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Introduction

Although there are about 600 known carotenoids in nature, the human diet con-
tains approximately 40, and only ~ 10 were found in human tissues and plasma 
[1]. Some abundant dietary carotenoids, like violaxanthin and antheraxanthin in 
green plant tissues, are poorly absorbed in the human intestinal tract. Neverthe-
less, humans and monkeys are able to absorb and utilize a remarkably wide variety 
of carotenoids, from the nonpolar hydrocarbons (carotenes) to polar hydroxycarot-
enoids (lutein, zeaxanthin) [2]. Carotenoids containing an unsubstituted β-ionone 
ring (β-carotene, α-carotene, γ-carotene, β-cryptoxanthin) are partially converted to 
vitamin A in the intestinal mucosa and other tissues. Other animals may absorb only 
carotenes (cows, felines) [3], or are practically unable to absorb any carotenoids 
unless fed with large pharmacological doses (carnivores) [4]. Some animals seem 
to absorb only provitamin A carotenoids and convert them so efficiently to vitamin 
A that none can be found in their blood or tissues (rats, mice). Birds utilize provi-
tamin A carotenoids, as well as polar hydroxy- and keto-carotenoids, to produce 
pigments coloring their skin and feathers [5]. Because of these great differences in 
carotenoid utilization and metabolism, it is difficult to translate the data obtained 
from research with laboratory animals to human physiological response and dietary 
recommendations. However, genetic and proteomic investigations in animals and 
humans may reveal the causes of the differences between species and within human 
populations [6].
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This chapter considers the role of carotenoids in various aspects of human physi-
ology, possible benefits of dietary intake in preventing and treating disease, as well 
as the controversial issues of supplementation. Despite a very substantial body of 
existing literature, we are still at the beginning in the understanding of these com-
plex problems.

Food Sources and Bioavailability

Plants are the main source of carotenoids in our diet, since the bright colors of 
many fruits and vegetables are due to the high content of these pigments. Carrots, 
sweet potato, pumpkin, squash, mango, and apricots are rich in β-carotene, which 
is also abundant in the dark-green leaves of spinach, turnip greens, and collards 
[7]. Carrots, pumpkin, and squash also contain considerable amounts of α-carotene, 
while oranges, tangerines, red peppers, yellow papaya, and persimmons are the 
main sources of β-cryptoxanthin. Lycopene is provided mostly by tomatoes and 
tomato products, but is also present in watermelon, guava, pink grapefruit, and red 
papaya. Lutein and zeaxanthin are delivered by dark-green leaves, broccoli, and 
corn (maize).

Canned, cooked, or dried fruits and vegetables often contain more carotenoids 
per unit of weight than their fresh counterparts, due to dehydration, although some 
losses occur in processing at high temperatures. However, the bioavailability of ca-
rotenoids is greatly increased by processing (mincing, pureeing, cooking, canning) 
since it releases them from the food matrix. Thus, they may be easier to digest in 
the intestine, i.e., to incorporate into micelles of lipids and bile salts. Carotenoids 
are fat-soluble pigments, and therefore require the presence of fat in the same meal 
to be absorbed. Salad dressings should contain some fat to facilitate the absorption 
of carotenoids [8]. Mixed dishes containing carotenoids, like soups, stews, casse-
roles, and sauces, are better vehicles for carotenoid delivery than raw produce. For 
the same reason, animal sources of carotenoids are excellent providers of bioavail-
able β-carotene (milk, butter, cheese, and beef liver) or lutein and zeaxanthin (eggs, 
chicken fat, liver, and skin).

Major contributors of individual carotenoids, as well as of total provitamin A 
carotenoids, in the diet of adult Americans are listed in Table 3.1 [9]. The average 
daily intake of carotenoids by adults >19 years of age is close to 10 mg/day, includ-
ing 2.63 mg provitamin A carotenoids (2.11 mg β-carotene, 0.39 mg α-carotene, 
0.13 mg β-cryptoxanthin), 5.52 mg lycopene, and 1.50 mg lutein and zeaxanthin 
[10]. However, it was estimated from the National Health and Nutrition Exami-
nation Survey (NHANES) 2003–2006 data that only 5 % of adult males and 7 % 
of adult females meet dietary guidance recommendations for fruit and vegetable 
intake. Those individuals have a two- to threefold higher intake of carotenoids than 
the rest of the US population. Table 3.2 provides a list of mixed foods that contrib-
ute to carotenoid intake and are well accepted even by people who do not eat many 
fruits and vegetables.
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Absorption of carotenoids in the intestine was long considered to occur passively 
together with dietary lipids [11]. After their release from plant tissues, they must be 
dissolved in fat, forming emulsions with the aid of bile acids. Carotenoid-contain-
ing lipid micelles are absorbed by the intestinal mucosal cells and incorporated in 
chylomicrons; however, this universal scheme does not explain considerable dif-
ferences in carotenoid absorption among animal species. Recent cell culture and 
animal model studies indicate that carotenoid absorption is protein-mediated by 
a scavenger receptor class B type 1 (SR-B1), which also facilitates the uptake of 
α-tocopherol and cholesterol [6]. SR-B1 is regulated (attenuated) by the intestine-
specific homeobox factor (ISX), which in turn is activated by retinoic acid. Further 
studies of the differences in activity and expression of these proteins may help to 
elucidate the diversity of carotenoid absorption among various species, as well as 
individual differences in the human population. It is worth mentioning that careful 
balance studies of carotenoids measured in the diet and feces provide some assess-
ment of carotenoid absorption, although it may be overestimated due to bacterial 
degradation in the colon. The absorption of β-carotene from plant sources ranged 
from 5 to 65 % in adult humans [12] according to studies in the Netherlands, UK, 
and USA, a demonstration of the wide variation in carotenoid absorption within the 
human population.

Carotenoid Metabolism

The absorbed provitamin A carotenoids are centrally cleaved by β-carotene-15,15′-
monooxygenase (BCMO1), producing retinal (vitamin A aldehyde) that is quickly 
reduced to retinol. Irreversible oxidation of retinol results in retinoic acid, which 
mediates the vitamin A functions in growth and development by binding to retinoic 
acid receptors (RARs). BCMO1, like the absorption facilitator SR-B1, is regulated 
(attenuated) by ISX, a transcription factor activated by RARs [6]. A heterozygotic 
mutation in BCMO1 causes elevated β-carotene and low retinol concentrations in 
blood [13]. Normally, about 40 % of absorbed β-carotene is not converted to vita-
min A in the intestine, but incorporated in chylomicrons, entering circulation and 
taken up in various tissues by lipoprotein-specific receptors. Since BCMO1 is ex-
pressed in the liver and peripheral tissues (glandular cells of stomach, pancreas, 
colon, prostate, mammary tissue, steroidogenic cells of ovary, testis, and adrenals, 
as well as skin keratocytes, muscle cells, and retinal pigmented epithelium of the 
eyes), local production of retinoids may also occur.

The efficiency of provitamin A carotenoid conversion to vitamin A depends on 
bioavailability, absorption, and cleavage reactions that are obviously affected by 
many factors, like food preparation, health, and genetic variability in human sub-
jects [12, 14]. Low vitamin A status may increase the conversion in the absence of 
parasites, anemia, and other diseases. On the other hand, large dietary intakes of pro-
vitamin A carotenoids may decrease the efficiency of conversion due to the negative 
feedback regulation by retinoic acid. The equivalency ratio (weight of β-carotene 
in food: estimated weight of retinol formed) was better for fruits (12:1) than for 
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vegetables (26:1) in most studies, but the best was found for biofortified Golden 
Rice (3.8:1), biofortified maize (6.5:1), spirulina (4.5:1), and red palm oil (RPO; 
5.7:1). However, the reported ranges within studies were very wide, as shown in 
Table 3.3. In 2001, the US Institute of Medicine proposed a new unit, the retinol 
activity equivalent (1 µg RAE = 1 µg retinol), and advised that 1 µg RAE = 12 µg 
β-carotene or 24 µg of other provitamin A carotenoids for calculations of vitamin A 
equivalency for plant-derived food [15].

