
Chapter 7
Sensor Placement Under Uncertainty for
Power Plants

7.1 Introduction

This chapter demonstrates the use of the BONUS method, in combination with
kernel density estimation (KDE), to calculate Fisher information. This concept is then
applied to the problem of sensor placement in an integrated gasification combined
cycle (IGCC) power plant, and how BONUS significantly reduces computational
resources while contributing to an appropriate solution is shown. This chapter is
derived from the work by Lee and Diwekar [28].

7.1.1 The Integrated Gasification Combined Cycle Power Plant

The IGCC power plant is a cleaner way of getting electricity from coal compared to
the pulverized coal (PC) plant described in earlier chapters. IGCC consists of three
main elements: the air separation unit (ASU), the gasification plant, and the power
block, as shown in Fig. 7.1 [35]. Power is produced in the IGCC power plant as
follows:

1. The ASU separates ambient air into oxygen (O2) and nitrogen (N2). The oxygen
is used primarily to produce fuel gas in the gasification plant, while most of the
nitrogen is used to dilute fuel gas and reduce nitrous oxide (NOx) levels in the
power plant’s combustion turbine.

2. The gasification plant converts coal or other solid fuel (e.g., petroleum coke or
biomass) into fuel gas and high pressure steam by reacting with the O2 produced
by the ASU in several steps.
a) The coal is received and stored in the plant in the form of coal fines, finely

powdered solid material.
b) Coal fines are mixed with water and ground into a viscous slurry.
c) The coal slurry and oxygen react in the gasifier to produce:
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Fig. 7.1 The integrated gasification combined cycle power plant

• Syngas, a synthetic gas composed of hydrogen (H2), water vapor (H2O),
carbon monoxide (CO), and carbon dioxide (CO2)

• Slag, the residual mineral matter from coal not converted to syngas, which
afterward flows down the gasifier walls, solidifies into an inert glassy frit
with little carbon content, and is removed as waste

• Flyash, partially gasified residual carbon that exits the gasifier within the
syngas stream

Both slag and flyash are undesirable byproducts of the reaction. The gasifier
typically operates at a temperature and pressure around 1645 K and 2760 KPa.

d) The syngas is cooled in a radiant syngas cooler (RSC), then passed through
a high pressure steam generator and gas cooler. The efficiency of this steam
generation step may be improved by employing hot gas desulfurization to
reduce nitrous oxide (NOx) emissions.

e) Intensive water scrubbing removes flyash and other particulate matter from
the syngas.

f) COS is converted to H2S and removed from the syngas.
g) Selective catalytic reduction (SCR) removes NOx from the process.

3. The power block generates electricity from the fuel gas, nitrogen, and high
pressure steam.
a) The fuel gas powers a combustion turbine.
b) A heat recovery steam generator (HRSG) uses the gas turbine exhaust gas to

generate both high and low pressure steam.
c) The high and low pressure steam powers additional turbines, generating

electricity.

A high efficiency combined cycle helps lower SO2, NOx , and particulate levels,
reducing the environmental impact of the IGCC plant power generation process.
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7.1.2 Measurement Uncertainty

Monitoring every process variable contained in the IGCC plant operations using a
complete network of sensors would prove to be both costly and, due to the inability
of obtaining measurements within harsh environments, technically infeasible. At the
same time, however, controlling the operating conditions is essential to maintaining
the efficiency of the power generation process. Therefore, some process variables
must be estimated from related process variables for which direct measurements are
more easily taken.

Gasifier temperature provides an illustrative example. Because the gasifier oper-
ates at extreme temperature and pressure, standard thermocouples cannot be used
to take direct measurements. This makes it difficult to both determine and main-
tain a target operating temperature. However, the durability of the gasifier decreases
at higher temperatures, while slag output increases at lower temperatures, thus a
variation in either direction from the optimal temperature increases both cost and en-
vironmental impact. Therefore, gasifier temperature must be inferred by measuring
related process variables. In this case, the methane production rate depends on both
gasifier temperature and fuel composition, allowing measurements of the methane
production rate and fuel composition, which are more easily obtained in practice, to
be used to estimate gasifier temperature.

