, many subsequent studies failed to detect XMRV and to verify 
these disease associations. Moreover, evidence of contamination of specimens, 
which will be discussed later in this chapter, led Stürzel et al. to study further. They 
generated replication competent XMRV reporter viruses encoding a green fl uores-
cent protein or a secretable luciferase as tools to analyze virus infection of human 
cell lines or primary human cells. Transfection of proviral DNAs into LNCaP prostate 
cancer cells resulted in readily detectably reporter gene expression and production 

   Table 21.2    XMRV laboratory contamination   

 Study  Technique 

 Hue (2010) [ 36 ]  Taqman qPCR for XMRV  pol  sequences 
 Oakes (2010) [ 46 ]  Taqman qPCR for XMRV  pol  sequences 
 Robinson (2010) [ 41 ]  PCR assays for mitochondrial DNA (mtDNA) or intracisternal A 

particle (IAP) long terminal repeat DNA 
 Sato (2010) [ 15 ]  One-step RT-PCR kits amplifying the partial gag of XMRV or other 

MLV-related viruses(primer sets are 419F and 1154R, and GAG-I-F 
and GAG-I-R) 

 Sakuma (2011) [ 40 ]  Real-time PCR of XMRV gag sequences and nested PCR for 
XMRV/MLV gag sequences 

 Yang (2011) [ 37 ]  PCR with XMRV specifi c primers 
 Garson (2011) [ 42 ]  Nucleotide BLAST searches using each of the 14 integration site 

sequences against the GenBank nr database 
 Sfanos (2011) [ 79 ]  XMRV/MLV IHC; PCR using genomic GAPDH PCR primers; 

full-length or near full-length viral genomes prepared from the 
LAPC4, VCaP and EKVX cell lines; Vectorette PCR using a 
virus-specifi c forward primer and a vectorette-specifi c reverse 
primer; phylogenetic analysis and infectivity assay 

 Tuke (2011) [ 45 ]  Lo et al.’s modifi ed XMRV gag TaqMan assay, using probe P2 and 
primers F3 and R4, which is able to co-detect the pMLVs [ 12 ] 

 Knox (2011) [ 52 ]  PCR and RT-PCR in specimens from CFS patients and those 
previously positive for XMRV 

 Katzourakis (2011) [ 80 ]  PCR using MLV-like sequences in longitudinal specimens from 
patients 15 years apart 
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of progeny virus. Inoculation of known XMRV susceptible target cells revealed that 
these virions were infectious and expressed the reporter gene, allowing for a fast 
and highly sensitive quantifi cation of XMRV infection. This technique showed that 
both reporter viruses were capable of establishing a spreading infection in LNCaP 
and Raji B cells and could be easily transmitted. However, after inoculation of pri-
mary human blood cells such as CD4 T cells, macrophages or dendritic cells, infec-
tion rates were very low, and a spreading infection was never established. Moreover, 
XMRV-infected primary cells-derived supernatants did not contain infectious virus. 
This evidence suggested that even though XMRV can replicate in some human cell 
lines, all tested primary cells were largely refractory to XMRV infection and did not 
support viral spread. Therefore, these results indicated that XMRV is not a human 
pathogen [ 21 ]. The concern became uppermost, that there has been widespread 
laboratory viral and reagent contamination with murine retroviruses.  

3     Antiretroviral Inhibitors 

 Antiretroviral therapeutic (ART) drugs marketed for treatment of HIV infection had 
activity against XMRV, in vitro. The retroviral integrase inhibitors, raltegravir and 
L-000870812, two nucleoside reverse transcriptase inhibitors, zidovudine (ZDV), 
and tenofovir disoproxil fumarate (TDF) inhibited XMRV replication. It was pro-
posed that using these drugs in combination would delay or prevent the selection of 
drug-resistant viruses that occurs with HIV treatment [ 22 ,  23 ]. However, XMRV is 
highly resistant to nonnucleoside reverse transcriptase inhibitors [ 24 ]. Additional 
studies were done advocating the use of ARTs to inhibit the replication of XMRV in 
PC and CFS. This was, however, at a point in time when there was little information 
yet about contamination [ 25 ]. Nonetheless, APOBEC3 as well as ARTs inhibited 
XMRV in another study [ 26 ]. However, antiretroviral off-label treatment of CFS was 
proposed as unjustifi ed [ 27 ]. This caveat defi nitely should be applied to possible 
ART treatments of any postulated XMRV-associated disease.  

4     Molecular Biology 

 The PC 1 (HPC-1) gene is also known as RNaseL (2′,5′-oligoisoadenylate synthe-
tase dependent) and is located at 1q24-q25 in the human genome [ 28 ,  29 ]. Patients 
with prostate cancer carrying a mutation in the HPC-1 gene locus had stromal cells 
surrounding prostate tumors that purportedly contained XMRV [ 30 ]. The RNaseL 
innate immunity pathway has been studied since its discovery in 1978 and shown to 
be a primary line of defense against viruses by cleaving viral RNA [ 31 ]. Some 
RNaseL SNP variants with lower activity were considered permissive for XMRV 
growth [ 1 ]. Specifi cally, the RNaseL variant SNP, R462Q is associated with prostate 
cancer and is a prostate cancer susceptibility factor. The homozygous state of 
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RNaseL allele R462Q (QQ) is underrepresented and XMRV was rarely detected in 
nonfamilial prostate in Northern European cancer patients. In those patients with the 
RNaseL allele R462Q (QQ) genotype, 40 % was XMRV positive. In familial prostate 
cancer patients, XMRV was detected rarely (less than 1 %) [ 32 ]. Coevolution of 
XMRV and RNaseL was hypothesized to result in the spread and pathogenesis due to 
XMRV [ 3 ]. Questions of laboratory viral and reagent contamination have underscored 
the more recent interpretation of the results. Be that as it may, many additional 
genes have been implicated in prostate cancer including the following genes (with 
abbreviations): CTBP2 (C-terminal binding protein 2, active gene expression in 
prostate tissue), MSMB (microseminoprotein, beta, produces a semen protein, 
decreased in prostate cancer), LMTK2 (lemur tyrosine kinase 2, cyclin- dependent 
kinase 5/p35-regulated kinase involved in spermatogenesis), KLK3 (kallikrein- related 
peptidase 3, prostatic specifi c antigen [PSA], serum protease, elevated in prostate 
cancer), JAZF1 (JAZF zinc fi nger1, normally transcription repressor), CPNE3 (copine 
3, mediate membrane–cytoplasm interaction), IL-16 (interleukin-16, lymphocyte che-
moattractant factor, anchors ion channels), CDH13 (cadherin 13 (truncated), calcium-
dependent cell–cell adhesion glycoprotein), EHBP1 (EH domain-binding protein 1, 
Links clathrin-mediated endocytosis to the actin cytoskeleton), NUDT10 (nudix-type 
motif 10, nucleoside diphosphate linked moiety X, inositol phosphatase, signal trans-
duction), and NUDT11 (nudix-type motif 11, nucleoside diphosphate linked moiety 
X, inositol phosphatase, signal transduction) [ 28 ].  

5     Detection Methods 

 As described in the previous sections, detection of XMRV was done in several 
methods. In the research setting, XMRV was detected using nested and real-time 
PCR and immune assays included serologic assays, fl ow cytometry, Western blot, 
and enzyme-linked immunosorbent assay (ELISA). Initially, SNPs in the RNaseL 
were used during the initial discovery of XMRV-associated diseases by being identi-
fi ed as the hereditary prostate cancer 1 gene [ 1 ]. Further investigations of XMRV in 
prostate tissues, Dong et al. constructed a Full-Length, Replication-Competent 
XMRV Clone by using two overlapping partial cDNAs of XMRV strain VP62 and 
validated by the complete sequencing of the full-length XMRV VP62 (GenBank 
accession no. EF185282) [ 4 ]. Other methods in the early XMRV discoveries utilized 
microarray-based screening. This method was designed to screen for viruses from 
all known viral families. The amplifi ed and labeled fragments contained amplifi ed 
and labeled host and potential viral sequences, then hybridized to a DNA microar-
ray (Virochip, University of California San Francisco, San Francisco, United 
States). The researchers recovered the entire XMRV genome from the tumor and 
further examined the association of the virus and the RNASEL genotype by using 
nested RT-PCR [ 5 ]. Moreover, quantitative PCR was used to amplify XMRV proviral 
DNA from formalin-fi xed, paraffi n-embedded tissues; and IHC using XMRV-specifi c 
antibody detecting XMRV in prostate tissues [ 7 ]. In one study, several methods were 
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used in different type of specimens. Genotyping of RNASEL variant using TaqMan 
genotyping assay (Applied Biosystems, Foster City, CA). Nested PCR analysis 
byAmpliTaq gold Kit (Applied Biosystems) is used for detection of XMRV in tis-
sues; and Qiagen QIAquick gel Extraction Kit was used in sequencing DNA bands. 
Fluorescence in situ hybridization (FISH) assay, which was generated by excision of 
the full-length XMRV cDNA from the pXMRV plasmid1 using NotI and HindIII 
restriction enzymes (New England Biolabs, Ipswich, MA) has also been used [ 8 ]. 
Serum-based assay was used to detect neutralizing antibodies against XMRV pro-
teins [ 7 ,  8 ]. Nested PCR or real-time PCR in blood samples or PBMCs were also 
used in early investigation of XMRV in correlation with CFS [ 10 ,  11 ]. The U.S. Food 
and Drug Administration (FDA) has not approved any of these methods for testing in 
the clinic. Moreover, donated blood is not screened for XMRV [ 33 – 35 ].  

6     Evidence for Contamination 

 Many publications confi rm continued lack of detection of XMRV. Contradictory and 
irreproducible results of recent research on the possibility that XMRV may be a 
human pathogen and a cause of prostate cancer and CFS support questions of con-
tamination. The detection of laboratory reagent and tissue viral contamination is of 
central concern and vitiated the basis for the original fi ndings related to XMRV. XMRV 
had been found in healthy controls and the XMRV-specifi c PCR primers later were 
found to amplify common murine endogenous viral sequences. Mouse DNA-
contaminated patient specimens and nonspecifi c PCR reactions confounded XMRV 
detection. XMRV that was isolated from the tumor cell line 22Rv1 was similar to 
unlinked patient-derived XMRV. The  pol  sequences from these PC patients were 
possibly derived from XMRV and Maloney MLV. The original fi ndings were made 
further questionable because the Maloney MLV envelope showed a lack of tropism 
for human cells [ 36 ]. Based on the analysis of the DNA from CWR22 and 22Rv1, the 
presence of XMRV in 22Rv1 was likely an artifact [ 37 ]. 

 Many studies did not support the correlation between XMRV and prostate can-
cer. Studies in Germany showed a prevalence of 12.9 % for the homozygous SNP 
R462Q mutation in prostate tumor specimens but failed to show either antibodies 
for the XMRV gag and envelope proteins or XMRV-specifi c RNA or DNA in 
these tissues [ 38 ]. XMRV was rarely detected in nonfamilial prostate cancer spec-
imens with homozygous mutation R462Q (QQ) [ 32 ]. In addition, detection of 
XMRV DNA by PCR in PC patient tissue revealed no correlation between XMRV 
serology and had very low (1.9 %) detectable XMRV DNA, undetectable mouse 
DNA, and was negative for viral RNA [ 39 ]. More recently, the lack of XMRV 
sequences and of strong anti-XMRV neutralizing antibodies indicated no or very 
low prevalence of XMRV in a cohort of 110 PC patients and 40 benign prostrate 
specimens. The prior positive real-time PCR results were due to laboratory and 
reagent contamination and positive IHC-specimens were due to nonspecifi c 
immune reactions [ 40 ]. 
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 Robinson et al. examined XMRV sequences in DNA purifi ed from prostate cancer 
tissues. There were only 4.8 % positive for XMRV-like sequences whereas 21.5 % 
positive for XMRV-negative cases. These fi ndings supported the interpretation that 
there were mouse DNA contaminants; in addition, intracisternal A particle (IAP) 
long terminal repeat DNA sequences were detected as well further supporting 
contamination [ 41 ]. 

 Another study using BLAST searches for XMRV integration site sequences in 
prostatic tissues demonstrated that two of 14 integration sites were identical to 
sites that had been cloned in the same laboratory using the human prostate DU145 
cell line that had been experimentally infected. Retrovirus infections had not previ-
ously exhibited identical integration sites. Therefore, it was suggested that PCR 
contamination had occurred and further weakened the view that XMRV was a human 
pathogen [ 42 ]. 

 Another study of correlation between XMRV and prostate cancers was con-
ducted in Iran. The investigator performed a case–control study with genomic DNA 
extracted from formalin-fi xed and paraffi n-embedded prostate tissues of 163 Iranian 
patients (63 prostate cancers and 100 benign prostate hyperplasias). They used a 
conventional and a nested PCR assay using primers targeting to an env specifi c 
sequence of XMRV. They did not detect XMRV in samples either from prostate 
cancers or benign prostate hyperplasias using XMRV specifi c primers [ 43 ]. 

 A study failed to illustrate association between prostate cancer and XMRV in 
matched prostate and normal tissue from Australian patients. Purifi ed genomic 
DNA (gDNA) matched from normal and cancer formalin-fi xed paraffi n-embedded 
(FFPE) prostate tissue from 35 Australian prostate cancer patients.    RNase L poly-
morphism R462Q was determined by allele-specifi c PCR and contaminating mouse 
DNA was detected using qPCR targeting mouse intracisternal A particle long termi-
nal repeat DNA. The gDNA was successfully purifi ed from 94 % (66/70) of normal 
and cancer FFPE prostate tissues. RNase L typing revealed 8 % was homozygous 
(QQ), 60 % was heterozygous (RQ) and 32 % was wild type (RR) for the RNase L 
mutation. None of the 66 samples tested were positive for XMRV. The fi ndings were 
consistent with other studies demonstrating that XMRV is a laboratory contaminant 
that has no role in the etiology of prostate cancer [ 44 ]. 

 To support the evidence of contamination, cDNA from the whole blood of 
patients with CFS were tested using Invitrogen Platinum Taq (IPT) and Applied 
Biosystems Taq Gold LD (ABTG) with four gag sequences, followed by further 
sequencing by ABTG reamplifi cation. Sequence comparisons showed similarity 
among these sequences, endogenous MLVs, and pMLV. Reagents were contami-
nated with pMLV sequences [ 45 ]. Furthermore, a study using Taqman qPCR failed 
to detect XMRV pol sequences in any of 112 peripheral blood specimens from CFS 
patients or 36 healthy controls. Moreover, there were specimens positive for 
XMRV DNA by a less sensitive PCR assay detecting a different portion of the 
XMRV genome, and were positive for highly abundant intracisternal A-type par-
ticle (IAP) long terminal repeat and murine mitochondrial cytochrome oxidase 
sequences. This study indicated extensive contamination of human specimens with 
murine sequences [ 46 ]. 
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 Several studies that had negative outcomes were originally conducted to 
demonstrate an XMRV association with disease. A large US study to elucidate the 
relationship between XMRV and CFS was done in blood specimens from 200 self-
reported healthy volunteers and 100 CFS patients included patient specimens from 
the original study that had reported XMRV in CFS patients. XMRV and related 
MLVs viral sequences, virus growth, and antibodies to these viruses were not 
detected in any of the patient specimens, including those from the original study. 
The authors report that at least some of the discrepancies in previous studies were 
most likely due to the presence of trace amounts of mouse DNA in the Taq poly-
merase enzymes used in earlier studies. Virus growth in cell culture in prior studies 
was considered to be due to contamination as well [ 21 ]. The US studies on XMRV 
and CFS including a study in Kansas and Georgia using multiple molecular and 
serologic assays showed no evidence of XMRV infection [ 16 ]. Moreover, another 
study failed to show correlation of XMRV in various diseases such as CFS, HIV 
infection, rheumatoid arthritis and patients who received either organ or hematopoietic 
stem cell transplants using Lombardi et al. (PCR outer) primer set [ 10 ], Urisman 
et al. (PCR inner) primer set [ 5 ], and the Erlwein et al. primer set [ 14 ,  47 ,  48 ]. There 
were similar fi ndings for a Dutch cohort between December 1991 and April 1992, 
using PCR targeting XMRV integrase and  gag  genes. XMRV sequences were not 
detected in specimens from any of the patients or controls. This study also demon-
strated that it is possible to obtain and utilize uncontaminated reagents [ 49 ]. 

 A study from 20 states in the US used blood from 45 CFS patients and 42 con-
trols for both XMRV and MLV. Using the same CFS key clinical characteristics as 
in the Lombardi et al. study [ 10 ] highly sensitive and generic DNA and RNA PCR, 
as well as a new Western blot assay employing purifi ed whole XMRV as antigen, 
there was no evidence of XMRV or MLV in the CFS patients or controls [ 50 ]. 

 A Japanese study used one-step commercial RT-PCR kits, which detected XMRV 
gag sequences in CSF patient sera. The PCR primer sets were 419F, 1154R, GAG-
I- R, and GAG-I-F. The sequences detected were compared with sequences of poly-
trophic endogenous MLV, XMRV, and endogenous MLV-related viruses derived 
from CFS patients. The result showed that the  gag -related sequences were identical 
(99.4 %) and the  env -related sequences were identical (99.6 %) to the polytrophic 
endogenous MLV. The kits were concluded to have been contaminated with MLV 
genome sequences [ 51 ]. 

 Another study of CSF blood specimens from 43 of 61 patients that had previ-
ously been identifi ed as XMRV-positive used PCR and reverse transcription-PCR to 
detect viral DNA and RNA. ELISA was used to detect virus-specifi c antibodies. 
There was no evidence of XMRV or other MLVs in any of these specimens. Further 
analysis in this study of commercial laboratory reagents detected MLV sequences. 
Thus, previous evidence linking XMRV and/or MLVs to CFS was likely due to 
laboratory specimen and/or reagent contamination [ 52 ]. 

 There was no detection of XMRV DNA by PCR in PBMCs or RNA in plasma 
from discordant twins for CFS [ 53 ]. In addition, there was no detection of XMRV 
in HIV+ patients with immunosuppression [ 54 ]. Another serological studies in 
Japan found no association between XMRV infection of patients with prostate 
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cancer or with CFS [ 55 ]. Use of combined PCR and immunological techniques 
indicated and confi rmed no role for XMRV in human disease [ 56 ]. 

 XMRV-derived plasmids continue to be developed for in vitro and in vivo use 
for gene transfer. Thus, the danger of contamination is current and continues [ 57 ]. 
In vitro XMRV  env  vaccine studies in mice elicited immunity. Antibodies were 
detected by ELISA and by virus neutralization. However, immunity only lasted for 
3 weeks [ 58 ]. Interestingly, Miyazawa pointed out that vaccines themselves are 
often produced using rodent (xenospecies) retroviral plasmid systems, and may 
transmit endogenous retroviruses (ERVs) to humans. This is an additional potential 
source of contamination [ 59 ]. In addition, the spectrum of tissue, cell, and nucleic 
acid preparations as well as patients potentially contaminated by murine viruses 
may be widening. A related caution is that since porcine tissue is often used for 
xeno-transplantation in humans, it was proposed that testing should be done for 
XMRV prior to transplantation. Retroviruses can recombine to produce new strains 
of virus, and porcine endogenous retroviruses (PERVs) are present in porcine tis-
sues [ 60 ]. All these results point to caveats to guard against virus and nucleic acid 
potential contamination and escape from the laboratory, the dangers of their use in 
the clinic, as well as contamination of laboratories and reagents. Due to the evi-
dence of contaminations, previously published literature were retracted by the 
authors including Lombardi et al. (Science 2009), Lo et al. (Science 2010), and 
Urisman et al. (PLoS One 2006) [ 61 ].  

7     Clinical Studies 

 The involvement of XMRV in diseases in addition to prostate cancer and CFS has 
been investigated. These analyses did not demonstrate any association of XMRV 
with diseases including amyotrophic lateral sclerosis (ALS) [ 62 ], lymphoid malig-
nancies [ 63 ], systemic lupus erythematosus (SLE) [ 64 ], and autism [ 65 ]. 

 Since XMRV is closely related to murine leukemia viruses, the possible associa-
tion to human lymphoid malignancies was analyzed. Waugh et al. studied DNA 
specimens from patients in the UK with lymphoid malignancies and benign lymph-
adenopathy quantitative PCR assays for XMRV. XMRV was not detected in any of 
the specimens [ 63 ]. However, XMRV had been suspected to circulate in the general 
population. Using TaqMan PCR in peripheral blood DNA, a London cohort of 540 
HIV-1-positive patients was analyzed for the presence of XMRV and related viruses. 
There were no positive specimens in this patient cohort; it was concluded that 
XMRV or related viruses were not circulating at a detectable level in HIV-1-positive 
patients in London or in the general population [ 66 ]. Blood specimens from 95 SLE 
patients and 50 healthy controls were also analyzed by PCR. No XMRV was 
detected by PCR [ 64 ]. Moreover, using fi ve sets of nested PCR primer of XMRV 
 gag  and  env  regions, with confi rmation by using full-length molecular viral clone 
VP62, there was no evidence of MLV-related sequences in the specimens from 15 
patients diagnosed with fi bromyalgia [ 67 ]. 
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 In addition, an investigation of XMRV in cerebrospinal fl uid did not fi nd any 
correlation of CFS and XMRV or other common viruses including human adenovi-
ruses, alpha-viruses, herpes viruses (HHV 1, 2, 3, 4, 5, 8), human parvovirus B19, 
dengue viruses 1, 2, 3, and 4, West Nile Virus, Japanese Encephalitis Virus, St. 
Louis Encephalitis Virus, enteroviruses A-D, and any coxsackieviruses [ 68 ]. 

 In the controversial area of autistic disorder, correlation with XMRV or MLV- 
related viruses was studied using nested PCR targeted to gag DNA in specimens 
from blood, postmortem brain tissue, and semen. Once again, no XMRV gag DNA 
sequences were detected [ 65 ].  

8     Conclusions 

 Initial research proposed a causal link for XMRV infection with prostate cancer and 
CFS. Issues addressed included the origin of the virus, its mode of transmission, its 
role in disease pathogenesis, and the possible use of chemotherapy and vaccines 
[ 1 ,  31 ]. However, subsequent work revealed that research laboratory and clinical 
laboratory contamination were central issues and the data no longer supported the 
initial claims. Nonetheless, it is important to note the issues raised by the initial 
fi ndings and the careful and detailed laboratory follow-up. Contamination of tissue 
and reagents are key issues [ 69 ]. It is not the fi rst time that rodents were putatively 
associated with a human disease. Indeed, rodents have been proposed as the cause 
of at least 35 human diseases. Many of these fi ndings are now in question because 
of the potential for rodent contaminants in the reagents and tissues and this needs 
further follow-up [ 70 ]. The initial detection of XMRV and its putative association 
with human diseases was vitiated by later fi ndings of contamination. This demon-
strates that clean reagents and quality control are of crucial importance as well as 
proper design for controls.     
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    Chapter 22   
 Prion Diseases, HIV-1 Associated 
Neurocognitive Disorders, and Alzheimer’s 
Disease: Implications for Protein Misfolding 

             Brian     Giunta      ,     Alireza     Minagar      , and     Francisco     Fernandez     

             Core Message      This chapter discusses the topic of prion, tau, and Aβ proteins. All 
serve physiologic functions but become neurotoxic when aggregation and 
subsequent protein misfolding ensue. These three proteins all have the ability to 
aggregate into misfolded structures. In addition, they have the possibility to be used 
as a set of biomarkers for neurodegenerative clinical assessment.  

1     Introduction 

1.1     Classical Prion Diseases 

 Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), 
are progressive neurodegenerative disorders that affect an array of mammals. In 
humans, they comprise Creutzfeldt–Jakob disease (CJD), variant Creutzfeldt–Jakob 
disease (vCJD), fatal familial insomnia (FFI), Kuru, Gerstmann–Sträussler–
Scheinker disease (GSS), and variably protease-sensitive prionopathy (VPSPr). 
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Natural TSEs in animals include scrapie seen in sheep and goats, bovine spongiform 
encephalopathy (BSE), and chronic wasting disease (CWD) of deer and elk [ 1 ]. 

 Prion diseases are part of a group of disorders that are attributed to misfolding 
and ordered aggregation of proteins, which include Alzheimer’s disease (AD), 
Parkinson’s disease (PD), systemic amyloidosis, and some cases of human immu-
nodefi ciency virus (HIV) neurocognitive disorders (HAND). In classical prion dis-
ease, the cellular prion protein PrP C , after partial misfolding, converts into a 
somewhat protease-resistant disease- associated isoform, PrP Sc  which aggregates in 
the brain and forms deposits which promote neurodegeneration [ 1 ]. 

 Notable features of prion diseases among these disorders are their wide pheno-
typic presentations as well as the various etiologies (including sporadic, genetic, 
and acquired) and the transmissibility between individuals. Prions occur, like nor-
mal infectious agents, in various different strains known as natural isolates of infec-
tious prions. They are each marked by unique clinical and neuropathological 
features, which are reproducible upon serial passage within the same host genotype. 
The different strains of prion are believed to be the primary cause of TSE pheno-
typic variation. Further, the host variability in the gene encoding PrP C  ( PRNP ), as 
defi ned by polymorphisms or mutations, also affects the disease phenotype [ 1 ]. 

 Clinically, CJD is the most common prion disease of in humans and presents 
with subacute but progressive dementia, myoclonus, and electroencephalography 
(EEG) abnormalities. Neuropathologically, CJD manifests with loss of neurons, 
spongiform changes in the brain and development of astrocytosis. A variant form of 
CJD presents at younger ages with behavioral and psychiatric abnormalities early in 
its course, few EEG abnormalities, and typical magnetic resonance imaging (MRI) 
alterations characterized by the presence of hyperintense pulvinar.  

1.2     HAND 

    Cognitive impairment occurs in 15–50 % of HIV infected patients with [ 2 – 4 ] HIV- 
associated dementia (HAD) presenting as the most severe form [ 5 ]. With the introduc-
tion of combined antiretroviral therapy (cART), the incidence of HAD has dramatically 
decreased. Recently, patients—both long-term infected and treated—including those 
with systemically well-controlled infection, started to present with milder memory 
problems and slowness, diffi culties in concentration, planning, and multitasking; 
collectively termed HIV-associated neurocognitive disorders (HAND; [ 3 ]). 

 Although the pathophysiologic mechanisms underlying HAND are not fully elu-
cidated, an abundance of clinical and laboratory investigations suggest that HIV 
proteins, advanced age, protein misfolding, and co-morbid neurodegenerative 
disease(s) may interact resulting in the clinical presentation of this disorder [ 6 ,  7 ]. 
This is concerning as there are some 60,000 HIV-infected individuals over the age 
of 50 and 10,000 over the age of 65. Furthermore, it has been predicted that 50 % of 
prevalent acquired immunodefi ciency syndrome (AIDS) cases in the USA will fall 
into this older age group by the year 2015 [ 8 ]. 

 As noted above, in prion disease the cellular prion protein, PrP C , after partial 
misfolding converts into a somewhat protease-resistant disease-associated isoform, 
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PrP Sc , which aggregates in the brain and forms deposits that are associated with the 
neurodegeneration. Although the phenomenon of PrP C  to PrP Sc  conversion does not 
occur in HIV infection, protein misfolding has been noted in several preclinical and 
clinical reports in the form of self-assembling misfolded tau and amyloid-beta (Aβ) 
proteins. Biomarkers as indicators for the progression of HAND remain elusive [ 9 ]. 
Aβ and/or tau, in addition to the normal prion protein, PrP C , may be able to be used 
a biomarker of the disease which is elaborated upon in the rest of this chapter.   

2     Aβ, AD, and HAND 

 Amyloid precursor protein (APP) “amyloidogenic” proteolysis by β- and γ-secretases 
yields β-amyloid (Aβ) peptides implicated in AD [ 10 ,  11 ] and to some degree, HAND 
[ 12 – 14 ]. In the “nonamyloidogenic” pathway, APP is cleaved at the α-secretase site, 
yielding soluble APP-α (sAPP-α); and precluding Aβ generation [ 15 ]. Aβ plaques are 
composed of a tangle of regularly ordered fi brillar aggregates called amyloid fi brils 
[ 16 ] a protein misfolding shared by other peptides such as prions. Several lines of 
epidemiological evidence signal a role for Aβ in HAND development while some 
studies have not yet fully implicated over production of the protein as a contributor to 
HAND. First, it is known that pathological similarities exist between HAND and 
neurodegenerative disorders such as AD [ 12 – 14 ] (Fig.  22.1 ). The former is more so 

  Fig. 22.1       Protein misfolding across three diseases: CJD, AD, and HAND. Protein misfolding has 
been implicated in the pathogenesis of several neurodegenerative diseases. Here, the overlap in 
misfolded proteins is illustrated. In regard to AD and HAND, there are reports of increased 
phospho- tau (p-tau) which predisposes to misfolded aggregates of p-tau (NFT). Moreover for both 
AD and HAND, epidemiological reports indicated increase in CNS Aβ. In regard to HAND and 
the protypical prion disease, CJD, a common link is PrP c . The soluble form may serve as a bio-
marker for HAND, while the misfolded form (PrP Sc ) is the central disease causing agent of CJD       
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characterized by extracellular deposits of Aβ 1–42  in the form of plaques and aggrega-
tions of microtubule-associated tau yielding neurofi brillary tangles (NFT). In con-
trast, with HIV infection, the plaques are more diffuse [ 17 ] rather than neuritic [ 18 ].  

 Cerebrospinal fl uid (CSF) biomarkers may mirror pathogenic cerebral amyloid 
deposition. Decreased CSF Aβ 1–42  and increased CSF tau can differentiate symp-
tomatic AD individuals and cognitively normal individuals at high risk for symp-
tomatic AD from cognitively normal individuals at low risk for symptomatic AD 
[ 19 ,  20 ]. In that regard, at least some HAND patients have CSF Aβ 1–42  values 
comparable to symptomatic AD individuals, that is, reduced [ 12 ,  21 ] (Fig.  22.1 ). 
This is salient because reductions in CSF Aβ 1–42  have been found in almost all 
individuals with increased fi brillar amyloid deposition within the brain as assessed 
with positron emission tomography (PET) amyloid binding of  N -methyl-[11C]2-
(4- methylaminophenyl)-6-hydroxybenzothiazole ( 11 C-PiB) [ 22 – 25 ]. Likewise, 
AIDS dementia complex (ADC) patients had signifi cantly decreased CSF Aβ 1–42  
and increased total and phospho (t-tau and p-tau respectively) concentrations simi-
lar to AD [ 12 ]. 

 Achim and colleagues [ 14 ] reported increased Aβ by both autopsy examination 
and PET imaging of HIV patients’ frontal cortex. Specifi cally, cases with HIV 
encephalitis (HIV-E) were about twice as likely to have amyloid detected (72 %) 
than HIV+ patients without HIV-E (38 %; [ 14 ]). In the same year Clifford and col-
leagues reported Aβ 1–42  measurements in CSF of cognitively impaired patients with 
HIV were similarly reduced as in patients with mild AD. Normal or slightly 
depressed CSF tau and phospho-tau measurements distinguished these patients with 
HAND from patients with AD [ 21 ]. 

 Further analysis as to why low CSF Aβ 1–42  is observed is needed however there 
are several reasons which may explain altered Aβ metabolism in HIV disease. First, 
HIV-1 transactivator of transcription (Tat) protein may compete with APP and/or 
apolipoprotein E (an Aβ chaperone) for binding to the low density lipoprotein 
receptor related protein (LRP), thus inhibiting LRP mediated clearance of Aβ from 
brain interstitial fl uid to periphery [ 26 ]. Second, APP cleavage products (sAPPα and 
sAPPβ) have been reported to be reduced in the CSF of patients with HAND versus 
those AD or HIV-negative controls, with sAPPα (a neurotrophic protein) showing a 
slight decline in the asymptomatic HIV state [ 27 ,  28 ]. 

 In 2010 Ances and colleagues reported cognitively unimpaired HIV+ partici-
pants, even with low CSF Aβ 1–42  (<500 pg/mL), did not have (11)C-PiB parameters 
suggesting brain fi brillar amyloid deposition. This dissimilarity between cogni-
tively unimpaired HIV+ and preclinical AD may refl ect differences in Aβ 1–42  pro-
duction and/or formation of diffuse plaques [ 29 ]. This same group, in 2012, reported 
symptomatic AD patients were signifi cantly older, had signifi cantly lower CSF 
Aβ 1–42 , and had sign i fi cantly higher CSF tau levels than other groups. Regardless of 
degree of impairment, HIV patients did not have increased  11 C-PiB [ 30 ]. Possible 
reasons for the absence of  11 C-PiB in HIV patients are: (1) decreased Aβ 1–42  production 
secondary to decreased synaptic activity; (2) increased intraneuronal Aβ 1–42  deposi-
tion yielding a reduction in overall extracellular concentrations making them 
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undetectable by 11C-PiB [ 14 ]; and/or (3) increased Aβ 1–42  brain deposition but in a 
more diffuse, non-fi brillar form that is undetectable by  11 C-PiB [ 13 ,  31 ]. Future 
longitudinal examinations within older HIV+ participants are required to determine 
if diffuse, or oligomeric forms could with time subsequently become fi brillar 
( 11 C-PiB positive) deposits [ 12 ,  21 ].  

3     Tau and HAND 

 Tau protein is a highly soluble microtubule-associated protein (MAP) found mostly 
in neurons. One of tau’s primary functions is to modulate the stability of axonal 
microtubules. Tau is active primarily in the distal portions of axons where it pro-
vides microtubule stabilization and/or fl exibility as needed. Tau interacts with tubu-
lin to stabilize microtubules and promote tubulin assembly into microtubules. Tau 
has dual mechanisms of modulating microtubule stability: isoforms and phosphory-
lation. Hyperphosphorylation of tau protein promotes self-assembly of tangles of 
neurotoxic paired helical fi laments and straight fi laments [ 32 ]. 

 There have been several reports regarding tau pathology in HIV in addition to AD 
(Fig.  22.1 ). One of the fi rst reports investigating the HIV infection on hyperphos-
phorylated tau deposition was reported in 2006 by Anthony and colleagues who 
examined HIV-infected subjects before and after the advent of cART. They reported 
elevated levels of hyperphosphorylated tau in the hippocampus of many HIV-
infected subjects, compared with age-matched controls. Moreover, the greatest lev-
els of hyperphosphorylated tau were noted in cART-treated subjects [ 31 ]. It is 
hypothesized by the authors that HIV infection and/or the use of cART therapy may 
predispose to accelerated aging of neurons in the form of hyperphosphorylated tau 
deposition in the hippocampus. Within the age groups studied it should be noted that 
the signifi cant neuropathological changes remained subclinical and were not yet 
associated with cognitive impairment. Clifford and colleagues (2009) measured total 
and phospho-tau in 49 HAND subjects compared to 50 controls of similar age or 21 
HIV+ subjects without cognitive impairment. Results indicated that HAND subjects 
had slightly lower CSF total and phospho-tau compared to both control HIV+ groups 
[ 21 ]. It has also been reported that in the frontal cortex of patients with HIV enceph-
alitis (HIVE), increased levels of cylin-dependent kinase 5 (CDK5) and p35 expres-
sion were associated with abnormal tau phosphorylation. In addition, transgenic 
mice expressing the HIV protein gp120 exhibited increased brain levels of CDK5 
and p35, alterations in tau phosphorylation, and dendritic degeneration [ 33 ]. 
Steinbrink and colleauges examined 94 patients (82 men and 12 women; mean age 
45 ± 10 years) with HIV infection, but without opportunistic infections of the central 
nervous system (CNS) using MRI and CSF analysis. They reported cognitive impair-
ment was signifi cantly correlated with total tau increases, but not with phospho-tau 
[ 9 ]. Likewise Smith and colleagues found HIV positive subjects expressed more 
total tau protein than HIV negative controls (highest in a 58 year old), as did injec-
tion drug users, but brain viral loads showed no relation to tau and amyloid [ 34 ].  
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4     PrP c  and HAND 

 Although the phenomenon of PrP C  to PrP Sc  conversion does not occur in HIV infec-
tion, there is some evidence that PrPc could be used as a biomarker of the disease. 
As an adhesion and signaling molecule PrP c  plays a role in several processes includ-
ing transmigration of leukocytes across the endothelium [ 35 ]. The transmigration is 
disrupted during HIV infection of the CNS [ 35 – 38 ]. It has been recently reported 
that CSF soluble (s)PrP c  was elevated in HAND patients as compared to uninfected 
individuals and HIV infected individuals without HAND [ 35 ,  37 ]. The signifi cant 
increase of sPrP c  in individuals with HAND was independent of viral load or CD4 + T 
cells counts but correlated with increased CSF chemokine (C-C motif) ligand 
(CCL2). The authors concluded that increased sPrP c  was not due to immune sup-
pression but was mediated by HIV infection and CCL2, showing the importance of 
this chemokine in PrP c  release (Fig.  22.1 ). Interestingly, elevated CCL2 level in the 
CSF of humans is an indicator of neurocognitive impairment [ 39 ]. Further, in pig-
tail macaques it is predictive of severity of encephalitis [ 40 ]. In vitro studies exam-
ining the effect of CCL2 on BMVEC (bovine brain microvascular cells), neurons, 
and astrocytes also showed that this chemokine induced increased PrP c  release 
between 30 min and 24 h [ 37 ]. Thus high CCL2 levels combined with HIV infec-
tion induced shedding of PrP c  in the CSF may be one of the pathogenic processes 
leading to HAND. 

 The fi nding of Roberts and colleagues indicated that astrocytes, BMVEC, and 
neurons are the main source of sPrP c  in HAND patients. In addition, HIV infected 
peripheral blood monocytes showed increased release of PrP c  followed by a sud-
den decrease 4 days post-infection which was maintained for up to 7 days [ 37 ]. 
This shed PrP c  may promote monocyte entry into the CNS by dysregulating the 
normal PrP c –PrP c  interactions which control baseline transmigration for 
 surveillance [ 41 ]. 

 To study the release of PrP c  during the time course of HIV CNS pathogenesis, 
the pigtail macaque model of NeuroAIDS, in which 90 % of animals develop SIV 
encephalitis (SIVE) within 3 months of infection [ 42 ], was used. CSF samples from 
different stages of SIV infection indicated animals presenting with severe encepha-
litis had elevated sPrP c  levels during early and late stages of infection as compared 
to uninfected animals or those with mild SIVE. As these stages are characterized by 
elevated CCL2 in the CNS it is likely CCL2 and/HIV infection modulate sPrP c  
secretion as noted earlier [ 41 ]. 

 It has also been found that PrP c  was selectively increased in the brains HAND 
patients as compared to uninfected individuals and HIV infected patients without 
HAND. Neuronal and astrocytic PrP c  was signifi cantly increased in patients with 
both minor motor cognitive disorders (MCMD) and HIVE [ 35 ,  37 ]. Astrocytes in 
patients with MCMD displayed hypertrophy, proliferation, and extensive process 
formation along with elevated PrP c  expression [ 35 ,  37 ].  
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5     Protein Misfolding as a Therapeutic Target 

 Currently there is no disease modifying or curative therapy for classical prion 
 disease, AD, or HAND. What follows is a brief review of current potential thera-
pies. For prion diseases in which PrP is misfolded into PrP S , drugs from various 
molecular families (such as polyanionic, tetrapyrrolic, or tricyclic compounds, 
polyene antibiotics, tetracyclins, β-sheet breaker peptides, Congo red, and others) 
are reported to attenuate prion replication, but none are of practical for clinical 
translation secondary to effi cacy, pharmacology, or toxicity problems [ 43 – 46 ]. 
Using PrP Sc -based assays, screening of compound libraries for antiprion therapeu-
tics is ongoing [ 47 – 52 ]. Most recently, Karapetyan and colleagues screened an 
array of pharmaceuticals approved for human use using a PrP–FRET-enabled high 
throughput assay (PrP–FEHTA) [ 43 ]. They found that astemizole and tacrolimus 
each lowered cell-surface PrP and inhibited prion replication in neuroblastoma 
cells. Specifi cally, tacrolimus reduced total cellular PrP by a nontranscriptional 
mechanism. Astemizole prolonged the survival time of prion-infected mice while 
tacrolimus did not. Astemizole is used in humans to treat chronic allergic rhinitis 
and also crosses the blood–brain barrier, making it a potential treatment for CJD 
patients and for prophylactic use in familial prion diseases [ 43 ]. 

 For HAND and AD, the misfolding and aggregation of Tau and Aβ (Fig.  22.1 ) 
may be possible therapeutic targets. In regard to both, therapeutic strategies consist 
of mechanism-based disease-modifying therapies such as vitamin E, mechanism 
based therapies which attempt to compensate for neurotransmitter defi cits, and psy-
chotropics administered for treatment of behavioral symptoms including psychosis 
and depression. Several other agents have been used including ginko biloba, statins, 
and nonsteroidal anti-infl ammatory drugs (NSAIDS). Effi cacy has not been clearly 
shown for most of these treatments although binding of naproxen and ibuprofen to 
NFT’s and plaques occurs in human tissue [ 53 ]. 

 Five drugs have been approved by the FDA for treatment of AD symptoms. 
Galantime, rivastigmine, donepezil, and tacrine are cholinesterase inhibitors [ 54 ,  55 ]. 
Although reduced symptoms have been shown [ 56 ], benefi ts to cognition are uncon-
fi rmed. Tacrine is rarely prescribed due to serious side effects, including possible liver 
damage [ 55 ,  57 ]. All have been shown to modestly slow progression of cognitive 
symptoms and reduce problematic behaviors in a subset of patients but at least half 
who take these medications fail to respond to them [ 54 ,  57 ]. Side effects associated 
with acetylcholinesterase inhibitors include upset stomach, nausea, vomiting, diar-
rhea, headache, dizziness, changes in appetite, sleep disturbance, muscle weakness, 
and weight loss. These medications also may increase the risk of  stomach irritation 
and ulcers. The  N -methyl- D -aspartate (NMDA) receptor antagonist, memantine, is 
targeted against glutamate excitotoxic neuronal damage [ 54 ,  58 ] in moderate-to-
severe cases of AD [ 54 ,  59 ]. Side effects of this medication include headache, dizzi-
ness, vomiting, cough, back pain, confusion, constipation, and sleepiness [ 60 – 62 ]. 

 Gamma (γ)-secretase inhibitors modulate an enzyme involved in Aβ and tau 
 production. Those tested clinically include LY450139 (phase II; [ 63 ,  64 ]) and 
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R-fl urbiprofen (phase III; [ 65 ]). Early agents produced toxicity related to other 
γ-secretase substrates, especially Notch protein. Proteolytic processing of Notch 
by γ-secretase is an essential step after activation of the pathway. Consequently 
γ-secretase inhibitors (GSI) block Notch pathway activation [ 66 ,  67 ]. Newer 
agents are more specifi c inhibitors. LY450139, in normal human volunteers, 
given doses ranging from 5 to 50 mg/day over 14 days, decreased plasma Aβ 
concentrations up to 40 % in a dose- dependent manner. Unfortunately the critical 
CSF Aβ concentrations were unchanged. Furthermore at the 50 mg/day dose, 
adverse events that were possibly drug-related were noted. R-fl urbiprofen is cur-
rently in phase III testing ( N  = 2,400). In a 1-year phase II study 207 subjects with 
mild-to-moderate AD receiving 400 mg twice daily, 800 mg twice daily, or pla-
cebo revealed no statistical signifi cance in any memory measures. A subset of 
mild patients on the 800 mg twice daily dose, however, who developed high 
blood levels of the drug, demonstrated signifi cant benefi ts in ADLs and overall 
function [ 65 ]. 

 Due to side effects related to Notch, there is a newer emphasis on γ- secretase 
modulators (GSM) rather than pure inhibitors. Chronic treatments with two GSM’s, 
ibuprofen and CHF5074, showed higher activity of CHF5074 in reducing brain 
plaque deposition and spatial memory defi cits in transgenic mice expressing human 
APP with Swedish and London mutations (APP SL  mice). Further CHF5074 was 
found to be more effective than ibuprofen in reducing tau pathology [ 68 ].  

6     Conclusion 

 Future randomized control trials will be necessary to determine if PrP c , Aβ, phos-
pho- and/or total tau may be used as reliable biomarkers for the progression of 
HAND and possibly other neurodegenerative disorders. Treatments which could 
ameliorate protein misfolding in the CNS which address multiple targets across 
multiple neurodegenerative disease models may have the highest potential to 
advance the clinical treatment of patients suffering such disorders as HAND classi-
cal prion disease, and AD and could be disease modifying.     
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    Chapter 23   
 Origin and Evolution of Human 
Immunodefi ciency Viruses 

           Jeffrey     B.     Joy    ,     Richard     H.     Liang    ,     T.     Nguyen    , 
    Rosemary     M.     McCloskey    , and     Art     F.  Y.     Poon    

1            Origins 

1.1     Primate Lentiviruses 

 Human immunodefi ciency virus (HIV) is a retrovirus that is classifi ed in the genus 
 Lentivirus . Lentiviruses are uniquely distinguished from other retroviruses by hav-
ing a long latency period between infection and the manifestation of symptoms, a 
characteristic that confers the genus its Latin etymology ( lentus  being the adjective 
for “slow”) [ 1 ]   . Moreover, lentiviruses are transmitted between hosts without the 
need for an intermediate vector, infect a broad range of mammalian hosts, and have 
a worldwide distribution. There are presently seven recognized major lentivirus lin-
eages refl ecting the known mammalian host range (lagomorph, equine, small rumi-
nant, bovine, feline, prosimian, and simian [ 2 ,  3 ]). The virus genomes representing 
these lineages share a common genomic structure comprising three major genes 
( gag ,  pol , and  env ) and two regulatory genes ( tat  and  rev ); however, there are also a 
number of accessory genes that vary in number, type and relative location.  

 African nonhuman primate species are the natural hosts of simian immunodefi -
ciency viruses (SIV), although SIV has also been isolated from Asian nonhuman 
primate species as well [ 7 ]. Lentiviruses have not yet been isolated in New World 
monkeys [ 8 ]. Over 40 SIVs have been characterized, each specifi c to a certain pri-
mate host [ 9 ]. In their respective natural hosts, infection by SIV generally does not 
lead to the depletion of CD4+ T-cell populations typically seen in HIV-1 infection 
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despite the proliferation of the virus to large numbers within the host (high viral 
load). However, the experimental infection of a nonhuman primate host by an SIV 
strain from a host belonging to a different species results in CD4 cell depletion simi-
lar to that seen among AIDS patients [ 10 ]. 

  Fig. 23.1    A phylogeny reconstructed from SIV and HIV  gag  sequences. Sequences were obtained 
from the 2012 Sequence Compendium published by the Los Alamos National Laboratory HIV 
Sequence database (   http://www.hiv.lanl.gov     ) and realigned using the program MUSCLE [ 4 ] under 
default settings. This alignment was used to reconstruct a phylogeny using the maximum likeli-
hood heuristic implemented in RAxML [ 5 ]. The tree was rooted at the longest internal branch 
within the SIV clade representing the  Colobus  clade (western red colobus, olive colobus, and 
mantled guereza). For reference, the long terminal branch leading to SIV col  (mantled guereza) has 
a length of 1.14 expected nucleotide substitutions per site, consistent with previous work [ 6 ]       
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 Viral and immunological mechanisms that prevent pathogenicity and vertical 
transmission in natural SIV hosts have illuminated potential targets for HIV treat-
ment and vaccine development. The initial phases of infection unfold similarly in 
both natural and nonnatural hosts. The fi rst few weeks of infection are marked by 
high levels of viral replication, followed by viral spread to peripheral lymphoid tis-
sues and rapid depletion of mucosal CD4+ T-cells [ 11 ], notably in the gut- associated 
lymphoid tissue (GALT). A major determinant of HIV-1 disease progression is 
chronic immune activation. One source of chronic immune activation has been pin-
pointed to the evolutionary loss in HIV-1 and its precursor SIV strains of the role of 
the accessory gene nef in dampening the responsiveness of infected cells to further 
antigenic stimulation [ 12 ].  

1.2     HIV Zoonoses 

1.2.1     Emergence of the Virus 

 The global HIV pandemic originated from multiple transmissions of SIV from non-
human primate into human hosts (Fig.  23.1 ). SIV found in chimpanzees ( Pan trog-
lodytes , SIZ cpz ) is the closest relative of HIV-1, and SIV circulating within sooty 
mangabeys ( Cercocebus atys atys , SIV sm ) is the closest relative of HIV-2 [ 13 ,  14 ]. 
More than 11 zoonotic events have occurred between other primates and humans 
transmitting SIV and leading to the HIV/AIDS pandemic [ 15 ]. Three such transmis-
sions involved SIV cpz  from common chimpanzees ( Pan troglodytes troglodytes ) 
generating HIV-1 groups M, N, and O [ 15 ] 1 , while eight other known transmissions 
of SIV sm  from sooty mangabeys produced HIV-2 groups A through H [ 15 ].  

