
Chapter 4
The BONUS Algorithm

In this chapter we describe the basics of the Better Optimization of Nonlinear Uncer-
tain System (BONUS) algorithm. For better readability, we present the generalized
stochastic optimization framework (Fig. 1.4 (from Chap. 1) for stochastic nonlinear
programming (NLP) problem below. This chapter is derived from the work by [43].

General techniques for these types of optimization problems determine a statis-
tical representation of the objective such as maximum expected value or minimum
variance. Once embedded in an optimization framework, the iterative loop struc-
ture emerges where decision variables are determined, a sample set based on these
decision variables is generated, the model is evaluated for each of these sample
points, and the probabilistic objective function value and constraints are evaluated,
as shown in the inner loop of the Fig. 4.1. When one considers that nonlinear op-
timization techniques rely on an objective function and constraints evaluation for
each iteration, along with derivative estimation through perturbation analysis, the
sheer number of model evaluations rises significantly rendering this approach in-
effective for even moderately complex models. Figure 4.2 shows the general idea
behind the BONUS algorithm. BONUS follows the grey arrows. In the stochastic op-
timization iterations (Fig. 4.1), decision variables values can vary between upper and
lower bounds, and in sampling loop various probability distributions are assigned
to uncertain variables. In the BONUS approach, initial uniform distributions (be-
tween upper and lower bounds) are assumed for decision variables. These uniform
distributions together with specified probability distributions of uncertain variables
form the base distributions for analysis. BONUS samples the solution space of the
objective function at the beginning of the analysis by using the base distributions.
As decision variables change, the underlying distributions for the objective function
and constraints change, and the proposed algorithm estimates the objective function
and constraints values based on the ratios of the probabilities for the current and
the base distributions (a reweighting scheme), which are approximated using kernel
density estimation (KDE) techniques. Thus, BONUS avoids sample model runs in
subsequent iterations.
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4.1 Reweighting Schemes

The goal of the reweighting scheme (shown by gray arrows in Fig. 4.2) is to de-
termine changes in output distributions as input distributions change. Hesterberg
(1995) presents various reweighting techniques for estimating the expected value of
an output distribution cumulative distribution function (CDF), F [J (u)] without eval-
uating the model for the input distribution probability density function (PDF),f (u))
in Fig. 4.2. The ratio of the probability density functions f is used as a weight, which
is given as:

ωi = f (ui)

f̂ (u�
i )

, (4.1)

where f̂ (u�
i ) is determined for the base sample set, for which the model response is

known, and the probability density f (ui) is calculated using the sample for which
the response has to be estimated. Remember that these two sample sets are not
necessarily related. One attempt for estimating statistical properties P (u) for the
output of the model is through the product of the weights and the same properties
obtained from the base distribution (Eq. 4.2).

P (u) =
∑

i

ωi · P (u�
i ) (4.2)

For instance, to estimate the mean μ of a model response, Z(u), the weight would
be multiplied by the individual model responses for the base set:

μ[Z(u)] =
Nsamp∑

i

ωi · Z(u�
i ), (4.3)

where Nsamp is the sample size.
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Fig. 4.2 Density estimation approach to optimization under uncertainty

This approach has limitations, as the weights may not sum to 1. This problem is re-
duced by using normalized weights, as shown in Eq. 4.4. This normalized reweighting
(the ratio estimate for weighted average) has another advantage as it provides accept-
able performance for a wider range of perturbation, especially for large samples of
Monte Carlo simulations (MCS) [19]. In the BONUS, instead of using large size of
MCS, a more efficient sampling technique as presented in Chap. 2 that provides the
same accuracy as MCS in order of magnitude with less number of samples is used.

P (u) =
Nsamp∑

j

f (uj )

f̂ (u�
j )

∑Nsamp

i=1
f (ui )
f̂ (u�

i )

· P (u�
j ) (4.4)

As seen in Eq. 4.4 the mean of the function can be estimated from the ratio of
the two input distributions f (u) and f̂ (u�). This requires the determination of the
probability distributions from a given sample set of uncertain variables. Here, the
KDE techniques discussed in Chap. 3 are used.

In order to use the kernel density approach for estimating function values (objec-
tive function and constraints), the base sample set u� has to be generated for model
calculations. As stated earlier, we select uniform distributions for the decision vari-
ables and specified distributions for uncertain variables for creating the base sample.
Once the base sample is obtained, its density can be calculated for each point as:

f̂ (u�
i ) = 1

Nsamp · h

Nsamp∑

j=1

1√
2π

· e
− 1

2

(
u�
i
−u�

j
h

)2

(4.5)
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We now want to find the distribution f (u) for the decision variable selected at each
optimization iteration. For this purpose a small narrow normal distribution at the
decision point for the decision variables is assumed and a new sample set for these
normal distributions u is generated. After determining the model output Z(u�

i ) for
each u�

i , the value of output distribution for the decision variables Z(u) is obtained
by the reweighting scheme described above using the probability of each new data
point ui , as determined through the kernel density approximation (Eq. 4.6).

