Chapter 5
Water Management Under Weather Uncertainty

5.1 Introduction

Water scarcity and the cost of treating and recycling waste water both represent con-
straints in operating coal-fired power plants. As the capacity of thermoelectric power
generation increases in the USA (the Energy Information Administration estimates
that thermoelectric power generation will grow 22 % by 2030), so does the impor-
tance of managing the water used in these plants. In a clean coal-fired power plant,
water is consumed in makeups (water added to a closed cycle due to evaporation
or product loss), in blowdowns (water added during the cooling cycle due to lig-
uid removal), and in the generation process itself. The amount of water consumed
varies with two ambient weather factors: the dry-bulb temperature (temperature as
measured by a thermometer shielded from moisture) and the humidity of the outside
air, both of which are subject to significant uncertainty, and vary with the season
and geographical region. It is, therefore, critical to determine the optimal operating
conditions for these plants, so as to minimize water consumption subject to stochas-
tic weather conditions. In this chapter, it is demonstrated how the BONUS method
can substantially simplify this problem for a pulverized coal (PC ) power plant. This
chapter is based on work by Salazar et al. [44, 45].

5.2 The Pulverized Coal Power Plant

The specific PC power plant model referenced herein is based on Case 11 in the
DOE/NETL’s report on the cost and performance of fossil energy plants (NETL,
2010). The model is a supercritical steady-state flowsheet without carbon capture
designed to generate 548 MW of electricity.

A pulverized coal power plant generates electricity in four steps (as shown in
Fig. 5.1):
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Fig. 5.1 Schematic of PC power plant

1. Powdered coal is fed into the boiler’s combustion chamber, where the combustion
of coal produces steam.
2. The steam is fed into a series of high (HP), intermediate (IP), and low pressure
(LP) turbines, causing the turbines to rotate at high speed.
. The steam is cooled to condensation in a cooling tower.
4. The condensation is preheated with steam extracted from the turbines and returned
to the boiler.

(O8]

Subsequent to the generation process, the gaseous waste is passed through a flue gas
desulfurization (FGD) unit prior to its atmospheric release. The FGD unit removes
sulfur dioxide (§0,) by combining the SO, with limestone slurry and oxygen to
produce calcium sulfate (gypsum). The gypsum is then separated from the water,
which is then recycled, yet a large amount of makeup water is still required to
replace that lost in the desulfurization process.

Therefore, considering both the power generation process and the FGD unit, the
areas of water consumption are:

* Water lost to evaporation in the cooling tower in the third step of the power
generation process (EL)

* Water lost to drift in the cooling tower during the power generation process (D)

*  Water used for “blowdown” in the cooling tower (B)

* Water used in the FGD for preparation of the limestone slurry and makeup (F)

The process performance parameters (generation, efficiency, emission, and water
consumption) are simulated in Aspen Plus®, a chemical process modeling system
from Aspen Technologies Inc. Aspen Plus® is commonly used for modeling power
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plants because of its capabilities in representing multiphase streams and handling
complex substances such as coal [10]. In this case, Aspen Plus® takes the process
design and operational parameters as its inputs and outputs the process performance
parameters. Because the optimization techniques detailed in this chapter seek to find
the optimal inputs to minimize or maximize performance parameters, the robustness
of the Aspen Plus® model is critical to the reliability of the optimization results.

Within this boiler/turbine/condenser cycle, water is lost to evaporation associated
with the quantity of heat rejected at the cooling tower. To estimate the evaporation
rate, an equilibrium-based model for the cooling tower (based on a scheme proposed
by [15] is implemented in Aspen Plus® as what is known as a unit-operation-based
model. Each “unitblock” is a simulation unit that allows the user to define calculations
not native to Aspen Plus®. Three unit blocks are used in this model, two flash
separators and one heat exchanger. The first flash separator is used to determine
the wet bulb temperature from the dry-bulb temperature and the humidity, while the
second simulates the cooling tower itself. Specific details on the internal calculations
of each of these blocks can be found in [44]. Using the design specifications and
the calculator blocks, Aspen Plus® is able to determine the cold water temperature,
circulating water flow rate, and air flow rate for a constant volume forced drift cooling
tower, and thus calculate the water usage due to evaporation.

