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Abstract Cannabinoid signaling is believed to decrease anxiety, albeit the conflict-
ing nature of evidence is generally acknowledged. Here we provide a comprehen-
sive overview of available findings by grouping them according to the tools that 
have been used to modulate cannabinoid signaling. The systemic administration of 
cannabinoid receptor agonists and antagonists led to the most conflicting findings; 
such treatments may increase, decrease, or leave anxiety unaffected. In addition, 
antagonists and agonists had similar effects in many instances including their bipha-
sic effects. The effects of genetic manipulations, cannabinoid synthesis or reuptake 
inhibition as well as the effects of local brain treatments with cannabinoid ligands 
appear more consistent. We suggest that systemically administered receptor ligands 
affect cannabinoid signaling globally and as such lack the spatial and temporal spec-
ificity of endocannabinoid signaling. By contrast, gene disruption and the indirect 
modulation of endocannabinoid availability affect ongoing (natural) processes and 
lead to more specific and consistent effects. Local brain treatments whit receptor 
ligands are spatially restricted which increases the consistency of findings, but also 
reveals that cannabinoids affect anxiety in a brain area-specific manner, which fur-
ther explains the inconsistency of findings with systemically injected ligands. Envi-
ronmental conditions have a large impact on effects with all techniques, suggesting 
that endocannabinoid signaling affects coping with environmental challenges rather 
than unconditionally decreasing anxiety. The relationship between cannabinoid sig-
naling, anxiety and coping styles is largely understudied, but holds great promise 
for understanding the roles of cannabinoids in behavioral control and may broaden 
their therapeutic implications.
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Introduction

The totality of scientific evidence obtained so far suggests that cannabinoids do play 
a role in the inhibitory control of anxiety, but findings are highly contradictory both 
within and between the techniques employed to manipulate cannabinoid signaling. 
Inhibition by various means (gene disruption, receptor antagonism) can increase 
anxiety, decrease anxiety and may be without effect, and the same applies to the 
enhancement of cannabinoid signaling by cannabinoid receptor agonists, reuptake 
blockers or by the inhibition of enzymes involved in their degradation. While there 
seem to be more studies attributing an anxiolytic role to cannabinoids, conflicting 
evidence is too many to be attributable to experimental error. Contradictions were 
explained in various ways, and led to several hypotheses. A thorough review of 
these makes it clear that theoretical approaches are based on partial evidence and 
none of them is comprehensive enough to create a consistent picture. The goal of 
the present chapter is to provide a full review of the evidence contained by the 
PubMed database and to evaluate the reasons of contradictions with the ultimate 
aim of disentangling the roles played by endocannabinoid signaling in anxiety. We 
are aware of the fact that neither goal is realistic in absolute terms, because:

• The particularities of the search engine of PubMed do not rule out that some 
studies remained hidden to this review. The search was performed with the 
search term “(cannabinoid OR endocannabinoid OR THC OR arachidonoyle-
thanolamide OR anandamide OR AEA OR 2-arachydonoylglycerol OR 2-AG 
OR WIN 55, 212–2 OR HU 210 OR JWH 133 OR CP 55,940 OR URB 597 OR 
PF 622 OR PF 3845 OR PF 750 OR JZL 184 OR FAAH OR MAGL OR AM 
404 OR AM 1172 OR VDM-11 OR rimonabant OR SR 141716 OR AM 251 
OR NESS 0327 OR CB1 KO OR CB2 KO) AND (anxiety OR anxiolytic OR 
anxiogenic OR anxiolysis OR anxiogenesis or anxious)”. This term resulted in 
1017 hits out of which 186 original research studies were identified as relevant 
for the present study. While the overwhelming majority of studies were likely 
identified, the database created by this search is probably incomplete. This figure 
does not include studies on the phytocannabinoid cannabidiol1.