f (ui) = 1

Nsamp · h

Nsamp∑

j=1

1√
2π

· e
− 1

2

(
ui−u�

j
h

)2

(4.6)

4.2 Effect of Sampling on Reweighting

The proposed reweighting scheme using KDE has been carried out for case studies
up to d = 10 dimensions for the following five types of functions [43]. The applica-
tion of alternative and more efficient sampling techniques such as Latin hypercube
sampling (LHS), median Latin hypercube sampling (MLHS), and hammersley se-
quence sampling (HSS) have resulted in significant reductions of computational
requirements compared to MCS as shown in this section.

• Function 1: Linear additive: y = ∑s
m=1 um s = 2...10

• Function 2: Multiplicative: y = Πs
m=1um s = 2...10

• Function 3: Quadratic: y = ∑s
m=1 u2

m s = 2 . . . 10
• Function 4: Exponential: y = ∑s

m=1 um · exp(um) s = 2 . . . 10
• Function 5: Logarithmic: y = ∑s

m=1 log(um) s = 2 . . . 10

The total analysis includes five functions, with four sampling techniques being com-
pared for each of these functions. The number of sample points for each sample
is also analyzed, by selecting sample sizes as Nsamp = [50, 100, 250, 500, 750,
1000, 2500, 5000, 7500, 10, 000]. This results in a total of 200 runs for which the
proposed reweighting approach has been tested. For each run, the means and vari-
ances are both calculated and estimated, as are the derivatives of each of these with
respect to each u. Further, the percentage error between the actual and estimated
values is determined as well, as shown in Table 4.1.

As required, the base distributions are uniform distributions of decision variables
with bounds given in first three columns of Table 4.2, and the estimated distributions
were narrow normal, with the upper and lower bounds in the last three columns of
the table indicating the region enclosing the 99.999 percentile.

For the generation of the shifted sample set uΔ and for derivative calculations, the
step size Δuj was selected as:

Δuj = 0.05 · μ{uj } (4.7)

As the model functions are relatively simple, the actual values (analytical) of the
mean and variance for both sample sets u and uΔ are calculated, and compared to
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Table 4.1 Calculations for KDE efficiency analysis

n-dimensional calculations 2 to 10 dimensions = 10! = 3628800

Functions 5

Sampling techniques 4

Sample sizes 10

Total runs 5 × 4 × 10 = 200

Moment calculations/run 4

Derivative calculations/run 10! × 2

Moment estimations/run 4

Derivative estimations/run 10! × 2

% Error calculations moments/run 2

% Error calculations derivatives/run 10! × 2

Total calculations (4 + 4 + 2 + 6 × 10!) × 200 � 4.32 × 109

Table 4.2 Bounds for base (uniform) and estimated (normal) distributions

Base distribution Estimated distribution

Lower bound Upper bound Lower bound Upper bound

u�
1 1.0 6.0 u1 3.0 5.0

u�
2 3.0 7.0 u2 4.0 7.0

u�
3 1.0 5.0 u3 3.0 4.0

u�
4 8.0 12.0 u4 9.5 10.0

u�
5 10.0 17.0 u5 11.5 14.0

u�
6 2.0 9.0 u6 4.0 6.0

u�
7 3.0 7.0 u7 4.5 6.5

u�
8 0.0 7.5 u8 1.0 6.0

u�
9 10−5 10−1 u9 5×10−3 5 ×10−2

u�
10 6.0 9.0 u10 8.0 9.0

the estimates. Further, the same analysis is conducted for the derivative estimates,
allowing for comparison of the errors in the estimates based on the sampling tech-
nique that is applied to generate both sample sets u� and u. The next section provides
the results of the preliminary study.

As indicated above, 200 different runs have been used to verify the applicability of
the technique. For each run, means, variances, and derivatives have been calculated
and estimated using the reweighting scheme, and percentage errors between each of
these have been determined. Due to the extensive nature of this analysis, only one
example is provided here that is both relevant to this analysis as well as representative
of the overall behavior of the technique.

The results obtained for the nonlinear function, y = ∑3
m=1 u2

m are presented here.
Variance calculation is more prone to errors than calculation of mean (if sample size
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Fig. 4.3 Variance calculation for different sampling techniques

Table 4.3 Percentage error in variance estimation for 3-dimensional analysis using 250 samples

MCS LHS MLHS HSS

Function 1 178.5688 34.6615 50.0478 7.3945

Function 2 179.7385 30.1337 54.5286 11.1636

Function 3 161.1127 36.0205 39.1106 10.9293

Function 4 140.1933 9.2476 13.0681 4.1226

Function 5 183.3928 30.1835 54.2601 8.9386

is small), and also the case study in the next section aims at calculating the variance
of the system at hand that presents the efficiency of the reweighting technique to
estimate variance for this function here.