In addition to the evaporation losses, water is consumed due to both drift and
blowdown. “Drift” refers to the water caught in the air leaving the top of the tower,
estimated as 0.02 % of the water circulating through the cooling tower. It differs from
evaporation in that the drift water remains in liquid form, while evaporation is the
water that has been converted to steam, and thus the two types of loss are considered
separately in calculations, though both contribute to the necessity of “makeups” and
water that must be added to a closed cycle to compensate for losses.

Blowdown, by contrast, is water added to appropriately dilute corrosive sub-
stances. The amount of water consumed as blowdown (B) is estimated as

EL —(C—1)D
B=—w«
C—1

)

where C is the number of concentrating cycles (assumed to be 4), EL is the
evaporation loss, and D is the drift loss.

The evaporation losses (ELs) are dependent on both temperature and humidity at
the plant location, and because the drift and blowdown are calculated from the evap-
oration, all three are dependent upon operating conditions and weather factors. The
water used in the FGD unit is dependent upon the conditions of the flue gas coming
out of the boiler, which is, in turn, dependent on both the operating conditions and
weather factors as well. The goal is, therefore, to determine the operating conditions
that minimize the expected value of water consumption subject to the uncertainty in
the ambient weather.
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Fig. 5.2 Probability density functions of four seasons (fall to winter from top) for dry-bulb
temperature and relative humidity in eight US Midwestern cities

5.3 Parameter Uncertainty

Dry-bulb temperature and dew point data for US urban centers is available at
the DOE’s energy efficiency and renewable energy program (EERE) website
(http://www1.eere.energy.gov). Two years of dry-bulb temperature and dew point
data, spanning September 2005 through August 2007, was averaged for eight major
Midwestern US cities (Chicago, Detroit, Indianapolis, Minneapolis, St. Louis, Des
Moines, Kansas City, and Cincinnati). This dry-bulb temperature data was organized
into bins and histograms were generated for each season. For each bin, the corre-
sponding dew point values were averaged to calculate values for relative humidity,
and thus histograms could be generated for this parameter as well. The frequency
distributions for dry-bulb temperature and humidity are shown in Fig. 5.2.

The probability distribution of the dry-bulb temperature was fitted to a lognormal
distribution and the relative humidity was fitted to a modified uniform distribution
(in which the range is divided into different intervals within which all values have
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an equal likelihood of occurrence). A distribution was created for each of the four
seasons, using the eight-city average. It is notable that both parameters have larger
variations during fall and spring than during winter and summer. This variability
will, in turn, result in a higher variability for water consumption in these seasons.

Once the probability distribution functions are estimated, stochastic simulation
and optimization are carried out as follows:

1. Efficiently sample the probability functions of dry-bulb temperature and rela-
tive humidity to generate a set of scenarios that accurately represent potential
realizations of uncertainty.

2. Propagate uncertainity by executing the whole plant simulation for every scenario
and record the water consumption in each.

3. Analyze the resulting distribution of water consumption and choose either the
expected value or standard deviation (the first or second moment) as the objective
function for stochastic optimization.

5.4 Problem Formulation

The objective of this problem is to minimize the expected value (E) of water con-
sumption in the PC power plant, expressed as the sum of the evaporation losses (EL),
drift losses (D), blowdown losses (B), and FGD consumption (F). The deterministic
input parameters, x, are the design and operational conditions of the units, and the
stochastic input parameters, u, are the uncertain weather conditions.

Further, let Q represent the total heat rejected by the cycle and P represent the
amount of power generated, both dependent on x and u. Similarly, evaporation
loss (EL) depends on the total heat rejected by the cycle (Q), drift (D) depends
on (EL), and blowdown B depends on both D and EL, while water consumption
in the FGD unit also depends on x and u. Thus, the following equations may be
introduced: Q = f(x,u), P = h(x,u), EL = gi(x,u), D = g>(x,u), B = g3(x,u),
and F = g4(x,u), where the set of functions, f, &, and g; represent “black-box”
calculations in Aspen Plus®, i.e., the exact nature of the functions is proprietary, and
knowledge of such is unimportant to the problem formulation and solution.

The problem can therefore be represented as

min,, E(g(xy, u))
s.t.
h(xqg,u)— P*=0
ME(x4,u) =0,
where P* is the fixed generation of electricity and M E is the material and energy
balance of the operating unit. Thus, the first constraint ensures that the required

amount of electricity is generated and the second ensures that mass and energy
balances are respected. Because the functions f, M E, and h are highly nonlinear, this
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problem is extremely computationally complex, and a method such as the BONUS
algorithm is needed to make the problem tractable.