• A full understanding of the role played by endocannabinoids in anxiety may 
not be achievable at present stage. Reasons are multiple and range from the 
variability of research techniques and conditions, through species, strain, and 
even individual differences in the particularities of the endocannabinoid sys-
tem, to yet unraveled or poorly known epiphenomena of research tools used to 
manipulate endocannabinoid signaling. In addition to these primarily technical 
reasons, one cannot rule out that the anxiety-related effects of endocannabinoids 

1 This compound has anxiolytic properties [1–14], and as such it is highly relevant to anxiety 
research in general. However, cannabidiol binds to cannabinoid receptors with very low affinity 
[15], and its mechanisms are either indirectly related to endocannabinoid signaling [16] or involve 
direct effects on other neurotransmitter systems [17]. Therefore, data on cannabidiol were not 
reviewed here.
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are reflections of more general effects on emotions, emotional responsiveness or 
coping styles. If this was true ‒and many recent findings point to this possibil-
ity‒, then the anxiety-related effects of endocannabinoid signaling are inherently 
complex and condition-dependent, and rule out the possibility of answering sim-
ple questions of the type “does endocannabinoid signaling increase or decrease 
anxiety”?

The next section briefly reviews the main findings of the search described above. 
This section is free of interpretations or explanations which constitute the subject 
of the third chapter. The last, concluding section is an attempt to integrate data and 
views.

Findings

Systemic Effects

Decreased Endocannabinoid Activity

Decreasing endocannabinoid activity via the genetic disruption of the type 1 can-
nabinoid receptor (CB1R) resulted in an anxious phenotype in most studies employ-
ing well-validated tests of anxiety (e.g. the elevated plus-maze, light/dark, social 
interaction tests [18–25]. The anxiety enhancing effect of CB1R disruption seemed 
to be specific to young mice in one [26] and to aversive conditions in another study 
[27]. Two studies did not detect anxiety-like behavior in CB1R knockout (KO) mice 
tested in the elevated plus-maze [28, 29], while others may suggest that CB1R gene 
disruption decreases anxiety. For instance, CB1 KO mice showed decreased burying 
in the shock-prod burying test which was interpreted as an anxiolytic effect [30]. In 
the cue-induced conditioned fear test, CB1R KO mice did show increased anxiety, 
but this decreased when mice were socially stressed [29], suggesting that stress 
exposure paradoxically ameliorates the anxious phenotype of CB1R KOs.

The role of other cannabinoid receptors was poorly studied by transgenic tech-
niques. Two studies suggest that the disruption of the type 2 cannabinoid receptor 
(CB2R) increases anxiety in the elevated plus-maze [31], light/dark [31] and open-
field tests [32]. The disruption of the G protein-coupled receptor 55, a novel can-
nabinoid receptor [33–35], had no effects on anxiety in the only study available so 
far [36].

The down-regulation of endocannabinoid signaling by the CB1R antagonist 
rimonabant (SR141716A) results in biphasic effects. Low doses (0.3–3 mg/kg) re-
duced anxiety in several models, e.g. the elevated plus-maze [37–39], light/dark 
[40] and Vogel tests [38], while higher doses (3–10 mg/kg) exerted anxiogenic ef-
fects in the elevated plus-maze [28, 41–47], light/dark [48], open-field [28], novelty 
induced hypophagia [49], elevated T-maze [28], defensive withdrawal [45], social 
interaction [50] and footshock-induced ultra sound vocalization [51] tests. Such 
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large doses also increased cue-induced conditioned fear after both acute [52] and 
chronic treatment [29]; in addition, rimonabant inhibited the extinction of this re-
sponse [53–55]. Rodent findings are supported by human studies, where both acute 
and chronic treatment with rimonabant exerted anxiogenic effects [56–60].

This ostensibly clear picture is obscured by a large body of conflicting evidence. 
Firstly, rimonabant did not always produce the effects presented above. Low doses 
‒that decreased anxiety in the aforementioned studies‒ were sometimes without ef-
fect [28, 38, 61, 62]. High doses ‒anxiogenic in the studies presented above‒ were 
anxiolytic in the shock prod-burying paradigm [30]. Effects in humans were not 
replicated either [63]. Secondly, the effects of other antagonists were not always in 
line with those obtained with rimonabant. For instance, the CB1R blocker AM251 
did not show the biphasic effect seen with rimonabant. This antagonist proved to be 
anxiogenic over a wide range of doses (0.3–8 mg/kg) [21, 25, 50, 64–68]. In addi-
tion, AM251 reduced urocortin1 microinjection- and nicotine abstinence-induced 
anxieties[69, 70]. Other antagonists (AM281, AM4113, and AVE1625) did not af-
fect anxiety [66, 71–73].