Simultaneous plotting of the actual and estimated values will allow one to identify
how accurate each technique is. Note that the x-axis is in log scale to capture the
change of the sample sizes through Nsamp = [50, 100, 250, 500, 750, 1000, 2500,
5000, 7500, 10,000]. The lines represent the actual values, while the stand-alone
points represent the estimated variance values using the four different sampling
techniques.

In Fig. 4.3, the variance of Function 3 is plotted with respect to the number of
samples. As seen, all four sampling techniques converge to the same value as Nsamp

approaches 10,000, with the MCS technique showing the highest variations. While
most approaches over- or underestimate the mean at low sample sizes, HSS provides
a rather accurate estimate in this region. Table 4.3 provides the percentage error
between the estimates and the actual values of the variance for f (u) for all four
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Fig. 4.4 Optimization under uncertainty: The BONUS algorithm

sampling techniques with sample sizes of 250. As seen, HSS yields comparably
small percentage errors for all functions.

4.3 BONUS: The Novel SNLP Algorithm

The algorithm for BONUS, given in Fig. 4.4, can be divided into two sections. The
first section, Initialization, starts with generating the base distribution that will be
used as the source for all estimations throughout the optimization. After the base
distribution is generated, the second section starts, which includes the estimation
technique that results in the improvements associated with BONUS with respect to
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computational time. In this algorithm overview, we denote the D-dimensional vector
of deterministic decision variables as θ = [θ1, θ2, ..., θd , θd+1, .., xD], while the S-
dimensional uncertain variables are defined as v = [v1, v2, ..., vs , vs+1, ..., vS], total
S+D-dimensional variable vector u = [u1, u2, ..., us+d , us+d+1, ..., uS+D]..
I - Initialization

1. Generate (i = 1 to Nsamp) samples for all decision variables and specified
distributions for uncertain variables u�

i as a base distribution.
2. Run KDE for identifying the probabilities f̂s(u�

i ).

a) Set s = 1.

i. Set i = 1.
ii. While i < Nsamp, calculate f̂s(u�

i ) using Eq. 4.5.
iii. i = i + 1. Go to step ii.

b) s = s + 1. If s < S + D + 1 return to step I.2.a.i.

3. Run the model for each sample point to find the corresponding model output,
store value Zi .

II - SNLP Optimization

1. Set k = 1. Determine objective function value for starting point, J = P (θk , vk).
Set deterministic decision variable counter d = 1.

a) Generate (i = 1 to Nsamp) samples (uk
i ) with the appropriate narrow normal

distributions at θk
d for all decision variables and specified distributions for

uncertain variables vk
i .

b) Run KDE for identifying the probabilities fs(uk
i ) at θk

d , similar to step I.2,
using Eq. 4.6 in step ii instead.

c) Determine the weights ωi from the product of ratios, ΠSfs(uk
i )/f̂s(u�

i ).
d) Calculate

∑
i ωi .

e) Estimate the probabilistic objective function and constraints values:

i. Set i = 1, J k = 0.
ii. While i < Nsamp, calculate: J k = J k

i ∗ ωi/
∑

i ωi .
iii. i = i + 1. Go to step ii.

f) Set d = d + 1, return to step II.2.

2. While d ≤ D, perturb one decision variable θk
d to find θ

k,Δ
d . Reset deterministic

decision variable counter d = 1.

a) Generate (i = 1 to Nsamp) samples with the appropriate distributions at θ
k,Δ
d

for all variables uk
i .

b) Run KDE for identifying the probabilities fs(uk
i ) at θ

k,Δ
d , similar to steps I.2,

using Eq. 4.6 in step ii instead.
c) Determine the weights ωi from the product of ratios, ΠSfs(uk

i )/f̂s(u�
i ).

d) Calculate
∑

i ωi .
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e) Estimate probabilistic objective function and constraints value:

i. Set i = 1, J k,Δ = 0.
ii. While i < Nsamp, calculate: J k,Δ = J

k,Δ
i ∗ ωi/

∑
i ωi .

iii. i = i + 1. Go to step ii.

f) Set d = d + 1, return to step II.2.

3. Calculate gradient information obtained from II-1 and II-3.
4. Check convergence criteria for nonlinear solver (KKT conditions); if satis-

fied, STOP-Optimum found. Otherwise, identify new vector of decision vari-
ables through gradients obtained from objective function value estimation via
reweighting. Set k = k + 1. Return to step II-2.

Note that traditional techniques rely on repeated model runs for steps II-3b in the
algorithm. For computationally complex nonlinear models, this task can become the
critical bottleneck for solving the SNLP. BONUS, on the other hand, bypasses these
by estimating the objective function values via reweighting. The BONUS algorithm is
implemented using the nonlinear solver based on sequential quadratic programming
(SQP) method. The following examples illustrate the steps involved in BONUS and
the efficiency of BONUS for solving SNLP problems.