Besides the cytoplasmic enzyme BCMO1, there is also a mitochondrial carot-
enoid-degrading enzyme, β-carotene-9′,10′-dioxygenase 2 (BCDO2), that cleaves 
a wide range of carotenoids at position 9, 10 or 9′,10′, forming apocarotenals, 
β-ionone, or acyclic fragments, depending on the substrate [16]. BCDO2 degrades 
provitamin A carotenoids, xanthophylls (lutein and zeaxanthin), and lycopene cis 
isomers. Inhibition of BCDO2 gene expression may help to explain the accumula-
tion of xanthophylls in birds (yellow skin of chickens) or an unusual yellow-fat 
phenotype in sheep. Thus, the apparent lack of carotenoids in blood or tissues of 
various animal species may be the result of active degradation by BCDO2. Apocar-
otenals seem to be quickly metabolized, since they do not accumulate in animal 
tissues. However, minute amounts of β-apo-8′-carotenal, β-apo-10′-carotenal, and 
β-apo-12′-carotenal were found in mice and humans, derived from dietary apocaro-
tenals or from β-carotene eccentric cleavage (enzymatic or nonenzymatic) [17]. 
Small amounts of β-apocarotenals (~1.5 % of β-carotene) were found in cantaloupe 
[18] and lycopenals (0.1 % of lycopene) were identified in tomatoes, tomato paste, 
watermelon, and red grapefruit [19].

Significance of Provitamin A Carotenoids  
in Developing Countries

Provitamin A carotenoid availability is of particular importance in developing 
countries where vitamin A deficiency (VAD) is a significant public health concern. 
The main underlying cause of VAD in low-income countries is a poor diet that is  

Table 3.3  Vitamin A equivalency of β-carotene from plant sources, based on plasma retinol 
response. (Adapted from [12])
Plant source Amount of 

β-carotene (mg)
Equivalency 
ratio (wt)

Range CV (%)

Indian spinach ( Basella alba) 4.5 10:1 – –
Sweet potato 4.5 13:1 – –
Spinach 11 21:1 10:1–47.1:1 43
Carrots 11 15:1 8:1–25:1 44
Maize (biofortified) 0.527 6.5:1 3.9:1–13.3:1 54
Golden Rice 1–1.53 3.8:1 1.9:1–6.4:1 45
Red palm oil 2.37 5.7:1 – –
Spirulina 4.2 4.5:1 2.3:1–7.1 36
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consistently insufficient in vitamin A, eventually leading to depleted stores that fail 
to achieve physiological needs [20, 21]. Persistent, severe deficiency can lead to 
xerophthalmia, a form of preventable, but irreversible, blindness in young children, 
and facilitates infectious diseases such as measles, diarrhea, and intestinal parasites, 
which increase infant mortality risks.

In such low-income populations, due to the poor availability of animal sources 
of preformed vitamin A, dietary carotenoids from plant sources, which need to be 
converted to vitamin A in the intestine, contribute to ~ 80 % of daily vitamin A in-
take and become highly necessary [12]. However, intestinal conversion of provi-
tamin A to vitamin A is often compromised due to intestinal parasitic infections 
in young children, further exacerbating the deficiency condition. Some success 
has been observed with improving vitamin A status through supplementation with  
low-dose β-carotene (1.2 mg daily) coupled with deworming for roundworms, such 
as Ascaris lumbricoides, in young Bangladeshi children with subclinical VAD [22].

World Health Organization (WHO; [21]) has reported that about 250 million 
preschool children are affected by VAD, and an estimated 250,000–500,000 chil-
dren go blind every year. WHO has outlined three main community-intervention 
strategies to combat and reduce VAD in affected populations: (1) fortification, (2) 
supplementation, and (3) dietary diversification. The first approach involves in-
creasing dietary intake through fortification of a staple food with vitamin A. While 
this approach has been implemented and successful in Central and South America 
where sugar has been fortified for many years [23], and also in high-income popula-
tions where fats, oils, and cereal products are enriched, its success in low-income 
countries is still limited. As mentioned earlier, vitamin A equivalency ratios appear 
to be lower for biofortified foods that are staples in populations at risk for VAD in 
developing countries. However, since these ratios were estimated in healthy US 
adults, it remains to be seen whether these biofortified foods will be as favorable 
in these high-risk areas where nutritional deficiencies and intestinal parasites are 
highly prevalent [12].

In high-risk populations, periodic supplementation with 200,000 IU vitamin A in 
preschool children (< 5 years) has been shown to reduce the risk of xerophthalmia 
by 90 % and mortality by 23 % [20]. A recent meta-analysis evaluating the efficacy 
of vitamin A supplementation in reducing mortality and morbidity in children aged 
6 months to 5 years found that out of the 43 trials included, 17 trials reported a 24 % 
reduction in the all-cause mortality rate. Seven trials reported a 28 % reduction in 
mortality associated with diarrhea, and vitamin A supplementation was associated 
with a reduced incidence of diarrhea and measles and a reduced prevalence of vi-
sion problems including night blindness and xerophthalmia [24]. Although effec-
tive, supplementation targets an immediate need, but is not regarded as a sustainable 
and economically viable approach.

Dietary diversification has been promoted in these regions in order to enhance 
the overall nutritional status of a community through nutrition education, and en-
couraging the consumption of vitamin A- and provitamin A-rich foods. The impor-
tance of home gardens to improve availability has also been emphasized. However, 
supplementation with plant sources of β-carotene in children and pregnant/lactating 
women have had variable effects [12]. In Mozambique, the promotion of production 
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and consumption of orange-fleshed sweet potato (OSP) resulted in increased serum 
retinol concentrations in preschool children from the intervention area compared 
with children in the control area, following a 2-year period [25]. Similar results 
were obtained in Uganda, where introduction of OSP to farming households led 
to a decrease in the prevalence of inadequate vitamin A intake in both children 
and women, and a 9.5 % reduction in prevalence of serum retinol < 1.05 µmol/L in 
children [26]. In poor Bangladeshi women, however, 60 days of daily consump-
tion of OSP increased plasma β-carotene concentrations from 0.1 ± 00 µmol/L to 
0.18 ± 0.09 µmol/L ( P < 0.0001), but the vitamin A body pool size was not signifi-
cantly affected [27]. In Gambian children, the consumption of dried mango for 4 
months increased serum retinol concentrations, compared to the control group who 
received a single placebo capsule of 40 mg α-tocopherol, followed by no interven-
tion for 4 months. Dark-green leafy vegetables or orange-colored fruits, provided 
to Indonesian schoolchildren for 9 weeks, increased serum retinol concentrations 
compared to the control group that received a diet low in provitamin A. Filipino 
children also showed a positive response to a 9-week intervention with β-carotene-
rich vegetables [12]. While these studies indicated that consumption of β-carotene 
through fruits and vegetables can increase the vitamin A status of at risk children, 
it is argued that the extent of vitamin A status improvement is difficult to quantify, 
because serum retinol is under homeostatic control and assessing these levels alone 
cannot provide information on the magnitude of change in vitamin A status [12].

Another food widely promoted for controlling VAD is RPO, the richest naturally 
occurring source of β-carotene, which generally contains a total of 500–800 mg of 
provitamin A carotenoids/kg oil [28] and is traditionally used for cooking in tropi-
cal rain forest regions of West Africa [29]. Rice and Burns [30] have presented a 
comprehensive review on the efficacy of RPO in preventing VAD. In the reviewed 
studies, RPO was provided mainly to preschool-aged children and pregnant or lac-
tating women, either as a daily supplement, an in-home fortificant (such as mixing 
with breakfast, foods, and regular meals), or fortified into other foods (such as bis-
cuits or cassava flour). In general, most studies showed an improvement in serum 
retinol concentrations in the targeted populations. Carotenoid levels increased in 
breast milk and maternal serum, but did not increase milk retinol concentrations in 
early lactation. The authors observed that the distinctive odor, color, and taste of 
RPO could be a potential barrier in achieving intervention success in cultures and 
countries where the oil is not traditionally used for cooking. However, if incorpo-
rated successfully, there is considerable evidence supporting the efficacy of RPO in 
ameliorating VAD.

In recent years, genetically modified (GM) crops have been advocated as a safe 
and super-efficient mode to increase the provitamin A levels in staple crops that 
otherwise contain negligible amounts of carotenoids, and Golden Rice (GR) has 
become a frontrunner in this regard. By genetically engineering the components of 
the β-carotene biosynthetic pathway into the endosperm of rice [31], scientists have 
been able to produce GR containing up to 37 µg total provitamin A carotenoids 
(~30 µg β-carotene) in 1.0 g milled and uncooked rice [32]. This technological 
advancement has provided an opportunity to improve the availability of provitamin 
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A carotenoids to South Asian countries where rice is a main staple and VAD still 
prevalent. Tang et al. [33] compared the efficiency of isotope-labeled GR to spinach 
or pure β-carotene in oil in providing vitamin A to Chinese preschool children. The 
results indicated that GR was as effective as β-carotene in the oil capsule and bet-
ter than spinach in contributing to the vitamin A intake in these children. Further-
more, the efficiency of conversion of β-carotene from GR to vitamin A was found 
to be better (2.3:1) in the Chinese children than that in US adults (3.8:1) [34]. If 
supplementation with GR produces similar outcomes in other high-risk countries, 
a considerable reduction in VAD can be expected due to the large consumption 
of this staple food. However, the economic cost of producing and supplying large 
amounts of GM crops to densely populated areas may be a challenge to consider. In 
the meantime, the consumption of carotenoids through homegrown vegetables and 
crops needs be continually encouraged in order to maintain a vitamin A status that 
would prevent fatal consequences.