Data on CB2R antagonists are sparse. Acute treatment with AM630, a CB2R 
antagonist, led to anxiogenic effects, while chronic treatment attenuated anxiety in 
the same paradigm [74].

Taken together, the findings briefly reviewed above are in line with expectations 
and show that the effects of inhibited endocannabinoid signaling are highly variable 
(for a summary see Table 4.1).

Increased Endocannabinoid Activity

Similar to the antagonist rimonabant, CB1R agonists have biphasic effects on anxi-
ety. Surprisingly, however, the effects are not only biphasic but entirely similar 
to those seen with rimonabant (but not other antagonists): low doses decrease, 
while high doses increase anxiety. Anxiolytic effects were shown for low doses 
of the phytocannabinoid Δ9-tetrahydrocannabinol (THC; 0.075–2 mg/kg), the en-
docannabinoid anandamide (AEA; 0.1–1.25 mg/kg) and synthetic cannabinoids 
(WIN55,212–2: 0.5–3 mg/kg; CP55,940: < 0.1 mg/kg; HU210: 0.01 mg/kg) [21, 
43, 53, 65, 67, 68, 75–90]. Higher doses of the same agonists (THC: 2.5–10 mg/
kg; AEA: 10 mg/kg; WIN55,212–2: 3–5 mg/kg; CP55,940: > 0.1 mg/kg; HU210: 
0.05–0.1 mg/kg) were anxiogenic [40, 44, 71, 78, 83, 89–104]. High doses of THC 
increased anxiety in humans as well [105–111].

This apparently consistent picture is blurred by a large body of conflicting evi-
dence. Low doses of agonists ‒anxiolytic in the above studies‒ increased anxiety 
under specific conditions, such as repeated treatments in adults, perinatal adminis-
tration and in rats that were chronically treated with vehicle before drug administra-
tion [112–115]. High doses of CB1R agonists ‒anxiogenic in the above studies—de-
creased anxiety in cocaine-self-administering subjects, in the 3,4-methylenedioxy-
N-methylamphetamine-induced anxiety model, after chronic vehicle pretreatment 
and in adolescent subjects [116]. The biphasic effect was also overturned by species, 
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strain, gender, and experimental conditions (e.g. enriched environment, treatments 
received in adolescence) [117]. Additionally, there is a large set of studies, in which 
doses that effectively altered anxiety in the above studies were without effects [54, 
98, 101, 114, 118–123]. Inefficacy was sometimes seen under specific conditions, 
like stress-induced anxiety [124] or alcohol-withdrawal [125].

The enhancement of endocannabinoid signaling via the selective blockade of 
their degrading enzymes is a novel approach for the up-regulation of endocannabi-
noid activity [126–129]. Endocannabinoids are synthesized “on-demand”; therefore 
the blockade of their breakdown promotes ongoing signaling processes, i.e. their 
effects are more specific than those of agonists, which activate cannabinoid recep-
tors throughout the brain. Both genetic and pharmacological blockade of the anan-
damide metabolizing enzyme, fatty acid amide hydrolase (FAAH), led to anxiolytic 
effects in a number of reports [43, 46, 67, 71, 86, 100, 126, 128, 130–138]. In other 
cases, however, no effects were seen either after genetic [139] or pharmacological 
blockade of FAAH activity [138–140]. FAAH inhibition was anxiogenic in one 
study [50]. Strong dependence on environmental conditions was reported in two 
studies [138, 139].

