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Introduction

Grapevine is the most valuable horticultural crop in the world. Significant grape 
acreage exists on all continents, save for Antarctica. Approximately 8 million ha of 
grapevine are currently planted and 60 million metric t of fruit are produced annu-
ally worldwide (Food and Agriculture Organization of the United Nations (FAO) 
production statistics). Spain, France, and Italy are the largest grape producers in 
the world, followed by many other European countries, the USA, Argentina, Chile, 
Australia, South Africa, and China. The majority of the fruit, in terms of yield and 
area, is used to produce wine, but the remaining is destined for fresh consumption, 
dried into raisins, processed into nonalcoholic juice, or distilled into spirits. The 
quality of wine and other grape products is the key to the crop’s value, so sustain-
ably maximizing quality is the primary goal of grape producers.

Most grape cultivars are used specifically in one market, but some cultivars may 
be used in several market classes. Premium wine and table grape cultivars are more 
specialized in their utilization than are raisin, juice, and concentrate varieties. For 
example, “Cabernet Sauvignon” is primarily used for wine but is not desirable as a 
table or raisin grape. “Sultanina” (known as “Thompson Seedless” in the USA) is 
the predominant raisin cultivar worldwide and also is an important table grape, wine 
grape, and concentrate cultivar. Wine grape cultivars usually have relatively small-
seeded berries. Important wine cultivars include “Cabernet Sauvignon” and “Pinot 
Noir,” used for red wine production, and “Chardonnay” and “sauvignon blanc,” used 
for white wine production. Table grapes are consumed fresh. Table grape cultivars 
have relatively large berries, and seedlessness is valued by many consumers. Most 
dried grapes, usually called raisins, are made from seedless grapes. Unfermented 
juice is manufactured from cultivars with distinctive flavors and aromas. Varieties 
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with relatively heat-stable flavors and aromas, such as “Concord” and “Niagara,” 
are used in the production of pasteurized juices. Cultivars such as “Chasselas” with 
flavors and aromas that are noticeably altered by pasteurization are processed for 
unfermented juice production using ultrafiltration for juice sterilization. Jams, jel-
lies, and other spreads are made from juice grape cultivars. Grape concentrate is 
juice with some water removed; it is used as a natural sweetener and coloring agent 
for beverages and foods. The concentrate market is an outlet for excess grapes in 
all market classes and is a target market for certain cultivars; “Rubired,” a highly 
pigmented cultivar, is used in red concentrate.

The grape is a member of the Vitaceae, commonly called the grape family. The 
genus Vitis consists of about 60 species, plus some natural interspecific hybrids 
[1]. Nearly all grapes cultivated for fruit production are of the species Vitis vinifera 
or are hybrids that include V. vinifera in their parentage. Vitis species are found 
across the temperate zones of the Northern Hemisphere. The genus has the high-
est species diversity in east Asia and in eastern and southern North America, with 
about 30 species in each region. Vitis is separated into two subgenera, Euvitis and 
Muscadinia; some authorities treat the sections as the genera Vitis and Muscadinia. 
The subgenera are separated by morphological, anatomical, and cytological charac-
teristics. Subgenus Euvitis species have 2n = 2x = 38 chromosomes, forked tendrils, 
striate bark, pyriform seeds, and nodal diaphragms. These species and their hybrids 
are called “bunch grapes.” Subgenus Muscadinia species have 2n = 2x = 40 chro-
mosomes, unforked tendrils, stellate bark, naviform seeds, and lack diaphragms 
at the nodes; they are known as muscadine grapes. Within a subgenus, species are 
maintained in nature by range and flowering time and can be considered ecospecies. 
Hybrids between species within a subgenus are typically fully fertile and many in-
terspecific hybrids between Euvitis species have been developed as scion and root-
stock cultivars. Hybrids between the subgenera are usually sterile due to the differ-
ence in chromosome number; two have been commercialized as rootstocks [2], and 
backcrossing with partially fertile intersubgeneric hybrids has led to the introduc-
tion of disease resistance from Vitis rotundifolia into bunch grape gene pools [3].