The large number of process variables and the complex relationships among them
generate a significant challenge in determining which variables should be directly
measured and which should be estimated, or “indirectly measured.” Each direct
measurement requires the use of a sensor, and the network of online sensors is
defined as the full set of sensors used. The problem herein is to design a network of
online sensors so as to minimize the overall costs, including purchase, deployment,
and maintenance, associated with that network, while enabling a sufficient level of
process control. As part of a stochastic optimization problem, the decision to either
observe or estimate each process variable results from the uncertainty surrounding
the true values of the process variables in the form of system and measurement noise.

To solve the cost-minimization problem, the IGCC power plant is modeled in
Aspen Plus® to quantify the variability of downstream process variables as a result
of variability in a set of input process variables, such as coal and oxygen flow rates,
gasifier temperature, and gasifier pressure. Using the known measurement distribu-
tions of online sensors that are a priori assumed to be part of the sensor network,
the downstream process variability is captured using Fisher information, as detailed
in the next section. The Fisher information is then used within the objective func-
tion to determine which of the downstream process variables should be observed or
physically measured through the placement of candidate sensors.
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7.2 Fisher Information and Its Use in the Sensor-Placement
Problem

Fisher information is a statistical measure established in the field of information
theory by Ronald Fisher [11]. For a set of independent and identically distributed
(IID) observations, x1, x2, ..., xn, resulting from n outcomes of a random variable,
X = Xi , i = 1, 2, ..., n, Fisher information captures the amount of information
the set of observations contains about some unknown parameter, θx , upon which the
probability distribution of X, px(x), depends. It does this by quantifying the expected
change in the distribution due to a change in the parameter value, θx . The expression
for Fisher information, Ix , is commonly given as [12]

Ix(θx) = EX

[(
1

pX|Θx
(X|θx)

∂pX|Θx
(X|θx)

∂θx

)2
]

, (7.1)

where the distribution p(X|θx) is the likelihood of x given the parameter θx .
In the sensor-placement problem, a high level of Fisher information for a down-

stream variable indicates the ability to accurately estimate the value of an upstream
variable on which the downstream variable depends. Because Fisher information is
additive (IX,Y (θ ) = IX(θ )+IY (θ )), a single Fisher quantity may be calculated for the
entire system. Thus, the goal is to decrease the overall sensor cost by determining the
optimal sensor locations to maximize the amount of information about the system’s
true state.

7.3 Computation of Fisher Information

Using the Aspen Plus® environment, a comprehensive model of the highly nonlinear
IGCC process is used to simulate the steady-state performance of the ASU, gasifier,
and power generation processes. This Aspen model is used to estimate the set of
unmeasured variables using the data acquired from the process variables directly
measured through the network of sensors physically deployed within the plant.

Let Sin be the set of input variables, including coal and oxygen flow rate. Each
variable in Sin follows a uniform distribution centered at its nominal value. A set of
Nsamp input variable operating conditions is generated using Hammersley sequence
sampling, and the IGCC process is simulated in Aspen Nsamp times. Each simulation
generates a corresponding vector of points, Sout , that includes both intermediate
and output process variables, such as syngas temperature and mass flow rate. Sout

captures the nonlinear effects of the IGCC process, and the full set of Sout vectors
generated from repeated simulations captures the variability of downstream process
variables resulting from a uniformly distributed set of input variable sample points.
Thus, a probability distribution can be generated for each intermediate and output
variable that captures the variation in that variable due to variations in the input
variables and the nonlinearity of the process behavior.
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7.3.1 Reweighting Using the BONUS Method

Each time the network of sensors is altered, i.e., a sensor is added or removed from
the online network, the underlying distributions of the process variables are altered,
requiring a new computation of the Fisher information about each process variable. In
this section, the BONUS algorithm is used to compare samples of the input variables
taken from a uniformly distributed sample space to those taken from a new reference
distribution in order to create a set of distribution weights that can be used to reweight
the distribution functions of the intermediate and output variables. This reweighting
approach eliminates the need to resimulate the IGCC process behavior in Aspen Plus
for every possible combination of online sensors, thereby significantly reducing the
overall computational time.