Studies on the specific role of 2-AG signaling were only recently made possible 
by the synthesis of the first selective, specific monoacylglycerol lipase (MAGL) 
blocker. This compound decreased anxiety in a number of studies [132, 134, 141, 

Table 4.1  Effects of decreased endocannabinoid activity on anxiety
Assessment tools Effects on anxiety 

(references)
Number of studies

CB1 KO Anxiogenesis 9
Condition-dependent 
effects

2

No effects 2
Anxiolysis 2

CB2 KO Anxiogenesis 2
GPR55 KO No effects 1
CB1R antagonist findings compatible with 

biphasic effectsa

(total No. of studies: 25)

Rimonabant 25
AM251 0
Other antagonists 0

findings incompatible 
with biphasic effectsb

(total No. of studies: 20)

Rimonabant 6
AM251 10
Other antagonists 4

CB2R antagonists acute: anxiogenesis; 
chronic: anxiolysis

1

a the general consensus is that low doses of CB1R antagonists decrease, while large doses increase 
anxiety. The dose ranges for these effects were indicated in the text
b the hypothesis on the biphasic nature of effects was considered challenged by studies where 
either the low or the large those did not produce the expected effect

4 Interactions Between Cannabinoid Signaling and Anxiety
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142]. A few studies suggest that these effects depend on environmental aversive-
ness, and HPA-axis activity [143, 144].

Endocannabinoid signaling can also be stimulated by the inhibition of endocan-
nabinoid transport. This treatment led to anxiolytic effects in a number of reports 
[43, 54, 87, 145–148]; no effects were seen in two studies [71, 149].

Taken together, the effects of pharmacological enhancement of endocannabinoid 
activity have variable effects on anxiety-like behavior. Findings are summarized in 
Table 4.2.

Local Brain Treatments

Neuron Type-Specific Effects

In this type of studies, transgenic animals were used; the selective disruption of 
CB1Rs in glutamatergic, dopaminergic and serotonergic neurons all increased anxi-
ety [20, 29, 150]. The same manipulation in GABA-ergic neurons did not cause 
such changes [29]. One study suggests that cannabinoid signaling in serotonergic 
neurons ameliorates conditioned fear, despite the fact that the same transgenic 

Table 4.2  Effects of increased endocannabinoid activity on anxiety
Assessment tools Remarks Effect on anxiety 

(references)
Number of studies

CB1R agonists Findings compatible 
with biphasic effectsa

Low doses anxiolytic,
large doses anxiogenic

35

Findings incompatible 
with biphasic effectsb

Effect altered/reverted 
by specific experimen-
tal conditions

13

No effects on anxiety 10
Blockade of AEA degradation Anxiolysis 17

Condition-dependent 
effects

2

No effects 1
Anxiogenesis 1

Blockade of 2-AG degradation Anxiolysis 4
Condition-dependent 
effects

2

Endocannabinoid reuptake inhibition Anxiolysis 6
no effect 2

a the general consensus is that low doses of CB1R antagonists decrease, while large doses increase 
anxiety. The dose ranges for these effects were indicated in the text
b the hypothesis on the biphasic nature of effects was considered challenged by studies where 
either the low or the large those did not produce the expected effect
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animals showed anxiety in the elevated plus-maze [29]. By contrast, dopamine neu-
ron-specific gene disruptions had congruent effects in the social interaction test of 
anxiety and conditioned fear [150].

Brain Area-Specific Effects

General effects. Blockade of CB1Rs in the brain by the intracerebroventricular in-
jection of the CB1R antagonist AM251 increased anxiety [151], while the enhance-
ment of endocannabinoid activity by FAAH administered via the same route was 
anxiolytic [133]. The effects of AM251 were reversed in animals treated with cor-
ticotrophin releasing hormone and in those submitted to cocaine-withdrawal [151]. 
Mice expressing CB1Rs only in the dorsal telencephalon showed reduced anxiety 
compared to CB1R KO mice [152].

Prefrontal cortex. The enhancement of cannabinoid signaling by cannabinoid 
agonists and FAAH inhibition had biphasic effects in this brain area; small doses 
decreased, while large doses increased anxiety [153, 154]. The genetic over-ex-
pression of the CB1Rs in the same area mimicked the effects of large doses, i.e. 
it increased anxiety [155]. Thus, the studies performed so far provide a congruent 
picture. Interestingly, the biphasic effects seen after systemic treatments were rep-
licated by local agonist infusions into the prefrontal cortex. Similar biphasic effects 
were seldom reported in other brain regions.

