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Preface

Stochastic programming problems are very difficult to solve as they involve
optimization as well as uncertainty analysis. Algorithms for solving large-scale
nonlinear stochastic programming problems are very few in number, as are the
engineering applications of these problems. This book introduces two algorithms for
large-scale stochastic nonlinear problems for both open equation systems and black
box models. These algorithms are the Better Optimization of Nonlinear Uncertain
Systems (BONUS) algorithm and the L-shaped BONUS algorithm. Real-world ap-
plications of these algorithms in the areas of energy and environmental engineering
are also detailed. Many have contributed to this book. Researchers who worked
with Dr. Diwekar including Dr. Adrian Lee, Dr. Kemal Sahin, Dr. Juan Salazar,
and Dr. Yogendra Shastri, as well as collaborators such as Dr. Emil Constantinescu,
Dr. Victor Zavala, and Dr. Stephen Zitney have provided the material for this book
with their research. Thanks also to our group members Dr. Pahola Benavides, Dr.
Berhane Gabreslassie, Dr. Rajib Mukherjee, Shivam Tyagi, and Kirti Yenki who
went through the first draft of the book and meticulously pointed out mistakes. Hope
you enjoy this work.

Urmila Diwekar and Amy David
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Chapter 1
Introduction

A general optimization problem can be stated as follows.

Optimize Z = z(x) (1.1)

x

subject to

h(x) = 0 (1.2)

g(x) ≤ 0 (1.3)

The goal of an optimization problem is to determine the decision variables x that
optimize the objective function Z(Eq. 1.1), while ensuring that the model oper-
ates within established limits enforced by the equality constraints h (Eq. 1.2) and
inequality constraints g (Eq. 1.3).

Figure 1.1 illustrates schematically the iterative procedure employed in a numer-
ical optimization technique. As seen in the figure, the optimizer invokes the model
with a set of values of decision variables x. The model simulates the phenomena
and calculates the objective function and constraints. This information is utilized by
the optimizer to calculate a new set of decision variables. This iterative sequence is
continued until the optimization criteria pertaining to the optimization algorithm is
satisfied. If the objective function and constraints are linear and the decision variables
involved are scalar and continuous, then it is a linear programming (LP) problem.
However, if the objective function and/or constraints are nonlinear then it is a non-
linear programming (NLP) problem. An NLP problem involving integers is a mixed
integer nonlinear programming (MINLP) problem.

1.1 Stochastic Optimization Problems

Stochastic optimization gives us the ability to optimize systems in the face of un-
certainties. A stochastic optimization or a stochastic programming (SP) problem
requires that the objective function and constraints be expressed in terms of some

© Urmila Diwekar, Amy David 2015 1
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Fig. 1.1 Pictorial
representation of the
numerical optimization
framework [7]
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probabilistic representation (e.g., expected value, variance, fractiles, most likely
values). For example, in chance constrained programming, the objective function is
expressed in terms of expected value, and the constraints are expressed in terms of
fractiles (probability of constraint violation), and in Taguchi’s offline quality control
method ([55], Diwekar and Rubin 1991), the objective is to minimize variance.
These problems can be further classified as stochastic linear programming (SLP),
stochastic nonlinear programming (SNLP), and stochastic mixed integer linear and
nonlinear programming problems. The latter problems are the focus of this book.

A generalized stochastic optimization problem, where the decision variables and
uncertain parameters are separated, can then be viewed as:

Optimize J = P1(j (x, u)) (1.4)

x

subject to

P2(h(x, u)) = 0 (1.5)

P3(g(x, u) ≥ 0) ≥ α (1.6)

where u is the vector of uncertain parameters and P represents the cumulative
distribution functional such as the expected value, mode, variance, or fractiles. Fig-
ures 1.2 and 1.3 show the expected value (mean), mode, variance, and fractiles for a
probabilistic distribution function.

Unlike the deterministic optimization problem, in stochastic optimization one has
to consider the probabilistic functional of the objective function and constraints. The
generalized treatment of such problems is to use probabilistic or stochastic models
instead of the deterministic model inside the optimization loop. Figure 1.4 represents
the generalized solution procedure, where the deterministic model is replaced by an
iterative stochastic model with a sampling loop representing the discretized uncer-
tainty space. The uncertainty space is represented in terms of the moments such as
the mean, or the standard deviation of the output over the sample space of Nsamp as
given by the following equations (Eqs. 1.7 and 1.8).
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E(z(x, u)) =
Nsamp∑

k=1

z(x, uk)

Nsamp

(1.7)

σ 2(z(x, u)) =
Nsamp∑

k=1

(z(x, uk) − z̄)2

Nsamp

(1.8)

where z̄ is the average value of z. E is the expected value and σ 2 is the variance.

1.2 Stochastic Nonlinear Programming

There are two fundamental approaches used to solve SNLP problems . The first
set of techniques identify problem specific structures and transforms the problem
into a deterministic NLP problem . For instance, chance constrained programming
[4] replaces the constraints that include uncertainty with the appropriate probabili-
ties expressed in terms of moments. The major restrictions in applying the chance
constrained formulation include that the uncertainty distributions should be stable
distribution functions, the uncertain variables should appear in the linear terms in
the chance constraint, and that the problem needs to satisfy the general convexity
conditions. The advantage of the method is that one can apply the deterministic
optimization techniques to solve the problem.

Decomposition techniques like L-shaped decomposition [2]) divide the problem
into stages and generate bounds on the objective function by changing decision vari-
ables and solving subproblems that determine the recourse action with respect to
the uncertain variables. However, these methods also require convexity conditions
and/or dual-block angular structures like the one shown in Fig. 1.5, and are only
applicable to discrete probability distributions. For example, Lagrangian-based ap-
proaches have been applied to nonlinear SP formulations. The Lagrangian dual ascent
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Fig. 1.5 Example of a dual block angular structure (LP), each diagonal block is a realization of a
random variable(scenario or sample)

method has been proposed by Rockafellar and Wets [38] for problems with finite
outcomes for the uncertain variables. Another technique is Regularized Decompo-
sition, which adds quadratic terms to the objective for improved convergence [42]
of the L-shaped decomposition method. The augmented Lagrangian method adds a
quadratic penalty to ensure convexity, yielding more efficient computation (Demp-
ster, 1988). Rockafellar and Wets also developed a similar technique, the progressive
hedging algorithm [39] . These methods have limitations in terms of handling un-
certain variables. An alternative approach that can be used to capture uncertainty is
through a sampling loop that is embedded within the optimization iterations for the
decision variables as shown in Fig. 1.4. This step can be computationally expensive
as the model has to be rerun for every sample point. Therefore, we consider efficient
sampling techniques. These techniques are described in Chap. 2.

Stochastic approximation methods use upper and/or lower bounds for expected
function in a two-stage SP problems. For specific structures (e.g., dual block an-
gular structure) where the L-shaped method is applicable, two approaches consider
bounding approximations by embedding sampling within another algorithm without
complete optimization. These two approaches are the method of Dantzig [5] , which
uses importance sampling to reduce variance in each cut based on a large sample,
and the stochastic decomposition method proposed by [20] , which uses the lower
bound of the recourse function based on expectation. Again these methods exploit
specific structures of the problem and require convexity conditions.

In the BONUS algorithm presented in this book, a generalized approach is
proposed that can be used for real world large scale systems without any assump-
tions. The approach takes advantage of traditional NLP methods such as sequential
quadratic programming (SQP) or generalized reduced gradient (GRG2) method that
are based on derivative estimation. For real world large scale systems, perturba-
tion derivatives are commonly employed. In order to use derivative-based methods,
we need smooth probability density functions; Chap. 3 presents the kernel density
estimation (KDE) approach for smooth probability density functions.

Optimization under uncertainty involves iteratively improving a probabilistic ob-
jective function. Figure 1.6a shows uncertain input variables with an underlying
probability density function pdfin(xk , uk), shown as the solid triangular distribution.
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Fig. 1.6 Effect of changes in decision variables

After the model is run, the corresponding output distribution cdfout (xk , uk) is gen-
erated, shown as the solid line in Fig. 1.6b. As optimization progresses to the next
iteration, k + 1, moments such as mean, variance, and the probability function can
change for the uncertain variables, resulting in a new ̂pdfin(xk+1, uk+1), indicated
by the dashed line in Fig. 1.6a .

The goal is to identify rapid and efficient techniques that determine an approx-

imation of the properties of the new output distribution, ˜cdfout (xk+1, uk+1), given
as the dashed cumulative distribution function in Fig. 1.6b. The advantage of this
approach is its bypassing of the model evaluations for successive sampling (the inner
loop in Fig. 1.4), which is computationally the most intensive task for optimization
under uncertainty. The BONUS algorithm only uses sampling for the first iteration.
Details of the algorithm are described in Chap. 4. This is followed by three chapters
on application of the BONUS to real world systems. Chapter 8 presents a variant
of the BONUS algorithm called L-Shaped BONUS that exploits specific structure
problems. Applications of this variant are presented in the Chaps. 9 and 10.

1.3 Summary

A generalized way of solving SNLP is to use sampling-based methods. BONUS
exploits the advantages of traditional NLP methods based on derivative information.
It uses efficient sampling techniques and uses sampling only for the first iteration. A
variant of the the BONUS algorithm, namely, the L-shaped BONUS algorithm uses
specific structure of the problem for efficiency improvement. The BONUS algorithm
and its variant allows for solution of large scale real world problems.
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Notations

cdfout () cumulative probability density function of output
E expected value function
g inequality constraint function
h equality constraint function
J objective function
Nsamp number of samples
Pi() probabilistic function
pdfin() probability density function of input
u uncertain variable
x decision variables
Z, z objective function

Greek letters
σ standard deviation



Chapter 2
Uncertainty Analysis and Sampling Techniques

The probabilistic or stochastic modeling (Fig. 2.1) iterative loop in the stochastic
optimization procedure (Fig. 1.4 in Chap. 1) involves:

1. Specifying the uncertainties in key input parameters in terms of probability
distributions

2. Sampling the distribution of the specified parameter in an iterative fashion
3. Propagating the effects of uncertainties through the model and applying statistical

techniques to analyze the results

2.1 Specifying Uncertainty Using Probability Distributions

To accommodate the diverse nature of uncertainty, different distributions can be
used. Some of the representative distributions are shown in Fig. 2.2. The type of
distribution chosen for an uncertain variable reflects the amount of information that is
available. For example, the uniform and loguniform distributions represent an equal
likelihood of a value lying anywhere within a specified range, on either a linear
or logarithmic scale, respectively. Furthermore, a normal (Gaussian) distribution
reflects a symmetric but varying probability of a parameter value being above or
below the mean value. In contrast, lognormal and some triangular distributions are
skewed such that there is a higher probability of values lying on one side of the
median than the other. A beta distribution provides a wide range of shapes and is a
very flexible means of representing variability over a fixed range. Modified forms of
these distributions, uniform* and loguniform*, allow several intervals of the range
to be distinguished. Finally, in some special cases, user-specified distributions can
be used to represent any arbitrary characterization of uncertainty, including chance
distribution (i.e., fixed probabilities of discrete values).

© Urmila Diwekar, Amy David 2015 9
U. Diwekar, A. David, BONUS Algorithm for Large Scale Stochastic Nonlinear
Programming Problems, SpringerBriefs in Optimization, DOI 10.1007/978-1-4939-2282-6_2
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Fig. 2.1 The stochastic
modeling framework

Stochastic
Modeler

MODEL

Uncertain
Variable Sample

Output
Functions

Uncertainty
Distributions

Probability
Distribution of 
Outputs

2.2 Sampling Techniques

Sampling is a statistical procedure which involves selecting a limited number of ob-
servations, states, or individuals from a population of interest. A sample is assumed
to be representative of the whole population to which it belongs. Instead of evaluating
all the members of the population, which would be time-consuming and costly, sam-
pling techniques are used to infer some knowledge about the population. Sampling
techniques can be divided into two groups: probability sampling and nonprobability
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sampling. Probabilistic sampling techniques are based on Monte Carlo methods and
are most relevant to this chapter. They are described in three subsections below. The
description of the sampling techniques below is derived from the sampling chapter
by Diwekar and Ulas [10].

2.2.1 Monte Carlo Sampling

One of the simplest and most widely used methods for sampling is the Monte Carlo
method. Monte Carlo methods are numerical methods which provide approximate
solutions to a variety of physical and mathematical problems by random sampling.
The name Monte Carlo, which was suggested by Nicholas Metropolis, takes its name
from a city in the Monaco principality which is famous for its casinos, because of
the similarity between statistical experiments and the random nature of the games of
chance such as roulette.

Monte Carlo methods were originally developed for the Manhattan Project during
World War II, to simulate probabilistic problems related to random neutron diffusion
in fissile material. Although they were limited by the computational tools of that
time, they became widely used in many branches of science after the first electronic
computers were built in 1945. The first publication which presents the Monte Carlo
algorithm is probably by Metropolis and Ulam [33].

The basic idea behind Monte Carlo simulation has been that input samples should
be randomly generated in order to describe a random output. In a crude Monte
Carlo approach, a value is drawn at random from the probability distribution for
each input, and the corresponding output value is computed. The entire process
is repeated n times producing n corresponding output values. These output values
constitute a random sample from the probability distribution over the output induced
by the probability distributions over the inputs. The simplest distribution that is
approximated by the Monte Carlo method is a uniform distribution U (0, 1) with n

samples on a k-dimensional unit hypercube. One advantage of this approach is that
the precision of the output distribution may be estimated using standard statistical
techniques. On average the error of approximation is of the order O(N−1/2). One
remarkable feature of this sampling technique is that the error bound is not dependent
on the dimension k. However, this bound is probabilistic, which means that there
is never any guarantee that the expected accuracy will be achieved in a concrete
calculation.

The success of a Monte Carlo calculation depends on the choice of an appropri-
ate random sample. The required random numbers and vectors are generated by the
computer in a deterministic algorithm. Therefore, these numbers are called pseu-
dorandom numbers or pseudorandom vectors. One of the oldest and best known
methods for generating pseudorandom numbers for Monte Carlo sampling is the lin-
ear congruential generator (LCG) first introduced by D. H. Lehmer [30]. The general



12 2 Uncertainty Analysis and Sampling Techniques

0

0.2

0.4

0.6

0.8

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

Uncertain Variable

Fig. 2.3 PDF for a lognormal distribution. PDF probability density function

formula for a linear congruential generator is the following:

In = (aIn−1 + c)mod m (2.1)

In this formula, a is the multiplier, c is the increment which is typically set to
zero, and m is the modulus. These are preselected constants. The proper choice
of these constants is very important for obtaining a sample which performs well
in statistical tests. One other preselected constant is the seed, I0 which is the first
number in the output of a linear congruential generator. The random number generator
used for Monte Carlo sampling provides a uniform distribution U (0, 1). The specific
values of each variable are selected by inverse transformation over the cumulative
probability distribution. The following example shows how to generate a sample
from pseudorandom numbers.

Example 2.1 We generated four pseudorandom numbers for sampling. These ran-
dom numbers are In = 0.6, 0.25, 0.925, 0.850. Find the Monte Carlo samples for the
lognormal distribution shown in Fig. 2.3.

Solution From the PDF shown in Fig. 2.3, we created the CDF (Fig. 2.4). We use
the y-axis of Fig. 2.4 to place the random numbers on the figure and selected the
corresponding x-axis numbers as samples in Table 2.1.

Pseudorandom numbers of different sample sizes on a unit square generated using
the linear congruential generator are given in Fig. 2.5. From this figure it can be seen
that the pseudorandom number generator produces samples that may be clustered in
certain regions of the unit square and does not produce uniform samples. Therefore, in
order to reach high accuracy, larger sample sizes are needed, which adversely affects
the efficiency of this method. Variance reduction techniques address this problem
of increasing efficiency of Monte Carlo methods and are described in the following
section.
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Table 2.1 Sample generation
Sample no. Random number Sample

1 0.6 1.0

2 0.25 0.5

3 0.925 2.6

4 0.850 2.0

2.3 Variance Reduction Techniques

To increase the efficiency of Monte Carlo simulations and overcome disadvan-
tages such as probabilistic error bounds, variance reduction techniques have been
developed [23].

The sampling approaches for variance reduction that are used most frequently in
optimization under uncertainty are: importance sampling, Latin Hypercube Sampling
(LHS) [22, 32], descriptive sampling, and Hammersley sequence sampling (HSS)
[24]. The latter technique belongs to the group of quasi-Monte Carlo methods which
were introduced in order to improve the efficiency of Monte Carlo methods by
using quasi-random sequences that show better statistical properties and deterministic
error bounds. These commonly used sampling techniques are described below with
examples.

2.3.1 Importance Sampling

Importance sampling, which may also be called biased sampling, is a variance re-
duction technique for increasing the efficiency of Monte Carlo algorithms. Monte
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Carlo methods are commonly used to integrate a function F over the domain D:

I =
∫

D

F (x)dx (2.2)

The Monte Carlo integration for this function can be written as:

Imcs = 1

N

N∑

i=1

F (xi) (2.3)

where xi are random numbers generated from a uniform distribution and N

corresponds to number of samples.
If random numbers are drawn from a uniform distribution, information is spread

over the interval we are sampling over. However, if a nonuniform (biased) distri-
bution G(x) (which draws more samples from the areas which make a substantial
contribution to the integral)is used, the approximation of the integral will be more
accurate and the process will be more efficient. This is the basic idea behind impor-
tance sampling, where a weighting function is used to approximate the integral as
follows.

Iimp = 1

n

n∑

i=1

F (xi)

G(xi)
(2.4)

Importance sampling is crucial for sampling low-probability events. We will revisit
importance sampling when we consider the reweighting scheme in the BONUS
algorithm in Chap. 5. The most critical issue for the implementation of importance
sampling is the choice of the biased distribution which emphasizes the important
regions of the input variables. A simple example for the application of importance
sampling for estimation of a simple integral is given below.
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Example 2.2 Integrate the following function using the Monte Carlo method and
the method of importance sampling.

I =
∫ inf

0
x2 exp (−x2)dx (2.5)

Solution This function is not possible to integrate analytically but its value is known
to be

√
π/4 = 0.44311328 . . . . As can be observed from Fig. 2.6, the value of this

function decreases rapidly when x is greater than about 3.5. Therefore, there are only
a small number of input arguments x where the integral has an appreciable value.
If we apply a Monte Carlo integration to estimate this integral, we can uniformly
sample the domain of this integral by using a uniform distribution between 0 and
1000 (a large value) and evaluate the integral.

However, we know that this integral only has an appreciable value at a specific
interval. Because of that, if we use a uniform sample, most of the points will be from
areas that correspond to values where the integral has a very small value. Therefore,
we can use a nonuniform distribution function instead, for sampling. If we choose
a distribution like the lognormal distribution, the number of samples required to
obtain an accurate estimation will be less. For example, let us consider a lognormal
distribution with mean μ = 1 and a standard deviation of σ = 1.7. This is shown
in Fig. 2.7. We can see that if we use a lognormal distribution, we will be sampling
more from the areas of importance that make a significant contribution to the integral.
The estimation of this integral using a uniform sample and a lognormal sample is
compared in Table 2.2. As we can see, the integral is accurately estimated using
importance sampling after only 100 samples. However, it requires 10,000 samples
with the crude Monte Carlo method where a uniform distribution is used.
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Fig. 2.7 Lognormal
distribution with a mean
μ = 1 and a standard
deviation of σ = 1.7
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Table 2.2 The estimation of
the integral by using uniform
random sampling and
importance sampling

N Uniform random sampling Importance sampling

10 0 0.11054

100 0.00095 0.44363

1000 0.07585 0.44312

10000 0.44131 0.44311

2.3.2 Stratified Sampling

Stratification is the grouping of the members of a population into equal or unequal
probability areas (strata) before sampling. The strata must be mutually exclusive,
which means that every element in the population must be assigned to only one
stratum. Also, no population element is excluded. It is required that the proportion
of each stratum in the sample should be the same as in the population.

Latin Hypercube Sampling (LHS) is one form of stratified sampling that can
yield more precise estimates of the distribution function [32] and therefore reduce
the number of samples required to improve computational efficiency. It is a full
stratification of the sampled distribution with a random selection inside each stratum.
In LHS, the range of each uncertain parameter Xi is subdivided into nonoverlapping
intervals of equal probability. One value from each interval is selected at random with
respect to the probability distribution in the interval. The n values thus obtained for
X1 are paired in a random manner (i.e., equally likely combinations) with n values
of X2. These n values are then combined with n values of X3 to form n-triplets, and
so on, until n k-tuplets are formed. To clarify how intervals are formed, consider the
simple example given below.

Example 2.3 Consider two uncertain variables X1 and X2. X1 has a normal distri-
bution with a mean value of μ = 8 and a standard deviation of σ = 1. X2 has a
uniform distribution between 5 and 10. Generate an LHS sample for n = 5.
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Fig. 2.8 Distribution and stratification for variable X1

Solution Figure 2.8 shows the normal distribution PDF and CDF generated using
the mean and standard deviation for X1 and Fig. 2.9 shows the uniform distribution.
For LHS, we divide each distribution into equal probability strata. Therefore, we
have divided each distribution with five intervals with a 20 % probability each.

The next step to obtain a Latin hypercube sample is to choose specific values
of X1and X2 in each of their five respective intervals. This selection is done in a
random manner with respect to density in each interval. Next the selected values of
X1 and X2 are paired randomly to form the 2-dimensional input vectors of size 5.
This pairing is done by a random permutation of the first 5 integers with each input
variable. For example, we can consider two random permutations of the integers (1,
2, 3, 4, 5):
Permutation 1: (2, 5, 3, 1, 4) Permutation 2: (4, 3, 2, 5, 1)

We can use these as interval numbers for X1 (Permutation 1) and X2 (Permutation
2). In order to get the specific values of X1 and X2, n = 5 random numbers are
randomly selected from the standard uniform distribution. If we denote these values
by Um, where m = 1, 2, 3, 4, 5. Each random number Um is scaled to obtain a
cumulative probability Pm, so that each Pm lies within m-th interval:

Pm = Um

5
+ m − 1

5
(2.6)

In Tables 2.3 and 2.4, possible selections of Latin hypercube sample of size 5 for
random variables X1 and X2 are presented respectively. Therefore if we apply the
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Fig. 2.9 Distribution and stratification for variable X2

Table 2.3 Possible selection of values for a Latin hypercube sample of size 5 for the random
variable X1

Interval number (m) Uniform (0,1) (Um) Scaled probabilities (Pm) Corresponding sample

1 0.5832 0.1166 6.808

2 0.8125 0.3625 7.648

3 0.2980 0.4596 7.899

4 0.8470 0.7694 8.737

5 0.4369 0.8874 9.213

Table 2.4 Possible selection of values for a Latin hypercube sample of size 5 for the random
variable X2

Interval number (m) Uniform (0,1) (Um) Scaled probabilities (Pm) Corresponding sample

1 0.3370 0.0674 5.337

2 0.1678 0.2336 6.168

3 0.8419 0.5684 7.842

4 0.4372 0.6874 8.437

5 0.8127 0.9625 9.813

two permutations (Permutation 1 and 2) to choose the corresponding intervals for
X1 and X2, as given in Table 2.5, we can perform the pairing operation. In Fig. 2.10,
this pairing process is illustrated.