1.2.2     HIV-1 

 The earliest confi rmed HIV-1 infection (ZR59) was identifi ed from an archived 
blood plasma sample collected during 1959 in the city of Kinshasa in what was then 
the Belgian Congo (today the Democratic Republic of Congo) [ 16 ]. The second 
oldest known HIV-1 infection (DRC60) was sampled from a paraffi n-embedded 
lymph node sample archived during 1960 also in Kinshasa [ 17 ]. ZR59 was a HIV-1 
subtype D infection, whereas DRC60 was classifi ed as HIV-1 subtype A. The con-
siderable genetic distance between these earliest available HIV-1 sequences, sam-
pled just months apart (ZR59 and DRC60) from the same region of Africa, clearly 
indicates that diversifi cation of HIV-1 occurred decades before the sample 

1   At the production stage of this book chapter, a paper from D’arc et al. was published online in the 
Proceedings of the National Academy of Sciences (USA) presenting new evidence that HIV-1 
group O was most likely introduced into the human population from gorillas (SIVgor) which in 
turn derived from SIV in chimpanzees (SIVcpz). 
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collection dates. Analysis of the ZR59 and DRC60 sequences with other historical 
and contemporaneous sequences revealed that HIV-1 group M was most likely 
transferred into humans from common chimpanzees ( Pan troglodytes ) in approxi-
mately 1908 (Bayesian skyline 95 % credible interval 1884–1924; [ 17 ]). 
Phylogeographic analyses have reconstructed the location of this transmission event 
to Northern Cameroon [ 18 ]. Using similar techniques, cross-species transmission of 
HIV-1 group N was estimated to have occurred in approximately 1963 (1948–1977) 
[ 15 ,  19 ] in South Central Cameroon [ 15 ]. HIV-1 group O is estimated to have 
crossed the species barrier in approximately 1920 (1890–1940). Intriguingly, a sis-
ter-group SIV lineage to HIV-1 group P was discovered in gorillas ( Gorilla gorilla ) 
suggesting a role for gorillas as intermediate hosts between chimpanzees and 
humans. However, the geographic location of this transmission event is unknown 
[ 15 ].  

1.2.3     HIV-2 

 The earliest confi rmed HIV-2 infection was discovered retrospectively from a sam-
ple collected in 1978 [ 20 ]. This infection was hypothesized to have occurred in 
Portuguese Guinea (today Guinea-Bissau) at some time between 1956 and 1966. 
HIV-2 subtypes are mainly restricted to western Africa and classifi ed as epidemic 
(A and B) and nonepidemic subtypes (C–H) [ 21 ]. Molecular clock studies esti-
mated that the cross-species transmission of the HIV-2 subtype A clade occurred in 
approximately 1940 (1924–1956) [ 15 ,  21 ]. Using similar techniques, the cross- 
species transmission of HIV-2 subtype B clade has been estimated to have occurred 
approximately in 1945 (1931–1959) [ 15 ,  21 ], and that both HIV-2 clade A and B 
cross-species transmission events occurred in Côte d’Ivoire [ 15 ]. The six nonepi-
demic HIV-2 lineages do not appear to be transmissible among humans [ 15 ,  22 ].  

1.2.4     Controversy and Resolution 

 An erroneous hypothesis, the “oral polio vaccine (OPV)” hypothesis of the origin of 
HIV, was advanced in 1987 in Rolling Stone magazine by journalist Tom Curtis and 
later expounded upon by journalist Edward Hooper, igniting public controversy. In 
essence, the OPV hypothesis posited that the HIV pandemic began as a result of 
distribution of oral poliomyelitis vaccine contaminated with SIV from Kisangani in 
the Belgian Congo during the late 1950s and early 1960s. Evidence from phyloge-
netic and population genetic studies [ 15 ,  23 ,  24 ] incontrovertibly shows the OPV 
hypothesis to be wrong. In particular, the SIV variant infecting chimpanzees from 
the Kisangani region proved to be phylogenetically distinct from all HIV strains, 
which is clear evidence that chimpanzees from this region could not have been the 
origin of the HIV pandemic [ 23 ].   
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1.3     Subtypes and Recombinant Forms 

 Molecular evidence (see Sect.  1.4 ) suggests that highly diverse strains of HIV-1 group 
M, which would eventually cause the global pandemic, were already circulating in 
human populations in central Africa well before the 1950s [ 17 ,  25 ]. The extensive 
diversity of the M group is structured into nine highly distinct subtypes, denoted as 
subtypes A–D, F–H, J, and K [ 26 ]. Viruses that were initially categorized as subtype 
E form a distinct group in molecular phylogenies 2  reconstructed from  env  sequences; 
however, the rest of the genome sequence closely resembles subtype A. Consequently, 
these viruses are treated as a recombinant of subtype A and a putative nonrecombi-
nant subtype E lineage that has yet to be discovered. This A/E recombinant variant 
has expanded into its own regional epidemic in Southeast Asia and, as a result, was 
recognized as the fi rst “circulating recombinant form” (CRF01AE). 

 Figure  23.2  illustrates the extent of nucleotide divergence within and between 
the HIV-1 subtype reference sequences curated by the Los Alamos National 
Laboratory HIV Sequence Database. The mean difference between within- and 
among-subtype divergence is about 6.3 % (about six expected nucleotide differ-
ences for every 100 bases) and is signifi cantly greater in the genomic regions encod-
ing  env  and  nef  (Wilcoxon test,  p  = 1.4 × 10 −8 ). The difference of these quantities 
provides a better sense of the evolutionary divergence among subtypes. We also 
plotted the divergence between the “sub-subtypes”: of A and F (denoted as A1 and 
A2, and F1 and F2, respectively)—clades within established subtypes that are not 
suffi ciently diverged to be considered subtypes themselves.   

2   A molecular phylogeny is a tree that represents how genetic sequences are related by common 
ancestors. 

  Fig. 23.2    Mean nucleotide differences at different levels of HIV diversity. Each  line  represents a 
moving average of the frequency of nucleotide differences between sequences in a window of 200 
bases. Gaps due to insertions or deletions were omitted. The analysis was performed on 39 full- 
length HIV genome sequences comprising the current non-recombinant HIV-1 group M subtype 
reference set curated by the Los Alamos National Laboratory HIV Sequence Database (   http://
www.hiv.lanl.gov/     ). Note that our calculations do not adjust for multiple hits       
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1.4       Timing the Ancestor—Molecular Clocks 

 Mutations in the HIV-1 genome are estimated to occur at a rate between 3.4 × 10 −5  
and 4 × 10 −5  mutations per base, per generation [ 27 ,  28 ] (see Sect.  2.1 ). Generations 
are estimated to last between 1.2 and 2.6 days [ 29 – 31 ] (see Sect.  4.2 ). Assuming 
that most mutations are neutral or nearly neutral, the rate at which they accumulate 
in diverging lineages roughly corresponds to this mutation rate (the molecular clock 
[ 32 ]). Thus, we can estimate the clock rate to be somewhere between 1.3 × 10 −5  and 
3.3 × 10 −5  mutations per base, per day, though in the less variable p17 region it may 
be as low as 7.4 × 10 −6  mutations per base per day [ 33 ]. 

 The dynamics of HIV evolution do not always agree with the assumption of a 
single rate of evolution across all branches of a phylogenetic tree. Within a host, events 
such as the initiation of the host immune response can cause a change in the number 
of accumulated substitutions in response to selection [ 34 ,  35 ]. Between hosts, varying 
levels of immune response can infl uence the substitution rate [ 35 ,  36 ]. However, it is 
also unreasonable to assume that the clock rate along each branch is totally indepen-
dent, since the biological mechanisms of HIV mutation are the same regardless of the 
host environment. The relaxed molecular clock [ 37 ] was proposed to allow for such 
variation. Under this model, rates for different branches are drawn independently at 
random from a continuous probability distribution. In studies of HIV, this distribution 
has often been assumed to be lognormal [ 15 ,  17 ,  38 – 40 ], though analyses have also 
been done assuming exponentially [ 38 ] or normally [ 41 ] distributed rates. 

 Both strict and relaxed molecular clocks have been used to date the common 
ancestor to the modern HIV-1 group M pandemic to the 1930s [ 17 ,  25 ]. More gener-
ally, the relaxed clock has typically been better supported than the strict clock in 
studies of HIV [ 17 ,  42 ], which is unsurprising given that the strict clock does not 
allow for the empirically demonstrated variability in HIV’s rate of evolution both 
within and among hosts. However, there are also caveats to the relaxed clock, namely 
that the improved fi t may simply be a result of overparameterization, and that vari-
ance in the estimated time to most recent common ancestor may be large [ 43 ]. 

 The relaxed clock, as described, is also known as the uncorrelated relaxed clock, 
since the rates along different branches are independent. A family of alternatives to this 
model is autocorrelated molecular clocks, in which rates are dependent on the rates of 
other, nearby branches [ 44 ,  45 ]. Though they have shown promise in application to 
other organisms [ 46 ], these models have not yet been extensively tested on HIV data.   

2     Mechanisms of HIV Genetic Variation 

2.1      Mutation 

 Although the term “mutation” can refer to any spontaneous genetic change, we use 
this term here to refer specifi cally to single nucleotide mismatch errors that can arise 
during replication. Like many retroviruses, the HIV genome undergoes a high rate 
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of mutation because the virus-encoded reverse transcriptase (RT), which converts 
the single-stranded virus RNA into double-stranded DNA, lacks the capability for 
proof-reading. Current estimates of the HIV mutation rate in cell culture range from 
3.4 × 10 −5  to 4 × 10 −5  per base per replication cycle [ 27 ,  28 ]. Because the genome is 
about 9,700 base pairs in length (with substantial variation among viruses; e.g., 
ranging from 8,349 to 9,719 bases among the HIV reference genomes), these esti-
mates suggest that about one of every three genome replications results in a new 
mutation. In addition, the HIV genome can be directly modifi ed by the innate anti-
viral immune response mediated by a human-encoded enzyme (apolipoprotein 
B mRNA editing enzyme, catalytic polypeptide-like 3G, or APOBEC3G) which 
deaminates cytidine to uracil in the negative strand of HIV DNA, thereby resulting 
in the conversion of guanine (G, the original complement of cytosine) to adenine 
(A, the complement of uracil) on the positive strand [ 47 ]. This G-to-A hypermuta-
tion, which is characteristic of lentiviruses infecting primates [ 48 ], has exerted suf-
fi cient selective pressure for the virus populations to have evolved a counterdefense 
in the form of an accessory gene ( vif ) encoding a protein that induces the degrada-
tion of APOBEC3G [ 49 ]. 

 The impact of APOBEC-induced hypermutation for inhibiting the growth of 
HIV, particularly on  vif -defi cient variants [ 50 ], lends credence to the concept of 
using other mechanisms to artifi cially accelerate the mutation rate of HIV. The 
underlying premise is that the mutation rate of HIV is so high that any further 
increase would result in an unsustainable accumulation of deleterious mutations 
in the virus population (a model-predicted phenomenon known as an “error 
 catastrophe”) [ 51 ,  52 ]. An older example of this concept is ribavirin, a nucleoside 
analogue that has antiviral activity against a broad spectrum of RNA and DNA 
viruses, and has also been found to be a potent mutagen [ 53 ]. Other nucleoside 
analogues, such as 5-OH-dCTP [ 54 ] and KP-1212/1461 [ 55 ], induce hypermutation 
and a loss of replicative fi tness of HIV in vitro. More recently, in a phase II clinical 
trial KP1212/1461 was reported to have the predicted effect on the genetic composi-
tion of virus populations within subjects, but without a signifi cant impact on viral 
load relative to the control population [ 56 ,  57 ].  

2.2     Insertion and Deletion 

 An insertion is the addition of nonhomologous nucleotides into a genome copy; 
conversely, a deletion is the loss or omission of nucleotides during replication. 
When we encounter two sequences of different lengths due to a stretch of nucleo-
tides without a homolog in the other sequence, we can infer that either an insertion 
or deletion has occurred. Because it is not possible to discriminate between these 
two possibilities without knowing the ancestral sequence, the polymorphism is 
known as an “indel”. The HIV genome undergoes extensive sequence insertions and 
deletions that tend to accumulate in regions of the genome that can tolerate length 
variation. For example, the HIV envelope glycoprotein contains several disulphide 
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loops that extend outward from the surface of the virus particle to interact with host 
cells and the extracellular environment [ 58 ]. These loops can vary substantially in 
length, and the incorporation of functional motifs, such as N-linked glycosylation 
sites, can play a signifi cant role in mediating escape from the neutralizing antibody 
response [ 59 ]. Longer glycosylated loops block access to highly immunogenic neu-
tralization epitopes on the surface of the virus envelope [ 34 ,  60 ]. 

 There are several insertions and deletions in the HIV genome occurring at repro-
ducible locations, which can also play an important role in the adaptation of the virus 
population. For example, insertions between codons 69 and 70 of HIV RT, in con-
junction with an amino acid substitution at codon 69, are associated with resistance 
to all FDA-approved nucleoside RT inhibitors [ 61 ]. In addition, insertions near HIV 
Gag cleavage sites can compensate for mutations in HIV protease that confer resis-
tance to multiple protease inhibitors at the cost of reduced enzymatic activity [ 62 ].  

2.3     Recombination 

 Recombination is the exchange of genetic material between genomes. While it does 
not create genetic variation like mutation, recombination may restore genetic com-
binations that have been removed from the population through the action of selec-
tion and genetic drift [ 63 ]. The conversion of the single-stranded viral RNA genome 
into double-stranded DNA is not only a source of genetic variation through muta-
tion, but it is also the mechanism of recombination. Each HIV particle carries two 
positive-sense RNA genomes that are compactly packaged as a dimer that is the 
substrate of the HIV reverse transcriptase. This dimerization is initiated by a struc-
ture within the 5′ untranslated region (UTR) of each genome copy that folds into a 
complex secondary structure, and is further mediated by the matured products of the 
cleaved HIV Gag and Gag-Pol polyproteins [ 64 ]. Recombination occurs when the 
HIV RT switches templates during reverse transcription of the dimer. In fact, two 
template switching events are requisite for replication of the 5′ and 3′ ends of the 
genome [ 65 ]. The rate of recombination appears to be restricted by successful 
dimerization of the HIV genomic strands; for instance, accumulation of mutations 
within the 5′ UTR between HIV subtypes accounts for a reduced rate of dimeriza-
tion and consequently lower rates of recombination in vitro [ 66 ]. 

 While HIV RT can undergo multiple template switches along the length of the 
genome, not all of these events result in recombination. For example, the exchange 
of genetic material between genomes that are identical on one side of the break-
point does not create any new combinations of alleles. Notwithstanding the accu-
mulation of mutations within a single lineage, recombination is limited by the 
probability that a cell becomes multiply infected by genetically distinct lineages of 
HIV. Thus, while the in vitro rate of recombination between single copies of HIV 
carrying markers in linkage disequilibrium has been estimated at about 3 × 10 −4  per 
base per generation [ 67 ], the “effective” rate of recombination that accounts for 
the  frequency of multiple-infected cells has been estimated to be over an order of 
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 magnitude lower (1.4 × 10 −5  per base per generation [ 68 ]). Even so, the rate of 
recombination is comparable to the considerable mutation rate of HIV, and one 
would expect about one in every seven replication events to produce a recombinant 
genome.   

3     HIV Evolution Among Hosts 

3.1     Variability of the HIV Genome 

 As the fi rst genetic sequences of HIV began to accumulate in research centers 
around the world, investigators immediately became aware of the extensive sequence 
diversity of this virus [ 69 ]. The study of this variability drove the development of 
new techniques in the fi eld of molecular evolution for analyzing rates of protein 
evolution. At the time, the established practice for quantifying these rates was by 
counting differences in protein-coding (codon) sequences that had diverged along 
related lineages. Mutations within a codon either result in a different amino acid 
upon translation (nonsynonymous) or leave the original amino acid intact (synony-
mous). The null hypothesis is that protein evolution is neutral, such that natural 
selection is “indifferent” to changes in the amino acid sequence. If there is no sig-
nifi cant difference between the number of nonsynonymous and synonymous 
changes, then we would be unable to reject this null hypothesis [ 70 ]. 3  In fact, non-
synonymous differences are generally observed less often than synonymous differ-
ences [ 72 ]. The overwhelming majority of nonsynonymous differences are culled 
by purifying selection; there is generally an evolutionary disadvantage to modifying 
a protein that is the product of a long history of adaptation to its environment. 
However, in some cases natural selection causes variants carrying a novel amino 
acid to proliferate. If a variant has the same selective advantage in all environments, 
or if the environment remains constant, then the elevated rate of nonsynonymous 
evolution will be a transient phenomenon as the favored variant takes over the popu-
lation, at which point selection will resume a purifying mode of action. However, 
many genes are exposed to perpetually changing selective environments. For exam-
ple, HIV and other pathogens are constantly moving between different host environ-
ments that exert different selective pressures on the virus. In these circumstances, 
elevated rates of nonsynonymous evolution can be sustained as different amino 
acids gain and lose selective advantages in different host environments, causing an 
accumulation of nonsynonymous variation among diverging lineages over time 
(diversifying selection). (For a more comprehensive review of interpreting  signatures 
of natural selection from molecular variation, see [ 73 ].) 

3   Note that we do not assume that synonymous mutations evolve neutrally in an absolute sense; 
they are only being used as a frame of reference to measure the evolutionary consequences of 
changes in the amino acid sequence. Without a doubt, selection operates on the HIV genome at the 
level of the nucleotide sequence. For example, the HIV RNA genome folds into a complex and 
functionally signifi cant secondary structure due to Watson-Crick base pairing interactions [ 71 ]. 
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 Applying these methods to HIV sequence data has revealed substantial variation 
in the nonsynonymous rates of evolution among its protein-coding genes. For exam-
ple, HIV  env  gene sequences encoding the virus envelope glycoproteins are sub-
stantially more variable than the other major genes,  gag  and  pol  [ 74 ,  75 ]. Diversifying 
selection plays an important role in driving high rates of nonsynonymous substitu-
tions in HIV  env  because the envelope glycoproteins are exposed on the surface of 
the virus particle and present an important target for the immune system. To illus-
trate these patterns with modern data, we carried out an analysis of selection for all 
full-length HIV genome sequences that have been published since 2010 ( n  = 95), 
excluding sequences from HIV subtypes N and O. These data included a wide vari-
ety of subtypes, including A1, B, C, D and F1, and circulating recombinant forms 
CRF01-AE, CRF35-AD, and CRF53, isolated from individuals in China [ 76 – 81 ], 
Gabon [ 82 ], Malaysia [ 83 ], Iran [ 84 ], Russia [ 85 ], Cameroon [ 86 ], the United States 
[ 87 ], Singapore [ 88 ], and France [ 89 ], refl ecting a renewed focus on characterizing 
the genomic variation of HIV on a global scope. For each of seven reading frames 
in the HIV genome ( gag ,  pol ,  env ,  vif ,  vpr ,  vpu , and  nef ), we removed regions with 
high levels of insertion/deletion (indel) polymorphisms. Furthermore, we removed 
regions with overlapping reading frames in which a mutation that is synonymous in 
one reading frame may be nonsynonymous in another, making these sites diffi cult 
to analyze (but see [ 90 ]). 

 We quantifi ed patterns of selection using a fast Bayesian approach [ 91 ] that esti-
mates the difference between mean posterior rates of nonsynonymous and synony-
mous mutations, denoted by the symbols  β  and  α , respectively. 4   Where  β  >  α , there 
is evidence of diversifying selection driving the accumulation of different amino 
acids at that site. Conversely,  β  <  α  indicates purifying selection preventing any 
amino acids other than the current residue from accumulating in the population. As 
expected, we found that selection was predominantly in a purifying mode, acting 
against the accumulation of codon substitutions that would result in amino acid 
replacements (Fig.  23.3 ). Overall, purifying selection was strongest in the HIV  pol  
gene. What was surprising, however, was that the median value of  β  −  α  for the  env  
gene (−0.27) was not substantially greater than the other genes with the exception 
of  pol . Moreover, the  env  gene as a whole would not be considered to be under sig-
nifi cant diversifying selection because its mean value of  β  −  α  is well below zero.  

 This result highlights one of the major limitations of characterizing selection at 
the level of genes—it is unreasonable to expect the majority of codons to be uni-
formly exposed to the same magnitude of diversifying selection, given that they 
assume a variety of structural and functional roles in the protein [ 93 ]. For instance, 
the surface glycoprotein encoded by HIV  env  (gp120) comprises both conserved and 

4   In the original frequentist framework, the nonsynonymous and synonymous rates are usually 
denoted by  d N  and  d S , respectively. By convention, selection is measured by the ratio  ω  =  d N / d S , 
such that the null hypothesis of neutral protein evolution is represented by  ω  = 1. One drawback of 
using this ratio is that it becomes numerically unstable when the number of synonymous substitu-
tions is low. More generally, the ratio of two random variables has problematic statistical proper-
ties which can lead to severe biases under some conditions [ 92 ]. 
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“hypervariable” regions, the latter originally defi ned by having fewer than 25 % of 
residues conserved in a comparison of seven HIV isolates [ 94 ]. These regions roughly 
correspond to buried residues and surface-exposed loops of the gp120 tertiary struc-
ture, respectively. The hypervariable regions are referred to as V1 through V5; the 
third region, V3, is a key genetic determinant of the tropism and immunological 
phenotypes of the virus. In 1998, Nielsen and Yang published a landmark paper [ 95 ] 
in which they extended comparative methods for quantifying diversifying and puri-
fying selection on amino acid sequences, allowing one to directly measure the het-
erogeneity of selection pressures among codons. In their paper, they applied their 
method to analyze partial HIV  env  sequences from a single patient to fi nd evidence 
of signifi cant heterogeneity in the strength of diversifying selection among sites. 

 Our analysis of HIV genome sequences employs a modern descendant of Nielsen 
and Yang’s method [ 91 ]. As shown in Fig.  23.3 , we found evidence of extensive 
heterogeneity in the strength and mode of selection among codons within protein- 
coding regions of the HIV genome, including contiguous sets of codons in the  env  
gene under diversifying selection. These codons correspond roughly to the hyper-
variable regions V1 through V5 that play important roles in allowing the virus to 
escape neutralizing antibodies (see Sect.  3.2 ). Furthermore, there is also a conspicu-
ous dip in the moving average of  β  −  α  near the middle of  env  that indicates strong 
purifying selection. This interval corresponds to a highly conserved motif encoding 
the residues FNCGGEFF (Env amino acids 376–383) [ 96 ] and is a potential target 
of the cellular immune response [ 97 ] (see Sect.  3.2 ).  

3.2       Adaptation to the Immune Response 

 Variation in rates of evolution across the HIV genome is largely shaped by the host- 
specifi c adaptive immune response [ 98 ]. The immune response mounted by each 
host exerts a different selective pressure on HIV genomic variation; thus, HIV 

  Fig. 23.3    Patterns of selection across protein-coding regions of the HIV genome. Selection is 
quantifi ed by the difference between the non-synonymous ( β ) and synonymous ( α ) rates of codon 
substitutions. These estimates were generated using a fast, unconstrained Bayesian algorithm for 
inferring selection [ 91 ]. For each gene, the median  β  −  α  value is indicated by a  bold line  segment, 
and a  curved line  represents a smoothed spline of the moving average over ten codons in steps of 
5. A  dashed line  at  β  =  α  indicates the expected value for a neutrally-evolving codon       
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lineages are exposed to varying host environments as they spread. Both the humoral 
and cellular arms of the immune system play important roles in shaping the evolu-
tion of HIV within the host. The cellular response against an HIV infection is medi-
ated by the lysis of infected host cells by CD8+ cytotoxic T lymphocytes (CTLs). 
Peptides that originate from HIV-encoded proteins are bound in a specifi c manner 
by human leukocyte antigen molecules (which are encoded by some of the most 
variable loci in the human genome) and presented on the surface of the infected cell 
to stimulate a CTL response. CTLs against antigenic HIV-derived peptides (epit-
opes) are detectable about a month into infection, in association with the decline of 
the virus population following peak viremia [ 99 ]. 

 The humoral response against viruses in the extracellular environment is medi-
ated by neutralizing antibodies that bind onto the exposed surface of the virus par-
ticle in a way that prevents the particle from proceeding through the infection cycle. 
Neutralizing antibodies tend to appear later in the course of an HIV infection than 
CTLs, although they can be detected as early as 2 months postinfection [ 34 ]. As 
they are the most exposed component of the virus particle outside of the cell, the 
HIV envelope glycoproteins are the major targets of the humoral response. For 
example, the third variable loop of HIV gp120 was quickly identifi ed as an impor-
tant target of the neutralizing antibody response [ 100 ]. 

 The great challenge of HIV evolution is that these components of the adaptive 
immune response tend to be specifi c to the transmitted variant and its descendants. 
For example, a host can eventually develop a vigorous neutralizing antibody 
response that is highly effective at inhibiting that host’s own virus population 
(although the rapid evolution of HIV enables the virus to stay one step ahead of this 
response [ 101 ]). These antibodies, however, are seldom able to inhibit HIV popula-
tions from another host (cross-neutralization). Nevertheless, a highly active area of 
research in HIV is seeking out and characterizing broadly neutralizing monoclonal 
antibodies that may confer protection against a large number of HIV variants and 
subtypes [ 102 ,  103 ].   

4     HIV Evolution Within Hosts 

4.1     The Transmission Bottleneck 

 In the case of HIV, the virus population within a host is often descended from a 
single variant (founder virus) among a small number of viruses that were transmit-
ted from the previous host. This results in a transient, drastic reduction in population 
size that is referred to as a “transmission bottleneck”. In order to establish an infec-
tion in a new host, HIV must overcome the natural defenses of the host. Intestinal 
and genital surfaces of the human body, where exposure to HIV is most likely to 
result in a productive infection, tend to be protected by a mucosal barrier to infec-
tion. Mucosal surfaces harbor large persistent numbers of activated lymphocytes 
and immunoglobulin A antibodies. These defenses have a strongly limiting effect 
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on the number of virus particles that manage to establish productive infections 
within host cells. However, when viruses are introduced directly into the blood 
stream, as in the case for transmission from a contaminated blood product (transfu-
sion) or injection drug use, then the viruses bypass this mucosal barrier. When this 
occurs, it is likely that the virus population experiences less of a transmission 
bottleneck. 

 Preliminary evidence of the HIV transmission bottleneck stemmed from the rela-
tive lack of genetic sequence variation in acute infections, e.g., [ 104 ]. As sequenc-
ing technologies became more sophisticated (see Sect.  4.3 ), investigators have been 
able to characterize levels of genetic variation at early stages of infection in greater 
detail. For example, Keele et al. [ 105 ] fi t a Poisson model of sequence diversifi ca-
tion [ 106 ] to next-generation sequence data sets derived from early samples from 
102 subjects infected by HIV subtype B to estimate that roughly 75 % of the infec-
tions descended from single founder variants. Among  n  = 20 male subjects in this 
study who reported having sex with men, the prevalence of having a single founder 
virus was relatively greater (50 %) but this difference was not statistically signifi -
cant. The remainder of the study population reported as heterosexual with only one 
subject reporting the use of injection drugs. Similar studies of populations with a 
greater prevalence of injection drug use (IDU) have reported that IDU subjects were 
more likely to harbor infections descended from multiple variants [ 107 ]. 

 The transmission bottleneck has important consequences for the evolution of 
HIV within hosts. For instance, the virus population must reaccumulate genetic 
variation that becomes shaped by the host environment, including the host-specifi c 
immune response. The prevalence of severe transmission bottlenecks also suggests 
that there may be a nonarbitrary subset of HIV genetic variants that tend to establish 
infections. In other words, transmission may select for genotypes with specifi c char-
acteristics. For example, there is some evidence that transmitted genotypes tend to 
encode shorter variable loops in  Env , although this pattern appears to be largely 
confi ned to HIV subtype C [ 108 ]. Such characteristics, if they generally exist, may 
present important targets for the development of anti-HIV vaccines, which must be 
the most effective on the transmitted variants that establish infections.  

4.2      Population Genetics of HIV 

 Even within a single host, HIV has displayed one of the fastest rates of adaptation 
ever measured in the natural world [ 36 ]. The high mutation rate and high turnover 
of HIV populations makes this virus a ready subject for population genetic analysis. 
While most population genetic research concerns organisms that accumulate genetic 
diversity much more slowly than is observable during a typical study (e.g., over the 
course of centuries), an HIV infection creates a population where change in genetic 
diversity can be easily observed over the course of months, weeks, or even days. 

 If one wishes to directly simulate the natural history of a population evolving 
under, say, a Wright–Fisher model [ 109 ,  110 ] (or, more generally, an exchangeable 
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Cannings model [ 111 ]) or a Moran model [ 112 ], one has to keep track of the state 
of every individual of the population; one may also need to track each individual’s 
state during all time steps. Suppose that we want to track the history of a population 
over a number of generations   . In a Wright–Fisher model, a generation corresponds 
to a single time step. Thus, simulating the natural history of this population requires 
computational resources (time and memory) that scale with both the number of 
generations and the size of the population. The Moran model has overlapping gen-
erations, so many time steps are required for each generation. Consequently, the 
computational resources required may be greater orders of magnitude. This quickly 
becomes computationally expensive. Because the memory required balloons so 
quickly, it can become outright prohibitive. 

 Fortunately, many population analyses can be performed in terms of the  ances-
tral process  of a sample from the population. This process describes the  backwards-
in- time   history of a small sample of the population. If a small sample is drawn from 
the population in the present day, the ancestral process describes the genealogy, or 
“family tree”, of the individuals in the sample. 

 Kingman’s  coalescent  [ 113 ,  114 ] provides a valuable means for modeling the 
ancestral process ([ 115 ] is a good reference on the subject). It is widely applicable, 
being an appropriate model for the genealogies of samples from a large population 
under a Wright–Fisher model (or a Cannings model under certain restrictions), as 
well as the Moran model. The primary advantage to using a coalescent model is 
computational tractability. The computational resources used to simulate a coales-
cent history for a small sample from a large population scale with the size of the 
sample rather than the size of the population, and do not scale with the number of 
generations. 

4.2.1     Effective Population Size 

 Key to any population genetics analysis is the concept of  effective population size , 
often denoted  N  e . The classical defi nition of  N  e  is the number of individuals in the 
population that are responsible for the progeny comprising the next generation. 
Consider a very large population, of fi xed size 1,000,000, where only 1,000 of them 
actually reproduce in each generation; in this case,  N  e  = 1,000. 

 In practice,  N  e  is used to calibrate a theoretical model so that it appropriately 
represents the real-world data one wishes to study. Kouyos [ 116 ] provides a good 
description of how  N  e  is chosen, which we recapitulate here. One has data from a 
given real population; from these data, an estimate of a  quantity of interest  is desired. 
In order to make such an estimate, a mathematical population model must be used; 
such models are necessarily idealized in some way or another to make them tracta-
ble. This mathematical population model has population size as a parameter. In 
order to better relate this idealized model to the data at hand, another  calibration 
quantity  that is easily measured for the real population (such as pairwise genetic 
diversity) is obtained: the plan now is to choose  N  e  so that if the idealized theoretical 
population has size  N  e , the same quantity for the theoretical population is equal to 
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the real. Now that the model has been adjusted to (hopefully) better refl ect the real 
population, we calculate the quantity of interest for the model population and use 
that as an estimate of the real quantity of interest. 

 The idealized model is typically a stochastic model, such as the aforementioned 
Wright–Fisher model. Such models allow for the effects of mutation, some more 
specialized ones allow for selective effects, and crucially they all allow for  drift , or 
changes to the genetic makeup of a population from stochastic variation in transmis-
sion between generations. If the effective population size is very large, these random 
effects can “wash out” via averaging so that when viewed with the appropriate scal-
ing the population evolves  deterministically : selectively favored alleles appear 
immediately and proceed to fi xation in a well-determined manner described by ordi-
nary differential equations. This averaging does not occur suffi ciently when  N  e  is 
small, however, and in such a setting, random effects are too signifi cant to be ignored. 

 Debate over the value of  N  e  for HIV started toward the end of the 1990s and per-
sisted through the start of the twenty-fi rst century. Several authors [ 117 – 122 ] argued 
for an effective population size on the order of 1,000 (the stochastic evolution 
regime), while Rouzine and Coffi n [ 123 ] found evidence for an effective population 
size one or two orders of magnitude larger (in the deterministic evolution regime). 
Kouyos [ 116 ] argued that different values for  N  e  are likely necessary for different 
analyses, as different features of the virus may be evolving under different pro-
cesses: the  env  gene, for example, is a target of immune response and therefore 
likely experiences selective pressure, whereas other portions of the viral genome 
may be evolving neutrally. Thus [ 116 ] stresses the importance of choosing a calibra-
tion quantity that is a result of the same evolutionary process as the quantity of inter-
est, and of choosing a model which properly captures this evolutionary process.  

4.2.2     Generation Time 

 One component of HIV’s high turnover rate is its short generation time. The serial 
coalescent model, discussed below, was used in [ 31 ] to estimate the generation time 
of HIV-1 in vivo at 1.2 days. Previously, Coffi n [ 29 ] estimated that HIV underwent 
300 replication cycles per year, and Perelson et al. [ 30 ] estimated a viral generation 
time of 2.6 days using a deterministic model of viral reproduction. 

 Using the second of these estimates, it is argued in [ 29 ] that, under a simple 
dynamical model using estimates for the mutation rate derived from other retrovi-
ruses, an established HIV infection likely develops every possible single-point 
mutation between 10 4  and 10 5  times per day.  

4.2.3     The Serial Coalescent 

 Kingman’s coalescent assumes a sample drawn in the present day and models its 
ancestry. This makes it a reasonable choice for analyses where the individual viruses 
in the sample are all drawn at the same time, such as the viruses in a single sample 
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of blood plasma. This is not the case for the study of HIV within the host, in which 
sequence data from infected individuals are typically generated from samples soon 
after diagnosis, as well as at follow-up appointments. Combine this with the fast 
evolution of HIV—signifi cant genetic diversity can develop in the time between 
samples, meaning that it is inappropriate to simply consider all samples as contem-
poraneous—and it becomes evident that the original coalescent is not appropriate 
for the analysis of HIV sequence data. 

 This is a diffi culty, but it also suggests potential for deeper analyses. One limita-
tion of the coalescent is that it is impossible, using genetic data from a single time 
point, to tease apart the effects of time and mutation rate. Genetic diversity in a 
population may have accrued quickly due to a high mutation rate, slowly due to a 
low mutation rate, or somewhere in the middle. The coalescent cannot differentiate 
between these alternative explanations, as it models time in units of  generations  
rather than real time units such as years, months, or days. Thus external information 
must be used in order to estimate the actual time scale that a coalescent tree exists 
on. However, if one has serial samples, there is now a means to calibrate the timing 
in our model based on the times between samples and the amount of diversity devel-
oped between them. 

 Rodrigo and Felsenstein [ 119 ] developed the  serial coalescent  for this setting. 
The serial coalescent no longer assumes that all of the individuals in the sample are 
sampled at the same time. Moreover, it offers the ability to use the serial sample data 
to estimate the lengths in the tree in real time units, and therefore also the mutation 
rate per unit of real time rather than per generation. This therefore lends itself well 
to the application of models incorporating a molecular clock. 

 Both Kingman’s coalescent and the serial coalescent are implemented in the 
software package BEAST (Bayesian Evolutionary Analysis by Sampling Trees 
[ 124 ]). The Kingman coalescent is the typical prior used for data sampled at a single 
time point; the serial coalescent is the typical prior for a tree generated from sample 
data where the samples come from two or more time points. BEAST also allows the 
inference of parameters of molecular clock models in the latter case.   

4.3      Next-Generation Sequencing 

 Next-generation sequencing has been a boon to HIV clinical analysis. In a matter of 
days, the viral population in a patient sample can be prepared into a library and 
sequenced at high coverage. Targeting specifi c portions of the genome for sequenc-
ing with primers yields ultradeep coverage at thousands of reads per locus [ 125 ]. 
This ultradeep coverage is ideal for phylogenetic reconstruction, detecting even 
minor variants and increasing phylogenetic signal [ 126 ,  127 ]. The high-throughput 
nature of next-generation sequencing demands automated bioinformatic tools 
for effi cient analysis. Since all sequencing technologies introduce sequence errors, 
the start of every phylogenetic reconstruction pipeline starts with read cleaning. 
Once reads have been cleaned and aligned, they can be fed into other programs to 
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measure the prevalence of specifi c mutations [ 125 ,  128 ], reconstruct the evolution 
of the virus within a host [ 127 ,  129 ], or to estimate dates of infection [ 130 ]. 

 There are several algorithms for reconstructing a phylogeny and timing the most 
recent common ancestor. The most popular software use maximum likelihood or 
Bayesian inference. In a phylogenetic tree generated from sequence data, each 
sequence forms a leaf. The internal nodes of the tree correspond to ancestral 
sequences that must be inferred from the data. Each sequence character substitution 
between branches is assigned a probability. Maximum likelihood selects the tree 
with the highest likelihood. Each tree likelihood is calculated as the product of the 
probabilities of the substitutions in each of its branches [ 131 ]. Bayesian inference 
samples trees at random in proportion to their posterior probability given the data 
and a prior distribution. Typically, the posterior distribution is approximated using 
some form of Markov Chain Monte Carlo that samples trees by a random walk over 
the set of all possible trees [ 132 ]. 

 The molecular clock previously described in Sect.  1.4  calculates the amount of 
time passed in each tree branch. Since the majority of infections originate from a 
single founder virus, the timing of the most recent common ancestor can approxi-
mate the date of infection [ 133 ]. When longitudinally sampled sequence data are 
available, for which sampling dates are known, the molecular clock can be cali-
brated with greater precision using the known time between nodes [ 124 ]. 

 The Roche 454 next-generation sequencing platform was the fi rst such platform 
to be widely adopted for HIV research due to its longer read lengths (over 500 bp in 
practice) [ 134 ]. However, this platform and others based on similar chemistries 
have been plagued by high rates of error, particularly within single nucleotide 
repeats that are common in the A-rich HIV genome sequence [ 135 ]. This high error 
rate is especially problematic for HIV because it is exceedingly diffi cult to differen-
tiate sequencing errors from the extensive genetic variation of a virus population. 
Presently, the Illumina Miseq is rapidly overtaking the Roche 454 platform in the 
fi eld of HIV research, owing to its substantially lower error rates [ 136 ] and competi-
tive read lengths of up to 300 bp, which can be paired to span greater lengths. Once 
mature, “third-generation sequencing” has the potential to widespread adoption in 
the clinical arena. Third-generation sequencing refers to single molecule sequenc-
ing techniques that can produce extremely long reads up to 15 kbp [ 137 ] that would 
completely encompass a full HIV genome. Reconstruction of full- length HIV 
genomic variants [ 138 ] and examination of fi tness effects of multiple loci acting 
simultaneously are some examples of analysis that may be enabled through third-
generation sequencing. Comparisons against next-generation and third-generation 
sequencing have found that all technologies are capable of identifying variants 
within a population and forming the same conclusions in receptor tropism geno-
typic assays [ 139 ]. For example, Pacifi c Bioscience Single Molecule Real Time 
(SMRT) reads have already been used to characterize the diversity of splice variants 
in HIV [ 140 ]. In addition to the long reads that third-generation sequencing pro-
vides, no PCR amplifi cation is required and it uses smaller sample amounts of 
DNA. Unfortunately, the longest reads have error rates of around 15 % [ 137 ]. 
Regardless of the specifi c technology, high-throughput sequencing is rapidly 
expanding the frontiers of studying the evolution of HIV within hosts.      
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    Chapter 24   
 Global Protein Sequence Variation in HIV-1-B 
Isolates Derived from Human Blood and Brain 

             Seetharaman     Balaji     ,     Patil     Sneha    ,     Murugappan     Rama    , and     Paul     Shapshak   

          Core Message   This chapter discusses the proteins encoded by HIV-1 and their 
sequence variation in blood and brain isolates. Sequence analysis based on their 
phylogeny is also addressed. The analysis of HIV-1 sequence variation not only 
helps in tracking the epidemic spread of HIV-1 but also to understand its transmission, 
pathogenicity, antiretroviral therapy, or development of novel vaccine.  

1     Introduction 

 Human Immunodefi ciency Virus (HIV) is the subject of extensive research since 
the discovery of the virus in 1983 [ 1 ,  2 ], after the fi rst reported cases of acquired 
immunodefi ciency syndrome (AIDS) in 1981 [ 3 ,  4 ]. Since its recognition, more 
than 60 million people have been infected with HIV around the world, and approxi-
mately 25 million people have died of AIDS. Currently, more than 33.3 million 
(range: 31.4–35.3 million), worldwide, are living with HIV [ 5 – 7 ]. In the mid-1980s, 
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it was evident that two types of HIV with slightly different genome structures, 
HIV-1 and HIV-2 were circulating in human populations. Both viruses are charac-
terized by extensive genetic diversity. However, HIV type 1 (HIV-1) is predomi-
nant. HIV-1 infection not only spreads to various lymphoid organs [ 8 ] but also to the 
central nervous system, CNS [ 9 ,  10 ] and causes a slowly progressive dementia in at 
least 30–60 % of AIDS patients [ 11 – 13 ]. The blood–brain barrier that protects the 
brain from infectious diseases and harmful chemicals from entering and damaging 
the brain is weakened by HIV-1. This marks the brain as an important reservoir for 
HIV- 1, possibly an “immunological sanctuary” though the genital tract is a primary 
source of new HIV infection transmission [ 14 ]. 

 There are numerous research articles that address early penetration of HIV into 
the brain, compartmentalization, evolution, molecular diversity, and functional 
consequences [ 15 – 18 ] including HIV-associated dementia (HAD). The progres-
sion of such diseases associated with HIV-1 infection may also due to increase in 
viral sequence diversity. HIV-1 infections become highly compartmentalized in 
the patient, with each lymphoid compartment seeded by a distinct viral lineage 
[ 19 ]. For instance, HIV-1 in the CNS was recognized to be distinct from the circu-
lating virus in the blood of the same patient [ 20 ]. HIV-1 may reside in several cell 
types besides macrophages. As a result, diverse genotypes or quasispecies are pro-
duced at all stages of the disease. The molecular determinants for these differences 
are unknown. 

 Retroviruses have similar genomic organization; however, the structure of HIV-1 
is different from other retroviruses. HIV-1 is roughly spherical and approximately 
120 nm in diameter. It is a complex retrovirus composed of two strands of RNA 
encoding at least 15 distinct proteins [ 21 ]. In HIV-1, the major genes encoding 
structural proteins are found in the other retroviruses as well. Nevertheless non-
structural (“accessory”) genes are unique to HIV-1 and are enveloped by a lipid 
bilayer. The proteins in the viral machinery play an important role in its life cycle, 
from the viral attachment to the fi nal process of virus budding [ 21 ,  22 ]. Gag poly-
protein contains structural proteins including Matrix (MA), capsid (CA) and nucleo-
capsid (NC) generates the virion’s internal structure. Envelope (Env) glycoprotein 
contains gp160 (the precursor to gp120 and gp41), gp120 is located at the sur-
face (SU), and gp41 is found in the transmembrane (TM). They are embedded in the 
viral envelope and are involved in the infection process. The polypeptide 
glycosaminoglycan- polymerase (Gag-Pol) contains the Gag encoded proteins as 
well as functional proteins (enzymes), i.e., protease (PR), reverse transcriptase 
(RT), and integrase (IN). Besides these, regulatory proteins such as regulator of 
virion (Rev) and trans-activator of transcription (Tat); and other accessory proteins 
including negative regulatory factor (Nef), virion infectivity factor (Vif), viral pro-
tein r (Vpr), and viral protein u (Vpu) are also present. The Gag gene provides the 
basic physical structure of the virus, and pol provides the basic mechanism by which 
retroviruses reproduce their RNA via a DNA intermediate [ 23 ], while the other 
proteins are involved in the infection process as well as multiplication. The role of 
these proteins is listed in Table  24.1 .
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2        Structural Proteins 

 Extensive research on the structural biology of HIV for more than 25 years has 
revealed the atomic details of the HIV proteins, which are publicly available in the 
Protein Data Bank (PDB) [ 24 ] some of them are depicted in Fig.  24.1 . Using these 
structural data, researchers have rationally designed inhibitors and also trying to 
develop vaccines against HIV [ 25 ]. Protein sequences of HIV-1 B isolates of blood 
and brain belonging to different geographical locations were retrieved between 
20th July, 2013 and 6th Jan, 2014 from NCBI (  http://www.ncbi.nlm.nih.gov/    ) and 
LANL (  http://www.hiv.lanl.gov/    ) public resources. The total number of retrieved 
HIV-1 B sequences derived from blood and brain are showed in Tables  24.2  and 
 24.3 , their corresponding data (geographical regions and accession numbers) can 
be found in Tables  24.4  and  24.5 . From these, representative sequences were 
selected to refl ect geographical diversity and were analyzed for their sequence con-
servation, conserved and semi-conserved substitutions, as well as their variation 
using ClustalW (  http://www.clustal.org/clustal2/    ) and Weblogo (  http://weblogo.
berkeley.edu/logo.cgi    ).     

   Table 24.1    The role of structural and functional proteins in HIV-1 life cycle   

 Viral protein classes  Role  Protein name 

 Structural proteins  Entry  Env polyprotein 
 gp120 surface 
 gp41 transmembrane 

 Enzymatic proteins  Reverse transcription  Pol polyprotein 
 p51 reverse transcriptase 
 p15 RNase H 
 p66 RT+ RNase H 
 Vif protein (p23) 

 Regulatory proteins  Transcription  Rev protein (p19) 
 Tat protein (p16/p14) 

 Accessory proteins  Integration  Vpr protein (p12/p10) 
 p31 Integrase 

 Maturation  p10 Protease 
 Assembly  Gag polyprotein 

 p17 matrix 
 p24 capsid 
 p2 
 p7 nucleocapsid 
 p1 
 p6 Vpr binding 
 Nef protein (p27/p25) 
 Vpu protein (p16) 

24 Global Protein Sequence Variation in HIV-1-B Isolates Derived…
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  Fig. 24.1    The structural proteins of HIV, adapted from educational resources of PDB (poster: 
URL   http://www.pdb.org/pdb/education_discussion/educational_resources/    )       

   Table 24.2    Protein sequences of HIV-1B brain isolates   

 Protein  Brain 
 Frontal 
lobe 

 Basal 
ganglia 

 Parietal 
region 
of the 
brain 

 Occipital 
region of 
the brain 

 Caudate 
region 

 Deep 
white 
matter 

 Menin-
geal 
tissue  Total 

 1  Env  85  89  04  –  07  04  05  18  212 
 2  Gag  –  01  –  –  –  –  –  –  01 
 3  Nef  42  35  –  04  04  –  –  –  85 
 4  Pol  –  01  –  –  –  –  –  –  01 
 5  Rev  09  25  04  –  –  –  –  –  38 
 6  Tat  09  25  03  –  –  –  37 
 7  Vif  –  01  –  –  –  –  –  –  01 
 8  Vpu  12  23  04  –  –  –  –  –  39 
 9  Vpr  –  01  –  –  –  –  –  –  01 
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 Protein  Blood  PBMC  Plasma  Total 

 1  Env  126  331  388  845 
 2  Gag  52  132  298  482 
 3  Nef  42  271  232  545 
 4  Pol  34  140  167  341 
 5  Rev  30  134  141  305 
 6  Tat  47  127  136  310 
 7  Vif  56  176  265  497 
 8  Vpu  46  135  223  404 
 9  Vpr  48  191  232  471 

  Table 24.3    Protein 
sequences of HIV-1B 
blood isolates  

2.1      Gag Proteins 

 The Gag polyprotein is the precursor (p55) to the internal structural protein. During 
translation, the N-terminus of p55 is myristoylated [ 26 ] activating its association 
with cell membranes. Gag proteins are organized with domains that may be cleaved 
into one or more small proteins or peptides. The cleavage pattern is represented as 
X and Y in the following pattern MA-X-CA-NC-Y [ 27 ]. The virus encoded protease 
(a product of the pol gene) cleave [ 28 ] the Gag polyprotein into four smaller pro-
teins designated MA (matrix, p17), CA (capsid, p24), NC (nucleocapsid, p7), and 
p6 during the process of viral maturation [ 29 ]. 

2.1.1     Matrix Protein (MA) 

 The N-terminal domain of Gag upon myristoylation (at the end of p55) gives rise to 
membrane- or matrix-associated (MA) protein, p17 [ 30 ]. Myristoylation is essential 
for retroviral assembly. The consensus sequence for myristoylation is M-G-X- -
X.S/T. Mutation of glycine block the budding of virions, which in turn accumulate 
Gag inside the cell [ 28 ]. MA proteins assemble into trimers and remain attached to 
the inner surface of the viral membrane. This is vital for new viruses to bud from the 
surface of infected cells. During budding MA may also interact with the Env pro-
teins. The three-dimensional crystal structure of HIV-1 MA protein is available in 
PDB; entry 1hiw [ 31 ]. In the analyzed sequences, the start of p17, membrane bind-
ing region and nuclear localization are annotated. The amino acid residues followed 
by the phosphorylation site of p17 shows more variation towards the end of p17 in 
brain isolate. The same trend is observed in p2 and also in Vpr binding residues 
of p6 of blood derived HIV-1 sequences. These variations could not be confi rmed 
presently due to lack of brain derived sequences.  