Amygdala. We found only one study where local treatments were suggested to 
cover the whole amygdala; in this case, the cannabinoid agonist arachidonylcy-
clopropylamide (ACPA) reduced anxiety [156]. This effect was replicated by the 
infusion of agonists into the basolateral amygdala but not by local treatments tar-
geting specifically the central amygdala. In the former region, agonists (Δ9-THC, 
WIN55,212–2) and N-arachidonoyl-serotonin (a combined FAAH inhibitor/TRPV1 
antagonist) reduced anxiety; the effect was valid to certain doses and particular 
conditions only, but no anxiogenic effects were observed at any dose [153, 157]. 
It is worth to note that no similar effects were observed with anandamide and pure 
FAAH inhibitors [158, 159], while Δ9-THC administration into the central amyg-
dala increased anxiety [160].

Cannabinoid antagonists were administered into the basolateral, central, and 
medial amygdala. In the basolateral amygdala, where agonists decreased anxiety, 
antagonists increased it [69, 159, 161]; thus, the two types of treatments led to con-
gruent effects in this brain region. In the central amygdala, antagonists (rimonabant, 
AM251) increased anxiety [161], similar to the agonist Δ9-THC. Thus, in this amyg-
dala region, findings are incongruent. One study suggests that the local disruption 
of CB1R expression in the medial amygdala decreases anxiety [162].

Taken together, the studies reviewed above suggest that cannabinoid signaling in 
the basolateral amygdala decreases anxiety. Reports on other amygdalar subregions 
are disparate, but suggest that the effects of cannabinoid signaling are amygdala 
subarea-specific.

4 Interactions Between Cannabinoid Signaling and Anxiety
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Hippocampus. Agonists or FAAH inhibitors were infused into the CA1 region in 
three studies: effects were contrasting as anxiogenic effects [163], no effects [164] 
or anxiolytic effects [165] were observed. CB1R blockade in the very same brain 
region either decreased or increased anxiety [163, 166]. In the ventral hippocampus, 
the enhancement of endocannabinoid signaling by agonists (Δ9-THC, high doses), 
as well as by FAAH or reuptake blockade resulted in anxiogenesis [153, 167, 168], 
while the blockade of CB1Rs did not affect anxiety [167]. Noteworthy, the effects 
of Δ9-THC were biphasic, while the effects of reuptake blockade were reversed by 
stress exposure [153, 167, 168].

Periaqueductal gray. Cannabinoid receptor agonists (2-AG, AEA, ACEA), the 
blockade of MAGL, as well as the inhibition of cannabinoid reuptake in the dorsal 
and dorsolateral periaqueductal gray decreased anxiety [141, 169–172]. The CB1R 
antagonist AM251 was without effect [172]. Except for this latter finding, the anx-
iolytic roles of cannabinoid signaling in the dorsal/dorsolateral periaqueductal gray 
appear well supported.

Other brain regions. The local deletion of CB1Rs in the posterior hypothalamus, 
the paraventricular and supraoptic nuclei increased anxiety [162]. The microinjec-
tion of AM251 into the enteropeduncular nucleus also increased anxiety [160].

Conclusions

The number of studies on neuron type-specific and brain area-specific roles of can-
nabinoid signaling in anxiety are clearly insufficient to draw definite conditions. 
Nevertheless, the findings obtained so far suggest that cannabinoids have anxiolytic 
effects in most brain regions. As exception, they appear to have biphasic effects in 
the prefrontal cortex, and anxiogenic effects in the ventral hippocampus. Data in the 
dorsal hippocampus and medial amygdala are sparse. Findings appear to be rather 
congruent in many brain regions, and neuron types. The brain area-specific effects 
of cannabinoids on anxiety are summarized in Table 4.3.