Fertility and Reproductive Success

It is well known that carotenoids are crucial for the propagation of animal species, 
especially birds [35]. The bright colors of feathers or skin advertise gender (usually 
male), health and vigor, and the ability to procure a nutritious diet for offspring. 
Sexual attraction and choice of mate often depend, in birds, on the dietary supply of 
carotenoids. Carotenoids are accumulated in the egg yolk and provide a necessary 
supply of lutein and zeaxanthin for the retina of the developing young bird. Bird 
retina has more photoreceptors than human retina, and each cone cell contains an oil 
droplet with a high concentration of carotenoids that allows them to have excellent 
vision and to distinguish a great range of colors [36].

Recent simulation experiments indicated that subjects preferred carotenoid-re-
lated yellowish skin tones over suntan in potential mates, possibly because it ad-
vertises good health and may also signal robust fertility [37]. Dietary carotenoids 
normally found in the testes [38, 39] and seminal plasma [40] were often at lower 
concentrations in men suffering from infertility. The relationship between carot-
enoids and fertility was investigated in 30 men with idiopathic sperm quality issues 
[41] who were given 2 mg lycopene twice a day for 3 months. Lycopene administra-
tion significantly improved sperm count, motility, and morphology. This short study 
resulted in six pregnancies.

Carotenoids also accumulate in ovaries, especially the corpus luteum, which de-
velops in female mammals from the ovarian follicle after release of the egg, during 
the luteal phase of the estrous or menstrual cycle. Bovine corpus luteum is so rich in 
β-carotene that it is often referred to as corpus rubrum, and it increases from 14 to 
175 µg/g during the estrous cycle [42]. The corpus luteum synthesizes progesterone 
to prepare the uterine endometrium for implantation of the fertilized egg, thus main-
taining pregnancy. When studied in bovine luteal cell culture, this steroidogenesis 
was found to require the replenishing of high-density lipoprotein (HDL) cholesterol 
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(substrate) and β-carotene [43]. It is possible that β-carotene fulfills a dual function 
in corpus luteum, as an antioxidant protecting the tissue from the action of free radi-
cals released during the synthesis of progesterone [44] and as an endogenous source 
of vitamin A produced there by the enzyme BCMO1. Reproductive performance 
of cows seems to be enhanced by the intake of carotenoids from fresh hay and/or 
supplemental β-carotene [45].

Human corpus luteum is the primary source of progesterone for 4–5 weeks after 
implantation [46], until placental production takes over. It is quite obvious that the 
concentration of carotenoids in human corpus luteum is higher than in the rest of 
the ovary, but the quantitative data are missing due to the difficulty of obtaining 
specimens from different phases of the menstrual cycle and pregnancy. The ova-
ries contain all the dietary carotenoids found in human plasma (β-carotene, lutein, 
lycopene) [38, 39]. It is tempting to speculate that an increased intake of dietary 
carotenoids may improve conception rates and maintenance of early pregnancy in 
some women with unexplained infertility.

Maternal deficiency of vitamin A increases the risk of pregnancy-related mortal-
ity and impairs infant survival. Although not of concern in high-income popula-
tions, where preformed vitamin A-rich and fortified foods are readily available, in 
low-income, high-risk countries, supplemental vitamin A is recommended during 
pregnancy to prevent night blindness and postnatal infant mortality.

A randomized, double blind, placebo-controlled trial in Nepal administered 
7 mg retinol, 42 mg β-carotene, or placebo to pregnant women on a weekly basis 
[47]. Both vitamin A and β-carotene significantly reduced maternal mortality dur-
ing pregnancy and 12 weeks after birth. However, no such effect was seen in a 
similar trial conducted in rural Bangladesh, where VAD was much less prevalent 
and the diet included more protein and fat [48]. Infant mortality (till 12th week post 
partum) and the rate of stillbirth were not reduced by the weekly dose of retinol or 
β-carotene.

In a meta-analysis of 17 trials using vitamin A or β-carotene supplementation 
during pregnancy, no significant overall effect on birth weight, preterm birth, still-
birth, miscarriage, or fetal loss was found [49]. Supplementation was protective 
in HIV positive women against low birth weight (< 2.5 kg; RR = 0.79, CI = 0.64, 
0.99) but not for preterm delivery or small-for-gestational-age infants. However, 
some evidence indicated that concurrent supplementation with vitamin A (5000 IU) 
and β-carotene (30 mg) was associated with an increase in HIV transmission from 
mother to child [50], thereby warranting caution against supplementation programs 
in high HIV prevalence areas. These authors concluded that the evidence in fa-
vor of vitamin A/β-carotene supplementation on maternal and infant mortality was 
lacking.

However, the WHO [51] has suggested a vitamin A supplementation scheme 
in areas with severe public health problems of night blindness and infant mortal-
ity. A daily dose of 10,000 IU or 25,000 IU weekly vitamin A in the form of an 
oral liquid or oil-based preparation of retinyl palmitate or retinyl acetate is recom-
mended. Supplementation should be considered for a minimum of 12 weeks during 
pregnancy until delivery where prevalence of night blindness is ≥5 % in pregnant 
women and children aged 24–59 months. No recommendation for provitamin A 
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carotenoids was given. Supplementation of provitamin A carotenoids or vitamin A 
during the last trimester of pregnancy may improve levels of retinol in breast milk 
[51], but a comprehensive study has not been performed. The initial postpartum 
breast secretion, colostrum, contains more carotenoids than later milk, especially in 
women who have lactated after earlier pregnancies [52]. The variability is great, but 
the carotenoids likely benefit the health of the newborn child. A multinational study 
of breast milk of healthy mothers revealed that the provitamin A carotenoids ac-
counted for > 50 % of milk carotenoids and were highest in Japanese mothers [53]. 
US mothers had the lowest concentrations of total carotenoids.

Few studies have explored the associations between carotenoids and preeclamp-
sia in pregnant women. Significantly lower plasma β-carotene levels were associ-
ated with the subsequent development of preeclampsia in pregnant women with 
diabetes [54]. Both placenta and plasma from preeclamptic women were signifi-
cantly lower in β-carotene and lycopene compared to normal pregnant women [55]. 
Since oxidative stress characterizes the pathophysiology of preeclampsia [56], it is 
conceivable that consumption of carotenoids during pregnancy may favor an envi-
ronment that minimizes oxidative damage. In any case, since pregnancy is a period 
of rapid growth and development, a carotenoid-rich diet may help to sustain a preg-
nancy free of complications and promote a healthy outcome.

Prevention of Oxidative Stress and Inflammation

The carotenes and xanthophylls are some of nature’s most efficient quenchers of 
singlet oxygen. Singlet oxygen arises from exposure of chromophores such as por-
phyrins, chlorophylls, and riboflavin to sunlight. These activated molecules can 
damage DNA, proteins, and lipids. Carotenoids absorb the excess energy of sin-
glet oxygen and dissipate it as heat [57]. However, the idea that carotenoids are 
important classical antioxidants, which play a role in major diseases where oxida-
tive stress and inflammation are causative factors, is less well established. Small 
amounts of carotenoids can be found in almost all the lipid membranes of the body. 
In the animal kingdom, they are often associated with specific proteins. The xantho-
phylls, such as lutein and zeaxanthin, having hydrophilic hydroxyl groups, orient 
themselves across membranes. The carotenes, such as β-carotene and lycopene, are 
oriented within the bilipid layers and can disturb the phospholipid structure to a 
small extent, allowing for greater penetration of small molecules [58]. Their loca-
tion and orientation may play a role in their ability to act as classical antioxidants.

In vitro studies have shown that all the carotenoids accept the unpaired electron 
from a number of free radical species (sulfur-containing radicals, glutathione, nitric 
oxide, NO2, –ONOO–, and peroxyl radicals), as well as superoxide. The resulting 
carotenoid radical must be converted back to its original state to be considered an 
antioxidant. The residence time of the specific carotenoid radical, oxygen partial 
pressure, and the availability of other antioxidants determine whether a carotenoid 
acts as a prooxidant or an antioxidant [59]. For example, protection of lymphocytes 
from nitrogen radical attack increases almost tenfold in the presence of vitamins C 
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and E and β-carotene compared to β-carotene alone [60]. Carotenoids can also ac-
cept electrons from each other, with lycopene being the ultimate acceptor from all 
other carotenoids [61].