5.5 Selection of Decision Variables

Of the assigned parameters that potentially influence water consumption, as detailed
in the NETL report on cost and performance baselines for fossil energy plants [36],
nine were selected as potential decision variables:

1. Boiler temperature: The temperature of the unit that burns coal particulate to
initially heat water into steam.

2. Air excess: The amount of air present in the combustion chamber in excess of the
theoretical minimum, used to ensure all coal particulate is exposed to sufficient
air.

3. Reheater temperature: The temperature of the unit that reheats the steam between
the high pressure turbine and the medium pressure turbine.

4. FGD efficiency: A measure of the rate of S O, removal in the FGD, influenced by
the design parameters of the unit, such as surface area and absorption material.

5. 0,/S 0, ratio: the ratio of oxygen to sulfur dioxide in the FGD unit.

6. CaC 03/S O, ratio: The ratio of calcium carbonate to sulfur dioxide in the FGD
unit.

7. Water content of FGD slurry: The amount of water added to limestone to produce
the FGD slurry.

8. Pressure drop at high-pressure condenser 1: The difference in pressure between
the steam exhausted from the turbines and that leaving the first condenser.

9. Pressure drop at high-pressure condenser 2: The difference in pressure be-
tween the steam exhausted from the first condenser and that leaving the second
condenser.

These nine were selected based on the feasibility of implementation, i.e., these
variables are most easily controlled in a practical setting. For example, the water
content in the FGD slurry is easily modified through a change in operational policy.

To determine which of the nine operating parameters should be used as decision
variables, a stochastic simulation was run in Aspen Plus®, as described in [8]. The
ranges of potential decision variables were sampled from uniform distributions, and
the model was run for each of the generated combinations, each time producing
an output result in the form of a water consumption value. Partial rank correlation
coefficients (PRCC) were then calculated as shown in Table 5.1. PRCC are a measure
of the relationship between the output and input variables for a nonlinear function;
thus the absolute value of the PRCC indicates the influence of the deterministic
variable on water consumption. Five variables, air excess, reheater temperature,
water content of FGD slurry, pressure drop at high-pressure turbine 1, and pressure
drop at high-pressure turbine 2, were found to have the greatest impact on water
consumption, and were therefore chosen as the decision variables for the stochastic
optimization problem.
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Table 5.1 Partial rank correlation coefficients (PRCC) for relationship between potential decision
variables and water consumption

Potential decision variable Partial ranked correlation coefficient
Air excess 0.256642

Reheater temperature 0.228009

FGD efficiency —0.125901

Boiler temperature —0.018852

0,/8 0, ratio —0.021453

CaC03/8§0; ratio —0.032031

Water content of FGD slurry 0.191058

Pressure drop at high-pressure turbine 1 | —0.294448

Pressure drop at high-pressure turbine 2 | —0.266594

5.6 Implementation of BONUS Algorithm

The BONUS algorithm was applied to this problem as follows:

1. A set of 600 scenarios based on the probability distributions of the uncertain
inputs and uniform distributions for the decision variable was generated using a
Hammersley sequence sampling technique.

2. The model was run for the scenarios generated in step 1 to calculate the value of the
objective function and constraints for each set of input values, and a probability
distribution was estimated using kernel density estimation for each.

3. The nonlinear optimizer (based on the sequential quadratic programming (SQP)
algorithm) was initialized by selecting starting values for each decision variable.

4. The value of the objective function was estimated by first assuming a narrow
normal distribution centered at the value chosen in Step 3, and then using this
normal distribution, along with the initial uniform distribution of the decision
variables and the corresponding outputs found in Step 2 used to calculate new
values of the probability density functions according to the following formula:

Jw
S ) *
p(u) = M}’(Hﬂ, (5.1
=T

where Nyqmp is the number of samples taken in Step 1, p(u?) is the probability
density function for the output distribution corresponding to the initial uniform
inputdistribution, f (), and f («) is the probability density function of the updated
input distribution. The latter is given by

Fare 3L i(”_”")z (5:2)
u)= e , .
Nmmph j=1 2 h

where £ is the variance of the data set.
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Table 5.2 Minimization of average water consumption under uncertain air conditions for a 548 MW
PC power plant located in the Midwestern US for four different seasons. (Water consumption
estimates are reported in millions of pounds per hour)