LHS was designed to improve the uniformity properties of Monte Carlo methods,
since it was shown that the error of approximating a distribution by finite samples
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Table 2.5 Pairing X1 and X2 and generating samples

Permutation 1
(interval for X1)

Corresponding X1 Permutation 2
(interval for X2)

Corresponding
X2

2 7.648 4 8.437

5 9.213 3 7.842

3 7.899 2 6.168

1 6.808 5 9.813

4 8.737 1 5.337

Fig. 2.10 Two-dimensional representation of a possible Latin hypercube sample of size 5 using X1

and X2

depends on the equidistribution properties of the sample used for U(0,1), and it is
stated that the relationship between successive points in a sample or its randomness
or independence is not critical [27]. In Median Latin Hypercube Sampling (MLHS),
which is a variant of LHS, the mid-point of the intervals is chosen to sample the
uncertain variables. MLHS is similar to the Descriptive Sampling described by [48].

The main drawback of this stratification scheme in LHS and MLHS is that it is uni-
form in one dimension and does not provide uniformity properties in k-dimensions.
Quasi-Monte Carlo methods can alleviate this problem and are described below.

2.3.3 Quasi-Monte Carlo Methods

Quasi-Monte Carlo methods seek to construct a sequence of points that perform
significantly better than Monte Carlo, which has an average case of complexity of
the order of 1

ε2 . For a suitably chosen set of samples, the quasi-Monte Carlo method
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provides a deterministic error bound of the order n−1(log n)k−1 without any strong
assumptions about the integrand. Some well-known quasi-Monte Carlo sequences
are Halton, Hammersley, Sobol, Faure, Korobov and Neiderreiter [35]. The choice of
an appropriate quasi-Monte Carlo sequence is a function of discrepancy. The deter-
ministic upper and lower error bounds of any sequence for integration are expressed
in terms of the discrepancy measure. Discrepancy is a quantitative measure for the
deviation of the sequence from the uniform distribution. Therefore it is desirable to
choose a low-discrepancy sequence. [15, 17] are some examples of low-discrepancy
sequences.

Hammersley Sequence Sampling (HSS) is an efficient sampling technique de-
veloped by Diwekar and coworkers [24, 55] based on quasi-random numbers.
Hammersley Sequence Sampling (HSS) uses Hammersley points to uniformly sam-
ple a unit hypercube and inverts these points over the joint cumulative probability
distribution to provide a sample set for the variables of interest.

The design of Hammersley points is given below. Any integer n can be written in
radix-R notation (R is an integer) as follows:

n ≡ nmnm−1 . . . n1n0 (2.7)

n = n0 + n1R + n2R
2 + · · · + nmRm (2.8)

where m = [logR n] = [ ln(n)
ln(R) ] (the square brackets denote the integral part). A unique

fraction ϕ between 0 and 1 called the inverse radix number can be constructed by
reversing the order of the digits of n around the decimal point as follows:

ϕ(n) = nmnm−1 . . . n1n0 = n0R
−1 + n1R

−2 + · · · + nmR−(m+1) (2.9)

The Hammersley points on a k-dimensional cube are given by the following
sequence:

→
Zk(n) = (n/N , ϕR1 (n), ϕR2 (n), . . ., ϕRk−1 (n)) (2.10)

where R1, R2, . . ., Rk−1 are the first k − 1 prime numbers. The Hammersley points

are
→

xk(n)= 1− →
Zk(n).

The following simple example illustrates how Hammersley points are generated.

Example 2.4 Generate 2-dimensional Hammersley points with a sample size of 100.

Solution In this case we have, N = 100 and k = 2. The k − 1 prime numbers are
R1 = 2. The procedure for generating Hammersley points is given below for the first
10 points in Table 2.6.

Figure 2.11 shows the 100 points generated by HSS for k = 2.
As shown in the above example, the Hammersley sequence sampling (HSS)

technique uses an optimal design scheme for placing n points on a k-dimensional
hypercube. This scheme ensures that the samples are more representative of the
population showing uniformity properties in multi dimensions, unlike Monte Carlo,
Latin Hypercube, and its variant Median Latin Hypercube sampling techniques. A
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Table 2.6 Generation of 10 Hammersley points in 2 dimensions

n
→

Zk(n) 2-Radix ϕ2(n)-inverse radix
→

xk(n)

0 (0, ϕ2(0)) 0 0
21 = 0 (1–0),(1–0)=(1.0,1.0)

1 (0.01, ϕ2(1)) 1 1
21 = 0.5 (1–0.01),(1–0.5)=(0.99,0.5)

2 (0.02, ϕ2(2)) 10 0
21 + 1

22 = 0.25 (1–0.02),(1–0.25)=(0.98,0.75)

3 (0.03, ϕ2(3)) 11 1
21 + 1

22 = 0.75 (1–0.03),(1–0.75)=(0.97,0.25)

4 (0.04, ϕ2(4)) 100 0
21 + 0

22 + 1
23 = 0.125 (1–0.04),(1–0.125)=(0.96,0.875)

5 (0.05, ϕ2(5)) 101 1
21 + 0

22 + 1
23 = 0.625 (1–0.05),(1–0.625)=(0.95,0.375)

6 (0.06, ϕ2(6)) 110 0
21 + 1

22 + 1
23 = 0.375 (1–0.06),(1–0.375)=(0.94,0.625)

7 (0.07, ϕ2(7)) 111 1
21 + 1

22 + 1
23 = 0.875 (1–0.07),(1–0.875)=(0.93,0.125)

8 (0.08, ϕ2(8)) 1000 0
21 + 0

22 + 0
23 + 1

24 = 0.0625 (1–0.08),(1–0.0625)=(0.92,0.9375)

9 (0.09, ϕ2(9)) 1001 1
21 + 0

22 + 0
23 + 1

24 = 0.5625 (1–0.09),(1–0.5625)=(0.91,0.4375)

10 (0.10, ϕ2(10)) 1010 0
21 + 1

22 + 0
23 + 1

24 = 0.3125 (1–0.10),(1–0.3125)=(0.90,0.6875)

Fig. 2.11 Generation of
100 Hammersley points in
2 dimension

qualitative picture of the uniformity properties of the different sampling techniques
on a unit square is presented in Fig. 2.12. It is clearly observed that HSS shows better
uniformity than other stratified sampling techniques such as LHS, which are uniform
along a single dimension only and do not guarantee a homogeneous distribution of
points over the multivariate probability space.

One of the main advantages of Monte Carlo methods is that the number of samples
required to obtain a given accuracy of estimates does not scale exponentially with
the number of uncertain variables. HSS preserves this property of Monte Carlo. For
correlated samples, the approach used by [24] uses rank correlations [22] to preserve
stratified design along each dimension. Although this approach preserves the uni-
formity properties of the stratified schemes, the optimal location of the Hammersley
points is perturbed by imposing the correlation structure. Figure 2.13 illustrates the
effect of imposing a correlation structure on the sample sets. [24] have shown that
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Fig. 2.12 Generation of 100 points on a unit square from various sampling techniques

HSS technique has better performance than LHS and crude Monte Carlo sampling
techniques and is at least 3 to 100 times faster for convergence.

A variant of the HSS sampling technique is the Latin Hypercube Hammersley
Sampling (LHSS) [60]. The aim of this sampling technique is to better utilize the 1-
dimensional uniformity property of LHS and multidimensional uniformity property
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Fig. 2.13 Generation of 100 correlated points on a unit square from various sampling techniques

of HSS by coupling them. One dimensional uniformity analysis for Monte Carlo
sampling, HSS, and LHSS is shown in Fig. 2.14. Other variants of Hammersley
Sequence Sampling (HSS) are Halton sequence sampling or shifted Hammersley
where the first variable is shifted, and leaped Halton or Hammersley, where some of
the cycles of these sequences are eliminated to improve efficiency for higher dimen-
sional problems [26, 55]. As the number of dimensions increase, the quasi-random
sequences lose their uniformity properties. Therefore, to increase their performance,



24 2 Uncertainty Analysis and Sampling Techniques

One-dimensional Uniform ity Analysis

0

0.2

0.4

0.6

0.8

1

X

CD
F

m cs

hss
45

lhss

LHSS

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0x

y
Fig. 2.14 One dimensional uniformity of various sampling techniques

different quasi-random sequences could be combined and a leaping procedure could
be applied.

2.4 Summary

Sampling is an essential iterative procedure in stochastic programming. One of the
oldest and most widely used methods of sampling probabilistic distributions is the
Monte Carlo sampling. Crude Monte Carlo sampling is based on pseudorandom
number generation. For increasing the efficiency of Monte Carlo simulations and
to overcome disadvantages such as probabilistic error bounds, variance reduction
techniques have been developed. Frequently used variance reduction sampling meth-
ods are importance sampling, Latin Hypercube Sampling, descriptive sampling and
Hammersley Sequence Sampling (HSS). HSS is based on quasi-random numbers
generated using Hammersley sequences. HSS is found to be 3 to 100 times faster
than other sampling techniques.

Notations

a multiplier in Lehmer linear congruent generator
c increment in Lehmer linear congruent generator
F () function
G() biased distribution
I integral
In nth random number from Lehmer linear congruent generator
m modulus in Lehmer linear congruential generator [logR n] = [ ln(n)

ln(R) ] for HSS
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Pm scaled probabilities
R integer in R-radix notation
xi , Xi random number

→
xk(n) Hammersley points
Um samples from uniform distribution (U(0,1))

Greek letters
ε error
σ standard deviation
ϕ(n) inverse radix function for n



Chapter 3
Probability Density Functions and Kernel
Density Estimation

Stochastic modeling loop in the stochastic optimization framework involves dealing
with evaluation of a probabilistic objective function and constraints from the output
data. Probability density functions (PDFs) are a fundamental tool used to characterize
uncertain data. Equation 3.1 shows the definition of a PDF f of variable X .

P (a ≤ X ≤ b) =
∫ b

a

f (x)dx (3.1)

We all are familiar with the PDF for distributions like normal distribution where
parameters like the mean and the variance can be used to define the distribution.
However, when dealing with the generalized case of PDF, we may not be able to
categorize it in terms of parametric distributions like normal or lognormal. For these
cases, we have to depend on nonparametric approach for estimating PDF.

3.1 The Histogram

The oldest and widest used method of nonparametric density estimation is the his-
togram. A histogram is constructed by dividing the data into intervals of bins and
counting the frequency of points in that bin. Given an origin and a bin width h, the
histogram can be defined by the following function (Eq. 3.2).

f (x) = 1

nh
(no. of Xi in the same bin as x), (3.2)

where n is the total observations.
In a histogram, the important parameter to be chosen is the bin width h. Figure 3.1

shows a typical histogram. An estimator for a histogram can be written as

f (x) = 1

n

n∑

i

1

h
w

(
x − Xi

h

)
(3.3)

© Urmila Diwekar, Amy David 2015 27
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Fig. 3.1 A typical histogram
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where w is the weight function defined in terms of any variable y by

w(y) = 1

2
if | y |< 1

= 0 otherwise (3.4)

Although histograms are very useful, it is difficult to represent bivariate or trivariate
data with histograms. Further, it can be seen that histogram does not represent a
continuous function and requires smoothing. Kernel density estimation (KDE) over-
comes these difficulties with histograms and is the focus of this chapter. This chapter
is based on the book by Silverman [52].

3.2 Kernel Density Estimator

The kernel density estimator with Kernel K is defined by
∫ inf

− inf
K(x)dx = 1 (3.5)

or

f (x) = 1

nh

n∑

i=1

K

(
x − Xi

h

)
, (3.6)

where h is the window width, also called the smoothing parameter or bandwidth.
The multivariate KDE for d dimensions is given by

f (x) = 1

nhd

n∑

i=1

K

(
x − Xi

h

)
, (3.7)
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Fig. 3.2 Probability density function from a normal KDE. KDE kernel density estimation

Fig. 3.3 Effect of h on PDF. PDF probability density function

If K is a generally radially symmetric unimodal function like the normal density
function then the PDF f will be a smooth curve and derivatives of all orders can
be calculated. This is important for optimization algorithms. Figure 3.2 shows the
density function derived from normal density functions. Just like histograms that
are considered sums of boxes, Kernel estimator is considered sums of bumps. The
smoothing parameter h is very important in KDE. If h is too small then spurious
structures result as shown in Fig. 3.3a. For too large a choice of h, the bimodal
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Fig. 3.4 A bivariate distribution using KDE. KDE kernel density estimation

Table 3.1 Various kernel
density functions Kernel K(x)

Epanechnikov 3
4 (1 − 1

5 x2)/
√

5 for | x |< √
5,

0 otherwise

Biweight 5
6 (1 − x2)2 for | x |< 1,

0 otherwise

Triangular (1− | x) for | x |< 1,

0 otherwise

Gaussian 1√
2π

exp − 1
2 x2

Rectangular estimator 1
2 for | x |< 1,

0 otherwise

nature of distribution is obscured as shown in Fig. 3.3b. As stated earlier, KDE can
be used for multivariate distributions. Figure 3.4 shows a bivariate distribution using
a Gaussian KDE.

Table 3.1 shows various density estimators starting with the Epanechnikov es-
timator which is historically the first kernel estimator. Among these estimators a
Gaussian or a normal estimator is commonly used. Therefore, we will be focusing
on normal kernel estimator for deriving the BONUS algorithm.

The optimal smoothing parameter hopt for the Gaussian KDE is given by

hopt = 1.06σn− 1
5 , (3.8)

where σ is the standard deviation of the observations and n is the number of
observations.

The following example shows how a probability density function based on a
Gaussian KDE is estimated.
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Table 3.2 Values of decision
variables and objective
function for ten samples

Sample No. x1 x2 Z

1 5.6091 0.3573 15.2035

2 3.7217 1.9974 14.7576

3 6.2927 4.2713 0.5738

4 7.2671 3.3062 0.5527

5 4.1182 1.3274 15.4478

6 7.7831 1.5233 6.7472

7 6.9578 1.1575 8.0818

8 5.4475 3.6813 2.5119

9 8.8302 2.9210 4.5137

10 6.9428 3.7507 0.0654

Mean 6.2970 2.4293 –

Standard deviation 1.5984 1.3271 –

Example 3.1 Consider the following optimization problem. We use the normal dis-
tribution for the uncertain parameters, a uniform distribution for decision variables,
and uniform distributions using the minimum and maximum values of the decision
variable to generate the data for the objective function Z. These values are given in
Table 3.2. Find the PDF, f , using a Gausian KDE.

min E[Z] = E[(x̃1 − 7)2 + (x̃2 − 4)2] (3.9)

s.t. x̃1 ∈ N [μ = x�
1 , σ = 0.033 · x�

1] (3.10)

x̃2 ∈ U [0.9 × x�
2 , 1.2 × x�

2] (3.11)

4 ≤ x1 ≤ 10 (3.12)

0 ≤ x2 ≤ 5 (3.13)

Here, E represents the expected value, and the goal is to minimize the mean of the
objective function Z calculated for two uncertain decision variables, x1 and x2.

Solution The Gaussian KDE formula for f (x) is given below, where Xi is the value
of ith observation.

f (x) = 1√
2πnh

n∑

i=1

exp −1

2

(
x − Xi

h

)2

(3.14)

From the values of observations for variable Z given in Table 3.2, the value of
standard deviation σ is found to be 6.29917. Therefore, using Eq. 3.8 we can find
the value of optimum h to be

h = 1.06 × 6.29917 × 10− 1
5

= 4.212978 (3.15)
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Fig. 3.5 PDF for the output variable Z. PDF probability density function

In order to obtain f (Z), we have divided the region from Z = 0 to Z = 15. The
value of PDF f (Z) is calculated using Eq. 3.14 for various values of Z as shown in
Table 3.2.

Figure 3.5 shows the PDF for Z obtained using Gaussian KDE (Table 3.3).

3.3 Summary

Kernel density estimation provides a nonparametric way to estimate probability den-
sity function. Symmetric and unimodal KDE functions like normal KDE provides a
continuous smooth function where derivatives can be estimated. A Gaussian KDE is
commonly used for this purpose. The value of smoothing parameter h is important
in KDE. If h is too small then spurious structures result and if h is too large then
the real nature of the probability density function is obscured. The optimal value of
smoothing parameter is a function of number of observations and standard deviation
of distribution. A Gaussian KDE provides a basis for the BONUS algorithm.
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Notations
d dimension
E expected value function
f probability density function
h bin width
hopt optimum bin width
K kernel density function
n number of observations
w weight function
Z output variable

Greek letters
σ standard deviation



Chapter 4
The BONUS Algorithm

In this chapter we describe the basics of the Better Optimization of Nonlinear Uncer-
tain System (BONUS) algorithm. For better readability, we present the generalized
stochastic optimization framework (Fig. 1.4 (from Chap. 1) for stochastic nonlinear
programming (NLP) problem below. This chapter is derived from the work by [43].

General techniques for these types of optimization problems determine a statis-
tical representation of the objective such as maximum expected value or minimum
variance. Once embedded in an optimization framework, the iterative loop struc-
ture emerges where decision variables are determined, a sample set based on these
decision variables is generated, the model is evaluated for each of these sample
points, and the probabilistic objective function value and constraints are evaluated,
as shown in the inner loop of the Fig. 4.1. When one considers that nonlinear op-
timization techniques rely on an objective function and constraints evaluation for
each iteration, along with derivative estimation through perturbation analysis, the
sheer number of model evaluations rises significantly rendering this approach in-
effective for even moderately complex models. Figure 4.2 shows the general idea
behind the BONUS algorithm. BONUS follows the grey arrows. In the stochastic op-
timization iterations (Fig. 4.1), decision variables values can vary between upper and
lower bounds, and in sampling loop various probability distributions are assigned
to uncertain variables. In the BONUS approach, initial uniform distributions (be-
tween upper and lower bounds) are assumed for decision variables. These uniform
distributions together with specified probability distributions of uncertain variables
form the base distributions for analysis. BONUS samples the solution space of the
objective function at the beginning of the analysis by using the base distributions.
As decision variables change, the underlying distributions for the objective function
and constraints change, and the proposed algorithm estimates the objective function
and constraints values based on the ratios of the probabilities for the current and
the base distributions (a reweighting scheme), which are approximated using kernel
density estimation (KDE) techniques. Thus, BONUS avoids sample model runs in
subsequent iterations.

© Urmila Diwekar, Amy David 2015 35
U. Diwekar, A. David, BONUS Algorithm for Large Scale Stochastic Nonlinear
Programming Problems, SpringerBriefs in Optimization, DOI 10.1007/978-1-4939-2282-6_4
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Fig. 4.1 Pictorial
representation of the
stochastic programming
framework

Optimizer

Decision Variables

Stochastic
Modeler

MODEL

Probabilistic
Objective
Function & 
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Design
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&
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4.1 Reweighting Schemes

The goal of the reweighting scheme (shown by gray arrows in Fig. 4.2) is to de-
termine changes in output distributions as input distributions change. Hesterberg
(1995) presents various reweighting techniques for estimating the expected value of
an output distribution cumulative distribution function (CDF), F [J (u)] without eval-
uating the model for the input distribution probability density function (PDF),f (u))
in Fig. 4.2. The ratio of the probability density functions f is used as a weight, which
is given as:

ωi = f (ui)

f̂ (u�
i )

, (4.1)

where f̂ (u�
i ) is determined for the base sample set, for which the model response is

known, and the probability density f (ui) is calculated using the sample for which
the response has to be estimated. Remember that these two sample sets are not
necessarily related. One attempt for estimating statistical properties P (u) for the
output of the model is through the product of the weights and the same properties
obtained from the base distribution (Eq. 4.2).

P (u) =
∑

i

ωi · P (u�
i ) (4.2)

For instance, to estimate the mean μ of a model response, Z(u), the weight would
be multiplied by the individual model responses for the base set:

μ[Z(u)] =
Nsamp∑

i

ωi · Z(u�
i ), (4.3)

where Nsamp is the sample size.
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Fig. 4.2 Density estimation approach to optimization under uncertainty

This approach has limitations, as the weights may not sum to 1. This problem is re-
duced by using normalized weights, as shown in Eq. 4.4. This normalized reweighting
(the ratio estimate for weighted average) has another advantage as it provides accept-
able performance for a wider range of perturbation, especially for large samples of
Monte Carlo simulations (MCS) [19]. In the BONUS, instead of using large size of
MCS, a more efficient sampling technique as presented in Chap. 2 that provides the
same accuracy as MCS in order of magnitude with less number of samples is used.

P (u) =
Nsamp∑

j

f (uj )

f̂ (u�
j )

∑Nsamp

i=1
f (ui )
f̂ (u�

i )

· P (u�
j ) (4.4)

As seen in Eq. 4.4 the mean of the function can be estimated from the ratio of
the two input distributions f (u) and f̂ (u�). This requires the determination of the
probability distributions from a given sample set of uncertain variables. Here, the
KDE techniques discussed in Chap. 3 are used.

In order to use the kernel density approach for estimating function values (objec-
tive function and constraints), the base sample set u� has to be generated for model
calculations. As stated earlier, we select uniform distributions for the decision vari-
ables and specified distributions for uncertain variables for creating the base sample.
Once the base sample is obtained, its density can be calculated for each point as:

f̂ (u�
i ) = 1

Nsamp · h

Nsamp∑

j=1

1√
2π

· e
− 1

2

(
u�
i
−u�

j
h

)2

(4.5)
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We now want to find the distribution f (u) for the decision variable selected at each
optimization iteration. For this purpose a small narrow normal distribution at the
decision point for the decision variables is assumed and a new sample set for these
normal distributions u is generated. After determining the model output Z(u�

i ) for
each u�

i , the value of output distribution for the decision variables Z(u) is obtained
by the reweighting scheme described above using the probability of each new data
point ui , as determined through the kernel density approximation (Eq. 4.6).

f (ui) = 1

Nsamp · h

Nsamp∑

j=1

1√
2π

· e
− 1

2

(
ui−u�

j
h

)2

(4.6)

4.2 Effect of Sampling on Reweighting

The proposed reweighting scheme using KDE has been carried out for case studies
up to d = 10 dimensions for the following five types of functions [43]. The applica-
tion of alternative and more efficient sampling techniques such as Latin hypercube
sampling (LHS), median Latin hypercube sampling (MLHS), and hammersley se-
quence sampling (HSS) have resulted in significant reductions of computational
requirements compared to MCS as shown in this section.