24 Global Protein Sequence Variation in HIV-1-B Isolates Derived…
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2.1.2     Capsid Protein (CA) 

 Among Gag proteins, the p24 polypeptide region or the capsid (CA) is the largest 
(~200–270 amino acids). The 20-amino-acid-long “major homology region” 
(MHR) of CA segment is highly conserved in the Gag protein for blood and brain 
HIV-1 B isolates. CA forms the conical core (Fig.  24.1 ) surround the viral RNA and 
delivers into the cell during infection. Unlike the majority of known CA proteins 
from diverse icosahedral viruses, which are characterized by eight β strands, CA in 
HIV-1 is helical, as predicted earlier from biochemical data [ 32 ]. The amino termi-
nus itself is buried in the molecule. This implies a conformational change upon 
cleavage by PR, since the MA-CA junction must be stretched out to be readily 
accessible to viral protease [ 33 ]. 

 The Cyclophilin A (CyPA) binding region of p24 is crucial for the incorporation 
of HIV particles [ 34 ,  35 ], it is conserved in both blood and brain derived HIV-1B 
isolates. A drug such as cyclosporine A disrupts the interaction between Gag and 
Cyclophilin A, and hence inhibits viral replication [ 36 ]. The 3D structure of the 
HIV-1 CA is being explored that may provide insight into its functions. A crystal 
structure of the hexameric building block fragment is available in PDB; entry 3h47 
[ 37 ]. From the analyzed dataset, the brain derived HIV-1 p24 region showed only 
few variations than the blood derived sequences. This could be due to the lack of 
brain derived sequences. However, no variations were observed in the annotated 
MHR, CyPA, and Zinc binding regions of both brain and blood isolates.  

2.1.3     Nucleocapsid (NC) Protein 

 The NC region of Gag is responsible for specifi cally recognizing the packaging 
signal of HIV [ 38 ]. The nucleocapsid (NC) protein (p7) is a small basic protein, 
typically about 60–90 amino acid residues long, which forms a stable complex 
with the viral RNA and protect it. The signal for packaging is coded in four stem 
loop structures located near the 5′ end of the viral RNA. This mediates the incor-
poration of a heterologous RNA into HIV-1 virions [ 39 ]. NC has two characteristic 
zinc fi nger motifs made up of conserved cysteines and histidines. The retroviral 
C-H motif has the structure CX2CX4 HX4C, (CCHC motif, in short) where “X” 
is not conserved either among retroviruses or between the two motifs of a single 
NC [ 33 ]. Two characteristic zinc fi nger motifs were observed near the clusters of 
arginine, asparagine, and glutamine residues of blood and brain derived HIV-1 B 
Gag sequences. Deletions or major alterations in the motif may result in the 
absence of RNA in virions or alter specifi city during RNA packaging. NC also 
contains sequences that are stretches of basic residues, which act as “assembly 
domains” [ 27 ] and are required for the assembly or budding of virions. In HIV-1, 
the zinc fi nger motifs and series of basic residues are important for in vivo packag-
ing [ 40 ]. The NC structure of HIV-1 is been worked out by De Guzman et al. (PDB 
entry 1alt) [ 41 ].  
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2.1.4     p6 Protein 

 Polypeptide (p6) of HIV-1 comprises 52 amino acids, cleaved from the Gag protein 
downstream from NC. The p6 polypeptide region mediates interactions between 
p55 Gag and the accessory protein Vpr and involved in the incorporation of Vpr into 
assembling virions [ 42 ]. The conserved segment is located near the N-terminal 
domain of p6 that are rich in proline residues and involved in Vpr binding. The 
C-terminal region of p6 contains a late domain that is important for the effi cient 
release of budding virions from an infected cell [ 43 ,  44 ]. It is largely unstructured 
due to proline and currently no crystal structure is available in the PDB [ 25 ]. The 
Vpr binding sites of the blood derived sequences showed slight variation than the 
brain derived HIV-1 sequence. These variations could not be confi rmed presently 
due to the lack of brain derived sequences.  

2.1.5     Other Gag Proteins and Peptides 

 In addition to the proteins discussed above, many retroviral gag genes encode poly-
peptide segments that lie between MA and CA, between CA and NC, and/or down-
stream from NC. In most cases, the functions of these segments are poorly 
understood.

•    p10 
 p10 is a proline- and glycine-rich protein. It is preceded by a 22-amino-acid seg-
ment often referred as p2 that is processed into two smaller peptides, p2a and p2b 
[ 45 ]. p2b contains the sequence PPPY that is found approximately 150 amino 
acid residues from the amino terminus and conserved in large number of retrovi-
ral Gag proteins. Mutation in this motif results in blockage of budding and a 
defect in assembly.  

•   Spacer peptide (SP) 
 SP is a short segment of 14 amino acids that separates the carboxyl terminus of 
CA and the amino terminus of NC. The spacer itself may undergo additional 
cleavage during processing of the Gag protein. During morphogenesis of HIV-1, 
the SP-NC site is the fi rst site to be cleaved, whereas the CA-SP sites are cleaved 
later. Deletion at this site may result in loss of infectivity and anomalies during 
budding [ 46 ,  47 ].      

2.2     Envelope Proteins 

 Like other animal viruses that carry a lipid envelope, the surface of retroviral virions 
is highly decorated with “nailhead like glycoproteins” (envelope or Env proteins). 
The spikes formed by these proteins contain carbohydrates, which makes them dif-
fi cult to recognize by antibodies. Retroviruses contain a couple of Env proteins, the 
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surface (SU, representing gp120) and transmembrane (TM, representing gp41). The 
carbohydrates depleted structures are showed in Fig.  24.1  PDB entries SU (1g9m) 
and TM (2ezo). The synthesis of SU and TM and their incorporation into the virion 
are quite different from those of Gag and Pol. 

 Like cellular proteins, the nascent Env polypeptide is synthesized in the endo-
plasmic reticulum then it migrates through the Golgi complex, undergoes glyco-
sylation at the consensus asparagine residue N-X-S/T with the addition of 25–30 
complex  N -linked carbohydrate side chains that are added. It is important for 
pathogenesis [ 48 ]. In the analyzed dataset, the NDT residues of blood derived 
Env sequences are found to be variable in V1 glycosylation site compared to 
brain isolates. Env is cleaved in the Golgi by a cellular protease, either furin or a 
related enzyme, to yield the mature SU and TM that are found in virions. The Env 
protein is the primary determinant of the cell type. Since all strains of HIV and 
SIV recognize the same CD4 receptor, in the analyzed dataset, no differences 
were found in the CD4 regions of blood and brain derived Env sequences of 
HIV-1 (Fig.  24.2 ). Nevertheless, major differences in amino acid sequence exist 
among diverse isolates of these viruses. These differences are largely due to sev-
eral variable regions, denoted v1–v4, which form loops that are extend outward 
from the central domain of SU [ 33 ]. From the dataset, the V1 region is variable 
in blood derived Env HIV-1 sequences. No much variation was observed in the 
brain and blood derivatives of V2, and V3 containing CD4 regions. Except the 
start and stop regions, V4 is hypervariable in blood derivatives, but no variation 
in CD4 and glycosylation pattern of V4, as expected. However, no variation was 
observed in the V5 segment containing immuno-dominant region and fusion pep-
tide of both brain and blood derivatives. These sequence variation may refl ect 
mutations to escape from the immune system as well as in vivo variation in bio-
logical properties, such as tropism for macrophages or other cell types or ability 
to form syncytia [ 33 ].   

2.3     Viral Enzymes 

 HIV carries three enzymes, reverse transcriptase (RT), integrase (IN), and protease 
(PR). RT also contains an additional enzymatic activity, RNase H that is mapped to 
a contiguous portion of the polypeptide. All these proteins are produced from Gag- 
Pol fusion protein [ 49 ]. During viral maturation, the virally encoded protease 
cleaves the Pol polypeptide from Gag. Further digestion separates the protease 
(p10), RT (p50), RNase H (p15), and integrase (p31) activities. These cleavages are 
not effi cient. This is evident from the RT which is linked to RNase H as a single 
polypeptide (p65). Since RT, IN, and PR are essential for viral replication and have 
characteristics that distinguish them from related cellular enzymes, they all have 
become targets for drug intervention in AIDS. 
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  Fig. 24.2    Env proteins derived from brain ( a ) and blood ( b ) show sequence conservations ( tall 
characters ), semi-conserved substitutions ( stacked with similar colored characters ) and variations 
( stacked with different colors ). The annotation is based on the benchmark HXB2 sequence (acces-
sion K03455) provided in HIV Sequence Compendium 2013 [ 89 ]       
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2.3.1     Reverse Transcriptase (RT) 

 The larger (p66) polypeptide of the HIV-1 contains both pol and RNase H domains 
but not IN. The smaller (p51) subunit is missing the complete RNase H domain. 
Biochemical studies show that p51 does not have an active role in catalysis [ 50 ], but 
it does have a role in the overall structure of the enzyme, consistent with the 3D 
structure of HIV-1 RT (PDB entry 1hys), which shows important differences in 
folding of the two subunits. The sequences of RT is conserved and used extensively 
to construct phylogenetic trees for retroviruses [ 51 ]. However, the subunit structure 
of RTs differs among viruses of different genera. The main function of RT is to build 
a DNA copy of the viral RNA genome, which is required to build new viruses. It 
builds a DNA strand from the viral RNA, then destroys it and builds a second DNA 
strand. Many of the drugs currently used to fi ght against HIV infection targets 
reverse transcriptase.  

2.3.2    Integrase (IN) 

 Integrase (IN) takes the DNA copy of the viral genome and inserts it into the infected 
cellular genome and become dormant in cells for decades [ 25 ]. The best studied 
integrases are those of HIV-1, MLV, and ASLV. This enzyme was fi rst identifi ed as 
an endonuclease in ASLV virions [ 52 ]. Genetic analysis revealed the importance of 
IN domain for integrating viral DNA [ 53 ]. Purifi ed IN has the ability to recognize 
the ends of the newly synthesized linear double-stranded viral DNA, to remove two 
nucleotides from the 3′ end of each strand, and to join this DNA end to a target DNA 
at random sites. Among the retroviral genera, the amino acid sequence of IN is less 
conserved than RT, except the conserved D-D-35-E motif that forms the active site 
and overall 3D structure (PDB entry 1ex4). Anti-HIV drugs that block Integrase 
have been developed.  

2.3.3    Protease (PR) 

 Viral encoded proteases are typically involved in processing of the translated prod-
ucts and also in the maturation of the viral particle. The proteins in HIV are synthe-
sized as long polyproteins, which are further cleaved into proper functional units 
by HIV PR. The 3D structure of HIV-1 PRs inferred from crystallography PDB 
entry 1hpv [ 54 ] shows that retroviral proteases are homodimers, the catalytic site is 
at the interface of each subunit. Hence, dimerization is crucial for enzymatic activ-
ity as well as for the virion formation. It is also involved in regulation of proteolysis 
of Gag and Pol proteins. Premature activation of PR in the infected cell leads to 
premature cleavage of Gag, thus aborting the assembly process [ 55 ]. PRs recognize 
stretches of amino acids, preferably hydrophobic sequences about 7–8 residues in 
length. The specifi city of different PRs has been studied based on Gag and Pol 
cleavage sites and by experimental verifi cation of synthetic peptides [ 56 ,  57 ]. 
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From such studies, it is generalized that the cleavage between tyrosine and proline 
is common and effi cient, whereas it is rare after isoleucine or valine [ 33 ]. Protease 
inhibitors are widely used as anti-HIV drugs, often in combination with other drugs 
that block reverse transcriptase and integrase.   

2.4     Regulatory Proteins 

2.4.1    Regulator of Virion (Rev) 

 Rev is a 13-kD sequence-specifi c RNA binding protein [ 58 ]. It induces the transi-
tion from the early to the late phase of HIV gene expression [ 59 ] Rev is encoded by 
two exons and accumulates within the nuclei and nucleoli of the infected cells. Rev 
binds to a 240-base region of complex RNA secondary structure, called the Rev 
response element (RRE) that lies within the second intron of HIV [ 60 ]. The binding 
of Rev to the RRE facilitates the regulation of splicing and transport of viral RNA. 
The portion of the protein that is bound to the RNA (PDB entry 1etf) is showed in 
Fig.  24.1 . The whole protein is several times larger contain at least three functional 
domains [ 61 ]. An arginine-rich RNA binding mediates interactions with the RRE, 
an oligomerization domain [ 62 ] and an effector domain that act as nuclear export 
signal (NES) [ 63 ]. 

 In the Rev sequences towards the end of exon 1, the hydrophobic amino acid 
phenylalanine (F) sandwiched between Lysine (K) and Leucine (L) is conserved in 
brain-derived sequences, whereas it is not conserved in blood-derived sequences. 
However, nuclear localization sequences (NLS) and effector domain is conserved. 
Slight variations were observed at the C-terminal of blood derived Rev sequences 
Fig.  24.3 .   

  Fig. 24.3    Rev proteins derived from brain ( a ) and blood ( b ) show sequence conservations ( tall 
characters ), semi-conserved substitutions ( stacked with similar colored characters ) and variations 
( stacked with different colors ). The annotation is based on the benchmark HXB2 sequence (acces-
sion K03455) provided in HIV Sequence Compendium 2013 [ 89 ]       

 

24 Global Protein Sequence Variation in HIV-1-B Isolates Derived…



656

2.4.2    Trans-Activator of Transcription (Tat) 

 Tat is essential for HIV-1 replication [ 64 ]. It is expressed by early fully spliced 
mRNAs or late incompletely spliced HIV mRNAs, 72 and 101 amino acids, respec-
tively. Both forms function as transcription activators and are found within the 
nuclei and nucleoli of the infected cells. Tat is an RNA binding protein (PDB entries 
1biv and 1jfw), unlike conventional transcription factors that interact with DNA 
[ 65 ]. Tat binds to a short-stem loop structure, known as the transactivation response 
element (TAR), which is located at the 5′ terminus of HIV RNAs. The binding of 
Tat to TAR activates transcription from the HIV LTR at least 1,000-fold. Tat has 
been shown to activate the expression of a number of cellular genes including tumor 
necrosis factor beta (TNFb) [ 66 ] and transforming growth factor beta (TGFb) [ 55 ] 
and to downregulate the expression of other cellular genes including bcl-2 and the 
chemokine, MIP-1 alpha [ 67 – 69 ]. 

 In the Tat sequence data, exon 1 and 2 are annotated along with the NLS and 
disulfi de bonding patterns. The amino acids followed by NLS of blood derived 
sequences showed more variation than the brain derived HIV-1B. Moreover, the 
ends of exon 1 and Tat of blood isolates are hypervariable (Fig.  24.4 ).    

  Fig. 24.4    Tat proteins derived from brain ( a ) and blood ( b ) show sequence conservations ( tall 
characters ), semi-conserved substitutions ( stacked with similar colored characters ) and variations 
( stacked with different colors ). The annotation is based on the benchmark HXB2 sequence (acces-
sion K03455) provided in HIV Sequence Compendium 2013 [ 89 ]       
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2.5     Accessory Proteins (Other Virus-Encoded Proteins 
in Virions) 

 Products of most retroviral accessory genes are not incorporated into virions (for a 
detailed review, refer [ 70 – 72 ]). 

2.5.1    Vpr (Viral Protein r) 

 Vpr (viral protein r) is essential for effi cient replication of HIV-1 and is required for 
targeting the newly made viral DNA to the nucleus. This targeting function appears 
to be critical for the establishment of HIV infection in some non-dividing cells, 
which is a characteristic feature of lentiviruses [ 33 ]. Vpr also guides the viral genome 
into the nucleus after infection. The 3D structure is available in PDB (entry 1esx). 

 Although other accessory proteins are not incorporated into virions in substantial 
amounts, three HIV-1 proteins such as Vif, Vpu, and Nef besides Vpr appear to 
affect the structure, morphogenesis, or biological function of the mature viral 
particle. 

 From the analyzed blood isolates the oligomerization domains had slight varia-
tion but the C-terminal end had more variation. This could not be confi rmed pres-
ently due to lack of brain derived sequences. However, H(S/N) RIG motifs seems to 
be conserved throughout the sequences derived from blood and brain.  

2.5.2    Virion Infectivity Factor (Vif) 

 Vif is a 190–240-amino-acid protein that is relatively well conserved among HIV-1 
strains. HIV-1 Vif has evolved to attack the cell’s defense proteins, human antiretro-
viral DNA-editing enzymes especially APOBEC3G (A3G) and APOBEC3F (A3F) 
[ 73 ] for poly-ubiquitylation and proteasomal degradation [ 74 ] via the ubiquitin- 
proteasome pathway. A mutation of highly conserved cysteines or the deletion of a 
conserved SLQ(Y/F)LA motif in Vif results in mutants that fail to induce A3G deg-
radation and produce non-infectious HIV-1. The potent activity of A3G directed 
research towards identifi cation of small molecules that interrupt the Vif-induced 
degradative process [ 75 ]. These inhibitors might be useful in blocking Vif-mediated 
A3G destruction [ 76 ]. Only a small portion of Vif bound to proteins from the 
infected cell is shown in Fig.  24.1  (PDB entry 3dcg).  

2.5.3    Viral Protein u (Vpu) 

 Vpu is a small integral membrane protein promotes the release of the budding virion 
at the plasma membrane [ 77 ]. Vpu also downregulates the levels of the CD4 recep-
tor by accelerating its destruction. Vpu action is not specifi c for HIV-1, since it 
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enhances release of other lentiviruses as well as MLV. The structure details are 
available in PDB entries 1pi7 and 1vpu. In the analyzed sequences the start of the 
fi rst alpha helix in blood derived had conserved substitutions and in the second 
alpha helix of C-terminal region of blood isolates showed more variations than the 
brain isolates (Fig.  24.5 ).   

2.5.4    Negative Regulatory Factor (Nef) 

 Nef is also membrane-associated. Nef is important in the progression of HIV infec-
tion to AIDS. Nef has complex effects on signal transduction pathways in the cell 
like Vpu, leads to loss of the CD4 receptor directly from the cell surface [ 78 ]. 
Virions released from cells in the presence or absence of Nef is indistinguishable in 
number. Virions produce Nef are capable of more viral DNA synthesis, suggesting 
that Nef directly or indirectly activates reverse transcriptase. Nef forces the infected 
cell to stop making several proteins that are important in cell defense. It is observed 
that some of this protein is found to have been cleaved by PR [ 79 ]. PDB entries 1avv 
and 1qa5. In the analyzed dataset, myristoylation site, acidic clusters, poly-P helix, 
phosphorylation site, premature and normal ends of Nef are annotated, which are 
shown in Fig.  24.6 . Slight variations were observed in the myristoylation site of 
blood isolates and also in the acidic cluster of brain isolates.    

2.6     Other Cellular Proteins in Virions 

 Only a few host proteins have been implicated as important virion constituents, 
including both cytoplasmic and membrane proteins. 

 Among cytoplasmic proteins perhaps the most interesting is Cyclophilin A. They 
are highly conserved proteins that have propyl-isomerase activity and serve as 
 chaperonins to aid correct protein folding. These proteins are the targets for the 

  Fig. 24.5    Vpu proteins derived from brain ( a ) and blood ( b ) show sequence conservations ( tall 
characters ), semi-conserved substitutions ( stacked with similar colored characters ) and variations 
( stacked with different colors ). The annotation is based on the benchmark HXB2 sequence (acces-
sion K03455) provided in HIV Sequence Compendium 2013 [ 89 ]       
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immunosuppressive drug Cyclosporin, and hence its name. Cyclophilins A and B 
were identifi ed for human proteins capable of tightly binding to HIV-1 Gag protein 
[ 80 ]. Wild-type HIV-1 virions contain substantial amounts of Cyclophilin A [ 34 , 
 35 ]. Gag-Cyclophilin interaction is specifi c for HIV-1. HIV-2 does not contain this 
protein, and hence, its replication is not affected by Cyclosporin treatment. 

 Another host protein that appears to be a physical constituent of virions is ubiqui-
tin. This small, highly conserved protein is ubiquitous in all eukaryotes and has mul-
tiple functions in the cell. Its covalent attachment to lysine residues of a host protein 
marks that protein for degradation by the proteasome pathway [ 81 ]. Ubiquitin also 
becomes covalently conjugated to histones and to certain cell surface receptors. The 
possible functional role of ubiquitin in the retroviral life cycle has not been explored. 

 Of the other proteins that have been noted in preparations of retroviral particles, 
actin has been commonly seen in small amounts in preparations of retroviruses and 
other enveloped viruses. Due to its abundance in the cell, it is frequently dismissed 
as an artifact. However, in HIV, Gag binds to F-actin [ 82 ]. In addition, actin and other 
cytoskeletal proteins have been documented as genuine virion constituents [ 83 ]. 

 Incorporation of cellular proteins into virions is not required for viral replication 
yet still has important practical consequences [ 33 ]. For instance HIV-1 includes 
large amounts of the major histocompatibility complex (MHC) class I proteins on 
its surface during budding. These surface glycoproteins have key roles in immune 
recognition and are present in virions similar to Env protein [ 84 ]. The presence of 
these proteins on virions is demonstrated by immunoprecipitation of Gag protein by 
treatment of intact virions with anti-class I antibody.   

3     Conclusions 

 HIV-1-B protein sequences of different geographical locations from blood and brain 
isolates cluster into corresponding clades (Fig.  24.7 ). Average amino acid composi-
tion of each protein reveals variations in blood and brain isolates (Figs.  24.8  and  24.9 ).    

  Fig. 24.6    The annotation of Nef proteins derived from brain ( a ) and blood ( b ) show sequence 
conservations ( tall characters ), semi-conserved substitutions ( stacked with similar colored char-
acters ) and variations ( stacked with different colors ). The annotation is based on the benchmark 
HXB2 sequence (accession K03455) provided in HIV Sequence Compendium 2013 [ 89 ]       
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  Fig. 24.7    Unrooted tree based on HIV-1B proteins from brain and blood using interactive tree of 
life (  http://itol.embl.de    ) [ 90 ]       
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 For instance, Glutamine in Gag of brain isolates is 12 %, whereas in blood 
 isolates it is only 7 %. There were no cysteines found in Vpu of both blood and brain 
isolates. Glutamate in Vpr of brain is 1 % higher than that of blood isolates. In blood 
isolate Glutamate in both Vpr and Vpu are of equal proportions. Isoleucine in Vpu 
of brain is 1 % higher than that of blood isolate. Lysine and Proline in Tat is 1 % 
higher in blood than that of brain isolates. In Tat, equal amount of cysteine (7 %) 
was found in both blood and brain isolates of HIV-1 B clade. There is evidence to 
suggest that genetic differences in the Tat gene of the HIV clades may also alter the 
pathogenicity of the virus. For example, the cysteine in position 31 of clade B virus 
(Fig.  24.4 ) is mutated to a serine in clade C virus. This mutation results in decreased 
chemotactic properties of clade C virus and decreased neurotoxicity [ 85 ,  86 ]. 
However, there are indications that the Tat sequences of brain isolates (especially 
HAD patients) are poor transactivators of the HIV-LTR, which permits the virus to 
remain latent by escaping from the immune system [ 87 ]. These fi ndings suggest that 
some HIV variants may be more capable of entering the CNS, but are less patho-
genic in the brain environment, whereas other HIV variants might be more effi cient 
in both brain infi ltration and in setting up the HAD self-infl ammatory macrophage 
environment [ 88 ]. The molecular determinants of these differences are unknown. 

 Due to lack of brain derived Gag proteins such as MA, CA, NC, and p6, the 
sequence variations could not be confi rmed. In Env proteins no differences were 
observed in the CD4 regions of blood and brain derived Env sequences of HIV-1. 
The hydrophobic amino acid phenylalanine (F) sandwiched between Lysine (K) and 
Leucine (L) is conserved towards the end of exon 1 in brain-derived Rev sequences 
whereas it is not in blood-derived sequences. This could be due to the hydrophobic 
environment prevailing in the brain compartment and not in blood. The amino acids 

16

14

12

10

A
ve

ra
g

e 
co

m
p

o
si

ti
o

n

Amino acids

HIV-1 B blood isolates

8

6

4

2

0
Ala Cys Asp Glu Phe Gly His Ile Lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr

Env

gag

Nef

Rev

Tat

Vpr

Vpu

  Fig. 24.9    Amino acid composition of HIV-1B blood isolates computed using MEGA 6.0 [ 91 ]       

 

24 Global Protein Sequence Variation in HIV-1-B Isolates Derived…



662

followed by NLS of blood derived Tat sequences showed more variation than the 
brain derived Tat sequences. Moreover, the ends of exon 1 and Tat of blood isolates 
are hypervariable. In the Vpu of blood isolates, the second alpha helix at the 
C-terminal region showed more variations than the brain isolates. Analysis of Nef 
from blood isolates showed slight variations in the myristoylation site, whereas the 
brain isolates had slight variations in the acidic cluster of Nef. From the analyzed 
blood isolates of Vpr, the oligomerization domains had slight variation but the 
C-terminal end had more variation. At present, the sequence conservation, con-
served and semi- conserved substitutions as well as the variation could not be con-
fi rmed for Gag, Pol, Vif, and Vpr proteins of brain isolates due to the lack of 
brain-derived sequences in public databases. In order to study such variations in the 
evolution of HIV-1 in the brain, autopsy specimens are required and it is impractical 
because most studies require large sample size. Alternatively, publicly available 
HIV-1 sequences could be used to develop prediction methods to detect molecular 
determinants of HIV and other associations like HAD.     
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    Chapter 25   
 Mutational Immune Escape in HIV-1 Infection 

             Aniqa     Shahid      and     Zabrina     L.     Brumme    

          Core Message   Within an infected individual, human immunodefi ciency virus 1 (HIV-
1) develops specifi c mutations that allow it to escape immune detection by its host. As 
such, the human immune response represents a major selective force driving the 
evolution and diversifi cation of HIV-1 at the individual and population levels. Achieving 
a deeper understanding of the pathways, mechanisms, and implications of HIV-1 
mutational immune escape, and how we can harness this information to design novel 
interventions, will bring us closer to our ultimate goal of ending the HIV-1 pandemic.  

1     Introduction and Overview 

 The human immunodefi ciency virus 1 (HIV-1) group M “pandemic” strain origi-
nated from a single zoonotic chimpanzee-to-human transmission event approxi-
mately 100 years ago [ 1 ,  2 ]. Since then, HIV-1 group M has diversifi ed into 9 subtypes 
and more than 60 circulating recombinant forms that differ by up to 30 % in their 
envelope amino acid sequence (Fig.  25.1 ) [ 3 – 6 ]. This extraordinary global diversity 
has arisen as a result of evolutionary selection pressures imposed on HIV-1 by the 
estimated 75 million individuals infected since the epidemic’s genesis [ 7 ]. Among 
the strongest of these evolutionary pressures is the human immune response itself.  

 It is now understood that a severe genetic bottleneck occurs at the time of HIV-1 
infection [ 8 – 10 ] such that, depending on the transmission route, a single [ 8 ,  9 ] or a 
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limited number [ 11 ,  12 ] of closely related founder viruses establish productive 
infection in the recipient. As a result of HIV-1’s high replication rate [ 13 ], the high 
error rate of the virally encoded reverse transcriptase enzyme [ 14 ,  15 ], frequent 
recombination [ 16 ], and the mutation-inducing effects of host RNA editing enzymes 
such as APOBEC 3G [ 17 ], this transmitted/founder virus rapidly gives rise to a 
swarm of related viral variants within the infected individual [ 18 ]. This genetic pool 
becomes the evolutionary substrate upon which antibodies [ 19 ], T-lymphocytes 
[ 20 ], and possibly innate responses [ 21 ] exert immune pressures, driving the selec-
tion of escape mutations in the viral genome [ 22 – 26 ]. Mutational immune escape is 
a dynamic process that continues over the life of the infected person, shaping HIV-1 
diversity within individuals [ 27 – 30 ] and host populations globally [ 31 ,  32 ]. 
Understanding the pathways, mechanisms, and biological implications of immune- 
mediated HIV-1 evolution is therefore of great importance to HIV-1 biomedical and 
clinical research, in particular to HIV-1 vaccine design. 

 Towards this end, this chapter provides an overview of past and recent advances 
in our understanding of mutational immune escape in HIV-1. Refl ecting the authors’ 
expertise, HIV-1 escape from cellular immune responses mediated by CD8 +  cyto-
toxic T-lymphocytes (CTL) comprises a major focus, but mutational escape from 
humoral (antibody), innate, and vaccine-induced immune responses is also covered. 
The relevance of immune escape to HIV-1 vaccine research, and its potential impli-
cations on the pandemic’s future are also discussed.  

a b

  Fig. 25.1    Global genetic diversity of HIV-1 group M envelope and infl uenza A virus hemag-
glutinin, 2012. Unrooted maximum likelihood phylogenetic trees depicting global genetic diver-
sity of  N  = 112 HIV-1 group M envelope gp120 ( panel A ) and  N  = 138 infl uenza A virus 
hemagglutinin ( panel B ) sequences sampled in the year 2012, drawn on the same genetic distance 
scale. HIV-1 group M sequences were obtained from the Los Alamos HIV Database 2012 compen-
dium ([ 273 ] and   http://www.hiv.lanl.gov/    ); infl uenza A virus sequences were obtained from the 
NCBI Infl uenza virus resource and fl u database (  http://www.ncbi.nlm.nih.gov/genomes/FLU/
aboutdatabase.html    ).  Colored letters  denote HIV-1 group M subtypes A–K and infl uenza A virus 
hemagglutinin subtypes H1, H3, H5, H7.  Intra -subtype diversity of HIV-1 group M vastly exceeds 
that of infl uenza A virus sequences circulating within a given year (though infl uenza A virus 
exceeds HIV-1 group M in terms of total  inter -subtype diversity)       
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2       HIV-1 Mutational Escape from Immune Recognition 

2.1     Recognition and HIV-1 Immune Control 
by CD8 +  Cytotoxic T-Lymphocytes (CTL) 

 CTL eliminate HIV-1-infected cells via the recognition of short, virus-derived 
 peptide epitopes that are produced and processed within the infected cell and loaded 
onto Human Leukocyte Antigen (HLA) class I molecules for presentation at the cell 
surface (Fig.  25.2a ). Located within the major histocompatibility complex (MHC) 
region on the short arm of chromosome 6, the HLA class I genes (comprising the 

  Fig. 25.2    Mutational escape in HIV-1 allows infected cells to evade detection and elimination 
by HLA class I-restricted CTL.  Panel A : A simplifi ed diagram depicting HIV-1 infection of a 
target cell, and the subsequent intracellular production of short virus-derived peptide epitopes that 
are processed and loaded onto Human Leukocyte Antigen (HLA) class I molecules for presenta-
tion at the cell surface. Recognition of the viral epitope-HLA complex by the T-cell receptor (TCR) 
complex of an HLA-restricted CD8 +  cytotoxic T-Lymphocyte (CTL) results in elimination of the 
infected cell. For more details, see    Sect.  2.1 .  Panel B : Under immune pressure, mutations are 
selected in HIV-1 that allow infected cells to evade detection by CTL. In this simplifi ed diagram, 
a mutation occurs during the reverse transcription of RNA to proviral DNA, that, when translated 
into protein, abrogates the ability of the original encoded virus-derived epitope to bind HLA. As 
such, the viral epitope is not presented at the cell surface, allowing the infected cell to evade detec-
tion by the original HLA-restricted CTL. This results in the release of escape mutant HIV-1. In 
addition to the mechanism depicted here, CTL escape mutations may also interfere with proper 
processing of HIV-derived peptide epitopes prior to loading onto HLA (“antigen processing 
escape”) and/or may abrogate CTL recognition of the mutant peptide-HLA complex (“TCR 
escape”), as described in Sect.  2.2        

 

25 Mutational Immune Escape in HIV-1 Infection



670

HLA-A, B, and C loci) are among the most polymorphic in the human genome [ 33 ]. 
Peptide-HLA binding is defi ned by HLA allele-specifi c amino acid motifs within 
the peptide, most commonly involving positions 2 and/or C-terminus [ 34 ], allowing 
CTL to recognize a broad range of pathogen-derived epitopes in an HLA-restricted 
manner.  

 HLA-restricted CTL play a major role in immune control of HIV-1 in vivo. It 
was long observed that HIV-1-specifi c CTL fi rst appear around the time of the dra-
matic acute-phase viremia decline [ 35 ,  36 ] that occurs approximately 3–4 weeks 
following infection [ 37 ]; it is now known that the earliest CTL emerge  prior  to peak 
viremia and play an active role in its control to set-point levels [ 24 ]. Similarly, 
experimental depletion of CD8 +  T-cells in rhesus macaques resulted in an inability 
to control simian immunodefi ciency virus (SIV) infection in early and chronic 
infection [ 38 – 40 ]. Strong epidemiological links between host carriage of specifi c 
HLA class I alleles and HIV-1 disease progression have also been demonstrated in 
natural history [ 41 – 45 ] and genome-wide association [ 46 – 49 ] studies. In particular, 
HLA-B*57 and B*27 are associated with lower viral loads and slower progression 
[ 44 ,  46 ,  50 – 52 ], whereas certain HLA-B*35 subtypes are associated with faster 
progression [ 41 ]. Independent effects of HLA-C expression level on HIV-1 control 
have also been demonstrated [ 53 ]. HLA class I alleles and their associated CTL 
responses may also protect against HIV-1 acquisition [ 54 ,  55 ] (though this remains 
controversial [ 56 ]). Similarly, evidence also suggests that vaccine-induced CTL 
could protect against SIV and HIV-1 acquisition and/or disease progression [ 57 – 59 ] 
(though readers new to the fi eld should be aware that incomplete vaccine protection 
observed in the only “successful” HIV-1 vaccine trial to date was not likely attribut-
able to CTL [ 60 ], and that three other trials evaluating a cellular HIV-1 vaccine 
delivered via a human adenovirus fi ve vector ended in failure [ 61 – 63 ]). It is also 
worth noting that the effi cacy of CTL-mediated control of HIV-1 differs based on 
the viral protein (and/or epitopes) targeted. In particular, recognition of key con-
served epitopes in p24 Gag  [ 64 – 66 ] and to a lesser extent Pol may be most benefi cial, 
whereas targeting of envelope may have negative clinical consequences [ 65 ]. 
However, the observation that HLA-restricted CTL exert potent immune pressures 
on HIV-1 in vivo is perhaps most clearly demonstrated by the virus’ ability to escape 
this pressure via mutation. We now turn to the history of discovery in this area.  

2.2     CTL Escape in HIV-1: Early Evidence and Mechanisms 

 Of the host immune responses targeting HIV-1 in vivo, those exerted by CD8 +  cyto-
toxic T-lymphocytes (CTL) are the best understood with respect to the specifi c 
mutational strategies employed by HIV-1 to evade them. Though CTL directly 
mediate the elimination of HIV-1-infected cells in vivo, HIV-1 mutational escape 
from CTL pressures is commonly conceptualized as “HLA-driven” or “HLA- 
associated” due to the requirement that the viral epitope be bound and presented by 
a specifi c HLA molecule for CTL recognition. 
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 Selection of HIV-1 mutants capable of evading CTL recognition in vivo was fi rst 
described in the early 1990s [ 20 ,  67 ,  68 ] when it was observed that “accumulation 
of such mutations in T-cell antigenic targets…provides a mechanism for immune 
escape” [ 20 ]. In the original 1991 study, researchers noted temporal shifts in the 
dominant HLA-B*08-restricted HIV-1 Gag epitopes targeted by patient-derived 
CTL, with some epitopes exhibiting permanent loss of recognition over time. These 
shifts in CTL epitope recognition coincided with the appearance of viral mutations 
within them. Whereas some mutants abolished in vitro CTL recognition, others 
retained some ability to be recognized by certain autologous CTL populations. The 
former observation led researchers to conclude that a major mechanism of in vivo 
CTL escape was the selection of a mutant epitope no longer capable of forming 
complexes with the relevant HLA, whereas the latter observation revealed that some 
escape mutants retained the ability to bind HLA, but stimulated a smaller and/or 
different pool of CTL following their selection [ 20 ]. 

 CTL escape mutations can be broadly classifi ed into three mechanistic catego-
ries (two of which were inferred in the original 1991 study [ 20 ]). The most intuitive 
is escape via mutation(s) that reduce or abrogate viral epitope binding to HLA, 
thereby impairing CTL recognition of infected cells (Fig.  25.2b ). These mutations 
usually occur at HLA-specifi c epitope “anchor” residues—typically peptide posi-
tions two and/or C-terminus—and are commonly referred to as “anchor residue 
escape” mutations. A well-known example is the B*27-associated R264K mutation 
selected at position 2 of the B*27-restricted KK10 epitope in Gag (that spans codons 
263–272) [ 69 ]. CTL escape can also act upon processes that occur prior to, or fol-
lowing, peptide-HLA binding. For example, some CTL escape mutant epitopes 
retain the capability to bind HLA, but reduce or abrogate recognition of the peptide- 
HLA complex by the T-cell receptor (TCR) expressed by some or all members of 
the original selecting CTL pool. Such “TCR escape mutations” usually occur at 
central epitope positions. The B*27-associated L268M mutation selected at posi-
tion 6 of the KK10 epitope provides an example [ 20 ]. L268M-containing KK10 
retains the ability to bind HLA-B*27, but abrogates its recognition by key B*27- 
restricted CTL clonotypes in the repertoire [ 70 ]. Other examples of TCR escape 
abound [ 70 – 75 ]. The original 1991 study was also the fi rst to document de novo 
recognition of variant peptides by novel CTL populations following TCR escape 
[ 20 ], a now well-described phenomenon [ 76 ,  77 ] that underscores the dynamic and 
adaptable nature of the host cellular response to a rapidly evolving pathogen. The 
third category of CTL escape mutations inhibit epitope formation by interfering 
with their proper processing within the host cell. The fi rst such “antigen processing 
escape mutation” to be mechanistically characterized was B*57:03-restricted Gag- 
A146P, occurring at the residue immediately upstream of the IW9 epitope (Gag 
codons 147–155) that acts via prevention of N-terminal aminopeptidase-mediated 
trimming of this epitope [ 78 ]. Though antigen processing mutations often occur at 
positions fl anking the N and/or C-terminal epitope boundaries, they can also occur 
within the epitope [ 79 ]. For example, a mutation occurring at position 5 of a B*07- 
restricted epitope in a cryptic Gag reading frame acted via introduction of a protea-
somal cleavage site at this position, yielding a profound reduction in epitope 

25 Mutational Immune Escape in HIV-1 Infection



672

formation [ 80 ]. Antigen processing CTL escape mutations may also occur at 
 positions distal to the epitope [ 81 ]. 

 Arguably the most foundational observation made in the original 1991 study was 
the HLA-restricted nature of CTL escape. Since “different HLA class I molecules 
select distinct HIV-derived epitopes to stimulate CTL responses” wrote the research-
ers, then “HLA type could have an effect on virus escape” [ 20 ]. This realization was 
key to the next major development in the fi eld—namely, that the kinetics and nature 
of in vivo CTL escape was specifi c to, and thus broadly reproducible based on, the 
HLA class I alleles expressed by the host.  

2.3     The Timing and Mutational Pathways of CTL Escape 
Are Reproducible Based on Host HLA 

 Despite HIV-1’s genetic plasticity, the timing and mutational pathways of CTL 
escape are broadly predictable based on host HLA—a phenomenon most strikingly 
illustrated by the near-identical patterns of CTL epitope targeting and escape in 
identical adult twins infected on the same date with the same virus via injection 
drug use [ 82 ]. Importantly though, CTL escape is also reproducible across unrelated 
hosts sharing the same HLA. For example, three-quarters of HIV-1 subtype B 
infected persons expressing the protective HLA-B*57 allele select a T-to-N muta-
tion at Gag codon 242 (position 3 of the p24 Gag -TW10 epitope at Gag codons 240–
249), usually within the fi rst weeks to months following infection [ 83 ,  84 ]. Fifty 
percent of B*57-expressing persons will additionally select G248A at position 9 of 
this epitope [ 84 – 86 ]. Together, these two mutations confer complete escape from 
B*57-restricted, TW10-specifi c CTL [ 83 ]. In contrast, in B*27-expressing individ-
uals, targeting of the immunodominant p24 Gag  KK10 epitope begins in early infec-
tion and is often sustained for years thereafter [ 42 ]. KK10 escape begins via 
selection of the L268M mutation at position 6 of the epitope a few months after 
infection [ 20 ], that abrogates its recognition by certain autologous B*27-restricted 
CTL [ 70 ]. Complete escape from KK10-expressing CTL does not generally occur 
until years later, via selection of R264K at epitope position 2 [ 69 ] that abrogates 
epitope binding to B*27 [ 87 ]. The lengthy timeline of selection of R264K is now 
known to be due to its substantial fi tness cost, which necessitates the development 
of a distal compensatory mutation prior to its selection in vivo [ 88 ]. Though epit-
opes besides KK10 are targeted in B*27-expressing persons [ 89 ], KK10 escape 
remains one of the most clear-cut examples where in vivo HLA-mediated control of 
HIV-1 replication is largely mediated by sustained targeting of a single key epitope, 
and where escape leads directly to loss of HIV-1 control [ 27 ,  90 ]. 

 That the fi rst CTL escape mutations emerge rapidly following infection has long 
been known [ 22 ,  91 ,  92 ]. Recently, however, major advances in our understanding of 
the dynamics of HIV-1 infection and subsequent escape have been achieved via 
detailed studies of intra-host HIV-1 evolution using single-genome amplifi cation (e.g., 
[ 9 ]) or next-generation sequencing (e.g., [ 93 ]). We now appreciate that HIV-1 trans-
mission is characterized by a severe genetic bottleneck, where an estimated 80 % of 
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heterosexual transmissions are productively initiated by a single transmitted/founder 
virus [ 8 – 10 ], whereas infection in men who have sex with men or persons who inject 
drugs is generally established by a limited number of closely related donor/founder 
viruses [ 11 ,  12 ]. We also now appreciate that CTL-mediated killing of infected cells 
begins  prior  to acute-phase peak viremia, and that selection of the fi rst CTL escape 
mutations occurs during this time [ 24 ,  93 ]. Indeed, the selection (and in some cases 
the fi xation) of CTL escape variants has been observed as early as 21 days post-
infection in humans [ 18 ,  24 ] and 17 days in macaque models of SIV infection [ 94 ]. 

 The evolutionary pathways along which these early mutations arise have also 
recently been elucidated in detail. In the earliest days following infection, HIV-1 
undergoes rapid population growth and exhibits star-like diversifi cation, but immune 
selection (notably by CTL) dominates thereafter, leading to the survival of viral 
lineages harboring escape mutations [ 18 ]. As it turns out, the conceptually straight-
forward pathway whereby the fi rst selected escape mutation gradually outcompetes 
the original transmitted form is likely to be true for only a minority of cases [ 24 ]. 
More commonly, the fi rst escape variant tends to be rapidly followed by the emer-
gence of numerous others, from which the “fi nal” escape form is ultimately selected [ 24 ]. 
This is likely because the initially appearing pool of low frequency mutants often 
retain some ability to be targeted by existing (or de novo) CTL [ 95 ]. This drives the 
selection of more effective escape variants, often at HLA-anchor residues, that ulti-
mately outcompete both transmitted founder and initial variants [ 10 ,  93 ]. For exam-
ple, in a B*57:03-expressing individual, initial escape within the p24 Gag -TW10 
epitope occurred approximately 5 months post-infection via a transient, minority 
G-to-E mutation at position 9 (G248E) that retained the ability to bind B*57:03 and 
reduced CTL recognition only modestly [ 95 ]. By approximately 1.5 years following 
infection, this mutation was outcompeted by variants expressing the “canonical” 
B*57-restricted G248A mutation at this position (along with T242N and V247I at 
epitope positions 3 and 8). 

 It is also now understood that CTL escape accounts for a major proportion of 
within-host HIV-1 evolution in the fi rst year of infection [ 24 ,  84 ,  93 ]. To provide 
context, a detailed study of seven newly infected individuals revealed that, approxi-
mately 6 months following infection, between 9 and 18 positively selected 
 substitutions were observed throughout the HIV-1 proteome [ 18 ], whereas another 
estimated that a minimum of 30 % of observed substitutions in Gag/Pol and 60 % in 
Nef were attributable to HLA-driven selection [ 84 ]. HLA-driven CTL escape con-
tinues to occur (albeit at a slower rate [ 96 ,  97 ]) over the infection course, with some 
escape mutations occurring on a time course of years [ 27 ,  98 ,  99 ].  

2.4     Reversion, Compensation, and Fitness Costs 
of CTL Escape 

 When CTL escape mutations selected in a previous host are transmitted to an indi-
vidual lacking the restricting HLA allele(s), many will revert to the original (usually 
subtype consensus) amino acid [ 83 ,  100 – 103 ]. Like escape, reversion is also 
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HLA- restricted, though in the opposite context (as it occurs in the  absence  of 
 selection pressure by the original restricting HLA). The timing of reversion is also 
predictable to some extent. Whereas some escape mutations, for example the B*57-
associated Gag T242N, revert consistently and rapidly following transmission [ 83 , 
 93 ,  102 ], most revert more slowly [ 98 ,  104 ]. Yet others are so stable that they revert 
rarely or not at all [ 32 ,  105 – 107 ]. 

 Certain CTL escape mutations occur at a cost to viral fi tness [ 108 ]. Like the 
reversion of certain drug resistance mutations upon transmission to a therapy-naïve 
host [ 109 ], fi tness costs of CTL escape mutations can be inferred by their tendency 
to revert following transmission to an HLA-mismatched host [ 83 ,  100 ,  108 ,  110 ]. 
Fitness costs of escape vary widely, depending on their location in the viral pro-
teome. Broadly speaking, escape mutations within conserved viral regions tend to 
exhibit more pronounced fi tness costs, whereas escape in more variable regions 
tends to be fi tness-neutral [ 111 ]. An example of a highly fi tness-costly mutation is 
the B*27-associated R264K substitution in the p24 Gag  KK10 epitope, which essen-
tially abolishes in vitro viral replication when engineered alone into the reference 
strain NL4-3 (HIV-1 NL4–3 ), likely because this variant is unable to replicate effi -
ciently in the presence of normal cellular levels of cyclophilin A [ 88 ]. Generally 
however, in vitro fi tness costs of escape mutations observed in vivo tend to be sub-
tler, often requiring multiple substitutions to reduce function. Alone, the B*57- 
driven Gag-T242N mutation reduces viral replicative capacity only modestly [ 112 , 
 113 ], but dose-dependent replicative reductions are observed when it is present 
alongside other common B*57-driven mutations in p24 Gag  [ 114 – 116 ]. Fitness-
costly escape mutations are numerous, widespread throughout HIV-1, and are 
restricted by a broad range of HLA alleles. Examples include A*74:01 [ 117 ] and 
Cw*03 [ 118 ]–driven mutations in p24 Gag , B*13-driven mutations in p1 Gag  [ 119 ], 
B*35-driven mutations in Nef [ 120 ], and Cw*05-driven mutations in integrase 
[ 121 ]. Furthermore, the consistent reversion of fi tness-costly escape mutations 
explains why certain HIV-1 residues that are highly conserved at the population 
level remain so despite being under strong selection by one or more HLA alleles. 
For example, the Gag-T242N mutation is reproducibly selected in the vast majority 
of individuals expressing HLA-B*57 and/or B*58, but its consistent reversion [ 83 ] 
ensures that its prevalence remains ≈1 % among individuals lacking these alleles 
[ 83 ,  122 ]. 

 Fitness costs associated with the primary escape event can be offset by the selec-
tion of compensatory mutations at secondary sites [ 123 ]. This was fi rst demon-
strated in the simian/human immunodefi ciency virus (SHIV) model, where the 
fi tness costs of a rare in vivo escape mutation in capsid were rescued by the selec-
tion of compensatory mutations 21 codons upstream and/or 24 codons downstream 
of the primary escape site [ 123 ]. Due to its routine late emergence following other 
clustered mutations within the p24 Gag  KK10 epitope, the B*27-restricted R264K 
mutation was long suspected to require compensation [ 69 ], however, it was not until 
2007 that its compensatory mutation was identifi ed to be S173A, nearly 100 resi-
dues upstream [ 88 ]. Indeed, the requirement that S173A be present prior to R264K 
selection in vivo provided an explanation for the latter’s lengthy timeline of  selection 
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and also resolved the seemingly paradoxical initial observation that R264K 
 abolished HIV-1 replication when engineered alone in vitro (S173A rescues R264K 
replication to near wild-type levels [ 88 ]). Examples of compensatory mutations 
now abound. Whereas most occur in relatively close proximity to the primary escape 
site (e.g., S165N with A163G in B*5703-KF11 [ 98 ]; E260D with R264K in 
B*27-KK10 [ 124 ]; H219Q, I223V, and M228I with T242N in B*57-TW10 [ 112 , 
 113 ], all in p24 Gag ), others, such as S173A with R264K in B*27-KK10 [ 88 ], occur 
a substantial linear distance away, but may reside nearby in the folded protein struc-
ture. Compensatory mutations are also highly reproducible in context of their asso-
ciated primary escape site. Indeed, the reproducibility of HLA-driven escape, 
reversion, and compensation is most clearly revealed by population-level studies 
[ 125 – 127 ], the subject of the following section.  