Subgenus Euvitis species (about 57 species) are the most important in viticul-
ture. Most grape cultivars belong to the species V. vinifera, which is a native of 
the Mediterranean basin, southern and central Europe, northern Africa, and south-
west and central Asia. V. vinifera cultivars are grown worldwide and account for 
the overwhelming majority of cultivated areas and grapes produced. Interspecific 
hybrid cultivars selected from crosses of V. vinifera with other species, including 
Vitis labrusca, Vitis amurensis, Vitis riparia, Vitis rupestris, and Vitis aestivalis, are 
locally important and account for a minor portion of world viticulture and enology. 
Rootstocks are used exclusively for bunch grape varieties, which are mostly inter-
specific hybrids or selections of North American Euvitis species.

The subgenus Muscadinia includes only three species. The range of the subgenus 
is limited to the southeastern USA and eastern Mexico. Muscadine grape cultivars, 
primarily V. rotundifolia and a few interspecific hybrids, are grown commercially 
only in the native region of V. rotundifolia in the southeastern USA.
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Pigments in Grapes

The primary pigments in grapes are anthocyanins. The distribution and classifica-
tion of anthocyanins within grape berries have been extensively studied. Anthocya-
nins are specific to red cultivars and localized in the berry skin of most cultivars. A 
small number of red-fleshed cultivars (also known as teinturier, Fig. 9.1) play a key 
role in producing highly pigmented juice for wine making. Anthocyanin profiles of 
many V. vinifera cultivars as well as several other Vitis species have been reported 
and previously reviewed [4–6]. Structurally, anthocyanins are glycosides and acyl-
glycosides of anthocyanidins, and the aglycones and flavyliums differ in different 
hydroxyl or methoxyl substitutions in their basic structures [4]. The proportion of 
the primary individual anthocyanins is the 3-O-monoglucosides of delphinidin, cy-
anidin, peonidin, petunidin, and malvidin, with the proportion of 3′ and 3′, 5′ forms 
showing variation among cultivars as well as the contribution of acetylated forms 
[7]. In cultivars of V. vinifera, the glucose molecules can only be linked to the antho-
cyanidin through glycosidic bonds at the C3 position to form 3-O-monoglucoside 
anthocyanins. In the other non-V. vinifera species, the 3,5-O-diglucoside anthocya-
nins can be present. Most cultivars possess acylated forms of the anthocyanins, but 
some have a much simpler profile, with the cultivar “Pinot Noir” being a notable 
example, possessing only the five basic anthocyanidin 3-glucosides. Some grape 
species, such as V. rotundifolia, are also known not to produce acylated forms of 
anthocyanins [8, 9]. It has recently been shown that the majority of anthocyanins 
within a cross section of North American grape species show a predominance of 
nonacylated forms of anthocyanins [10].

Further diversity in anthocyanin content is possible due to the presence of two 
distinct forms at vacuolar pH, the neutral quinonoidal anhydro base and the flavy-
lium cation form [11]. The wide range in possible anthocyanin forms has led to a 
large amount of diversity in fruit color among cultivated grapes (Fig. 9.2). Because 
of this high level of diversity, grape cultivars have distinct anthocyanin profiles and 
it has been proposed as a method for the authentication of grape varieties and wine 
[12–14]. V. vinifera cultivars are characterized by the presence of only the mono-
glucoside forms of anthocyanins, while several of the wild Vitis species possess di-
glucosides. A double mutation occurring in an anthocyanin 5-O-glucosyltransferase 
within V. vinifera appears to be the cause for the loss of this enzymatic activity 
within this species [15].

Fig. 9.1  Anthocyanin accumulation within berry flesh of the teinturier cultivar “Bailey Alicante” 
during berry maturation
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The production of red wine requires the maceration of the berries in order to 
extract the pigments from the berry skins. The concentration of anthocyanins begins 
to decrease after a few days of skin contact within the fermenting must [16]. During 
the course of wine ageing, polymeric pigments are known to form from reactions 
of anthocyanins with tannins [17], or from reactions with aldehydes [18]. Addition-
ally, anthocyanin reactions that do not involve tannins are known to occur [19]. The 
resulting pigments include both anthocyanin polymers [20, 21] and small molecules 
such as pyranoanthocyanins [16, 22, 23], that are derived from the addition of yeast 
metabolites to the anthocyanins as well as caftaric acid–anthocyanin adducts that 
are formed through enzymatic reactions [24].