• Function 1: Linear additive: y = ∑s
m=1 um s = 2...10

• Function 2: Multiplicative: y = Πs
m=1um s = 2...10

• Function 3: Quadratic: y = ∑s
m=1 u2

m s = 2 . . . 10
• Function 4: Exponential: y = ∑s

m=1 um · exp(um) s = 2 . . . 10
• Function 5: Logarithmic: y = ∑s

m=1 log(um) s = 2 . . . 10

The total analysis includes five functions, with four sampling techniques being com-
pared for each of these functions. The number of sample points for each sample
is also analyzed, by selecting sample sizes as Nsamp = [50, 100, 250, 500, 750,
1000, 2500, 5000, 7500, 10, 000]. This results in a total of 200 runs for which the
proposed reweighting approach has been tested. For each run, the means and vari-
ances are both calculated and estimated, as are the derivatives of each of these with
respect to each u. Further, the percentage error between the actual and estimated
values is determined as well, as shown in Table 4.1.

As required, the base distributions are uniform distributions of decision variables
with bounds given in first three columns of Table 4.2, and the estimated distributions
were narrow normal, with the upper and lower bounds in the last three columns of
the table indicating the region enclosing the 99.999 percentile.

For the generation of the shifted sample set uΔ and for derivative calculations, the
step size Δuj was selected as:

Δuj = 0.05 · μ{uj } (4.7)

As the model functions are relatively simple, the actual values (analytical) of the
mean and variance for both sample sets u and uΔ are calculated, and compared to
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Table 4.1 Calculations for KDE efficiency analysis

n-dimensional calculations 2 to 10 dimensions = 10! = 3628800

Functions 5

Sampling techniques 4

Sample sizes 10

Total runs 5 × 4 × 10 = 200

Moment calculations/run 4

Derivative calculations/run 10! × 2

Moment estimations/run 4

Derivative estimations/run 10! × 2

% Error calculations moments/run 2

% Error calculations derivatives/run 10! × 2

Total calculations (4 + 4 + 2 + 6 × 10!) × 200 � 4.32 × 109

Table 4.2 Bounds for base (uniform) and estimated (normal) distributions

Base distribution Estimated distribution

Lower bound Upper bound Lower bound Upper bound

u�
1 1.0 6.0 u1 3.0 5.0

u�
2 3.0 7.0 u2 4.0 7.0

u�
3 1.0 5.0 u3 3.0 4.0

u�
4 8.0 12.0 u4 9.5 10.0

u�
5 10.0 17.0 u5 11.5 14.0

u�
6 2.0 9.0 u6 4.0 6.0

u�
7 3.0 7.0 u7 4.5 6.5

u�
8 0.0 7.5 u8 1.0 6.0

u�
9 10−5 10−1 u9 5×10−3 5 ×10−2

u�
10 6.0 9.0 u10 8.0 9.0

the estimates. Further, the same analysis is conducted for the derivative estimates,
allowing for comparison of the errors in the estimates based on the sampling tech-
nique that is applied to generate both sample sets u� and u. The next section provides
the results of the preliminary study.

As indicated above, 200 different runs have been used to verify the applicability of
the technique. For each run, means, variances, and derivatives have been calculated
and estimated using the reweighting scheme, and percentage errors between each of
these have been determined. Due to the extensive nature of this analysis, only one
example is provided here that is both relevant to this analysis as well as representative
of the overall behavior of the technique.

The results obtained for the nonlinear function, y = ∑3
m=1 u2

m are presented here.
Variance calculation is more prone to errors than calculation of mean (if sample size
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Fig. 4.3 Variance calculation for different sampling techniques

Table 4.3 Percentage error in variance estimation for 3-dimensional analysis using 250 samples

MCS LHS MLHS HSS

Function 1 178.5688 34.6615 50.0478 7.3945

Function 2 179.7385 30.1337 54.5286 11.1636

Function 3 161.1127 36.0205 39.1106 10.9293

Function 4 140.1933 9.2476 13.0681 4.1226

Function 5 183.3928 30.1835 54.2601 8.9386

is small), and also the case study in the next section aims at calculating the variance
of the system at hand that presents the efficiency of the reweighting technique to
estimate variance for this function here.

Simultaneous plotting of the actual and estimated values will allow one to identify
how accurate each technique is. Note that the x-axis is in log scale to capture the
change of the sample sizes through Nsamp = [50, 100, 250, 500, 750, 1000, 2500,
5000, 7500, 10,000]. The lines represent the actual values, while the stand-alone
points represent the estimated variance values using the four different sampling
techniques.

In Fig. 4.3, the variance of Function 3 is plotted with respect to the number of
samples. As seen, all four sampling techniques converge to the same value as Nsamp

approaches 10,000, with the MCS technique showing the highest variations. While
most approaches over- or underestimate the mean at low sample sizes, HSS provides
a rather accurate estimate in this region. Table 4.3 provides the percentage error
between the estimates and the actual values of the variance for f (u) for all four
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Generate initial base sample for decision 
and uncertain variables
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Run model for each of the sample points.

Apply small increments to each decision
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Fig. 4.4 Optimization under uncertainty: The BONUS algorithm

sampling techniques with sample sizes of 250. As seen, HSS yields comparably
small percentage errors for all functions.

4.3 BONUS: The Novel SNLP Algorithm

The algorithm for BONUS, given in Fig. 4.4, can be divided into two sections. The
first section, Initialization, starts with generating the base distribution that will be
used as the source for all estimations throughout the optimization. After the base
distribution is generated, the second section starts, which includes the estimation
technique that results in the improvements associated with BONUS with respect to
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computational time. In this algorithm overview, we denote the D-dimensional vector
of deterministic decision variables as θ = [θ1, θ2, ..., θd , θd+1, .., xD], while the S-
dimensional uncertain variables are defined as v = [v1, v2, ..., vs , vs+1, ..., vS], total
S+D-dimensional variable vector u = [u1, u2, ..., us+d , us+d+1, ..., uS+D]..
I - Initialization

1. Generate (i = 1 to Nsamp) samples for all decision variables and specified
distributions for uncertain variables u�

i as a base distribution.
2. Run KDE for identifying the probabilities f̂s(u�

i ).

a) Set s = 1.

i. Set i = 1.
ii. While i < Nsamp, calculate f̂s(u�

i ) using Eq. 4.5.
iii. i = i + 1. Go to step ii.

b) s = s + 1. If s < S + D + 1 return to step I.2.a.i.

3. Run the model for each sample point to find the corresponding model output,
store value Zi .

II - SNLP Optimization

1. Set k = 1. Determine objective function value for starting point, J = P (θk , vk).
Set deterministic decision variable counter d = 1.

a) Generate (i = 1 to Nsamp) samples (uk
i ) with the appropriate narrow normal

distributions at θk
d for all decision variables and specified distributions for

uncertain variables vk
i .

b) Run KDE for identifying the probabilities fs(uk
i ) at θk

d , similar to step I.2,
using Eq. 4.6 in step ii instead.

c) Determine the weights ωi from the product of ratios, ΠSfs(uk
i )/f̂s(u�

i ).
d) Calculate

∑
i ωi .

e) Estimate the probabilistic objective function and constraints values:

i. Set i = 1, J k = 0.
ii. While i < Nsamp, calculate: J k = J k

i ∗ ωi/
∑

i ωi .
iii. i = i + 1. Go to step ii.

f) Set d = d + 1, return to step II.2.

2. While d ≤ D, perturb one decision variable θk
d to find θ

k,Δ
d . Reset deterministic

decision variable counter d = 1.

a) Generate (i = 1 to Nsamp) samples with the appropriate distributions at θ
k,Δ
d

for all variables uk
i .

b) Run KDE for identifying the probabilities fs(uk
i ) at θ

k,Δ
d , similar to steps I.2,

using Eq. 4.6 in step ii instead.
c) Determine the weights ωi from the product of ratios, ΠSfs(uk

i )/f̂s(u�
i ).

d) Calculate
∑

i ωi .
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e) Estimate probabilistic objective function and constraints value:

i. Set i = 1, J k,Δ = 0.
ii. While i < Nsamp, calculate: J k,Δ = J

k,Δ
i ∗ ωi/

∑
i ωi .

iii. i = i + 1. Go to step ii.

f) Set d = d + 1, return to step II.2.

3. Calculate gradient information obtained from II-1 and II-3.
4. Check convergence criteria for nonlinear solver (KKT conditions); if satis-

fied, STOP-Optimum found. Otherwise, identify new vector of decision vari-
ables through gradients obtained from objective function value estimation via
reweighting. Set k = k + 1. Return to step II-2.

Note that traditional techniques rely on repeated model runs for steps II-3b in the
algorithm. For computationally complex nonlinear models, this task can become the
critical bottleneck for solving the SNLP. BONUS, on the other hand, bypasses these
by estimating the objective function values via reweighting. The BONUS algorithm is
implemented using the nonlinear solver based on sequential quadratic programming
(SQP) method. The following examples illustrate the steps involved in BONUS and
the efficiency of BONUS for solving SNLP problems.

Example 4.1 Consider the optimization problem presented in Example 3.1 again.
Illustrate the reweighting scheme and solve the problem using BONUS.

min E[Z] = E[(x̃1 − 7)2 + (x̃2 − 4)2] (4.8)

s.t. x̃1 ∈ N [μ = x�
1 , σ = 0.033 · x�

1] (4.9)

x̃2 ∈ U [0.9 · x�
2 , 1.2 · x�

2] (4.10)

4 ≤ x1 ≤ 10 (4.11)

0 ≤ x2 ≤ 5 (4.12)

Here, E represents the expected value, and the goal is to minimize the mean of the
objective function calculated for two uncertain decision variables, x1 and x2. The
optimizer determines the value x�

1 , which has an underlying normal distribution with
± 10 % of the nominal value of x�

1 as the upper and lower 0.1 % quantiles. Similarly,
x̃2 is uniformly distributed around x�

2 , with cutoff ranges at [−10 %, +20 %].

Solution The following steps illustrate the steps of BONUS algorithm to solve this
problem.

Step 1 The first step in BONUS is determining the base distributions for the decision
variables and uncertain variables, followed by generating the output values for this
model. Since in this case decision variable and uncertain variables are merged, we
use the entire possible range for the two variables as these base distributions have to
cover the entire range, including variations. For instance, for x2, the range extends to
(0×0.9) ≤ x2 ≤ (5×1.2) to account for the uniformly distributed uncertainty. Due to
space limitations, the illustrative presentation of the kernel density and reweighting
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Table 4.4 Base sample
Sample no. x1 x2 Z

1 5.6091 0.3573 15.2035

2 3.7217 1.9974 14.7576

3 6.2927 4.2713 0.5738

4 7.2671 3.3062 0.5527

5 4.1182 1.3274 15.4478

6 7.7831 1.5233 6.7472

7 6.9578 1.1575 8.0818

8 5.4475 3.6813 2.5119

9 8.8302 2.9210 4.5137

10 6.9428 3.7507 0.0654

Mean 6.2970 2.4293 –

Std. Dev 1.5984 1.3271 –

approach is performed for a sample size of 10, while the remainder of the work uses
N = 100 samples. A sample realization using MCS is given in Table 4.4.

After this sample is generated, KDE for the base sample is applied to determine the
probability of each sample point with respect to the sample set. This is performed for
each decision variable separately by approximating each point through a Gaussian
kernel, and adding these kernels to generate the probability distribution for each
point, as given in Eq. 4.13 [52].

f̂ (xi(k)) = 1

N · h

N∑

j=1

1√
2π

· e
− 1

2

(
xi (k)−xi (j )

h

)2

. (4.13)

Here, h is the width for the Gaussian kernel and depends on the variance σ and
sample size N of the data set and is given as follows:

h = 1.06 × σ × N− 1
5 . (4.14)

For our example, h(x1) = 1.06 × 1.5984 × 10−0.2 = 1.0690 and h(x2) = 1.06 ×
1.3271 × 10−0.2 = 0.8876. Using the first value, one can calculate f̂ (x1(1)) =

1
10×1.0690

∑10
j=1

1√
2π

·e− 1
2

(
5.6091−x1(j )

1.0690

)2

= 0.1769. This step is repeated for every point,
resulting in the KDE provided in Table 4.5.

Step 2 All these steps were preparations for the optimization algorithm, where re-
peated calculations of the objective function will be bypassed through the reweighting
scheme.

Step 2a For the first iteration, assume that the initial value for the decision variables
is x1 = 5 and x2 = 5. For these values, another sample set is generated, as shown in
Table 4.6, accounting for the uncertainties described in Eqs. 4.9 and 4.10.
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Table 4.5 Base sample
kernel density estimates

x1 f̂ (x1) x2 f̂ (x2)

5.6091 0.1769 0.3573 0.1277

3.7217 0.0932 1.9974 0.2114

6.2927 0.2046 4.2713 0.1602

7.2671 0.2000 3.3062 0.2190

4.1182 0.1110 1.3274 0.2068

7.7831 0.1711 1.5233 0.2117

6.9578 0.2090 1.1575 0.1992

5.4475 0.1691 3.6813 0.2100

8.8302 0.0920 2.9210 0.2152

6.9428 0.2092 3.7507 0.2063

Table 4.6 Sample-
optimization iteration 1

Sample no. x̃1 x̃2

1 4.7790 5.7625

2 4.9029 5.5740

3 5.0347 5.9199

4 4.9686 5.8697

5 4.9001 5.9967

6 4.9819 5.1281

7 5.0316 5.4877

8 5.0403 5.4841

9 4.9447 5.7557

10 5.0344 4.7531

Mean 4.9618 5.5731

Std. Dev 0.0836 0.3862

The expected value of Z is estimated using the reweighting approach, given in
Steps 2b and 2c.

Step 2b Now, the KDE for the sample (f (xi)) generated around the decision
variables has to be calculated. The Gaussian kernel width h(x̃1) = 1.06 ×
0.0837 × 10−0.2 = 5.598 × 10−2. Using this value, one can calculate f (x1(1)) =

1
10×5.598×10−2

∑10
j=1

1√
2π

·e− 1
2

(
5.609−x̃1(j )

5.598×10−2

)2

= 5.125×10−23. Again, this step is repeated
for every point of the sample with respect to the base distribution data resulting in
the KDE provided in Table 4.7.

Step 2c Using these and the base KDE values, weights are calculated for each
sample point j as

ωj = f (x1(j ))

f̂ (x1(j ))
× f (x2(j ))

f̂ (x2(j ))
, j = 1, ..., N (4.15)
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Table 4.7 Optimization iteration 1-KDE

No x1 f (x1) x2 f (x2)

1 5.6091 5.125 × 10−23 0.3573 0

2 3.7217 0 1.9974 2.989 × 10−26

3 6.2927 0 4.2713 2.777 × 10−2

4 7.2671 0 3.3062 2.376 × 10−8

5 4.1182 3.918 × 10−31 1.3274 9.958 × 10−40

6 7.7831 0 1.5233 1.745 × 10−35

7 6.9578 0 1.1575 1.303 × 10−43

8 5.4475 5.218 × 10−12 3.6813 2.826 × 10−5

9 8.8302 0 2.9210 1.844 × 10−12

10 6.9428 0 3.7507 8.311 × 10−5

Table 4.8 Optimization
progress at N = 100

Iteration x1 x2 Eest [Z]

0 5.000 5.000 5.958

1 9.610 2.353 9.238

2 7.065 3.814 0.258

In our illustrative example, the only two nonzero weights are ω5 = 1.699 × 10−68)
and ω8 = 4.152 × 10−15. These weights are normalized and multiplied with the
output of the base distribution to estimate the objective function value:

Eest [Z] =
N∑

j

ωj · Z(j ). (4.16)

For our illustrative example, this reduces to

Eest [Z] = ω8 · Z(8) = 1.0000 × 2.5119 = 2.5119, (4.17)

as the normalization eliminates all but one weight. Note that this illustrative example
was developed with an unrealistically small sample size. Hence, the accuracy of
the estimation technique cannot be judged from this example. Further, due to the
inaccuracy of the estimate resulting from the small sample size, we will not present
results for Steps 2d and 2e for just 10 samples, but use 100 samples (note that
estimated value of expected value of Z is different in Table 4.8, and is different than
that of 10 samples). Also note that Steps 2d and 2e basically repeat the procedures
in Steps 2a through 2c for a new sample set around a perturbed point, for instance
x1 + Δx1 = 5 + 0.001 × 5 = 5.005.

The results obtained using the BONUS algorithm for optimization converge to
the same optimal solution as obtained using a brute force analysis normally used in
stochastic NLPs where the objective is calculated for each iteration by calculating the
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Fig. 4.5 Nonisothermal
CSTR

Q

F T CA CB

F Tf CA,f CB,f

objective function value for each generated sample point. In this example, BONUS
used only 100 model runs, while the brute force optimization evaluated the model
600 times for the two iterations.

The following example is based on Taguchi’s approach to off-line quality control
[55] applied to output of a chemical reactor system.

Example 4.2, Taguchi’s Quality Control Problem Consider the following prob-
lem of off-line quality control of a continuous stirred tank reactor (CSTR) derived
from [23].

The system to be investigated consists of a first-order sequential reaction,
A → B → C, taking place in a nonisothermal continuous CSTR. The pro-
cess and the associated variables are illustrated in Fig. 4.5. We are interested in
designing and operating this process such that the rate of production of species B

(RB) is 60 moles/min. However, as is apparent from the reaction pathway, species
B degrades to species C if the conditions in the CSTR such as the temperature (T )
and heat removal (Q) are conducive. The objective of parameter design is to pro-
duce species B at target levels with minimal fluctuations around the target in spite
of continuous variation in the inputs. The inlet concentration of A (CAf

), the inlet
temperature (Tf ), the volumetric flow rate (F ), and the reactor temperature (T ) are
considered prone to continuous variations. The objective of off-line parameter design
is to choose parameter settings for the design variables such that the variation in the
production rate of rB around the set point is kept at a minimum.

The five design equations that govern the production of species B (and the steady
state values of other variables) in the CSTR are given below. The average residence
time (τ ) of each species in the reactor is given as τ = V/F, where V is the reactor
volume and F is the feed flow rate.
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Table 4.9 Parameters and
their values in CSTR study

Parameter Value Units

k0
A 8.4 × 105 min−1

k0
B 7.6 × 104 min−1

HRA −2.12 × 104 J/mol

HRB −6.36 × 104 J/mol

EA 3.64 × 104 J/mol

EB 3.46 × 104 J/mol

R 8.314 J/(mol · K)

Cp 3.2 × 103 J/(kg · K)

ρ 1, 180 kg/m3

CBf
328 mol/m3

T 314 K

Q = FρCp(T − Tf ) + V (rAHRA + rBHRB) (4.18)

CA = CAf

1 + k0
Ae

−EA
RT τ

(4.19)

CB = CBf
+ k0

Ae
−EA
RT τCA

1 + k0
Be

−EB
RT τ

(4.20)

−rA = k0
Ae

−EA
RT CA (4.21)

−rB = k0
Be

−EB
RT CB − k0

Ae
−EA
RT CA (4.22)

where CA and CB are the bulk concentrations of A and B, T is the bulk temperature of
the material in the CSTR, subscript f denotes initial feed, and the rate of consumption
of A and B are given by −rA and −rB . These five variables are the state variables of
the CSTR and can be estimated for a given set of values for the input variables (CAf

,
CBf

, Tf , T , F , and V ) and the following physical constants: k0
A, k0

B and EA, EB

the preexponential Arrhenius constants and activation energies respectively; HRA

and HRB , the molar heats of the reactions, which are assumed to be independent
of temperature; ρ and Cp the density, and specific heats of the system, which are
assumed to be same for all processing streams. Once input variables T and T f are
specified, Eq. 4.18 can be numerically solved to estimate Q, the heat added to or
removed from the CSTR. The average residence time can be calculated from the
input variables F and V . Subsequently, for a given input concentration for CAf

and
CBf

, the bulk CSTR concentrations CA and CB can estimated using Eqs. 4.19 and
4.20. The production rates rA and rB can now be calculated from Eqs. 4.21 and 4.22.
The system parameters are summarized in Table 4.9. Note that this analysis fixes the
set-point for both the feed concentration of B, CBf

, and the CSTR temperature T .
Both values are also given in Table 4.9.
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Table 4.10 Decision variables for optimization

Lower bound Upper bound Initial value Optimal value

CAf
3000 mol/m3 4000 mol/m3 3118 mol/m3 3125.1 mol/m3

Tf 300 K 350 K 314 K 328.93 K

F 0.01 m3/min 0.1 m3/min 0.070 m3/min 0.057 m3/min

V 0.02 m3 0.05 m3 0.0391 m3 0.0500 m3

The design objective is to produce 60 mol/min of component B, i.e., RB = 60.
The initial nominal set points for the decision variables are provided in Table 4.10.
However, the continuous variations in the variables (CAf

, Tf , F , and T ) result in
continuous variations of the production rate, RB , which needs to be minimized. Solve
this problem using traditional SNLP and BONUS, and compare the results.

Solution The goal is to determine process parameters for a nonisothermal CSTR
(Fig. 4.5) that result in minimum variance in product properties when fluctuations
are encountered [23]. The mathematical representation for the problem is given as:

min σ 2
RB

=
∫ 1

0
(RB − RB)2dF (4.23)

s.t. RB =
∫ 1

0
RB(θ , x, u)dF (4.24)

CA = CAf

1 + k0
A · e−EA/RT · τ

(4.25)

CB = CBf
+ k0

A · e−EA/RT · τ · CA

1 + k0
B · e−EB/RT · τ

(4.26)

−rA = k0
A · e−EA/RT (4.27)

−rB = k0
B · e−EB/RT − k0

A · e−EA/RT (4.28)

Q = FρCp · (T − Tf ) + V · (rAHRA + rBHRB) (4.29)

τ = V/F (4.30)

RB = rB · V (4.31)

Uncertain variables are [CA, Tf , F , T ], and the range of uncertainty for these vari-
ables is normally distributed with means at [CAf

, T 1
f , F 1, T 1]. For the first three

uncertain variables, the fluctuations 0.001th fractiles are at ±10 %. However, for T ,
several factors can contribute to fluctuations and the level of fluctuation around the
reactor temperature T is set at ±30 % around T 1. Based on these values, the initial
variance at the starting point given in Table 4.10 is determined as σ 2

RB ,init = 1034.
To compare the performance of bypassing the model and using the estimation

technique through kernel densities, the model was run first for the case with tradi-
tional SNLP. Using this traditional approach, the algorithm converged to the optimal
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Optimization Progress - Traditional Approach
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Fig. 4.6 Optimization progress for traditional SNLP approach

solution of [CAf
= 3124.7 mol/m3, T 1

f = 350 K , F 1 = 0.0557 m3/min, V =
0.0500 m3] after three iterations, for a sample size Nsamp = 150. This reactor design
has a variance of σ 2

RB
= 608.16. Here, the model is run for every sample point during

each iteration step. Further, the derivatives used for SQP are estimated by running the
model an additional four times for shifted sample sets of each variable. This requires
a total of

150
model calls

derivative calc.
· (4 + 1)

derivative calc.

iterations
· 3 iteration = 2250 model calls

Optimization progress is presented in Fig. 4.6 for the traditional approach and in
Fig. 4.7 for BONUS. The initial point is shown as the thick line covering variations
up to 120 mol/min. As optimization progresses, the probability around the desired
rate of RB = 60 increases, as seen in the optimal solution presented as the bold
dashed/dotted line.