2.5      Identifi cation of CTL Escape Mutations 
“at the Population-Level” by Statistical Association: 
Overview and Methods 

 The predictable nature of HIV-1 adaptation to HLA has facilitated the systematic 
identifi cation of HLA-associated viral polymorphisms “at the population level”—a 
term loosely used to describe the identifi cation, via statistical association, of viral 
polymorphisms signifi cantly over(or under)represented among persons expressing 
a given HLA allele, in cross-sectional datasets [ 31 ,  86 ,  126 ,  128 ]. An advantage of 
these approaches is that they are comprehensive and largely unbiased, allowing the 
identifi cation of HLA-associated viral polymorphisms regardless of their proximity 
to known CTL epitopes. A disadvantage is their correlative nature, thus necessitat-
ing experimental validation to confi rm HLA-associated polymorphisms as muta-
tions directly conferring CTL escape, and to elucidate their mechanisms. 

 Population-level analyses identify two types of associations: adapted and non-
adapted (Fig.  25.3 ). Adapted associations are viral polymorphisms that are signifi -
cantly  overrepresented  in individuals harboring a particular HLA allele; these are 
likely to represent CTL escape mutations. Conversely, nonadapted forms are viral 
polymorphisms that are signifi cantly  under   represented  in individuals harboring a 
particular HLA allele; these represent the immunologically susceptible form for the 
HLA allele in question. In most cases, both nonadapted and adapted forms are iden-
tifi ed at a given HIV-1 codon for a particular HLA allele. For example, at Gag codon 
242, T and N represent nonadapted and adapted forms associated with HLA-B*57. 
Sometimes an HLA allele can select multiple escape pathways at a given viral site, 
yielding multiple adapted associations. For example Nef codon 94, position 5 of the 
B*08-restricted FL8 epitope, harbors four B*08-associated adapted forms: “E,” 
“M,” “N,” and “Q” (whereas the subtype B consensus “K” represents the B*08- 
associated nonadapted form at this position) [ 126 ,  129 ]. In the majority of cases, 
nonadapted forms represent the HIV-1 subtype consensus whereas adapted forms 
represent variants, but exceptions occur. For example at Gag codon 147, “L” and “I” 
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  Fig. 25.3    Examples of HLA-associated polymorphisms in HIV-1 identifi ed “at the popula-
tion level.” The predictable nature of HIV-1 adaptation to HLA has facilitated the systematic 
identifi cation of HLA-associated viral polymorphisms “at the population level,” via statistical 
association approaches. These associations can be depicted in “HIV-1 immune escape maps” 
which indicate their locations, specifi c amino acid residues, and HLA restrictions. A selection of 
HLA-associated HIV-1 sites, and their polymorphisms are shown here. The HIV-1 subtype B con-
sensus amino acid is used as a reference. Known CD8 +  epitopes in HIV-1 (available at   http://www.
hiv.lanl.gov/content/immunology    ), and their HLA-restrictions, are indicated above the consensus 
sequence. HLA- associated polymorphisms are listed below the consensus sequence: Nonadapted 
associations (HIV-1 residues under-represented among persons expressing the HLA) are in  blue , 
whereas adapted associations (HIV-1 residues enriched among persons expressing the HLA) are in 
 red. Panel A : At HIV-1 Gag codon 242, residue 3 of the TW10 epitope recognized by HLA alleles 
belonging to the B58 supertype (B58ST), T and N represent nonadapted and adapted forms associ-
ated with HLA B58 supertype alleles, respectively. At Gag codon 248, position 9 of this epitope, 
G and A represent nonadapted and adapted forms associated with the HLA B58 supertype alleles, 
respectively.  Panel B : Sometimes HLA-driven escape can occur along multiple pathways at a given 
viral site, yielding multiple adapted associations. For example, at Nef codon 94, position 5 of the 
B*08- restricted FL8 epitope, the subtype B consensus “K” represents the B*08-associated non-
adapted form at this position, whereas four B*08-associated adapted forms are observed: “E,” 
“M,” “N,” and “Q.”  Panel C : Some HIV-1 codons harbor a large number of associations with dif-
ferent HLA alleles, some of which occur in opposing directions. Gag codon 147, which lies within 
numerous CTL epitopes, provides an example. Here, “L” and “I” represent the adapted and non-
adapted forms associated with A*25:01, B*13:02, and B*57:01. In diametric opposition, “I” and 
“L” represent the adapted and nonadapted forms associated with B*14:02 and B*15:01. In the 
majority of cases, nonadapted forms tend to represent the HIV-1 subtype consensus, whereas 
adapted forms represent variants, but exceptions occur. The associations with B*14:02 and 
B*15:01 at this position also illustrate “exceptional” cases where the adapted form represents the 
subtype consensus and the nonadapted form represents a polymorphic variant (in most cases—
including all other examples depicted in this    fi gure, nonadapted forms represent the HIV-1 subtype 
consensus whereas adapted forms represent variants). For more detail, see Sect.  2.5        
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represent the nonadapted and adapted forms associated with B*14:02 and B*15:01 
(but the subtype B consensus is “I”) [ 86 ]. HIV-1 codons harboring diametrically 
opposed HLA associations also exist, where a given viral polymorphism represents 
the nonadapted form for one HLA allele but the adapted form for another [ 129 ]. 
Gag codon 147 again provides an example: in opposition to the B*14:02 associa-
tions described above, “L” and “I” represent the adapted and nonadapted forms 
associated with A*25:01, B*13:02, and B*57:01, among others [ 86 ].  

 Published in 2002, the fi rst study to identify HLA-associated polymorphisms “at 
the population level” identifi ed nearly 100 polymorphisms in HIV-1 RT in a cohort 
of ≈400 patients, illustrating the extensive impact of CTL pressures on HIV-1 [ 31 ]. 
Since then, analytical methods have been refi ned. In particular it has been recog-
nized that, since HIV-1 sequences are related to one another through descent from a 
common ancestor (some more closely than others, for example a transmission pair), 
they should not be analyzed using standard tests of association that assume indepen-
dence of observations. The problem can be illustrated by the extreme example of a 
heterogeneous dataset comprising different host populations infected with different 
HIV-1 subtypes (e.g., Europeans infected with subtype B, and Africans infected 
with subtype C). Here, HIV-1 sequences belonging to each subtype will share 
lineage- specifi c polymorphisms refl ecting their descent from the most recent com-
mon ancestor at the root of that lineage. Similarly, HLA allele frequencies will dif-
fer between the two host groups due to their descent from different ancestral 
populations. As such, standard tests of association would identify strong relation-
ships between HIV-1 subtype C lineage-specifi c polymorphisms and HLA alleles 
enriched among Africans (and likewise HIV-1 subtype B lineage-specifi c polymor-
phisms and HLA alleles enriched among Europeans). However, such associations 
would be attributable to confounding due to viral lineage (“founder”) effects, rather 
than escape mutations directly selected by the associated HLA [ 130 ]. Though this 
is an extreme example, analyses comprising only a single HIV-1 subtype could 
similarly be confounded by subtle lineage effects. 

 To address this, “phylogenetically informed” methods that correct for the under-
lying evolutionary relationships (that is, the inferred phylogeny) linking HIV-1 
sequences in the dataset have been developed, with the goal of distinguishing HIV-1 
sites under HLA-driven selection in the present host from those likely to be explained 
by founder effects (i.e., neutral evolution in the tree) [ 125 ,  130 ,  131 ]. More recent 
strategies also correct for the confounding effects of linkage disequilibrium (LD) 
between HLA class I alleles [ 125 ] (thus identifying the HLA allele directly respon-
sible for selecting the viral variant, rather than alleles in LD with it) and HIV-1 
amino acid co-variation [ 125 ,  132 ,  133 ] (thus discriminating the specifi c viral vari-
ants directly selected by HLA, from those that indirectly arise as secondary or com-
pensatory mutations). Strategies to address lineage effects and population 
stratifi cation in both virus and host have also been implemented [ 134 ].  
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2.6     Insights from Population-Level Studies of CTL Escape 

2.6.1     CTL Escape Pathways Are Highly HLA-Specifi c and a Major 
Driver of Viral Diversity 

 Population-level studies have yielded comprehensive maps of the locations, specifi c 
amino acids, relative frequencies, and statistical strengths of selection of HLA- 
associated polymorphisms in HIV-1 [ 125 ,  126 ,  129 ,  131 ,  135 – 138 ]. These “immune 
escape maps” are most detailed for HIV-1 subtype B [ 86 ,  126 ,  129 ,  138 ], followed 
by C [ 125 ,  128 ,  131 ,  139 ] and CRF01 (AE) [ 140 ], though other subtypes remain 
understudied in this context. Population-level studies have also confi rmed escape 
(and reversion) as highly reproducible processes in context of host HLA. For exam-
ple, the strongest HLA association in subtype B is the HLA-A*24:02-restricted 
Y135F escape mutation in Nef. In chronic infection, 81 % of A*24:02-expressing 
persons harbor this mutation, compared to only 12 % of persons who do not express 
an allele belonging to the A24 supertype, yielding a statistical association of very 
high magnitude (in this case, an odds ratio of approximately 30 and a  p -value of 
8 × 10 −118 ) [ 86 ]. By defi nition, such a strong statistical association can only be 
achieved if the mutation is near-universally selected in persons harboring the HLA, 
and reverts consistently in individuals lacking it [ 141 ]. Escape is also highly HLA- 
specifi c. When population-level analyses are undertaken at various HLA resolution 
levels (e.g., supertype, type, subtype), the majority (>60 %) of HLA-associated 
polymorphisms are identifi ed as specifi c to a particular HLA subtype, whereas 
<10 % are identifi ed as shared across HLA supertypes [ 86 ]. This high HLA- 
specifi city remains true even for closely related HLA subtypes that present the same 
viral epitopes [ 128 ,  138 ]. For example, HLA-B*57:02, B*57:03, and B*58:01 all 
bind Gag-TW10, but they drive signifi cantly different escape pathways within this 
epitope. In particular, escape at position 3 (via selection of T242N) is signifi cantly 
stronger for B*57:02 compared to the others, escape at position 7 occurs via I247M 
in B*57:02 versus I247V in B*57:03, whereas escape at position 8 is essentially 
B*58:01-specifi c [ 128 ]. The specifi city of HIV-1 adaptation to HLA may also shed 
mechanistic light on the long-standing observation that HLA alleles, sometimes dif-
fering by as little as one amino acid between them, can mediate differential rates of 
disease progression [ 142 – 144 ]. This observation also underscores the importance of 
identifying HLA-associated polymorphisms at the HLA subtype level. 

 Population-level studies also confi rm immune escape as widespread throughout 
HIV-1. Over 2100 HLA-associated polymorphisms, occurring at ≈35 % of the 
virus’ nonconserved codons have been identifi ed across the HIV-1 subtype B pro-
teome [ 86 ], though their distribution is somewhat nonuniform. Whereas HLA pres-
sures greatly infl uence diversity of certain viral genes (e.g., the highly diverse  nef  
gene and the relatively mutationally constrained p24 Gag  gene harbor HLA-associated 
polymorphisms at ≈70 % and ≈40 % of their nonconserved residues, respectively), 
the highly variable  vpu  gene exhibits evidence for HLA-mediated selection at only 
one-quarter of its nonconserved sites [ 86 ,  145 ]. Despite this, HLA is likely to 
 represent the single most important host genetic factor infl uencing global HIV-1 
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diversity—an observation recently confi rmed via genome-wide association. In a 
“genome-to-genome” analysis of >1,000 individuals for whom human genetic vari-
ation (assessed in terms of single nucleotide polymorphisms [SNPs]) and HIV-1 
sequences were available, 48 HIV-1 amino acids associated with human SNPs were 
identifi ed, all of which mapped to the HLA class I region [ 134 ]. Similarly, a study 
investigating immune-driven evolution of HIV-1 Gag and Nef during the North 
American subtype B epidemic observed that HIV-1 sites under HLA selection have 
diversifi ed to the greatest extent over time, supporting a signifi cant role of HLA in 
driving global HIV-1 diversifi cation [ 146 ].  

2.6.2     Population-Level Studies Illuminate Escape Mechanisms, Aid Novel 
Epitope Discovery, and Reveal Correlates of Protective Immunity 

 Though the mechanisms of immune escape cannot be determined via association 
studies alone, analysis of the distribution of HLA-associated polymorphisms within 
(or fl anking) known or inferred epitopes can shed light on which mechanisms pre-
dominate. In particular, epitope-HLA anchor residues are signifi cantly enriched for 
HLA-associated polymorphisms, identifying abrogation of peptide-HLA binding as 
a predominant in vivo escape mechanism [ 86 ,  147 ]. Moreover, bioinformatic pre-
dictions estimate that the “average” HLA-restricted anchor residue polymorphism 
confers a tenfold reduction in peptide binding affi nity to HLA [ 86 ]. Inferred escape 
via TCR and/or antigen processing mechanisms also occurs, but less frequently than 
anchor residue escape. Population-level studies have also aided CTL epitope dis-
covery, as the presence of HLA-associated viral polymorphisms generally indicates 
the presence of a CTL epitope nearby. Bioinformatic approaches can then be applied 
to predict its location and sequence for experimental validation—a type of “ratio-
nal,” polymorphism-guided approach to epitope discovery. Numerous CTL epitopes 
have been identifi ed this way [ 121 ,  130 ,  148 ,  149 ], including HLA-restricted epit-
opes in nonstandard (“cryptic”) [ 150 ] and/or antisense [ 151 ] HIV-1 reading frames. 

 Association studies of HLA-driven escape can also shed light on why certain 
HLA alleles are more effective at controlling HIV-1 than others [ 86 ]. This is because 
HLA-associated polymorphisms mark viral sites under strong and reproducible 
in vivo selection by a particular HLA allele. As such, analysis of the properties of 
these sites (i.e., their location, frequency, distribution, sequence conservation and 
their strength of association with the restricting HLA) can be used to identify fea-
tures that discriminate protective from nonprotective HLA alleles. Analyses of this 
type have identifi ed CTL response breadth as the most consistent correlate of 
immune protection: in general, protective HLA-A and -B alleles exert immune pres-
sure on a larger overall number of HIV-1 sites compared to nonprotective alleles 
[ 86 ]. The strength and location of selection pressure is also important: protective 
HLA alleles also tended to strongly target highly mutationally constrained sites, 
notably in Gag and to a lesser extent Pol. Protective HLA alleles also exhibited a 
higher average number of escaping sites per epitope in Gag, supporting diversity of 
selection pressure (e.g., in terms of the clonal composition and/or diversity of 
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epitope- specifi c CTL repertoire [ 70 ,  152 ]) on key viral areas as an additional 
 correlate of protection. It is important to emphasize that the unit of analysis in these 
investigations is the HLA allele, not the individual, and that conceptualizing HIV-1 
codons as sites under HLA-mediated selection does not imply that CTL escape is 
protective at the individual level (on the contrary, escape is generally linked to nega-
tive clinical outcomes [ 27 ,  90 ,  128 ,  153 ]). Rather, these sites represent the total 
potential of individual HLA alleles to effectively target HIV-1. In support of the 
potential in vivo relevance of this novel analytical perspective, a recent population- 
level analysis in HIV-1 subtype C identifi ed HLA-restricted viral polymorphisms as 
stronger predictors of HLA-plasma viral load correlations than CTL responses mea-
sured by traditional in vitro assays [ 128 ].   

2.7     HLA Class II-Driven Immune Escape 

 Effective antiviral immunity generally requires CD4 +  T-lymphocyte help. HLA 
class II-restricted HIV-1-specifi c CD4 +  T-cell responses emerge rapidly following 
infection [ 154 ] (e.g., Gag-specifi c CD4 +  T-cell responses peak at a median of 28 
days [ 155 ]), but the HIV-1-specifi c CD4 +  response rapidly becomes dysfunctional, 
in part because of the specifi c elimination of virus-specifi c CD4 +  cells [ 156 ,  157 ]. 
As such, the extent, durability and contribution of CD4 +  T-cells to HIV-1 control 
in vivo remains incompletely understood. It remains similarly unclear whether 
mutational escape from CD4 +  T-cell responses occurs to any great extent in vivo: 
whereas some early studies supported this possibility [ 158 ], others did not [ 159 , 
 160 ]. Furthermore, attempts to identify HLA class II-restricted viral polymorphisms 
by statistical association have yielded no strong evidence of their existence [ 161 ], 
suggesting that mutational escape from HLA class II-restricted CD4 +  T-cells is far 
weaker, less specifi c and/or less reproducible compared to HLA class I-restricted 
escape from CTL pressures.  

2.8     Escape from Neutralizing Antibodies 

 The HIV-1 envelope gene evolves rapidly within a host after infection and has diver-
sifi ed to an extraordinary extent at the population level [ 4 ]. Although CTL escape 
contributes to this process, the most signifi cant factor driving HIV-1 envelope evolu-
tion is the autologous neutralizing antibody response. Beginning at approximately 3 
months post-infection [ 162 ,  163 ] (though earlier in some [ 164 ]), HIV-1-infected 
individuals begin to develop antibodies capable of neutralizing their own virus 
(termed “autologous” or “strain-specifi c” neutralizing antibodies; NAbs) [ 19 ,  165 ] 
(non-neutralizing antibodies, directed against envelope and non-envelope targets, 
emerge earlier [ 166 ]). In contrast to acute-phase HIV-1-specifi c CTL responses, 
autologous NAbs do not contribute to virus containment to any appreciable extent, 
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likely because they drive the rapid selection and outgrowth of neutralization- resistant 
escape mutants [ 19 ,  162 ]. Initial NAb escape exposes novel envelope epitopes 
against which subsequent waves of autologous NAbs arise, driving further envelope 
evolution. That antibodies and virus coevolve in cycles of response and escape was 
fi rst inferred via the ability of autologous sera to neutralize viral variants present in 
the infected individual 6 (or 12) months prior, but not those present at the time of 
serum sampling [ 23 ]. 

 It is now understood that in approximately 80 % of infected individuals, this 
process results in the continued production of autologous NAbs that remain largely 
specifi c to the individual’s evolving virus. However, in approximately 20 % of indi-
viduals, this process [ 30 ,  167 ,  168 ] leads to the emergence of antibodies that are 
capable of neutralizing a broad range of HIV-1 isolates across subtypes [ 169 – 171 ]. 
Though individuals producing such “broadly neutralizing antibodies” do not likely 
derive clinical benefi t from them (presumably because their own virus has already 
escaped) [ 169 ,  170 ], the evolutionary mechanisms driving their development are of 
paramount interest as an effective preventive HIV-1 vaccine will likely require their 
elicitation (along with effective cellular responses) [ 172 ]. For this reason, HIV-1 
antibody escape is being elucidated in the context of coevolution of HIV-1 founder 
viruses and their autologous NAbs, towards the goal of exploiting this natural pro-
cess in HIV-1 vaccine design. 

 Initial studies of HIV-1 neutralization escape, the earliest of which date back to 
the late 1980s [ 173 ,  174 ], hinted at a variety of escape pathways including the accu-
mulation of amino acid changes in envelope [ 23 ] (suggestive of escape through the 
selection of specifi c point mutations), changes in  N -linked glycosylation patterns 
[ 162 ] and lengthening of certain hypervariable domains in gp120, notably V1/V2 
[ 175 ,  176 ]. However, the identifi cation of specifi c genetic events conferring escape 
from individual NAb responses has begun only recently (e.g., the fi rst specifi c iden-
tifi cation of an envelope escape mutation conferring neutralization escape at the 
single antibody level was not achieved until 2009 [ 177 ]). Unlike CTL epitopes 
whose (linear) sequences can be predicted from HLA anchor residue motifs without 
knowledge of the T-cell receptor sequence or structure, antibodies directly recog-
nize three-dimensional epitopes whose sequences can span discontinuous sites on 
one or more members of the envelope trimer, rendering their locations diffi cult to 
predict based on HIV-1 sequence alone. 

 Recent studies have therefore taken the approach of longitudinally characteriz-
ing envelope evolution while simultaneously attempting to isolate individual neu-
tralizing antibodies (and/or the B-cell clonal lineages producing them) in individual 
patients [ 30 ,  167 ,  168 ,  177 ,  178 ]. From these studies, a central role of immune- 
driven envelope evolution in driving autologous neutralization breadth is emerging. 
In one individual, initial autologous NAbs were directed against epitopes in the fi rst 
and second hypervariable loops of gp120 (V1/V2), and escape was achieved via 
point mutations in this region including one in V2 that created a putative  N -linked 
glycosylation site conferring escape from two distinct monoclonal antibodies iso-
lated from this patient [ 177 ]. In a second individual, escape from the initial NAb 
pool occurred via convergent evolutionary pathways (one involving changes in the 
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V3–V5 gp120 outer domain and the other involving codependent changes in V1/V2 
and gp41), whose lineage members subsequently oscillated in frequency over time 
[ 177 ]. NAb escape via distinct evolutionary pathways within a single host was con-
fi rmed in an individual in whom escape in a V3-proximal epitope occurred along 
three divergent viral lineages, each featuring a unique amino acid change [ 167 ]. A 
subsequent study of three acutely infected individuals whose initial response was 
directed against different conformational epitopes in envelope, where each escaped 
along distinct pathways [ 164 ], also supports the strain- and host-specifi c nature of 
initial epitope targeting and autologous neutralization escape. That escape occurs 
via distinct mechanisms (e.g., point mutations, glycan shifts, and cooperative con-
formational changes between two domains) both within and among hosts indicates 
that HIV-1 employs multiple mutational strategies to escape early autologous neu-
tralizing antibodies [ 177 ]. 

 Though autologous NAbs appear after HIV-1-specifi c CTL, NAb escape shares 
some similarities with CTL escape. Analogous to other HIV-1 regions, within-host 
envelope diversifi cation is initially starlike—but, after the appearance of the fi rst 
NAbs, multiple amino acids often transiently appear in regions under pressure, from 
which the fi nal neutralization mutant(s) ultimately emerge [ 164 ,  168 ]. Of interest, 
the time course of selection (and subsequent fi xation) of NAb escape mutations is 
on average slower than the corresponding process of CTL escape in early infection 
[ 164 ]. Moreover, fi tness costs ranging from 0 to 24 % were observed for early enve-
lope escape mutants, indicating that NAb escape can also be fi tness-costly [ 164 ]. 
The extent to which neutralizing antibody epitopes—and their escape pathways—
are shared across patients also remains a key question. The observation that, com-
pared to transmitted/founder viruses, chronic subtype C viruses are signifi cantly 
enriched for a glycan at envelope codon 332 (whose presence can help trigger the 
evolution of broadly neutralizing antibodies against this key conserved epitope 
region [ 30 ]), supports the idea of shared evolutionary pathways of neutralization 
escape. Finally and importantly, the discovery that broadly neutralizing antibodies 
evolve via complex and dynamic interplay between virus and host immune response 
has led to the hypothesis that this process could be recapitulated via vaccination 
with specifi c transmitted/founder envelopes and their sequential escape variants 
[ 168 ]. Though some experimental support already exists for such a strategy [ 179 ], 
further research will be required to move this exciting new idea forward.  

2.9     Innate Immune Responses: KIR-Driven HIV-1 
Polymorphisms? 

 Host-driven polymorphisms that do not map to known CTL or NAb escape sites are 
often identifi ed in individual and population-level studies. Though many are likely 
attributable to incomplete epitope mapping, some could represent polymorphisms 
selected by immune responses other than CTL or NAb. In particular, evidence sup-
ports innate immune responses, notably Natural Killer (NK) cells, as mediators of 
HIV-1 immune control and potential drivers of immune escape. 
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 NK cells express cell-surface receptors belonging to the highly polymorphic 
Killer cell Immunoglobulin-like Receptor (KIR) gene family, which comprise a 
variety of inhibitory and activating receptors that interact with HLA class I ligands 
on target cells [ 180 ]. Engagement of activating KIR (which generally exhibit short 
cytoplasmic tails, denoted by “S” in the gene name) delivers a stimulatory signal, 
whereas engagement of inhibitory KIR (which generally exhibit long cytoplasmic 
tails, denoted by “L” in the gene name) delivers a tolerance signal; when the former 
overcome the latter, NK effector functions are initiated [ 180 ]. Indeed, a major trig-
ger for enhanced NK cell-mediated recognition of HIV-1-infected cells is the selec-
tive downregulation of their HLA-A and -B (though not C) ligands by the viral Nef 
protein [ 181 ], leading to a reduction in signaling through inhibitory KIR. Inhibitory 
KIR bind their HLA class I ligands in an allotype-specifi c manner. For example, 
KIR3DL1 receptors interact with HLA-B molecules belonging to the Bw4 allotype 
(determined by amino acids 77–83 of the HLA coding region), notably those har-
boring isoleucine at position 80 (Bw4-80I), and to a lesser extent those harboring 
threonine at this position (Bw4-80T) [ 182 – 184 ]. Some activating KIR also recog-
nize HLA class I in an allotype-specifi c manner, though generally at lower avidity 
than their inhibitory counterparts [ 185 ]. An example is KIR2DS1, which binds 
HLA-C molecules belonging to the C2 allotype (determined by amino acids 77–80 
of the HLA coding region) [ 186 ,  187 ]. Of note, despite high similarity between the 
extracellular domains of activating KIR to those of their inhibitory counterparts, 
many ligands for activating KIR remain unknown. 

 KIR, alone and in combination with their allotype-specifi c HLA ligands, may 
modulate HIV-1 susceptibility and pathogenesis [ 185 ]. HIV-1-infected individuals 
expressing the activating KIR3DS1 allele in combination with HLA-Bw4-80I 
exhibit lower viral loads [ 188 ], delayed clinical progression [ 189 ] and protection 
from opportunistic infections [ 188 ], though not in all studies [ 190 ,  191 ]. Higher 
frequencies of KIR3DS1 homozygosity [ 192 ,  193 ] and higher KIR3DS1/3DL1 
transcript ratios [ 194 ] have been observed in HIV-1 exposed seronegative individu-
als, suggesting that activating KIR may also confer some level of protection against 
HIV-1 acquisition. Though protection via engagement of an activating receptor 
seems intuitive, the underlying mechanism remains unknown (KIR3DS1-expressing 
NK cells can inhibit Bw4-80I–expressing cells in vitro [ 195 ], but there remains no 
evidence that KIR3DS1 directly binds HLA-Bw4-80I [ 196 ]). Intriguingly, 
KIR3DL1 alleles possessing a high-expression, high-inhibitory phenotype (termed 
KIR3DL1*h/*y) may also be protective [ 197 ]. When present in combination with 
HLA-Bw4-80I alleles, notably HLA-B*57, KIR3DL1*h/*y alleles were associated 
with lower viral loads and conferred protection against HIV-1 disease progression 
[ 198 ]. KIR3DL1*h/*y-HLA-B*57 co-expression may also protect against HIV-1 
acquisition [ 199 ] (though another study that did not discriminate KIR3DL1 alleles 
based on expression reported the opposite [ 193 ]). That highly inhibitory KIR recep-
tor–ligand interactions can be protective seems somewhat counterintuitive, espe-
cially given that the opposing signals of activating KIR may also be protective. 
Nevertheless, the data support a role, albeit complex and incompletely elucidated, 
of KIR in HIV-1 control. 
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 KIR-associated immune pressures may also drive the selection of viral poly-
morphisms that allow infected cells to evade NK-mediated killing. To shed light on 
how such mutations could arise in a reproducible manner, we must fi rst briefl y 
revisit KIR-ligand binding. Though not antigen-specifi c in the classical sense, KIR 
receptor–ligand interactions are nevertheless modulated in part by HLA polymor-
phism (within members of the relevant allotype [ 200 ]) and the sequence of the 
HLA-bound peptide [ 201 – 205 ]. In particular, C-terminal proximal epitope resi-
dues may play a role in KIR–HLA interaction [ 186 ,  203 ,  206 ]. The idea that natu-
rally arising HIV-1 variants could affect KIR–HLA binding was supported by 
reduced in vitro binding of KIR3DL1 to its HLA B*57:03 ligand in the presence 
of the TW10 epitope harboring a G-to-E substitution at position 9 (though this was 
not claimed to be an in vivo NK-driven escape mutation, as failure to engage 
KIR3DL1 would render infected cells more, not less, susceptible to NK-mediated 
killing [ 95 ]). Rather, NK cell escape could theoretically be achieved via viral poly-
morphisms that reduce recognition by activating KIR, or enhance recognition by 
inhibitory KIR. Towards the identifi cation of such mutations, statistical association 
approaches were applied to  N  = 91 linked KIR/HIV-1 sequences, yielding 22 KIR-
associated viral polymorphisms. The researchers identifi ed two linked polymor-
phisms in Vpu (71M/71H) that were particularly overrepresented among 
KIR2DL2-expressing persons [ 21 ]. Consistent with the greater affi nity of 
KIR2DL2 for HLA-C group 1 compared to group 2 ligands [ 207 ], these polymor-
phisms were even more enriched among KIR2DL2 +  individuals homozygous for 
HLA-C group 1 alleles [ 21 ]. Researchers further showed in vitro that the presence 
of these polymorphisms enhanced the ability of the inhibitory KIR2DL2 to bind 
HIV-1-infected cells, that KIR2DL2 +  NK cells failed to become activated in the 
presence of polymorphism-containing HIV-1, and that cells infected with poly-
morphism-containing HIV-1 were not inhibited by KIR2DL2 +  NK cells [ 21 ]. 
However, researchers were unable to elucidate the mechanism whereby these poly-
morphisms reduced the ability of KIR2DL2 +  NK cells to recognize variant virus-
infected cells, nor were they able to identify whether specifi c peptide(s) played a 
role in this interaction. 

 Despite remaining questions, these fi ndings suggest that immune pressure by an 
inhibitory KIR could select in vivo escape mutations conferring enhanced binding 
of the inhibitory receptor to HIV-1-infected cells, thereby allowing them to escape 
NK cell-mediated elimination. The recent identifi cation of an HLA-C*01:02- 
restricted p24 Gag  peptide variant that bound KIR2DL2, that conferred functional 
inhibition of KIR2DL2-expressing NK cells in vitro [ 208 ], provides theoretical sup-
port for this model. The idea that NK cells recognize antigen in a manner that is to 
some extent specifi c, leading to the reproducible selection of escape mutations 
in vivo, is intriguing. Further research is required to confi rm and to elucidate the 
extent to which innate immune responses drive HIV-1 evolution.   
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3     Immune-Driven HIV-1 Evolution: 
Consequences and Implications 

3.1     Fitness Consequences of Escape for Infection 
and Transmission 

 The protective effects of certain HLA class I alleles are attributable, at least in part, 
to their ability to mount strong CTL responses against mutationally constrained 
HIV-1 regions where escape can only occur at a functional and/or replicative cost to 
the virus (e.g., [ 209 ]). In these cases, the viral advantage gained via immune escape 
is offset in part by its associated replicative costs, thus conferring some residual 
biological “benefi t” to the host in terms of lower viral loads. For example, HLA- 
B*81 is a protective allele in context of the South African HIV-1 subtype C epi-
demic. The B*81-driven Gag-T186S escape mutation (selected at position 7 of the 
immunodominant B*81-restricted TL9 epitope spanning Gag codons 180–188) is 
fi tness-costly [ 210 ] and diffi cult to compensate [ 211 ]. Thus, although Gag-T186S 
confers escape from the B*81 TL9-mediated recognition of infected cells, the sus-
tained replication defects conferred by this substitution may contribute to the long- 
term clinical benefi ts associated with HLA-B*81 expression. It is important to note 
however, that initial immune-driven viral fi tness reductions are often of limited 
duration. For example, recombinant HIV-1 NL4–3  encoding acute/early Gag-Protease 
sequences derived from individuals expressing protective HLA display replicative 
reductions in acute/early infection, but these defects are largely undetectable by 
chronic infection due to the selection of compensatory mutations [ 212 ]. 

 The clinical “benefi ts” of immune-driven viral replicative costs can also be 
detected when viruses containing such mutations are transmitted to persons lacking 
the restricting HLA. Indeed, lower viral loads in individuals acquiring HIV-1 with 
key fi tness-costly escape mutations in Gag [ 213 ,  214 ] (though not Nef [ 214 ]) have 
been demonstrated. That immune-driven mutations selected by past hosts inher-
ently infl uence the pathogenicity of a given HIV-1 sequence is supported by the 
observation that a substantial fraction of set-point plasma viral load is “heritable” 
from one infection to the next [ 215 ]. That HIV-1 sequences are inherent determi-
nants of pathogenesis is also supported by the observation that viral replication 
capacity correlates positively with viral load (and negatively with CD4 +  T-cell 
count) at various infection stages [ 139 ,  210 ,  212 ,  216 ,  217 ]. Extending these obser-
vations, one could hypothesize that the acquisition of attenuated HIV-1, followed by 
further within-host selection of fi tness-costly escape mutations, would provide 
maximal clinical “benefi t” to the host. Indeed, elite controllers, rare individuals who 
are able to spontaneously suppress plasma HIV-1 RNA to below limits of clinical 
detection without the need for antiretroviral therapy [ 218 ], provide a model for this 
phenomenon [ 219 ]. Elite controller-derived HIV-1 sequences generally exhibit 
reduced function compared to HIV-1 from noncontrollers at both early [ 220 ,  221 ] 
and chronic [ 116 ,  222 – 224 ] infection stages, supporting the acquisition of attenu-
ated HIV-1 in at least some of these individuals. Two lines of evidence suggest that 
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these relative defects are also attributable to the within-host selection of fi tness- 
costly mutations. First, elite controllers expressing protective HLA alleles exhibit 
even greater HIV-1 attenuation than those who lack them [ 222 ,  223 ], in a manner 
that is “dose dependent” on the number of mutations selected [ 223 ,  224 ]. Second, 
elite controllers harbor noncanonical escape mutations that confer greater fi tness 
costs than conventional ones [ 225 ,  226 ], possibly as a result of enhanced immune 
recognition of common CTL escape variants in these persons [ 227 ]. 

 The study of fi tness consequences of escape in general—and in elite controllers 
in particular—is relevant to HIV-1 vaccine research. Specifi cally, immune-medi-
ated containment of HIV-1 replication to levels that slow disease progression and 
possibly reduce transmission might be achievable through the design of vaccines 
that stimulate CTL responses focused against critically conserved viral regions 
where escape can only occur at substantial fi tness costs [ 228 ,  229 ]. A related strat-
egy would be to design immunogens featuring both “nonadapted” (susceptible) and 
“adapted” (escape variant) forms—provided the latter retain the ability to bind the 
relevant HLA molecules—with the goal of generating broad, potent, variant- 
reactive CTL responses that, upon infection, will drive HIV-1 evolution down 
unconventional pathways not unlike those selected in elite controllers [ 225 ,  226 ]. 
Strategies to comprehensively identify HLA-driven immune escape mutations, 
compensatory pathways and “vulnerable” sites across HIV-1 are thus paramount to 
achieving such goals.  

3.2     Differential HIV-1 Adaptation to Global Populations 

 It is commonly said that HIV-1 adapts to its human hosts “at the population level” 
[ 31 ,  32 ]. This refers to the observation that, since HIV-1 genomes residing in an 
individual will exhibit adaptations to its host’s immunogenetic profi le, then HIV-1 
sequences circulating in a given population will, by extension, exhibit adaptations 
that refl ect the distinct immunogenetic profi le of that host population [ 32 ,  136 ]. The 
existence of CTL escape mutations “unique” to particular host populations, because 
they are restricted by HLA alleles specifi c to these populations, provides one illus-
tration of this phenomenon. For example, >50 % of HLA-associated polymorphisms 
identifi ed in HIV-1 subtype B sequences in Mexico [ 136 ] and nearly two-thirds of 
those identifi ed in Japan [ 230 ] are distinct from those observed in subtype B-infected 
cohorts from Canada/USA/Australia, because the former populations exhibit 
“unique” HLA alleles (e.g., B*39 in Mexico and B*67:01 in Japan) that are not 
found in the latter populations [ 136 ,  230 ]. That HIV-1 polymorphisms correlate 
with host ethnicity (a surrogate of HLA) also demonstrates population-specifi c viral 
adaptation [ 231 ]. 

 Population-specifi c HIV-1 adaptation also manifests itself in terms of differential 
HIV-1 polymorphism frequencies among host groups. In particular, HLA- associated 
polymorphism frequencies among viral sequences circulating in a given population 
will generally refl ect the frequencies of their restricting HLAs in that population [ 32 ]. 
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This remains true even among individuals lacking the restricting HLA. This is 
because higher numbers of persons expressing the HLA will generally translate to 
higher numbers of polymorphisms selected and thus transmitted (though many fac-
tors, including the wide-ranging probabilities of polymorphism selection in context 
of their viral location and restricting HLA, the fact that multiple HLA alleles select 
the same—or opposing—mutations at a given viral location, the existence of “con-
sensus” HLA-associations, and the timing of escape/reversion, will render this cor-
relation less than perfect). The B*51-associated I135X mutation in Reverse 
Transcriptase (at the C-terminus of the B*51-TI8 epitope, RT codons 128–135) pro-
vides an example. In an analysis of nine cohorts spanning fi ve continents,  HLA-B*51 
and RT-I135X prevalence exhibited a strong positive correlation [ 32 ], indicating 
that the more frequent an HLA allele is in a population, the more frequent its associ-
ated adaptations will be observed in circulating HIV-1 sequences. 

 Although a major portion of population-specifi c HIV-1 adaptation to host cellu-
lar immune responses is attributable to population-specifi c differences in HLA 
alleles and their frequencies, other host factors (e.g., variability in T-cell receptor 
genetics) also likely plays a role. A recent study comparing HLA-associated poly-
morphisms in HIV-1 subtype B cohorts in Japan versus Canada/USA/Australia 
identifi ed numerous cases where the same HLA allele selected signifi cantly differ-
ent escape pathways across cohorts [ 230 ], implying factors beyond HLA in driving 
these differences. HLA-driven escape pathways also differ across HIV-1 subtypes, 
presumably as a result of genetic differences in the viral backbone. For example, 
Gag-T242N is commonly selected by B*57 in HIV-1 subtypes B [ 83 ,  126 ,  137 , 
 138 ], C [ 125 ], and D [ 232 ] but rarely in subtype A1 [ 232 ]. Similarly, the fi tness 
costs of escape can differ across subtypes. For example, Gag-M250I confers pro-
found fi tness costs in subtype B (where it represents a rare escape mutation selected 
by HLA B58 supertype alleles) but not subtype C (where it appears to be a minor 
non-HLA-associated polymorphism) [ 226 ]. Together, these observations highlight 
the relevance of HLA, along with other host and viral genetic determinants of HIV-
1- specifi c CTL responses, in driving HIV-1 evolution. As such, cellular vaccine 
designs featuring immunogens that incorporate immune-relevant HIV-1 diversity 
may require us to distinguish escape pathways that are “universal” across host 
 populations and/or HIV-1 subtypes, from those that are population and/or HIV-1 
subtype-specifi c.  

3.3      Is HIV-1 Becoming Increasingly “Resistant” to Host 
Immunity as the Epidemic Progresses? 

 As described in previous sections, many—though not all—immune escape muta-
tions selected in the previous host will revert to consensus upon transmission to a 
host lacking the restricting HLA allele. As such, the persistence of certain escape 
mutations following transmission has led to concerns that these could gradually 
spread throughout the population (Fig.  25.4 ) [ 32 ,  105 ,  233 – 237 ]. Analogous to the 
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negative impact of transmitted drug resistance mutations on treatment effi cacy 
[ 238 ], acquisition of “escape mutant” HIV-1 by persons expressing the relevant 
HLA could undermine the ability of their CTL to control infection. As such, the 
spread of HIV-1 strains harboring escape mutations throughout the population could 
gradually undermine host antiviral immune potential, and potentially diminish the 
protective effects of certain HLA alleles as the epidemic progresses [ 31 ,  32 ,  106 ]. 
Indeed, the S173A compensatory mutation has been shown to stabilize the B*27- 
associated R264K mutation in p24 Gag  upon transmission [ 106 ,  107 ] and the S165N 
compensatory mutation has been shown to stabilize B*57-associated mutations 
within the p24 Gag  KF11 epitope [ 98 ], supporting this concern. That certain (though 
not all) escape mutations are capable of spreading in HIV-1-infected populations 
has also been demonstrated via mathematical modeling [ 104 ].  

a

b

  Fig. 25.4    The persistence of HIV-1 immune escape mutations upon transmission could lead 
to their gradual spread in the population over time. In this simplifi ed diagram of HIV-1 trans-
mission, viruses harboring the consensus amino acid at a particular codon are colored  yellow , 
whereas  other colors  denote viruses harboring various HLA-associated escape mutations.  Arrows  
depict HIV-1 transmission from host to host, and the subsequent selection and/or reversion of 
escape mutations within these hosts.  Panel A : In this scenario, HIV-1 escape mutations selected in 
previous host(s) revert consistently upon transmission. When sampled at a given point in time, sites 
of viral escape would exhibit diversity at the population level (as the relevant polymorphism would 
be present in some hosts but not others); however, the population consensus sequence would 
remain stable (unchanged) over time.  Panel B : In this scenario, an HIV-1 escape mutation stably 
persists upon transmission to hosts lacking the relevant HLA allele. Such mutations could gradu-
ally spread throughout the population, causing the subtype consensus to shift over time. For more 
detail, see Sect.  3.3        
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 The extent to which HLA-associated polymorphisms are spreading in HIV-1- 
infected populations remains incompletely known, in part due to the scarcity of 
historic data. Nevertheless, it has been suggested that CTL epitopes in European 
HIV-1 sequences are being “lost” through mutational escape from HLA-B mediated 
selective pressures [ 235 ]; similarly, higher viral polymorphism frequencies have 
been reported in modern compared to historic HIV-1 subtype B and F sequences in 
South America [ 236 ]. The high frequency of the B*51-associated HIV-1 Reverse 
Transcriptase (RT) I135X mutation in Japan, a population where B*51 prevalence 
approaches 20 %, is also suggestive of escape mutation accumulation [ 32 ] (though 
the possibility that the Japanese epidemic was founded by an HIV-1 sequence con-
taining RT-I135X cannot be ruled out). A recent comparative study of historic 
(1979–1989) versus modern (2000+) HIV-1 subtype B cohorts in North America 
revealed modest, though statistically signifi cant increases in the average background 
frequencies of HLA-associated polymorphisms, notably in Gag, over the study 
period which paralleled an approximate twofold increase in HIV-1 diversity during 
this time [ 146 ]. Although the extent of polymorphism spread appears relatively 
modest for the North American HIV-1 epidemic, corresponding rates of immune- 
driven polymorphism spread in regions with high HIV-1 prevalence, older epidem-
ics, differential transmission dynamics and/or where host HLA diversity is relatively 
limited may be higher, and thus possess more immediate implications for host 
immunity in these populations. 

 The accumulation of CTL escape mutations in circulating HIV-1 sequences is 
paralleled by a similar phenomenon driven by humoral immunity. Two recent stud-
ies evaluating antibody neutralization resistance of historic versus modern HIV-1 
envelope sequences suggest that HIV-1 is drifting towards a more neutralization- 
resistant phenotype over time [ 239 ,  240 ]. Furthermore, contemporary sera exhibited 
lower heterologous neutralizing activity than historic sera, consistent with a gradual 
undermining of humoral immunity as HIV-1 becomes increasingly neutralization 
resistant [ 240 ]. Taken together, evidence suggests that HIV-1 is becoming—albeit 
gradually—more “pre-adapted” to host immunity as escape mutations spread in 
circulation. Further studies are therefore warranted to explore the extent of HIV-1 
adaptation to cellular and humoral immune pressures in different host populations 
as their respective epidemics increase in age and diversity, and the potential implica-
tions of this adaptation for natural and vaccine-induced immunity over time.  

3.4     Implications of Immune Escape for Antiretroviral Therapy 

 Immune-driven HIV-1 polymorphisms can also infl uence HIV-1 susceptibility to 
antiretroviral drugs [ 241 ,  242 ]. Bevirimat, an HIV-1 p24 Gag  (capsid) maturation 
inhibitor whose development was halted in 2010 following poor effi cacy in indi-
viduals harboring common Gag polymorphisms, provides an example. Bevirimat 
prevents capsid formation by inhibiting cleavage at the CA/SP1 site in Gag [ 243 ], 
but its activity is reduced in HIV-1 harboring naturally occurring substitutions 
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within the QVT motif of SP1 (Gag codons 369–371) and/or Gag substitutions 
V362I, S373P, and I376V [ 243 – 246 ]. Perhaps unsurprisingly, these “naturally 
occurring” substitutions are largely HLA-driven. Gag V362I, conferring high-level 
bevirimat resistance [ 245 ], and S373P, potentially associated with low-level resis-
tance [ 244 ,  245 ] are selected by HLA-B*35 [ 126 ], whereas a variety of HLA alleles 
including C*03 select polymorphisms within the QVT motif [ 126 ]. Indeed, up to 
50 % of subtype B sequences (and >90 % in other subtypes) harbor polymorphisms 
within the QVT motif [ 247 ], underscoring the relevance of immune-driven poly-
morphisms to drug development. 

 By defi nition, licensed antiretrovirals will have demonstrated potent activity 
against a range of HIV strains, so any impact of immune-driven polymorphisms on 
their activities will be subtler (or the relevant polymorphisms more rare) than the 
above example. Nevertheless, such effects have been documented for Non- 
Nucleoside Reverse Transcriptase Inhibitors (NNRTIs). The fi rst evidence arose via 
primary HIV-1 drug resistance surveys that identifi ed a minority of HIV-1 RT 
sequences exhibiting intermediate-level reduced in vitro susceptibility to NNRTIs 
in the absence of major resistance mutations [ 248 ,  249 ]. These observations were 
not explained by shared viral ancestry, but rather by the presence of polymorphisms 
at sites not previously associated with resistance [ 249 ]. In particular, I135T/V/L and 
L283I in RT, present alone or in combination, conferred up to threefold reduced 
in vitro susceptibility to NNRTIs [ 250 ]. Notably, these polymorphisms are immune- 
driven: those at RT codon 135 are selected by a variety of HLA alleles including 
B*51 [ 32 ,  126 ,  149 ,  242 ] and B*52 [ 86 ,  149 ], whereas 283L is selected by B*15 
[ 126 ]. Polymorphisms at RT codon 138 (E138G/A/K), selected by B*18 [ 86 ,  241 ] 
and B*46 [ 86 ], may also mediate up to sevenfold decreased susceptibility to the 
second-generation NNRTI inhibitor rilpivirine [ 241 ]. Naturally occurring polymor-
phisms modulating in vitro NNRTI susceptibility have also been identifi ed in non- 
subtype B contexts [ 251 ]. 

 Other immune-driven polymorphisms do not directly infl uence drug susceptibil-
ity, but rather facilitate the selection of major resistance mutations in vivo. The pres-
ence of I135T has been associated with the subsequent selection of the K103N 
resistance mutation during NNRTI therapy [ 252 ,  253 ], possibly because it enhances 
stability of the mutant enzyme active site [ 252 ]. Furthermore, in vitro passage of 
HIV-1 containing the I135V/T/R polymorphisms in the presence of NNRTI led to 
the selection of E138K, which together with I135V/T/R conferred signifi cantly 
reduced in vitro susceptibility to both fi rst and second-generation NNRTIs [ 242 ]. 
Similarly, the A*11-associated V106I polymorphism [ 86 ] confers signifi cant 
in vitro resistance to some NNRTIs when present in combination with natural poly-
morphism V179D [ 254 ]. 

 Despite the observations described above, it is important to note that no studies 
have conclusively demonstrated that specifi c HLA alleles (and/or the presence of 
specifi c immune-driven viral polymorphisms) enhance risk of treatment failure 
[ 253 ,  255 ], an observation attributable in part to the widespread use of HIV-1 drug 
resistance testing to guide treatment choices [ 256 ,  257 ]. Such risks nevertheless 
remain a concern, and argue for enhanced collaboration across the fi elds of viral 
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immune adaptation and drug resistance. A comprehensive understanding of 
 HLA- associated polymorphisms across HIV-1 subtypes and host populations could 
facilitate the identifi cation of immune escape mutations capable of modulating the 
effi cacy of current and future antiretroviral agents.  