Anthocyanins are usually represented in the red flavylium cation form, the color 
of which shifts toward higher wavelengths (from orange to purple) as the number of 
substituents on the B ring increases. However, when dissolved in water, flavylium 
cations undergo proton transfer and hydration reactions, generating blue quinonoi-
dal bases and colorless hemiketals, respectively [16]. At wine pH, grape anthocya-
nins occur mostly as the colorless, hydrated hemiketal form.

Red wine color is ensured through two stabilization processes: conversion of 
grape anthocyanins to other pigments, and association mechanism collectively 
called copigmentation. Anthocyanin-derived pigments show a wide range of colors 
from orange to blue. Tannin–anthocyanin adducts are red, like their anthocyanin 
precursors ( λmax 515–526 nm). Other reaction products include orange pyranoantho-
cyanins ( λmax 480–510 nm) [25, 26], purple ethyl-linked species (λmax 528–540 nm) 
[18, 27], and blue flavanyl-vinylpyranoanthocyanins (λmax 575 nm) [28]. These 
compounds may also change colors with the alternation of pH.

Color stabilization may also occur through copigmentation. The phenomenon 
of copigmentation is due to the molecular association between pigments and other 
nonpigmented organic molecules, leading to the exhibition of far greater color than 
would be expected by the pigment concentration [29]. Copigmentation can account 
for between 30 and 50% of the color in young wines and is vitally important for 

Fig. 9.2  Berry color diversity present within the cultivated grapevine Vitis vinifera
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determining wine color, the variation in color and pigment concentration between 
wines. Copigmentation both increases color intensity (the hyperchromic effect) and 
shifts the color toward purple (the bathochromic effect). Colored anthocyanins are 
planar structures that can interact with other planar species (copigments) to form 
molecular stacks from which water is excluded. The flavylium ion is thus trapped 
and protected from hydration. This is particularly important at wine pH, where hy-
drated forms predominate.

Genetic Control and Variability in Anthocyanin 
Accumulation

The genetic control and inheritance of fruit color or anthocyanin production in 
grapevine are not fully understood despite evidence that the primary determination 
of anthocyanin production in berries appears to be controlled by a single dominant 
locus in V. vinifera [30, 31] with white fruit being a recessive character. This obser-
vation is supported by numerous reports showing that controlled crosses between 
white-fruited vines universally result in white-fruited progeny [32–37]. Although 
fruit color in grape is frequently characterized as a qualitative trait, quantitative 
variation does exist within segregating populations for total anthocyanin and for 
anthocyanin content. Broad-sense heritability is typically high for total anthocyanin 
content, and the majority of the phenotypic variation localizes to a genetic loci con-
taining a cluster of myeloblastosis (MYB) transcription factors [38–41]. A genetic 
association analysis with candidate genes from the anthocyanin biosynthetic path-
way revealed many polymorphisms within five regulatory and ten structural genes 
to be positively associated with anthocyanin content [42].

The genetic regulation of the flavonoid biosynthetic pathways has been exten-
sively studied. Work conducted primarily in Arabidopsis and maize has shown that 
the basic flavonoid pathway upstream of anthocyanin biosynthesis is under the 
control of several different families of regulatory genes, consisting of complexes 
of MYB, basic helix-loop-helix (bHLH), and WD40. These regulatory genes are 
connected to form a network to regulate the expression of the structural genes in-
volved in flavonoid synthesis. Similarities in sequence homology have been used 
to isolate and characterize many of the flavonoid biosynthetic structural genes in 
grape [43–47].