The analysis for the BONUS algorithm using model bypass converges after five
iterations to the same optimum values of decision variables CAf

= 3125.1 mol/m3,
Tf = 328.93K , F = 0.057m3/min, and V = 0.0500 m3. This solution shows
almost identical behavior to the optimum found using the traditional approach and
even has a slightly lower variance of σ 2

RB
= 607.11. However, the real advantage

of using BONUS is that this analysis called the model just 150 times, only for the
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Optimization Progress - BONUS
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Fig. 4.7 Optimization progress in reducing product variance using BONUS

determination of the initial base distribution F [R�
B], in contrast to a total of 2250

model evaluations for the traditional approach.
Capacity expansion for electricity utilities has been an active area of research,

having been analyzed using a multitude of methods, including optimization, simu-
lation, and decision analysis [27]. The nature of the problem is inherently uncertain,
as it is impossible to determine exact values for future cost levels, the demand for
electricity, the development of alternative and more efficient technologies, and many
more factors. Hence, the capacity planning example has been analyzed by various
researchers in the stochastic programming (SP) community [2] .

Due to the limitations of conventional algorithms for optimization under uncer-
tainty, several assumptions have been made, converting the capacity expansion SP
into a linear problem through estimations and approximations in order to solve these
problems. Among these simplifications, the load curve, which identifies the probabil-
ity of electricity demand levels, is generally discretized into linear sections, allowing
the use of decomposition techniques that require a finite number of realizations of
the uncertain variables [30]. The ability of BONUS to handle nonlinearity allows this
problem to be handled without these limitations; this is presented in the following
examples.

Example 4.3 Capacity Expansion for Electric Utilities The mathematical repre-
sentation of the problem is given below. The objective is to minimize the expected cost
of capacity expansion subject to uncertain demands and cost factors, while ensuring
that no shortages are present. Note that the objective function 4.32 is the expected
value for the total cost calculated for n = 1, ..., Nsamp samples. In the formulation
given below, capital nomenclature is used for decision variables, while the uncertain
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variables are indicated through a tilde symbol.

min E[cost] (4.32)

s.t. cost =
∑

t

cost
op
t + cost

cap
t + cost

buy
t (4.33)

cost
op
t =

∑

i

P i
t · õci

t (4.34)

cost
cap
t =

∑

i

αi · (ACi
t )

βi

(4.35)

cost
buy
t = κ̃t · (d̃t − tpt )

γ (4.36)

ci
t = ci

t−1 + ACi
t (4.37)

tpt =
∑

i

P i
t (4.38)

P i
t ≤ ci

t (4.39)

i ∈ Technology1, Technology2, ..., TechnologyI (4.40)

t ∈ Period1, Period2, ..., PeriodT (4.41)

Equation 4.33 sums up the respective costs for operation, capacity expansion, and the
option to purchase electricity for meeting demand in case the total available capacity
is below demand. The operating costs are calculated using Eq. 4.34, where oci

t is
a cost parameter for electricity generation of technology i in time period t , and P i

t

are decision variables determining how much electricity should be produced using
technology/power plant i at time t .

Equation 4.35 determines the cost of capacity expansion. Traditional models use a
linear relationship between the cost of expansion Cost

cap
t and the added capacity aci

t .
Use the data and models from the Integrated Environmental Control Model (ICEM),
a computational tool developed for the Department of Energy. This will provide the
power law model for more accurate cost estimation (Eq. 4.35). In this formula, αi

is a proportionality factor for capacity expansion, while βi provides the exponential
factor that allows capital expansion cost to follow economies of scale.

Another nonlinear expression, Eq. 4.36, will be used to determine the cost of
electricity purchased, Costbuy , when demand dt exceeds capacity. The power factor
γ must be greater than 1 to ensure that relying on external sources is not used as the
sole option when increase in demand is expected. This is accomplished as Costbuy

increases exponentially when capacity is significantly below possible demand levels.
The primary goal of this approach is to account for the common market practice
of purchasing electricity in a deregulated environment when demand reaches peak
levels, surpassing available capacity in a given location.

Finally, use Eq. 4.37 to calculate the available capacity at each time step following
expansion, Eq. 4.38 calculates the total electricty produced, tpt , and Eq. 4.39 ensures
that no power plant can produce more energy than its installed capacity.
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Table 4.11 Uncertain variables in capacity expansion case

Parameter Lower bound Upper bound

Demand Period I 400 MWh 500 MWh

Demand growth rate Period II 0.75 1.50

Tech. I Gen. cost increase for P-II 0.95 1.12

Tech. II Gen. cost for Period I 0.17 k$/MW h 0.37 k$/MW h

Tech. II Gen. cost for Period II 0.17 k$/MW h 0.50 k$/MW h

Table 4.12 Constants for
capacity expansion case

Parameter Value

Initial capacity Tech. I 250 MW

Initial capacity Tech. II 150 MW

β1 1.25 k$/MW0.7472

β2 0.95 k$/MW0.7856

α1 0.7472

α2 0.7856

γ 1.75

oc1
1 0.25 k$/MWh

In this problem, Technology I is selected as a Cyclone type coal power plant,
while Technology II is a Tangential plant. Again, data for these technologies can be
obtained using IECM [41] model.

There are five uncertain variables (Table 4.11) and eight decision variables that
determine capacity expansion and electricity generation for each technology at each
time step.

Here, demand growth rate for Period II implies that the total demand in Period I is
multiplied by a normally distributed uncertain factor varying between 0.75 and 1.50,
while the unit cost of electricity generated through Technology I can vary between
−5 and +12 % for the second period. Table 4.12 provides the constants and initial
values used for this case study.

Finally, the preexponential factor for the cost of purchasing electricity, κt can be
determined as the greater value between the two per unit electricity generation costs
for the different technologies, oc1

t and oc2
t .

Solve this problem using traditional SNLP and BONUS.

Solution Starting from a system with initial annualized cost of the capacity expan-
sion at $ 760.9K, the system is optimized both via BONUS, as well as exhaustive
model runs for derivative estimation through objective function value calculation.
The conventional approach converges after five iterations, requiring a total of

100
model calls

derivative calc.
· (8 + 1)

derivative calc.

iterations
· (5) iteration = 4, 500 model calls
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Fig. 4.8 Comparison of optimization progress

Table 4.13 Decision variables in capacity expansion case

Variable Initial value (MW) Optimal Value (MW)

Capacity addition Tech I Period I 100 93

Capacity addition Tech I Period II 200 197

Capacity addition Tech II Period I 100 154

Capacity addition Tech II Period II 200 197

Electricity production Tech I Period I 250 h 257 h

Electricity production Tech I Period II 250 h 247 h

Electricity production Tech II Period I 250 h 291 h

Electricity production Tech II Period II 250 h 330 h

compared to only 100 models and just three iterations run for the BONUS algorithm
(Fig. 4.8). Table 4.13 presents the decision variables and their optimal values found
by BONUS.

εBONUS = (% Mean reduction)BONUS

(% Mean reduction)Modelruns
= 0.867

4.4 Summary

In this chapter, we have introduced the BONUS based on the reweighting approach for
estimating derivative information needed during optimization of nonlinear stochas-
tic problems. The technique relies on KDE of a base distribution and the sample
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space encountered during optimization. Two real world case studies; (1) an off-line
quality control problem from chemical engineering, and (2) the electricity expansion
problem from operations research literature, illustrates efficiency of the technique in
determining derivatives, and hence the search directions during optimization loop.
Further, by selection of efficient sampling techniques like HSS allows for significant
computational improvement, as the repetitive nature of model evaluations is avoided
by using the reweighting scheme. The BONUS algorithm is very useful for solv-
ing large-scale real-world problems of significance (e.g., for black-box models) is
illustrated in the following three chapters.

Notations

ACi
t capacity of technology i in time period t

Ci concentration of component i in mol/m3

Cif inlet concentration of component i in mol/m3

cost
op
t operating cost

cost
cap
t capacity expansion cost

cost
buy
t cost of buying electricity

dt electricity demand
D number of decision variables
E expected value function
f probability density function
F volumetric flowrate, m3/min

oci
t a cost parameter for electricity generation of technology i in time period t

P probability function
P i

t decision variables determining
how much electricity should be produced using technology/power plant i

at time t

Q heat removal J

Nsamp number of samples
RB rate of production of B

RB average rate of production of B

S number of uncertain variables
T temperature, 0K

Tf inlet temperature, 0K

u uncertain and decision variable from input distributions
u∗ base uncertain and decision variable from input distributions
v uncertain variable
V reactor volume, m3

Z output variable

Greek letters

αi a proportionality factor for capacity expansion



56 4 The BONUS Algorithm

βi an exponential factor that allows capital expansion cost to follow
economies of scale

γ p̄ower factor
θ d̄ecision variable
μ mean
σ standard deviation
τ residence time, min

ω weighting function



Chapter 5
Water Management Under Weather Uncertainty

5.1 Introduction

Water scarcity and the cost of treating and recycling waste water both represent con-
straints in operating coal-fired power plants. As the capacity of thermoelectric power
generation increases in the USA (the Energy Information Administration estimates
that thermoelectric power generation will grow 22 % by 2030), so does the impor-
tance of managing the water used in these plants. In a clean coal-fired power plant,
water is consumed in makeups (water added to a closed cycle due to evaporation
or product loss), in blowdowns (water added during the cooling cycle due to liq-
uid removal), and in the generation process itself. The amount of water consumed
varies with two ambient weather factors: the dry-bulb temperature (temperature as
measured by a thermometer shielded from moisture) and the humidity of the outside
air, both of which are subject to significant uncertainty, and vary with the season
and geographical region. It is, therefore, critical to determine the optimal operating
conditions for these plants, so as to minimize water consumption subject to stochas-
tic weather conditions. In this chapter, it is demonstrated how the BONUS method
can substantially simplify this problem for a pulverized coal (PC ) power plant. This
chapter is based on work by Salazar et al. [44, 45].

5.2 The Pulverized Coal Power Plant

The specific PC power plant model referenced herein is based on Case 11 in the
DOE/NETL’s report on the cost and performance of fossil energy plants (NETL,
2010). The model is a supercritical steady-state flowsheet without carbon capture
designed to generate 548 MW of electricity.

A pulverized coal power plant generates electricity in four steps (as shown in
Fig. 5.1):
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Fig. 5.1 Schematic of PC power plant

1. Powdered coal is fed into the boiler’s combustion chamber, where the combustion
of coal produces steam.

2. The steam is fed into a series of high (HP), intermediate (IP), and low pressure
(LP) turbines, causing the turbines to rotate at high speed.

3. The steam is cooled to condensation in a cooling tower.
4. The condensation is preheated with steam extracted from the turbines and returned

to the boiler.

Subsequent to the generation process, the gaseous waste is passed through a flue gas
desulfurization (FGD) unit prior to its atmospheric release. The FGD unit removes
sulfur dioxide (SO2) by combining the SO2 with limestone slurry and oxygen to
produce calcium sulfate (gypsum). The gypsum is then separated from the water,
which is then recycled, yet a large amount of makeup water is still required to
replace that lost in the desulfurization process.

Therefore, considering both the power generation process and the FGD unit, the
areas of water consumption are:

• Water lost to evaporation in the cooling tower in the third step of the power
generation process (EL)

• Water lost to drift in the cooling tower during the power generation process (D)
• Water used for “blowdown” in the cooling tower (B)
• Water used in the FGD for preparation of the limestone slurry and makeup (F)

The process performance parameters (generation, efficiency, emission, and water
consumption) are simulated in Aspen Plus®, a chemical process modeling system
from Aspen Technologies Inc. Aspen Plus® is commonly used for modeling power
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plants because of its capabilities in representing multiphase streams and handling
complex substances such as coal [10]. In this case, Aspen Plus® takes the process
design and operational parameters as its inputs and outputs the process performance
parameters. Because the optimization techniques detailed in this chapter seek to find
the optimal inputs to minimize or maximize performance parameters, the robustness
of the Aspen Plus® model is critical to the reliability of the optimization results.

Within this boiler/turbine/condenser cycle, water is lost to evaporation associated
with the quantity of heat rejected at the cooling tower. To estimate the evaporation
rate, an equilibrium-based model for the cooling tower (based on a scheme proposed
by [15] is implemented in Aspen Plus® as what is known as a unit-operation-based
model. Each “unit block” is a simulation unit that allows the user to define calculations
not native to Aspen Plus®. Three unit blocks are used in this model, two flash
separators and one heat exchanger. The first flash separator is used to determine
the wet bulb temperature from the dry-bulb temperature and the humidity, while the
second simulates the cooling tower itself. Specific details on the internal calculations
of each of these blocks can be found in [44]. Using the design specifications and
the calculator blocks, Aspen Plus® is able to determine the cold water temperature,
circulating water flow rate, and air flow rate for a constant volume forced drift cooling
tower, and thus calculate the water usage due to evaporation.

In addition to the evaporation losses, water is consumed due to both drift and
blowdown. “Drift” refers to the water caught in the air leaving the top of the tower,
estimated as 0.02 % of the water circulating through the cooling tower. It differs from
evaporation in that the drift water remains in liquid form, while evaporation is the
water that has been converted to steam, and thus the two types of loss are considered
separately in calculations, though both contribute to the necessity of “makeups” and
water that must be added to a closed cycle to compensate for losses.

Blowdown, by contrast, is water added to appropriately dilute corrosive sub-
stances. The amount of water consumed as blowdown (B) is estimated as

B = EL − (C − 1)D

C − 1
,

where C is the number of concentrating cycles (assumed to be 4), EL is the
evaporation loss, and D is the drift loss.

The evaporation losses (ELs) are dependent on both temperature and humidity at
the plant location, and because the drift and blowdown are calculated from the evap-
oration, all three are dependent upon operating conditions and weather factors. The
water used in the FGD unit is dependent upon the conditions of the flue gas coming
out of the boiler, which is, in turn, dependent on both the operating conditions and
weather factors as well. The goal is, therefore, to determine the operating conditions
that minimize the expected value of water consumption subject to the uncertainty in
the ambient weather.
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Fig. 5.2 Probability density functions of four seasons (fall to winter from top) for dry-bulb
temperature and relative humidity in eight US Midwestern cities

5.3 Parameter Uncertainty

Dry-bulb temperature and dew point data for US urban centers is available at
the DOE’s energy efficiency and renewable energy program (EERE) website
(http://www1.eere.energy.gov). Two years of dry-bulb temperature and dew point
data, spanning September 2005 through August 2007, was averaged for eight major
Midwestern US cities (Chicago, Detroit, Indianapolis, Minneapolis, St. Louis, Des
Moines, Kansas City, and Cincinnati). This dry-bulb temperature data was organized
into bins and histograms were generated for each season. For each bin, the corre-
sponding dew point values were averaged to calculate values for relative humidity,
and thus histograms could be generated for this parameter as well. The frequency
distributions for dry-bulb temperature and humidity are shown in Fig. 5.2.

The probability distribution of the dry-bulb temperature was fitted to a lognormal
distribution and the relative humidity was fitted to a modified uniform distribution
(in which the range is divided into different intervals within which all values have
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an equal likelihood of occurrence). A distribution was created for each of the four
seasons, using the eight-city average. It is notable that both parameters have larger
variations during fall and spring than during winter and summer. This variability
will, in turn, result in a higher variability for water consumption in these seasons.

Once the probability distribution functions are estimated, stochastic simulation
and optimization are carried out as follows:

1. Efficiently sample the probability functions of dry-bulb temperature and rela-
tive humidity to generate a set of scenarios that accurately represent potential
realizations of uncertainty.

2. Propagate uncertainity by executing the whole plant simulation for every scenario
and record the water consumption in each.

3. Analyze the resulting distribution of water consumption and choose either the
expected value or standard deviation (the first or second moment) as the objective
function for stochastic optimization.

5.4 Problem Formulation

The objective of this problem is to minimize the expected value (E) of water con-
sumption in the PC power plant, expressed as the sum of the evaporation losses (EL),
drift losses (D), blowdown losses (B), and FGD consumption (F). The deterministic
input parameters, x, are the design and operational conditions of the units, and the
stochastic input parameters, u, are the uncertain weather conditions.

Further, let Q represent the total heat rejected by the cycle and P represent the
amount of power generated, both dependent on x and u. Similarly, evaporation
loss (EL) depends on the total heat rejected by the cycle (Q), drift (D) depends
on (EL), and blowdown B depends on both D and EL, while water consumption
in the FGD unit also depends on x and u. Thus, the following equations may be
introduced: Q = f (x, u), P = h(x, u), EL = g1(x, u), D = g2(x, u), B = g3(x, u),
and F = g4(x, u), where the set of functions, f , h, and gi represent “black-box”
calculations in Aspen Plus®, i.e., the exact nature of the functions is proprietary, and
knowledge of such is unimportant to the problem formulation and solution.

The problem can therefore be represented as

minxd
E(g(xd , u))

s.t.

h(xd , u) − P ∗ = 0

ME(xd , u) = 0,

where P ∗ is the fixed generation of electricity and ME is the material and energy
balance of the operating unit. Thus, the first constraint ensures that the required
amount of electricity is generated and the second ensures that mass and energy
balances are respected. Because the functions f , ME, and h are highly nonlinear, this
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problem is extremely computationally complex, and a method such as the BONUS
algorithm is needed to make the problem tractable.

5.5 Selection of Decision Variables

Of the assigned parameters that potentially influence water consumption, as detailed
in the NETL report on cost and performance baselines for fossil energy plants [36],
nine were selected as potential decision variables:

1. Boiler temperature: The temperature of the unit that burns coal particulate to
initially heat water into steam.

2. Air excess: The amount of air present in the combustion chamber in excess of the
theoretical minimum, used to ensure all coal particulate is exposed to sufficient
air.

3. Reheater temperature: The temperature of the unit that reheats the steam between
the high pressure turbine and the medium pressure turbine.

4. FGD efficiency: A measure of the rate of SO2 removal in the FGD, influenced by
the design parameters of the unit, such as surface area and absorption material.

5. O2/SO2 ratio: the ratio of oxygen to sulfur dioxide in the FGD unit.
6. CaCO3/SO2 ratio: The ratio of calcium carbonate to sulfur dioxide in the FGD

unit.
7. Water content of FGD slurry: The amount of water added to limestone to produce

the FGD slurry.
8. Pressure drop at high-pressure condenser 1: The difference in pressure between

the steam exhausted from the turbines and that leaving the first condenser.
9. Pressure drop at high-pressure condenser 2: The difference in pressure be-

tween the steam exhausted from the first condenser and that leaving the second
condenser.

These nine were selected based on the feasibility of implementation, i.e., these
variables are most easily controlled in a practical setting. For example, the water
content in the FGD slurry is easily modified through a change in operational policy.

To determine which of the nine operating parameters should be used as decision
variables, a stochastic simulation was run in Aspen Plus®, as described in [8]. The
ranges of potential decision variables were sampled from uniform distributions, and
the model was run for each of the generated combinations, each time producing
an output result in the form of a water consumption value. Partial rank correlation
coefficients (PRCC) were then calculated as shown in Table 5.1. PRCC are a measure
of the relationship between the output and input variables for a nonlinear function;
thus the absolute value of the PRCC indicates the influence of the deterministic
variable on water consumption. Five variables, air excess, reheater temperature,
water content of FGD slurry, pressure drop at high-pressure turbine 1, and pressure
drop at high-pressure turbine 2, were found to have the greatest impact on water
consumption, and were therefore chosen as the decision variables for the stochastic
optimization problem.
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Table 5.1 Partial rank correlation coefficients (PRCC) for relationship between potential decision
variables and water consumption

Potential decision variable Partial ranked correlation coefficient

Air excess 0.256642

Reheater temperature 0.228009

FGD efficiency −0.125901

Boiler temperature −0.018852

O2/SO2 ratio −0.021453

CaCO3/SO2 ratio −0.032031

Water content of FGD slurry 0.191058

Pressure drop at high-pressure turbine 1 −0.294448

Pressure drop at high-pressure turbine 2 −0.266594

5.6 Implementation of BONUS Algorithm

The BONUS algorithm was applied to this problem as follows:

1. A set of 600 scenarios based on the probability distributions of the uncertain
inputs and uniform distributions for the decision variable was generated using a
Hammersley sequence sampling technique.

2. The model was run for the scenarios generated in step 1 to calculate the value of the
objective function and constraints for each set of input values, and a probability
distribution was estimated using kernel density estimation for each.

3. The nonlinear optimizer (based on the sequential quadratic programming (SQP)
algorithm) was initialized by selecting starting values for each decision variable.