3.5     Escape from Vaccine-Induced Antiviral Immunity 

 Our discussion of mutational HIV-1 escape has thus far focused on natural immune 
responses. However, vaccine-induced immune responses could also exert suffi cient 
pressures to drive viral evolution [ 258 – 260 ]. Analysis of “breakthrough” HIV-1 
sequences infecting participants of recent vaccine trials supports this idea. A recog-
nized challenge in designing vaccines against genetically heterogeneous pathogens 
such as HIV-1 is the possibility that vaccine-induced immunity may protect against 
infection by strains most similar to the vaccine immunogen(s), but not against 
genetically divergent strains. That vaccine-induced immunity could induce a partial 
barrier through which antigenically divergent HIV-1 strains could penetrate has 
been termed the “acquisition sieve effect” [ 261 – 263 ]. A related—yet mechanisti-
cally distinct—possibility is that vaccine-induced immunity would fail to block 
HIV-1 infection regardless of strain, but would instead drive the outgrowth of escape 
variants at rates exceeding those observed in natural infection [ 259 ,  262 ], a phe-
nomenon termed “postinfection sieve effect.” The latter is particularly relevant to 
vaccines designed to stimulate cellular responses, as these are unlikely to block 
HIV-1 transmission. Vaccine sieve effects can be identifi ed by retrospectively com-
paring the HIV-1 sequences of vaccine vs. placebo trial participants who subse-
quently became infected, to determine differences between them (e.g., in terms of 
specifi c HIV-1 polymorphisms and/or differences in their average genetic distance 
from the vaccine strain) [ 261 – 263 ]. Notably, acquisition and post-infection sieve 
effects are diffi cult to distinguish from one another, as both may occur before HIV-1 
RNA can be reliably detected in the bloodstream [ 37 ], and/or may manifest 
 themselves via the presence of identical immune-associated polymorphisms. 

 HIV-1 vaccine sieve effects were fi rst suggested by the presence of atypical V3 
amino acid motifs in HIV-1 Env sequences from individuals vaccinated with recom-
binant HIV-1 MN  gp120 [ 258 ]. Recent comparisons of founder HIV-1 strains from 
vaccine and placebo recipients of the RV144 “Thai” vaccine trial [ 60 ] identifi ed 
differential amino acid frequencies at Env V2 codons 169 and 181 between the two 
groups [ 260 ], suggesting that the vaccine preferentially blocked viruses harboring 
specifi c substitutions at these positions [ 260 ], possibly via vaccine-induced 
V2-specifi c antibodies possessing antibody-dependent cellular cytotoxicity activity 
[ 264 ]. Rapid selection of CTL escape mutations by vaccine-induced cellular immune 
responses may also have occurred in the failed STEP vaccine trial [ 61 ,  265 ]. Inferred 
T-cell epitope sequences within Gag/Pol/Nef (the regions contained within the vac-
cine) from infected vaccine recipients exhibited greater genetic distances to the 
immunogen sequence compared to those of infected placebo  recipients, presumably 
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as a result of extensive and rapid immune escape [ 259 ]. The lack of such differences 
for epitopes within other HIV-1 proteins also supported this conclusion [ 259 ]. HIV-1 
sequences from vaccine recipients also exhibited substitutions at Gag codon 84 
more frequently than placebo recipients, identifying this as a putative signature site 
of HIV-1 evolution in response to vaccine-induced CTL responses [ 259 ]. 

 The implications of vaccine-induced immune responses on the transmission, 
selection and evolution of HIV-1 are potentially profound. Rapid vaccine-driven 
immune escape could yield clinical consequences for the infected individual [ 266 ], 
whereas the use of partially effective vaccines capable of blocking infection by 
certain HIV-1 strains raises concerns regarding potential shifts in HIV-1 strain and 
lineage distributions (and their clinical and pathogenic consequences) at the popula-
tion level. The fact that vaccine-induced immune responses (notably CTL) may 
target slightly different epitopes than those generally targeted in natural infection 
[ 267 ] may further complicate this issue and highlights it as an area worthy of future 
investigation.   

4     Concluding Remarks 

 Since its identifi cation as a novel human retrovirus just over 30 years ago [ 268 , 
 269 ], HIV-1 has claimed the lives of an estimated 40 million individuals, with 
approximately 35 million additional persons currently infected [ 7 ]. Although expan-
sion of HIV-1 treatment can help to stem the pandemic’s tide [ 270 – 272 ], HIV-1’s 
substantial capacity for host adaptation and ever-increasing global diversifi cation, 
driven in large part by selection pressures imposed by the host immune response, 
remain major challenges for the design of interventions, notably a vaccine [ 3 ,  4 ]. 
Achieving a deeper understanding of how immune selection pressures drive the 
evolution and diversifi cation of HIV-1 both within and among hosts, and how these 
viral changes in turn affect our immune responses to the virus, will bring us closer 
to our ultimate goal of ending the HIV-1 pandemic.  

   Authors note   Modifi ed versions of this chapter have appeared  in [ 274 ] and [ 275 ].     
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    Chapter 26   
 The Biology of Quiescent CD4 T Cells, 
Their Role in HIV-1 Infection and Cocaine 
Drug Abuse  

             Dhaval     Dixit      and     Dimitrios     N.     Vatakis    

          Core Message   This chapter discusses the biology of quiescent CD4 T cells, their 
resistance or block of HIV infection, and the factors including cocaine drug abuse 
that can alleviate this block. The permissiveness of resting T cells can be impacted 
by a variety of immune and non-immune factors. As resting T cells are the major 
component of the HIV latently infected population, elucidating the mechanisms of 
HIV infection in this cell type will have major implications on HIV treatment.  

1     Quiescent T Cell Biology 

 Human T cells (both CD4 and CD8) are unique as they can remain at a non- dividing, 
low-metabolic state over prolonged periods of time. The majority of T lymphocytes 
circulating in blood are at the G 0  state of the cell cycle, a stage characterized by lack 
of DNA replication and RNA transcription [ 1 – 6 ]. Following exposure to an anti-
genic insult, T cells will be activated and expand rapidly to deal with the potential 
invader [ 1 ]. Even under these conditions, only a small subset of these resting T cells 
will respond to antigen and expand. Following clearance of infection, the majority 
of the expanded T cells will undergo apoptosis, with a small fraction of them trans-
forming into memory cells. The latter allows for more effective and rapid responses, 
should the same antigen insult present itself. Interestingly, even memory T cells can 
survive for very long periods (months to years) of time under a non-dividing state. 
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 Previously, T cell quiescence was considered a default state to which T cells will 
return in the absence of any stimulation. However, T cell quiescence is an actively 
maintained state, tightly regulated by a series of transcription factors [ 3 ,  5 – 13 ]. 
During quiescence, T cells maintain very low metabolic rates, minimal levels of 
RNA transcription—mostly limited to basic housekeeping genes—, small cell size, 
and very long periods of survival [ 5 ,  6 ]. This state is benefi cial, as quiescence pre-
vents cellular damage from metabolism [ 14 ] and most importantly prevents unregu-
lated expansion of T cells that could lead to the development of lymphomas or cause 
major immunopathologies due to tissue damage [ 5 ,  6 ]. In this section, we review the 
transcription factors (summarized in Table  26.1 ) identifi ed to date in establishing 
and maintaining this quiescent state.

1.1       Krupple-Like Factors 

 Krupple-Like factors (KLFs) and more specifi cally lung Kruppel-Like factor 
(LKLF) have been shown to regulate and maintain quiescence [ 7 ,  8 ,  11 ]. Early stud-
ies showed that LKLF was expressed on both mature CD4 and CD8 T cells, only to 
be downregulated following activation [ 7 ]. Through the development of chimeric 
murine models, where lymphocytes were derived from LKLF −/−  embryonic stem 
cell lines, it was shown that T cell numbers were signifi cantly decreased (approxi-
mately a 90 % reduction), with minimal CD4 and CD8 T cells [ 7 ]. Moreover, the 
loss of LKLF led to spontaneous T cell activation and apoptosis mediated by 

   Table 26.1       The transcription factors involved in maintaining T cell quiescence   

 Quiescence factors  Function 

 Lung krupple like factor 
( LKLF ) and krupple like 
factor 4 ( KLF4 ) 

 • LKLF expression downregulated in activated CD4 and CD8 T 
cells [ 7 ] 

 • Targets and decreases c-myc levels [ 8 ] 
 • Targets important genes involved in cell cycle, cytoskeleton 

rearrangement, signaling, and cell metabolism [ 11 ] 
 • Deregulation of proliferation [ 15 ] 

 Forkhead box class P1 
( FoxP1 ) 

 • FoxP1 defi ciency in murine thymocytes leads to increased 
spontaneous activation, higher IL2 production, proliferation 
and death after CD4 and CD8 stimulation [ 17 ] 

 • Effect might stem from FoxP1 targeting IL-7Rα 
 Forkhead box class O 
( FoxO ) 1,3,4 

 • Target D-type cyclins at transcriptional level [ 22 ] 
 • During FoxO induced quiescence, p130 levels are increased 

and its phosphorylation is associated with quiescent cell 
specifi c forms [ 21 ] 

 Transducer of ERBB2, 1 
( Tob ) 

 • High mRNA levels in unstimulated CD4 T cells, then 
downregulated following T cell activation [ 3 ] 

 • Blocked expression of effector cytokines at halt T cells at 
G1 → S transition point through downregulation of cyclin 
proteins [ 3 ] 
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Fas-FasL [ 7 ]. When the protein—KLKF—was overexpressed in Jurkat T cells, a 
transformed T cell line, the results supported the above observations [ 8 ]. The loss of 
proliferation mediated by LKLF was not due to a specifi c cell cycle stage block but 
rather a generalized decreased rate in cell division [ 8 ]. Finally, the authors demon-
strated that LKLF targeted and decreased the levels of c-myc [ 8 ], thus providing a 
mechanism for the role of LKLF in T cell quiescence. A more comprehensive study 
focusing on the LKLF-regulated gene expression revealed that in addition to c-myc 
there were additional targets [ 11 ]. These targeted genes were largely involved in cell 
cycle, cytoskeleton rearrangement, signaling, and cell metabolism. More specifi -
cally, through upregulation of LKLF in Jurkat T cells, it was shown that CDw52, 
CXCR3, EDG-1, EMP3, lymphotoxin β, and paxillin genes were upregulated while 
APG-1, PTPLA, TSHR genes were downregulated [ 11 ]. 

 In addition to LKLF, recent studies have shown that KLF4 is a negative regulator 
of CD8 T cell and B cell proliferation [ 12 ,  15 ]. The protein is regulated by ELF-4 
[ 15 ]; knockdown of ELF-4 caused downregulation of KLF4 leading to deregulated 
proliferation, both homeostatic and antigen-induced, as well as increased spontane-
ous activation of CD8 T cells [ 15 ]. No studies on the role of the protein in CD4 T 
cells have been done yet.  

1.2     FOX Proteins 

 Forkhead Box (FOX) proteins are a diverse family of transcription factors impli-
cated in major cellular functions. FoxP1 may be involved in T cell quiescence [ 16 , 
 17 ]. FoxP1 defi ciency in murine thymocytes leads to increased spontaneous activa-
tion, higher IL-2 production, proliferation, and cell death after stimulation in both 
CD4 and CD8 single positive thymocytes [ 16 ]. The observed phenotype was 
acquired when thymocytes transitioned from double positive to single positive. This 
could be explained by the fact that FoxP1 seems to target the expression of IL-7Rα 
that is highly expressed in the single positive thymocyte populations. Subsequent 
studies showed that knockdown of FoxP1 led to increased levels of IL-7Rα, which 
resulted in increased responses of mature CD8 T cells to IL-7 in the absence of TcR 
stimulation [ 17 ]. Thus, these studies suggest that FoxP1 is essential for T cell 
homeostasis and actively regulate T cell quiescence. 

 In addition to FoxP1, forkhead Box class O (FOXO) factors have been shown to 
play a role in T cell quiescence, especially FOXO1, 3, and 4 [ 18 ,  19 ]. T cells 
 activation by cytokines such as IL-2 leads to their inactivation and cell growth [ 10 , 
 19 – 24 ]. These factors seem to mediate their effects by targeting D-type cyclins at 
the transcriptional level, a phenotype that can be reversed upon ectopic expression 
of cyclin D1 [ 22 ]. Moreover, during FOXO-induced quiescence, the levels of p130 
are increased and its phosphorylation state is associated with quiescent cell specifi c 
forms [ 21 ]. Finally, FOXO3a has also been shown to provide protection to quiescent 
T cells against reactive oxygen species, thus preventing apoptosis [ 14 ].  
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1.3     Tob 

 Finally, Tob, another nuclear protein, has been recently shown to be involved in 
 cellular quiescence. It belongs to a family of antiproliferative proteins known as 
APRO. These proteins, including Tob, are expressed in a wide array of different cells 
and regulate cell proliferation, development as well as immunity [ 13 ,  25 ]. Tob was 
identifi ed as an antiproliferative factor following its overexpression in NIH3T3 fi bro-
blasts [ 26 ]. The interaction of the protein with p185erbB2 resulted in inhibition of its 
antiproliferative effect [ 26 ]. Later studies showed that the protein was overexpressed 
in anergic CD4 T cells [ 3 ]. A closer examination showed that the levels of Tob mRNA 
were high in unstimulated CD4 T cells only to be downregulated following T cell 
activation [ 3 ]. Tob mRNA was found to be expressed in the spleen, bone marrow, 
thymus, and blood with the latter showing the highest levels. This is expected, as the 
majority of circulating T cells in the blood are at a resting state. In addition to blocking 
T cell proliferation, it was shown that Tob blocked the expression of effector cytokines 
such has IL-2, IFN-γ, IL-4, and IL-10 at the transcriptional level. T cell proliferation 
was halted at the G1 → S transition point through downregulation of cell cycle promot-
ing protein cyclin A, cyclin E, and Cdk2 and upregulation of the p27 kip1  protein [ 3 ]. 

 While the above factors have been identifi ed as key proteins to maintain quies-
cence, they have not been implicated in mediating the block of HIV infection. One 
report tested if LKLF-induced quiescence inhibits HIV infection only to fi nd that it 
had no effect [ 11 ]. In the sections below, we review the studies to date that have 
attempted to elucidate the block, potential factors identifi ed, and means by which 
the block has been alleviated.   

2      HIV Replication in Quiescent CD4 +  T Cells 

 HIV replication is not cell cycle dependent as in other retroviruses that require cells 
to undergo mitosis; yet the virus is known to infect resting cells and establish viral 
latency. However, observations made during the early studies on the virus revealed 
that the activation state of CD4 T cells was crucial in the establishment of a produc-
tive infection [ 27 – 29 ]. This pattern of infection was challenging and encouraged a 
series of studies attempting to further elucidate this phenomenon. 

2.1     Quiescent CD4 T Cells Are Refractory to HIV Infection 

 A series of studies by Zack and colleagues demonstrated that quiescent CD4 T cells 
are resistant to HIV infection. While the virus could enter the cells and effi ciently 
initiate reverse transcription, it failed to complete synthesis of viral cDNA and thus 
to establish a productive infection [ 30 ]. In follow-up experiments [ 31 ], HIV infec-
tion in these cells was further characterized. More specifi cally, they showed that 
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reverse transcription not only failed to complete in quiescent T cells but also was 
quite slower. Moreover, infection was rescued after activation of quiescent T cells 
suggesting that the partial transcripts could serve as a template to restore infection. 
There was, though, one caveat; rescue was not proportional to the initial levels of 
infection suggesting that the partial transcripts were labile. These observations were 
further supported by studies from the Vitteta group [ 32 – 34 ]. Their approach 
involved separating CD25 +  from CD25 −  T cell populations, thus distinguishing the 
activated from the non-activated T cells, respectively, since CD25 is a marker of T 
cell activation. In their studies, they infected the two populations and showed that 
the CD25 +  T cells could be infected by the virus without the need of pre-stimulation. 
Interestingly, when they repeated the experiments with mixed peripheral blood 
mononuclear cells that include activated and resting T cells, dendritic cells, macro-
phages, monocytes, and NK cells, they noticed that the CD25 −  T cells were infected. 
They observed detectable levels of complete reverse transcribed viral cDNA. Based 
on their studies at the time, they concluded that productive infection of the CD25 −  T 
cells was only made possible in the presence of CD25 +  T cells. This would suggest 
that the productively infected CD25 +  T cells would effi ciently transfer virus to their 
negative counterparts and potentially make them more permissive to infection.  

2.2     Quiescent CD4 T Cells Are Productively Infected 
by HIV and Are an Inducible Reservoir 

 While the above groups demonstrated that there is a cell type resistant to HIV infec-
tion, some of their contemporaries suggested otherwise. Studies by Stevenson and 
colleagues showed that resting CD4 T cells can be infected by the virus but the viral 
cDNA fails to integrate until the these cells are activated [ 35 ]. Upon activation, the 
viral cDNA could then be integrated, establishing a productive infection. This sug-
gested that reverse transcription was completed in resting T cells and that the viral 
cDNA was stable. This is in stark contrast to the studies by Zack and colleagues that 
showed reverse transcription did not complete and the viral reverse transcripts are 
very labile. These observations were further supported by Spina and colleagues 
[ 36 ] that demonstrated the presence of completely reverse transcribed viral cDNA 
for up to 10 days in culture but that reverse transcription occurring at a progres-
sively lower rate.  

2.3     HIV Life Cycle Is Impacted at Different Stages 
in Quiescent T Cells Resulting in a Highly 
Ineffi cient Infection 

 Based on the earlier studies it was unclear whether quiescent CD4 T cells were 
refractory to infection. There are several reasons for that. Cell purifi cation technologies 
were quite limited at the time allowing for contaminating populations to skew data. 
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Moreover, real time PCR assays, while useful were not suffi ciently sensitive. More 
importantly, as we outline in Sect.  1.3 , the non-dividing CD4 T cell population is 
quite diverse, comprised of permissive and non-permissive cells, thus leading to 
divergent conclusions. 

 A series of recent studies by others and our group have shed more light on the 
interaction between HIV infection and quiescent CD4 T cells. These studies were 
mostly focused on characterizing the life cycle of HIV in these cells rather than 
examining restriction factors (reviewed in Sect.  1.4 ). These studies took advantage 
of more sensitive real-time and non-quantitative PCR protocols, improved cell- 
sorting technologies, and improved fl ow cytometric assays to assess the purity of 
the populations targeted (summarized in Table  26.2 ).

   Through the use of a linker-mediated PCR assay, the Siliciano group was able to 
characterize the non-integrated reverse transcripts in HIV infected resting CD4 T 
cells [ 37 ]. They found that reverse transcription could be completed in this cell type, 
but with signifi cant delays, 2–3 days later. This delay resulted, as shown by earlier 
studies, into a labile cDNA that had a half-life of approximately one day. Interestingly, 
follow-up studies showed that the viral cDNA made was integration competent 
[ 38 ]. However, the high rate of decay combined with the slower kinetics resulted in 
a block to infection [ 38 ]. 

 The above studies demonstrated that the impact on HIV infection must occur at 
the early stages of infection. They also more closely supported the observations 
made by Zack and colleagues [ 30 ,  31 ]. The O’Doherty group and our group through 
a series of studies further characterized the life cycle of HIV in quiescent CD4 T 
cells and revealed some of the blocks that are taking place. In Swiggard and col-
leagues [ 39 ] it was fi rst shown that in quiescent cells, the levels of reverse transcrip-
tion were signifi cantly decreased. However, any reverse transcripts made were 
stable for approximately 3 days. Moreover, the authors showed that the full-length 
viral cDNA accumulated over time in the infected cells. In a follow-up study [ 40 ], 
they took advantage of a very sensitive nested, Alu-based PCR assay to measure low 
levels of integration [ 41 ]. Through this assay, they showed that the quiescent T cells 
harbored integrated provirus, supporting the earlier studies by the Siliciano group of 
integration competent viral cDNA [ 40 ]. More interestingly, upon activation of these 

   Table 26.2    The identifi ed blocks to HIV-1 infection in quiescent T cells   

 Viral life cycle stage  Quiescent cell impact 

 Entry  Largely unaffected [ 44 ,  48 ] 
 Uncoating  Under investigation 
 Reverse 
transcription 

 Delayed, decreased compared to activated cells, ineffi cient, accumulation 
of labile viral cDNA [ 37 – 40 ,  44 ] 

 Integration  Occurs in quiescent cells, ineffi cient as demonstrated by high levels of 
2-LTR circles, site selection may or may not be similar to activated cells; 
potential impact for latency [ 46 ,  47 ] 

 Viral synthesis 
and release 

 Nuclear retention of viral mRNA resulting in decrease viral release [ 57 ] 
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cells they were able to induce expression [ 40 ]. Thus, quiescent T cells could be 
latently infected and potentially be a reservoir. Yet despite this observation, it was 
clear that quiescent T cells blocked the ability of HIV to effi ciently replicate. Even 
after supplementing with nucleosides, a major building block in DNA synthesis 
limited in quiescent T cells, both the Zack and O’Doherty groups showed that 
despite improvement in the levels of reverse transcription, the defi ciencies still 
 persisted [ 42 ,  43 ]. 

 We examined in detail HIV replication in quiescent T cells as we analyzed all 
stages of viral replication impacted in this cell type [ 44 ]. Following infection of 
CD4 T cells with HIV-1 NL4–3 , we measured the levels of viral entry in both quiescent 
and activated CD4 T cells. The differences between the two groups were not signifi -
cant. Reverse transcription was delayed in quiescent T cells by 18 h. In addition, it 
was decreased by 30-fold compared to the levels seen in activated T cells. Using the 
O’Doherty protocol, we measured viral integration as well. Due to the decreased 
reverse transcription, the levels of viral integration in quiescent cell were lower than 
that of activated ones. However, we saw further delays, as integration took place 
about 36 h later in quiescent cells. Nevertheless, the effi ciency seemed to be similar 
to that of activated cells as the relative levels of integration were comparable. As 
these cells expressed viral cDNA, we assessed if there was any virus expression. 
Multiply spliced tat-rev was detected in quiescent cells but as expected at lower 
levels than that seen in integrated cells. Despite the expression of multiply spliced 
HIV RNA we did not detect any expression of virus from quiescent cells. The sur-
prising observation in our studies was that we could not rescue the observed block 
in quiescent T cells [ 44 ]. More specifi cally, we stimulated quiescent T cell immedi-
ately after infection to see if we can rescue infection. Interestingly, these post- 
stimulated cells displayed similar patterns on infection with that of quiescent T 
cells. Thus, this block to infection was quite effective. Our studies have minor dif-
ferences with that of the O’Doherty group [ 39 ,  40 ], which can be attributed to the 
different protocols of infection [ 45 ]. Nevertheless, both our studies underscore that 
quiescent T cells are quite but not completely resistant to infection. 

 The presence of integrated HIV warranted further investigation into the integra-
tion site selection in these cells. As quiescent T cells are distinct from activated 
ones, there could be some unique patterns that may impact the study of HIV latency 
and the viral reservoir. Two studies demonstrated that HIV was integrated in tran-
scriptionally active sites of quiescent T cells [ 46 ,  47 ]. We showed that there were no 
differences between quiescent and activated T cells. More specifi cally, in both HIV 
was localized in gene dense regions, near CpG islands, and was associated with 
epigenetic patterns that correlate with transcriptional activation rather than repres-
sion [ 46 ]. Brady and colleagues demonstrated that there were modest differences 
between the two cell types as HIV in activated T cells integrated in gene dense 
regions and histone methylation patterns linked to transcriptionally active genes 
[ 47 ]. In addition to site selection, we looked at the state of the viral LTR through 
sequences analysis of 2-LTR circles and proviral DNA [ 46 ]. We noticed that in 
quiescent T cells there was a higher frequency of LTR mutants in both proviral and 
2-LTR DNA. The mutations were not specifi c but rather a collection of additions to 
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LTR junctions of 2-LTR circles and large deletions ranging from 10 to 200 base 
pairs on either LTR end. Thus, integration effi ciency is not as high as we initially 
thought due to these major defects. Moreover, the integrants found in quiescent T 
cells may be defective due to LTR attrition. While our LTR sequence survey was not 
quantitative, this would suggest that a signifi cant fraction of quiescent T cells har-
boring provirus might not be capable of producing HIV upon stimulation. 

 Thus, despite differences among groups, it is well established that quiescent T 
cells, in light of some signifi cant defects, can be latently infected by HIV. In the 
following section, we explore the potential restriction factors that have been sug-
gested to cause these defects as well as means to render quiescent T cell more per-
missive to infection.   

3      Maintenance of Restriction and Overcoming It 

3.1     Restriction Factors 

 The majority of studies on HIV infection of quiescent T cells was focused on char-
acterizing the changes in the viral life cycle. As this is a very unique phenomenon, 
identifi cation of factors responsible for this block can have major implications for 
the development of new anti-HIV therapies. Initially it was believed that the block 
was due to limited raw materials needed by the virus to replicate, such as nucleo-
tides. However, pretreatment of quiescent T cells with nucleosides failed to rescue 
infection [ 42 ,  43 ]. Thus, the focus has been shifted to the identifi cation of factors 
(summarized in Table  26.3 ) the presence of which or lack thereof is responsible for 
the block.

   Early events in the viral life cycle including entry, uncoating and reverse 
 transcription are prime targets for the block. Studies have shown that HIV can effi -
ciently enter quiescent CD4 T cells and it is not seen as a potential block [ 44 ,  48 ]. 
One study examined the effi ciency at which HIV uncoats in quiescent T cells. Based 
on their fi ndings, uncoating was impaired and was attributed to a yet to be identifi ed 

   Table 26.3    A summary of HIV-1 restriction factors identifi ed in quiescent T cells   

 Restriction Factors  Function 

 Sterile alpha motif (SAM) domain and HD 
domain-containing protein 1 ( SAMHD1 ) 

 Regulates pool of available nucleosides through 
degradation, thus restricting RT in quiescent T 
cells [ 54 ,  55 ] 

 c-Jun N-terminal kinase ( JNK ) and 
peptidyl prolyl-isomerase enzyme ( Pin1 ) 

 Lack of protein in quiescent T cells could impact 
integration step in viral life cycle [ 56 ] 

 Polypyrimidine tract-binding protein ( PTB )  Low expression. Needed for cytoplasmic transport 
of viral mRNA from nucleus [ 57 ] 

 Copper metabolism domain containing 
1 ( Murr1 ) 

 Highly expressed. blocks Nf-κB activity [ 58 ] 
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protein factor [ 49 ]. In terms of reverse transcription, the Sterile Alpha Motif (SAM) 
domain and HD domain-containing protein 1 (SAMHD1) [ 50 – 53 ] has been recently 
implicated as a potential restriction factor in quiescent T cells [ 54 ,  55 ]. The protein 
regulates the pools of available nucleotides through their degradation, thus restrict-
ing reverse transcription in quiescent T cells where the pools are already limited. 

 While the effi ciency of integration in quiescent T cells was shown to be largely 
unaffected, a recent study suggested that the lack of c-Jun N-terminal kinase (JNK) 
in quiescent T cells could impact this step in the viral life cycle. The protein phos-
phorylates viral integrase, which in turn interacts with the peptidyl prolyl-isomerase 
enzyme Pin1, causing a conformational change in integrase increasing the stability 
of the viral accessory protein and promoting effi cient integration [ 56 ]. 

 Viral gene expression s limited in quiescent T cells. Studies have indicated that 
resting T cells do not express high levels of polypyrimidine tract-binding protein 
(PTB) [ 57 ], which limits cytoplasmic transport of viral mRNA from the nucleus 
thus restricting expression of viral protein. Moreover, Murr1, a protein that blocks 
NFκB activity is highly expressed in resting CD4 T cells [ 58 ], which in turn can 
result in lower levels of virus expression. 

 Despite the plethora of restriction factors identifi ed, not one in particular has 
been sequestered as the main restriction factor responsible for the block in quiescent 
T cells. These studies along with the work outlined in Sect.  1.2  point to the conclu-
sion that HIV restriction in quiescent cells is more systemic, rather than limited to 
one particular aspect of the viral life cycle.  

3.2     Alleviating Restriction 

 Early work by Korin and colleagues demonstrated that T cells need not be fully 
activated to be susceptible to infection. In her studies, she demonstrated that the 
non-dividing T cell population is quite diverse distinguished by the levels of cellular 
transcription. Using an elegant fl ow cytometry based assay, she was able to distin-
guish the resting T cells into two populations: (1) the G 0/1a  that was deemed as the 
truly quiescent T cells and (2) the G 1b  that were resting CD4 T cells expressing high 
levels of RNA. The truly quiescent T cells are the subset that is resistant to infection, 
whereas the cells in G 1b  are permissive. Based on this premise, we explored HIV 
permissiveness in differentially stimulated T cells [ 59 ]. More specifi cally, we stimu-
lated using anti-CD3/anti-CD28 quiescent T cells for 1 or 2 days and then infected 
with HIV. One-day stimulation drove a subset of cells into the G 1b  phase and it was 
suffi cient to alleviate the observed block in quiescent cells. These studies were in 
agreement with earlier work that demonstrated that both the intensity and the dura-
tion of T cell stimulation could have a major impact on the establishment of a pro-
ductive infection [ 60 ]. In addition to TCR crosslinking, increased permissiveness to 
infection can be achieved by exposure to cytokines. Through the exposure of resting 
cells to IL-2, IL-4, IL-7, or IL-15 and to some degree IL-6, resting T cells were 
transduced at a high rate with HIV based vectors as well as effi ciently infected with 
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replication competent virus [ 61 ]. In addition to cytokines, engagement of toll- like 
receptors (TLR) as well as chemokine receptors can have a similar potentiating 
effect to infection. Studies have shown that engagement of resting T cells to TLR2 
can lead to increased productive infection [ 62 ]. Moreover, crosslinking CCR7 to its 
ligands CCL19 and CCL21 leads to increased permissiveness to infection as well as 
establishment of latency [ 63 ,  64 ]. To further expand the list of ligands that can alle-
viate the block seen in quiescent T cells, the crosslinking of ICAM-3 can lead to 
increased infection [ 65 ,  66 ]. As this is a surface molecule involved in T cell adhe-
sion, it also underscores the importance of cell-cell contact in productive transmis-
sion of HIV to resting cells. One study demonstrated infection of resting T cells in 
tonsillar tissues suggesting that in cell packed tissues such as lymphoid quiescent 
T cell restriction can be alleviated [ 67 ]. In all these studies, non-dividing CD4 T 
cells were permissive to infection.  

3.3     Cocaine Exposure, Quiescent T Cells, and HIV Infection 

 Since the beginning of the AIDS epidemic, the use of illicit drugs has been widely 
examined in its role of human immunodefi ciency virus (HIV) pathobiology. Not 
only are drug users at an increased risk of viral transmission by needle sharing or 
unsafe sexual practices, but also these drugs modulate immune function. One such 
drug, cocaine, has been shown to disturb normal immune functions by modulating 
distribution and effector functions of lymphocytes, neutrophils, NK cells, and helper 
T cells [ 68 ]. In addition, through the use of humanized mice, cocaine treated ani-
mals displayed higher levels of viral RNA levels and greater CD4 loss after infec-
tion with HIV [ 69 ]. Therefore, epidemiological and in vivo studies suggest cocaine 
use can infl uence HIV disease progression and further understanding of the stimu-
lant’s effect on immunopathology of virus is necessary. 

 One of our interests was to examine if cocaine falls under the category of non- 
immune factors that may minimally activate quiescent T cells to make them permis-
sive to infection. There is a precedent for such effect; norepinephrine has been 
shown to enhance HIV replication [ 70 ]. In our studies, we treated quiescent T cells 
with 10 −8  M cocaine for three days prior to infection [ 71 ]. Interestingly, a 3-day 
cocaine treatment led to increasing levels of cells present in the G1b stage of cell 
cycle, a stage when resting cells are permissive to infection. A more intriguing 
observation was that cocaine treatment did not impact classical T cell activation 
marker expression such as CD25, CD38, CD69, or HLA-DR. Together, these results 
suggested that cocaine may increase susceptibility of quiescent T cells to HIV 
infection through subtle changes of its quiescent state. Following infection, cocaine- 
treated cells harbored increased levels of full-length viral cDNA, accelerated 
 kinetics of reverse transcription, tenfold higher levels of integrated DNA and higher 
viral production when compared with untreated quiescent T cells [ 71 ]. These data 
suggest that cocaine treatment circumvents the early block in effi cient viral RT 
seen in quiescent cells and makes them permissive to infection. As cocaine is a 
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neurotropic factor, it was of interest to determine how this effect was mediated. 
Microarray data on quiescent cells revealed that the σ1 receptor (σ1R) and the dopa-
mine 4 receptor (D4R) were expressed in these cells. Several studies have shown 
the σ1R as an integral signaling molecule in cocaine’s potentiating effect on HIV 
infection. Using fl ow cytometry, we confi rmed that both these receptors are 
expressed on quiescent T cells [ 71 ]. Through the use of agonists and antagonists for 
both receptors, we determined that the cocaine mediates its effects through both of 
these receptors with the D4R having a more pronounced effect [ 71 ]. We are cur-
rently carrying out studies to assess the mechanisms of this phenotype. Thus, our 
studies demonstrate that infection of resting cells can be impacted by other non-
immune related factors that ultimately can have a major effect on the viral reservoir 
warranting a thorough investigation.   

4      Conclusions 

 The relationship of quiescent T cell and HIV has been a much-debated area of HIV 
research. While signifi cant progress has been made, there are still unanswered ques-
tions. It is clear that the major block to infection occurs very early, immediately 
following viral entry at the initiation of reverse transcription. While limited 
resources, such as restriction factors, can result in decreased levels of reverse tran-
scription, downstream events prior to integration or even at integration play a major 
role. Therefore, further studies are needed to understand the block in quiescent T 
cells. To this date, it is unclear how the mechanisms of resistance in quiescent cells 
can translate into future therapies. Nevertheless, these studies will provide an 
improved understanding of the interactions between HIV and its various target cells 
that will ultimately lead to more effective interventions.     
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    Chapter 27   
 Role of Macrophages 
in the Immunopathogenesis of HIV-1 Infection 

             Jacqueline     K.     Flynn     and     Paul     R.     Gorry    

          Core Message   Macrophages play a key role in the immunopathogenesis of HIV-1 
infection. Expression of CD4 and both CCR5 and CXCR4 on their cellular surface 
renders them prime targets for HIV-1. They have a long-life span and reside in 
several tissues within the body, including immune privileged sites. Their ability to 
recruit immune cells to the site of infection, phagocytose infected cells and actively 
disseminate HIV-1 to multiple tissues creates complications for eradication of 
HIV-1 by both the immune system and current antiretroviral therapies.  

1     Introduction 

 This chapter focuses on the role macrophages in HIV-1 disease progression. It 
examines their role in infection and dissemination of HIV-1, and characterizes mac-
rophage involvement in acute HIV-1 infection and progression to chronic infection. 
It explores the role of macrophages in activating the immune system and reducing 
viral burden, but also in attracting cellular targets for HIV-1 and the transmission of 
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HIV-1 between immune cells and distribution to multiple tissue sites. This chapter 
also discusses the effect of antiretroviral therapy on macrophages and the role 
restriction factors play in protecting macrophages from HIV-1 infection.  

2     The Role of Macrophages in the Immune System 

 Macrophages are an integral part of the innate immune system. They are derived 
from the mononuclear phagocytic lineage, and released into circulation as bone-
marrow- derived precursors, monocytes [ 1 ]. After monocytes migrate into the 
tissues through the endothelium of a blood vessel, via a process termed leuko-
cyte extravasation, they differentiate into macrophages or dendritic cells. 
Therefore, monocytes play a key role in replenishing the macrophage population 
[ 1 ,  2 ]. Macrophages are found in most organs in the body and are named based 
on the tissue in which they reside. For example, alveolar macrophages reside in 
the lungs. 

 Macrophages are constantly surveying their environment for signals of tissue 
damage or invading organisms. They have the ability to phagocytose foreign anti-
gens and present them to B and T cells acting as professional antigen presenting 
cells (APC), maintain healthy tissues by removing dead and dying cells, and also 
respond to danger signals detected by their surface receptors [ 1 ] (Fig.  27.1 ). Through 
their antigen presenting ability they can trigger antibody responses by presenting 
pathogen-derived peptides to CD4 +  T cells through the MHC class II pathway [ 1 ], 
and also activate CD8 +  T cells through the cross-presentation of phagocytosed 
extracellular antigens through MHC class I [ 3 ]. Thus, macrophages play an impor-
tant role in both the innate and adaptive immune responses.  

 As well as the expression of a wide variety of receptors for phagocytosis on their 
cellular surface, macrophages also express the HIV-1 receptors CD4, CCR5 and 
CXCR4, making them a prime target for HIV-1 infection [ 2 ,  4 ]. The surface enve-
lope glycoprotein of the HIV-1 particle, gp120, interacts with cellular CD4 and a 
co-receptor, CXCR4 or CCR5, to infect cells [reviewed in [ 5 ,  6 ]]. HIV-1 primarily 
infects CD4 +  T cells due to their high expression of CD4 on their cellular surface. 
However, macrophages, which have a comparatively lower expression of CD4 [ 4 ,  7 , 
 8 ], also serve as key targets for HIV-1 [ 2 ,  9 ]. 

 The ability of macrophages to infi ltrate many organs and their dissemination 
over different tissues enhance their contribution to the spread of HIV-1 through the 
body [ 4 ,  10 ,  11 ]. The life span of a macrophage also varies greatly depending on 
their location and immunological roles, with some lasting days to months and others 
years [ 12 ,  13 ]. One consequence of the long life span of macrophages is that they 
can harbor HIV-1 for a long period, contributing to the viral reservoir and posing a 
major obstacle for eradication [ 4 ,  14 ,  15 ].  
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3     Macrophage Classifi cation in HIV-1 Infection 

 Macrophages can be classifi ed into different subsets based on their immune func-
tion. M1 macrophages are known as classically activated macrophages, which 
mediate host defense from viruses, bacteria and protozoa [ 1 ,  14 ]. M1 macrophages 
are commonly associated with the secretion of proinfl ammatory cytokines that 
include interleukin (IL)-1β, IL-12, IL-15, IL-18 and tumor necrosis factor alpha 
(TNF-α) and also reactive oxygen [ 16 ,  17 ]. This response assists in modulating 
endocytic function and elimination of intracellular pathogens. M2 macrophages are 
known as alternatively activated macrophages that have an anti-infl ammatory role 
and can regulate wound healing [ 1 ]. M1 macrophages can be activated by 

  Fig. 27.1    The role of Macrophages in the immune response. Macrophages play an important role 
in both the innate and adaptive immune response. They can respond to danger signals detected by 
their pathogen recognition receptors, including toll-like receptors 1, 2, and 4 (TLR) [ 1 ]. 
Macrophages can also respond to foreign antigens through phagocytosis of foreign bodies and 
presentation to B and T cells. Macrophages are professional antigen presenting cells with the abil-
ity to present pathogen-derived peptides to both CD4 +  and CD8 +  T cells. Presentation to CD4 +  T 
cells occurs through MHC Class II and activation of CD8 +  T cells through the cross presentation 
of phagocytosed extracellular antigens through MHC Class I [ 3 ]. Macrophages commonly secrete 
cellular mediators, including cytokines and chemokines, often in response to foreign pathogens. 
Cytokines and chemokines are able to activate and attract surrounding cells, respectively. For 
example, secretion of anti-infl ammatory cytokines, such as TGF-β and IL-10, can cause immune 
regulation and suppression, whereas secretion of pro-infl ammatory cytokines, such as IL-12 and 
TNF-α, can promote a Th1 immune response, activation of dendritic cells, and promotion of host 
defense. Macrophages also play a role in tissue repair and phagocytosis of dead and dying cells [ 1 ]       
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interferon- gamma (IFN-γ) and usually by a microbial trigger, such as lipopolysac-
charide (LPS), whereas M2 macrophages are activated by IL-4 and IL-13 [ 17 ,  18 ]. 

 Deactivated macrophages (dM) also have a role in HIV-1 infection [reviewed in 
[ 18 ]]. The deactivated macrophages have strong anti-infl ammatory functions and 
can downregulate MHC Class II on their cellular surface [ 19 ]. This can lead to 
immune suppression through the reduced MHC class II expression but also through 
the increased uptake of apoptotic cells creating an anti-infl ammatory response. 
Deactivation of macrophages usually occurs through IL-10 secretion, but can also 
occur through transforming growth factor beta (TGF-β), macrophage colony- 
stimulating factor (M-CSF) and IFN-α/β secretion [ 18 ,  19 ]. Thus, deactivated mac-
rophages are likely to play a regulatory role in HIV-1 infection. 

 The role of each macrophage subset during HIV-1 infection is not the main focus 
of this chapter. However, we briefl y describe the prevalence of each subset during 
HIV-1 infection. In the acute stages of infection it has been proposed that M1 mac-
rophages are the more dominant macrophages [ 18 ]. At this stage, viral proteins 
expressed early in the viral life cycle are present, particularly Nef, Tat and Vpr, 
which have been suggested to play a role in disease progression and in the formation 
of viral reservoirs in macrophages by activating transcription and interfering with 
apoptosis [ 20 ,  21 ]. High levels of Th1 (IFN-γ, IL-2, IL-12) and proinfl ammatory 
(TNF-α, IL-1β, IL-6) cytokines are present [ 18 ], and additionally chemokines, such 
as macrophage infl ammatory protein (MIP)-1α/β and regulated on activation, nor-
mal T cell expressed and secreted protein (RANTES). These conditions favor the 
formation of viral reservoirs and the activation of M1 macrophages [ 21 ]. During 
acute HIV-1 infection, tissue injury in the lymph nodes and T cell apoptosis is 
common. 

 An increase in tissue injury and the presence of IL-4 and IL-13 cytokines during 
the later stages of HIV-1 infection are likely to contribute to a switch from the clas-
sically activated M1 macrophages to M2 macrophages [ 18 ]. M2 macrophages con-
tribute to tissue repair, MHC Class II antigen presentation and T cell activation. 
During the onset of AIDS, opportunistic infections arise and T cell apoptosis 
increases [ 20 ]. This could result in increased clearance of apoptotic T cells by dM 
[ 22 ] and likely indicates an increase in IL-10 concentration [ 18 ]. A switch in Th1/
Th2 immune responses and cytokine production, combined with an increase in 
IL-10 concentration, is likely to have detrimental affects on immune function and 
the progression to AIDS [ 23 ]. IL-10 in particular can have detrimental effects on 
viral infections, including its ability to suppress cytokine production and prolifera-
tion by CD4 +  and CD8 +  T cells, and alter the function of APC [ 24 – 27 ].  

4     HIV-1 Infection of Macrophages 

 HIV-1 fi rst attaches to macrophages through the interaction of the HIV-1 envelope 
glycoproteins on the viral surface with cellular CD4 on the macrophage (Fig.  27.2 ). 
The viral envelope includes the surface glycoprotein gp120 and the 
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transmembrane glycoprotein gp41. gp120 fi rst binds to cellular CD4 anchoring the 
virus to the target cell surface [ 28 ,  29 ]. This triggers structural changes in gp120 
that expose a binding site for the CCR5 or CXCR4 coreceptor [ 30 ]. gp120 binds to 
the coreceptor resulting in further conformational changes exposing the fusion 
peptide at the N-terminus of gp41 [ 31 ]. The insertion of the fusion peptide into the 
target cell membrane triggers the fusion of the viral and host cell lipid bilayers and 
release of the HIV-1 particle core into the cytoplasm of the target cell [ 29 ,  32 ]. 
Interestingly, macrophages are able to maintain unintergrated viral DNA for weeks 
after infection [ 33 ].  

 The cellular tropism of HIV-1 is infl uenced by CCR5 and CXCR4 coreceptor 
usage, in particular through the interactions of the envelope glycoproteins [ 5 ]. 
Macrophage-tropic viruses primarily use CCR5 [ 34 ,  35 ], whereas T cell-tropic 
viruses primarily use CXCR4 [ 36 ], and dual-tropic viruses use both coreceptors 
[ 37 ,  38 ]. However, the coreceptor specifi city does not always defi ne cellular tropism 

  Fig. 27.2    HIV-1 entry into macrophages. ( a ) As well as expressing several cellular receptors for 
phagocytosis, macrophages express receptors for entry of HIV-1. These include CD4 and a co- 
receptor, such as CCR5 or CXCR4. ( b ) HIV-1 attaches to macrophages through the interaction of 
the HIV-1 envelope glycoprotein with cellular CD4 on the macrophage. HIV-1 gp120 binds to 
cellular CD4 anchoring the virus to the cell surface of the macrophage [ 28 ,  29 ]. ( c ) The binding of 
gp120 to CD4 triggers structural changes in gp120 that expose a binding site for the coreceptor 
[ 30 ]. gp120 binds to the coreceptor triggering conformational changes exposing the fusion peptide 
at the N-terminus of gp41 [ 31 ]. ( d ) The insertion of the fusion peptide into the macrophage mem-
brane triggers the fusion of the viral and macrophage lipid bilayers and releases the HIV-1 particle 
core into the cytoplasm of the macrophage [ 29 ,  32 ]       
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[ 5 ,  39 ]. Non-macrophage-tropic CCR5-using (R5) viruses are able to replicate in 
primary CD4 +  T cells and not in monocyte-derived macrophages (MDM) [ 40 – 43 ], 
and macrophage-tropic viruses can use CXCR4 for entry into MDM [ 40 ,  44 ]. Thus, 
cellular tropism of HIV-1 for macrophages is more complex than the coreceptor 
specifi city of the virus [ 5 ]. Cellular tropism involves interactions between the enve-
lope glycoproteins, gp120, and the N-terminus and extracellular loop 2 (ECL2) 
regions of each coreceptor [ 45 ]. Macrophage-tropic R5 viruses from blood have an 
increased dependence on the CCR5 ECL2 region [ 46 ] and decreased reliance on the 
N-terminus [ 47 ], whereas macrophage-tropic CXCR4-using viruses appear to have 
a increased reliance on the coreceptor N-terminus [ 47 ]. 

 HIV-1 is most commonly transmitted sexually across the mucosal barrier. 
Macrophages, as well as CD4 +  T cells and DCs, are regularly surveying the mucosal 
surface and are likely to be the fi rst immune cells to come into contact with HIV-1 
[ 48 ]. Macrophages are able to phagocytose HIV-1 and to process and present HIV-1 
derived peptides via MHC class II to CD4 +  T cells. Macrophages, similar to DC, 
also have the ability to cross present the virus through MHC class I to CD8 +  T cells 
(commonly termed cytotoxic T lymphocytes, CTL). An effective CTL response can 
have a detrimental effect on HIV-1 replication [ 49 ,  50 ] and disease control in vivo 
[ 51 ]. HIV-1 infected macrophages are also killed by CTL [ 52 ]. However, HIV-1 has 
developed strategies to limit immune detection through downregulating MHC class 
I from the surface of both virally infected CD4 +  T cells and macrophages [ 53 – 56 ]. 

 Additionally, macrophages are able to support the establishment of HIV-1 infec-
tion by recruiting T cells to the site of infection through the secretion of chemokines 
and cytokines and thus enlarging the pool of target cells that HIV-1 can infect [ 57 , 
 58 ] (Fig.  27.3 ). The interaction of HIV-1 surface components, particularly the gp120 
envelope glycoprotein, with macrophages can lead to the production of chemokines 
and cytokines, for example, IFN-β, which can stimulate CC chemokine production 
(CCL2, CCL3 and CCL4) [ 58 ]. These chemokines are chemoattractants for mono-
cytes/macrophages, DC and activated T cells, all of which can be infected by HIV-1 
[ 57 ]. Additionally, macrophages are able to secrete IL-6, TNF-α, IL-1β, and IL-10 
after HIV-1 infection and/or exposure to envelope glycoproteins and other viral pro-
teins, including Nef and Tat [ 57 – 59 ]. These cytokines can also play a role in the 
regulation of CC chemokine expression. However, these soluble mediators have the 
ability to both regulate HIV-1 infection through controlling viral replication, and 
attract potential targets for HIV-1 through their chemoattractive role on immune 
cells [ 57 ]. Thus, the balance of their positive and negative effects on HIV-1 is likely 
to contribute to the pathogenesis of HIV-1 infection.  

Fig. 27.3 (continued) cytokines (IFN-β, TNF-α, IL-1β, IL-10) and chemokines (CCL2, CCL3, 
CCL4), which can act as chemoattractants for T cells, dendritic cells, and macrophages [ 57 – 59 ]. 
( b ) Macrophages can become infected with HIV-1 through the phagocytosis of dying infected 
cells, for example infected CD4 +  T cells. ( c ) Macrophages are able to transmit HIV-1 through 
cell–cell contact. The cellular contact sites, termed virological synapses form between antigen 
presenting cells and T cells [ 32 ]. Macrophages form a virological synapse with T cells and are able 
to transmit virus to the uninfected cell [ 62 ,  63 ]. The T cells can extend a pseudopod/uropod exten-
sion to contact the infected macrophage and aid transmission of the virus [ 62 ,  63 ]       
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  Fig. 27.3    The role of macrophages in the spread of HIV-1. ( a ) Macrophages are able to support 
the establishment of HIV-1 infection through the recruitment of T cells to the infection site. 
Interaction of the envelope glycoprotein gp120 with macrophages can lead to the secretion of
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 Furthermore, macrophage infection through the phagocytosis of dying HIV-1 
infected CD4 +  T cells can also contribute to the spread of HIV-1 [ 60 ] (Fig.  27.3 ). 
It is likely that apoptosis of immune cells, especially during acute HIV-1 infection 
in the mucosal lymphoid tissue, assists in a rapid recruitment of macrophages to 
uptake dying cells. This in turn provides a stable local viral reservoir for HIV-1 
[ 60 ,  61 ]. 