In grapes, a series of R2R3-Myb transcription factors has been demonstrated to 
be involved in the control of different aspects of the phenylpropanoid pathway [48]. 
Despite the characterization of several MYB proteins and their role in grapevine 
anthocyanin regulation, characterization of additional members of the protein com-
plexes is not as well described. One bHLH gene, VvMYC1, was characterized as a 
component of the transcriptional complex controlling anthocyanin biosynthesis in 
grapevine [49]. The first Myb transcription factors identified in grape were isolated 
from V. labrusca hybrids [50], with subsequent orthologs identified in V. vinifera 
[51].
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White-fruited grapes are linked to the homozygous presence of Gret1 in the pro-
moter region of Vvmyba1 as well as mutations in the tightly linked gene Vvmyba2 
[52, 53]. Gret1 is inserted in the 5′ flanking region of VvmybA1, resulting in the 
loss of function of this transcription factor. In pigmented somatic mutants of white-
fruited cultivars, the full Gret1 insertion is absent from the VvymbA1 gene, but a 
solo long terminal repeat (LTR) has been shown to remain [54, 55]. Pigmented 
cultivars possess at least one allele at the VvmybA1 locus not containing this large 
insertion [56]. In pigmented cultivars, VvmybA1 is expressed only after veraison 
and has been shown to regulate anthocyanin biosynthesis by controlling the expres-
sion of anthocyanin biosynthetic genes, particularly flavonoid-3-O-glucosyltrans-
ferase (UFGT). Further evidence suggested that VvmybA1 is not expressed in the 
young leaves, tendrils, or stem of grape vines and is tissue-specific to the berry [54, 
57], while ectopic expression of Vlmyba1–2 was shown to induce the expression of 
many of the genes within the flavonoid biosynthetic pathway [58].

VvmybA1 belongs to a family of linked regulatory genes which have related 
sequence homology, VvmybA2 and VvmybA3. Sequence analysis of VvmybA2 in 
55 white cultivars of V. vinifera shows that the existence of rare mutations in two 
adjacent regulatory genes, the insertion of Gret1 in VvmybA1 and two nonconser-
vative mutations in VvmybA2 are present in many white-fruited cultivars [59]. Al-
though white-fruited somatic mutations appear to be independent developments of 
white-fruited cultivars [55], evidence shows that VvmybA1 co-segregates with the 
morphological marker for berry color [60] and that mutations in VvmybA1 are asso-
ciated with the vast majority of white-fruited V. vinifera accessions and many pink 
and red accessions as well [53, 60]. Additional polymorphisms within this clus-
ter of closely related myb genes are also significantly associated with quantitative 
variation in anthocyanin content of berries [61, 62]. Recent work, mapping gene 
expression quantitative trait loci (QTL), also shows that the majority of the phe-
notypic variation within a population derived from a cross between two pigmented 
cultivars, “Syrah” and “Grenache,” colocated with the VvmybA gene cluster, while 
an additional large eQTL co-localized with VvUFGT [63].

Cellular Transport of Anthocyanins

The distribution of anthocyanins in the different branches of a grape cluster is 
highly variable depending on many environmental and physiological factors. An-
thocyanins primarily accumulate in the hypodermal cell layers of the berry skin 
post-veraison. Anthocyanins are synthesized in the cytoplasm but accumulate in 
the vacuoles. Several glutathione S-transferase (GST) genes have been identified in 
grapes, which could function as anthocyanin transporters [64, 65]. In Arabidopsis 
and maize, GST proteins function with a glutathione S-conjugate pump and belong 
to the multidrug resistance-associated protein (MRP) family. To date, no MRP has 
been identified in grape involved with anthocyanin transport.
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Two genes that encode multidrug and toxic compound extrusion (MATE) trans-
porters have been identified in grape [66]. These genes were specifically expressed 
in fruit and showed expression patterns that correlated with anthocyanin accumula-
tion. These genes have also been shown in vivo to be involved in vesicular antho-
cyanin transport in addition to GST [67]. Additionally, putative flavonoid trans-
locators, which may be responsible for anthocyanin transport, and are similar to 
mammalian bilitranslocase, have been identified in ripening red- and white-fruited 
cultivars [68, 69].