Oxidative stress and inflammation processes occur together. Several human 
studies have found an association between low dietary carotenoids and/or blood 
carotenoid levels and increased markers of oxidative stress and inflammation [62–
66]. Such associations may be more related to antioxidant- and anti-inflammation-
promoting dietary patterns that include fruit and vegetable consumption than to 
carotenoid intake alone. Cell culture and animal studies, using models of oxidative 
stress, have found redox-based regulation of proinflammatory pathways by lutein, 
β-carotene, and lycopene [67–69].

Supplementation studies have been equivocal and their outcomes may depend 
upon the level of oxidative stress and the antioxidant status of participants dur-
ing the study. Lutein supplementation of preterm infants [70] and healthy adults 
[71], mixed carotenoids in postmenopausal women [72], and numerous lycopene 
supplementation studies [73] have found decreases in markers of oxidative stress or 
inflammation. The two studies that used supplement combinations of β-carotene, vi-
tamins C and E, and selenium found no change in markers of inflammation [74, 75].

Photoprotection and Skin Health

Sunlight is an environmental hazard over the life of human skin. Not only UV-A 
and UV-B but also visible and infrared light are responsible for singlet oxygen and 
radical production, especially in the presence of natural photosensitizers such a por-
phyrins and riboflavin. This can result in photoaging (roughened or patchy skin, 
wrinkles), UV-induced erythema (sunburn), and skin cancer [76]. Given the role 
that carotenoids play in nature as photoprotectors, do they play the same role in hu-
man skin? A variety of carotenoids accumulate in various dermal layers of the skin. 
In fact, their presence in skin due to higher consumption of fruits and vegetables or 
carotenoid supplements can be visibly detected by ordinary observers [77, 78]. As 
noted before, the resulting facial skin tones are favored and are considered a sign 
of greater health and vigor [79, 80]. Various case reports document carotenodermia 
in individuals who have gone overboard in consuming carrot or tomato juice. The 
extreme yellow-to-orange pigmentation that concentrates in the palms of the hands 
disappears harmlessly with the termination of intake [81, 82]. Canthaxanthin was 
sold as tanning capsules in European countries in the 1980s until it was discovered 
that golden crystals formed in the paramacular region of the eye [83].

The first medical use of β-carotene was developed by Micheline Mathews-Roth 
and her collaborators. People suffering from erythropoietic protoporphyria (EPP) 
accumulate large quantities of protoporphyrin IX, a precursor of hemoglobin syn-
thesis. Protoporphyrin is a photosensitizer in the visible light range, so sunscreens 
developed against UV light do not prevent the burning sensation and edema that oc-
cur when sufferers are exposed to even a small amount of sunlight. Mathews-Roth 
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made the connection between carotenoid protection for chlorophyll in plants in the 
wavelength range of 380–560 nm and the similar structure of protoporphyrin. Clini-
cal trials were very effective, with doses of 180 mg/day of β-carotene providing 84 % 
of patients a threefold greater ability to tolerate sunlight, especially for children who 
could now play outside. In 1975, the US Food and Drug Administration approved 
the use of β-carotene for the treatment of EPP [84]. The availability of β-carotene 
for human use motivated its employment in subsequent trials for cancer prevention.

A number of studies have evaluated dietary supplementation with β-carotene, 
lycopene, or mixed carotenoids, as protection from UV-radiation caused erythe-
ma. More positive results were observed for tomato extracts compared to lycopene 
alone. Phytoene and phytofluene (found in tomatoes) are precursors in the lycopene 
synthetic pathway and, unlike lycopene, absorb UV radiation. Greater efficacy was 
found in trials lasting ≥ 7 weeks with carotenoid doses ≥ 12 mg/day, possibly in 
combination with vitamin E [85, 86]. A meta-analysis of β-carotene supplementa-
tion trials found a protective effect regardless of dose, but increased in effective-
ness with time ≥ 10 weeks. The sun protection factor (SPF) was 4 compared to 
sunscreens with SPFs between 10 and 40 [87]. Topical application of β-carotene in 
lotion may have benefits, providing protection from infrared light that has also been 
shown to produce radicals from distressed mitochondria [88].

Skin ages in light-exposed areas (extrinsic or photoaging) as well as covered 
areas (intrinsic aging). Reactive oxygen species (ROS) formation via mutations in 
mitochondrial DNA are important for both processes, but UVA-light exposure in-
creases the mutation rate by 40 %. UV light accounts for 80 % of facial skin aging, 
with visible wrinkles and rough skin explained by the breakdown of collagen, deg-
radation of elastin fibers, and 50 % slower renewal of the epidermis by the age of 80 
years [89]. There is a general impression that a nonsmoking, healthy lifestyle leads 
to a more youthful appearance, but only a few studies have explored the association 
of carotenoid status to fewer wrinkles. A cross-sectional study of people >70 years 
in a range of countries found that back-of-the-hand skin wrinkling was negatively 
associated with higher intakes of vegetables, olive oil, and legumes, with healthy 
diet explaining 34 % of the variance [90]. Forehead skin roughness (an early stage 
of wrinkling) was associated with dermal lycopene ( R2 = 0.7) concentration (mea-
sured by resonance Raman spectroscopy) but not with aging in a small study with 
a narrow age range (40–56 years) [91]. Photoaging nude mice models have shown 
Anti-wrinkling effects for β-carotene and lutein + zeaxanthin. A variety of carot-
enoids are associated with a lower incidence of skin cancer [92].

Vision and Diseases of the Eye

Aside from the conversion of some of the carotenoids to vitamin A compounds, the 
strongest evidence of the human need for carotenoids comes from the study of the 
eye and its diseases associated with aging. The human macula lutea, an indented 
area located roughly in the center of the retina, occupying a diameter of 5–6 mm 
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and accounting for the central 15°–16° of vision, accumulates lutein and zeaxanthin 
at roughly 1000-fold the concentrations found in plasma [93]. The result is a vis-
ibly yellow hue referred to as macular pigment. A binding or transport protein that 
might explain this accumulation has not yet been unequivocally identified. These 
xanthophylls are organized with zeaxanthin predominating in the central region to 
about 2.5 mm from the center, with lutein exceeding zeaxanthin 2:1 at the periphery, 
and meso-zeaxanthin (thought to be an intermediate product) appearing throughout 
[94]. The relative location of lutein to zeaxanthin in the macula varies greatly from 
person to person with some people having concentric rings of greater pigmenta-
tion [95]. Lutein and zeaxanthin are localized in the Henle fiber layer that covers 
the photoreceptors, so light must be filtered through these pigments. An arrange-
ment perpendicular to the Henle fibers is consistent with maximal absorption of 
blue-wavelength light, but their specific organization (protein-bound or not) is not 
known. The orientation of zeaxanthin’s β-ionone rings provides a more orderly ar-
rangement compared to lutein [96].

The obvious function of macular pigment is to filter blue light (the most ener-
getic in the light spectrum), thus protecting the photoreceptors, retinal pigment epi-
thelium (RPE), and the underlying choriocapillaries during 70 + years of light ex-
posure. The reduction in blue light intensity can range between 40 and 90 %, which 
is sufficient to account for the observed reduction in risk for age-related macular 
degeneration (AMD) in some epidemiological studies [96]. In addition, a role as in 
situ antioxidants has been proposed. Zeaxanthin and, to a lesser extent, lutein are 
effective quenchers of singlet oxygen [1O2] coming from UV exposure [97, 98]. 
This quenching is a physical process with the excess energy dissipated as heat and 
does not destroy the xanthophylls; so macular pigment levels are maintained long 
after xanthophyll intake has ceased [99]. They may also act as classical antioxidants 
because they are present in the perifoveal and peripheral regions of the retina that 
are exposed to high oxygen tensions and have high rates of metabolism. Several 
carotenoid derivatives are found in the retina including meso-zeaxanthin, (3 S,3′S)-
zeaxanthin, and epilutein that may have been formed by redox reactions [96].