Season Optimal values of decision variables
Air excess RH FGD limestone | HP1 pres- | HP2 pressure ratio
% temperature °F | fraction sure ratio
Fall 38.925 1160.8 0.31457 049U 0.61 L
Summer | 48.947 1174 0.42262 049U 0.66 L
Spring 355 1096.5 0.22185 0.36 L 0.61 L
Winter 19.039 1141.9 0.30077 049U 0.79U0 2
Base case values of decision variables
All 20 1157 0.3 0.365 0.637
Season Bonus Stochastic Stochastic Savings
estimate simulation simulation %
optimal estimate base case
objective optimal objective
function objective function
function
Fall 2.433 2.567 2742 6.4
Summer | 2.622 2.702 3.194 154
Spring 2.421 2.595 2.698 3.8
Winter 2.331 2.384 2.463 32

5. The decision variables were perturbed, and new estimates of the objective function
and its derivative were calculated using the reweighting scheme.
6. Steps 3—5 were repeated until Kuhn—Tucker conditions were reached.

5.7 Results

The nonconvexity of the objective function required the SQP algorithm to be run for
a variety of initial values for both reheater temperature and air excess. The nonlinear
optimizer was run 61 times, and each nonlinear optimization took between 2 and 20
iterations, for a total of 519 iterations for each of the four seasons. Using the BONUS
algorithm, results were derived in 4800 model evaluations per season. By contrast,
a traditional framework for this stochastic optimization problem would have instead
required at least 120 scenarios in the stochastic loop, for a minimum of 373,680
evaluations, nearly 78 times as many. The BONUS algorithm therefore saved 98.7 %
of the computational time required to solve the problem.

Table 5.2 gives the optimal values of the decision variables and water usage
estimations at (1) the optimal point using the BONUS algorithm, (2) the optimal point
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with a rigorous stochastic simulation, and (3) the base case with a rigorous stochastic
simulation for each of the four seasons. The water consumption estimations are given
as the expected values of the probability distributions approximated with BONUS
or calculated via stochastic simulation. The savings in average water consumption at
the optimal point, as compared to the base case, range from a low of 3.2 % in winter
to 15.4 % in summer.

It is intuitive that the water consumption savings are greater in warmer seasons.
In the relatively warm fall and summer seasons, the turbine pressure ratios 1 and 2
are pushed to their upper and lower limits, respectively (these two turbines define
the feed-water temperature entering the boiler and the pressure at which steam is
reheated). Operating the turbines at the limits of their pressure ratios, along with
a higher reheater temperature, increases their thermodynamic generation capacity
(work per mass of steam), reducing both required fuel and the steam flow rate. At the
same time, these operating parameters have little effect on the heat rejection rate. By
combining a reduction in the steam flow rate with a steady heat removal rate, water
consumption is minimized in the warmer seasons, in which the cooling tower is least
efficient. By contrast, in the cooler seasons (spring and winter), the cooling tower
operates more efficiently and allows for reduced water consumption even when a
large amount of heat must be removed at the condenser.

5.8 Summary

The BONUS algorithm can be used to efficiently optimize water consumption in
a PC power plant. Uncertainty in air temperature and humidity affect the amount
of water lost to evaporation, drift, blowdown, and makeup. Reheater temperature,
air excess to the boiler, FGD slurry preparation water ratio, and pressure drops at
the two high-pressure turbines are all operational variables that may be manipulated
to minimize water consumption, but the highly nonlinear nature of the objective
function and the power and mass balance constraints make this problem extremely
computationally intensive under a traditional stochastic optimization framework. The
BONUS algorithm reduces this computational intensity by 98.7 %, and shows that
reductions of 3.2—15.4 % are possible, depending on the season, for a 548-MW plant
in the Midwestern US.

Notations

B blowdown losses

D drift losses

EL evaporation losses (EL)

f,h,and g; constraints using black-box models in Aspen Plus®
f(u) initial uniform input distribution
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probability density function of the updated input distribution

FGD consumption

material and energy balance of the operating unit

number of samples taken

amount of power generated

fixed generation of electricity

probability density function for the output distribution corresponding
to the initial uniform input distribution

total heat rejected by the cycle

set of deterministic input parameters (design and operational condi-
tions)

set of uncertain weather conditions
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