Example 4.1 Consider the optimization problem presented in Example 3.1 again.
Illustrate the reweighting scheme and solve the problem using BONUS.

min E[Z] = E[(x̃1 − 7)2 + (x̃2 − 4)2] (4.8)

s.t. x̃1 ∈ N [μ = x�
1 , σ = 0.033 · x�

1] (4.9)

x̃2 ∈ U [0.9 · x�
2 , 1.2 · x�

2] (4.10)

4 ≤ x1 ≤ 10 (4.11)

0 ≤ x2 ≤ 5 (4.12)

Here, E represents the expected value, and the goal is to minimize the mean of the
objective function calculated for two uncertain decision variables, x1 and x2. The
optimizer determines the value x�

1 , which has an underlying normal distribution with
± 10 % of the nominal value of x�

1 as the upper and lower 0.1 % quantiles. Similarly,
x̃2 is uniformly distributed around x�

2 , with cutoff ranges at [−10 %, +20 %].

Solution The following steps illustrate the steps of BONUS algorithm to solve this
problem.

Step 1 The first step in BONUS is determining the base distributions for the decision
variables and uncertain variables, followed by generating the output values for this
model. Since in this case decision variable and uncertain variables are merged, we
use the entire possible range for the two variables as these base distributions have to
cover the entire range, including variations. For instance, for x2, the range extends to
(0×0.9) ≤ x2 ≤ (5×1.2) to account for the uniformly distributed uncertainty. Due to
space limitations, the illustrative presentation of the kernel density and reweighting
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Table 4.4 Base sample
Sample no. x1 x2 Z

1 5.6091 0.3573 15.2035

2 3.7217 1.9974 14.7576

3 6.2927 4.2713 0.5738

4 7.2671 3.3062 0.5527

5 4.1182 1.3274 15.4478

6 7.7831 1.5233 6.7472

7 6.9578 1.1575 8.0818

8 5.4475 3.6813 2.5119

9 8.8302 2.9210 4.5137

10 6.9428 3.7507 0.0654

Mean 6.2970 2.4293 –

Std. Dev 1.5984 1.3271 –

approach is performed for a sample size of 10, while the remainder of the work uses
N = 100 samples. A sample realization using MCS is given in Table 4.4.

After this sample is generated, KDE for the base sample is applied to determine the
probability of each sample point with respect to the sample set. This is performed for
each decision variable separately by approximating each point through a Gaussian
kernel, and adding these kernels to generate the probability distribution for each
point, as given in Eq. 4.13 [52].

f̂ (xi(k)) = 1

N · h

N∑

j=1

1√
2π

· e
− 1

2

(
xi (k)−xi (j )

h

)2

. (4.13)

Here, h is the width for the Gaussian kernel and depends on the variance σ and
sample size N of the data set and is given as follows:

h = 1.06 × σ × N− 1
5 . (4.14)

For our example, h(x1) = 1.06 × 1.5984 × 10−0.2 = 1.0690 and h(x2) = 1.06 ×
1.3271 × 10−0.2 = 0.8876. Using the first value, one can calculate f̂ (x1(1)) =

1
10×1.0690

∑10
j=1

1√
2π

·e− 1
2

(
5.6091−x1(j )

1.0690

)2

= 0.1769. This step is repeated for every point,
resulting in the KDE provided in Table 4.5.

Step 2 All these steps were preparations for the optimization algorithm, where re-
peated calculations of the objective function will be bypassed through the reweighting
scheme.

Step 2a For the first iteration, assume that the initial value for the decision variables
is x1 = 5 and x2 = 5. For these values, another sample set is generated, as shown in
Table 4.6, accounting for the uncertainties described in Eqs. 4.9 and 4.10.
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Table 4.5 Base sample
kernel density estimates

x1 f̂ (x1) x2 f̂ (x2)

5.6091 0.1769 0.3573 0.1277

3.7217 0.0932 1.9974 0.2114

6.2927 0.2046 4.2713 0.1602

7.2671 0.2000 3.3062 0.2190

4.1182 0.1110 1.3274 0.2068

7.7831 0.1711 1.5233 0.2117

6.9578 0.2090 1.1575 0.1992

5.4475 0.1691 3.6813 0.2100

8.8302 0.0920 2.9210 0.2152

6.9428 0.2092 3.7507 0.2063

Table 4.6 Sample-
optimization iteration 1

Sample no. x̃1 x̃2

1 4.7790 5.7625

2 4.9029 5.5740

3 5.0347 5.9199

4 4.9686 5.8697

5 4.9001 5.9967

6 4.9819 5.1281

7 5.0316 5.4877

8 5.0403 5.4841

9 4.9447 5.7557

10 5.0344 4.7531

Mean 4.9618 5.5731

Std. Dev 0.0836 0.3862

The expected value of Z is estimated using the reweighting approach, given in
Steps 2b and 2c.