Whether there is an association between lutein and zeaxanthin status and the risk 
of AMD would seem to be a logical question. Late-stage AMD is the leading cause 
of legal blindness in people >65 years old in industrialized countries, affecting more 
than 10 million people in the USA and about 200,000 in the UK [100]. Non-His-
panic black persons have a lower prevalence [101]. Early-stage AMD starts in the 
macula with soft drusen (yellowish deposits containing no xanthophylls) and other 
pigmentation abnormalities in the RPE. It continues on to later stages characterized 
by atrophy of the photoreceptors and the RPE (dry AMD), often progressing further 
to choroidal neovascularization, retinal hemorrhage (wet AMD), detachment of the 
RPE, and retinal scarring [102]. The nature of this progressive disease complicates 
the interpretation of epidemiological studies and clinical trials. A recent meta-anal-
ysis of six longitudinal cohort studies found that the pooled relative risk (RR) of 
early- stage AMD was not related to baseline dietary intake of lutein and zeaxan-
thin, but late-stage AMD (RR = 0.74) and neovascular AMD (RR = 0.68) were risks 
for those in the lowest intake category [100].
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Since dietary lutein and zeaxanthin are related to fruit, vegetable, and egg intake, 
does lutein or zeaxanthin supplementation increase macular pigment optical density 
(MPOD) in people with healthy sight and those suffering from various stages of 
AMD? Is increased MPOD related to visual function and the development or re-
versal of AMD? Lutein, lutein esters, zeaxanthin plus lutein, or these xanthophylls 
plus various antioxidant mixes do increase MPOD in college students [103], older 
men with healthy sight [104, 105], those with early AMD [106], and men with mild 
to moderately advanced AMD [107, 108]. There appeared to be few differences 
between these formulations (10–20 mg/day) in their effect on MPOD over the 6–12 
month period in these studies. Furthermore, the ring structures of MPOD seen in 
some individuals, and thought to be protective, were neither attenuated nor gener-
ated de novo with xanthophylls supplementation [95]. In addition, those with lower 
baseline MPOD tended to have the greater increase in MPOD with xanthophyll 
supplementation. Lutein or zeaxanthin supplementation also improved visual acu-
ity, foveal shape discrimination, subjective glare recovery, and contrast sensitivity. 
These improvements were correlated with the increases seen in MPOD in several 
of the studies cited above. A small study, using 6 mg/day of lutein plus a vitamin/
mineral mixture for 9 or 18 months, failed to find improvements in the visual per-
formance parameters listed above [105].

The Age-Related Eye Disease Study 1 (AREDS1), a national study using a daily 
supplement containing vitamins C and E, β-carotene (15 mg/d), and the minerals 
zinc and copper, reduced the 5-year risk of developing advanced AMD by 25 % 
in eyes with intermediate AMD, but had no effect on the development or risk of 
cataract [109, 110]. A recent Cochrane review evaluating four high-quality random-
ized placebo-controlled studies that included 62,520 people, using vitamin E and 
β-carotene in their supplement formulations, failed to prevent the onset of AMD 
[111]. The AREDS1 study was included in this review. At the time these studies 
commenced, neither lutein nor zeaxanthin were yet available.

The goal of AREDS2 was to determine whether lutein (10 mg/d) plus zeaxan-
thin (2 mg/d), or the omega-3 long-chain fatty acids (eicosapentaenoic acid (EPA) 
650 mg/d plus docosahexanoic acid (DHA), 350 mg/d) in addition to the origi-
nal AREDS1 formulation, could reduce the 5-year risk of progression to advanced 
AMD in those with intermediate AMD [112]. More than 4000 men and women 
were randomized to one of four treatments. A secondary randomization of the un-
derlying AREDS formulation was made to answer the concern for the safety of 
β-carotene or high-dose zinc supplementation. There were no differences in the 
progression to advanced AMD for any of the primary treatments, although lu-
tein + zeaxanthin appeared to have some efficacy for the reduction of neovascular 
AMD (wet AMD; HR = 0.89, P = 0.05) compared to geographic atrophy (dry AMD). 
Further subgroup analysis showed that those in the lowest quintile of lutein + zea-
xanthin intake (0.1–1.4 mg/d) had a lower risk of AMD progression (HR = 0.74, 
P = 0.01) when supplemented compared to low-intake groups not receiving the lu-
tein + zeaxanthin supplement, whereas there was no difference among the higher 
quintiles of intake. Smokers and recent quitters had a higher risk of lung cancer with 
β-carotene supplementation and there was evidence for competition for absorption 
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between β-carotene and lutein + zeaxanthin. The authors were hesitant to make any 
conclusions based on these subgroup analyses but suggested that substitution of 
lutein + zeaxanthin in the AREDS1 formulation might be a safer choice for smokers.

Due to the macular location of lutein and zeaxanthin, and given their unique 
optical properties, they may enhance visual performance for everyone. Abundant 
macular pigment may (1) enhance visual acuity by reducing chromic aberration 
(like filters on a camera), (2) reduce visual discomfort by attenuating glare and daz-
zle, and (3) facilitate enhancement of details and visual contrast by the absorption 
of “blue haze,” (e.g., how mountains appear blue in the distance) [113, 114]. Stud-
ies enrolling younger, normal-sighted individuals have found positive relationships 
between macular pigment and contrast sensitivity, visual acuity, glare reduction, 
photo-stress recovery, and time discrimination of changing light [115–118]. Clini-
cal trials using lutein or zeaxanthin supplements (10–20 mg/day) for 6–12 months 
found improved visual acuity, contrast sensitivity, glare attenuation, and light/dark 
adaptation [119–122]. Another supplementation study (6 mg/day lutein plus vita-
mins and minerals for 9 months) found no effect on visual performance parameters 
[123]. All of these studies had small numbers of subjects and none found a correla-
tion between macular pigment density and improved visual function. Since a number 
of subjects may have already achieved optimal macular pigment before supplemen-
tation, any association with visual performance may have been attenuated.

The lens is clear, and along with the cornea, focuses a sharp image onto the 
retina. It is composed of tightly ordered fibrous cells that lose their nuclei, so their 
major proteins cannot be regenerated. Over our lifetime, new cells accumulate at 
the outer surface of the lens like the layers of an onion. The central tightly packed 
denucleated cells are subject to the so-called nuclear cataract formation. Cortical 
cataracts are formed in outer cells laid down after birth. The prevalence of age-
related cataract varies widely throughout the world in people >70 years old, with 
cortical cataract being more prevalent in some populations (30–45 %) and nuclear 
cataract more prevalent in others (10–80 %). Cataracts are observed as opacities 
of the lens that range from white to yellow to dark brown. The crystalline proteins 
(especially β) are chopped and cross-linked, forming large aggregates. This process 
is accompanied by the loss of reduced glutathione (the major antioxidant in the lens) 
and the enzyme, glutathione reductase, that regenerates it. There is also a loss of 
sulfhydryl groups in sulfur-containing amino acids of the lens proteins. Therefore, 
oxidative stress is thought to be a major factor in cataract formation [124, 125]. Do 
dietary antioxidants such as vitamins C and E and the carotenoids reduce the risk 
of cataract? The human lens contains substantial amounts of lutein plus zeaxanthin 
and vitamins A and E, but no hydrocarbon carotenoids, such as β-carotene and lyco-
pene. Lutein and zeaxanthin are more concentrated in the cortical regions of the lens 
[126] and can be substantially increased throughout the lens with long-term supple-
mentation [127]. A number of large population studies have found reduced risk for 
nuclear cataract (less so for cortical cataract) with higher intakes of lutein and zea-
xanthin or higher plasma levels [128]. These associative studies may also be related 
to other substances in fruits and vegetables, and other lifestyle factors associated 
with healthy diets. For example, the Healthy Eating Index score was the strongest 
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modifiable predictor for low prevalence of nuclear cataract (reduced by 37 %) in 
the Women’s Health Initiative Observational Study [129]. Furthermore, a number 
of population studies and clinical trials have found significant risk reductions for 
nuclear cataract with long-term use of Centrum and other multivitamin–mineral 
supplements [130]. Centrum has included small amounts of lutein (0.25 mg/day) for 
several years. Xanthophyll supplementation studies have focused on slowing visual 
decline in those with developing cataract, and visual performance was improved in 
two trials [131, 132]. Despite a plausible physiological rationale and largely con-
sistent circumstantial evidence, the lack of xanthophyll-based, placebo-controlled 
clinical trials for the prevention of cataract or macular degeneration prompted the 
US Food and Drug Administration to determine that no credible evidence existed 
for a health claim about the intake of lutein or zeaxanthin and the risk of AMD or 
cataracts in 2006 [133].