 Macrophages are able to transmit HIV-1 through cell–cell spread of the virus 
[ 62 – 64 ]. The cell contact sites, termed virological synapses (VS), resemble immu-
nological synapses formed between APC and T cells [ 32 ] (Fig.  27.3 ). Imaging 
 studies reveal that infected macrophages can form a VS between macrophages and 
T cells to transfer HIV-1 to the uninfected cell [ 62 ,  63 ]. In infected macrophages, 
viral particles assemble at the VS and in internal compartments that contain the 
tetraspanin markers CD81 and CD82 [ 62 ]. Upon coculture with uninfected T cells 
and formation of VS, the internal viral particles in the infected macrophages moved 
to the VS [ 62 ]. T cells also often extend a pseudopod/uropod-like extension that 
contacts the infected macrophage at the VS [ 62 ,  63 ]. The exact mechanism and the 
required molecular signals for internal viral particle movement and traffi cking to the 
VS remain to be elucidated [ 32 ].  

5     Involvement of Macrophages in Acute HIV-1 Infection 

 The acute stages of HIV-1 infection are often characterized by febrile illness and 
clinical signs associated with dissemination of the virus to the lymphoid tissue, the 
central nervous system (CNS) and other sites [ 65 ]. High titers of the virus in the 
plasma and lymphoid tissue refl ect a high level of viral replication. The appearance 
of HIV-1-specifi c CTL during acute infection coincides with a decrease in the mag-
nitude of HIV-1 replication, and in the absence of antiretroviral therapy (ART) a 
steady-state of HIV-1 replication usually occurs, the duration of which differs 
greatly among people [ 65 – 67 ]. 

 Macrophages play a key role in the spread of HIV-1 to the lymphoid tissue and 
other organs through several mechanisms. Macrophages are likely to be an early 
target for HIV-1 infection through their proximity to the site of infection, com-
monly the mucosal tissue [ 48 ,  68 ]. Viral dynamics have also indicated R5 viruses 
are dominant early in infection and as macrophages express high levels of CCR5 
[ 69 ], they can potentially be targeted early for HIV-1 infection. However, it must be 
noted that not all R5 viruses are macrophage-tropic [ 41 ,  43 ]. Studies on the trans-
mitted/founder R5 viruses of HIV-1 infection found these viruses to be more T cell-
tropic, requiring higher levels of CD4 for infection in in vitro studies [ 70 ,  71 ]. Thus 
it is not clear whether initial macrophage infection occurs directly from HIV-1 
infection or indirectly through another mechanism, such as phagocytosis of infected 
T cells [ 60 ]. 

 Macrophages also play a key role in the spread of HIV-1 through the secretion of 
cytokines and chemokines which assist in the recruitment of uninfected T cells to 
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the site of infection [ 57 ]. This accelerates HIV-1 infection, not only through the 
addition of new immune targets but also through the ability of macrophages to 
become infected indirectly through the phagocytosis of dying infected T cells [ 60 ]. 
Additionally, infected macrophages can spread HIV-1 through cell–cell contact 
with both uninfected macrophages and T cells [ 63 ]. 

 One secondary lymphoid organ in particular in which HIV-1 is disseminated dur-
ing acute infection is the gut-associated lymphoid tissue (GALT). The majority of 
CD4 +  T cells in this tissue are memory CD4 +  T cells and thus possess the coreceptor 
CCR5 [ 72 ]. During HIV-1 disease pathogenesis in the GALT, many CD4 +  T cells 
are depleted by HIV-1 and the integrity of the intestinal barrier is also decreased 
[ 73 ,  74 ]. This results in the translocation of microbial products into the blood 
stream, increasing immune activation and the spread and progression of HIV-1 [ 73 , 
 75 ]. Despite intestinal macrophages being more resistant to HIV-1 infection com-
pared to mucosal macrophages [ 76 ], they are likely to assist in the spread of HIV-1 
through the phagocytosis of dying infected T cells and their role as APCs. At this 
stage of infection, virus is shed into the blood stream indicated by the rise in viral 
load detected in the plasma. Once in the blood stream, HIV-1 is able to infect peri-
vascular macrophages, which migrate to other organs, including the lungs and brain 
[ 77 ]. Additionally, perivascular macrophages can survive up to three months play-
ing an important part in the dissemination of HIV-1. 

 During acute infection, macrophages play a vital role in the induction of both the 
adaptive and humoral immune response, reducing viral burden on immune cells and 
lowering viremia [ 78 ]. However, macrophages also play a role in transmission of 
HIV-1 between immune cells and to multiple sites in the body. As macrophages are 
found in most tissues throughout the body, this creates multiple microenvironments 
in which HIV-1 is able to establish latent infection and form a long-lived viral res-
ervoir [ 79 ]. This also poses a signifi cant problem not only for viral eradication via 
immune cells, but also for effective ART. ART has a varying ability to penetrate 
different tissue microenvironments, causing a range in the antiviral activity and 
effectiveness of therapy against HIV-1 [ 14 ,  80 ].  

6     Involvement of Macrophages in Chronic HIV-1 
Infection and Progression to AIDS 

 During chronic infection, there is a balance between the immune regulation of 
HIV-1 and the impact of HIV-1 on the immune system. It is an environment in 
which CD4 +  T cells die from CTL responses and excessive immune activation, but 
also from HIV-1-induced cytotoxic effects and HIV-1 replication. Antibodies to 
HIV-1 are also fully developed. During chronic infection, CD4 +  T cells are replen-
ished by the immune system and HIV-1 is still active. HIV-1 replicates at low levels, 
or a steady-state, during which most people are able to maintain a healthy CD4 +  T 
cell count (>500 cells/mm 3 ) [ 81 ,  82 ]. The duration of chronic infection varies 
greatly, but can last approximately 8 years, with the rate of disease progression 
relating to plasma HIV-1 RNA levels. 

27 Role of Macrophages in the Immunopathogenesis of HIV-1 Infection



732

 As the number of CD4 +  T cells decreases below 200 cells/mm 3 , chronic infection 
progresses to the advanced stages of disease, commonly termed acquired immuno-
defi ciency syndrome (AIDS). Opportunistic infections are common during AIDS 
due to the poor state of the immune system and life expectancy is decreased. 

 Over the course of HIV-1 infection, the coreceptor usage of the virus can change 
from CCR5 to CXCR4, and does so in approximately 50 % of individuals infected 
with HIV-1 subtype B [ 83 ]. HIV-1 can be divided into four groups (M, N, O and P), 
and subtype B is within group M (termed main or major). HIV-1 subtype B is pre-
dominant in Europe, North and South America, Japan and Australia. A switch in 
coreceptor usage, more commonly seen in HIV-1 subtype B, is also associated with 
worsened disease prognosis. Several hypotheses exist as to why a coreceptor switch 
may occur. These include a transmission mutation hypothesis whereby R5 viruses 
are favored in transmission. However, CXCR4-using viruses with higher fi tness can 
emerge from R5 viruses via intermediate mutants with a lower fi tness [ 83 ,  84 ]. 
Another hypothesis is that environmental conditions of the host change during dis-
ease progression and favor the emergence of CXCR4-using viruses [ 83 ]. These 
changes could include immune pressure or a decrease in available target cells for 
replication. For example, memory T cells express higher levels of CCR5, whereas 
naïve T cells express higher CXCR4 [ 84 ]. 

 How a coreceptor switch affects the infectivity of macrophages remains to be 
elucidated. Macrophages express both CCR5 and CXCR4 on their surface [ 7 ]. 
Thus, although they are predominately infected by R5 viruses, they can also be 
infected by CXCR4-using viruses [ 5 ,  41 ,  47 ]. Some studies have demonstrated that 
during progression to advanced stages of infection, R5 viruses may have an enhance-
ment in macrophage tropism [ 85 ,  86 ]. Due to the location of macrophages residing 
in many tissues in the body, including the brain, and the potential of macrophages 
to become a long-lived HIV-1 reservoir, this could contribute to HIV-1 disease 
progression.  

7     Involvement of Macrophages in HIV-Associated 
Neurological Disorders 

 HIV-1 is able to cross the blood–brain barrier (BBB) and can cause neurological 
degenerative diseases termed HIV Associated Neurological Disorders (HAND). 
These range from a milder disease form which affects up to 50 % of HIV-1-infected 
individuals to more severe forms of neurological disease, including HIV-associated 
dementia (HAD) [ 87 ]. Incidences of HIV-associated dementia have declined with 
the introduction of ART, although it still can affect up to one third of infected adults 
and half of infected children [ 87 ,  88 ]. HAND is associated with mental and physi-
cal impairment, including memory loss, and can lead to seizures, hallucinations, 
and coma. 
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 HAND is associated with a large infi ltration of mononuclear cells into the brain 
parenchyma and the formation of multinucleated giant cells (MGC). The MGC are 
formed by the fusion of HIV-1-uninfected and -infected macrophages and are a 
large virus producer in the brain [ 89 ]. Viral load is not well correlated with disease 
or disease progression; however, the presence of large mononuclear infi ltrates into 
perivascular areas, correlates with HIV-associated dementia [ 90 ]. 

 Monocytes and macrophages have been described as mediating HIV-1 neuroin-
vasion [ 10 ,  91 ]. HIV-1 can enter the CNS early in infection and continues to do so 
throughout all infection stages [ 61 ,  92 ]. Invading monocytes and perivascular mac-
rophages are able to transmit HIV-1 to microglial cells and astrocytes causing 
chronic infl ammation [ 93 ,  94 ]. Infection by HIV-1 in the CNS is likely to alter the 
permeability of the BBB and cause neurotoxicity. The proteins of HIV-1 also have 
neurotoxic activities, which can contribute to disease progression. 

 The trans-activating protein (Tat) of HIV-1 plays a role in the induction of mac-
rophage infi ltration into the brain parenchyma and has strong chemoattractant prop-
erties [ 95 ]. Tat is also able to induce E-selectin, vascular cell adhesion molecule 1 
(VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells, 
which increases the adhesion of monocytes to vessel walls and can induce matrix 
metalloproteinase-g (MMP-g) to facilitate migration through the BBB [ 95 ,  96 ]. 
Other HIV-1 proteins, such as gp120 can induce TNF-α and IL-6 cytokine produc-
tion, which act as neurotoxic cytokines and promote pathogenesis of HIV-1 infec-
tion [ 97 ]. gp41, the envelope transmembrane protein, has also been implicated in 
the progression of HIV-associated dementia through the increase in MMP-2 expres-
sion, which facilitates monocyte migration into the brain [ 98 ]. HIV-1-infected mac-
rophages are also able to increase expression of E-selectin and VCAM-1 adhesion 
molecules and the expression of chemokines, which can assist the migration of 
monocytes across the BBB [ 88 ].  

8     Contribution of Macrophages to the HIV-1 Reservoir 

 Macrophages, as well as latently infected resting CD4 +  T cells, dendritic cells, and 
bone marrow hematopoietic stem cells all contribute to the HIV-1 reservoir [ 99 –
 101 ]. A viral reservoir is a cell or anatomical site where replication-competent 
HIV-1 accumulates and persists stably [ 4 ]. Viral reservoirs can also serve to replen-
ish the population of infected cells. 

 Macrophages contribute to the HIV-1 reservoir pool by secreting pro- 
infl ammatory cytokines and chemokines, which attract T cells, in turn increasing 
the number of infected cells and viral reservoirs for HIV-1. HIV-1 itself can promote 
the formation of viral reservoirs through its proteins Nef, Tat and Vpr, which are 
able to activate the long terminal repeat (LTR) of HIV-1 resulting in sustained viral 
growth and anti-apoptotic pathways favoring both viral persistence and the forma-
tion of viral reservoirs [ 102 ]. HIV-1 proteins can also modulate the TNF receptor 
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signaling pathway, which can assist in the formation of viral reservoirs in 
 macrophages [ 103 ]. 

 The long life span of macrophages and their relative resistance to HIV-1 induced 
apoptosis suggests their potential as an important reservoir for HIV-1 [ 14 ,  61 ,  102 ]. 
Macrophages release high levels of HIV-1 over an extended period, and have been 
characterized as chronically and persistently infected cells [ 104 ,  105 ]. In contrast, T 
cells have a rapid exponential increase in virus replication followed by widespread 
cell death [ 4 ]. Macrophages are also able to avoid some of the cytopathic affects of 
HIV-1 by assembling virions within multivesicular bodies within the cytoplasm 
[ 106 ,  107 ]. This could also assist in evading immune detection due to reduced 
expression of viral proteins on the surface of macrophages. 

 Macrophages have been infected with HIV-1 across multiple tissue sites, includ-
ing the liver, lungs and spleen [ 108 – 110 ]; however, it is not clear whether infection 
of macrophages at these tissue sites persists during combination ART [ 111 ]. Further 
research using techniques that allow for the detection of any infi ltrating T cells by 
quantifying T cell receptor mRNA in sorted cell populations would assist in exam-
ining persistent infection of macrophages during ART [ 112 ,  113 ]. Macrophages 
play a signifi cant role in contributing to the viral reservoir in the presence and 
absence of ART and create a large challenge for the eradication of HIV-1-infected 
macrophages for both the immune system and for current antiretroviral therapies.  

9     Macrophages and Antiretroviral Therapy 

 Antiretroviral therapy uses a combination of at least three drugs to suppress HIV-1 
at various stages in its life cycle. ART is able to suppress viral loads in patient’s 
plasma to below clinically detectable levels [ 114 ]. However, ART does not eradi-
cate HIV-1 and the virus can rapidly rebound if treatment is ceased [ 79 ,  99 ,  100 , 
 114 ]. A rebound in viremia is a consequence of the virus forming latent viral reser-
voirs. Initiation of ART during the fi rst 6 months of infection can reduce the HIV-1 
reservoir size in CD4 +  T cells [ 115 ,  116 ]. This knowledge has signifi cant implica-
tions for HIV-1 disease progression; however, there are current challenges for the 
distribution and penetration of ART. 

 Viral sanctuaries are able to promote the persistence of HIV-1 even during 
ART. Viral sanctuaries are infection sites, which are diffi cult to reach by ART, and 
usually are also immune privileged niches [ 79 ,  117 ]. One of these sites is the CNS, 
in particular the brain. The brain contains macrophages and astrocytes, both of 
which are able to be infected by HIV-1, and thus may contribute to viral persistence 
[ 101 ,  118 ,  119 ]. The brain is one site that causes a major challenge for HIV-1 thera-
pies and for a cure for HIV-1. 

 Macrophages have been described as a cellular target for HIV-1 which are 
involved in HIV-1 rebound after cessation of ART [ 61 ]. Furthermore, macrophages 
are also known to store a large amount of unintegrated viral DNA and thus can 
 contribute to viral rebound [ 120 ]. The ability of ART to target macrophages is not 
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universal, as ART has a range of effectiveness dependent upon the type of tissue and 
cellular microenvironment. Thus, ART may have a low bioactivity, or a range of 
bioactivities, for different macrophages found in different tissues and immune privi-
leged sites [ 14 ,  61 ]. 

 Further confounding the effect of ART on HIV-1-infected macrophages is the 
discovery of virus-containing compartments (VCC) in macrophages, which can 
harbor HIV-1 [ 121 – 123 ]. These intracellular compartments can act as sites of HIV-1 
assembly in which budding, immature, and mature forms of HIV-1 have been found 
[ 121 – 123 ]. During time-course experiments VCC in infected macrophages migrate 
to virological synapses with T cells [ 62 ,  124 ], and HIV-1 has been found at the 
intracellular surface of these synapses [ 62 ]. Thus VCC, as well as potentially acting 
as holding compartments for the virus, can also facilitate HIV-1 infection of neigh-
boring cells. The VCC potentially offers a level of protection from ART to HIV-1 
and also from cellular restriction factors [ 125 ].  

10     Restriction of HIV-1 in Macrophages 

 Human cells contain restriction factors, which are able to suppress various stages of 
the viral life cycle through different mechanisms. Restriction factors affecting the 
life cycle of HIV-1 include the apolipoprotein B messenger RNA (mRNA) editing 
enzyme catalytic polypeptide-like 3 family, more commonly known as APOBEC3. 
The wider researched proteins include APOBEC3G, bone marrow stromal cell anti-
gen 2 (BST2) known as tetherin, and tripartite-motif containing 5α commonly 
abbreviated to TRIM5α [ 126 ]. 

 These three restriction factors are able to inhibit HIV-1 via different mecha-
nisms. APOBEC3G has polynucleotide cytidine deaminase activity, which results 
in the postsynthetic editing of cytidine residues to uridines, and thus alters the 
nucleotide sequence. APOBEC3G is packaged into the assembling HIV-1 particle 
and is transferred to target cells through viral infection [ 127 ]. In addition to causing 
mutations, APOBEC3G can also affect the level of cDNA that accumulates during 
subsequent HIV-1 infection, and can impede the translocation of reverse transcrip-
tase along the viral RNA template [ 128 ,  129 ]. The second restriction factor, teth-
erin, is able to cause HIV-1 particles to remain at the surface of the infected cell, 
tethered to the plasma membrane, where they accumulate in endosomes following 
internalization [ 130 ]. Tetherin is not restricted to the cell surface and has also been 
found in VCC in macrophages [ 131 ]. The third restriction factor, TRIM5α, is a 
cytoplasmic protein, which acts on the release of retroviral capsids and their con-
tents into the cytoplasm of cells. It assists in the failure to synthesize viral cDNA 
[ 132 ]. TRIM5α also binds to viral capsids [ 133 ] and it has been suggested that it 
causes capsid fragmentation [ 126 ]. 

 However, HIV-1 is an effective evader of human cell restriction factors, fre-
quently through the use of its accessory proteins, Vif, Nef, and Vpu. The HIV-1 Vif 
protein can counteract the cytidine deaminase APOBEC3G [ 134 ] and Vpu 
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 inactivates tetherin [ 131 ,  135 ]. Nef and Vpu are able to regulate expression of host 
proteins during viral replication, in particular CD4 and MHC Class I [ 61 ] and Vpx, 
the SIV counterpart of Vpr, is able to counteract the actions of the dideoxynucleo-
tide hydrolase SamHD1 [ 136 ,  137 ]. SamHD1 can block reverse transcription of 
HIV-1 by depleting deoxynucleoside triphosphates within cells [ 138 ,  139 ]. 

 Macrophages express high levels of tetherin and SamHD1, especially with respect 
to CD4 +  T cells which express no to low amounts [ 136 ,  140 ]. Higher expression of 
regulatory factors could possibly render macrophages less susceptible to infection. 
However, it must also be considered that HIV-1 infection of target cells can be partly 
restored by HIV-1 accessory proteins [demonstrated in vitro [ 136 ,  140 ]]. 

 Cytokines, as well as restriction factors, play a role in inhibiting HIV-1 replica-
tion. Type 1 interferons (IFN) α and β have been well researched and are induced in 
response to viral infections. They trigger the transcription of a wide variety of IFN- 
stimulated genes (ISGs) through the signal transducer and activator transcription 
(Jak-STAT) pathway [ 141 ] and are able to induce an antiviral state in the cell. 
Furthermore, IFN-α can upregulate HIV-1 restriction factors, including APOBEC3G 
and the cellular membrane protein tetherin in macrophages [ 142 ]. 

 IL-27 also plays a role in inhibiting HIV-1 replication in macrophages in vitro 
[ 128 ,  129 ]. IL-27 is able to induce antiviral genes in macrophages similar to IFN-α 
[ 128 ], and although IL-27 has not been shown to inhibit HIV-1 infection, macro-
phages induced with IL-27 show a reduction in the production of proviral cDNA of 
late HIV-1 gene products [ 129 ]. This study suggests that IL-27 may interfere with 
HIV-1 replication between viral entry and reverse transcription. 

 Further studies by Dai et al. [ 129 ] showed spectrin b non-erythrocyte 1 (SPTBN1) 
to be downregulated in IL-27-treated macrophages. Treating macrophages with 
IL-27 itself did not affect expression of macrophage differentiation markers nor its 
function. However, it was able to assist in resistance to HIV-1 infection by down-
regulating SPTBN1 [ 129 ]. Knocking down SPTBN1 prevented infection of macro-
phages, whereas overexpression of SPTBN1 in IL-27-induced macrophages did not 
prevent infection. SPTBN1 was associated with Gag proteins in macrophages, and 
the authors suggested the interaction might be important for reverse transcription of 
the HIV-1 genome. However, this needs to be clearly elucidated and the role of 
IL-27 defi ned in in vivo models.  

11     Conclusions 

 Macrophages play a key role in contributing to the HIV-1 reservoir and are an 
important vehicle for dissemination of HIV-1 throughout the body. The ability of 
macrophages to express both CCR5 and CXCR4 makes them a prime target for 
HIV-1 infection. Their location at many different tissue sites throughout the body 
and immune privileged sites, such as the brain, creates complications for effective 
eradication through current ART and immune surveillance. 
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 Macrophages play a key role in viral dissemination and contribute to both the 
regulation and progression of HIV-1. They are able to assist in disease control 
through the phagocytosis of HIV-1 and HIV-1-infected cells, presenting HIV-1 anti-
gens to CD4 +  and CD8 +  T cells, and initiating both innate and adaptive immune 
responses. Macrophages, however, are also able to progress HIV-1 infection through 
several mechanisms, including the secretion of chemokines and cytokines, which 
attract T cells to the site of infection and provide new cellular targets for HIV-1. 
Macrophages can also spread HIV-1 through their ability to phagocytose HIV-1- 
infected cells and through cell–cell transfer. Additionally, macrophages have a 
reduced sensitivity to the cytopathic effects of HIV-1 and are relatively stable sites 
of HIV-1 replication. HIV-1 can also reduce immune detection by locating to multi-
vesicular bodies within the cytoplasm of macrophages. 

 Eradication of HIV-1-infected macrophages poses a challenge for both the 
immune system and for current ART regimens. Additional knowledge of the tissue 
microenvironments where macrophages reside and a better understanding the role 
of the cytokine and chemokine milieu in HIV-1 infection may lead to novel and 
effective therapeutics targeting HIV-1 in viral reservoirs.     
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1             Introduction 

 In the early days of the human immunodefi ciency virus (HIV) epidemic, viral 
effects on the brain and all other systems of the human body were often devastating. 
Complications included opportunistic infections ranging from HIV encephalitis, 
cytomegalovirus (CMV) encephalitis, mycobacterial infections, and even 
neoplastic diseases such as primary central nervous system (CNS) lymphoma. In 
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this context, brain imaging was commonly used to monitor the adverse effects of 
HIV on the brain, often offering insight into a whole host of vascular and neuronal 
changes. 

 More recently, combined antiretroviral therapy (cART) has become widely avail-
able. This has greatly increased the life expectancy and quality of life for many 
people living with HIV. Many people are now living into old age with HIV as a 
chronic disease, which treatment has largely stabilized; however, there are still sig-
nifi cant effects of the virus on the brain [ 1 ]. 

 Severe conditions such as HIV-associated dementia are not typical, but there is 
signifi cant concern that the HIV virus may promote neuronal atrophy, infl amma-
tion, and other cellular changes. HIV may worsen the effects of cerebrovascular 
disorders common in the aging population. These changes may make the brain less 
resistant to other forms of neuropathology, such as the amyloid and tau accumula-
tion that lead to Alzheimer’s disease. As HIV infection becomes more of a stable 
disorder with a normal life expectancy, there is growing interest in knowing if age- 
related brain changes are accelerated in people living with HIV. If so, it would be 
vital to also know if certain brain regions are especially vulnerable, and whether any 
of these brain changes can be resisted. 

 In this chapter, we briefl y survey the ways neuroimaging is used today, to under-
stand brain changes in people with HIV. Rather than review all the papers that used 
imaging to study HIV, we focus on lessons learned and some key themes discovered 
from various worldwide studies of HIV and the brain. Our review is aimed at clini-
cians and neuroscientists interested in HIV, or medical students. We do not assume 
any specialized knowledge of brain scanning or radiology, or neurology.  

2     Mapping Brain Changes with MRI (Magnetic 
Resonance Imaging) 

 MRI is the mainstay of brain imaging research, at least for clinical studies of 
HIV. MRI is relatively widely available and safe, and offers unmatched spatial reso-
lution for understanding and mapping brain structure and anatomy. Computed 
tomography (CT) has also been used for many brain imaging studies of HIV [ 2 ] and 
some forms of CT offer excellent anatomical detail and tissue contrast in the brain. 
Even so, compared to CT, MRI has the advantage that no ionizing radiation is used 
at all. As such, it is safe for a person to be scanned repeatedly, opening the doors for 
advanced monitoring of brain changes over time, due to HIV infection. 

 MRI is based on the principle of nuclear magnetic resonance, which measures 
properties of molecules in living tissue, by sending radiofrequency pulses into it, 
and monitoring signals that come back out. An MRI scanner generates a high mag-
netic fi eld using a large superconducting magnet, and the patient lies inside the bore 
of the scanner. Radiofrequency pulses are applied to the brain using coils that sur-
round the patient’s head. These stimuli do not interact with the key physiological 
properties of the brain, or its biochemistry; instead the magnetic fi eld polarizes the 
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nuclear spins of the protons, specifi cally in hydrogen atoms, and detects the radio 
frequencies emitted, as the spins relax back to their original conformation. The 
density and the relaxation rate of these protons vary by tissue type (depending 
mainly on its water and lipid content). By acquiring images across the living brain, 
we can map different tissue types, leading to a high-resolution view of the living 
tissue as it matures and degenerates with disease. The main limitation of MRI is that 
it is sensitive to motion, so a patient should not move while in the scanner. It also 
cannot be used for people with pacemakers or other metallic implants, as it uses 
high magnetic fi elds to create images of the brain. 

 By applying calibrated sequences of pulses to the brain, the hydrogen nuclei in 
water, fat—and other molecules within the brain—are stimulated to emit a signal 
that depends on the chemical composition of the molecule, its environment, and its 
3D position in the brain. Samples from the entire brain can be “de-coded” all at 
once, using a Fourier transform method to “tag” and de-scramble signals from dif-
ferent brain regions. The detection of all these signals, using a radio frequency 
antenna and software to map the brain in 3D, leads to a map of the gray and white 
matter in the brain, and fl uid fi lled areas such as the ventricles. 

 If there is evidence of brain lesions, strokes, vascular disease or neoplastic tissue, 
then different varieties of MRI may also be used to better detect white matter dis-
ease or specifi c vascular changes. Contrast agents may also be injected intrave-
nously, in combination with a patient’s MRI scan, to better identify vascular or 
neoplastic changes. 

 The HIV virus penetrates the human brain within about 2 days of infection [ 3 ]. 
Untreated, the virus may multiply or lie dormant for long periods. The primary 
methods of degeneration induced by HIV are thought to be a combination of glial 
proliferation and infl ammation, direct neurotoxicity, and eventual neuronal loss [ 4 ]. 

 Cellular studies show that the viral load is not as high in neurons as in other cell 
types. It is often conjectured that the virus is transported across the blood-brain bar-
rier by infected monocytes or macrophages; each has privileged access to the brain. 
Even when viral load is largely suppressed by antiretroviral treatments, there may 
be some evidence of ongoing viral damage to the brain. Not all medications are 
fully effective at crossing the blood brain barrier. In fact, a major direction of ongo-
ing work is to study how well different treatments get into brain tissue. Imaging can 
help understand these effects by documenting any slowing of atrophy associated 
with treatment. 

2.1     Pattern of Brain Atrophy in HIV/AIDS 

 Early radiologic studies of HIV noted the prevalence of white matter disease, sub-
cortical atrophy and cortical damage, and sulcal widening [ 4 ,  5 ] suggesting that 
HIV might induce degenerative brain changes comparable to those seen in age- 
associated dementias. 

 In the cART era, some patients whose disease is stabilized by treatment show 
symptoms of cognitive impairment [ 6 ], perhaps associated with ongoing brain 
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 atrophy. MRI has been used to understand whether the structural brain changes 
associated with HIV are diffuse—essentially random or uniform—or localized, 
with concentrated effects on specifi c systems. 

 The analogy with Alzheimer’s disease is instructive. In contrast with HIV, 
Fig.  28.1  shows the typical progression of cortical gray matter loss in Alzheimer’s 
disease (AD). Not all patients with AD have the same pattern of tissue loss, and 
their ages of onset and disease trajectories may differ.  

 Even so, there is a well-documented spread of brain tissue loss in Alzheimer’s 
disease from medial temporal structures such as the hippocampus—which is crucial 
for learning and memory—into the association cortices of the parietal and frontal 
lobes [ 7 ]. There is also early limbic involvement in some patients. This may be 
associated with apathy, major depression, or other affective symptoms. 

 Several things are notable about the “time-lapse sequence” of Alzheimer’s dis-
ease. First, the pattern of anatomical disease progression matches the typical pattern 
of accumulation of tau pathology [ 8 ]—one of the two major hallmarks of Alzheimer’s 
disease—the other being beta-amyloid protein deposits, or plaques. 

 Second, the anatomical changes roughly parallel the behavioral and cognitive 
changes as disease progresses. Initially the main symptoms involve memory but 
may later diversify to involve emotional affect, language and executive function, 
self-control, and eventually all aspects of self-care. Despite decades of research 
mapping how AD affects the brain, the best biomarkers for picking up the effects of 
AD may change throughout the course of the disease. Also the best imaging meth-
ods to detect the earliest changes are somewhat disputed [ 9 – 11 ]. 

 Even more debate surrounds the pathology of HIV infection; it is a highly het-
erogeneous disease that is also infl uenced by the levels of treatment, illicit drug use, 
and comorbidities; effects may even depend on the viral strain. In cognitively 
impaired elderly, HIV shows a somewhat different pattern of effects on the brain 
[ 12 ,  13 ]. It might be assumed that an infectious disease, such as HIV, should show 
no obvious anatomical pattern of effects, other than widespread or disseminated 

  Fig. 28.1    MRI scanning of a group of patients with Alzheimer’s disease, and matched elderly 
controls, has been used to make a composite “movie” of the brain regions affected by the disease. 
Here, the  white  and  red colors  indicate brain regions where cortical gray matter is lost in 
Alzheimer’s disease. The changes are not the same in every patient, but there is enough similarity 
for a typical trajectory to be identifi ed. This pattern matches the trajectory of neurofi brillary tangle 
pathology, which accumulates in a similar sequence. Figure adapted from Thompson et al., J 
Neurosci 2003       
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atrophy. Or it could be argued that the pattern might depend on the distribution of 
the virus, which may differ from one patient to another. If that hypothesis were true, 
one might expect to see greatest brain changes in areas of highest viral load—
namely, the caudate and basal ganglia that surround the CSF-fi lled ventricles, as 
these are highly enriched in the virus. As we describe below, early efforts to map the 
profi le of cortical and subcortical atrophy in people with HIV largely confi rmed 
these expectations, but with some exceptions. 

 Figure  28.2  ( top row ) shows a statistical comparison of cortical gray matter thick-
ness between a group of adults with HIV and matched controls [ 14 ]. In these maps, 
the areas where patients show consistently thinner cortical gray matter are highlighted 
in red; areas in blue show no sign of difference, or at least not differences large 
enough to be detected with MRI in samples of this size. Clearly, atrophy is greater in 
some primary and supplementary motor areas, perhaps consistent with some of the 
defi cits in fi ne motor control and concentration experienced by some patients.  

 To survey brain tissue atrophy, specialized MRI analysis methods may also be 
used. On a standard MRI scan, white matter fi ber tracts are not clearly differentiated 
(although diffusion MRI overcomes these limitations; see below). But with standard 
anatomical scans, there is an approach to gauge atrophy relative to healthy controls, 
based on aligning, or “warping” brain scans from each individual to match a group 

  Fig. 28.2    Here the average pattern of cortical gray matter thinning in motor and other brain areas 
is shown ( top row; red colors ), in a group of people with HIV/AIDS compared to matched con-
trols. Using an image analysis method called  tensor-based morphometry , white matter defi cits can 
also be mapped ( bottom row ). Brain atrophy in the HIV+ group is notable in the basal ganglia and 
premotor areas, consistent with alterations in fi ne motor skills seen in some patients. Figures 
adapted from Thompson et al., PNAS 2005 ( top ), and Chiang et al., Neuroimage 2007 ( bottom )       
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average template. In the process, brain regions may be identifi ed in each person 
whose volumes are lower than average, after taking into account that person’s age 
and sex, and other relevant modulating factors. Figure  28.2  ( bottom row ) shows 
extensive atrophy of the basal ganglia, and its white matter projections, consistent 
with predictions that brain regions closest to the ventricles might show greatest defi -
cits [ 15 ]. Other studies focusing on subcortical structures—particularly the basal 
ganglia—confi rm these fi ndings [ 16 ]. 

 Many MRI studies focus the imaging fi eld of view on certain regions of the brain 
to speed up the scan times, but many do not include a full survey of the cerebellum, 
a key brain system for motor function and diverse aspects of cognition [ 17 ]. We and 
others found greater tissue loss within the cerebellum of people with HIV than their 
seronegative peers, with greatest effects in the  vermis , a midline region of the cere-
bellum [ 18 ]. 

 Although it might be tempting to relate atrophy in distinct brain systems to spe-
cifi c forms of cognitive dysfunction in specifi c patients, this has been more diffi cult. 
Studies of brain-cognition relationships have been successful in Alzheimer’s dis-
ease and other dementias (such as FTD), but associations with cognition are harder 
to detect robustly in groups of patients who are less impaired overall. In fact, while 
studies of specifi c systems or cognitive dysfunctions are limited, the most robust 
cognitive correlates of the brain differences have been  global measures  of perfor-
mance, such as the normalized neuropsychological summary Z-score (NPZ). The 
NPZ score pro-rates cognitive performance on a balanced range of tasks, relative to 
age- matched norms. This may be due to limited power in small studies of highly 
heterogeneous populations. 

 Similarly, comorbidities in people living with HIV are fairly prevalent. The dis-
ruptive effects of cerebrovascular disease (CVD) and its risk factors in the brains of 
HIV patients have led to inconsistent fi ndings in neuroimaging studies. Some stud-
ies report added complications of metabolic risk factors [ 19 ], while others report 
minimal or no associations [ 20 ,  21 ]. 

 Despite inconsistent fi ndings with specifi c cognitive and CVD-associated fac-
tors, consistency has been established across multiple imaging studies of HIV+ 
cohorts. One of the best predictors of brain atrophy is the nadir CD4+ count [ 22 ]. 
Nadir refers to the lowest recorded value for plasma CD4+ T-cells, a sign of the 
extent of HIV disease before treatment. This association appears robust across many 
cohorts. The nadir CD4+ count seems to predict the level of cortical gray matter 
atrophy [ 14 ], expansion of the ventricular space [ 23 ,  24 ], overall brain tissue loss 
[ 25 ], and white matter microstructure [ 26 ,  27 ].   

3     MR Spectroscopy 

 A variant of MRI—MR spectroscopy—has been able to identify some of the bio-
chemical origins of brain changes in people with HIV [ 28 ,  29 ]. During a standard 
anatomical MRI scan, the main signal comes from the stimulated emission of 
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signals from hydrogen nuclei in water and lipids. These make up the largest fraction 
of the hydrogen nuclei in the brain. These signals can distinguish gray and white 
matter and the major nuclei of the brain, but do not tell us much about their bio-
chemical content. When the hydrogen signal produced by water is suppressed using 
a specialized scan, a variety of metabolically relevant compounds can be measured, 
such as  N -acetyl-aspartate (which provides a measure of neuronal integrity because 
this molecule is present in neurons but not in glia), choline and creatine, myoinosi-
tol, and the neurotransmitters glutamate and gamma-amino-butyric acid. In general, 
MRS studies show robust changes in several markers of neuronal integrity including 
NAA, as seen in Fig.  28.3  [ 30 ]. Levels of choline and creatine in the basal ganglia 
are elevated acutely after infection but stabilize after treatment [ 31 ].   

4     Diffusion MRI 

 A    further variant of MRI, called  diffusion-weighted MRI , can map the neural fi ber 
pathways in the brain—even whole networks of structural connections. This 
method, along with resting state functional MRI, has become an important neuro-
science research tool [ 32 ]. It can reveal changes in the connections or wiring 
between different brain regions, and overall brain network properties, rather than 
observing each brain region in isolation. 

 Briefl y, the MRI signal is attenuated because water is diffusing in the tissue 
being imaged. In white matter the diffusion is more pronounced in the direction 
parallel to the fi ber bundles relative to the perpendicular direction, so we can often 
identify the direction of fi ber bundle orientation throughout the white matter. This 
diffusion is measured by applying a magnetic fi eld gradient at multiple angles 
around the brain and observing the attenuation of the MRI signal due to diffusion. 
This allows for a 3D reconstruction of the diffusion pathways. Mathematical 

  Fig. 28.3    In a group of HIV+ people, the level of  N -acetyl-aspartate (NAA)—a marker of neuro-
nal integrity—was measured using MR spectroscopy, in the frontal white matter. In standard MRI 
scans from the same participants, we also measured the level of volumetric atrophy relative to a 
standard brain template.  Blue colors  highlight regions with greater atrophy in people with lower 
frontal NAA;  red colors —largely in the lateral ventricles—identify CSF expansions that are found 
in people with lower frontal NAA. Figure adapted from Hua et al., Neuroimage Clinical 2013       

 

28 Brain Imaging in People with HIV



752

 equations can model the degree of attenuation of the MRI signal in any direction, 
based on the rate and directional orientations of maximal and minimal diffusion. 
The scanner is programmed to detect diffusion in a range of directions (up, down, 
sideways, and multiple directions in between). Water diffusion can be tracked across 
the brain, and fi bers reconstructed that traverse the brain and interconnect the major 
cortical and subcortical regions. The whole fi eld of fi ber tracking in brain diffusion 
MRI is rapidly evolving. Novel methods are constantly being proposed and tested to 
map fi ner scale circuits in a reasonable amount of time. 

 Anatomical connectivity of brain regions can be mapped using the principle 
shown in Fig.  28.4 . By identifying a range of regions on the cortical surface, 
the fi bers running between all pairs of these regions can be identifi ed using 
 tractography. And a measure of the density or integrity of these connections can be 
stored in a 2D matrix ( see fi gure ). By comparing groups of HIV+ people with 

  Fig. 28.4    Patterns of anatomical connectivity can be mapped by combining diffusion-weighted 
magnetic resonance imaging (dw-MRI) with high-resolution anatomical T1-weighted 
MRI. Tractography methods can be used on dw-MRI scans to map fi ber bundles throughout the 
brain ( top left ) while detailed cortical labeling ( bottom left ) can defi ne biologically and function-
ally signifi cant cortical regions in each individual. By quantifying the tracts that connect one 
region to another, the strength of connections between two cortical landmarks can be estimated and 
represented by a matrix, where each element represents the physical connection between the 
regions defi ned on the axes       
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HIV− controls [ 33 ], we were able to show that some of the connections of motor 
areas were less dense in people with HIV, perhaps due to the cortical atrophy 
described earlier. In addition, greater defi cits were seen in HIV+ people with pro-
longed infection who also carried the  APOE4  risk gene, a risk factor for late-onset 
Alzheimer’s disease (see Fig.  28.5 ). Whether or not these interactions with risk 
factors are robust or generally found will take large samples to verify.   

  Fig. 28.5       Brain Connectivity in HIV/AIDS. Here we show nodes and regions in the brain’s struc-
tural network, where the density of connections is different, on average, in people with HIV versus 
controls. Carriers of the Alzheimer’s disease risk gene, APOE4, also have lower connectivity in 
some brain regions, and carrying this gene and the HIV virus may lead to greater reduction in con-
nectivity. (a) Highlights the connections where the APOE4 genotype shows a signifi cant effect on 
connectivity, and (b) shows the effect of the interaction of APOE4 with duration alone. Larger 
spheres indicate greater effect-sizes. These maps are computed from diffusion-weighted MRI, 
which can be collected at the same time as standard anatomical MRI, on the same scanner. Figure 
adapted from Jahanshad et al., Brain Connectivity 2012       
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4.1     MRI to Characterize Brain Development in Children 
with HIV Exposure or Infection 

 cART has improved and lengthened lives of many adults who have contracted HIV, 
but is also conversely responsible for the growing number of children who con-
tracted HIV from their HIV+ mother, and are living past infancy. Many of these 
children were exposed to the virus or treatment prenatally. Understanding how 
treatments and moderators (such as nutrition; [ 34 ,  35 ]) may help these children 
develop normal cognitive abilities is critical. To date, there have been few imaging 
studies of brain development in HIV-infected children [ 36 ]. Recently, large collab-
orative studies such as Pediatric HIV/AIDS Cohort Study (PHACS) [ 37 ] and the 
Pediatric Randomized Early vs. Deferred Initiation in Cambodia and Thailand 
(PREDICT) study [ 38 ] are underway to better categorize the developmental trajec-
tories and determine necessary interventions that may promote healthy brain growth. 
The PREDICT study aims to determine whether the trajectory of childhood brain 
development is affected by deferred versus immediate access to antiretroviral treat-
ment. It also assesses how prenatal HIV exposure may impact the developing brain 
[ 39 ]. As exquisitely sensitive methods are refi ned to detect and measure growth 
rates in individual children [ 40 ,  41 ] scanned annually with MRI, treatment effects 
are likely to be mapped and discovered in this kind of study. Using standard struc-
tural MRI, diffusion and MRS techniques to image these developing children 
should provide insight into brain network alterations and disrupted brain physiol-
ogy and biochemistry. Future studies will also determine how generalizable these 
developmental changes are, across multiple populations of HIV- affected youth.   

5     ENIGMA-HIV and Diversity of Cohorts 

 MRI and its variants offer much insight into how HIV affects the living human 
brain—how it spreads, the systems it affects, the connections the virus impairs, and 
the covariates that amplify these effects. However, many of these factors are subtle, 
hard to detect, or may only be relevant for particular groups of patients—those of a 
certain age, treatment plan, drug history, or even with specifi c genetic clades of the 
virus [ 42 ]. 

 In many areas of neurology, it is relatively easy to map the profi le of disease 
effects on the brain, and show that patients’ neuroanatomy is different from healthy 
controls. It is more challenging to discover factors that reduce or accelerate these 
effects, and predict what is going to happen in the future. This would have an imme-
diate clinical impact and may lead to a more personalized treatment approach. For 
example, some researchers have tried to predict future brain decline in patients, 
based on MRI, and blood markers, such as cytokines, infl ammatory and immune 
system markers. Clearly, if an intervention or treatment could slow the rate of brain 
atrophy, MRI would play a vital role in proving it. 
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 Having performed many neuroimaging studies of disease for decades, several 
groups came to the conclusion that large sample sizes are required to detect consistent 
disease effects on the brain, with enough power to identify modulators. The Enhancing 
Neuro Imaging Genetics through Meta Analysis (ENIGMA) Consortium, for exam-
ple, amassed 29,000 brain scans and genome-wide DNA data from the same subjects, 
and found a number of common variants in our DNA that predict the size and volumes 
of several key brain structures [ 43 ,  44 ]. As most treatment effects are subtle—perhaps 
slowing atrophy by no more than 1–5 %—international consortia are forming to assess 
factors that affect HIV disease progression in the brain. Such efforts include the HIV 
Neuroimaging Consortium (HIVNC) [ 45 ], CHARTER [ 46 ], PHACS [ 37 ] and many 
others, as well as consortia that meta-analyze effects across hundreds of studies 
(ENIGMA; [ 47 ]). Along with genetic risk factors such as  APOE  and others yet to be 
discovered [ 48 ], additional factors promoting brain atrophy in people with HIV could 
include: adverse environment, drug use, time from infection to treatment, comorbid 
vascular disease, advanced age, duration of illness, and many others. 

 A signifi cant factor of interest in HIV research is the confounding effects of 
drugs of abuse—such as alcohol and methamphetamine. Many such drugs have 
complex and lasting effects on brain chemistry and structure, visible on brain MRI 
in users [ 49 ] as well as children exposed to the drugs prenatally [ 50 ]. Figure  28.6  
shows effects of methamphetamine on the brain; although gray matter defi cits are 
shown here, other research groups report white matter hypertrophy in methamphet-
amine users [ 51 ]—perhaps denoting infl ammation that may resolve later.  

  Fig. 28.6    Here we show brain regions in the limbic system ( red colors ) where cortical gray matter 
is reduced in people who chronically use methamphetamine, relative to matched controls who do 
not. The Alzheimer-like pattern is striking but the neurotoxic effects of drugs operate through dif-
ferent mechanisms and may involve white matter infl ammation as well. The relationship between 
drug- and virus-related brain changes is of interest in HIV+ drug users. Figure adapted from 
Thompson et al., J Neuroscience 2004       
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 Due to the heterogeneity in HIV infected populations, and the diffuse, 
 time- dependent nature of CNS involvement, the power to detect subtle brain changes 
is limited by available sample sizes. Some studies report additive effects of metham-
phetamine abuse and HIV infection [ 52 ,  53 ]; common CVD risk factors may worsen 
HIV effects on the brain. Whether or not any of these modulators can be shown to 
affect the disease trajectory in the brain will probably rely on large and diverse sam-
ples assessed with neuroimaging as well as standard blood biomarkers and clinical 
evaluations. Large consortia such as ENIGMA may provide new insights into the 
infection by pooling existing data. Meta-analytical approaches may then detect impor-
tant genetic and environmental moderators that may be too subtle to identify in any 
single study.     
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    Chapter 29   
 Seasonal and Pandemic Infl uenza Surveillance 
and Disease Severity 

             Tamara     V.     Feldblyum     and     David     M.     Segal    

          Core Message   This chapter addresses the disease burden on the US population 
caused by the annual infl uenza epidemics or pandemic and the methods of infl uenza 
surveillance used to monitor and prevent the spread of the disease. The meaningful 
use of electronic health records for infl uenza research and surveillance are discussed 
with a focus on variations of infl uenza disease severity between seasons and between 
individual patients. Surveillance of severe disease cases can contribute to a more 
effective public health preparedness and response.  

1     Introduction: Infl uenza Surveillance and Disease Burden 

 The recent infl uenza pandemic in 2009 caused by infl uenza A/H1N1 reassortant 
with high human-to-human transmissibility, demonstrated the unpredictable nature 
of emerging viruses and importance of continuous surveillance. During the 2009–
2010 infl uenza season, the 2009 H1N1 virus infected approximately 61 million per-
sons and caused an estimated 274,000 hospitalizations and 12,500 deaths in the 
USA [ 1 ]. This novel virus caused severe morbidity and mortality in pregnant women 
[ 2 – 4 ] and younger adults with 87 % of deaths occurring in persons younger than 65 
years of age [ 5 ]. In addition to the human toll, annual infl uenza epidemics and pan-
demics carry substantial economic consequences in health-care utilization costs, 
intervention costs, and reduced productivity. The cost of annual infl uenza epidemics 
in the USA is estimated to range between $52 and $199 billion [ 6 ]. 
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 Individual risk factors for severe outcomes of infl uenza infection vary between 
seasons and are associated with circulating infl uenza virus types and subtypes, as 
well as with individual demographic characteristics, such as age, ethnicity, and 
clinical conditions, such as asthma, diabetes, cardiovascular, lung, and neurologi-
cal diseases [ 8 – 12 ]. Due to variations in infl uenza virus activity, the capacity to 
respond to seasonal epidemics and pandemics depends on the availability of accu-
rate and timely information and swift and early identifi cation of pandemic and 
epidemic strains. 

 The US national infl uenza surveillance systems include syndromic, clinical, and 
virologic monitoring. Information on infl uenza-like illness (ILI), infl uenza hospi-
talizations, infl uenza and pneumonia associated mortality, infl uenza-associated 
pediatric mortality, and laboratory testing of a subset of specimens from patients 
with ILI to characterize the circulating viruses are reported. These surveillance sys-
tems are resource-intensive [ 13 ,  14 ] and require sustained funding for epidemio-
logic and virologic information gathering at the national and local levels [ 15 ]. 
Enhanced and timely syndromic surveillance methods that use electronic health 
records (EHR) could improve the assessment of infl uenza medical and economic 
disease burden and associated risk factors leading to identifi cation of at risk popula-
tion groups, targeted and appropriate public health interventions, and estimates of 
economic burden associated with the disease [ 14 ,  16 – 18 ]. EHRs capturing informa-
tion using the International Classifi cation of Diseases, Ninth Revision, Clinical 
Modifi cation (ICD-9-CM) codes lend themselves to effi cient quantitative analyses 
and have been used in numerous epidemiologic studies and infl uenza surveillance 
[ 14 ,  17 ,  19 – 21 ]. 