Step 2b Now, the KDE for the sample (f (xi)) generated around the decision
variables has to be calculated. The Gaussian kernel width h(x̃1) = 1.06 ×
0.0837 × 10−0.2 = 5.598 × 10−2. Using this value, one can calculate f (x1(1)) =

1
10×5.598×10−2

∑10
j=1

1√
2π

·e− 1
2

(
5.609−x̃1(j )

5.598×10−2

)2

= 5.125×10−23. Again, this step is repeated
for every point of the sample with respect to the base distribution data resulting in
the KDE provided in Table 4.7.

Step 2c Using these and the base KDE values, weights are calculated for each
sample point j as

ωj = f (x1(j ))

f̂ (x1(j ))
× f (x2(j ))

f̂ (x2(j ))
, j = 1, ..., N (4.15)
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Table 4.7 Optimization iteration 1-KDE

No x1 f (x1) x2 f (x2)

1 5.6091 5.125 × 10−23 0.3573 0

2 3.7217 0 1.9974 2.989 × 10−26

3 6.2927 0 4.2713 2.777 × 10−2

4 7.2671 0 3.3062 2.376 × 10−8

5 4.1182 3.918 × 10−31 1.3274 9.958 × 10−40

6 7.7831 0 1.5233 1.745 × 10−35

7 6.9578 0 1.1575 1.303 × 10−43

8 5.4475 5.218 × 10−12 3.6813 2.826 × 10−5

9 8.8302 0 2.9210 1.844 × 10−12

10 6.9428 0 3.7507 8.311 × 10−5

Table 4.8 Optimization
progress at N = 100

Iteration x1 x2 Eest [Z]

0 5.000 5.000 5.958

1 9.610 2.353 9.238

2 7.065 3.814 0.258

In our illustrative example, the only two nonzero weights are ω5 = 1.699 × 10−68)
and ω8 = 4.152 × 10−15. These weights are normalized and multiplied with the
output of the base distribution to estimate the objective function value:

Eest [Z] =
N∑

j

ωj · Z(j ). (4.16)

For our illustrative example, this reduces to

Eest [Z] = ω8 · Z(8) = 1.0000 × 2.5119 = 2.5119, (4.17)

as the normalization eliminates all but one weight. Note that this illustrative example
was developed with an unrealistically small sample size. Hence, the accuracy of
the estimation technique cannot be judged from this example. Further, due to the
inaccuracy of the estimate resulting from the small sample size, we will not present
results for Steps 2d and 2e for just 10 samples, but use 100 samples (note that
estimated value of expected value of Z is different in Table 4.8, and is different than
that of 10 samples). Also note that Steps 2d and 2e basically repeat the procedures
in Steps 2a through 2c for a new sample set around a perturbed point, for instance
x1 + Δx1 = 5 + 0.001 × 5 = 5.005.

The results obtained using the BONUS algorithm for optimization converge to
the same optimal solution as obtained using a brute force analysis normally used in
stochastic NLPs where the objective is calculated for each iteration by calculating the
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Fig. 4.5 Nonisothermal
CSTR

Q

F T CA CB

F Tf CA,f CB,f

objective function value for each generated sample point. In this example, BONUS
used only 100 model runs, while the brute force optimization evaluated the model
600 times for the two iterations.

The following example is based on Taguchi’s approach to off-line quality control
[55] applied to output of a chemical reactor system.

Example 4.2, Taguchi’s Quality Control Problem Consider the following prob-
lem of off-line quality control of a continuous stirred tank reactor (CSTR) derived
from [23].

The system to be investigated consists of a first-order sequential reaction,
A → B → C, taking place in a nonisothermal continuous CSTR. The pro-
cess and the associated variables are illustrated in Fig. 4.5. We are interested in
designing and operating this process such that the rate of production of species B

(RB) is 60 moles/min. However, as is apparent from the reaction pathway, species
B degrades to species C if the conditions in the CSTR such as the temperature (T )
and heat removal (Q) are conducive. The objective of parameter design is to pro-
duce species B at target levels with minimal fluctuations around the target in spite
of continuous variation in the inputs. The inlet concentration of A (CAf

), the inlet
temperature (Tf ), the volumetric flow rate (F ), and the reactor temperature (T ) are
considered prone to continuous variations. The objective of off-line parameter design
is to choose parameter settings for the design variables such that the variation in the
production rate of rB around the set point is kept at a minimum.