Factors Affecting Variation in Anthocyanins

Variability in anthocyanin concentration and composition is known to be influenced 
by genotypes, berry developmental stages, environmental conditions, and cultural 
factors [7, 70].

The developmental stages of ripening have been shown to affect anthocyanin 
accumulation, with a two-stage accumulation, including a rapid increase of antho-
cyanins at early stages of development, closely correlated with sugar accumula-
tion, followed by a second stage with slower accumulation [71]. These stages of 
ripening-related anthocyanin accumulation have been shown to be associated with 
vine vegetative conditions and climatic conditions [7]. The 3′-subsituted forms of 
anthocyanins have been observed to form earlier in the berry development than the 
3′,5′ forms [72, 73].

Mineral nutrition is also known to influence variability in anthocyanin accumu-
lation [70]. Higher concentrations of malvidin-3-O-glucoside and malvidin-3-O-
coumarate glucoside in “Cabernet Sauvignon” vines that had been grafted on the 
high-vigor rootstock 1103P compared to those grafted on SO4 [74]. Heavy nitrogen 
application earlier in the season has been shown to delay ripening and to affect an-
thocyanin accumulation and composition [75].

Light and temperature also affect anthocyanin accumulation, with divergent ef-
fects depending on the ambient temperature [76–78]. Compositional changes in 
the constituent anthocyanins have also been observed in response to increases in 
solar radiation [76, 79, 80], while higher temperatures have also been reported to 
increase the proportion of acetylated to nonacetylated forms of anthocyanins [72, 
76, 80]. Water deficits have also been showed to result in changes to anthocyanin 
concentrations as well as composition [81–83]. High nighttime temperatures have 
been shown to reduce the expression of several of the structural genes within the 
flavonoid biosynthetic pathway and also result in a reduction in the accumulation 
of anthocyanins [84–86]. Conversely, low storage temperatures have been shown 
to lead to an increase in expression of some of the flavonoid biosynthetic genes as 
well as an increase in anthocyanin accumulation [87, 88].

Considering the high value of the crop, extensive research has been conducted 
on utilizing viticultural practices to enhance fruit and wine quality, including the 
production of grape pigments. Cluster thinning, either by hand or mechanically, 
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early in the season, prior to fruit set, has been shown to have many effects on fruit 
quality, including an increase in anthocyanin accumulation [89]. Conversely, cluster 
thinning at veraison has been shown to have much less of an effect on fruit quality 
[90]. Numerous additional cultural factors are known to affect berry quality, includ-
ing the accumulation of anthocyanins, such as girdling of stems, disease infection, 
or the use of partial root-zone drying [91–93].

Ultraviolet irradiation is known to increase the expression of anthocyanin bio-
synthetic genes in several plant species and also lead to an increase in the accumula-
tion of anthocyanins [70, 94]. Research examining the structure of the promoter se-
quences of two of the structural genes involved in flavonoid biosynthesis in grapes 
revealed that these genes could be induced by exposure to ultraviolet-A light [95, 
96]. Similarly, it has been shown that exposure of grape berries to ultraviolet irradi-
ation leads to the accumulation of anthocyanins in the cultivar “Gros Colman” [97].

Phytohormones are also known to influence anthocyanin accumulation in grape 
berries and tissues. Abscisic acid (ABA) is a phytohormone involved in stress re-
sponses, especially in response to water stress. It is known that the application of 
ABA can increase the anthocyanin content in grape berry skin and that application 
of ABA can greatly enhance the color of grapes [98]. Addition of ABA to grape 
cell suspension cultures can also promote anthocyanin accumulation and increase 
the expression of chalcone isomerase [99]. Additional work has shown exogenous 
application of ABA leads to enhance the expression of several structural genes in-
volved in flavonoid biosynthesis as well as the regulatory gene VvmybA1 [100, 
101].