4. The value of the objective function was estimated by first assuming a narrow
normal distribution centered at the value chosen in Step 3, and then using this
normal distribution, along with the initial uniform distribution of the decision
variables and the corresponding outputs found in Step 2 used to calculate new
values of the probability density functions according to the following formula:

p(u) =
f (u)
̂f (u∗)

∑Nsamp

j=1
f (uj )
̂f (u∗

j )

p(u∗
j ), (5.1)

where Nsamp is the number of samples taken in Step 1, p(u∗
j ) is the probability

density function for the output distribution corresponding to the initial uniform
input distribution, f (u), and f̂ (u) is the probability density function of the updated
input distribution. The latter is given by

f̂ (u) = 1

Nsamph

Nsamp∑

j=1

1√
2π

e
1
2

(
u − uj

h

)2

, (5.2)

where h is the variance of the data set.
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Table 5.2 Minimization of average water consumption under uncertain air conditions for a 548 MW
PC power plant located in the Midwestern US for four different seasons. (Water consumption
estimates are reported in millions of pounds per hour)

Season Optimal values of decision variables

Air excess
%

RH
temperature ◦F

FGD limestone
fraction

HP1 pres-
sure ratio

HP2 pressure ratio

Fall 38.925 1160.8 0.31457 0.49 U 0.61 L

Summer 48.947 1174 0.42262 0.49 U 0.66 L

Spring 35.5 1096.5 0.22185 0.36 L 0.61 L

Winter 19.039 1141.9 0.30077 0.49 U 0.79 U 2

Base case values of decision variables

All 20 1157 0.3 0.365 0.637

Season Bonus
estimate
optimal
objective
function

Stochastic
simulation
estimate
optimal
objective
function

Stochastic
simulation
base case
objective
function

Savings
%

Fall 2.433 2.567 2.742 6.4

Summer 2.622 2.702 3.194 15.4

Spring 2.421 2.595 2.698 3.8

Winter 2.331 2.384 2.463 3.2

5. The decision variables were perturbed, and new estimates of the objective function
and its derivative were calculated using the reweighting scheme.

6. Steps 3–5 were repeated until Kuhn–Tucker conditions were reached.

5.7 Results

The nonconvexity of the objective function required the SQP algorithm to be run for
a variety of initial values for both reheater temperature and air excess. The nonlinear
optimizer was run 61 times, and each nonlinear optimization took between 2 and 20
iterations, for a total of 519 iterations for each of the four seasons. Using the BONUS
algorithm, results were derived in 4800 model evaluations per season. By contrast,
a traditional framework for this stochastic optimization problem would have instead
required at least 120 scenarios in the stochastic loop, for a minimum of 373,680
evaluations, nearly 78 times as many. The BONUS algorithm therefore saved 98.7 %
of the computational time required to solve the problem.

Table 5.2 gives the optimal values of the decision variables and water usage
estimations at (1) the optimal point using the BONUS algorithm, (2) the optimal point
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with a rigorous stochastic simulation, and (3) the base case with a rigorous stochastic
simulation for each of the four seasons. The water consumption estimations are given
as the expected values of the probability distributions approximated with BONUS
or calculated via stochastic simulation. The savings in average water consumption at
the optimal point, as compared to the base case, range from a low of 3.2 % in winter
to 15.4 % in summer.

It is intuitive that the water consumption savings are greater in warmer seasons.
In the relatively warm fall and summer seasons, the turbine pressure ratios 1 and 2
are pushed to their upper and lower limits, respectively (these two turbines define
the feed-water temperature entering the boiler and the pressure at which steam is
reheated). Operating the turbines at the limits of their pressure ratios, along with
a higher reheater temperature, increases their thermodynamic generation capacity
(work per mass of steam), reducing both required fuel and the steam flow rate. At the
same time, these operating parameters have little effect on the heat rejection rate. By
combining a reduction in the steam flow rate with a steady heat removal rate, water
consumption is minimized in the warmer seasons, in which the cooling tower is least
efficient. By contrast, in the cooler seasons (spring and winter), the cooling tower
operates more efficiently and allows for reduced water consumption even when a
large amount of heat must be removed at the condenser.

5.8 Summary

The BONUS algorithm can be used to efficiently optimize water consumption in
a PC power plant. Uncertainty in air temperature and humidity affect the amount
of water lost to evaporation, drift, blowdown, and makeup. Reheater temperature,
air excess to the boiler, FGD slurry preparation water ratio, and pressure drops at
the two high-pressure turbines are all operational variables that may be manipulated
to minimize water consumption, but the highly nonlinear nature of the objective
function and the power and mass balance constraints make this problem extremely
computationally intensive under a traditional stochastic optimization framework. The
BONUS algorithm reduces this computational intensity by 98.7 %, and shows that
reductions of 3.2–15.4 % are possible, depending on the season, for a 548-MW plant
in the Midwestern US.

Notations

B blowdown losses
D drift losses
EL evaporation losses (EL)
f , h, and gi constraints using black-box models in Aspen Plus®

f (u) initial uniform input distribution
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f̂ (u) probability density function of the updated input distribution
F FGD consumption
ME material and energy balance of the operating unit
Nsamp number of samples taken
P amount of power generated
P ∗ fixed generation of electricity
p(u∗

j ) probability density function for the output distribution corresponding
to the initial uniform input distribution

Q total heat rejected by the cycle
x set of deterministic input parameters (design and operational condi-

tions)
u set of uncertain weather conditions



Chapter 6
Real-Time Optimization for Water Management

6.1 Introduction

As discussed in the previous chapter, water consumption represents a critical re-
source in thermoelectric power generation, and can be challenging to manage due
to its dependence on ambient weather conditions. Because weather conditions are
both constantly changing and uncertain, a stochastic framework for real-time op-
timization of power generation is advantageous over a deterministic framework in
maximizing power output. In this chapter, it is shown that significant cost savings
can be achieved if optimization is done on an hourly basis, and the plant set points
are changed accordingly. However, as discussed in the previous chapter, the relation-
ships among plant inputs and outputs are highly nonlinear, and this fact, along with
the complexity of both plant operations and weather conditions make the problem
extremely computationally intensive. Under a conventional stochastic framework,
therefore, an hourly optimization would require a prohibitive level of computing re-
sources. The BONUS reweighting scheme is therefore crucial in devising a tractable
approach to real-time optimization. This chapter is derived from Salazar et al. [46].

6.2 Power Plant Operations

Recall from Chap. 6 that in a PC power plant with a wet recirculating cooling system,
fuel is burned to generate steam, and the steam, in turn, rotates a turbine, generating
electricity [36]. The steam coming out of the turbines must then be condensed in a
cooling system before being recirculated to the power plant, as shown in Fig. 6.1. The
thermal load at time t , denotedQp(t), gives a measure of the thermal energy contained
in the steam, and therefore an indication of how much energy must be removed in
the cooling process. This thermal load is dependent upon the total amount of power
produced by the plant, P (t). These two output variables, P (t) and Qp(t), comprise
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Fig. 6.1 Schematic representation of the interface between the generation and cooling systems

the set of system state variables, xp(t), and the set of input variables, representing
operational parameters such as fuel flow rate, flow of compounds, etc., are denoted
up(t). Assuming the plant is at steady-state, both inputs and outputs are independent
of time; thus xp and up are sufficient representations.

Based on conservation of both mass and energy, an abstract form of the plant
model can be written:

0 = fp(xp, up). (6.1)

Focusing only on the cooling system, the input parameters can be denoted uc and
the system state variables as xc. Qc(uc, w) is defined as the cooling system capacity,
one of the system states, dependent on weather conditions, w, as well as the physical
features of the cooling system and uc. As with the full power plant, the mass and
energy balances can be used to write a cooling system model of the form

0 = fc(xc, uc, w). (6.2)

At steady-state operation, the cooling system capacity should match the capacity
required by the power plant, i.e., the values of the operating parameters uc should be
chosen so that the cooling system can exactly meet the needs of the power generation
process. While it is obvious that too little capacity would impede power generation,
excess capacity is also problematic in that it consumes additional resources such as
water, while providing no benefit. This condition is given as

0 = g(xp, xc) (6.3)

The feasible operating region for the cooling system is given by the set of equality
constraints,

0 = hc(xc, uc, w), (6.4)

which depend on the weather conditions and design specifications. This set of con-
straints can also include bounds on states and decision variables for the cooling
system.
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The feasible operating region for the power plant in its entirety is similarly given
by

0 = hp(xp, up, w), (6.5)

a set that includes bounds on states and decision variables for the plant.
Thus, the entire model coupling the power plant and the cooling system can be

represented as

0 = f (x, u, w), (6.6)

0 ≤ h(x, u, w). (6.7)

The maximum cooling capacity under ideal weather conditions is denoted Qmax
c .

This maximum capacity is constrained by physical limitations of the system such as
size, flooding conditions, pumping capacity, and environmental conditions. These
limitations primarily manifest as water constraints, limitations on the amount of fresh
water that the cooling system can utilize to provide cooling capacity. For any other
nonideal weather conditions, the condition Qc(uc, w) ≤ Qmax

c holds.
Assume that the maximum power output under design specifications (nominal ca-

pacity) is given by P max , with corresponding cooling demand Qmax
p . If the available

cooling capacity at current conditions is larger than the maximum cooling demand
(Qc(uc, w) ≥ Qmax

p ), power output is constrained only by plant-side design spec-
ifications (e.g., furnace capacity), and is equal to the nominal capacity, P max . If,
however, the available cooling capacity is smaller than the maximum cooling de-
mand (Qc(uc, w) ≤ Qmax

p ), then the actual maximum amount of power that can
be generated is less than the nominal capacity and a function of cooling ability.
Let this be represented as P max(Qc(uc, w)), and note that the power generated must
obey the constraint P ≤ P max(Qc(uc, w)), because the cooling system must obey
the constraint Q ≤ Qmax

p (Qc(uc, w)), i.e., the cooling system is constrained by the
prevailing weather conditions, and the power plant is, in turn, constrained by the
cooling system.

It is assumed that the main operational objective in the power plant is to maximize
power output at prevailing weather conditions. To achieve this objective, the set-
points represented by the operational parameters, u, may be adjusted. For known
weather conditions, the optimal set-points can be determined by solving a nonlinear
optimization problem of the form

max
u

J (x, u, w) (6.8)

s.t. 0 = f (x, u, w) (6.9)

0 ≤ h(x, u, w), (6.10)

where the function J (x, u, w) denotes the plant power output.
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6.3 Formulation of the Stochastic Problem

Because, in actuality, the weather conditions are both changing and uncertain, the
deterministic problem is insufficient, and a stochastic optimization problem is instead
required. The objective of the stochastic problem is to find set-points, uHN for the
current time t , that maximize the expected value of the plant capacity. The weather
conditions w are assumed to be random variables. The subscript HN indicates the
here-and-now nature of the solution uHN , that is, the set points are chosen before the
actual values of the weather conditions are known. Thus, a single set of set-points is
sought, to be implemented under all weather scenarios. This is formulated as

max
u

Ew[J (x(w), u, w)] (6.11)

s.t. 0 = f (x(w), u, w), w ∈ Ω (6.12)

0 ≤ h(x(w), u, w), w ∈ Ω , (6.13)

where Ew[·] denotes the expected value of the objective function J (·) with respect
to w (the expected output power of the plant) and Ω is the set of values over
which w has support. The optimal value of this problem is denoted V (uHN ) :=
Ew[J (x(w), uHN , w)]. Because the model is assumed to be in steady-state at each
time instant, the problems at different time instants are decoupled. Consequently,
the stochastic problem can be solved over a horizon t , ..., t + T to determine the
expected values V (uHN (τ )), τ = t , ..., t + T .

6.4 Solution Approach

The stochastic optimization problem can be written as

minu∈UV (u) := Ew[φ(u, w)]. (6.14)

In this formulation, U is the box set U := {u|u ≤ u ≤ u}, where u and u are
the upper and lower bounds, respectively, for the decision variables and uncertain
variables together. The function φ(u, w) results from evaluating J (x(w), u, w) at a
given x(w), w, u that solves the model f (x(w), u, w) = 0. In other words, it is assumed
that inequality constraints exist only in u and the implicit solution of the black box
model f (x, u, w) = 0 can be represented as a smooth function of u and w, x(u, w),
both valid assumptions in this context.

The random vector w has a base distribution P(w), i.e., a distribution exogenous
to the plant. The objective function φ(u, w) has an associated posterior distribution
P(φ(u, w)), i.e., a distribution functionally dependent on u and x, from which its
expected value will be maximized.
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In a traditional stochastic framework, Nsamp samples would be drawn from the
distribution of w to convert the problem into a deterministic counterpart of the form

minu∈U Ṽ (u) := 1

Nsamp

Nsamp∑

j=1

[φ(u, wj )]. (6.15)

However, this approach is computationally intensive because the number of samples
must be overestimated in order to guarantee an appropriate solution accuracy. In
this particular application, a limited number of samples can be estimated from the
weather forecasting system. The BONUS reweighting scheme can instead be used
to greatly reduce the number of samples required. This is done as follows:

Offline Computations

1. Independently distributed samples j = 1, ..., Nsamp are drawn for random
variables ŵj and inputs ûj covering the convex set U .

2. The design base density Pd (u, w) is estimated from these samples using kernel
density estimation (KDE).

3. The objective function is evaluated for each sample j = 1, ..., Nsamp using a black-
box model of the power plant and the objective function response, φ(ûj , ŵj ) is
calculated.

4. The design current distribution Pd (u, w) is estimated using KDE.
5. Given the base distribution for the random variables P(w) and the design

distributions Pd (u, w) and Pd (u, w), and objective value responses φ(ûj , ŵj ),
j = 1, ..., Nsamp, initialize decision variables uk .

6. Optimality Check:
a) Using the current iterate of decision variables uk , a narrow normal distribution

is defined around this point and samples uk
j are drawn from it.

b) Samples wk
j are drawn from the available distribution.

c) Samples are used to generate Pk(uk , w) using KDE.
d) The objective function is estimated using the reweighting formula

Ṽ (uk) ≈ Ew[φ(u ∗ k, w)] ≈
Nsamp∑

j=1

ωK
j (φ(ûj , ŵj ), (6.16)

where the weights ωk
j are obtained from

ωk
j =

Pk
(

uk
j ,wk

j

)

Pd(ûj ,ŵj )
∑Nsamp

i=1
Pk(uk

i ,wk
i )

Pd(ûi ,ŵi )

(6.17)

and satisfy
∑Nsamp

j=1 ωk
j = 1.

e) The decision variables are perturbed uk ± δuk and reweighting is used
to estimate the gradient ∇uṼ (uk) and the perturbed objective function
Ṽ (uk + δuk).
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f) The gradient is checked against the Karush–Kuhn–Tucker (KKT) conditions

0 = ∇uV (u) + ν − ν, (6.18)

0 ≤ ν ⊥ (u − u) ≥ 0, 0 ≤ ν ⊥ (u − u) ≥ 0, (6.19)

where ν and ν are the multipliers for the lower and upper bounds, respectively.
If the KKT residual and complimentarity products are sufficiently small, the
process is terminated. Otherwise, the process is continued in the next step.

7. SQP Step Computation:
a) The gradient is used to compute the Hessian approximation Hk using the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula.
b) The step δu is computed by solving the quadratic program (QP)

min
Δu

δuṼ (uk)T Δu + ΔuT HkΔu, (6.20)

s.t. uk + Δu ∈ U. (6.21)

c) A new iterate is calculated as uk+1 = uk + αΔu with α ∈ (0, 1], and the
process is continued by returning to Step 6.

In this procedure, the computation of the objective function at each iteration
requires only the values φ(ûj , ŵj ); the black box model is not re-run at each iteration
of the optimization loop. This is a key benefit in this type of real-time application
where the stochastic optimization problem must be solved many times.

6.5 Weather Forecasting and Uncertainty Quantification

Real-time forecasts and uncertainty information for the two weather factors of inter-
est, ambient temperature and humdity, are computed using the numerical weather
prediction (NWP) model WRF [53]. The WRF model is a state-of-the-art numerical
weather prediction system designed to serve both operational forecasting and atmo-
spheric research needs, and therefore has a comprehensive description of atmospheric
physics that includes cloud parameterizations, land-surface models, atmosphere–
ocean coupling, and broad radiation models. The complexity of the model, along
with its extremely high resolution (up to 30 s of a degree), causes the WRF to be
extremely computationally intensive. As such, special computational resources are
required, and an implementation atArgonne National Laboratory is used for the work
described in this chapter.

6.5.1 Ensemble Initialization

To initialize the NWP simulations, simulated atmospheric states are reconciled with
experimental observations to create what are known as reanalyzed fields. The North
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American Regional Reanalysis (NARR) data set is used to cover the North American
continent with a resolution of 10 min of a degree and 29 pressure levels in 3 hour
increments from 1979 until present.

Because of observation sparseness and the incompleteness of a numerical repre-
sentation of atmospheric field dynamics, initial states are not exactly known and can
only be represented statistically. Therefore, a distribution of the initial conditions,
or “ensemble,” is used to describe confidence in the knowledge of the initial state
of the atmosphere. A normal distribution of the uncertainty field of the initial state
is assumed, centered around the NARR field at the initial time, i.e., the expectation
(first moment) exactly matches the NARR values.

The second statistical moment is approximated by the sample variance or point-
wise uncertainty. The initial Ns-member ensemble field χt0

s := χs(t0), s ∈ {1...Ns}
is sampled from N (χNARR , σ ), a normal distribution centered at the NARR solution
and with a standard deviation Σ :

χt0
s := χNARR + Σ

1
2 ζx , ζs ∼ N (0, 1), s ∈ {1...Ns}. (6.22)

This is equivalent to perturbing the NARR field with N (0, Σ).
One challenge inherent in this methodology is the very large size of the correlation

matrix. Therefore, it is not computed directly, and instead must be estimated by first
building correlation matrices of forecast errors using the WRF model. These forecast
errors are estimated using the NCEP method, which starts several simulations stag-
gered in time in such a way that, for any point in time, two forecasts are available.
The differences between the two staggered simulations is denoted as dij , where i

is the point in space and j represents the pair of forecasts. The covariance matrix
could then be approximated by Σ ≈ ddT, but the size again makes this computa-
tionally intractable. Instead, correlations are assumed to be roughly similar across
the continental US, greatly simplifying the calculation.

6.5.2 Ensemble Propagation

The initial state distribution is then propagated through the WRF. The resulting tra-
jectories can then be assembled to obtain an approximation of the forecast covariance
matrix:

χtF
x = Mt0→tF (χt0

s ) + ηs(t), s ∈ {1...Ns}, (6.23)

where χt0
s ∼ N (χNARR , Σ), ηs ∼ N (0, Σ), and Mt0→tF (·) represents the evolution

of the initial condition through theWRF model from time t0 to tF . The initial condition
is perturbed by the additive noise η that accounts for the various error sources during
the model evolution.

In the application described in this chapter, it is assumed that the numerical model
WRF is perfect, i.e., η = 0. Thus, given the exact initial conditions, the model is
assumed to produce error-free forecasts. For long prediction windows, this is a strong
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assumption. However, the forecast windows in this application are restricted to no
longer than one day in advance, thus making the assumption reasonable.

6.5.3 Validation of Weather Forecast

In Fig. 6.2, the average profile and 30 ensemble profiles are presented for the dry-bulb
temperature and relative humidity for a day, respectively, in a random location in the
Midwest region of the USA for June 1, 2006. The day-long profile is forecast at the
location of a meteorological tower located near Chicago, IL (41◦42′04′′, 87◦59′42′′).
The crossed dots show the actual temperatures and humidity observed at the closest
meteorological station as measured by the instruments mounted on the weather tower.
The envelope surrounding the ensembles is the 95 % confidence region. Time zero
represents 6 a.m. central time.

One can see that the projection for a day ahead is reasonably accurate from the
WRF model, capturing well the trend and sensor readings. Temperature varies sig-
nificantly throughout the day in the range of 288–299oK, while the relative humidity
varies in the range of 20–90 %. Humidity is much higher at night, whereas temper-
ature is much higher during the day, therefore the variables are autocorrelated. The
temperature and RH uncertainties are the result of different NWP model forecasts for
the same prediction window. While the temperature is relatively well modeled, the
relative humidity (RH) is the result of the moisture transport in the atmosphere and
complex physical interactions that lead to phase changes. Therefore, as expected, a
relatively wider uncertainty estimate for RH and a fanning effect toward the end of
the forecast window are observed. It should also be noted that, while uncertainty for
temperature projections has been discussed in other studies, it was not possible to
find projected uncertainty estimates for RH in the literature. These estimates are a
contribution of this work.

The uncertainty envelopes for the ambient temperature are narrow. The uncertainty
envelope for the relative humidity, on the other hand, is wide and can be as large as
30–40 % toward the end of the day. Both envelopes follow complex shapes due to the
nonlinearity of the weather prediction model and current meteorological conditions.
Toward the end of the day, the mean forecast does not predict well the shape of the
humidity profile, but the uncertainty envelope covers this region reasonably well.
This indicates the additional complexity in forecasting humidity. This also reflects
the fact that the uncertainty envelope is unable to fully cover the sensor readings at
all times.

The ambient temperature and relative humidity WRF ensembles are fitted to log-
normal and uniform distributions, respectively. These are illustrated in Figs. 6.3 and
6.4. These were used to generate the design distribution Pd (u, w) and corresponding

objective function posterior Pd
(ϕ(u, w)).
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Fig. 6.2 Forecast (thick line)
and ensemble profiles (thin
lines) for dry-bulb
temperature and relative
humidity in Midwest US for
June 1, 2006. Dots are real
measurements from
meteorological stations

a

b

6.6 Application to Pulverized Coal Power Plant

Stochastic optimization and weather uncertainty quantification are combined in a
numerical study of a PC power plant, the details of which are described in the
previous chapter. Again, the power plant is modeled in Aspen Plus®, and is designed
to generate 700 MW of electricity. A constraint on the maximum water intake of
9.1 × 105 kg/h is enforced. This represents the nominal consumption under average
atmospheric conditions of 288 K and 60 % relative humidity.

In order to demonstrate the economic benefits of stochastic optimization over
current practice, extensive simulations were performed using three settings.
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Fig. 6.3 Fit of ambient temperature WRF ensembles to lognormal distribution

Fig. 6.4 Fit of relative humdity WRF ensembles to uniform distribution
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1. Deterministic profile (a): the expected value of the maximum power was com-
puted from the WRF ensemble information using day-average conditions for
temperature and humidity.

2. Deterministic profile (b): the expected value of the maximum power was
computed using the mean forecast values obtained from WRF.

3. Stochastic profile: the here-and-now stochastic optimization problem was solved
using the WRF ensemble information to maximize the expected value of power
during a time frame of 24 h with time steps of 1 h.

The maximum power profiles are shown in Fig. 6.5. Several findings are of interest:

• From deterministic profile (a), it can be seen that the power profile varies with
weather conditions throughout the day from a low of 665 MW to a high of 715 MW.
Consequently, the set points of the input parameters must be adjusted throughout
the day to mitigate the effects of weather and water constraints.

• The highest power output is obtained at night when the ambient temperature is
lowest, even if humidity is high. Low power is obtained around noon when the tem-
perature is at its highest, regardless of humidity. This indicates that temperature
is more important than humidity in determining cooling capacity. In addition, it is
evident the power output is constrained by cooling capacity at high temperatures,
but plant design capacity at low temperatures.