Interpretation

Clearly, data on the anxiety-related effects of cannabinoids are conflicting, but the 
thorough overview of the available findings leads to a series of interesting conclu-
sions:

• The less reliable findings were obtained with cannabinoid agonists and antago-
nists. The most blatant dissimilarities relate to the biphasic effect of such treat-
ments. Biphasic effects are not particularly unusual in pharmacology, but in the 
case of cannabinoid ligands, antagonists and agonists have highly similar effect 
profiles: small doses of both decrease anxiety, while large doses of both increase 
anxiety. In addition, the largest number of conflicting findings was obtained with 
these experimental tools.
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• The selective genetic disruption of cannabinoid receptors provided more con-
gruent findings: this procedure increased anxiety in the overwhelming majority 
reports. One study reported no effects, while another reported context-dependent 
effects which included anxiogenesis under particular conditions and no effects 
under other conditions. In addition, one of the reports where anxiolytic effects 
were observed employed the shock-prod burying paradigm, a mixed anxiety and 

Table 4.3  Brain area-specific effects of cannabinoid signaling on anxiety
Brain area Most frequently 

reported effect
Number of studies

Prefrontal cortex Biphasic
(low doses are 
anxiolytic;
high doses are 
anxiogenic)

Supporting 4
Not supporting 0
Opposite effect 0

Amygdala Whole Anxiolysis Supporting 1
Not supporting 0
Opposite effect 0

Basolateral nucleus Anxiolysis Supporting 6
Not supporting 2
Opposite effect 0

Central nucleus Anxiolysis Supporting 2
Not supporting 0
Opposite effect 1

Medial nucleus Anxiogenesis Supporting 1
Not supporting 0
Opposite effect 0

Hippocampus, 
dorsal

Anxiogenesis 1
No effects 1
Anxiolysis 1

Hippocampus, 
ventral

Anxiogenesis Supporting 3
Not supporting 1
Opposite effect 0

Periaqueductal 
gray,
dorsal/
dorsolateral

Anxiolysis Supporting 6
Not supporting 1
Opposite effect 0

Hypothalamus Anxiolysis Supporting 1
Not supporting 0
Opposite effect 0

Enteropeduncular 
nucleus

Anxiolysis Supporting 1
Not supporting 0
Opposite effect 0

4 Interactions Between Cannabinoid Signaling and Anxiety
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coping test [173]. Effects on coping will be discussed below. In conclusion, the 
anxiogenic effects of CB1R disruption is contradicted by one single study, and no 
effects were obtained in another.

• Findings obtained with agents that indirectly modulate endocannabinoid signal-
ing (FAAH, MAGL, and reuptake blockers) are not devoid of contradictions, but 
again the overwhelming majority of findings suggest that such agents decrease 
anxiety. This statement is supported by 27 studies. Condition-dependent effects 
were obtained in 4 studies (usually implicating anxiolysis under particular con-
ditions) and no effects were obtained in 3 studies. Anxiogenic effects were ob-
tained in one study only.

• Local brain treatments with cannabinoid agents provided the most consistent sets 
of data. There are virtually no contradictions in the case of certain brain areas, 
while opposing effects are missing in other cases (e.g. discrepancies are between 
effects and no effects).

The perspective summarized above raise a series of questions; the following sec-
tions are attempts to answer them.

Why are the Effects of Receptor Ligands Less Reliable than Those 
of Indirect Modulators?

The characteristics of endocannabinoid signaling and those of receptor ligands de-
crease the reliability of the latter as experimental tools. Endocannabinoids are se-
creted from the post-synaptic membrane and retrogradely inhibit the synaptic neu-
rotransmission that triggered their release [174]. Although a probably low level of 
tonic activation cannot be excluded, the endocannabinoid signal occurs phasically 
i.e. when the intensity of anterograde synaptic communication reaches certain lev-
els [175–178]. As such, the main role of endocannabinoid signaling appears to be 
the blockade of excessive neuronal activation [179].

Agonists overrule this finely tuned mechanism by inhibiting neurotransmission 
in synapses where this is not justified by its intensity, i.e. where retrograde signaling 
is not activated under normal conditions. As such, the effects of agonists are broader 
than those of endocannabinoids, and instead of mimicking natural activity they ex-
tend effects to synapses, neurons and brain areas where such activity normally does 
not take place.