The five design equations that govern the production of species B (and the steady
state values of other variables) in the CSTR are given below. The average residence
time (τ ) of each species in the reactor is given as τ = V/F, where V is the reactor
volume and F is the feed flow rate.
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Table 4.9 Parameters and
their values in CSTR study

Parameter Value Units

k0
A 8.4 × 105 min−1

k0
B 7.6 × 104 min−1

HRA −2.12 × 104 J/mol

HRB −6.36 × 104 J/mol

EA 3.64 × 104 J/mol

EB 3.46 × 104 J/mol

R 8.314 J/(mol · K)

Cp 3.2 × 103 J/(kg · K)

ρ 1, 180 kg/m3

CBf
328 mol/m3

T 314 K

Q = FρCp(T − Tf ) + V (rAHRA + rBHRB) (4.18)

CA = CAf

1 + k0
Ae

−EA
RT τ

(4.19)

CB = CBf
+ k0

Ae
−EA
RT τCA

1 + k0
Be

−EB
RT τ

(4.20)

−rA = k0
Ae

−EA
RT CA (4.21)

−rB = k0
Be

−EB
RT CB − k0

Ae
−EA
RT CA (4.22)

where CA and CB are the bulk concentrations of A and B, T is the bulk temperature of
the material in the CSTR, subscript f denotes initial feed, and the rate of consumption
of A and B are given by −rA and −rB . These five variables are the state variables of
the CSTR and can be estimated for a given set of values for the input variables (CAf

,
CBf

, Tf , T , F , and V ) and the following physical constants: k0
A, k0

B and EA, EB

the preexponential Arrhenius constants and activation energies respectively; HRA

and HRB , the molar heats of the reactions, which are assumed to be independent
of temperature; ρ and Cp the density, and specific heats of the system, which are
assumed to be same for all processing streams. Once input variables T and T f are
specified, Eq. 4.18 can be numerically solved to estimate Q, the heat added to or
removed from the CSTR. The average residence time can be calculated from the
input variables F and V . Subsequently, for a given input concentration for CAf

and
CBf

, the bulk CSTR concentrations CA and CB can estimated using Eqs. 4.19 and
4.20. The production rates rA and rB can now be calculated from Eqs. 4.21 and 4.22.
The system parameters are summarized in Table 4.9. Note that this analysis fixes the
set-point for both the feed concentration of B, CBf

, and the CSTR temperature T .
Both values are also given in Table 4.9.
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Table 4.10 Decision variables for optimization

Lower bound Upper bound Initial value Optimal value

CAf
3000 mol/m3 4000 mol/m3 3118 mol/m3 3125.1 mol/m3

Tf 300 K 350 K 314 K 328.93 K

F 0.01 m3/min 0.1 m3/min 0.070 m3/min 0.057 m3/min

V 0.02 m3 0.05 m3 0.0391 m3 0.0500 m3

The design objective is to produce 60 mol/min of component B, i.e., RB = 60.
The initial nominal set points for the decision variables are provided in Table 4.10.
However, the continuous variations in the variables (CAf

, Tf , F , and T ) result in
continuous variations of the production rate, RB , which needs to be minimized. Solve
this problem using traditional SNLP and BONUS, and compare the results.

Solution The goal is to determine process parameters for a nonisothermal CSTR
(Fig. 4.5) that result in minimum variance in product properties when fluctuations
are encountered [23]. The mathematical representation for the problem is given as:

min σ 2
RB

=
∫ 1

0
(RB − RB)2dF (4.23)

s.t. RB =
∫ 1

0
RB(θ , x, u)dF (4.24)

CA = CAf

1 + k0
A · e−EA/RT · τ

(4.25)

CB = CBf
+ k0

A · e−EA/RT · τ · CA

1 + k0
B · e−EB/RT · τ

(4.26)

−rA = k0
A · e−EA/RT (4.27)

−rB = k0
B · e−EB/RT − k0

A · e−EA/RT (4.28)

Q = FρCp · (T − Tf ) + V · (rAHRA + rBHRB) (4.29)

τ = V/F (4.30)

RB = rB · V (4.31)

Uncertain variables are [CA, Tf , F , T ], and the range of uncertainty for these vari-
ables is normally distributed with means at [CAf

, T 1
f , F 1, T 1]. For the first three

uncertain variables, the fluctuations 0.001th fractiles are at ±10 %. However, for T ,
several factors can contribute to fluctuations and the level of fluctuation around the
reactor temperature T is set at ±30 % around T 1. Based on these values, the initial
variance at the starting point given in Table 4.10 is determined as σ 2

RB ,init = 1034.
To compare the performance of bypassing the model and using the estimation

technique through kernel densities, the model was run first for the case with tradi-
tional SNLP. Using this traditional approach, the algorithm converged to the optimal
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Optimization Progress - Traditional Approach
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Fig. 4.6 Optimization progress for traditional SNLP approach

solution of [CAf
= 3124.7 mol/m3, T 1

f = 350 K , F 1 = 0.0557 m3/min, V =
0.0500 m3] after three iterations, for a sample size Nsamp = 150. This reactor design
has a variance of σ 2

RB
= 608.16. Here, the model is run for every sample point during

each iteration step. Further, the derivatives used for SQP are estimated by running the
model an additional four times for shifted sample sets of each variable. This requires
a total of

150
model calls

derivative calc.
· (4 + 1)

derivative calc.

iterations
· 3 iteration = 2250 model calls

Optimization progress is presented in Fig. 4.6 for the traditional approach and in
Fig. 4.7 for BONUS. The initial point is shown as the thick line covering variations
up to 120 mol/min. As optimization progresses, the probability around the desired
rate of RB = 60 increases, as seen in the optimal solution presented as the bold
dashed/dotted line.