• From deterministic profiles (a) and (b), it can be seen that adjusting operating
conditions according to the mean forecast can increase the maximum power
output.

• Stochastic optimization gives a total output of 16,922 MWh, a performance gain
of 245 MWh over deterministic profile (a) and 99 MWh over deterministic profile
(b).

• Stochastic optimization does not fully mitigate the variability of power throughout
the day. Rather, power varies from a low of 684 MW to a high of 729 MW,
indicating the strong impact of weather and corroborating the fact that the plant
is constrained by cooling capacity.

• At hours 15 and 23, the stochastic profile is lower than that of deterministic profile
(b). This is a result of the estimation error introduced from the small number of
samples. However, the stochastic solution is consistently better than the determin-
istic one, so it may be concluded that the number of samples used was sufficient to
obtain useful solutions. This, in turn, implies that weather uncertainty information
is accurate and the BONUS reweighting scheme is efficient in identifying quality
solutions.

Overall, these results indicate that, for a given water intake constraint, power can
be maximized by using stochastic optimization. Further, as water constraints are
tightened, it is possible to maintain high output levels with stochastic optimization,
thus the methodology can be used in reducing water consumption, though tightening
the water intake constraint will make the power profile more sensitive to weather
conditions.

The 245 MWh gain, projected over 100 days in a year (the approximate number
of days subject to summer conditions) results in an increase of 24.5 GWh. At a
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Fig. 6.5 Maximum power profiles for deterministic and stochastic approaches

price of $ 100/MWh, this translates into $ 2,450,000. While this is a rough estimate,
void of seasonal effects and differing constraint scenarios, the order of magnitude is
informative.

A traditional stochastic optimization approach with no reweighting would have
used 355,200 runs of the ASPEN Plus® model to solve the problems over the 24 h
time frame. At approximately 10 min per run, this would have required 2400 days.
By contrast, using the BONUS reweighting scheme, only 600 runs of the ASPEN
Plus® model were required, a savings of 99.8 %. Therefore, the BONUS reweighting
scheme makes stochastic optimization possible for this problem that would otherwise
be tractably infeasible.

6.7 Summary

A real-time stochastic optimization framework for maximizing power output in a PC
power plant is shown to provide significant gains in power output, as compared to
current state optimization. This approach integrated detailed physical weather and
power plant simulation models to assess the effects of ambient weather conditions
on plant performance. While infeasible in a traditional stochastic framework, the
BONUS reweighting scheme makes the problem tractable and allows for gains of
approximately $ 2.45 million per year over current practice.
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Notations

Ew[·] expected output power
J (x, u, w) denotes the plant power output
Nsamp number of samples taken of the uncertain parameters
P (t) total amount of power produced by the plant at time t

P max maximum power output under design specifications (nominal capacity)
Qc(uc, w) cooling system capacity
Qmax

c maximum cooling capacity under ideal weather conditions
Qp(t) thermal load at time t

Qmax
p maximum cooling demand

xc set of cooling system state variables
xp(t) set of system state variables
uc set of cooling system input parameters
up(t) set of input variables
U set U := {u|u ≤ u ≤ u},
δu step size in the SQP algorithm

where u and u are the upper and lower bounds, respectively
V (uHN ) := Ew[J (x(w), uHN , w)]
optimal value of expected power

w set of weather conditions

Greek letters
σ standard deviation
φ(u, w) value of J (x(w), u, w) at a given

x(w), w, u that solves the model f (x(w), u, w) = 0
Ω set of values over which w has support



Chapter 7
Sensor Placement Under Uncertainty for
Power Plants

7.1 Introduction

This chapter demonstrates the use of the BONUS method, in combination with
kernel density estimation (KDE), to calculate Fisher information. This concept is then
applied to the problem of sensor placement in an integrated gasification combined
cycle (IGCC) power plant, and how BONUS significantly reduces computational
resources while contributing to an appropriate solution is shown. This chapter is
derived from the work by Lee and Diwekar [28].

7.1.1 The Integrated Gasification Combined Cycle Power Plant

The IGCC power plant is a cleaner way of getting electricity from coal compared to
the pulverized coal (PC) plant described in earlier chapters. IGCC consists of three
main elements: the air separation unit (ASU), the gasification plant, and the power
block, as shown in Fig. 7.1 [35]. Power is produced in the IGCC power plant as
follows:

1. The ASU separates ambient air into oxygen (O2) and nitrogen (N2). The oxygen
is used primarily to produce fuel gas in the gasification plant, while most of the
nitrogen is used to dilute fuel gas and reduce nitrous oxide (NOx) levels in the
power plant’s combustion turbine.

2. The gasification plant converts coal or other solid fuel (e.g., petroleum coke or
biomass) into fuel gas and high pressure steam by reacting with the O2 produced
by the ASU in several steps.
a) The coal is received and stored in the plant in the form of coal fines, finely

powdered solid material.
b) Coal fines are mixed with water and ground into a viscous slurry.
c) The coal slurry and oxygen react in the gasifier to produce:

© Urmila Diwekar, Amy David 2015 81
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Programming Problems, SpringerBriefs in Optimization, DOI 10.1007/978-1-4939-2282-6_7
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Fig. 7.1 The integrated gasification combined cycle power plant

• Syngas, a synthetic gas composed of hydrogen (H2), water vapor (H2O),
carbon monoxide (CO), and carbon dioxide (CO2)

• Slag, the residual mineral matter from coal not converted to syngas, which
afterward flows down the gasifier walls, solidifies into an inert glassy frit
with little carbon content, and is removed as waste

• Flyash, partially gasified residual carbon that exits the gasifier within the
syngas stream

Both slag and flyash are undesirable byproducts of the reaction. The gasifier
typically operates at a temperature and pressure around 1645 K and 2760 KPa.

d) The syngas is cooled in a radiant syngas cooler (RSC), then passed through
a high pressure steam generator and gas cooler. The efficiency of this steam
generation step may be improved by employing hot gas desulfurization to
reduce nitrous oxide (NOx) emissions.

e) Intensive water scrubbing removes flyash and other particulate matter from
the syngas.

f) COS is converted to H2S and removed from the syngas.
g) Selective catalytic reduction (SCR) removes NOx from the process.

3. The power block generates electricity from the fuel gas, nitrogen, and high
pressure steam.
a) The fuel gas powers a combustion turbine.
b) A heat recovery steam generator (HRSG) uses the gas turbine exhaust gas to

generate both high and low pressure steam.
c) The high and low pressure steam powers additional turbines, generating

electricity.

A high efficiency combined cycle helps lower SO2, NOx , and particulate levels,
reducing the environmental impact of the IGCC plant power generation process.
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7.1.2 Measurement Uncertainty

Monitoring every process variable contained in the IGCC plant operations using a
complete network of sensors would prove to be both costly and, due to the inability
of obtaining measurements within harsh environments, technically infeasible. At the
same time, however, controlling the operating conditions is essential to maintaining
the efficiency of the power generation process. Therefore, some process variables
must be estimated from related process variables for which direct measurements are
more easily taken.

Gasifier temperature provides an illustrative example. Because the gasifier oper-
ates at extreme temperature and pressure, standard thermocouples cannot be used
to take direct measurements. This makes it difficult to both determine and main-
tain a target operating temperature. However, the durability of the gasifier decreases
at higher temperatures, while slag output increases at lower temperatures, thus a
variation in either direction from the optimal temperature increases both cost and en-
vironmental impact. Therefore, gasifier temperature must be inferred by measuring
related process variables. In this case, the methane production rate depends on both
gasifier temperature and fuel composition, allowing measurements of the methane
production rate and fuel composition, which are more easily obtained in practice, to
be used to estimate gasifier temperature.

The large number of process variables and the complex relationships among them
generate a significant challenge in determining which variables should be directly
measured and which should be estimated, or “indirectly measured.” Each direct
measurement requires the use of a sensor, and the network of online sensors is
defined as the full set of sensors used. The problem herein is to design a network of
online sensors so as to minimize the overall costs, including purchase, deployment,
and maintenance, associated with that network, while enabling a sufficient level of
process control. As part of a stochastic optimization problem, the decision to either
observe or estimate each process variable results from the uncertainty surrounding
the true values of the process variables in the form of system and measurement noise.

To solve the cost-minimization problem, the IGCC power plant is modeled in
Aspen Plus® to quantify the variability of downstream process variables as a result
of variability in a set of input process variables, such as coal and oxygen flow rates,
gasifier temperature, and gasifier pressure. Using the known measurement distribu-
tions of online sensors that are a priori assumed to be part of the sensor network,
the downstream process variability is captured using Fisher information, as detailed
in the next section. The Fisher information is then used within the objective func-
tion to determine which of the downstream process variables should be observed or
physically measured through the placement of candidate sensors.
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7.2 Fisher Information and Its Use in the Sensor-Placement
Problem

Fisher information is a statistical measure established in the field of information
theory by Ronald Fisher [11]. For a set of independent and identically distributed
(IID) observations, x1, x2, ..., xn, resulting from n outcomes of a random variable,
X = Xi , i = 1, 2, ..., n, Fisher information captures the amount of information
the set of observations contains about some unknown parameter, θx , upon which the
probability distribution of X, px(x), depends. It does this by quantifying the expected
change in the distribution due to a change in the parameter value, θx . The expression
for Fisher information, Ix , is commonly given as [12]

Ix(θx) = EX

[(
1

pX|Θx
(X|θx)

∂pX|Θx
(X|θx)

∂θx

)2
]

, (7.1)

where the distribution p(X|θx) is the likelihood of x given the parameter θx .
In the sensor-placement problem, a high level of Fisher information for a down-

stream variable indicates the ability to accurately estimate the value of an upstream
variable on which the downstream variable depends. Because Fisher information is
additive (IX,Y (θ ) = IX(θ )+IY (θ )), a single Fisher quantity may be calculated for the
entire system. Thus, the goal is to decrease the overall sensor cost by determining the
optimal sensor locations to maximize the amount of information about the system’s
true state.

7.3 Computation of Fisher Information

Using the Aspen Plus® environment, a comprehensive model of the highly nonlinear
IGCC process is used to simulate the steady-state performance of the ASU, gasifier,
and power generation processes. This Aspen model is used to estimate the set of
unmeasured variables using the data acquired from the process variables directly
measured through the network of sensors physically deployed within the plant.

Let Sin be the set of input variables, including coal and oxygen flow rate. Each
variable in Sin follows a uniform distribution centered at its nominal value. A set of
Nsamp input variable operating conditions is generated using Hammersley sequence
sampling, and the IGCC process is simulated in Aspen Nsamp times. Each simulation
generates a corresponding vector of points, Sout , that includes both intermediate
and output process variables, such as syngas temperature and mass flow rate. Sout

captures the nonlinear effects of the IGCC process, and the full set of Sout vectors
generated from repeated simulations captures the variability of downstream process
variables resulting from a uniformly distributed set of input variable sample points.
Thus, a probability distribution can be generated for each intermediate and output
variable that captures the variation in that variable due to variations in the input
variables and the nonlinearity of the process behavior.
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7.3.1 Reweighting Using the BONUS Method

Each time the network of sensors is altered, i.e., a sensor is added or removed from
the online network, the underlying distributions of the process variables are altered,
requiring a new computation of the Fisher information about each process variable. In
this section, the BONUS algorithm is used to compare samples of the input variables
taken from a uniformly distributed sample space to those taken from a new reference
distribution in order to create a set of distribution weights that can be used to reweight
the distribution functions of the intermediate and output variables. This reweighting
approach eliminates the need to resimulate the IGCC process behavior in Aspen Plus
for every possible combination of online sensors, thereby significantly reducing the
overall computational time.

The BONUS reweighting scheme is implemented as follows:

1. Let f0(xi) be the probability density function (PDF) associated with the base input
distribution for the input variable xi , i = 1, 2, ..., Sin.

2. A set of Nsamp sample points uniformly distributed across a d-dimensional sam-
ples space is used to perform Nsamp simulations of the IGCC process to generate
F0(yj ), the base cumulative distribution function (CDF) associated with the in-
termediate or output variable yj , j = 1, 2, ..., Sout , where yj = h(x1, x2, ..., xSin )
is the nonlinear transformation from the set of input variables, Sin, to the
downstream variable yj at iteration 0.

3. A new input distribution is defined, representing a change in sensor placement,
such as a sensor placed at the location of this input variable. The redefined
distribution, ft (xi), at iteration t is used to create a set of weights

Wt (xi) = ft (xi)

f0(xi)
, i = 1, 2, ..., Sin (7.2)

that gives the likelihood ratio between the redefined and base distributions.
4. Given that the input variables act independently, the weights are used to construct

the resulting distributions for the downstream intermediate and output variables at
iteration t by multiplying the associated weights, Wt (xi), with the base distribution
f0(yj ):

ft (yj ) = f0(yj )ΠSin

i=1(1 + γij (Wt (xi) − 1)), j = 1, 2, ..., Sout , (7.3)

where γij = 1 if variable yj is downstream of xi and γij = 0 if it is not.
5. The distribution is then normalized using

f̂t (yj ) = ft (yj )
∑Nsamp

n=1 ft (yj (n)) yj (n+1)−yj (n−1)
2

. (7.4)

This reweighting approach can also be used when a sensor is placed at the location
of an intermediate process variable to construct the resulting change in distributions
of corresponding downstream variables. By eliminating the need to generate a new
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set of Nsamp sample points through simulation of the IGCC process at each iteration,
t , the BONUS reweighting algorithm provides an efficient method for calculating
the Fisher information resulting from many different configurations of the online
sensor network. Further, various underlying distributions corresponding to sensor
accuracies can be readily analyzed without increasing the computational burden,
and this approach can also be used for unmeasured disturbances to an input variable,
such as a change in coal quality.

7.3.2 Calculating the Fisher Information from Kernel Density
Estimation

As discussed in Chap. 3, KDE is a nonparametric method of estimating the PDF of
a random variable based on a finite data sample. In this case, the finite data sample
consists of the set of operating parameters estimated in Aspen PLUS for each input
sample. The KDE technique estimates the PDF through the use of following formula:

p(yn) =
Nsamp∑

m=1

1√
2π

exp

(
−

(
yn − ym

h

)2
)

, (7.5)

at each sample point yn, n = 1, 2, ..., Nsamp, where σ 2 is defined as the variance of
the set of samples {y1, y2, ..., yN} and h = 1.06σ/N

1/5
samp.

Assume that the shift-invariant property holds for a small ε > 0 change in the
parameter θy (the mean value of a given y), i.e., p(yn ± ε) can be calculated from
(7.5) by replacing yn with yn ± ε on the right side of the equation. This is a viable
assumption at IGCC process operating conditions near their means, as the plant
is operated within a chemically stable region. Once the kernel density functions
p(yn + ε) and p(yn − ε) are calculated from (7.5), they can be used to generate an
approximation of the first-order derivative, ∂p(yn)/∂θy , given by

∂p(yn)

∂θy

≈ (p(yn + ε) − p(yn − ε))

2ε
. (7.6)

The Fisher information is then obtained by substituting (7.6) into the discrete
approximation of (7.1) to obtain

Iy(θy) =
Nsamp∑

n=1

(yn − yn−1)

(
∂p(yn)/∂θy

)2

p(yn)
, (7.7)

which constructs a series of right-hand rectangles at (∂p(yn)/∂θy)
2

p(yn) to approximate the
integral function in the expectation.

The following section applies Fisher information as a metric of observation order
(the degree to which a given sensor network can monitor and control the system)
within an optimization problem for placing sensors in various locations throughout
the IGCC plant, subject to sensor cost constraints.
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7.4 The Optimization Problem

The objective of the sensor-placement problem is to maximize the amount of infor-
mation about the IGCC process from a network of sensors, given a set of budget
constraints. Because it is desirable to minimize the variability of the unmeasured
process variable estimations, the Fisher information should be maximized.

The resulting optimization problem is a nonlinear stochastic (binary) integer prob-
lem where the objective function consists of the overall Fisher information (with the
goal of maximization) and the constraints consist of limits on the cost of sensor
placement. Formally, this is given as

max
wj ∈W

Sout∑

j=1

fj (w, Y)wj , (7.8)

s.t

Sout∑

j=1

Cj wj ≤ B, (7.9)

wj ∈ 0, 1, j = 1, 2, ..., Sout , (7.10)

where Cj is the cost associated with the purchase, deployment, and maintenance
of sensor j and B is the total sensor budget. The binary variable wj represents the
decision to place or not place sensor j in the network of online sensors, with 0 rep-
resenting the absence of sensor j and 1 representing its presence, and W constitutes
the set of all feasible sensor networks that is given.

7.4.1 Defining the Objective Function

The objective term fj (w, Y ) is a function of the Fisher information resulting from
the network of sensors, w = {wj ∈ {0, 1}, j = 1, 2, ..., Sout } and the set of random
variables Y = {Yj , j = 1, 2, ..., Sout } associated with the measurement uncertainties
in the intermediate and output process variables. This function is designed by first
assuming that the information related to a process variable is always greater if a
sensor is placed online at that specific location (i.e., more is known about Yj when
wj = 1). Let I s

Yj
(θyj

|wk = 1) represent the Fisher information of θyj
resulting from a

sensor placed at location K = 1, 2, ..., Sout , and let I ns
Yj

(θyj
|wk = 0), k = 1, 2, ..., Sout

represent the Fisher information of θyj
resulting from no sensors placed in the network

of intermediate and output variables, such that I s
Yj

(θyj
|wk = 1) ≥ I ns

Yj
(θyj

), j =
1, 2, ..., Sout (this inequality states that the information about variable j that is known
when there is a sensor measuring variable k is greater than or equal to the information
about variable j that is known when there is not a sensor measuring variable k). A
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candidate objective function can then be defined as

f A
j (w, Y) = 1 − I ns

Yj
(θyj

)

I s
Yj

(θyj
|wj = 1)

, (7.11)

where 0 ≤ f A
j (w, Y) ≤ 1. This function normalizes the Fisher information for each

process variable between zero and one. Values of f A
j (w, Y) close to zero correspond

to the smallest change in information gained from placing a sensor at location j ,
while values close to one correspond to the largest change. It is therefore possible to
optimize the placement of sensors across many variable attributes, including mass-
flow, temperature, and pressure, for example, by determining which set of sensors
provides the largest total gain in estimation of the dynamic system.

However, this function does not capture the potential effects of placing a sensor in
the network upstream of location j . If location k is upstream of location j (i.e., Yj is
dependent on Yk), then information gained by placing a sensor at location k increases
the amount of information available about Yj . A second candidate objective function
that takes this into account is

f B
j (w, Y) =

Sout∑

k=1

(
1 − I ns

Yj
(θyj

)

I s
Yj

(θyj
|wk = 1)

)
, (7.12)

which captures the overall effect that placing (or not placing) a sensor has on all other
process variables by summing the resulting information gained at all locations by
placing a sensor at location k. The Fisher information is given as I s

Yj
(θyj

|wk = 1) =
Ins
Yj

(θyj
) if variable j is not downstream of variable k, and it can be seen that, in this

case, the right-hand side of Eq. (7.12) reduces to zero. Otherwise, if j is downstream
of variable k, I s

Yj
(θyj

|wk = 1) can be computed using the BONUS reweighting
scheme.

7.4.2 The IGCC Power Plant

For the IGCC power plant studied, a set of eight sensors, Sin, measures the input
process variables given in Table 7.1. The objective is to determine the placement
of sensors across a set of 24 sensors, Sout , measuring intermediate and output vari-
ables y1, y2, ..., y24 given in Eq. 7.2, as well as the nominal operating conditions. A
schematic of potential sensor locations is given in Fig. 7.2.

For each intermediate and output process variable, three types of sensors are
assumed to be available, with accuracies (six standard deviations) of ± 5 %, ± 2.5 %,
and ± 1 %, with sensors of higher accuracy incurring a higher cost than those of
lower accuracy. The optimization problem is therefore slightly modified to include
the consideration of multiple sensor types. Let the binary variable wj ,τ = 1(0)
correspond to the decision to place a sensor of type τ = 1, 2, 3 at location j . The
problem can then be formulated as
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Table 7.1 Input process variables

xi Description Nominal Units

1 Oxygen flow rate entering ASU 157,392 kg/h

2 Coal slurry flow rate 192,922 kg/h

3 Air flow rate to gas turbine compressor 2,962,683 kg/h

4 Recycled HRSG steam temperature 414 K

5 Recycled HRSG steam pressure 526 KPa

6 Recycled HRSG water temperature 369 K

7 Gasifier temperature 1644 K

8 Gasifier pressure 2806 KPa

ASU air separation unit, HRSG heat recovery steam generator

Fig. 7.2 Potential sensor locations in the IGCC power plant. IGCC integrated gasification combined
cycle

max
wj ,τ ∈W

3∑

τ=1

24∑

j=1

fj ,τ (w, Y)wj ,τ (7.13)

s.t

3∑

τ=1

24∑

j=1

Cj ,τ wj ,τ ≤ B, (7.14)

3∑

τ=1

wj ,τ ≤ 1, j = 1, 2, ..., 24 (7.15)

wj ,τ ∈ {0, 1}, j = 1, 2, ..., 24, τ = 1, 2, 3, (7.16)
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where fj ,τ (w, Y)wj ,τ is a function of the Fisher information when a sensor of type
τ is placed at location j . Constraint (7.15) ensures that no more than one type of
sensor is used at each location.

7.4.3 Problem Approach

The problem was approached in five steps:

1. A set of Ns = 800 operating conditions was generated across a uniform 8-
dimensional sample space, corresponding to a set of 8 input variables varied
± 10 % of their nominal operating conditions using the Hammersley sequence
sampling method.

2. For each set of operating conditions, the corresponding intermediate and output
variable conditions were generated using the steady-state model developed in the
Aspen Plus® simulation environment.

3. A distribution function was constructed from these sets of sample points using the
KDE technique, which serves as the base distribution for the BONUS reweighting
scheme.

4. The distribution function for Yj , j = 1, 2, . . . , 24 was constructed using BONUS
by reweighting the base distribution of Yj obtained from theAspen simulations by
the ratio of the sensor distribution of Xi , i = 1, 2, . . . , 8 to the base distribution
of Xi , provided that Yj is downstream of each Xi . The resulting distribution at
each Yj corresponds to the variability of estimating Yj if no sensors are placed
across the set of intermediate and output variable locations.

5. The Fisher information given no sensors at the intermediate and output variable
locations, I ns

Yj
(θyj

) is calculated as described above.