 With the growing focus of the US health care system on the meaningful use of 
electronic medical records, one of the practical applications is expanding biosur-
veillance and preparedness capabilities, such as surveillance of infl uenza severity 
and associated risk factors during seasonal epidemics and pandemics [ 18 ,  22 ]. 
Traditional infl uenza surveillance data are based on laboratory testing of a limited 
number of samples, case reporting by participating health care providers, hospital- 
based primary data, and deaths reported by statistics offi ces [ 24 ]. Data extracted 
from electronic medical records can enrich reporting of risk factors for disease 
severity or clinical diagnoses, even in the absence of laboratory testing, and aug-
ment the traditional surveillance. In addition, monitoring patients EHRs may enable 
detection of disease outbreaks for which no laboratory diagnostics were requested 
including emerging pathogens and biothreat events [ 25 ]. 

 The timely reporting of information on circulating infl uenza viruses and the dis-
ease burden associated with seasonal and pandemic infl uenza is essential for opti-
mal public health response, identifi cation of vulnerable populations, and for 
prevention and patient management strategies. Large electronic datasets of hospital 
discharge records, such as the Nationwide Inpatient Sample (NIS), could provide 
information on risk factors for disease enhancing infl uenza surveillance methods 
[ 7 ,  21 ]. The use of much larger more representative national population repositories 
from existing electronic medical records can potentially augment or replace small 
hospital case series studies often employed for assessment of infl uenza severity.  
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2     Infl uenza Surveillance 

 Every year, emerging and reemerging infl uenza viruses lead to tens of millions of 
respiratory infections and up to 500,000 fatalities worldwide. Unpredictability of 
antigenic drift or antigenic shift leading to emergence of viral strains with limited or 
no immunity in human population results in variable disease spread and severity. 
A novel high pathogenicity virus adapted to human-to-human transmission could 
cause a global pandemic with millions of deaths [ 25 ]. Timely detection and report-
ing of disease in specifi c populations through an effective biosurveillance system is 
the most promising strategy for mitigating the impact from disease outbreaks caused 
by naturally occurring epidemics or bioterrorism events [ 26 ]. Infl uenza virus sur-
veillance informs selection of the annual vaccine strains and guides antiviral ther-
apy. Monitoring infl uenza outbreaks is of particular interest because they represent 
a proxy for research of potential biothreat surveillance systems. Early clinical 
symptoms of many biologic warfare agents such as aerosolized  B. anthracis , tulare-
mia, and smallpox resemble infl uenza like illness [ 17 ,  27 ]. 

 Surveillance of infectious diseases can be conducted using passive or active 
approaches. Active methods based on laboratory testing and case reporting are usu-
ally resource intensive and require ongoing reporting by participating physicians, 
hospitals, and laboratories [ 14 ]. Only a subset of specimens can be tested [ 28 ] and 
cases are often underreported. Passive syndromic surveillance methods may be less 
accurate but they are also less expansive and enable assessment of the disease spread 
and severity in the population. Implementing syndromic surveillance based on signs 
and symptoms, diagnosis, and large volumes of other health related data for disease 
of interest can greatly improve the quality and timeliness of passive surveillance 
[ 29 ]. Information acquired integrating both methods can generate a more complete 
picture of an outbreak or an epidemic [ 14 ]. 

2.1     Active Infl uenza Surveillance 

 In the USA, the national infl uenza surveillance is lead by the CDC as a collaborative 
effort of state and local health departments and laboratories, health-care providers, 
hospitals, and clinical laboratories. The data on circulating infl uenza viruses and the 
disease activity including incidence, morbidity, and mortality is collected year 
round, compiled, and published weekly with a 1–2-week reporting delay [ 25 ]. 
Infl uenza virologic surveillance throughout the USA is conducted by approximately 
140 laboratories comprising the WHO and National Respiratory and Enteric Virus 
Surveillance System (NREVSS) laboratory networks. They collect information on 
the proportion of infl uenza A and B positive respiratory specimens and determine 
infl uenza A subtypes. A subset of the infl uenza positive samples, especially if the 
subtypes cannot be determined by standard diagnostic tests, are sent to CDC for 
further characterization by gene sequencing to monitor emergence of novel viruses 
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and antiviral resistance [ 23 ]. The second component of the surveillance system is 
the Illness Surveillance Network (ILINet) comprised of approximately 3,000 health- 
care providers voluntarily reporting all outpatient visits and the number of visits due 
to infl uenza-like illness (ILI) stratifi ed by age group. The percentage of weekly ILI 
visits weighted to refl ect the population size of reporting states are compared to the 
national baseline of ILI visits outside of infl uenza season to monitor ILI activity 
levels in each state [ 23 ]. Vital statistics offi ces in 122 participating US cities report 
the total number of deaths and the number of deaths caused by pneumonia or infl u-
enza (P&I) stratifi ed by age groups. Statistical methods are used to calculate the 
weekly level of P&I mortality above the seasonal baseline or epidemic threshold. In 
2004, pediatric infl uenza-associated mortality for children 0–18 years of age became 
a nationally notifi able condition. Infl uenza Hospitalization Network comprised of 
hospitals in over 80 counties in 14 states collects information from hospital records 
and reports on laboratory-confi rmed infl uenza hospitalizations for children and 
adults. The information on geographic spread of infl uenza activity is augmented by 
State and Territorial health department epidemiologists’ reports [ 23 ]. 

 In addition to the CDC surveillance systems, the armed forces operate the Global 
Emerging Infections Surveillance and Response System (GEIS) to protect military 
personnel and their families [ 30 ]. Respiratory Infections surveillance is one of the 
GEIS programs contributing to the global infl uenza surveillance network. The pro-
gram leverages established laboratory and research facilities in host countries and 
collaborations with global partners. Its activities are coordinated and information 
regarding circulating infl uenza viruses, disease burden, and epidemiology is shared 
with CDC, WHO, and host countries. The data is also used in research and for 
development of vaccines and diagnostics [ 31 ]. International infl uenza surveillance 
is accomplished through the WHO Global Infl uenza Surveillance Network collabo-
rating centers including the CDC. Global infl uenza surveillance information is 
shared through the WHO FluNet tool and it provides advance signals of infl uenza 
activity and trends, informs selection of annual vaccine strains, and enables member 
countries to better prepare for upcoming infl uenza season [ 32 ].  

2.2     Alternative Surveillance Methods 

 In addition to the active surveillance efforts, alternative methods such as syndromic 
surveillance, electronic patient records from emergency room or ambulatory doctor 
visits, and hospital discharge records have been used for surveillance of infl uenza and 
other infectious diseases with growing frequency [ 19 ,  20 ,  27 ,  33 ]. Syndromic surveil-
lance provides clues on disease patterns collected from multiple information sources 
such as emergency department visits, ambulatory health-care visits, calls to health 
information hotlines, Internet health information seeking, and over-the- counter 
medication purchases. Indication of potential disease outbreak from syndromic sur-
veillance is usually available before laboratory test results are reported [ 14 ]. 
ESSENCE, the Electronic Surveillance System for the Early Notifi cation of 
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Community-based Epidemics is an example of syndromic surveillance system 
implemented by the Department of Defense (DoD) to automatically download data 
from the electronic health records of military personnel and their families. The sys-
tem captures information coded in accordance with the International Classifi cation 
of Diseases, Ninth Revision, Clinical Modifi cation (ICD-9-CM) standards from 
over 300,000 weekly outpatient visits to US military treatment facilities [ 17 ]. It 
monitors disease outbreaks based on health care utilization patterns and uses ICD-
9- CM codes to group diagnosis into one of the eight disease syndromes. Another 
national electronic surveillance system, BioSense, launched in 2003 and operated 
by the CDC collects and analyzes ICD-9-CM coded data from outpatient visits to 
health-care facilities and emergency departments, hospitalized patients, laboratory 
tests, and information on over-the-counter medications sold in pharmacies [ 34 ]. 
Although different studies reported variable utility of syndromic disease surveil-
lance systems for local disease outbreaks, the majority of them indicated that it was 
useful for monitoring respiratory disease activity and the annual infl uenza seasons 
[ 19 ,  35 ,  36 ]. Sensitivity of ICD-9-CM based detectors of acute respiratory disease 
and infl uenza epidemics varied from 44 to 79 % for acute respiratory disease to 
100 % for infl uenza outbreak [ 37 ] and specifi city ranged between 96 and 97 % [ 20 , 
 27 ]. Sensitivity was found to be moderate and likely not suffi cient to detect a small 
disease outbreak, e.g., in the event of a local bioterrorism incidence. However, ICD-
9- CM coded data can be useful for infl uenza surveillance when accuracy, complete-
ness, and timeliness are carefully considered [ 29 ] before using such data for decision 
making. 

 For a comprehensive infl uenza surveillance system, it is critical to include hospi-
tals that would collect epidemiological and virological information on severe cases. 
This data enables characterization of severe ILI, identifi cation of at risk population 
groups, tracking of genetic changes in the circulating viruses, and serve as a moni-
toring tool for emerging pandemics [ 38 ]. Hospital based case series studies yield 
valuable information on risk factors for sever infl uenza during an ongoing or past 
infl uenza seasons. Although these studies can inform vaccination and therapy deci-
sions, majority of them have a limited sample size, are recourse intensive, and the 
results are not generalizable on the national level. The lack of this data became espe-
cially apparent during the 2009 H1N1 pandemic when the disease incidence rate was 
very high resulting in declaration of phase 6 pandemic while the disease severity on 
a national level was not ascertained [ 28 ]. Hospital-based electronic surveillance is a 
cost-effective approach to identify infl uenza season-specifi c populations at high risk 
for ILI complications and fatal outcomes. Detailed clinical information on each indi-
vidual case is coded in patients’ records and can be used to augment active surveil-
lance in public health response planning and implementation [ 16 ]. 

 Advances in information technologies enabled new global and national surveil-
lance methods and real time information sharing among multiple stakeholders. 
Monitoring indicators other than the traditional information captured by health-care 
providers can be a cost effective approach to augment respiratory disease 
 surveillance. Rise in purchases of over-the-counter cold medications, school 
 absenteeism, Internet health information searches, and utilization of health advice 
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phone lines were shown to correlate with increased infl uenza activity [ 14 ]. The rise 
in health information seeking preceded doctors’ visits by about 1 week and was also 
correlated with media coverage of the health concern [ 39 ]. 

 An approach to infl uenza surveillance monitoring ILI health-seeking Internet 
queries was launched by Google and CDC during the 2007–2008 infl uenza season. 
The system analyzed logs of Web searches related to ILI information and reported 
data with only 1 day lag instead of the usual delay of 1–2 weeks. The accuracy of 
the ILI estimates was 85–96 % as compared to the actual disease incidence reported 
by CDC infl uenza surveillance [ 25 ]. A Health Map Web based data collection sys-
tem was employed during the 2009 H1N1 pandemic to monitor the Internet, com-
pile, and report infl uenza activity in geographically diverse locations through an 
interactive map. Data was collected from news media, blogs, and other nontradi-
tional sources as well as from the WHO, CDC, and the public health agency of 
Canada. The median lag between reported and confi rmed cases ranged from 9 to 
18 days with considerable variations between the countries infl uenced by public 
health infrastructure, political system restricting information, and media coverage. 
The nontraditional information sources may enable earlier detection of outbreaks 
and epidemics, expand population coverage, improve sensitivity of emerging dis-
eases detection, and place the epidemic or pandemic in the context of the affected 
population [ 40 ].  

2.3     Utilization of Electronic Health Records in Infl uenza 
Research and Surveillance 

 While electronic surveillance based on nonclinical data such as over-the-counter 
medication sales, school absenteeism, and health information seeking may provide 
preliminary signs of potential infection spread, prompt release of electronic health 
records (EHR) containing diagnosis and clinical outcomes can lead to a more infor-
mative and timely disease surveillance [ 20 ]. Increasing utilization of patient elec-
tronic records could play an important role in attaining public health objectives and 
complimenting other information sources. 

 Information from electronic medical records captured through surveillance plat-
forms or stored in local or centralized databases has been used in numerous studies 
for monitoring disease incidence, prevalence, severity, risk factors, and medical care 
decisions. Analyses of electronic medical records were employed to augment the 
traditional approaches [ 17 ,  18 ] during respiratory seasons in the USA. Standard 
surveillance was not suffi cient during the recent infl uenza 2009 H1N1 pandemic 
when several states, including New York [ 41 ], Wisconsin [ 42 ], and California [ 43 ] 
implemented additional information gathering methods based on electronic medical 
records to gain a more complete understanding of the ongoing pandemic severity. 
EHR-based surveillance systems such as Electronic Medical Record Support for 
Public Health (ESP) implemented in Ohio and Massachusetts and BioSense were 
 successfully used for analyzing ICD-9 diagnosis codes, reporting notifi able disease 
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cases, surveillance of ILI, identifi cation of infl uenza or upper respiratory infection 
risk factors among hospitalized patients, and for monitoring diabetes prevalence, 
risk factors, and disease severity [ 13 ,  19 ]. The results of infl uenza risk factor analy-
ses based on ICD-9 coded data overall agreed with earlier observations based on 
primary data collected through the Emerging Infections Program during 2005–2008 
infl uenza seasons [ 44 ] and in Manitoba, Canada during 2009 H1N1 pandemic [ 45 ] 
as well as with laboratory confi rmed infl uenza hospitalizations reported to the CDC 
during the 2009 pandemic [ 17 ,  46 ,  47 ] demonstrated that optimally selected ICD-9 
code groups can be used in an automated surveillance system drawing information 
from electronic medical records for accurate monitoring of infl uenza activity. In this 
study of the US Air Force personnel and their dependents outpatient visits the syn-
dromic surveillance results correlated with the results of sentinel ILI surveillance 
conducted by the CDC. Placzek and Madoff (2011) used administrative hospital 
discharge records to estimate the hospitalization rates and characterize patients hos-
pitalized with ILI during the seasonal fl u epidemics and the 2009 H1N1 pandemic 
in Massachusetts. They evaluated two sets (“maximum” and “minimum”) of ICD-9 
diagnosis codes for their relevance and accuracy in identifying infl uenza- associated 
hospitalizations and disease severity and concluded the proposed minimum ICD-9 
criteria more accurately refl ected the actual infl uenza cases. ICD-9 coded diagnosis 
alone or in conjunction with other electronic health data were used in monitoring of 
ILI severity and risk factors [ 18 ,  48 ,  49 ], and for modeling early detection of local 
respiratory disease outbreak [ 24 ]. This approach was adopted for other disease sur-
veillance, such as SARS [ 50 ], diabetes incidence and management [ 13 ], and pertus-
sis [ 51 ]. The study results suggest that timely ILI surveillance is feasible using 
ICD-9-CM coded electronic medical records and emphasized the importance of the 
appropriate ICD-9-CM code selection for case defi nition for accurate assessment of 
disease activity and severity [ 18 ,  20 ]. 

 Current infl uenza surveillance systems are resource intensive and provide lim-
ited information on patients at-risk for severe infl uenza. To date, no study has been 
conducted using a large sample of electronic health records (EHR) to examine the 
risk factors for infl uenza in hospitalized patients across the USA. Larger data sets of 
EHRs will enable the creation of statistically signifi cant age-specifi c models of 
infl uenza severity and predict more representative infl uenza risk factors and vulner-
able groups. A recent study utilized the Nationwide Inpatient Sample (NIS) which 
is a repository of eight million electronic hospital discharge records from 1,000 
participating hospitals in over 43 states representing approximately 20 % of all US 
hospitalizations [ 7 ]. This data source is maintained by the Healthcare Cost and 
Utilization Project (HCUP) sponsored by the Agency for Healthcare Research and 
Quality (AHRQ). Results from the retrospective unmatched case–control study of 
NIS patients hospitalized with infl uenza during the 2009 H1N1 pandemic and 
severe A/H3N2 2007–2008 epidemic seasons confi rmed the utility of using an exist-
ing electronic resource to identify comorbidities and demographic risk factors for 
severity of clinical outcomes associated with pandemic and epidemic infl uenza 
viruses [ 21 ]. The use of primary diagnosis ICD-9-CM codes 487.xx–488.xx to 
 correctly identify infl uenza hospitalizations from NIS was verifi ed by comparing 
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the temporal trends of monthly hospitalization counts identifi ed in NIS records 
(Table  29.1 ) with infl uenza cases reported by the National Respiratory and Enteric 
Virus Surveillance System WHO/NREVSS and Hospitalization Surveillance 
Network (FluSurv-NET) during the 2007–2008 and 2009 infl uenza seasons 
(Fig.  29.1 ).

    Findings from these studies demonstrate that large datasets of electronic medical 
records are an essential component of infl uenza epidemic surveillance. Integration 
of ICD-9 diagnosis codes into more complex disease detection algorithms can fur-
ther improve the sensitivity and specifi city of surveillance systems based on elec-
tronic medical records [ 52 ]. However, this approach is limited if electronic records 
are fragmented between different providers using different disease algorithms 
whereas the ICD-9 codes even though potentially less specifi c are standardized 
among all users and may be more applicable to nationwide surveillance [ 13 ]. Further 

   Table 29.1    Number of infl uenza cases reported in NIS and CDC 
surveillance systems during the 2007–2008 season and 2009 pandemic   

 Surveillance system  2007–2008  2009 

 WHO/NREVSS  41,809  177,814 
 FluSurv-NET   3,933  8,278 
 NIS  17,767  30,613 

  Fig. 29.1    Number of monthly infl uenza hospitalizations in NIS compared with WHO/NREVSS 
reported laboratory confi rmed infl uenza infections during October 2007–April 2008 (Panel  a ) and 
January to December 2009 (Panel  b ) and FluSurv-NET during October 2007 to April 2008 (Panel 
 c ) and January to December 2009 (Panel  d )       
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standardization of data coding and selection criteria, and interoperability among 
private and government surveillance efforts has the potential to enhance the 
 electronic data quality and timeliness [ 14 ,  18 ]. This methodology can be especially 
advantageous for public health applications as it uses routinely collected data and 
requires modest investments for maintenance and operation [ 50 ].   

3     Infl uenza Virus 

 Infl uenza virus is a zoonotic pathogen causing annual epidemics and pandemics 
resulting in human toll and economic losses all over the world. Infl uenza-associated 
morbidity and mortality are especially high among persons with chronic health con-
ditions and usually among the very old or the very young [ 53 ]. Although the virus 
was identifi ed and isolated only 80 years ago, infl uenza disease outbreaks can be 
traced back to Middle Ages and identifi ed by signs and symptoms, sudden start of 
the epidemic, and excess mortality in historical sources dating to 1650 [ 54 ]. Shope 
demonstrated in 1930s that the infectious agent causing fl u in humans could adapt 
to other species and cause similar disease in swine. The infl uenza virus adaptability 
to the host immune system enables sustained human-to-human transmission and the 
emergence of novel viral strains [ 55 ]. It also poses a challenge to the public health 
efforts to predict and control the annual infl uenza epidemics and pandemics. 

3.1     Pathophysiology 

 Infl uenza viruses belong to the  Orthomyxoviridae  family and are divided into three 
genera or types, Infl uenza virus A, B, and C [ 56 ]. Infl uenza A viruses are further 
classifi ed into subtypes defi ned by one of the 18 hemagglutinin and one of the ten 
neuraminidase subtypes present in the virus [ 57 ]. Infl uenza B viruses are not classi-
fi ed into distinct subtypes but are divided into two genetic lineages, Yamagata and 
Victoria [ 58 ]. 

 It is an enveloped single stranded RNA virus with a genome fragmented into 
eight segments encoding 11 proteins. The surface glycoproteins hemagglutinin 
(HA) and neuraminidase (NA) play the most important role in viral infection and 
transmission. HA attaches the virus to the target cell’s sialic acids receptors facilitat-
ing the viral RNA entry into the cell. The NA enzymatic activity cleaves the sialic 
acid releasing the newly produced viral particles [ 53 ,  59 ]. 

 The annual epidemics are caused by infl uenza A and infl uenza B, but only infl u-
enza A can adapt to multiple hosts and emerge as a novel virus causing pandemics. 
Antigenic drift due to mutations in HA and NA genes allows the virus to evade 
preexisting antibodies in the human immune system conferring the pathogenicity 
and virulence. Antigenic shift occurs when infl uenza viruses containing diverse 
HA and NA subtypes coinfect the same host, triggering a reassortment event and 
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producing progeny with genomic segments from both parental viral subtypes [ 53 ]. 
Wild birds are the natural reservoir for infl uenza viruses. Sixteen hemagglutinin 
and nine neuraminidase infl uenza A subtypes were isolated from aquatic birds and 
only the most recent HA17 was isolated from fruit bats [ 60 ]. According to the 
 mixing vessel theory, pigs are considered the main mammalian host where the 
adaptation of an avian infl uenza viruses to human host and reassortment events 
occur [ 61 ]. Pigs’ cell-receptors match both human and avian infl uenza, rendering 
them susceptible to infection with viruses from both hosts [ 53 ]. Infl uenza A viruses 
have been also isolated from other animals, including a horse, dog, cat, tiger, and 
leopard [ 59 ]. Infl uenza Type B and C is rarely found in hosts other than humans, 
although infl uenza B has been found in seals and infl uenza C has been reported in 
swine and dogs [ 53 ].  

3.2     Epidemiology 

 Despite the investments in infl uenza research, surveillance, and prevention efforts, 
infl uenza virus remains a cause of respiratory infection in the USA and in the world. 
Annual infl uenza-associated deaths in the USA range between 3,349 and 48,614 
[ 62 ] and, on the average, 200,000 are hospitalized due to severe disease [ 63 ]. The 
variations in mortality can be attributed to difference in the circulating viral types 
and subtypes. The average mortality rates are 2.7 times higher during the seasons 
when infl uenza A(H3N2) subtype is predominant as compared to seasons when 
infl uenza B or other infl uenza A subtypes are the predominantly circulating viruses. 
During a typical infl uenza season, severe illness and death occur most frequently 
among individuals 65 years and older (89.4 %) or children younger than 2 years of 
age [ 62 ]. Persons of any age with underlying health conditions are also at a greater 
risk for severe outcomes associated with infl uenza infections [ 64 ]. 

 Infl uenza viruses are transmissible among humans via the respiratory rout. 
During seasonal epidemics and pandemics, each case transmits the virus at 2–3 day 
interval to 1.1–1.8 and 1.5–5.5 individuals respectively [ 65 ]. The human-to-human 
transmission occurs in one of the three ways: direct contact with infected persons, 
touching object contaminated with the virus and then transferring it from hands to 
mucus surfaces of the nose or eyes, and inhaling virus-containing droplets produced 
by infected person when coughing or sneezing [ 66 ,  67 ]. The effi ciency of infl uenza 
transmission aerosolized in droplets depends on the size of the droplet, viral con-
centration, and humidity. Yang and Marr (2011) demonstrated that the concentra-
tion of infectious infl uenza virus in cough droplets is inversely related to the relative 
humidity (RH) in indoor settings, while the droplet size is directly related to relative 
humidity. In a dryer environment, the smaller droplets tend to stay in the air longer, 
infecting larger number of sensitive hosts. In a humid environment, the virus in 
large droplets settles on objects (fomites) and can survive for several days. Viable 
infl uenza viruses in mucus were detected on paper money bills after 48 h and in 
some cases up to 17 days [ 68 ]. 

T.V. Feldblyum and D.M. Segal



771

 In temperate climates, infl uenza epidemics occur in a seasonal pattern during the 
colder months of the year, while in the tropical climates, infl uenza circulates all year 
round with patterns associated with rainy seasons. Multiple reasons for this 
 periodicity such as sunlight, temperature, humidity, human mobility, and contact 
rates, and functions of the immune system have been explored without arriving at a 
defi nitive conclusion [ 69 ,  70 ]. Yang and Marr (2011) suggested that the winter sea-
sonality can be partially explained by higher concentration of droplet-suspended 
infl uenza viruses in heated buildings due to lower humidity. Other environmental 
factors, such as colder temperature and reduced ultraviolet radiation, are also inde-
pendently associated with virus survival and seasonality. Temperature and humidity 
also effect the human immune system, diminishing the blood fl ow and leukocyte 
supply in low temperatures while increasing viral shedding [ 69 ]. Lowen and Palese 
(2011) confi rmed that cold and dry conditions facilitated viral transmission through 
aerosolized droplets, while warm or humid environment (30 °C, 80 % RH) pre-
vented the viral spread. They proposed that seasonal pattern of infl uenza epidemics 
in temperate climate occurs due to viral transmission by aerosolized droplets, while 
year- round infections occur through fomites or direct contacts in tropical climate. 
The exception to this pattern was the 2009 spring outbreak of the swine-origin infl u-
enza A H1N1, which possibly could be explained by the increased frequency of 
transmission via direct contact due to the absence of human immunity to the novel 
antigenic strain. Variations in temperature and humidity did not affect viral spread 
by direct contact [ 66 ]. 

 Infl uenza pandemics are caused by novel viruses for which the world population 
has no immunity [ 54 ,  72 ]. Each of the six pandemics in the last 120 years were 
caused by a different novel infl uenza A virus that has undergone antigenic shift, 
reassortment of gene segments encoding HA and/or NA, and successfully adapted 
to the human host [ 53 ]. However, of the multiple possible combinations between 17 
HA genes and 10 NA genes, infl uenza viruses with only three combinations (H1N1, 
H2N2, and H3N2) have adapted to enable human-to-human transmission suggest-
ing the presence of inherent limitations in viral ability to adapt [ 72 ,  73 ]. 

 Of the documented pandemics, the most devastating occurred in 1918–1919 (the 
Spanish infl uenza), causing more than 500,000 deaths in the USA and over 50 mil-
lion deaths in the world [ 74 ]. The avian origin infl uenza A H1N1 virus which 
caused the pandemic had a case-fatality rate of 2.5 %, with the majority of the 
deaths occurring among otherwise healthy young adults 20–40 years of age [ 130 ]. 
The high mortality appeared to be associated with pneumonia caused by bacterial 
coinfection [ 72 ]. World War I potentially contributed to the spread and severity of 
the pandemic. Crowded conditions, increased stress, and malnutrition could have 
weakened the immune system of the troops while increased travel of the armed 
forces and civilians facilitated the spread of the virus throughout the world [ 75 ]. 

 The sequence data of the 1918 infl uenza a H1N1 virus suggest that the virus was 
not a reassortant but rather all eight viral segments were novel with no prior immu-
nity in the human population. In contrast, the viruses that caused the 1957 (H2N2) 
and 1968 (H3N2) pandemics were direct descendants of the 1918 infl uenza and 
evolved from the existing strains through reassortment events with genes from 
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avian infl uenza viruses [ 76 ]. The H2N2 virus with two surface proteins new to 
humans caused the Asian pandemic, resulting in approximately 70,000 deaths in the 
USA and two million deaths worldwide. The 1968 H3N2 “Hong Kong'” virus was 
associated with 34,000 deaths in the USA and approximately 1,000,000 excess 
deaths globally. The disease caused by the pandemic H3N2 was relatively mild and 
the virus became seasonal and is circulating to date [ 53 ,  77 ]. 

 Predictions that high pathogenicity avian infl uenza (HPAI) H5N1 would be the 
next pandemic strain were the subject of public health concern. The H5N1 contin-
ues to spread, causing disease in poultry and occasional human infections through 
direct contacts with infected poultry. Data pertaining to the H5N1 IAV strain adap-
tation to human host is limited, but it appears that human-to-human transmission 
has not occurred. Meanwhile, a fourth generation swine origin descendant of the 
1918 virus caused a pandemic in 2009 [ 53 ,  72 ]. Three strains of viruses, derived 
from birds, pigs, and humans, gave rise to the pandemic virus by antigenic shift, 
reassortment, and recombination in pigs [ 78 ]. Human infections with the novel tri-
ple reassortment swine origin virus pdm2009H1N1 were fi rst detected in Mexico 
and then in California in April of 2009, followed by the declaration of public health 
emergency in the USA [ 79 ]. Due to the fast spread of the virus worldwide, the WHO 
declared infl uenza pandemic in June 2009 [ 78 ]. 

 Despite the high transmissibility, the disease severity was moderate which is not 
typical of most pandemic strains [ 79 ]. A distinguishing feature of the 2009 H1N1 
virus, also observed in previous pandemics, was the off-season timing for the start 
of the pandemic and young age prevalence among infl uenza cases, hospitalizations, 
and deaths. In Mexico in the early stage of the pandemic, 87 % of deaths were 
reported for patients 5- to 59-years-old [ 80 ]. In the Northern Hemisphere, the major-
ity of deaths, 65.5–91.7 %, occurred among adults 25–64 years and only 4.2–20.7 % 
of deaths were reported in adults older than 65 years [ 81 ] compared to a typical 
infl uenza season when estimated 90 % of deaths occur in this age group [ 82 ]. 
Among hospitalized patients 68.8 % of fatalities occurred among adults 19–64 
years of age during the 2009 pandemic while 74.9 % fatalities occurred among 
patients 65 years and older during the preceding infl uenza season [ 21 ]. Underlying 
medical conditions contributed to disease severity in all age groups. Cross-reactive 
immunity was found more frequently among persons older than 60 years of age due 
to earlier exposure to infl uenza A/H1N1 strains derived from the 1918 pandemic 
virus [ 83 ,  84 ].   

4     Infl uenza Disease 

 The impact of infl uenza epidemics or pandemics on the affected population has 
been associated with predominantly circulating viral types and subtypes and their 
relation to the preexisting immunity of the human host [ 62 ,  72 ]. Infl uenza infec-
tions may cause especially severe disease in populations already burdened with a 
high prevalence of chronic pulmonary conditions [ 85 ]. Galiano et al. (2012) sug-
gested that the major determinant of infl uenza disease severity was host-related and 
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included immune response, individual genetic background, and likely environmen-
tal factors surrounding human host and the virus. They based their hypothesis on 
the fact that a complete sequence of the A/Fujian/411/2002-like H3N2 virus isolates 
from cases that died and those who survived did not reveal any genetic differences 
that could be associated with disease severity or increased mortality [ 64 ]. Because 
the mechanisms by which viruses evolve and adapt to human hosts remain unde-
termined and the seasonal infl uenza disease continues to cause substantial public 
health threat, identifying the most vulnerable population groups in a timely manner 
remains a critical component of public health response. 

 Interventions to prevent or mitigate the impact of epidemics and pandemics 
include vaccination, antiviral drug therapies, and non-pharmaceutical methods. 
Vaccination is considered the most effective prevention method because it creates 
herd immunity by protecting not only the vaccinated individual but also precluding 
the viral transmission to those who did not receive the vaccine. However, effective 
protection can be achieved only if the vaccine strains antigenically match the cir-
culating viral strains [ 86 ]. Antiviral therapy is benefi cial, especially when a new 
viral strain emerges for which there is no vaccine. Novel therapeutic technologies 
against infl uenza offer great promise such as the use of siRNA and ribozymes 
delivered by intranasal spray or retroviral carriage [ 79 ]. Non-pharmaceutical meth-
ods include social distancing to reduce crowding and personal interactions and 
travel restrictions [ 71 ]. 

4.1     Clinical Symptoms and Patient Management 

 Infl uenza symptoms range from mild upper respiratory ailment to severe complica-
tions resulting in patient hospitalizations and in extreme cases, death [ 87 ]. The 
symptoms of infl uenza-like-illness (ILI) include fever, chills, sore throat, or cough 
[ 46 ,  88 ]. Depending on the circulating viral strains, diarrhea or vomiting may also 
be associated with infl uenza infection, especially in children [ 47 ]. Infl uenza may be 
diffi cult to diagnose based on clinical symptoms alone because the clinical presen-
tation may be similar to other respiratory viral and some bacterial infections [ 90 ]. 
Presence of infl uenza virus can be confi rmed by laboratory testing. The disease 
severity can be characterized by outcome indicators such as hospitalizations, admis-
sions to intensive care units, length of hospital stay (LOS), utilization of mechanical 
ventilators, and fl u-associated mortality [ 8 ,  42 ,  90 ,  91 ]. 

 On the average, the frequency of severe cases requiring hospitalization or result-
ing in death is higher during the seasons when A(H3N2) viruses are predominant 
[ 62 ,  92 ]. During the 2009 pandemic, an estimated 0.45 % of the pdmH1N1 infl uenza 
cases required hospitalization and could be characterized as severe; approximately 
12,500 of the cases or 0.02 % died [ 93 ]. In a review of studies characterizing the 
disease severity in the beginning of the 2009 H1N1 pandemic, Falagas et al. (2010) 
found a wide range of hospitalization rates (0–93.8 %), ICU admission rates 
(0–36.4 %), and fatality rates (0–38.5 %) among infl uenza cases. The fatality rate 
was signifi cantly higher (25–41.4 %) among patients admitted to the ICU. A 
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 prospective study in Canadian population measured the outcomes of severe 2009 
infl uenza A (H1N1) cases as mortality, length of stay (LOS) in an ICU, and duration 
of mechanical ventilation. In this study of 215 critically ill patients, 81 % required 
mechanical ventilation, the median ICU stay was 12 days, and 17.3 % died within 
90 days [ 94 ]. 

 Annual infl uenza vaccination is universally recommended in the USA as the 
most effective prevention method for children older than 6 months of age and for all 
adults [ 95 ]. Vaccinating in advance 70 % of the US population even with low- 
effi cacy vaccine in combination with school closure could be a cost-effective 
approach to reducing the disease burden [ 71 ].  

4.2     Infl uenza Risk Factors and Vulnerable Population Groups 

 Susceptibility to infl uenza and severity of the disease is affected by multiple fac-
tors including characteristics of the circulating virus strain, genetics of the host, 
prior infection history, comorbidities, age, and environmental factors [ 87 ,  96 ]. 
Higher proportion of younger adults aged 20–50 [ 97 ] were more frequently 
infected during the 2009 H1N1 pandemic than traditionally more vulnerable age 
group 65 years or older during the seasonal infl uenza epidemics while pediatric 
mortality and morbidity was of a greater concern during the 2003–2004 season 
[ 90 ,  98 ]. This unpredictability of the virus–host interactions and consequences to 
population’s health underscores the need for continuous timely and informative 
infl uenza surveillance. 

 Multiple studies conducted during different infl uenza seasons demonstrated 
increased severity of infl uenza when chronic conditions such as asthma, diabetes, 
neurologic disorders, obesity, and cardiovascular disease are present in children and 
adults [ 42 ,  47 ,  89 ,  99 ]. Underlying health conditions, especially chronic lung and 
heart disease [ 12 ] were more prevalent among the cases admitted to ICU or those 
who died compared to other hospitalized patients diagnosed with infl uenza [ 100 ]. In 
an international study of more than 70,000 hospitalized patients with laboratory 
confi rmed H1N1pdm infl uenza proportion of patients with underlying chronic con-
ditions increased with disease severity and constituted 52.3 % of those admitted into 
ICU and 61.8 % of those who died [ 99 ]. During the 2009 pandemic, mortality was 
higher among individuals with underlying medical conditions regardless of their 
age [ 83 ]. The presence of any chronic disease was also associated with infl uenza 
severity among hospitalized cases in the USA during the 2009 pandemic and pre-
ceding seasonal epidemics [ 21 ,  101 ]. 

4.2.1     Clinical Infl uenza Risk Factors 

 Underlying health conditions including HIV, cancer, heart disease, lung and respira-
tory conditions, diabetes, neuromuscular and neurological disorders, obesity, and 
pregnancy were reported to be associated with increased risk for infl uenza infection 

T.V. Feldblyum and D.M. Segal



775

or disease severity. However, results were often controversial or not confi rmed to be 
statistically signifi cant. 

 Slightly more than half of a sample from the NIS hospitalization records (54.4 % 
in 2007–2008 and 53 % in 2009) reported at least one underlying health condition 
assessed (Fig.  29.2 ) [ 21 ]. For both the 2009 H1N1 pandemic and A/H3N2 2007–
2008 epidemic seasons, the proportion of records with comorbidities among severe 
cases (64.7 % and 62.9 % respectively) and among those who died in the hospital 
(62 and 63.4 %) was similar and signifi cantly higher than among the hospitaliza-
tions with moderate disease (45.4 and 46.2 % respectively). The hospitalized 
patients with any comorbidity had greater odds of severe seasonal and pandemic 
infl uenza (OR = 2.21 and 1.97 respectively) and inpatient death (OR = 1.96 and 2.02 
respectively) [ 21 ].  

 During the 2009 H1N1 pandemic, a greater proportion of immunocompromised 
HIV-positive persons were hospitalized with infl uenza compared to HIV prevalence 
in general population but the H1N1pdm-associated disease severity and mortality 
were not substantially affected. In a US study of hospitalized patients with  confi rmed 
2009 pandemic infl uenza A H1N1, there was no statistically signifi cant difference 
between the proportion of immunosuppressed patients among those with pneumonia 
(10 %) compared to patients without pneumonia (14 %) [ 102 ]. In low prevalence 
settings the severity of seasonal infl uenza does not appear to change signifi cantly in 
adults infected with HIV. However, in high HIV prevalence populations, infl uenza 
may pose a higher morbidity and mortality risk due to compromised immune func-
tions and the presence of tuberculosis, hepatitis, and other comorbidities [ 103 ]. 
In South African population with high prevalence of HIV among patients with 
 confi rmed infl uenza A (H1N1) infection referred to ICU, 31.5 % were immunosup-
pressed due to either HIV or immunosuppressive therapy [ 85 ]. 

  Fig. 29.2       Distribution of cases in the infl uenza severity groups among hospitalizations with at 
least one underlying medical condition during the 2007–2008 epidemic and 2009 pandemic          
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 Cancer patients receiving chemotherapy or after hematopoietic cell transplant 
(HCT) have suppressed immune functions and are susceptible to infections includ-
ing seasonal or pandemic infl uenza viruses. Infl uenza infection outcomes in HCT 
recipients vary depending on the infl uenza virus type and subtype [ 104 ]. Studies 
comparing seasonal and pandemic infl uenza disease in children and adults undergo-
ing cancer therapy found signifi cant differences in clinical symptoms at presentation 
and in clinical outcomes [ 105 – 107 ]. Although children infected with 2009 H1N1 
were healthier at presentation and had fewer comorbidities they more frequently had 
pneumonia, stayed longer in the hospital, were more frequently admitted to ICU 
[ 106 ], and experienced higher mortality (10 % vs. 0 %) due to complications com-
pared to children with seasonal infl uenza infections. Males were especially at high 
risk for developing pneumonia. Timely antiviral therapy mitigated the infl uenza dis-
ease severity in children and adult recipients of HCT [ 104 ,  107 ]. 

 Chronic heart disease is a known risk factor for severe outcomes among persons 
with infl uenza-like illness. During the 2009 H1N1 pandemic, heart disease was the 
second most prevalent medical comorbidity present in approximately 25 % of 
reported deaths among adults and in almost 50 % of fatalities among persons 65 
years or older [ 83 ]. Heart and lung disease were also frequent comorbidities with 
diabetes and kidney disease among the infl uenza case fatalities. In a dataset pooled 
from multiple countries in Europe, Asia, and America chronic heart disease was 
present in 7.1 % of all hospitalized patients with pH1N1 infection, 10.9 % of ICU 
admissions, and 12.1 % of deaths [ 99 ]. 

 Lung diseases were the most frequently reported chronic conditions for the 2009 
H1N1 infl uenza case fatalities with the chronic obstructive pulmonary disease 
(COPD) most prevalent in adults and asthma in children [ 83 ]. Regardless of asthma 
severity, its prevalence tends to grow with escalating infl uenza disease severity [ 99 ]. 
Infl uenza virus infection is known to exacerbate asthma and asthma is a known risk 
factor for infl uenza infection. It was the most frequently reported underlying medi-
cal condition in pediatric deaths associated with infl uenza A/2009 H1N [ 83 ]. The 
impact of asthma may also depend on the circulating infl uenza viruses. In a Canadian 
studies of pediatric population hospitalized with infl uenza, children with pandemic 
H1N1 infl uenza in 2009 were signifi cantly more likely to have asthma (22 %) than 
those with seasonal infl uenza during the 2004–2009 seasons (6 %) although there 
were no difference in severity or clinical presentation of asthma between the pan-
demic and seasonal pediatric infl uenza cases [ 108 ]. Asthma was also more prevalent 
among the children admitted to ICU with pH1N1 and developing pH1N1- associated 
pneumonia compared with seasonal infl uenza in 2006–2009 [ 109 ]. Patients with 
chronic lung and airways diseases such as COPD are at a greater risk for severe 
morbidity and mortality associated with infl uenza infection. Evidence suggests that 
bacterial coinfections in COPD cases may further impact the disease severity. In a 
study of patients hospitalized with severe COPD in Italy, viral infection was detected 
in 23.4 % and viral-bacterial coinfection in 25 % of patients hospitalized with 
COPD exacerbation. Infl uenza was one of the most frequently identifi ed infections 
adversely effecting lung function and extending hospital stay [ 110 ]. Although many 
national guidelines recommend infl uenza vaccination, there is only limited evidence 
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that vaccine is effective in COPD patients. However, some observational studies 
suggest that vaccine reduces both hospitalizations and mortality [ 111 ]. 

 The association between diabetes Type1 and Type 2 and a greater risk for infl u-
enza associated complications may be explained by adverse impact of excessive 
blood glucose on immunity, as well as heart, kidney, and lung functions [ 112 ]. 
Infl uenza surveillance data in Wisconsin and New Mexico during the 2009 H1N1 
pandemic indicated that diabetes was the second most frequent comorbidity follow-
ing asthma and was present in 16–20 % of hospitalized infl uenza cases [ 42 ,  105 ]. 
Van Kerkhove et al. (2011) reported that diabetes was an underlying chronic condi-
tion in 9 % of infl uenza-associated hospitalizations and 13.6 % of cases admitted to 
the ICU in a sample representing 19 countries with diverse populations and health- 
care systems. Diabetes was present in 8 % of infl uenza A/H1N1 associated fatalities 
in England [ 113 ], 14.4 % fatalities in a large international sample [ 99 ], and 29 % of 
fatalities in New Mexico [ 105 ]. The higher proportion of diabetes in New Mexico 
potentially could be due to a higher than 50 % obesity among hospitalized patients 
older than 18 years. Diabetes prevalence is on the rise in the USA, especially among 
the aging population, reaching almost 27 % prevalence among persons 65 years of 
age or older [ 114 ]. Infl uenza surveillance and timely characterization of clinical 
disease course are important for potential prevention and treatment of diabetic infl u-
enza cases [ 112 ]. 

 Neurological and neuromuscular disorders (NNMD) are risk factors for infl u-
enza infections possibly due to diffi culty clearing secretions from respiratory tract 
due to impaired or reduced muscle tone and lung function could lead to severe dis-
ease [ 9 ]. Persons with NNMD also may have an increased susceptibility to recurrent 
respiratory infection due to diminished ability to protect airways through cough 
[ 90 ] and a higher risk (OR, 5.6) of infl uenza-related neurologic complications such 
as seizures [ 115 ]. 

 In a study of infl uenza-associated pediatric deaths during the 2003–2004 infl u-
enza season, 33 % of the children had neuromuscular or neurologic disorder [ 116 ]. 
Louie et al. (2006) further confi rmed that neurologic diseases with the potential to 
compromise respiratory function were present in more than 25 % of severe infl u-
enza cases among children. NNMD were the most prevalent chronic diseases asso-
ciated with respiratory failure in hospitalized children with laboratory-confi rmed 
infl uenza diagnosis followed by chronic lung and chronic heart conditions [ 9 ]. 
A study of pediatric deaths reported to CDC during the 2009 H1N1 pandemic 
showed that 43 % of case fatalities had neurologic disorders. Majority of the 
children also had additional comorbidities such as heart disease [ 117 ]. Adult 
patients who developed pneumonia as a consequence of infl uenza 2009 H1N1 
infection were more than twice as likely to have a neurological disease compared to 
patients who had no complications [ 102 ]. Neurological disorders found among 
patients hospitalized due to infl uenza included Down syndrome, cerebral palsy, 
developmental delay, history of stroke [ 102 ], seizures, spinal cord injuries [ 90 ], 
neuromuscular disorders,  hydrocephalus, and epilepsy [ 117 ]. Pediatric deaths due 
to pandemic infl uenza fi ve times exceeded the annual average number of deaths 
caused by seasonal infl uenza viruses during the fi ve proceeding seasons. Neurologic 
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disorders were the most frequent comorbidities found in infl uenza-associated pedi-
atric deaths [ 117 ] underscoring the importance of continues surveillance of disease 
severity and the need for timely characterization of risk factors during an ongoing 
infl uenza season. 

 During the 2009 H1N1 pandemic, obese individuals with body mass index 
(BMI) exceeding 30 kg/m 2  were at a higher risk for infl uenza infection; they were 
more likely to be hospitalized and were disproportionately represented among the 
patients in ICUs, those with longer duration of mechanical ventilation, longer hos-
pital stay, and those who died compared with those who were not obese [ 99 ,  118 , 
 119 ]. In a study of California adults the prevalence of obesity and extreme obesity 
among infl uenza cases was 1.5 and 2.8 times higher respectively than the US popu-
lation average. The odds ratio (OR) for fatality among the extremely obese 
(BMI > 40) patients was 2.8–4.2 [ 120 ]. These fi ndings corroborated the results of 
Kwong, Campitelli, and Rosella (2011) suggesting that obese individuals were at a 
greater risk for hospitalization than persons with normal weight during 12 pre- 
pandemic infl uenza seasons with OR = 1.45 and 2.1, for individuals with BMI 
30-34.9 and ≥35 respectively. 

 The association between obesity and infection can be explained by impaired 
immune response or by strain of infection on respiratory system and reduced 
mechanical function of lungs and airways. Obese persons consume high percentage 
of oxygen to maintain normal respiratory function; they have increased airway 
resistance and may suffer from hypoventilation and chronic infl ammation of the 
respiratory tract altering the immune function and the ability to respond to chal-
lenges to respiratory system [ 119 ,  120 ]. The role of obesity as an independent risk 
factor may be diffi cult to ascertain, especially in studies with a limited sample size, 
as it is often directly correlated with other underlying health conditions (e.g., diabe-
tes and heart disease) known to increase risk for infl uenza infections and severe 
outcomes [ 118 ]. However, because more than 35 % of adults in the USA [ 121 ] and 
500 million worldwide [ 122 ] are obese it may be a major contributor to excess mor-
bidity and mortality associated with infl uenza and warrants further investigation. 

 Pregnancy has been reported as a risk factor for seasonal and pandemic infl uenza 
infections and severe disease outcomes using historical and current data. About 
50 % of pregnant women infected with infl uenza developed pneumonia during the 
1918 and 1957 pandemics [ 123 ]. Pregnancy was reported to be a risk factor for 
infection with infl uenza and severe disease outcome during the infl uenza A/2009 
H1N1 pandemic as well. In a review of publications on 2009 H1N1 pandemic epi-
demiology in the Northern Hemisphere, Falagas et al. (2010) reported that 4.5–
17.4 % of hospitalized cases were pregnant women and they comprised 11.5–18.2 % 
of ICU admissions. Compared to nonpregnant women diagnosed with infl uenza, 
they were seven times more likely to be hospitalized and twice more likely to have 
fatal outcomes [ 99 ]. In a UK study of a population with an estimated 6 % preva-
lence of pregnancy, 21 % of patients hospitalized with laboratory confi rmed infl u-
enza 2009 H1N1 were pregnant and the majority of them were in the second or third 
trimester. The case fatality rate ranged between 1 and 6 % [ 2 ]. The rate of respira-
tory hospitalizations among pregnant women in Nova Scotia during non-pandemic 
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infl uenza seasons between 1990 and 2002 was almost 8 times higher for pregnant 
women than the year before they became pregnant [ 124 ]. Pregnant women with 
comorbidities such as asthma, anemia, and heart or renal disease were at the greatest 
risk for infl uenza-associated hospitalization. 

 The fi ndings on infl uenza severity association with pregnancy were not consis-
tent. In several countries as the level of disease severity increased the proportion of 
pregnant women diminished and the odds ratio for death among hospitalized preg-
nant women was <1 [ 99 ]. Interestingly, in a study of ILI hospitalized patients during 
the 2007–2010 infl uenza seasons, pregnancy was protective against pneumonia (OR 
0.4), possibly due higher likelihood of hospitalizing pregnant women with severe 
respiratory infection [ 125 ]. This observation was supported by a UK study reporting 
that maternal outcomes were no more severe that for nonpregnant women of similar 
age hospitalized for infl uenza [ 2 ]. An increased susceptibility to infl uenza infection 
and severe disease among pregnant women could be partially explained by changes 
in immune response due to lower plasma levels of adiponectin regulating macro-
phage activity [ 119 ]. An additional explanation could be psychosocial changes that 
may occur during pregnancy such as perceived increased stress, anxiety, and nega-
tive mood which also were shown to alter the immune functions and increase the 
risk for respiratory tract infections [ 126 ].  