The BONUS reweighting scheme is implemented as follows:

1. Let f0(xi) be the probability density function (PDF) associated with the base input
distribution for the input variable xi , i = 1, 2, ..., Sin.

2. A set of Nsamp sample points uniformly distributed across a d-dimensional sam-
ples space is used to perform Nsamp simulations of the IGCC process to generate
F0(yj ), the base cumulative distribution function (CDF) associated with the in-
termediate or output variable yj , j = 1, 2, ..., Sout , where yj = h(x1, x2, ..., xSin )
is the nonlinear transformation from the set of input variables, Sin, to the
downstream variable yj at iteration 0.

3. A new input distribution is defined, representing a change in sensor placement,
such as a sensor placed at the location of this input variable. The redefined
distribution, ft (xi), at iteration t is used to create a set of weights

Wt (xi) = ft (xi)

f0(xi)
, i = 1, 2, ..., Sin (7.2)

that gives the likelihood ratio between the redefined and base distributions.
4. Given that the input variables act independently, the weights are used to construct

the resulting distributions for the downstream intermediate and output variables at
iteration t by multiplying the associated weights, Wt (xi), with the base distribution
f0(yj ):

ft (yj ) = f0(yj )ΠSin

i=1(1 + γij (Wt (xi) − 1)), j = 1, 2, ..., Sout , (7.3)

where γij = 1 if variable yj is downstream of xi and γij = 0 if it is not.
5. The distribution is then normalized using

f̂t (yj ) = ft (yj )
∑Nsamp

n=1 ft (yj (n)) yj (n+1)−yj (n−1)
2

. (7.4)

This reweighting approach can also be used when a sensor is placed at the location
of an intermediate process variable to construct the resulting change in distributions
of corresponding downstream variables. By eliminating the need to generate a new
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set of Nsamp sample points through simulation of the IGCC process at each iteration,
t , the BONUS reweighting algorithm provides an efficient method for calculating
the Fisher information resulting from many different configurations of the online
sensor network. Further, various underlying distributions corresponding to sensor
accuracies can be readily analyzed without increasing the computational burden,
and this approach can also be used for unmeasured disturbances to an input variable,
such as a change in coal quality.

7.3.2 Calculating the Fisher Information from Kernel Density
Estimation

As discussed in Chap. 3, KDE is a nonparametric method of estimating the PDF of
a random variable based on a finite data sample. In this case, the finite data sample
consists of the set of operating parameters estimated in Aspen PLUS for each input
sample. The KDE technique estimates the PDF through the use of following formula:

p(yn) =
Nsamp∑

m=1

1√
2π

exp

(
−

(
yn − ym

h

)2
)

, (7.5)

at each sample point yn, n = 1, 2, ..., Nsamp, where σ 2 is defined as the variance of
the set of samples {y1, y2, ..., yN} and h = 1.06σ/N

1/5
samp.

Assume that the shift-invariant property holds for a small ε > 0 change in the
parameter θy (the mean value of a given y), i.e., p(yn ± ε) can be calculated from
(7.5) by replacing yn with yn ± ε on the right side of the equation. This is a viable
assumption at IGCC process operating conditions near their means, as the plant
is operated within a chemically stable region. Once the kernel density functions
p(yn + ε) and p(yn − ε) are calculated from (7.5), they can be used to generate an
approximation of the first-order derivative, ∂p(yn)/∂θy , given by

∂p(yn)

∂θy

≈ (p(yn + ε) − p(yn − ε))

2ε
. (7.6)

The Fisher information is then obtained by substituting (7.6) into the discrete
approximation of (7.1) to obtain

Iy(θy) =
Nsamp∑

n=1

(yn − yn−1)

(
∂p(yn)/∂θy

)2

p(yn)
, (7.7)

which constructs a series of right-hand rectangles at (∂p(yn)/∂θy)
2

p(yn) to approximate the
integral function in the expectation.