Antagonists on their turn (especially those extensively used in anxiety research), 
have inverse agonist properties, by which they also overrule the above-described 
mechanism. Instead of inhibiting endocannabinoid signaling, their inverse agonist 
effects inhibit neuronal discharges in areas where endocannabinoids are normally 
not released. Thus, their effects are also extended to synapses, neurons and brain 
areas where endocannabinoids are not active.

In addition, many of the tools regularly used to affect receptor function affect 
both CB1Rs and CB2Rs. Originally, this was not perceived as a problem, but rela-
tively recent findings demonstrate that CB2Rs are expressed in the brain and have 
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roles in behavior control [180]. In addition, receptor ligands also bind to other re-
ceptors, for instance to the still poorly known “third” cannabinoid receptor as well 
as to the GPR55 and TRPV1 receptors [181]. Naturally, endocannabinoids also bind 
to these receptors non-selectively; however, they affect the function of these mecha-
nisms in spatially and temporally selective ways, while exogenous receptor ligands 
act indiscriminately.

A third problem with exogenous ligands is that their brain distribution is not 
uniform; moreover, different receptor ligands have specific patterns of brain distri-
bution. For instance, two times more WIN55,212–2 was found in the hypothalamus 
than in the amygdala after the systemic administration of the compound; by con-
trast, the amounts of the antagonist rimonabant (administered by the same route) 
were similar in these two brain regions [182]. While the issue remains understudied, 
the available findings strongly suggest that compound-specific brain distribution 
patterns constitute an additional confounding factor in the elucidation of the roles of 
endocannabinoids in behavioral control. Furthermore, cannabinoid receptor ligands 
may show species- and neuron type-specific ligand sensitivity. Electrophysiological 
studies showed for instance that WIN-55,212–2 preferentially affected GABA-er-
gic neurotransmission in mice, while the same compound appeared to affect gluta-
matergic neurotransmission in rats, which together with species- and neuron type-
specific effects of AM251 led to large species differences in the behavioral effects 
of these ligands and marked differences in their interaction [23].

The use of indirect modulators circumvents most these problems. Metabolic 
enzyme inhibitors and reuptake blockers enhance and prolong naturally occurring 
endocannabinoid release. Consequently, the up-regulation of endocannabinoid sig-
naling is restricted to synapses, neurons and brain regions where the system is acti-
vated by the behavioral paradigm investigated. The enhanced activation of natural 
endocannabinoid signaling also eliminates problems related to receptor specificity, 
brain distribution and ligand sensitivity.

Why are Gene Disruption and Local Treatments More Reliable 
than Receptor Ligands?

The problems related to the use of receptor ligands are also circumvented by the 
genetic disruption of the endocannabinoid receptor and by the local brain admin-
istration of compounds. The gene disruption technique has its own flaws, among 
which the development of compensatory mechanisms are believed to have the larg-
est impact on experimental findings. At the same time, however, most of the prob-
lems raised by the use of receptor ligands are avoided by this technique. The reason 
is the spatio-temporal overlap of networks activated by a behavioral context and 
the lack of receptors in these networks. While receptors are eliminated throughout 
the brain, the consequences of this are manifested only at those synapses which 
are activated under the conditions of a particular study. The effects of gene disrup-
tion on networks that are unrelated to the context (i.e. are not “working” when a 

4 Interactions Between Cannabinoid Signaling and Anxiety
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particular behavior is expressed) remain “silent” because they do not contribute to 
the execution of the behavioral act. Therefore, gene disruption eliminates naturally 
occurring cannabinoid signaling without having effects on other mechanisms. The 
same holds true for selectivity: while receptor ligands act on more than one recep-
tor, gene disruptions are selective in this respect. Finally, problems associated by 
ligand-specific brain distribution patterns and ligand specificity are not present in 
receptor knockouts, where the ligands are the natural ones, i.e. endocannabinoids.