Retinitis pigmentosa is an inherited disease affecting 1.5 million people world-
wide. It starts with night vision problems in adolescence, progressing through the 
loss of peripheral vision, with final loss of central vision after the age of 60 years. 
The cause is the progressive loss of rod and cone photoreceptors [134]. The authors 
of a major 4-year clinical trial of 12 mg/day of lutein plus vitamin A (15,000 IU/
day) versus vitamin A alone, in 225 nonsmoking retinitis pigmentosa patients, con-
cluded that the lutein supplement slowed the loss of midperipheral visual field, but 
only in those achieving the highest serum level of lutein or those with the highest 
MPOD as a result of treatment. There was no difference in the primary endpoints 
[135]. This invoked a letter from their data safety-monitoring committee indicating 
that despite sound study design, the committee disapproved the use of subgroup 
analysis as the basis of the authors’ main conclusion [136]. Two small clinical trials 
have also found positive results using lutein supplementation [137, 138], but one 
6-month study (20 mg lutein/day) found that only 50 % of their participants had any 
increase in MPOD resulting in no detectable change in central vision function dur-
ing the intervention [139]. Whether lutein supplementation is beneficial for those 
suffering from retinitis pigmentosa is likely to be complicated by variable accu-
mulation of lutein in the retina. MPOD increase with lutein supplementation was 
inversely proportional to serum total cholesterol levels, and MPOD became higher 
in those with brown irises and those who had retained more photoreceptors [140].

The possible anti-inflammatory, antiapoptotic effect of lutein on other retinal 
structures is a new area of inquiry, especially in acute retinal ischemic/reperfusions 
that are experienced during operations for retinal reattachment and arterial block-
ades. Preliminary studies on animals hold some promise [141–143].

Cognitive Decline and Alzheimer’s Disease

More than 16 carotenoids have been found in human brain tissue, with the xan-
thophylls (lutein and zeaxanthin) accounting for 66–77 %. Their distribution 
is not homogeneous, with the frontal cortex being particularly rich [144]. Tissue 
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concentrations in some sections of the brain appear to be correlated with macular 
pigment density. A study of xanthophyll concentrations in postmortem brain tissue 
of subjects enrolled in the Georgia Centenarian study found positive correlations 
with better age-adjusted performance on various cognitive function tests, especially 
retention, with higher tissue levels [145].

Cognitive impairment refers to the subclinical complaint concerning memory 
functioning in the elderly and is so common that it has come to be thought of as an 
inevitable feature of the aging process. Cognitive decline is evaluated in longitudi-
nal studies by changes in performance over time, in one or two domains of a series 
of cognitive tests (memory, orientation, language, executive function, or praxis). 
Using functional tests, cognitive impairment is defined as: (1) at least one standard 
deviation below the mean for young adults on one or more tests or (2) greater-
than-expected decline in score for a person’s age and education level. Impairment 
is considered a risk factor for the development of Alzheimer’s disease (AD) [146].

AD is a degenerative disorder of the brain causing memory loss, progressing 
to the inability to perform activities of daily living, followed by death. It accounts 
for 60–80 % of cases of dementia and its current US prevalence is estimated at 
5.1 million. Mild cognitive impairment occurs at much higher rates. This disability 
constitutes a large share of the ballooning health-care costs. Postmortem, it is char-
acterized by senile amyloid-β protein plaques and neurofibrillary tangles composed 
of phosphorylated tau proteins that first accumulate in cortical tissue. The most 
vulnerable cortical tissue is that which was laid down during the later stages of 
fetal and newborn development. It then spreads to the hippocampus. This pathology 
can be found also in those with mild cognitive impairment, which makes diagnosis 
difficult in prevention and treatment studies. Furthermore, coexistent Parkinson dis-
ease and the evidence of infarcts or hemorrhage have been found in 20–25 % of AD 
brains. Aging, genetics (ApoE4—a genetic variant of a cholesterol reverse transport 
protein) and oxidative stress (tobacco use, diabetes) have been identified as caus-
ative factors. Progress is being made with imaging techniques such as magnetic 
resonance imaging (MRI) and position emission tomography (PET) correlated with 
postmortem pathology, so that more precise endpoints can be identified for future 
clinical trials [147–149].

A number of longitudinal studies of middle-aged populations have explored the 
relationship between plasma or dietary levels of β-carotene and cognitive decline. 
These studies have been mixed, but are largely negative. A number of clinical trials, 
designed to evaluate supplements containing vitamins C and E and β-carotene for 
heart disease and/or cancer endpoints, have added tests for cognitive decline. The 
results for all cognitive endpoints have been disappointing. A systematic review of 
both study types found no evidence that any of these antioxidants prevented cog-
nitive decline in later life [150]. This systematic review was used as the basis for 
a National Institutes of Health (NIH) State-of-the-Science Conference Statement 
that explored modifiable factors that might reduce the risk of AD and cognitive de-
cline in older adults. The major conclusion was that there was currently insufficient 
evidence to identify any modifiable factors that might reduce risk for either. This 
was due to the limitations of studies currently available [151, 152], including short 
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follow-up time, starting interventions too late in the disease process, and lack of 
baseline measurements in the clinical trials allowing no subgroup analysis of those 
subjects who had low baseline intakes (a group more likely to benefit from interven-
tion) [153]. None of these studies evaluated the xanthophylls, which have a more 
stabilizing effect on neuronal membranes.

A small preliminary study, supplementing DHA (an omega-3 fatty acid) or lutein 
(12 mg/day) for only 4 months to mentally unimpaired elderly women found im-
provements in memory scores and rates of learning with either or both supplements 
[154]. Cerebral ischemia with reperfusion (I/R) is often used in animal studies to 
simulate the effects of a stroke. Lutein supplementation, given to mice shortly be-
fore or subsequent to reperfusion, produced better survival rates, better neurological 
scores, and smaller areas of infarct [155]. Lutein also appears to protect neurons in 
models of retinal I/R [156].

It would be unfortunate to discard the possibility that the long-term intake of a 
fruit and vegetable-rich diet, that includes the xanthophylls and other carotenoids, 
might slow the progression of age-related cognitive decline before there are suf-
ficient data.

Cancer Prevention and Treatment

Cancer is an umbrella term encompassing a number of tissue diseases and a variety 
of mechanistic antecedents. The retinoids have potent anticancer effects against a 
wide variety of experimental cancers, but their toxic side effects may be inseparable 
from their mode of action [157]. When the first population studies were published, 
showing a reduced risk for cancer with higher blood levels of retinol and β-carotene 
[158, 159], the search was on to find associations with other cancers in various pop-
ulations. Some of these studies found risk reductions for greater intakes or higher 
blood levels of β-carotene or lycopene and occasionally the xanthophylls, but many 
did not [160]. Such studies may rather indicate beneficial dietary patterns (including 
greater intake of fruits and vegetables) and lifestyles associated with such patterns 
[161–163]. With high hopes, several clinical trials supplemented their subjects with 
large doses of β-carotene, combined with vitamins A or E, and followed cancer 
incidence. Surprisingly, two studies found an 18–24 % increase in lung cancer and 
8–17 % increase in mortality over a 4–8 year follow-up, especially in those who 
received only β-carotene [α-tocopherol, β-carotene (ATBC) study] [164, 165]. A 
follow-up to one of these (ATBC study) found that the excess risk for any cancer, 
including lung cancer, was no longer evident 4–6 years after the ending of the inter-
vention [166]. The early excess risk due to β-carotene supplementation in smokers 
and asbestos workers in these trials was widely hypothesized to be due to compo-
nents of cigarette smoke in the presence of relatively high oxygen partial pressure 
in the lung [167]. The other clinical trials using β-carotene found neither reduced 
nor increased risk for any type of cancer [168, 169]. A study using a population of 
vitamin- and mineral-deficient Chinese men and women found that a mixture of 
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vitamin E, β-carotene, and selenium decreased total cancers by 13 % and deaths by 
9 % during a 5-year follow-up [170].