The following section applies Fisher information as a metric of observation order
(the degree to which a given sensor network can monitor and control the system)
within an optimization problem for placing sensors in various locations throughout
the IGCC plant, subject to sensor cost constraints.
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7.4 The Optimization Problem

The objective of the sensor-placement problem is to maximize the amount of infor-
mation about the IGCC process from a network of sensors, given a set of budget
constraints. Because it is desirable to minimize the variability of the unmeasured
process variable estimations, the Fisher information should be maximized.

The resulting optimization problem is a nonlinear stochastic (binary) integer prob-
lem where the objective function consists of the overall Fisher information (with the
goal of maximization) and the constraints consist of limits on the cost of sensor
placement. Formally, this is given as

max
wj ∈W

Sout∑

j=1

fj (w, Y)wj , (7.8)

s.t

Sout∑

j=1

Cj wj ≤ B, (7.9)

wj ∈ 0, 1, j = 1, 2, ..., Sout , (7.10)

where Cj is the cost associated with the purchase, deployment, and maintenance
of sensor j and B is the total sensor budget. The binary variable wj represents the
decision to place or not place sensor j in the network of online sensors, with 0 rep-
resenting the absence of sensor j and 1 representing its presence, and W constitutes
the set of all feasible sensor networks that is given.

7.4.1 Defining the Objective Function

The objective term fj (w, Y ) is a function of the Fisher information resulting from
the network of sensors, w = {wj ∈ {0, 1}, j = 1, 2, ..., Sout } and the set of random
variables Y = {Yj , j = 1, 2, ..., Sout } associated with the measurement uncertainties
in the intermediate and output process variables. This function is designed by first
assuming that the information related to a process variable is always greater if a
sensor is placed online at that specific location (i.e., more is known about Yj when
wj = 1). Let I s

Yj
(θyj

|wk = 1) represent the Fisher information of θyj
resulting from a

sensor placed at location K = 1, 2, ..., Sout , and let I ns
Yj

(θyj
|wk = 0), k = 1, 2, ..., Sout

represent the Fisher information of θyj
resulting from no sensors placed in the network

of intermediate and output variables, such that I s
Yj

(θyj
|wk = 1) ≥ I ns

Yj
(θyj

), j =
1, 2, ..., Sout (this inequality states that the information about variable j that is known
when there is a sensor measuring variable k is greater than or equal to the information
about variable j that is known when there is not a sensor measuring variable k). A
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candidate objective function can then be defined as

f A
j (w, Y) = 1 − I ns

Yj
(θyj

)

I s
Yj

(θyj
|wj = 1)

, (7.11)

where 0 ≤ f A
j (w, Y) ≤ 1. This function normalizes the Fisher information for each

process variable between zero and one. Values of f A
j (w, Y) close to zero correspond

to the smallest change in information gained from placing a sensor at location j ,
while values close to one correspond to the largest change. It is therefore possible to
optimize the placement of sensors across many variable attributes, including mass-
flow, temperature, and pressure, for example, by determining which set of sensors
provides the largest total gain in estimation of the dynamic system.