The local application of receptor ligands involves all the problems associated 
with direct receptor modulation, but these are spatially restricted, and by this their 
consequences are minimized. In other words, nonspecific effects at the targeted 
brain area are not amplified by nonspecific effects at other brain sites. Moreover, lo-
cal applications eliminate the problem of differential effects exerted in certain brain 
regions. As shown above, the local administration of cannabinoids results in anx-
iolysis in some but not all brain regions. Systemically administered cannabinoids 
activate in parallel biphasic effects in the prefrontal cortex, anxiolytic effects in the 
amygdala, and anxiogenic effects in the hippocampus, while local administration 
activate only one of these mechanisms, which leads to clearer findings.

Why are Effects Condition-Dependent?

It is a common observation that the condition of subjects and experimental condi-
tions have a large impact on how cannabinoids affect anxiety; examples were out-
lined above and will not be reiterated here. One possible interpretation of such con-
dition-dependent effects is that cannabinoids do not affect particular behaviors but 
affect the way in which the organism responds to challenges, i.e. they affect coping 
styles. We identified four papers addressing the effects of cannabinoids from this 
perspective [25, 183–185]. Taken together, these studies suggest that cannabinoids 
promote active coping, which is associated with anxiolytic-like and antidepressant-
like effects in particular tests.

Active and passive coping styles are two distinct behavioral phenotypes which 
differ in the way challenges are dealt with, and which show a bimodal distribution 
[186, 187]. Behavior is internally driven and problem oriented in active copers. In 
contrast, passive copers are governed by environmental stimuli and tend to respond 
challenges by avoidant behavior. These temporally stable behavioral phenotypes 
have adaptive significance in animals, while in humans, active (type “A”) and pas-
sive (particularly type “C”) coping styles influence disease susceptibility and re-
silience under adverse conditions [187–189]. Moreover, coping styles are believed 
to reliably predict disease-induced decreases in quality of life [190, 191]. Conse-
quently, interventions promoting active coping styles -which are associated more 
favorably with resilience- have been proposed as therapeutic goals for a variety of 
physical diseases and mental disorders [190, 192, 193]. Thus, the putative effects of 
endocannabinoid signaling on coping styles are highly relevant from a therapeutic 
point of view.
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The relationships between cannabinoids and coping on one side, and cannabi-
noids and anxiety on the other side have not been elucidated so far. There are several 
scenarios that may be considered: (1) cannabinoids affect anxiety in the first place, 
and promote active coping by decreasing anxiety; (2) cannabinoids affect coping in 
the first place, and their anxiolytic effects are context-dependent consequences of 
the shift in coping styles; (3) effects on coping and anxiety are mediated by different 
cannabinoid-dependent mechanisms that interact under specific conditions.

Conclusions

Overall, the findings suggest that cannabinoid signaling decreases anxiety. The 
number of conflicting findings is large. A comparison of different technologies 
demonstrates that the reliability of findings is rather low with receptor ligands (ago-
nists and antagonists). Considerably more consistent findings were obtained with 
gene knockouts, the indirect enhancement of endocannabinoid signaling (e.g. en-
zyme inhibitors), and local brain treatments. The anxiolytic effects of cannabinoid 
signaling are more robustly shown by the latter three as compared with the former 
approach, but notably, the effects of cannabinoids is not uniform across brain ar-
eas. In the prefrontal cortex, biphasic effects were noticed (anxiolysis at low and 
anxiogenesis at large doses), while in the amygdala and hippocampus cannabinoids 
seem to decrease and increase, respectively, anxiety-like behavior. The condition 
of subjects and experimental conditions have a strong impact on the effects of can-
nabinoids, and this seems to be independent from the technique employed to ma-
nipulate endocannabinoid signaling. Recent findings demonstrate that cannabinoids 
promote a shift from passive to active coping with challenges, which may explain 
the context-dependence of their anxiety-related effects, and may broaden their ther-
apeutic implications. The relationship and directionality of the triple association be-
tween cannabinoid signaling, anxiety and coping styles is largely understudied, but 
holds great promise for the understanding of the roles of cannabinoids in behavioral 
control, and the therapeutic potentials of cannabinoid modulators.
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