The analysis for the BONUS algorithm using model bypass converges after five
iterations to the same optimum values of decision variables CAf

= 3125.1 mol/m3,
Tf = 328.93K , F = 0.057m3/min, and V = 0.0500 m3. This solution shows
almost identical behavior to the optimum found using the traditional approach and
even has a slightly lower variance of σ 2

RB
= 607.11. However, the real advantage

of using BONUS is that this analysis called the model just 150 times, only for the
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Optimization Progress - BONUS
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Fig. 4.7 Optimization progress in reducing product variance using BONUS

determination of the initial base distribution F [R�
B], in contrast to a total of 2250

model evaluations for the traditional approach.
Capacity expansion for electricity utilities has been an active area of research,

having been analyzed using a multitude of methods, including optimization, simu-
lation, and decision analysis [27]. The nature of the problem is inherently uncertain,
as it is impossible to determine exact values for future cost levels, the demand for
electricity, the development of alternative and more efficient technologies, and many
more factors. Hence, the capacity planning example has been analyzed by various
researchers in the stochastic programming (SP) community [2] .

Due to the limitations of conventional algorithms for optimization under uncer-
tainty, several assumptions have been made, converting the capacity expansion SP
into a linear problem through estimations and approximations in order to solve these
problems. Among these simplifications, the load curve, which identifies the probabil-
ity of electricity demand levels, is generally discretized into linear sections, allowing
the use of decomposition techniques that require a finite number of realizations of
the uncertain variables [30]. The ability of BONUS to handle nonlinearity allows this
problem to be handled without these limitations; this is presented in the following
examples.

Example 4.3 Capacity Expansion for Electric Utilities The mathematical repre-
sentation of the problem is given below. The objective is to minimize the expected cost
of capacity expansion subject to uncertain demands and cost factors, while ensuring
that no shortages are present. Note that the objective function 4.32 is the expected
value for the total cost calculated for n = 1, ..., Nsamp samples. In the formulation
given below, capital nomenclature is used for decision variables, while the uncertain
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variables are indicated through a tilde symbol.

min E[cost] (4.32)

s.t. cost =
∑

t

cost
op
t + cost

cap
t + cost

buy
t (4.33)

cost
op
t =

∑

i

P i
t · õci

t (4.34)

cost
cap
t =

∑

i

αi · (ACi
t )

βi

(4.35)

cost
buy
t = κ̃t · (d̃t − tpt )

γ (4.36)

ci
t = ci

t−1 + ACi
t (4.37)

tpt =
∑

i

P i
t (4.38)

P i
t ≤ ci

t (4.39)

i ∈ Technology1, Technology2, ..., TechnologyI (4.40)

t ∈ Period1, Period2, ..., PeriodT (4.41)

Equation 4.33 sums up the respective costs for operation, capacity expansion, and the
option to purchase electricity for meeting demand in case the total available capacity
is below demand. The operating costs are calculated using Eq. 4.34, where oci

t is
a cost parameter for electricity generation of technology i in time period t , and P i

t

are decision variables determining how much electricity should be produced using
technology/power plant i at time t .

Equation 4.35 determines the cost of capacity expansion. Traditional models use a
linear relationship between the cost of expansion Cost

cap
t and the added capacity aci

t .
Use the data and models from the Integrated Environmental Control Model (ICEM),
a computational tool developed for the Department of Energy. This will provide the
power law model for more accurate cost estimation (Eq. 4.35). In this formula, αi

is a proportionality factor for capacity expansion, while βi provides the exponential
factor that allows capital expansion cost to follow economies of scale.

Another nonlinear expression, Eq. 4.36, will be used to determine the cost of
electricity purchased, Costbuy , when demand dt exceeds capacity. The power factor
γ must be greater than 1 to ensure that relying on external sources is not used as the
sole option when increase in demand is expected. This is accomplished as Costbuy

increases exponentially when capacity is significantly below possible demand levels.
The primary goal of this approach is to account for the common market practice
of purchasing electricity in a deregulated environment when demand reaches peak
levels, surpassing available capacity in a given location.