However, this function does not capture the potential effects of placing a sensor in
the network upstream of location j . If location k is upstream of location j (i.e., Yj is
dependent on Yk), then information gained by placing a sensor at location k increases
the amount of information available about Yj . A second candidate objective function
that takes this into account is

f B
j (w, Y) =

Sout∑

k=1

(
1 − I ns

Yj
(θyj

)

I s
Yj

(θyj
|wk = 1)

)
, (7.12)

which captures the overall effect that placing (or not placing) a sensor has on all other
process variables by summing the resulting information gained at all locations by
placing a sensor at location k. The Fisher information is given as I s

Yj
(θyj

|wk = 1) =
Ins
Yj

(θyj
) if variable j is not downstream of variable k, and it can be seen that, in this

case, the right-hand side of Eq. (7.12) reduces to zero. Otherwise, if j is downstream
of variable k, I s

Yj
(θyj

|wk = 1) can be computed using the BONUS reweighting
scheme.

7.4.2 The IGCC Power Plant

For the IGCC power plant studied, a set of eight sensors, Sin, measures the input
process variables given in Table 7.1. The objective is to determine the placement
of sensors across a set of 24 sensors, Sout , measuring intermediate and output vari-
ables y1, y2, ..., y24 given in Eq. 7.2, as well as the nominal operating conditions. A
schematic of potential sensor locations is given in Fig. 7.2.

For each intermediate and output process variable, three types of sensors are
assumed to be available, with accuracies (six standard deviations) of ± 5 %, ± 2.5 %,
and ± 1 %, with sensors of higher accuracy incurring a higher cost than those of
lower accuracy. The optimization problem is therefore slightly modified to include
the consideration of multiple sensor types. Let the binary variable wj ,τ = 1(0)
correspond to the decision to place a sensor of type τ = 1, 2, 3 at location j . The
problem can then be formulated as
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Table 7.1 Input process variables

xi Description Nominal Units

1 Oxygen flow rate entering ASU 157,392 kg/h

2 Coal slurry flow rate 192,922 kg/h

3 Air flow rate to gas turbine compressor 2,962,683 kg/h

4 Recycled HRSG steam temperature 414 K

5 Recycled HRSG steam pressure 526 KPa

6 Recycled HRSG water temperature 369 K

7 Gasifier temperature 1644 K

8 Gasifier pressure 2806 KPa

ASU air separation unit, HRSG heat recovery steam generator

Fig. 7.2 Potential sensor locations in the IGCC power plant. IGCC integrated gasification combined
cycle

max
wj ,τ ∈W

3∑

τ=1

24∑

j=1

fj ,τ (w, Y)wj ,τ (7.13)

s.t

3∑

τ=1

24∑

j=1

Cj ,τ wj ,τ ≤ B, (7.14)

3∑

τ=1

wj ,τ ≤ 1, j = 1, 2, ..., 24 (7.15)

wj ,τ ∈ {0, 1}, j = 1, 2, ..., 24, τ = 1, 2, 3, (7.16)
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where fj ,τ (w, Y)wj ,τ is a function of the Fisher information when a sensor of type
τ is placed at location j . Constraint (7.15) ensures that no more than one type of
sensor is used at each location.

7.4.3 Problem Approach

The problem was approached in five steps:

1. A set of Ns = 800 operating conditions was generated across a uniform 8-
dimensional sample space, corresponding to a set of 8 input variables varied
± 10 % of their nominal operating conditions using the Hammersley sequence
sampling method.

2. For each set of operating conditions, the corresponding intermediate and output
variable conditions were generated using the steady-state model developed in the
Aspen Plus® simulation environment.

3. A distribution function was constructed from these sets of sample points using the
KDE technique, which serves as the base distribution for the BONUS reweighting
scheme.

4. The distribution function for Yj , j = 1, 2, . . . , 24 was constructed using BONUS
by reweighting the base distribution of Yj obtained from theAspen simulations by
the ratio of the sensor distribution of Xi , i = 1, 2, . . . , 8 to the base distribution
of Xi , provided that Yj is downstream of each Xi . The resulting distribution at
each Yj corresponds to the variability of estimating Yj if no sensors are placed
across the set of intermediate and output variable locations.