A search for mechanism ensued with numerous cell culture studies using cancer 
cell lines and animal cancer models. Carotenoids, especially β-carotene or lyco-
pene, were found to exhibit functions consistent with blocking the development or 
growth of various cancers through the following mechanisms: (1) modulation of 
nuclear receptor superfamilies, (2) decreasing angiogenesis, (3) increasing apop-
tosis, (4) restoring gap junction communication, (5) prooxidant and antioxidant ef-
fects, especially protection from DNA damage, (6) inhibition of cell proliferation, 
and (7) modulation of phase I and phase II enzymes [160, 171, 172]. Cell culture ex-
periments often used concentrations that were higher than physiologically feasible, 
with long incubations at high temperatures and oxygen partial pressures that could 
produce oxidation products. Indeed, under these conditions, oxidation products 
have been identified for lycopene, but not for β-carotene [173]. Oxidation products 
or metabolites of lycopene have also been identified in human plasma and tissue. 
These lycopenoids, mostly lycopenals, have similar structures to 9-cis retinoic acid 
(a powerful ligand for several nuclear receptors) and are present in comparable 
concentrations in human samples [174]. Beside β-carotene, lycopene is a substrate 
for the eccentric cleavage enzyme, BCDO2, which cleaves the 5-cis and 13-cis iso-
mers for lycopene, but not the all-trans isomer. Lycopene cis isomers are prevalent 
in circulation after ingestion of tomato products or lycopene supplements, and the 
BCDO2-mediated conversion to apo-10′-lycopenal and then to apo-10′-lycopenoic 
acid which may be a substitute ligand for 9-cis retinoic acid. This hypothesis was 
investigated using the major retinoid receptors with only modest activity [173]. 
However, the lycopene degradation products have been shown to have a variety of 
anticarcinogenic activities and are often more potent than lycopene. Their actions 
include regulation of the cell cycle, apoptosis of cancer cells, and the induction of 
two important systems. The first is the electrophile response element/antioxidant 
response element (EpRE/ARE) system that mediates the induction of detoxifying 
and antioxidant enzymes responsible for inhibiting the mutagenic effects of car-
cinogens and oxygen radicals. The second is the nuclear factor kappa B (NF-κB) 
system which is responsible for the normal functioning of the immune system, but 
is crucial for the deleterious inflammatory response that often is associated with 
cancer risk [173, 174].

Several epidemiological studies have identified risk reduction with lycopene 
exposure while finding no other carotenoid associations. The data are especially 
strong for cancers of the prostate [175]. A systematic review of eight clinical tri-
als using 15–30 mg/day lycopene supplements found reductions in serum prostate-
specific antigen (PSA), but only a modest reduction in benign prostate hyperplasia 
(BPH), which was not statistically significant [176].

Cancer patients may be tempted to add various carotenoids as dietary supple-
ments to their standard care which may include chemotherapy. As chemotherapeu-
tic agents generate oxidative stress, there has been concern that antioxidant therapy 
may blunt the effects of these agents. However, numerous studies have demon-
strated that antioxidants do not inhibit but actually enhance the cytotoxic effect of 
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antineoplastic drugs on cancer cells. Several β-carotene and lycopene cell culture 
and animals studies using various agents have found an enhancement of their effects 
[177, 178]. A systematic review of 19 trials of antioxidant plus chemotherapy (only 
one of which had β-carotene as part of a vitamin mixture) found no detrimental ef-
fects, while several reported increased survival times and tumor responses as well 
as fewer toxicities compared to controls [179]. In a small trial of 50 patients with 
high-grade gliomas treated with radiation and paclitaxel, there was a modestly im-
proved response in the lycopene-treated group [180].

The early promise of a variety carotenoids, as benign agents, for lowering the 
risk of various cancers is somewhat tarnished, but the intriguing biological activities 
of these carotenoids and their metabolites raise hope that they may yet be found to 
be useful adjuncts in the disruption of various carcinogenic processes.

Metabolic Syndrome, Obesity, Cardiovascular Disease,  
and Diabetes

Metabolic syndrome (MetS) is a clustering of many conditions including abdominal 
obesity, high blood pressure (HBP), hyperglycemia, elevated fasting triglycerides, 
and low levels of HDL cholesterol [181]. These metabolic abnormalities increase 
the risk for cardiovascular disease and diabetes mellitus, as also does obesity which 
is correlated with cardiovascular mortality through hypothesized instigating factors, 
such as an increase in chronic inflammation and oxidative stress [182]. Over the last 
decade, a consistent rise in the rates of obesity and MetS has been observed in the 
USA. As reported by the Centers for Disease Control and Prevention (CDC), 35.7 % 
of adults are obese, and it is expected that by 2030 more than half of US adults will 
be obese. More disconcerting is the increase in childhood obesity (16.9 %) and, 
consequently, of preventable diseases in this age group.

Carotenoids, by virtue of their antioxidant properties, may help to prevent the 
progression of chronic conditions related to obesity and MetS, and thereby de-
crease related morbidity and mortality rates. Many previous observational stud-
ies have indicated an inverse association between serum/dietary carotenoid levels 
and MetS [183–186]. In a recent analysis of NHANES cross-sectional data, serum 
carotenoid concentrations were found to be consistently lower in US adults with 
MetS compared to those without MetS (0.057–0.863 vs. 1.62–10.114 µmol/L total 
carotenoids), with an inverse association observed with all MetS components [187]. 
Furthermore, adolescents with MetS also had lower serum carotenoid concentra-
tions compared to their counterparts without MetS that were inversely related to 
the inflammatory C-reactive protein (CRP) in their serum [188]. In middle-aged 
and elderly men, higher dietary intakes of total carotenoids, β-carotene, α-carotene, 
and lycopene were associated with lower waist circumference and less visceral and 
subcutaneous fat, while lycopene intake alone was related to lower serum triglycer-
ide concentrations [186]. Despite the associations observed in these studies, long-
term supplementation with antioxidants including a combination of vitamins C and 
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E, β-carotene, zinc, and selenium did not prevent the incidence of MetS in adults 
free of the condition at baseline, although baseline serum β-carotene concentra-
tions were negatively associated with the risk of MetS [189]. Due to the scarcity of 
similar randomized clinical trials, it is still unclear whether long-term carotenoid 
supplementation would prevent progression to MetS in susceptible individuals. 
Short-term supplementation studies in obese and overweight individuals have pre-
sented mixed results. Four weeks of supplementation with 30 mg/day lycopene in 
the form of tomato-derived Lyc-O-Mato did not affect the markers of inflammation 
and oxidative products in severely obese individuals [190]. However, in moder-
ately overweight middle-aged individuals, 70 mg lycopene/week enhanced HDL 
functionality [191], as determined by increases in the activity of the antioxidant en-
zyme paraoxonase-1 and decreases in the cholesteryl ester transfer protein (CETP). 
Tomato juice consumption in overweight and obese females was also found to re-
duce systemic inflammation through decreases in inflammatory biomarkers such 
as interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α [192]. Most of these 
investigations have examined the effect on obesity-induced inflammation, since this 
is considered the therapeutic strategy to retard the progression to cardiovascular 
disease and diabetes mellitus, and among the carotenoids, lycopene has consistently 
demonstrated anti-inflammatory properties in humans, as well as in animal and cell 
culture models [193–195].

Low levels of carotenoids found in MetS and obesity possibly point to an unbal-
anced diet, leading to a deficiency in these micronutrients and/or an increased re-
quirement due to a heightened state of oxidative stress. It is of interest that intake of 
a low caloric diet that provided more than adequate micronutrients [exceeding the 
dietary reference intakes (DRI) requirements] was unable to correct deficiencies of 
many micronutrients, including lycopene, in obese subjects undergoing a 3-month 
weight loss regimen, suggesting a larger need for antioxidants in obese individuals, 
especially during weight loss-induced stress [196].

Associations between carotenoids and cardiovascular disease (CVD) have been 
examined in epidemiological studies through the measurement of dietary intake, 
serum, and adipose tissue levels. Some early prospective studies showed that higher 
β-carotene status was related to a reduced risk of myocardial infarct and a modest 
decrease in the risk of stroke in men and women [197]. In a recent study, a twofold 
increase in the risk of sudden cardiac death was observed in men with lower serum 
β-carotene levels [198]. Many recent studies have focused on lycopene as a primary 
player in the prevention of CVD, likely due to its potency as a singlet oxygen quench-
er. Increased serum concentrations of lycopene were associated with decreased arte-
rial stiffness and lower oxidized low-density lipoprotein (LDL) in healthy women 
[199]. When supplemented with 15 mg/d of lycopene for 8 weeks, healthy men 
showed a significant improvement in endothelial function with decreases in CRP 
and systolic blood pressure and an increase in the antioxidant enzyme superoxide 
dismutase [200]. A prospective study of Finnish men at risk for ischemic heart dis-
ease found that men in the highest quartile of serum lycopene had a 59 % lower risk 
of ischemic stroke and a 55 % lower risk of all strokes [201]. Moreover, in patients 
with heart failure, higher lycopene intake was associated with a significantly longer 
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cardiac event-free survival, compared to those with lower lycopene intake [202]. 
These findings from human studies are corroborated by experimental studies using 
animal models, which suggest that lycopene’s antiatherogenic effects occur through 
the reduction of atherosclerotic plaques, decreases in serum total cholesterol and 
LDL cholesterol, and increases in HDL cholesterol [203]. In elderly Finnish men, 
the concentrations of plasma β-cryptoxanthin, lycopene, and α-carotene were found 
to decrease linearly with increasing intima-media thickness of the common carotid 
artery [204]. Serum levels of lutein and zeaxanthin were also found to be lower in 
early atherosclerotic patients compared to healthy subjects [205].