To verify the validity of the reweighting approach, the Fisher information was cal-
culated two ways: first, by using a uniform distribution across each of the input
variables as the input to the Aspen Plus® simulation, followed by use of the BONUS
reweighting scheme, and second, by using a normal distribution across each of the
input variables as the input to the Aspen Plus® simulation. There was no significant
difference in the Fisher information calculated under each of the two methods. This
is because the number of sample points and the sampling scheme used ensured ade-
quate coverage of the 8-dimensional space, and the reweighting approach undergoes
only one iteration when computing the Fisher information for a given set of input
variable distributions. Thus, it is evident that the BONUS reweighting scheme is a
useful approach for comparing sensor networks with contrasting variability, rather
than rerunning the resource-intensive simulation in Aspen Plus® (Table 7.2).
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Table 7.2 Intermediate and output process variables

yj Description Streama Nominal Units

1 Gasifier syngas flow rate RXROUT 393,475 kg/h

2 Syngas CO flow rate RXROUT 224,637 kg/h

3 Syngas CO2 flow rate RXROUT 88,051 kg/h

4 Syngas temperature RXROUT 1644 K

5 Syngas pressure RXROUT 2806 KPa

6 Low pressure steam turbine temperature TORECIR 369 K

7 Gas turbine combustor burn temperature POC2 1628 K

8 Gas turbine combustor exit temperature POC3 1533 K

9 Gas turbine high pressure exhaust stream temper-
ature

GTPC3 621 K

10 Gas turbine low pressure exhaust stream tempera-
ture

GTPC9 404 K

11 Gas turbine expander output temperature GTPOC 872 K

12 Fluegas flow rate exiting gas turbine expander 6X 5,760,623 kg/h

13 Syngas flow rate after solids removal RAWGAS 467,200 kg/h

14 Coal slurry flow rate entering gasifier COALD 21,170 kg/h

15 Oxygen flow rate into gasifier O2GAS 157,452 kg/h

16 Oxygen flow rate exiting ASU GASIFOXY 157,452 kg/h

17 Acid gas flow rate FUEL1 344,996 kg/h

18 Gas turbine compressor leakage flow rate XCLEAK 2052 kg/h

19 Flow rate into high pressure steam turbine TOHPTUR 621,421 kg/h

20 Coal slurry feed flow rate COALFEED 192,922 kg/h

21 Slag extracted from syngas SLAG 15,805 kg/h

22 Fines extracted from syngas FINES 5363 kg/h

23 Gasifier heat output QGASIF 2.47e7 Btu/h

24 Recycled HRSGb steam heat output QRDEA 3.27e8 Btu/h

aStream notation refers to DOE/NETL model [35]
bHRSG heat recovery steam generator

7.4.4 Results

Table 7.3 lists the computed objective values using the normalized function f B
j (w, Y)

from Eq. 7.12. As the sensor accuracy at a location increases, the value of f B
j at

that location increases due to the decrease in measurement variability, resulting in
an increase in information pertaining to the true value of the variable at that location.
Note that some variables, such as gasifier syngas flow rate (y1) and fluegas flow rate
exiting gas turbine expander (y12), exhibit large increases in information when a
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Table 7.3 Computed
objective values, f B

j , for each
sensor type

Sensor j Low accuracy Medium accuracy High accuracy

1 0.9100 8.6612 10.6078

2 9.8488 10.7561 10.9649

3 10.5601 10.8862 10.9898

4 7.8290 10.1407 10.8627

5 7.8989 10.1472 10.8613

6 0.1036 0.7760 0.9643

7 4.6106 5.6794 5.9470

8 3.7799 4.7002 4.9529

9 1.9262 1.9832 1.9981

10 0.9940 0.9989 1.0002

11 2.5901 2.9110 2.9845

12 0.0002 0.7054 0.9531

13 0.9188 6.2690 7.6865

14 12.4675 15.8420 16.8025

15 12.4553 15.8393 16.8083

16 13.3944 16.8241 17.8059

17 3.6553 6.2014 6.8691

18 0.9389 0.9849 0.9978

19 0.0002 0.0002 0.0002

20 13.4061 16.8267 17.8000

21 0.7492 0.9375 0.9902

22 0.7492 0.9375 0.9902

23 1.0002 1.0002 1.0002

24 0.0002 0.0002 0.0002

more accurate sensor is used, while others, such as gas turbine low pressure exhaust
steam temperature (y10) and flow rate into high pressure steam turbine (y19), show
little improvement in Fisher information from use of a more accurate (and therefore
costly) sensor.

Consider the case in which the total budget is B = $1, 500, 000. The solution to
the optimization problem places a network of low accuracy sensors at locations y2,
y3, y5, y9, and y11, and medium accuracy sensors at y1, y14, y15, y16, y17, and y20

(thus y4, y6, y7, y8, y10, y12, y13, y18, and y19 are not directly measured). The resulting
standard deviation in the IGCC power plant production and gasifier performance is
provided in Table 7.4, in comparison with the standard deviation resulting from the
baseline case in which no sensors are deployed across the intermediate and output
process variable location. The significant reduction in variability for both gas turbine
power production and total plant power production is immediately obvious.
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Table 7.4 Measurement variation of the integrated gasification combined cycle (IGCC) power
production and gasifier performance using the optimal sensor network versus no sensors deployed

IGCC power production Nominal Standard deviation Units
Optimal (no sensors)

Gas turbine power production 424.94 2.26 (43.11) MWE

Steam turbine power production 251.97 0.71 (0.71) MWE

Miscellaneous power consumption − 67.41 0.25 (4.62) MWE

Auxiliary power production 18.29 1.35 (1.35) MWE

Total plant power production 591.22 2.16 (43.73) MWE

Gasifier performance Nominal Standard deviation Units
Optimal (no sensors)

Oxygen flow rate 157,452 655 (13,386) kg/h

Coal flow rate 192,922 803 (10,874) kg/h

Slag flow rate 15,805 46 (1097) kg/h

Fines flow rate 5363 16 (372) kg/h

Syngas temperature 1645 370 (370) K

Syngas pressure 2806 23 (234) KPa

7.5 Summary

The use of the BONUS reweighting scheme can significantly reduce the computa-
tional resources required to calculate Fisher information, here used as a measurement
of the variability of system parameters, given limitations on direct measurement of
variables. This greatly improves the tractability of a nonlinear, stochastic integer
program used to design a network of online sensors in an IGCC power plant, seeking
to minimize variability while respecting budgetary constraints. In the case presented,
measurement variability of total plant power production was reduced by over 95 %.

Notations

B total sensor budget
Cj cost associated with the purchase, deployment, and maintenance of sensor j

f0(xi) probability density function (PDF) associated with
the base input distribution for the input variable xi , i = 1, 2, . . . , Sin

F0(yj ) base cumulative distribution function (CDF)
associated with the intermediate or output variable yj , j = 1, 2, . . . , Sout

ft (xi) redefined input distribution
h band width
Ix Fisher information
Nsamp number of input scenarios generated using Hammersley sequence sampling
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Sin set of input variables, including coal and oxygen flow rate
Sout set of intermediate and output process variables,

such as syngas temperature and mass flow rate
t iteration
wj decision variable for placement of sensor j in the network of online sensors,

with 0 representing the absence of sensor j and 1 representing its presence
W set of all feasible sensor networks
Wt (xi) weight used in the BONUS algorithm that

gives the likelihood ratio between the redefined and base distributions
xi observations
X random variable

Greek letters
γij position indicator equal to 1

if variable yj is downstream of xi and γij = 0 if it is not



Chapter 8
The L-Shaped BONUS Algorithm

This chapter is based on a paper by Shastri and Diwekar [49] . A variant of BONUS is
presented here to solve multistage stochastic programming problems with recourse.
In stochastic programming problems with recourse, there is action (x), followed by
observation, and then recourse r . In these problems, the objective function has the
action term, and the recourse function is dependent on the uncertainties and recourse
decisions. The recourse function can be a discontinuous nonlinear function in x and
r space. A general approach behind the L-shaped method is to use a decomposition
strategy where the master problem decides x and the subproblems are solved for the
recourse function (Fig. 8.1). The method is essentially a Dantzig–Wolfe decomposi-
tion [6] (inner linearization) of the dual or Bender’s decomposition of the primal. This
method is due to Van Slyke and Wets [58], for stochastic programming also consid-
ers feasibility questions of particular relevance in these recourse problems. Consider
the generalized representation of the recourse problem shown below, where the first
term depends only on x, and R is the recourse function which depends on decision
variables, x, recourse variables, r , and uncertain variables, u.

Minimize Z = f (x) + R(x, r , u) (8.1)

x

subject to
h(x, r) = 0 (8.2)

g(x, u, r) ≤ 0 (8.3)

Figure 8.1 shows the decomposition scheme used in the L-shaped method. In the
figure, the master problem is the linearized representation of the nonlinear objec-
tive function (containing the recourse function) and constraints. The master problem
provides the values of the action variables x (x∗) and obtains the lower bound of
the objective function. In general, the multistage recourse problems involve equal-
ity constraints relating the action variables x to the recourse variables r as in the
generalized representation. These constraints are included as inequalities (feasibility
cuts) in terms of the dual representation (including Lagrange multipliers λ) obtained
by solving the following feasibility problem for each constraint. The feasibility cut

© Urmila Diwekar, Amy David 2015 95
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Programming Problems, SpringerBriefs in Optimization, DOI 10.1007/978-1-4939-2282-6_8
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Fig. 8.1 L-shaped method
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addition is continued until no constraint is violated (completely feasible solution).
It should be noted that this is a very time-consuming iterative loop of the L-shaped
algorithm, and variants of the L-shaped method provide improvements to this loop.
The master problem then provides the values of the action variables x, and the lower
bound to the objective function. At each outer iteration, for these fixed x, the sub-
problem is solved for r , and linearizations of the objective and recourse function
(optimality cuts) are obtained along with the values of r . If the subproblem solution
(upper bound) crosses or is equal to the lower bound predicted by the master problem,
then the procedure stops, else iterations continue.

Feasibility Optimization

Minimize Constraints Violations(x∗, r) (8.4)

r , λ

The following example uses the news vendor problem to show the convergence of
the L-shaped method. As indicated earlier, the inner loop of the L-shaped method
consists of determining whether a first-stage decision is also second-stage feasible,
and so on. This step is extremely computationally intensive and may involve several
iterations per constraint for successive candidate first-stage solutions. In some cases
though (such as this news vendor problem) this step can be simplified. A first case
is when the second-stage is always feasible. The stochastic program is then said to
have complete recourse .

Example 8.1 The simplest form of a stochastic program may be the news vendor
(also known as the newsboy) problem. In the news vendor problem, the vendor must
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Table 8.1 Weekly demand
uncertainties j Demand, dj Probability, pj

1 50 5/7

2 100 1/7

3 140 1/7

determine how many papers (x) to buy now at the cost of c cents for a demand which
is uncertain. The selling price is sp cents per paper. For a specific problem, whose
weekly demand is shown below, the cost of each paper is c = 20 cents and the selling
price is sp = 25 cents. Solve the problem, if the news vendor knows the demand
uncertainties (Table 8.1) but does not know the demand curve for the coming week
a priori. Assume no salvage value (s = 0), so that any papers bought in excess of
demand are simply discarded with no return.

Solve this problem using the L-shaped method.

Solution The formulation of the problem is given below.

Maximize − Z = Prof itavg(u) (8.5)

x

P rof itavg(u) =
∫ 1

0
[−cx + Salesp(r , w, p(u))]dp

=
∑

j

pjSales(r , w, dj ) − cx (8.6)

Sales(r , w, dj ) = sprj + swj (8.7)

rj = min(x, dj )

= x, if x ≤ dj

= dj , if x ≥ dj (8.8)

wj = max(x − dj , 0) (8.9)

where Salesp represents the recourse function R given below. We are minimizing Z

or maximizing −Z.

R = sp x

if 0 ≤ x ≤ d1 (8.10)

or
R = 5/7sp d1 + 1/7sp x + 1/7sp x

if d1 ≤ x ≤ d2 (8.11)
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or

R = 5/7sp d1 + 1/7sp d2 + 1/7sp x

if d2 ≤ x ≤ d3 (8.12)

As can be seen from the above formulation, this problem does not have any equality
terms and is considered a problem with complete recourse. To obtain the optimal
solution, we need to consider the outer loop iterations (no feasibility cut) given
in Fig. 8.1 for the L-shaped method. From Table 8.1, we know that the uncertain
parameter u can take values 50, 100, 140, with probabilities 5/7, 1/7, and 1/7,
respectively. The recourse function can be calculated using analytical expressions
given in Eqs. 8.10–8.12 and hence sampling can be avoided. Figure 8.2 shows the
terms in the recourse function Salesp(50) and Salesp(100). Each of these functions
is polyhedral. The sequence of iterations for the L-shaped method is given below.

1. Assume x = 100 and assume the lower bound to be −∞. The recourse function
that is calculated by the subproblem is calculated using Eqs. (8.6)–(8.9) and is
equal to Prof it = −393. To express this in the minimization term, Zup = 393.

2. The linear cut (Eq. (8.14)) for the recourse function derived from Eq. (8.11) is
added to the master problem, given below.

Maximize −Zlo = −20x + R (8.13)

x

R ≤ 25

(
5

7
× 50 + 2

7
× x

)
linear cut at x = 100 (8.14)

The solution to the above problem is x = 0 and Zlo = −892.86. The recourse
function calculated again using the Eqs. (8.6)–(8.9) is equal to Zup = 0. The
solution is not optimal as the upper bound (0) is greater than the lower bound
(−892.86).

3. Add a new cut, Eq. (8.17), and solve the following problem.

Maximize −Zlo = −20x + R (8.15)

x

R ≤ 25

(
5

7
× 50 + 2

7
× x

)
linear cut at x = 100 (8.16)

R ≤ 25x linear cut at x = 0 from Eq. (8.10) (8.17)

The solution to the above problem is x = 50 and Zlo = −250. The recourse
function at x = 50 is equal to Zup = −250, and is the optimum. So the average
profit per day is 250 cents with a total weekly profit of 1750 cents, as found
before.
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Fig. 8.2 Recourse function term as a function of the decision variable
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This chapter presents a novel algorithm, the L-shaped BONUS method, for solving
large scale stochastic nonlinear programming problems in a computationally efficient
manner. The algorithm is an integration of the traditional sampling based L-shaped
method with the BONUS algorithm, proposed to solve sensor network localization
problem (SNLP) problems. The following sections describe the algorithm and show
the better computational properties of the algorithm through two illustrative exam-
ples. The algorithm can also be used to convert an SNLP problem into a stochastic
linear programming (SLP) problem.

8.1 The L-Shaped BONUS Algorithm

The sampling-based algorithm suffers from the computational bottleneck of repeated
model simulations while BONUS uses the reweighting approach to bypass this prob-
lem. The proposed algorithm is an integration of the sampling based L-shaped method
with BONUS. The central idea of reweighting in BONUS is utilized in this algorithm.
The modification is in the second stage recourse function calculation procedure of
the L-shaped method. Since the structure of the algorithm is based on the L-shaped
method and the application of the reweighting concept is similar to that in BONUS,
mathematical details are not reproduced here and can be found in earlier chapters.
The algorithm steps are shown schematically in Fig. 8.3 and explained below.

The given stochastic programming problem is first converted into a two-stage
stochastic programming problem with recourse. The first-stage decisions are made
using a linearized approximation of the second-stage nonlinear recourse function and
utilizing the feasibility and optimality cuts, if generated. This also determines the
lower bound for the objective function. The second-stage objective is the expected
value of the recourse function, which depends on the first as well as second-stage deci-
sion (recourse) variables. Following the sampling based L-shaped method structure,
the first-stage decisions are passed on to the second stage where the subproblem is
solved for each uncertainty realization. The idea of the L-shaped BONUS algorithm
is to reduce computations at the sub-problem solution stage by using the reweight-
ing scheme in BONUS to bypass nonlinear model computations. The reweighting
scheme, needs the model output distribution for a base case uniform input distribu-
tion for the decision variables and assigned distributions for the uncertain variables.
For this purpose, during the first optimization iteration, the nonlinear model is sim-
ulated and the subproblem solved for each sample. Model simulation results for the
base case constitute the base case output distribution. The subproblem solution for
each sample is used to derive the optimality cut for the master problem and generate
an upper bound for the objective function as per the L-shaped algorithm. Second
optimization iteration solves the first-stage master problem using these cuts. The
new first-stage decisions along with an updated lower bound are passed on to the
second-stage problem. During this iteration, when a new set of samples are taken by
the stochastic modeler, model simulation, and the subproblem optimization solution
is not performed for each sample. The reweighting scheme, with Gaussian kernel
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Fig. 8.3 The proposed L-shaped BONUS algorithm structure

density estimation, is used to predict the probabilistic values (expectations) of the
model output. The base case output distribution along with the two sample sets are
used for this prediction. The expected value of the model output is used to solve
only one second-stage dual subproblem to generate cuts and update the objective
function upper bound. It should thus be noted that for second iteration, only one
subproblem is solved. Therefore, not only the nonlinear model simulation time but
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also the subproblem solution time is saved. This procedure of the reweighting based
estimation is continued in every subsequent iteration till the L-shaped method based
termination criteria is encountered.

The primary advantage of the proposed L-shaped BONUS algorithm, as has been
repeatedly stressed, is its computational efficiency. Repeated model simulations,
which are a bottleneck in the stochastic optimization procedure, being avoided,
problem solution becomes faster. The effect is expected to be more pronounced in the
case of nonlinear and/or high dimensional models, such as those often encountered
for real life systems. Another advantage of this algorithm is its ability to convert an
SNLP problem into an SLP problem by using reweighting to approximate nonlinear
relationships (see Chap. 10 for such an application).

Finally, as with any sampling based optimization technique, sampling properties
are very important for this algorithm. The accuracy of the reweighting scheme de-
pends on the number and uniformity of samples as seen in Chap. 4. We compare
the results of two sampling techniques, namely, the efficient Hammersley sequence
sampling (HSS) technique and the Monte Carlo technique in this chapter.

8.2 Illustrative Example 1: The Farmer’s Problem

This section explains the application of the L-shaped BONUS algorithm through a
simple illustrative farmer’s problem that has been extensively studied in the field of
stochastic programming [2] . The problem, as formulated in [2] , is a stochastic linear
programming problem which is modified into an SNLP problem.

8.2.1 Problem Formulation

The goal of the problem is to decide the optimal allocation of 500 acres of plantation
land amongst three crops: wheat, corn, and sugar. The farmer needs at least 200 tons
(T) of wheat and 240 T of corn for cattle feed. These amounts can be produced on the
farm or bought from a wholesaler. The excess production can be sold in the market.
The purchase cost is 40 % more than the selling cost due to wholesaler’s margin and
transportation cost. Sugar beet sells at a cost of $ 36/T if the amount is less than
6000 T. Any additional quantity can be sold at only $ 10/T. Through experience, the
farmer knows that the mean yield of crops is 2.5 T, 3 T, and 20 T per acre for wheat,
corn and sugar, respectively. But these values are uncertain owing to various factors.
The objective is to maximize the expected profit in the presence of uncertain yields.
Table 8.2 summarizes the data and more details about the SLP can be found in [2] .

For this illustration, to convert the problem into an SNLP problem, the uncertain
yield is assumed to be dependent on four different factors which are uncertain. These
four factors are the average rainfall, availability of sunlight, attack probability of a
crop disease, and the probability of attack by pests. The annual yield of the crops is
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Table 8.2 Data for farmer’s problem

Wheat Corn Sugar beets

Yield maximum (T/acre) 3 3.6 24

Planting cost ($/acre) 150 230 260

Selling price ($/T) 170 150 36 under 6000 T

10 above 6000 T

Purchase price ($/T) 238 210 –

Minimum requirement (T) 200 210 –

nonlinearly related to these four factors. Although the relationships presented here
are hypothetical and simplistic, it is expected that some nonlinear equations will
govern these relationships. The dependencies are as follows:

Yr = 2 αr

(
1 − αr

2

)
αr = Unif orm[0.75, 1.25] (8.18)

Ys = 1.58 (1 − e−αs ) αs = Unif orm[0.9, 1] (8.19)

Yd = 1 − αd αd = Unif orm[0, 0.2] (8.20)

Yp = 1 − α2
p αp = Unif orm[0, 0.2] (8.21)

where

• Yj are fractions of the maximum yield due to corresponding effects j

• αr : Fractional rainfall of the yearly average (uniform distribution between 0.75
and 1.25)

• αs : Fractional sunlight of the yearly average (uniform distribution between 0.9
and 1)

• αd : Attack probability of a crop disease (uniform distribution between 0 and 0.2)
• αp: Attack probability of pests (uniform distribution between 0 and 0.2)

The overall fractional yield of the crops is given by

YYi,actual = Yr × Ys × Yd × Yp × YYi,max (8.22)

where YYi,actual is the actual yield of the crop i and YYi,max is the maximum possible
yield if all the conditions are perfect given in Table 8.2. Once these equations are
incorporated in the original model, the resulting stochastic programming problem is
given as:

Minimize 150x1 + 230x2 + 260x3

+ E[238y1 − 170w1 + 210y2 − 150w2 − 36w3 − 10w4]
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subject to the following constraints

x1 + x2 + x3 ≤ 500,

Y1,actualx1 + y1 − w1 ≥ 200,

Y2,actualx2 + y2 − w2 ≥ 240,

w3 + w4 ≤ Y3,actualx3,

w3 ≤ 6000,

x1, x2, x3, y1, y2, w1, w2, w3, w4 ≥ 0,

where E is the expectation operator over the uncertain variables YYi,actual , x are
decision variables related to land assignments, w are sales, and y are purchases.
YYi,actual is the yield of crop i given by Eq. (8.22) and nonlinearly related to the
uncertain variables through Eqs. (8.18)–(8.21).

This problem when converted into a two-stage stochastic programming problem
with recourse is given as:
First-Stage Problem

Min 150x1 + 230x2 + 260x3 + θ

s.t. x1 + x2 + x3 ≤ 500,

Gl x + θ ≥ gl l = 1 . . . s,

x1, x2, x3 ≥ 0,

where θ is the linear approximation of the expected value of the recourse function.
x1, x2, and x3 constitute the first-stage decision variables. The constraints include
the problem defined constraints on the first-stage decision variables and optimality
cuts applied during iterations of the L-shaped method.
Second-Stage Problem

Q(x, ξ ) = min{238y1 − 170w1 + 210y2 − 150w2 − 36w3 − 10w4}
s.t. Y1,actualx1 + y1 − w1 ≥ 200,

Y2,actualx2 + y2 − w2 ≥ 240,

w3 + w4 ≤ Y3,actualx3,

w3 ≤ 6000,

y1, y2, w1, w2, w3, w4 ≥ 0.