5. The Fisher information given no sensors at the intermediate and output variable
locations, I ns

Yj
(θyj

) is calculated as described above.

To verify the validity of the reweighting approach, the Fisher information was cal-
culated two ways: first, by using a uniform distribution across each of the input
variables as the input to the Aspen Plus® simulation, followed by use of the BONUS
reweighting scheme, and second, by using a normal distribution across each of the
input variables as the input to the Aspen Plus® simulation. There was no significant
difference in the Fisher information calculated under each of the two methods. This
is because the number of sample points and the sampling scheme used ensured ade-
quate coverage of the 8-dimensional space, and the reweighting approach undergoes
only one iteration when computing the Fisher information for a given set of input
variable distributions. Thus, it is evident that the BONUS reweighting scheme is a
useful approach for comparing sensor networks with contrasting variability, rather
than rerunning the resource-intensive simulation in Aspen Plus® (Table 7.2).
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Table 7.2 Intermediate and output process variables

yj Description Streama Nominal Units

1 Gasifier syngas flow rate RXROUT 393,475 kg/h

2 Syngas CO flow rate RXROUT 224,637 kg/h

3 Syngas CO2 flow rate RXROUT 88,051 kg/h

4 Syngas temperature RXROUT 1644 K

5 Syngas pressure RXROUT 2806 KPa

6 Low pressure steam turbine temperature TORECIR 369 K

7 Gas turbine combustor burn temperature POC2 1628 K

8 Gas turbine combustor exit temperature POC3 1533 K

9 Gas turbine high pressure exhaust stream temper-
ature

GTPC3 621 K

10 Gas turbine low pressure exhaust stream tempera-
ture

GTPC9 404 K

11 Gas turbine expander output temperature GTPOC 872 K

12 Fluegas flow rate exiting gas turbine expander 6X 5,760,623 kg/h

13 Syngas flow rate after solids removal RAWGAS 467,200 kg/h

14 Coal slurry flow rate entering gasifier COALD 21,170 kg/h

15 Oxygen flow rate into gasifier O2GAS 157,452 kg/h

16 Oxygen flow rate exiting ASU GASIFOXY 157,452 kg/h

17 Acid gas flow rate FUEL1 344,996 kg/h

18 Gas turbine compressor leakage flow rate XCLEAK 2052 kg/h

19 Flow rate into high pressure steam turbine TOHPTUR 621,421 kg/h

20 Coal slurry feed flow rate COALFEED 192,922 kg/h

21 Slag extracted from syngas SLAG 15,805 kg/h

22 Fines extracted from syngas FINES 5363 kg/h

23 Gasifier heat output QGASIF 2.47e7 Btu/h

24 Recycled HRSGb steam heat output QRDEA 3.27e8 Btu/h

aStream notation refers to DOE/NETL model [35]
bHRSG heat recovery steam generator

7.4.4 Results

Table 7.3 lists the computed objective values using the normalized function f B
j (w, Y)

from Eq. 7.12. As the sensor accuracy at a location increases, the value of f B
j at

that location increases due to the decrease in measurement variability, resulting in
an increase in information pertaining to the true value of the variable at that location.
Note that some variables, such as gasifier syngas flow rate (y1) and fluegas flow rate
exiting gas turbine expander (y12), exhibit large increases in information when a