4.2.2     Demographic Infl uenza Risk Factors 

 In addition to clinical comorbidities demographic characteristics and socioeco-
nomic conditions also can increase the risk for infl uenza infections. Close human 
contacts in crowded housing during the infl uenza season, infl uenza vaccine uptake 
in a community, awareness of infl uenza transmission routs, and following the non- 
pharmaceutical prevention practices effect infl uenza virus spread and attack rates in 
population. The risk for infl uenza infection may also vary in individuals from dif-
ferent racial/ethnic backgrounds and age groups. 

 Historically, higher attack rates and more severe disease outcomes were observed 
among minorities since 1900s including during the 1918 infl uenza pandemic [ 45 , 
 127 ]. In an analysis of infl uenza 2009 H1N1 cases pooled from 19 countries, Van 
Kerkhove et al. (2011) reported that indigenous populations and minority groups 
were disproportionately represented among hospitalized infl uenza cases and fatali-
ties in Canada, Australia, and New Zealand, while in Mexico and Thailand minority 
groups did not carry excess disease burden. In a Canadian case–control study of 
laboratory-confi rmed pH1N1 cases, 37 % were represented by the First Nation resi-
dents. The odds ratio was 6.52 for the First Nation individuals being admitted to the 
ICU compared to other ethnic groups even when controlling for socioeconomic 
status, age, residency settings, comorbidities, and time to treatment [ 45 ]. Similar 
results for infl uenza severity were observed in the USA where the risk for pH1N1 
infl uenza hospitalization in New Mexico was 2.6 times higher among American 
Indians, 1.7 times higher for Blacks, and 1.8 times higher for Hispanics compared 
to non-Hispanic Whites [ 105 ]. Surveillance data from 12 states showed that the rate 
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of mortality attributed to pH1N1 was four times higher among the American Indians 
and Alaska Natives (AI/AN ) and they had the highest rate (81.0 %) of underlying 
health conditions than all other ethnic groups [ 128 ]. Higher proportion of pediatric 
hospitalizations among minorities was observed during the pre-pandemic seasons 
as well, including the 2000–2001 season [ 129 ] and 2003–2004 when infl uenza A/
Fujiian was the prevalent circulating virus [ 116 ]. 

 Although the reasons for disparities in infl uenza susceptibility and severity 
among the racial and ethnic populations are not fully identifi ed several explanations 
have been proposed including socioeconomic status and resulting differences in liv-
ing conditions, crowding, health behaviors, and access to medical care [ 96 ]. Cultural 
differences may affect utilization of available health care or vaccination uptake. 
Difference in genetic susceptibility and higher prevalence of chronic conditions 
associated with increased risk for infl uenza disease severity may also impact the 
attack rates and the disease outcome in ethnic minority communities [ 99 ]. 

 Traditionally populations at the extremes of the age spectrum, young children 
and older adults are the most vulnerable groups during seasonal infl uenza epidemics 
while pandemics exhibit a characteristic shift towards younger adults in infl uenza- 
related deaths [ 65 ,  80 ,  130 ]. Persons younger than 65 years of age accounted for a 
greater proportion of deaths during all three pandemics in the twentieth century as 
well as during the 2009 H1N1 pandemic when young adults were at an increased 
risk for morbidity and mortality. Age was an independent risk factor for severe dis-
ease outcomes and death. In a study of hospitalized infl uenza cases in Washington 
State the odds of ICU admission or death were 4.4 and 5.9 times greater among 
adults 18–49 years and 50–64 years of age respectively compared with children 
younger than 18 years when controlling for other risk factors [ 11 ]. The lower infl u-
enza incidence rate and mortality among adults over 64 years observed during pan-
demics could be explained by antigen recycling mechanism, a partial protection due 
to earlier exposure to a similar virus [ 65 ]. However, if infected, this age group had 
the highest mortality rate among the hospitalized patients [ 99 ] potentially due to the 
presence of comorbidities, effect of medications, and bacterial coinfections. 
Explanations for severe disease among young adults included antibody-dependent 
enhanced infection and strong infl ammatory response in the lungs leading to lung 
injury and ARDS [ 11 ]. Once infected with a novel infl uenza virus younger persons 
may retain long-lasting immunity better than older persons [ 130 ]. 

 During the seasonal infl uenza epidemics older adults and young children are 
usually at a higher risk for severe disease and death. The proportion of infl uenza- 
attributable deaths during the 1994–2000 infl uenza seasons in Canada increased 
with age from 2 % in 65–69 age group to 5 % in persons 90 years and older. The 
case fatality rate for infl uenza hospitalized patients increased from 4 to 30 % for 
population 50–64 years to 90 years or older respectively and over 90 % of deaths 
occurred in persons older than 65 years of age [ 12 ]. During the 2003–2004 season 
when Infl uenza A Fujian strain was predominantly circulating virus increased mor-
bidity and mortality was observed among children younger than 5 years of age [ 90 , 
 98 ] while children hospitalized due to severe infl uenza during the 2009 H1N1 pan-
demic were signifi cantly older with a larger proportion older than 5 years of age as 
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compared to pediatric admissions during the pre-pandemic infl uenza seasons [ 108 ]. 
Developing immune system and absence of immunity to circulating viruses in 
young children and weakened immune response to vaccination among the older 
adults renders both groups especially susceptible to seasonal infl uenza infection 
[ 11 ,  12 ,  99 ]. 

 Although the health conditions described in this chapter contribute to infl uenza 
virus susceptibility and severity of the disease, their prevalence and impact may 
vary during different infl uenza seasons. During the 2009 infl uenza pandemic, only 
one third of the 70,000 hospitalized cases representing 19 countries had an identi-
fi ed chronic clinical comorbidity while approximately two thirds of hospitalized 
cases and 40 % of fatal cases did not have any identifi ed preexisting disease. For 
the 2009 infl uenza pandemic, the overall difference in demographic and clinical 
factors between the disease severity groups and moderate disease controls suggests 
that age, sex, race, and all clinical conditions of interest showed overall statistically 
signifi cant association with infl uenza severity. However, pregnancy was not 
 associated with infl uenza severity for women of childbearing age [ 21 ]. The differ-
ences of risk factors and clinical outcomes in different countries further highlighted 
the need for country-specifi c and global surveillance as well as data sharing inter-
nationally [ 99 ].    

5     Conclusion 

 Timely information on circulating infl uenza viruses and the disease burden associ-
ated with seasonal and pandemic infl uenza is essential for optimal public health 
response, identifi cation of vulnerable populations, and for prevention and patient 
management strategies. Susceptibility to infl uenza and severity of the disease is 
affected by multiple factors including characteristics of the circulating virus strain, 
genetics of the host, prior infection history, comorbidities, age, and environmental 
factors. The unpredictability of the virus–host interactions and consequences to 
population’s health underscores the need for continuous timely and informative 
infl uenza surveillance. Clinical surveillance is critical for identifi cation of at risk 
population groups which also may change depending on the circulating virus as 
well as for monitoring the disease spread in the population and severity. Syndromic 
surveillance based on nonclinical indicators may contribute to a signal of epidemic 
spread and increase of cases. To better predict viral strains for effective vaccines and 
monitor novel emerging viral strains that could cause epidemics it is critical to con-
tinue and expand viral surveillance on an International level. While electronic sur-
veillance based on nonclinical data such as over-the-counter medication sales, 
school absenteeism, and health information seeking may provide preliminary signs 
of potential infection spread, prompt release of electronic health records (EHR) 
containing diagnosis and clinical outcomes can lead to a more informative and 
timely disease surveillance. Increasing utilization of patient electronic records could 
play an important role in attaining public health objectives and complimenting other 
information sources.         
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    Chapter 30   
 The Role of Viral Protein Phosphorylation 
During Filovirus Infection 

             Jason     Kindrachuk      ,     Jens     H.     Kuhn      , and     Peter     B.     Jahrling     

          Core Message   Following the emergence of the  Filoviridae  family members 
Marburg virus and Ebola virus nearly fi ve decades ago, there has been great interest 
in deciphering the molecular events that underlie the severe pathologies associated 
with infections by these viruses. Although there is signifi cant insight into the patho-
logical events that occur following infection gained from both investigations of 
human patients and from experimental animal infections, there is a relative paucity 
of information regarding the role of molecular interactions between the host and 
pathogen during disease progression or resolution. There is now an increasing 
appreciation that host- mediated phosphorylation of fi lovirus proteins serves a regu-
latory role for fi lovirus protein function/activity. Here, we discuss the role of these 
phosphorylation events in the fi lovirus life cycle.  

1     Introduction 

 The mononegaviral family  Filoviridae  includes three genera,  Marburgvirus , 
 Ebolavirus , and  Cuevavirus  [ 1 ,  2 ]. The members of these genera possess non-
segmented, single-stranded, negative-sense RNA genomes and produce envel-
oped, fi lamentous virions. Ebolaviruses and marburgviruses are etiological 
agents of severe hemorrhagic fevers in Africa that are associated with unusually 
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high case-fatality rates in humans and nonhuman primates (NHPs) [ 3 ,  4 ]. These 
viruses are of global concern, considering the potential for their accidental 
introduction from endemic to nonnative regions or intentional manipulation for 
nefarious purposes [ 5 ,  6 ]. Concerns regarding virus spread from rural areas, 
where fi loviruses tend to emerge, to urban areas, such as during recent disease 
outbreaks of Sudan virus in Uganda and Ebola virus in Guinea/Liberia, have 
increased fears of rapid spread of these highly lethal viruses [ 7 ,  8 ]. These con-
cerns have been further exacerbated by importation of Marburg virus (MARV) 
by tourists returning from Uganda to the Netherlands and the USA [ 9 ,  10 ]. 
Currently licensed vaccines for fi lovirus infections are not available, and treat-
ment is primarily based on supportive care. 

 Although many investigations have focused on the molecular and pathological 
events of the host following fi lovirus infection there is a relative paucity of informa-
tion regarding the role of viral proteins and their respective function and/or activities 
in these processes. From this perspective, the role of posttranslational modifi cation of 
proteins through phosphorylation is one of the most well- characterized modifi cations 
in terms of the regulation of protein function and/or activity. The role of protein phos-
phorylation in the regulation of cellular events in both prokaryotic and eukaryotic 
organisms has been well documented. Phosphorylation also plays an essential role in 
regard to the modulation of viral protein function in multiple members of the order 
 Mononegavirales  [ 11 – 13 ]. Given the importance of the role for modulation of viral 
protein function and activity through phosphorylation, this review focuses on the 
current state of knowledge regarding the role of fi lovirus protein phosphorylation in 
viral infection.  

2     Etiologic Agents and Natural History 

 The three fi lovirus genera  Marburgvirus ,  Ebolavirus , and  Cuevavirus  include a 
total of seven species and eight viruses (Table  30.1 ). The fi rst documented human 
fi lovirus disease outbreak occurred in 1967 in West Germany and Yugoslavia fol-
lowing the importation of grivets/African green monkeys ( Chlorocebus aethiops ) 
infected with Marburg virus (MARV) from Uganda [ 14 ]. Although the case-fatal-
ity rate associated with this outbreak was 23 %, more recent disease outbreaks 
were characterized by much higher case-fatality rates (updated overall 
mean ≈ 80.3 %) [ 15 ]. Together with Ravn virus (RAVV), which thus far has only 
caused sporadic human infections, MARV is a member of the  Marburgvirus  
genus. The disease these two viruses cause is referred to as Marburg virus disease 
(MVD).

   The genus  Ebolavirus  has fi ve members: Bundibugyo virus, Ebola virus, Reston 
virus, Sudan virus, and Taï Forest virus. Ebolaviruses were fi rst identifi ed in 1976, 
when a disease with similar clinical presentation to MVD was noted in two simul-
taneous viral hemorrhagic fever outbreaks in southern Sudan (now South Sudan) 
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and northern Zaire (now Democratic Republic of the Congo). Surprisingly, two 
distinct viruses were found to be the causative agents of these outbreaks, and both 
were only distantly related to MARV. Today, these viruses are known as Sudan virus 
(SUDV) and Ebola virus (EBOV), respectively. SUDV and EBOV, as well as the 
later discovered Taï Forest virus (TAFV) and Bundibugyo virus (BDBV), are 
the etiological agents of Ebola virus disease (EVD) [ 16 – 19 ]. The number of EVD 
outbreaks has steadily increased from 2000 onwards and has been largely due to the 
emergence or reemergence of EBOV and SUDV [ 20 ]. However, it should also be 
appreciated that this increase may result from multiple factors, including ecological 
changes, increased contact between humans and intermediate and/or reservoir hosts, 
or improved disease surveillance. 

 EBOV appears to be the most lethal member of the  Ebolavirus  genus causing 
EVD with an updated mean case-fatality rate of 77 % [ 15 ]. In addition, EBOV 
is also suspected to be responsible for fatal infections of central chimpanzees 
( Pan troglodytes troglodytes ) and western lowland gorillas ( Gorilla gorilla 
gorilla ) and may contribute to the rapid decline in the populations of these ani-
mals [ 21 ]. SUDV and BDBV, which have only been associated with human 
infections, have updated associated case-fatality rates of ≈53 % and 34 %, 
respectively [ 15 ]. In contrast, only one nonfatal human case of TAFV infection 
has been reported [ 15 ], and RESTV is considered to be nonpathogenic in 
humans [ 22 ,  23 ]. 

 RESTV was fi rst detected in 1989 in Reston, Virginia, USA, following the 
importation of crab-eating macaques ( Macaca fascicularis ) from the Philippines. 
RESTV was therefore the fi rst ebolavirus to emerge outside of Africa [ 24 ,  25 ]. 
Several other epizootics due to RESTV infection occurred in the USA and Italy in 
captive macaques in subsequent years, and all originated in the Philippines. 
Interestingly, simian hemorrhagic fever virus (SHFV), an arterivirus, was always 
found during these outbreaks as well. In 2008, RESTV was coincidentally detected 
in domestic pig tissue samples during a highly fatal outbreak of atypical porcine 

   Table 30.1    Current fi lovirus taxonomy as accepted by the International Committee on Taxonomy 
of Viruses (ICTV) and the ICTV  Filoviridae  Study Group [ 125 ,  126 ]   

 Genus  Species  Virus 

  Marburgvirus    Marburg marburgvirus   Marburg virus (MARV) 
 Ravn virus (RAVV) 

  Ebolavirus    Bundibugyo ebolavirus   Bundibugyo virus (BDBV) 
  Reston ebolavirus   Reston virus (RESTV) 
  Sudan ebolavirus   Sudan virus (SUDV) 
  Taï Forest ebolavirus   Taï Forest virus (TAFV) 
  Zaire ebolavirus   Ebola virus (EBOV) 

  Cuevavirus    Lloviu cuevavirus   Lloviu virus (LLOV) 
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reproductive and respiratory syndrome in the Philippines [ 5 ,  26 ]. However, RESTV 
was only found in sample groups that also tested positive for the arterivirus porcine 
reproductive and respiratory syndrome virus (PRRSV). Adding further complexity 
to the epizootiology, PCR analysis also identifi ed a third virus, porcine circovirus 
type 2, thus further precluding the identity of the causative agent behind the 
outbreak. The ecological connection between these viruses and their individual 
contribution to the observed disease outbreaks remains to be determined. 

 Recently, a phylogenetically distinct, fi lovirus was discovered in carcasses of 
Schreiber’s long-fi ngered bats ( Miniopterus schreibersii ) found in Cueva del Lloviu, 
Asturias, Spain. This virus, Lloviu virus (LLOV), is the founding member of the 
genus  Cuevavirus . The transcriptional features of LLOV have suggested marked 
differences from other fi loviruses [ 6 ]. However, as infectious LLOV has not yet 
been isolated, the biological signifi cance of these differences has not been established. 
At the moment, LLOV is not thought to be pathogenic for humans.  

3     Clinical Signs of Filovirus Infection in Humans 

 The clinical presentation of human fi lovirus infections has been reviewed elsewhere 
in detail [ 20 ,  27 ,  28 ]. Here, we briefl y discuss clinical signs that have been associated 
with MVD and EVD. Much of the information that is available regarding clinical 
disease features of MVD and EVD is based on single, well-defi ned exposures, 
including those associated with laboratory accidents [ 28 ]. The mean incubation 
times associated with MARV infections range from 5 to 9 days and from 3 to 12 days 
during EBOV infection with a median survival of 9 days from the onset of illness. 
Interestingly, Sadek et al. reported that during the 1995 EVD outbreak patients who 
survived to day 14 had >75 % chance of survival [ 29 ]. In the case of both EVD and 
MVD, clinical sign onset occurs rapidly with fairly nondescript manifestations that 
predominantly include fever, rash, and thrombocytopenia, often accompanied with 
gastrointestinal, respiratory, vascular, and neurological manifestations [ 30 – 34 ]. 
Many of these early signs can confound the early diagnosis of MVD and EVD with 
more common illnesses, such as malaria [ 28 ]. Clinically, EVD and MVD are indis-
tinguishable based on either physical examination or clinical laboratory analysis. 
Although hemorrhagic manifestations associated with MVD and EVD can be 
impressive, they are found in less than half of the patients [ 20 ]. When present, hem-
orrhage is often found in multiple foci of the mucosa and commonly in the conjunc-
tivae with associated ease of bruising and persistent bleeding from venipuncture 
sites [ 31 ,  33 ,  35 – 39 ]. Petechiae and mucosal hemorrhage arise during the peak of 
illness that is associated with altered fl uid distribution, hypotension, and aberrant 
coagulopathy [ 40 – 43 ]. 

 In terms of common laboratory parameters, thrombocytopenia is the most common 
feature associated with MVD and EVD. Thrombocytopenia develops early during 
the course of infection and continually declines in patients with severe  disease 
[ 30 – 34 ]. Leukocytosis has also been described, with the presentation of leukopenia 
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at the time of clinical presentation of disease with subsequent neutrophilia [ 30 – 34 ]. 
Elevations in liver enzyme concentrations are common features of both diseases 
with elevated concentrations of alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) during clinical disease presentation. In addition, coagulation 
defects, including disseminated intravascular coagulation (DIC), prolonged pro-
thrombin time (PT), and partial thromboplastin time (PTT), are typical [ 9 ,  30 ,  31 , 
 33 ,  34 ,  44 ,  45 ]. Viremia appears to be largely associated with the onset of illness in 
infected patients and appears to remain elevated in patients that die. Higher viral 
titers are associated with fatal disease as compared to those in patients with resolu-
tion of infection [ 46 – 49 ]. Progression to severe hypotension and shock is generally 
associated with progression to death [ 33 ,  35 ,  50 – 52 ]. Nonfatal disease or asymp-
tomatic infection has been associated with a transient strong pro-infl ammatory 
response early in the course of disease with elevations in circulating interleukin β 
(IL-β), IL-6, and tumor necrosis factor α (TNFα) concentrations, and may also be 
associated with specifi c IgM and IgG responses [ 20 ]. However, the underlying 
cause and effect of these responses in protection from disease and/or death remains 
to be elucidated. 

 There is relatively limited information regarding the pathology or pathogenesis 
associated with MVD and EVD in human patients. The majority of human infec-
tions appear to be associated with direct contact with infected patients or cadavers. 
Filoviruses appear to enter the host predominantly through mucosal surfaces, skin 
abrasions, or parenteral introduction [ 51 – 54 ]. Interestingly, the route of viral entry 
appears to be related to both disease course and outcome as the mean incubation 
period for contact exposures is 9.5 days as compared to 6.3 days for introduction 
through puncture/injection [ 55 ]. Examination of tissue samples from human patients 
with fatal disease revealed that monocytes, macrophages, and dendritic cells likely 
play central roles in the dissemination of virus [ 56 – 58 ]. These investigations have 
also demonstrated that viral replication is supported in these cells, as well as in 
endothelial cells, fi broblasts, hepatocytes, adrenal cortical cells, and epithelial cells. 
Although it has been postulated that structural damage within infected endothelial 
cells likely contributes to hemorrhagic diathesis, there has been no supporting 
histological evidence for this hypothesis [ 20 ].  

4     Host Immune Responses to Filovirus Infection 

 There has been limited information regarding the host immune response in MVD or 
EVD. Investigations of EVD in human patients have suggested that infection results 
in the expression of several pro-infl ammatory mediators, including IL-2, IL-6, IL-8, 
IL-10, multiple IFNs, interferon-inducible protein 10 (IP10), monocyte chemoat-
tractant protein 1 (MCP1), RANTES, TNFα, and reactive oxygen and nitrogen 
[ 40 ,  46 ,  47 ,  59 ]. As a result of these limited investigations, the immune response 
to fi lovirus infection has been studied predominantly in vitro or in experimental 
animals. To this end, genome-wide expression studies have contributed markedly to 
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our current state of knowledge regarding host responses to fi lovirus infections 
[ 60 – 62 ]. Perhaps unsurprisingly, host gene expression cluster analysis in human 
hepatocytes demonstrated that the responses of EBOV- and MARV-infected cells 
shared greater similarity to one another than to the response of cells infected with 
RESTV [ 62 ]. One of the key fi ndings was that fi lovirus infection resulted in the 
global suppression of host antiviral responses, including Toll-like receptor (TLR)-, 
IFN regulatory factor 3- (IRF3), and protein kinase R (PKR)-mediated pathways 
[ 62 ]. Further, RESTV infection resulted in the activation of more than 20 % of the 
IFN- stimulated genes (ISGs), whereas EBOV and MARV infection resulted in 
inhibition of these responses. Importantly, analysis of signal transducers and activators 
of transcription (STAT) phosphorylation demonstrated that MARV and EBOV dif-
ferentially modulated the activation state of these molecules. This analysis suggested 
that these two fi loviruses inhibit IFN signaling and activation through differential 
mechanisms. The potential molecular mechanisms through which the fi loviruses 
subvert these responses are detailed in    Sect.  5 . 

 Rubins et al. characterized the temporal gene expression profi les of peripheral 
blood mononuclear cells from EBOV-infected crab-eating macaques compared to 
baseline [ 41 ]. Few changes occurred in the early stages (1–2 days) following infec-
tion; however, broad changes to host gene expression profi les were observed on 
days 4 and 6 post-inoculation. These changes included signifi cant upregulation of 
pro-infl ammatory cytokines (including IL-1β, IL-6, IL-8, and TNF-α) and chemo-
kines (e.g., macrophage infl ammatory protein 1α and monocyte chemoattractant 
protein 1–4). In addition, multiple genes related to apoptosis regulation (e.g., Bcl-2 
family members, multiple caspases, Fas-associated death domain protein, TNF 
superfamily member 10) were also upregulated in the later stages of infection. 
EBOV infection also resulted in the upregulation of IFN-regulated genes starting 
early during the course of infection (day 2) and remained upregulated through to the 
endpoint of the study (day 6). More recently, Wahl-Jensen and colleagues demon-
strated that EBOV particle attachment and entry into human macrophages induce 
pro-infl ammatory mediators (including IL-6, IL-8, and TNF-α) 1 h post-inoculation 
[ 61 ]. While such studies of global gene expression have been informative, many 
questions remain regarding the molecular pathogenesis of fi lovirus infection. 

 Analyses of host responses to fi lovirus infection have focused predominantly on 
humans or NHPs. Following the isolation of RESTV from pigs [ 5 ], subsequent 
investigations have demonstrated that pigs were susceptible to both RESTV and 
EBOV infection with preferential targeting of macrophages in the lungs [ 63 ]. Nfon 
et al. therefore recently investigated the modulation of host gene expression patterns 
in the lungs of EBOV-infected pigs [ 63 ]. In pigs inoculated with EBOV, upregula-
tion of chemokine expression began at day 3 post-inoculation compared to mock- 
infected pigs. The most pronounced changes in gene expression were found at 5 and 
7 days post-inoculation and included the upregulation of a broad set of cytokines 
(IL-5, IL-6, IL-8, IL-10, IL-22, IL-26, IL-27, resistin), chemokines (CCL2, CCL10, 
CCL19, CCL20, AMCF-II, CCL3L1, CCL4), cell adhesion protein (selectin), antimi-
crobial protein, palate, lung, and nasal epithelium clone protein, and pro- apoptotic mol-
ecules (multiple caspases, caspase recruitment domain-containing protein 6 (CARD), 
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apoptosis-associated tyrosine kinase (AATK), Fas, Fas-associated protein with 
death domain (FADD), TNF receptor-associated factor 3 (TRAF3), TNFα- induced 
protein 3-interacting protein 1 (TNIP1)   ). In addition, expression of multiple genes 
related to microbial sensing (pattern recognition receptors) or antiviral responses 
(ISGs) was upregulated in the lungs of infected animals. Although the localization 
of the cytokine response of pigs and humans or NHPs differs during the course of 
EBOV infection (localized responses in the lungs of pigs versus a predominantly 
systemic response in humans and NHPs), the cytokine profi les of pigs, humans, and 
NHPs were quite similar. This similarity is also evident when the results from the 
NHP study by Rubins et al. are compared to those from the pig study by Nfon et al. 
as both investigations reported on the induction of specifi c host responses that were 
common across both studies (i.e., IL-6, IL-8, several caspases). Given the increasing 
use of pigs for modeling human diseases, observations such as these could provide 
important information regarding EVD pathogenesis in humans.  

5      Filovirus Genome and Particle Structure 

 Filovirus genomes are nonsegmented, single-stranded RNAs of negative polarity 
(≈19 kb) and contain seven genes (in the order 3′-NP-VP35-VP40-GP-VP30- 
VP24-L-5′). Each gene usually contains a single open reading frame, each of which 
encodes one protein. An exception is the ebolavirus GP gene, which encodes four 
proteins from three overlapping open reading frames via co-transcriptional editing 
and proteolytic processing [ 64 – 67 ]. The open reading frames of each gene are fl anked 
by long non-translated sequences of somewhat unclear function [ 68 ]. Although the 
organization of the fi lovirus genome is conserved across the fi lovirus family mem-
bers, the individual genome sequences are highly variable. The fi lovirus genes encode 
for four structural proteins that are involved in the formation of the nucleocapsid: a 
nucleoprotein (NP), an RNA-dependent RNA polymerase (L), a polymerase cofactor 
(VP35), and a minor nucleocapsid protein (VP30) [ 69 ]. In addition, these proteins 
also facilitate viral replication and transcription. The fi lovirus nucleocapsid is helical 
in structure, and together with the two matrix proteins VP40 and VP24 assembles in 
the form of long fi lamentous structures. Although the average lengths of particles 
formed by different fi loviruses vary (≈800–≈1,000 nm), they do have similar widths 
(80 nm) [ 26 ]. 

 As with other negative-strand RNA viruses, fi lovirus particles are formed follow-
ing viral component assembly at the plasma membrane and subsequent release from 
infected cells by budding [ 70 – 74 ]. NP is the major determinant of the nucleocapsid 
and expression of NP results in the formation of intracellular inclusion bodies. 
Overall, the matrix protein VP40 is transported to the plasma membrane following 
expression by the retrograde late endosomal pathway. Following this, VP40 
 re- localizes cellular budding machinery to the site of viral assembly and budding 
(Ascenzi ippolito 2008 151). VP40 is also associated with viral inclusions that 
 contain the assembled nucleocapsids. NP-RNA interactions are suffi cient for the 
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formation of nucleocapsids with recruitment of VP30, VP35, and L. Small amounts 
of VP40 co-localize with the accumulating nucleocapsids in cellular inclusions. 
Following expression through the secretory pathway and proteolytic cleavage in 
the  trans -Golgi network, GP localizes to the late endosome and accumulates in 
multivesicular bodies that are enriched with VP40 followed by transport to the site 
of viral particle assembly and binding. The nucleocapsid complexes are then trans-
ported to these sites leading to virus particle assembly and release [ 75 ]. 

 In this section we focus on the immunomodulatory properties that have been 
described for fi lovirus proteins VP35, VP24, VP40, and GP 1,2 . 

5.1     VP35 

 In addition to core functions in the nucleocapsid complex, multiple immunomodu-
latory functions have been described for VP35 (Fig.  30.1 ). These functions include 
antagonism of type I IFN responses through disruption of the interaction between 
retinoic acid inducible gene-1 (RIG-1) and IRF3 and inhibition of double-stranded 
RNA-dependent protein kinase activation [ 76 – 78 ]. VP35 suppresses IFN-β 
responses in a similar manner as the infl uenza A virus NS1 protein [ 76 ]. These 
activities are localized to the C-terminal region of VP35, as specifi c mutations 
within a region of basic amino acids ablated both the binding of dsRNA and IFN 
inhibition [ 79 ,  80 ]. Suppression of IFN responses by VP35 is mediated by the inhi-
bition of TANK-binding kinase 1 (TBK-1)/IKKε-mediated phosphorylation of IRF 
3/7 by acting as an alternative IFN kinase substrate [ 81 ]. VP35 also modulates small 
ubiquitin-like modifi er conjugation (SUMOylation) in the host through interaction 
with the SUMO E2 enzyme Ubc9 and the SUMO E3 ligase PIAS1, resulting in the 
promotion of SUMOylation of IRF-7 and repression of IFN transcription [ 82 ]. The 
inhibition of protein kinase R (PKR) activity by VP35 may result from the binding 
of dsRNA by VP35 [ 83 ]. The binding of dsRNA is important for inhibition of the 
host RNAi pathway by acting as an antagonist of RNA interference (RNAi) [ 84 , 
 85 ]. The high degree of sequence conservation in regions of VP35 related to modu-
lation of host responses across the fi lovirus family members suggests that these 
activities are likely conserved broadly across the fi lovirus family.   

5.2     VP24 

 VP24 is a minor matrix protein involved in nucleocapsid formation and assembly 
and plays a role in the transition from viral transcription/replication to virion assem-
bly [ 43 ,  86 – 90 ]. Following formation of NP-derived helical tubes, VP24 and VP35 
interact with these helices to form nucleocapsid-like structures [ 91 ]. Further, VP24 
is also a determinant of host cell tropism as demonstrated by the adoption of muta-
tions during EBOV adaptation to mice and guinea pigs [ 81 ,  92 – 94 ]. EBOV VP24 
can also modulate host IFN responses (IFN-α, IFN-β, and IFN-γ signaling) primarily 
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through the blockade of the karyopherin α1 (KPN α1)-STAT1 interaction and 
subsequent inhibition of IFN-induced nuclear accumulation of phosphorylated STAT1 
[ 95 ] (Fig.  30.2 ). Although the role of VP24 in the viral life cycle is conserved across 
the fi lovirus family members, overlap in the host immunomodulatory properties of 
this protein between ebolaviruses and Marburg virus is limited [ 96 ]. Subversion of 
host IFN responses in MARV infection appears to occur through a differential 
inhibitory mechanism and is discussed in the next section. Try42 and Lys142 
of EBOV VP24 are critical residues for modulation of IFN responses as mutation of 
either of these residues results in inhibition of the interaction between VP24 and 
KPN α1 [ 97 ]. Subsequent experiments suggest that EBOV VP24 may block IFN 
responses by binding KPN α5 and KPN α6, which also bind to STAT1 [ 98 ].   

  Fig. 30.1    EBOV VP35 modulation of the RIG-1 signaling pathway and inhibition of host down-
stream IFN responses. The fi lovirus VP35 protein can antagonize type I IFN responses through 
interaction with multiple host proteins. VP35 can bind dsRNA directly through a region of basic 
amino acids in the C-terminus of the proteins, thus inhibiting the activation of IFN in response to 
dsRNA. These events may also be responsible for the inhibitory activity of VP35 on PKR. In addi-
tion, VP35 can inhibit TBK-1/IKKε-mediated phosphorylation of IRF 3/7 by acting as an alterna-
tive IFN kinase substrate. VP35 also modulates host SUMOylation through interaction with the 
SUMO E2 enzyme Ubc9 and the SUMO E3 ligase PIAS1, resulting in the promotion of 
SUMOylation of IRF-7 and repression of IFN transcription. Images were generated using the 
Ingenuity Pathway Analysis software suite       
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5.3     VP40 

 VP40 is a peripheral membrane protein involved in transportation of the fi lovirus 
ribonucleocapsids to the plasma membrane, incorporation into viral particles, and 
viral particle budding [ 90 ,  99 ]. VP40 can also modulate host IFN responses 
(Fig.  30.2 ). Valmas et al. demonstrated that MARV VP40 inhibited IFN-α/β and 
IFN-γ-mediated gene expression, host antiviral responses in an IFN-α/β-dependent 
fashion, and Janus kinase-1 (Jak1)-dependent IL-6 signaling [ 96 ]. Interestingly, 
EBOV VP24 and MARV VP40 both inhibit STAT2 nuclear accumulation in response 
to IFN-α, suggesting that MARV VP40 has a similar role to EBOV VP24 in interfer-
ing with IFN signaling [ 96 ]. As MARV VP40 blocked Jak1 and tyrosine protein 
kinase 2 (Tyk2) phosphorylation, upstream of STAT1 and STAT2 in response to 
IFN-α/β through blockade of JAK1 auto-phosphorylation, MARV VP40 may inhibit 
host antiviral responses through a mechanism distinct from that of EBOV VP24.  

  Fig. 30.2    EBOV VP24- and MARV VP40-mediated repression of IFN signaling pathways. 
EBOV VP24 has been demonstrated to repress host IFN responses (IFN-α, IFN-β, and IFN-γ sig-
naling) through inhibition of the interaction between KPN α1 and STAT1 resulting in the inhibition 
of IFN-induced nuclear accumulation of phosphorylated STAT1. Further, EBOV VP24 may also 
repress IFN responses by binding KPN α5 and KPN α6, which also bind to STAT1. MARV VP40 
and EBOV VP24 can also inhibit STAT2 nuclear accumulation in response to IFN-α and repress 
host IFN responses. MARV VP40 can also block Jak1 and Tyk2 phosphorylation upstream of 
STAT1 and STAT2 in response to IFN-α/β through blockade of JAK1 auto-phosphorylation. 
Images were generated using the Ingenuity Pathway Analysis software suite       
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5.4     GP 1,2  

 The fi lovirus genome encodes a single surface protein, the type I transmembrane 
glycoprotein (GP 1,2 ). This protein mediates host cell attachment, fusion, and cell 
entry [ 72 ,  100 ,  101 ]. In addition, GP 1,2  induces cytopathic effects (e.g., cell rounding, 
detachment, increased vascular permeability) and downregulates the expression of 
various cell surface proteins at least in vitro [ 69 ,  102 ]. Mutation of an editing site in 
the GP genome resulted in a recombinant mutant EBOV with enhanced cytopathic 
effect and overexpression of GP 1,2  as compared to wild-type virus [ 103 ]. These 
results suggest that the overall expression of GP 1,2  is a primary determinant for the 
cytopathic effect of this protein. More recently, Groseth et al. investigated the effect 
of exchanging GP 1,2  from RESTV with that of EBOV on virulence [ 104 ]. Interestingly, 
although the incorporation of RESTV GP 1,2  into EBOV (EBOV- GP RESTV   ) resulted 
in decreased lethality and prolonged mean time to death in mice, the incorporation of 
EBOV GP 1,2  into RESTV (RESTV-GP EBOV ) did not result in lethal disease. Thus, 
although GP 1,2  contributes to virulence, the lack of disease in the recombinant 
RESTV-GP EBOV  suggests that other factors are required for full virulence. The cyto-
toxicity of GP 1,2  may be related to modulation of cellular responses within the host 
through extracellular signal-related kinase (ERK)/mitogen- activated protein kinase 
(MAPK) signaling. An investigation by Zampieri et al. showed that GP 1,2  expres-
sion decreased phosphorylation of ERK1/2 compared to a mutant form of GP 1,2  that 
lacked a mucin-like domain and had reduced cellular cytotoxicity [ 102 ]. These 
effects appeared to be largely related to a preferential modulation of the phosphory-
lation state of the ERK2 isoform.  

5.5     Posttranslational Modifi cation of Ebola Virus 
Proteins by Phosphorylation 

 The posttranslational modifi cation of proteins (PTMs) provides an essential mecha-
nism to diversify the activities or functions of proteins beyond that of the synthesized 
transcript [ 105 ]. These modifi cations provide a dynamic mechanism to rapidly alter 
cellular responses to changes in the surrounding environment. Further, PTMs are 
likely responsible for the regulation of virtually all cellular events including 
transcription and translation, signal transduction, and communication between 
the internal and external cellular environments [ 105 ]. Although PTMs may 
involve a broad array of enzymatic (including lipidation, acylation, glycosylation, 
and phosphorylation) and nonenzymatic modifi cations (biotinylation) we focus on 
Ebola protein PTMs through phosphorylation in this review. 

 Protein modifi cation through reversible protein phosphorylation is the primary 
mechanism by which proteins regulate cellular responses. These events are con-
trolled by the kinase class of enzymes and involve the transfer of γ-phosphate from 
ATP to a specifi c phospho-acceptor, primarily a serine, threonine, or tyrosine residue. 
Kinase-mediated phosphorylation events regulate a diverse range of cellular 
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responses including metabolic processes, transcription, immune responses, and 
apoptosis [ 106 ]. Kinases constitute approximately 2 % of the human genome and are 
among the largest and most well-studied families of genes. Manning et al. demon-
strated that eukaryotic protein kinases could be divided into seven major groups 
based on similarities in their sequence identifi cation features and similar function: 
AGC [protein kinase A (PKA), PKG and PKC families], Ca 2+ /calmodulin-regulated 
kinase (CAMK), casein kinase 1 (CK1), GMGC [including cyclin-dependent 
kinases (CDK), mitogen-activated protein kinases (MAPK), glycogen synthase 
kinase (GSK) and CDK-like kinases], STE (related to yeast sterile kinases), tyro-
sine kinases, and tyrosine-kinase like (TKL) [ 107 ]. Kinase-mediated phosphoryla-
tion events are largely dominated by phosphorylation of serine residues (86 %), 
followed by threonine (12 %) and tyrosine (2 %) [ 106 ]. Importantly, although much 
of the information regarding kinases and their role in cellular processes has focused 
on host proteins, there is an increasing appreciation for the role that host kinase- 
mediated phosphorylation plays in viral protein modifi cation and/or function.  

5.6     Posttranslational Phosphorylation of EBOV VP30 

 Posttranslational phosphorylation of EBOV proteins by eukaryotic proteins plays a 
signifi cant role in viral pathogenesis. In 2002, Modrof et al. reported on the role of 
phosphorylation of EBOV VP30 in the regulation of viral transcription and binding 
to NP inclusions [ 108 ]. Two serine clusters (Ser29–31 and Ser42–46) and a single 
threonine (Thr52) in the N-terminal domain of the protein were sites of phosphory-
lation. Mutation of these six serine residues to alanine resulted in loss of ability of 
EBOV VP30 to bind to NP inclusions, even distribution of VP30 throughout the 
cytoplasm, and had no signifi cant effect on transcription activation. Treatment of 
VP30 with okadaic acid, an inhibitor of protein phosphatase (PP) 1, PP2A, and PPC 
resulted in dephosphorylation of VP30 and loss of transcription activity. Intermediate 
phosphorylation of VP30, achieved by mutation of only one of the serine clusters 
(i.e., VP30 Ser29–31A), resulted in activation of both viral transcription and assembly. 
Interestingly, the replacement of the six phosphoserine residues with aspartate 
resulted in impaired transcription activity. These results suggest that the negative 
charge imparted by the phosphorylation of these residues played an important role in 
the regulation of VP30 activity. Martinez et al. demonstrated that the mutation of the 
VP30 serine clusters resulted in the inability to rescue infectious recombinant virus 
as only wild-type EBOV genome was rescued [ 109 ]. VP30-AA (both serine clusters 
mutated to alanine residues), VP30-DD (Ser → Asp), VP30-AD, and VP30-DA 
supported transcription and were incorporated into virion-like particles (VLPs). 
While VP30-AA was able to support full viral transcription, the VP30-AD and 
VP30-DA mutants could only initiate transcription of the fi rst gene of full- length 
viral RNA and could not support transcription reinitiation of subsequent genes. 
Although VP30-AA was able to activate transcription removal of the negative 
charge that would accompany phosphorylation, mutation of the two N-terminal 
serine clusters resulted in the loss of a subsequent function required for generation 

J. Kindrachuk et al.



803

of fully infectious virions. Taken together, these observations suggest that the 
dynamic phosphorylation and dephosphorylation of EBOV VP30 act to balance 
transcription and replication processes during infection [ 110 ]. 

 The role of phosphorylation MARV VP30 has also been investigated. MARV 
VP30 contains seven serine residues in the C-terminal region of the protein similar 
to that seen for the ebolaviruses [ 111 ]. Replacement of serines 40–42 in MARV 
VP30 resulted in ablation of interactions between VP30 and NP-induced inclusion 
bodies whereas substitution of serine for alanine between amino acids 43–51 had 
relatively no effect on this interaction. This interaction was largely regulated by 
the negative charge of the phosphorylation at these residues as Ala → Asp in the 
VP30- Ala40–42 restored the interaction between VP30 and NP inclusions. 

 The availability of amino acid sequence information for the proteins from all of 
the ebolaviruses, as well as from specifi c isolates, has enabled comparative analysis 
of the viral proteins. This information could help guide investigations into the pro-
spective roles of specifi c posttranslation modifi cations (PTMs) in the differential 
virulence of these viruses. For example, sequence alignments of the VP30 proteins 
from EBOV variant Mayinga and EBOV variant Kikwit demonstrate homology of the 
amino acid sequences with 100 % conservation of sequence identity and thus pre-
sumably conservation of the phosphorylation patterns reported for VP30 (Fig.  30.3 ). 

  Fig. 30.3    Multiple sequence alignment of ebolavirus and marburgvirus VP30. Sequence align-
ments were performed using ClustalW Omega.  Red lines  and  blue line  denote serine cluster(s) of 
functional importance for EBOV VP30 and MARV VP30, respectively       
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In contrast, alignments of VP30 from the available MARV variants Musoke, Popp, 
and Angola demonstrate lower homology with many individual differences related 
to differences in Ser (S), Thr (T), or Tyr (Y) residues (Fig.  30.4 ). The potential rela-
tion between these substitutions and strain-dependent virulence remains to be inves-
tigated. Multiple sequence alignment (MSA) of the VP30 proteins from the most 
well-characterized variants of each member of the fi lovirus family demonstrates 
that the fi rst serine cluster of Ebola virus is only partially conserved in Sudan virus, 
Reston virus, and Marburg virus (Fig.  30.3 ). In contrast, the serine cluster (Ser43–51) 
is nearly completely conserved across all of the available VP30 sequences from 
MARV and RAVV with the exception of a Ser → Gly substitution in position 50 in 
RAVV VP30 (Fig.  30.4 ).    

5.7     Phosphorylation of the Nucleocapsid Protein NP 

 Although almost three decades have passed since the fi rst description of the 
phosphorylation state of EBOV proteins within virions [ 112 ], information regard-
ing the role of these phosphorylations in the regulation of EBOV protein function is 
generally lacking with the exception of VP30. However, a role for NP phosphoryla-
tion in the MARV viral replication cycle has been reported [ 113 ]. Phosphorylation 

  Fig. 30.4    Multiple sequence alignment of MARV and RAVV VP30. Sequence alignments were 
performed using ClustalW Omega. The  blue line  denotes the serine cluster of functional impor-
tance for MARV VP30       
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of MARV NP may regulate recruitment of NP into viral particles [ 114 ]. The phos-
phorylation of MARV NP is largely relegated to seven regions within the C-terminus 
and few of these phosphorylations have been studied in detail [ 115 ]. Of these seven 
regions, region II of the NP C-terminus contains six consecutive serine residues (Ser 
450–455), multiple threonine residues, and several negatively charged amino acids 
[ 113 ]. Becker et al. demonstrated by phosphoamino acid analysis that the major 
phospho-acceptor sites within region II were serine sites with a minor signal for 
phospho-threonine. In a subsequent study, Ser446 and Ser453–455 were identifi ed 
as the major phosphorylation sites for this region of the NP protein [ 113 ]. However, 
the authors demonstrated that the phosphorylation of NP region II had no infl uence 
on self-interactions (NP-NP) or interactions with VP30 or VP35. 

 Analysis of the role of these phosphorylation events during the early stages of 
infection was investigated using a minigenome system. Here, it was demonstrated 
that mutants that mimicked completely dephosphorylated (Ser → Ala) or hyper- 
phosphorylated (Ser → Asp) NP were unable to fully support RNA synthesis. 
Interestingly, substitution of Ser → Ala in Ser450–452 and Ser → Asp in Ser453–455 
(NP-AD) increased viral RNA synthesis as compared to wild-type NP and conserved 
viral transcription/replication activities [ 113 ]. NP-DA had impaired ability to support 
viral transcription and replication, suggesting that Ser453–455 phosphorylation is 
likely the most important region for regulation of NP function. MSA comparisons of 
EBOV variant Mayinga and MARV variant Musoke demonstrate low conservation 
of sequence (37 % similarity) and limited homology between Ser450–455 of MARV 
and EBOV (Fig.  30.5 ). There is limited conservation of sequence between EBOV 
and MARV in these regions with direct alignment of only two Ser residues and the 
alignment of Tyr in EBOV with a Ser from MARV.   

5.8     Phosphorylation of the Matrix Protein VP40 

 Although previous investigations of EBOV VP40 had demonstrated that PTMs 
result in the assembly of homo-oligomers that infl uence plasma membrane transport 
and RNA binding [ 116 ,  117 ], investigation into the role of PTMs in the regulation 
of VP40 function is limited. Results of several studies indicate that VP40 is phos-
phorylated at Tyr residues at positions 7, 10, 13, and 19, major phosphorylation sites, 
and at certain serine sites. Importantly, resolution of MARV VP40 by SDS- PAGE 
results in two protein species with bands of ≈36 and 38 kDa in mass [ 118 ]. A simi-
lar phenomenon had been described previously for EBOV VP40 by Jasenosky et al.: 
mutation of a second start codon (Met14) resulted in the loss of this doublet [ 119 ]. 
However, mutation of a similar Met residue (Met11) in MARV VP40 had no effect 
on the doublet, suggesting the possibility that this second band might represent a 
modifi ed VP40 [ 118 ]. The authors subsequently demonstrated that this heavier 
second band represented a phosphorylated form of VP40 and phosphoamino acid 
analysis suggested a strong signal for phospho-tyrosine and a weak signal for phos-
phoserine. Site-directed mutagenesis of Tyr residues to Phe demonstrated that the 
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phospho-tyrosine signal within the heavier second band of the doublet was related 
to phosphorylation of Tyr7, 10, 13, and 19. Mutation of these Tyr phosphorylation 
sites did not perturb membrane binding; however, phosphorylated VP40 preferen-
tially bound to membranes. In addition, phosphorylated VP40 infl uenced the length 
of fi lamentous protrusions from cells expressing VP40. Further, nonphosphorylated 
VP40 retained the ability to form fi lamentous virion- like particles (with only a mod-
est effect on the length of the particles) and was not required for the inhibition of 
IFN signaling. However, the role of VP40 phosphorylation was related to the forma-
tion of infectious VLPs (iVLPs), also known as transcription- and replication-com-
petent virus-like particle systems (trVLPs) [ 120 ], as the infectivity of iVLPs was 
reduced by tenfold when mutant VP40 (Tyr → Phe at residues 7, 10, 13, and 19) 
was substituted for wild-type VP40. Additional analysis demonstrated that VP40 
phosphorylation is an important regulator of the interaction between nucleocapsid-
like structures and VP40-enriched membranes, including recruitment of the 
nucleocapsids to fi lamentous protrusions within the cell, viral particle assembly, 

  Fig. 30.5    Multiple sequence alignment of EBOV and MARV NP. Sequence alignments were per-
formed using ClustalW Omega. The  blue line  denotes the serine cluster of functional importance 
for MARV NP aligned with the corresponding region in EBOV NP       
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and infectivity. MSA of EBOV and MARV VP40 shows that MARV VP40 Tyr 10 
and 19 align with corresponding Tyr and Ser residues, respectively, in EBOV VP40 
and the functional signifi cance of these residues to similar processes for EBOV 
remains to be investigated.   

6     Discussion 

 Members of the  Filoviridae  family are the etiological agents of severe hemorrhagic 
fevers that are associated with unusually high fatality rates in humans and NHPs 
[ 20 ,  121 ]. As many previous reviews of fi lovirus infections have focused primarily 
on the pathology associated with disease, we have summarized the potential role of 
molecular interactions between the host and pathogen during fi lovirus infections. 
Importantly, many of these interactions involve the direct modulation of host 
responses by viral proteins, in particular those associated with innate immunity. 
Conversely, host-mediated phosphorylation of fi lovirus proteins plays a central role 
in the activation state of viral proteins. Thus, we believe that an increased under-
standing of these PTMs will provide critical information regarding the mechanisms 
of molecular pathogenesis for these viruses, as well as aid the development of novel 
therapeutic strategies for the treatment of fi lovirus infections. Novel technologies 
that provide insight into these processes, such as system kinome analysis [ 122 – 124 ], 
could therefore further increase our understanding of fi lovirus disease, identify 
novel biomarker targets associated with fi lovirus disease, and help evaluate the 
mechanism(s) of action of targeted therapeutics.     
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