Ethylene is a phytohormone known to influence many aspects of fruit ripen-
ing [70]. Application of the ethylene-releasing compound, 2-chloroethylphosphonic 
acid (2-CEPA), can hasten the accumulation of anthocyanins in grape skin, and 
application of 2-CEPA has been shown to increase the expression of several genes 
involved in flavonoid biosynthesis [102]. Similarly, the postharvest application of 
ethylene and/or 1-methylcyclopropene (1-MCP) to grape berries has been shown to 
improve the stability of anthocyanins during storage [103].

The application of some phytohormones has been shown to have a negative im-
pact on anthocyanin accumulation. Specifically, application of the auxins 2,4-di-
chlorophenoxyacetic acid (2,4-D) or 1-napthaleneacetic acid (1-NAA) to grape 
berries has been shown to reduce the expression of several structural genes in the 
flavonoid biosynthetic pathways, and decrease the expression of Vvmyba1 as well 
[100, 101].

Several nonphytohormone chemicals have also been shown to influence the ac-
cumulation of anthocyanins in grape berries and other tissues. The accumulation of 
sugars is closely correlated with the accumulation of anthocyanins in developing 
grape berries, and some evidence shows that sugars can stimulate the expression 
of some of the structural genes involved in flavonoid biosynthesis as well as lead 
to an increase in the accumulation of anthocyanins [104, 105]. Similarly, the ap-
plication of a 5% ethanol solution has been shown to enhance the accumulation 
of anthocyanins in grape berries at veraison as well as increase the expression of 
several of the structural genes involved in the flavonoid biosynthetic pathway [106]. 
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Also, eutypine [4-hydroxy-3-(3-methyl-3-butene-1-ynyl)benzaldehyde], the toxin 
produced by Eutypa lata, the pathogen causing Eutypa dieback in grapevines, has 
been shown to reduce the gene expression of UFGT, but not additionally tested 
flavonoid structural genes, and also inhibits the accumulation of anthocyanins in 
developing grape berries [107].

Anthocyanin Production Using Cell Suspension Culture

There is significant interest in using cell suspension cultures as a means for produc-
ing anthocyanins as natural colorants in the food industry [108, 109]. The primary 
source of cells for suspension cultures for the production of grape anthocyanins 
come from the two intensely pigmented teinturier cultivars, “Gamay Freaux” or 
“Bailey Alicante,” in which high osmotic potential has been shown to enhance an-
thocyanin production [110, 111]. Elevating the sucrose content in the cell culture 
medium can increase the external osmotic potential and lead to an increase in an-
thocyanin accumulation, presumably through a mechanism similar to the osmotic 
stress induced under water deficit. Similar increases in anthyocyanin accumulation 
are observed through the addition of other osmolytes, such as mannitol. The addi-
tion of nitrate has also been shown to increase anthocyanin levels in cell suspension 
cultures, presumably by removing an inhibitory effect on production and transport 
[111]. In contrast, high ammonium concentrations in the culture medium can lead 
to a reduction in the accumulation of anthocyanins [112]. Combined, the effect of 
high sugar and low nitrogen can lead to an increase in anthocyanin accumulation 
[111]. Similarly, phosphate deprivation has been shown to increase the expression 
of dihydroflavonol 4-reductase (DFR) and additional increase in the accumulation 
of anthocyanins in cell suspension culture [113]. Polysaccharide elicitors have also 
been shown to enhance the accumulation of anthocyanins in cell suspension culture 
[114].

Conclusions

Grapes are one of the world’s most important horticultural crops, in which the qual-
ity of wine and other grape products is the chief determinant of its value and impor-
tance. Wine, juice, and grape color are critical in determining the maximum quality 
of grape products, and substantial research has been conducted into the diversity 
of grape anthocyanins, regulation, physiology, and environmental/cultural factors 
that affect the production of anthocyanins. Although the anthocyanin pigments are 
widely distributed in the plant kingdom and have been extensively studied in many 
plant species, including many cultivated fruit crops, grapevine anthocyanins are of 
extreme agricultural significance due to the value and worldwide distribution of the 
crop. Additionally, the diversity of anthocyanins present within cultivated grape 
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suggests the importance of these compounds for this crop and presents exciting 
opportunities to study the underlying processes leading to diversification of grape 
pigments over time.
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