92 7 Sensor Placement Under Uncertainty for Power Plants

Table 7.3 Computed
objective values, f B

j , for each
sensor type

Sensor j Low accuracy Medium accuracy High accuracy

1 0.9100 8.6612 10.6078

2 9.8488 10.7561 10.9649

3 10.5601 10.8862 10.9898

4 7.8290 10.1407 10.8627

5 7.8989 10.1472 10.8613

6 0.1036 0.7760 0.9643

7 4.6106 5.6794 5.9470

8 3.7799 4.7002 4.9529

9 1.9262 1.9832 1.9981

10 0.9940 0.9989 1.0002

11 2.5901 2.9110 2.9845

12 0.0002 0.7054 0.9531

13 0.9188 6.2690 7.6865

14 12.4675 15.8420 16.8025

15 12.4553 15.8393 16.8083

16 13.3944 16.8241 17.8059

17 3.6553 6.2014 6.8691

18 0.9389 0.9849 0.9978

19 0.0002 0.0002 0.0002

20 13.4061 16.8267 17.8000

21 0.7492 0.9375 0.9902

22 0.7492 0.9375 0.9902

23 1.0002 1.0002 1.0002

24 0.0002 0.0002 0.0002

more accurate sensor is used, while others, such as gas turbine low pressure exhaust
steam temperature (y10) and flow rate into high pressure steam turbine (y19), show
little improvement in Fisher information from use of a more accurate (and therefore
costly) sensor.

Consider the case in which the total budget is B = $1, 500, 000. The solution to
the optimization problem places a network of low accuracy sensors at locations y2,
y3, y5, y9, and y11, and medium accuracy sensors at y1, y14, y15, y16, y17, and y20

(thus y4, y6, y7, y8, y10, y12, y13, y18, and y19 are not directly measured). The resulting
standard deviation in the IGCC power plant production and gasifier performance is
provided in Table 7.4, in comparison with the standard deviation resulting from the
baseline case in which no sensors are deployed across the intermediate and output
process variable location. The significant reduction in variability for both gas turbine
power production and total plant power production is immediately obvious.
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Table 7.4 Measurement variation of the integrated gasification combined cycle (IGCC) power
production and gasifier performance using the optimal sensor network versus no sensors deployed

IGCC power production Nominal Standard deviation Units
Optimal (no sensors)

Gas turbine power production 424.94 2.26 (43.11) MWE

Steam turbine power production 251.97 0.71 (0.71) MWE

Miscellaneous power consumption − 67.41 0.25 (4.62) MWE

Auxiliary power production 18.29 1.35 (1.35) MWE

Total plant power production 591.22 2.16 (43.73) MWE

Gasifier performance Nominal Standard deviation Units
Optimal (no sensors)

Oxygen flow rate 157,452 655 (13,386) kg/h

Coal flow rate 192,922 803 (10,874) kg/h

Slag flow rate 15,805 46 (1097) kg/h

Fines flow rate 5363 16 (372) kg/h

Syngas temperature 1645 370 (370) K

Syngas pressure 2806 23 (234) KPa

7.5 Summary

The use of the BONUS reweighting scheme can significantly reduce the computa-
tional resources required to calculate Fisher information, here used as a measurement
of the variability of system parameters, given limitations on direct measurement of
variables. This greatly improves the tractability of a nonlinear, stochastic integer
program used to design a network of online sensors in an IGCC power plant, seeking
to minimize variability while respecting budgetary constraints. In the case presented,
measurement variability of total plant power production was reduced by over 95 %.

Notations

B total sensor budget
Cj cost associated with the purchase, deployment, and maintenance of sensor j

f0(xi) probability density function (PDF) associated with
the base input distribution for the input variable xi , i = 1, 2, . . . , Sin

F0(yj ) base cumulative distribution function (CDF)
associated with the intermediate or output variable yj , j = 1, 2, . . . , Sout

ft (xi) redefined input distribution
h band width
Ix Fisher information
Nsamp number of input scenarios generated using Hammersley sequence sampling
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Sin set of input variables, including coal and oxygen flow rate
Sout set of intermediate and output process variables,

such as syngas temperature and mass flow rate
t iteration
wj decision variable for placement of sensor j in the network of online sensors,

with 0 representing the absence of sensor j and 1 representing its presence
W set of all feasible sensor networks
Wt (xi) weight used in the BONUS algorithm that

gives the likelihood ratio between the redefined and base distributions
xi observations
X random variable

Greek letters
γij position indicator equal to 1

if variable yj is downstream of xi and γij = 0 if it is not
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