Finally, use Eq. 4.37 to calculate the available capacity at each time step following
expansion, Eq. 4.38 calculates the total electricty produced, tpt , and Eq. 4.39 ensures
that no power plant can produce more energy than its installed capacity.
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Table 4.11 Uncertain variables in capacity expansion case

Parameter Lower bound Upper bound

Demand Period I 400 MWh 500 MWh

Demand growth rate Period II 0.75 1.50

Tech. I Gen. cost increase for P-II 0.95 1.12

Tech. II Gen. cost for Period I 0.17 k$/MW h 0.37 k$/MW h

Tech. II Gen. cost for Period II 0.17 k$/MW h 0.50 k$/MW h

Table 4.12 Constants for
capacity expansion case

Parameter Value

Initial capacity Tech. I 250 MW

Initial capacity Tech. II 150 MW

β1 1.25 k$/MW0.7472

β2 0.95 k$/MW0.7856

α1 0.7472

α2 0.7856

γ 1.75

oc1
1 0.25 k$/MWh

In this problem, Technology I is selected as a Cyclone type coal power plant,
while Technology II is a Tangential plant. Again, data for these technologies can be
obtained using IECM [41] model.

There are five uncertain variables (Table 4.11) and eight decision variables that
determine capacity expansion and electricity generation for each technology at each
time step.

Here, demand growth rate for Period II implies that the total demand in Period I is
multiplied by a normally distributed uncertain factor varying between 0.75 and 1.50,
while the unit cost of electricity generated through Technology I can vary between
−5 and +12 % for the second period. Table 4.12 provides the constants and initial
values used for this case study.

Finally, the preexponential factor for the cost of purchasing electricity, κt can be
determined as the greater value between the two per unit electricity generation costs
for the different technologies, oc1

t and oc2
t .

Solve this problem using traditional SNLP and BONUS.

Solution Starting from a system with initial annualized cost of the capacity expan-
sion at $ 760.9K, the system is optimized both via BONUS, as well as exhaustive
model runs for derivative estimation through objective function value calculation.
The conventional approach converges after five iterations, requiring a total of

100
model calls

derivative calc.
· (8 + 1)

derivative calc.

iterations
· (5) iteration = 4, 500 model calls
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Fig. 4.8 Comparison of optimization progress

Table 4.13 Decision variables in capacity expansion case

Variable Initial value (MW) Optimal Value (MW)

Capacity addition Tech I Period I 100 93

Capacity addition Tech I Period II 200 197

Capacity addition Tech II Period I 100 154

Capacity addition Tech II Period II 200 197

Electricity production Tech I Period I 250 h 257 h

Electricity production Tech I Period II 250 h 247 h

Electricity production Tech II Period I 250 h 291 h

Electricity production Tech II Period II 250 h 330 h

compared to only 100 models and just three iterations run for the BONUS algorithm
(Fig. 4.8). Table 4.13 presents the decision variables and their optimal values found
by BONUS.

εBONUS = (% Mean reduction)BONUS

(% Mean reduction)Modelruns
= 0.867

4.4 Summary

In this chapter, we have introduced the BONUS based on the reweighting approach for
estimating derivative information needed during optimization of nonlinear stochas-
tic problems. The technique relies on KDE of a base distribution and the sample
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space encountered during optimization. Two real world case studies; (1) an off-line
quality control problem from chemical engineering, and (2) the electricity expansion
problem from operations research literature, illustrates efficiency of the technique in
determining derivatives, and hence the search directions during optimization loop.
Further, by selection of efficient sampling techniques like HSS allows for significant
computational improvement, as the repetitive nature of model evaluations is avoided
by using the reweighting scheme. The BONUS algorithm is very useful for solv-
ing large-scale real-world problems of significance (e.g., for black-box models) is
illustrated in the following three chapters.

Notations

ACi
t capacity of technology i in time period t

Ci concentration of component i in mol/m3

Cif inlet concentration of component i in mol/m3

cost
op
t operating cost

cost
cap
t capacity expansion cost

cost
buy
t cost of buying electricity

dt electricity demand
D number of decision variables
E expected value function
f probability density function
F volumetric flowrate, m3/min

oci
t a cost parameter for electricity generation of technology i in time period t

P probability function
P i

t decision variables determining
how much electricity should be produced using technology/power plant i

at time t

Q heat removal J

Nsamp number of samples
RB rate of production of B

RB average rate of production of B

S number of uncertain variables
T temperature, 0K

Tf inlet temperature, 0K

u uncertain and decision variable from input distributions
u∗ base uncertain and decision variable from input distributions
v uncertain variable
V reactor volume, m3

Z output variable

Greek letters

αi a proportionality factor for capacity expansion
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βi an exponential factor that allows capital expansion cost to follow
economies of scale

γ p̄ower factor
θ d̄ecision variable
μ mean
σ standard deviation
τ residence time, min

ω weighting function
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