Oxidative stress may contribute to the etiology of diabetes by inducing insulin 
resistance in the peripheral tissues and impairing secretion from the pancreatic cells 
[206], and the antioxidant capacity of carotenoids may protect against the develop-
ment or progression of the disease. High levels of commonly measured metabolic 
parameters such as fasting blood glucose, 2-h glucose level in the glucose tolerance 
test, and glycosylated hemoglobin were inversely correlated with serum or dietary 
carotenoid levels in cross-sectional studies [207–209], but few prospective studies 
have investigated this association. It has been reported that higher dietary intake of 
β-cryptoxanthin, but not other carotenoids, significantly reduced the risk of type 2 
diabetes [210]. Long-term β-carotene supplementation in a randomized controlled 
trial did not affect the incidence of type 2 diabetes [211]. Baseline plasma carotenoid 
concentrations failed to show an association with the risk of type 2 diabetes [212].

Since cardiovascular disease and diabetes mellitus are characterized by high lev-
els of oxidative stress, it would be natural to assume that an increased consumption 
of antioxidants such as carotenoids through fruits, vegetables, and other sources in 
these chronic conditions would decrease further oxidative stress-related deteriora-
tion. Whether regular intake of carotenoids would prevent onset of disease is un-
clear from available evidence.

Toxicity of Carotenoids

Large doses of preformed vitamin A may cause acute poisoning, but high intake of 
provitamin A carotenoids does not result in hypervitaminosis. In patients with eryth-
ropoietic protoporphyria, therapeutic doses up to 150 mg β-carotene per day greatly 
increased tolerance to sunlight and did not have deleterious effects [213]. Similarly, 
the use of two richest sources of β-carotene, RPO [214] and gac fruit ( Momordica 
cochinchinensis) [215] in cooking is not associated with vitamin A toxicity.

However, high doses of supplemental β-carotene are not advisable, especially 
in people under unusual oxidative stress. The previously noted randomized inter-
vention trial of smokers in Finland found significantly increased incidence of lung 
cancer [216] on a daily dose of 20 mg β-carotene for 5–8 years. Similar results were 
found in the US asbestos workers and former smokers [165] who received 30 mg 
β-carotene per day for ~4 years. However, the US trial participants also received 
25,000 IU retinyl palmitate, which is more than eightfold the recommended daily 
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allowance (RDA) for men and 10.5-fold RDA for women. The excess risks were 
restricted primarily to women and former smokers. Another randomized trial fol-
lowed patients after removal of colorectal adenoma who received placebo or 25 mg 
β-carotene/day for 4 years [217]. The risk of recurrent adenoma was doubled by 
taking β-carotene supplements, but only for those who smoked and also drank more 
than one alcoholic drink per day. The nonsmokers and nondrinkers actually had 
their risk of adenoma markedly decreased by β-carotene supplements [218].

It has been long suspected that carotenoids may have prooxidant properties when 
present in high concentration or at high oxygen pressure [219]. Medical literature 
has noted a few cases of very high concentration of carotenoids in human tissues. 
Habitual and very excessive intake of tomato products caused lycopene deposits 
in the liver, accompanied by liver enlargement and abdominal pain [220]. Golden 
yellow crystals were observed in the retina of people taking canthaxanthin “tanning 
pills,” as well as in macaque monkeys treated with the same supplement [221]. The 
pills were banned, although they did not seem to damage the vision of the subjects.

Smoke exposure with concurrent β-carotene supplementation was studied in fer-
rets, a useful animal model for carotenoid absorption. High amounts of administered 
β-carotene, equivalent to 30 mg/day in humans, caused precancerous lung lesions 
in the smoke-exposed animals [222]. The lung extracts from these ferrets had en-
hanced β-carotene breakdown into apocarotenals in vitro. The ferret lung and other 
tissues express BCDO2 enzyme, which cleaves β-carotene to β-apo-10′-carotenal, 
while other β-apocarotenals may be formed in enzymatic or nonenzymatic reac-
tions, especially at high oxygen pressures and the free radical-rich environment of 
smoker lungs. Recently, all possible β-apocarotenoids were investigated for their 
biological activity on retinoid receptors [17] using molecular modeling assays. One 
of them, β-apo-13-carotenone, was found to be an antagonist of the 9-cis-retinoic 
acid activation of retinoid X receptor (RXRα), as well as of three all-trans-retinoic 
acid receptors (RARα, RARβ, RARγ). Considering the importance of these nuclear 
hormone receptors in cell differentiation, the excessive production of antagonists 
may help to explain the negative effects of supplemental β-carotene trials.

Recent studies with human cell cultures (liver carcinoma HepG2) and BCDO2-
deficient mice found that an excess accumulation of various carotenoids (β-carotene, 
lutein, zeaxanthin, lycopene) in mitochondria may produce oxidative stress [16]. It 
is hypothesized that gene polymorphism in the carotenoid splitting genes BCMO1 
and BCDO2 may alter carotenoid and vitamin A homeostasis in some individu-
als and make them more susceptible to toxic effects of excess carotenoid supple-
mentation.

Summary

Plants have evolved a vast number of carotenoids as essential compounds for their 
development and survival. Animals and humans, as plant consumers, have also 
evolved to take advantage of the unique properties of carotenoids. The mechanisms 
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for the absorption and metabolism of carotenoids are well established. Vitamin A 
toxicity is efficiently averted. However, the great variability in these processes in 
human omnivores, whether they adapted as predominate plant eaters or hunter gath-
erers, raises the likelihood that carotenoids have no obligate dietary requirement 
but rather act as dietary enhancements. Human carnivores survive quite well on the 
preformed vitamin A obtained from animal flesh and dairy products. On the other 
hand, vegans must pay attention to the daily consumption of provitamin A carot-
enoids (rich sources, like carrots, sweet potato, winter squash, pumpkin, or RPO) 
in order to meet their vitamin A requirement [15]. Increased fruit and vegetable 
consumption along with carotenoid-enhanced foods such as Golden Rice is an im-
portant strategy for the elimination of the devastating effects of VAD that still is too 
prevalent in several countries.

The accumulation of the xanthophylls in the macula of the eye points to the util-
ity of these carotenoids as blue light filters and may be the strongest evidence of a 
specific human function. To support eye health, the AREDS1 formulation, with the 
substitution of 10 mg/d of lutein and 2 mg/d of zeaxanthin for β-carotene (especially 
for smokers), may be our best interim estimate for beneficial effects [112]. The 
inclusion of a one half cup serving of a cooked dark-green leafy vegetable and/or 
egg yolk per day would be necessary to provide a similar dose of lutein + zeaxanthin 
from foods sources [7]. The accumulation of carotenoids in the corpus luteum and 
skin presents an intriguing possibility of their importance in fertility and sexual at-
traction, as it was found in many animals. The presence of xanthophylls in specific 
sections of the human brain should encourage further research into their role in 
protection from age-related cognitive decline and AD.

Carotenoids accumulate in lipid droplets and the lipids of various cell mem-
branes and likely occupy a different niche than other exogenous antioxidants, such 
as vitamins C and E, or the endogenous antioxidants, such as glutathione and the 
antioxidant enzymes. Therefore, they can act as players among the cast of actors 
against oxidative stress and inflammation. Their ability to act as prooxidants in 
situations of high oxygen partial pressure and oxidative stress that was evidenced 
in cancer trials among smokers and asbestos workers argues against high levels of 
supplementation [167]. The array of population studies evaluating various cancers, 
heart disease, and diabetes, that have found reduced risk with higher intakes of 
dietary carotenoids, may be more a product of health-promoting dietary patterns, 
including bountiful intakes of carotenoid-containing fruits and vegetables.

In one metabolic abnormality, erythropoietic protoporphyria, massive doses of 
β-carotene far beyond what could be provided by diet alone were found to have 
great clinical benefit [84]. Other metabolic disorders, where fat absorption is com-
promised, such as cystic fibrosis, jeopardize the absorption of all fat-soluble vita-
mins including the carotenoids [223]. There is an indication that obesity and other 
circumstances that produce mild oxidative stress and inflammation may benefit 
from the increased consumption of carotenoids, since many of these conditions are 
accompanied by lower plasma levels of various carotenoids. Given that few indi-
viduals in the US population meet dietary advice for the consumption of fruits and 
vegetables, many of these conditions could be ameliorated by actually consuming 
at least five servings for fruits and vegetables per day.
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The carotenoids are remarkable pigments. They color our foods and provide 
pleasure to our eating experience. They contribute to our vitamin A requirement 
and the reduction of oxidative stress. They may even contribute to seeing those 
pigmented foods more clearly, even if it is no longer in the bush but rather in the 
supermarket.
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