Here, y1, y2, w1, w2, w3, and w4 are the second-stage decision variables (recourse
variables). The constraints on the recourse variables in the original problem are
considered in the second-stage problem solution. Note that in this problem, there are
no equality constraints so this problem is also a problem with complete recourse like
the news vendor problem presented earlier.
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8.2.2 Problem Solution

The problem, when solved using sampling based L-shaped method, involves dual
formulation of the nonlinear second-stage problem and solution of the dual problem
in the second stage for each sample from the given sample set. Even if the nonlinearity
is separated from the problem by considering directly the yield in the second-stage
problem (in place of the nonlinear relationships), the task of finding dual problem
solutions for the samples can be demanding. The L-shaped BONUS algorithm can
simplify the task by using reweighting to bypass the nonlinear model, as represented
by Fig. 8.3. The ability of reweighting to effectively model the nonlinear relationship
between the uncertain parameters and crop yield will help in converting the problem
into an SLP with reduced computations.

The exact solution procedure is as follows.

• At every second-stage problem solution, uncertain parameters are sampled n

times, n being a predecided sample size.
• During the first iteration, the samples are used to calculate the value of crop yield

(Yi,actual and the yield value is used to solve the dual (as dual representation only
depends on the crop yield) for each sample (i.e., n dual problem solutions) and
an optimality cut, if needed, is generated.

• The first sample set is stored as the base sample set. At subsequent iterations,
during the second-stage solution, the new set of n samples are taken and instead
of solving the dual for each sample through yield calculation, reweighting is used
to calculate the expected value of the crop yield.

• This single expected value is used in the dual problem which is now converted into
a linear one. Moreover, with one expected value of the yield, the dual problem
needs to be solved only once to calculate the expected value of the recourse
function and generate the cut if needed. Use of reweighting therefore simplifies
the problem on two counts. First, it bypasses the nonlinear part of the model and
converts it into a linear model and second, computations are simplified by solving
just one optimization subproblem at the second stage.

Reproduced below are the the first two iterations of the problem solution to explain
the steps.

Solution: Iteration 1

• Step 0: s = 0 (iteration count)
• Step 1: θ1 = −∞ (very low value). Solve

Min 150x1 + 230x2 + 260x3

s.t. x1 + x2 + x3 ≤ 500

x1, x2, x3 ≥ 0

The solution is x1
1 = x1

2 = x1
3 = 0

• Step 2: Sample the uncertain variables n times to generate the base sample set
{u*}
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• Step 3: Calculate the yield (n values) of the crop using the n sampled uncertain
variables and Eqs. (8.18)–(8.21).

• Step 4: Solve the following dual problem for the n samples of crop yield. The
values of x1

i are passed on to the second stage.

Max λ1(200 − Y1,actual x1
1 ) + λ2(240 − Y2,actual x1

2 ) − λ3(Y3,actual x1
3 ) − 6000λ4

s.t. λ1 ≤ 238

λ2 ≤ 210

λ1 ≥ 170

λ2 ≥ 150

λ3 + λ4 ≥ 36

λ3 ≥ 10

λ1, λ2, λ3, λ4 ≥ 0 (8.23)

The solution of problem (8.23) for first sample is λ1 = 236, λ2 = 210, λ3 = 36,
λ4 = 0. The expected value of the recourse function (w) calculated after all
the dual problem solutions is w = 98000. Since w > θ , an optimality cut is
introduced.

Iteration 2

• Step 0: s = 1 (iteration count)
• Step 1: Solve

Min 150x1 + 230x2 + 260x3 + θ

s.t. x1 + x2 + x3 ≤ 500

θ ≥ 98000 − [610.1 636.4 727.4][x1 x2 x3]T

x1, x2, x3 ≥ 0 (8.24)

The solution of problem (8.24) is x1 = 0, x2 = 0, x3 = 500 and θ =
−264685.247.

• Step 2: Sample the uncertain variables n times to generate the new sample set {u}
• Step 3: Calculate the estimated yield of the crops using the base and new sample

sets bypassing relations (8.18) to (8.21). The estimated yield is 0.842.
• Solve the dual problem given by equation set (8.23) only once using the estimated

value of the crop yield. The solution of the problem is λ1 = 238, λ2 = 210,
λ3 = 10, λ4 = 26. The expected value of the recourse function (w) calculated
after the dual problem solutions is w = −158986.526. Another optimality cut is
introduced.

The procedure is then followed according to iteration 2 (using reweighting instead
of n dual problem solutions) until the termination criteria of w ≤ θ is satisfied.
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Fig. 8.4 Variation of objective function with sample size for farmer’s problem

8.2.3 Results of the Farmer’s Problem

Comparative results for the farmer’s problem using the sampling based L-shaped
method and the L-shaped BONUS algorithm are shown graphically in Fig. 8.4,
which also compare the results for two different sampling techniques, Monte Carlo
sampling (MCS ) and HSS. Figure 8.4 compares the objective function values at the
final solution as a function of the sample size. It is seen that the solutions for both
algorithms approach a steady state value with increasing sample size. Moreover,
the difference in the results for the two algorithms is within reasonable limits of
sampling error, 1.7 % for the maximum sample size, indicating that reweighting
approximation is not sacrificing accuracy. Based on this plot, HSS emerges as a
more efficient sampling technique than MCS. The results for HSS appear to reach
the steady state value faster than for MCS as the sample size is increased. This claim is
further corroborated by Fig. 8.5 which plots the iterations needed to reach the solution
for different sample sizes. It can be observed that for the standard L-shaped method,
MCS sampling technique needs more iterations in general than HSS technique. The
previously mentioned k dimensional uniformity property of HSS accounts for this
observation. For the same sample size, the HSS method therefore approximates a
given distribution better than the MCS. This results in faster convergence of HSS
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based algorithms in general. For the L-shaped BONUS algorithm though, both MCS
and HSS sampling techniques need six iterations irrespective of the sample size.
This is possibly due to the approximation introduced by the reweighting scheme.
The approximation renders the iteration requirements insensitive to sample size and
sampling method changes. However, better values of final solutions (Fig. 8.4) confirm
the superiority of the HSS method over MCS.

Computational time is an important factor while comparing these algorithms.
Computational time increases exponentially with sample size for the standard L-
shaped method while it increases almost linearly for the proposed L-shaped BONUS
algorithm. The computational efficiency of L-shaped BONUS therefore becomes
more pronounced as the sample size is increased. With the need to increase sample
size to improve accuracy, the proposed algorithm offers a distinct advantage.

8.3 Illustrative Example 2: The Blending Problem

The problem reported here is typical for a petroleum industry manufacturing finished
petroleum products such as lube oils. A large number of natural lubricating and
specialty oils are produced by blending a small number of lubricating oil base stocks
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and additives. The lube oil base stocks are prepared from crude oils by distillation. The
additives are chemicals used to give the base stocks desirable characteristics which
they lack of to enhance and improve existing properties [13, 37] . In the context of
such an application, a general chemical blending optimization problem is explained
below followed by results comparing different solution and sampling techniques.

8.3.1 Problem Formulation

The aim is to blend n different chemicals (such as lube oil base stocks and additives) to
form p different blend products (lube oils) at a minimum overall cost. Each chemical
(base stock) has varying fractions of m different components (such as C1–C4 frac-
tion, C5–C8 fraction, heavy fraction, inerts, etc.). Market demands call for production
of a particular quantity of each blend product. Blend products catering to different
applications (e.g. high performance lube oil, grease, industrial grade lube oil, etc.)
have different specifications on fractions of m different components (for a lube oil
such specifications will depend on physical property requirements like pour point,
viscosity, boiling temperature). These specifications need to be satisfied to market
the blend products. The task is complicated due to the presence of q impurities in
the chemicals. Exact mass fractions of these impurities in some of the chemicals
(base stocks) are uncertain. Such uncertainties may arise when the chemicals to be
blended are themselves the product of other processes (such as crude distillation for
lube oil base stocks). There are also specifications on the maximum amount of impu-
rity in a blend product. If the impurity content of a blend product does not satisfy the
regulation, the product has to be treated to reduce impurities to levels below specifi-
cations. The treatment cost depends on the amount of reduction in the impurities to
be achieved. The goal in formulating the stochastic optimization problem is to find
the optimum blend policy to minimize raw material cost and expected blend product
treatment cost in the presence of uncertainty associated with impurity content of the
chemicals. The stochastic programming problem is formulated as below.

Minimize
n∑

i=1

p∑

k=1

CiWik + E
[ p∑

k=1

CT θk

]
(8.25)

Subject to:
n∑

i=1

Wik = W̄k ∀k = 1, . . . , p (8.26)

n∑

i=1

xijWik ≥ x̄jk ∀k = 1, . . . , p and j = 1, . . . , m (8.27)

q∑

l=1

(Iil(u))αl = I ∗
i ∀i = 1, . . . , n (8.28)
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n∑

i=1

I ∗
i Wik = Īk ∀k = 1, . . . , p (8.29)

Īk.(1 − θk) ≤ I
spec

k ∀k = 1, . . . , p (8.30)

Here, Wik is the weight of chemical i in blend product k. Ci is the per unit cost of
chemical i, while CT is the blend product treatment cost per unit reduction in the
impurity content. W̄k is the total production requirement of blend product k. xij is the
fraction of component j in chemical i and x̄jk is the specification of component j in
blend product k. Iil(u) is the (possibly uncertain) fraction of impurity l in chemical i

and I ∗
i is the “impurity parameter” of chemical i. This impurity parameter gives the

extent to which a chemical is impure, as a nonlinear function of various impurities.
Coefficients αl decide the importance of a particular impurity in the final product. Īk

is the final impurity parameter of a blend which depends on the weight contribution
of each chemical in a particular blend. I

spec

k is the maximum permitted impurity
content in the blend product. θk is the purification required for blend k to satisfy the
impurity constraint.

The objective function consists of two parts. The first part is the cost of chemicals
used to manufacture the blend products and the second part is the expected treat-
ment cost of the off-spec products. The first set of constraints ensures the required
production of each blend product. The second constraint set ensures that compo-
nent specifications for the blended products are satisfied. These specifications are
expressed in terms of the minimum amount of each component needed in the blend
product. The third set of constraints calculates the impurity parameter for each chem-
ical, as a function of various individual impurities. The fourth equation calculates
the “impurity parameter” for each blend product depending on the blending policy.
The last set of constraints makes sure that all the impurity related specifications are
satisfied by each blend product.

In sampling-based algorithms, the expected cost is calculated using various re-
alizations of uncertain parameters (i.e., samples) and the corresponding treatment
costs. Parameter Iil(u) is then a function of each sample. The two-stage stochastic
programming blending problem is given as
First-stage problem

Minimize
n∑

i=1

p∑

k=1

CiWik + E[R(W , θ , u)] (8.31)

where
n∑

i=1

Wik = W̄k ∀k = 1, . . . , p (8.32)

n∑

i=1

xijWik ≥ x̄jk ∀k = 1, . . . , p and j = 1, . . . , m (8.33)
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Table 8.3 Data for chemicals in blending problem

A1 A2 A3 A4 A5 A6 A7

C1 fraction 0.20 0.10 0.50 0.75 0.10 0.30 0.20

C2 fraction 0.10 0.15 0.20 0.05 0.70 0.30 0.55

C3 fraction 0.60 0.65 0.22 0.12 0.10 0.30 0.16

I1 fraction 0.02 0.07 0.01 0.02 0.043 0.015 0.012

I2 fraction 0.01 0.005 0.02 0.02 0.01 0.04 0.021

I3 fraction 0.06 0.023 0.02 0.03 0.022 0.028 0.055

Cost ($/unit weight) 104 90 135 130 115 126 120

Here E[R(W , θ , u)] is the expected value of the recourse function which is
calculated in the second stage.
Second-stage problem

Minimize E[R(W , θ , u)] =
Nsamp∑

r=1

p∑

k=1

CT θk (8.34)

where
q∑

l=1

(Iil(r))αl = I ∗
i ∀i = 1, . . . , n (8.35)

n∑

i=1

I ∗
i Wik = Īk ∀k = 1, . . . , p (8.36)

Īk.(1 − θk) ≤ I
spec

k ∀k = 1, . . . , p (8.37)

The first-stage decision variables are Wik . The second stage considers various realiza-
tions of uncertain parameters Iil through Nsamp samples. This second-stage problem
minimizes the expected value of the recourse function through decision variables
θk . There is no equality constraint in the second stage so this again is a problem of
complete recourse. No feasibility cut optimization is needed. This is a stochastic pro-
gramming problem with a nonlinear relationship between second stage parameters
Iil and I ∗

i .

8.3.2 Simulations and Results

This work considers the problem with 7 chemicals (A1, . . . , A7), three components
(C1, . . . , C3), three blend products (P1, . . . , P3), and three different impurities, such
as sulfur, ash, and heavy residue, i.e., n = 7, m = 3, p = 3, and q = 3. Data for
the problem is reported in Tables 8.3 and 8.4. α1, α2 and α3 are 0.9, 1.3, and 1.4,
respectively, and the purification cost CT is $ 10,000 per unit reduction in impurity.
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Table 8.4 Data for blend
products

P1 P2 P3

C1 fraction 0.1 0.6 0.2

C2 fraction 0.5 0.1 0.1

C3 fraction 0.2 0.2 0.5

Production (weight units) 100 120 130

I
spec

k 0.9 1.05 1.2

Each chemical has one uncertain impurity fraction. Here I12, I15, I23, I26, I27, and
I34 are uncertain, varying by ± 25 % around the values reported in Table 8.3. All
uncertain parameters are normally distributed in the given range, i.e., ± 25 % range
corresponds with the ± 3σ range where σ is the standard deviation of the normal
distribution.

The problem is solved using the standard L-shaped algorithm and the proposed
L-shaped BONUS algorithm, both using the HSS and MCS techniques. In the L-
shaped BONUS algorithm, the nonlinear relationship between Iil and I ∗

i is bypassed
using reweighting scheme.

The optimum objective function value is plotted in Fig. 8.6 for different sample
sizes. The results show that with the HSS technique, the average difference in the
absolute values of the final objective function for the standard L-shaped and L-shaped
BONUS algorithm is only 1.6 %, and this difference reduces with increasing sample
size. Figure 8.7 plots the number of iterations required to achieve the solution. It can
be observed that the L-shaped algorithm consistently requires more iterations. It is
also observed that the L-shaped BONUS algorithm achieves an average reduction
of 75 % in solution time over the standard L-shaped algorithm. This significant
reduction accompanied by a relatively small change in the final results makes L-
shaped BONUS algorithm very attractive. A comparison between the HSS and MCS
techniques shows observations and conclusions similar to those for the farmer’s
problem. Thus the MCS technique in general requires more iterations than the HSS
technique and results with HSS settle much faster than with MCS.

8.4 Summary

This chapter presented the L-shaped BONUS algorithm for two-stage stochastic
programming problems. This algorithm exploits the structure of the problem as in L-
shaped method and the efficiency of the reweighting scheme in BONUS for evaluating
recourse function. Two illustrative examples, namely, the farmer’s problem and
the blending problem, are presented. The L-shaped BONUS method is not only
computationally efficient but the computational efforts do not scale exponentially
with number of samples as in the traditional L-shaped method but scale linearly. The
next two chapters present real world applications of the L-shaped BONUS algorithm
to large scale real world problems.
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Notations

cdfout cumulative probability density function of output
Ci per unit cost of chemical i

CT blend product treatment cost per unit reduction in the impurity content
d demand
E expected value function
f a function
g inequality constraint function
h equality constraint function
Iil(u) fraction of impurity l in chemical i

I ∗
i impurity parameter of chemical i

Īk final impurity parameter of a blend which
depends on the weight contribution of each chemical in a particular blend

I
spec

k maximum permitted impurity content in the blend product
Nsamp number of samples
p probability values
Pi() probabilistic function



114 8 The L-Shaped BONUS Algorithm

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

Sample size

N
um

be
r o

f i
te

ra
tio

ns

L−shaped with HSS
L−shaped with MCS
L−shaped BONUS with HSS
L−shaped BONUS with MCS

Fig. 8.7 Variation of iteration requirement with sample size for blending problem

pdfin() probability density function of input
Q() recourse function in farmer’s problem
r recourse variable
R() recourse function
sp selling price
wi amount of plant i sold
u uncertain variable
Wik weight of chemical i in blend product k

W̄k total production requirement of blend product k

x decision variables
xj planting cost of crop j

xij fraction of component j in chemical i

x̄jk specification of component j in blend product k

wj sales cost of crop j

yj purchase cost of crop j

YYi,actual actual yield of the crop i
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YYi,max maximum possible yield if all the conditions are perfect
Yj fractions of the maximum yield due to corresponding effects j

Z, z objective function

Greek letters
αd Attack probability of a crop disease

(uniform distribution between 0 and 0.2)
αl importance of a particular impurity in the final product
αr fractional rainfall of the yearly average
αs fractional sunlight of the yearly average
θk purification required for blend k to satisfy the impurity constraint
λ Lagrange multipliers/dual variables
σ standard deviation



Chapter 9
The Environmental Trading Problem

9.1 Introduction

The increasing stringency of environmental regulations and the global rise of con-
cerns about the environmental impact of industrial production have led to an increased
focus on waste management decisions as a component of industrial sustainability.
Pollutant credit trading, an approach that provides economic incentives for reducing
pollution, is one novel idea introduced in an attempt to reduce the financial burden of
waste management [56] . Both the US Environmental Protection Agency (USEPA)
and the US Department of Agriculture (USDA) seek to promote this type of market-
based solution. However, industry-level decision making under a pollutant trading
scheme faces many difficulties, especially in the presence of uncertainty. In this
chapter, the L-shaped BONUS algorithm is applied to the pollutant trading prob-
lem to optimize such decisions. This chapter is based on the paper by Shastri and
Diwekar [51].

9.2 Basics of Pollutant Trading

Pollutant trading is a market-based approach to pollution reduction based on the idea
that different pollutant sources have different pollution control costs. Therefore, if
the task of pollutant reduction can be assigned to the facilities with the lowest control
costs, the total cost of pollution control across all pollutant sources is minimized. A
market-based trade mechanism accomplishes this by efficiently allocating pollutant
reduction efforts among sources. With such a system in place, a facility that would
otherwise exceed its allowable pollutant discharge has two options for meeting its
regulatory obligations: (1) reducing its pollutant level or (2) paying another facility
to reduce its pollutant level by an equivalent amount. The pollutant trading system
therefore allows the facility to choose the lower cost option, whereas in the absence
of such a system, it would have to reduce its own pollutant level at any cost.

In the case of watershed based trading, the total amount of pollutants that may
be released into a watershed over time, while allowing the watershed to still meet

© Urmila Diwekar, Amy David 2015 117
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water quality standards, is evaluated by the state or federal authority. This amount, in
combination with factors such as the existing discharge levels, the expected discharge
from nonindustrial sources, and the relative size and economic contributions of each
polluter, leads to the establishment of a regulation such as a total maximum daily
load (TMDL) for each polluter. A polluter may then bring itself into compliance by
applying waste treatment methods, incurring both capital and operating costs that
depend on the type and amount of waste treated, the existing technology, and the
level of reduction to be achieved. If this is found to be a high-cost proposition, the
facility may instead buy “credits” from another polluter, allowing it to release an
amount of discharge greater than its TMDL into the watershed. The polluter that has
sold credits, meanwhile, must reduce its discharge an equivalent amount below its
TMDL [57].

The credit trading market is affected by transaction costs, number of participants,
availability of cost data, and uncertainties related to continued industry participation
and data availability. Trading economics are also influenced by the trading ratio, how
many units of pollutant reduction a source must purchase to receive credit for one
unit of load reduction.

Among the participants in the trading market, each polluter is classified as a point
source (PS) or a nonpoint source (NPS). Point sources are those that have direct
and measurable emissions, such as industries, while nonpoint sources have diffused
emissions that are more difficult to measure, such as agricultural runoffs. Because
nonpoint sources are the primary polluters in most watersheds, from a volumetric
perspective, and because pollution control costs are typically lower for nonpoint
sources, trading between point and nonpoint sources has considerable potential for
pollution reduction.

However, the nonpoint sources are difficult to measure at a reasonable cost, and the
diffusion of the pollutants makes it difficult to estimate the effectiveness of pollution
reduction strategies. Further, pollution from nonpoint sources is often dependent
on stochastic factors such as rainfall and other weather conditions. These factors
introduce a significant amount of uncertainty into the economics of trading between
point and nonpoint sources. Thus, in the presence of multiple polluters in both point
and nonpoint categories, heuristics-based decision making is likely to be suboptimal.
A framework based on mathematical modeling concepts and making use of the
BONUS method can have significant value to industries in analyzing their options.

9.3 Christina Watershed Nutrient Management

The Christina watershed is an important watershed in the Lower Delaware River
(LDR), draining three states and providing up to 100 million gallons of public drink-
ing water per day [48]. The LDR Basin has had ongoing problems with both point
and nonpoint sources of pollution, consisting primarily of industrial discharges, ur-
ban runoff, and agriculture. This has led to concern over both sediment and nutrients
released into the watershed. Sediment consists of loose sand, clay, and other soil
particles caused primarily by soil erosion and decomposition of plants and animals,
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and can be greatly accelerated by human use of land. Nutrients consist of nitrogen
and phosphorus that find their way into the watershed through agricultural, storm
water, wastewater, household, and industrial runoff [24].

Various watersheds within the LDR basin have been declared “impaired,” hav-
ing pollutant levels that exceed those allowable for maintenance of water quality.
Thirty-nine segments of the basin have been declared impaired due to their low lev-
els of dissolved oxygen (DO) and nutrient additions from various point and nonpoint
sources, including industrial and municipal point sources, and agricultural, super-
fund, and hydromodification nonpoint sources are considered to be the major cause.
Authorities have proposed two different TMDLs for the Christina watershed, a low-
flow TMDL focusing on the impact of nitrogen and phosphorus additions from the
point sources, and a high-flow TMDL accounting for the nonpoint source additions
of bacteria and sediment. Trading has been proposed as a viable option to achieve
reductions in phosphorus, total nitrogen, ammonia nitrogen, and carbonaceous bio-
chemical oxygen demand (CBOD), allowing the point source load allocations to
meet the low-flow TMDL targets.

The simplest trading mechanism would involve trading among the various point
sources. However, opportunities for pollutant reduction in this manner are limited by
similar treatment costs throughout the watershed. A more effective trading mecha-
nism would instead leverage trading between point and nonpoint sources, as nonpoint
sources offer significant opportunity to reduce pollution by converting existing agri-
cultural land to forest or implementing best management practices (BMP) on the
cultivated lands. Therefore, this chapter proposes a trading mechanism by which
land is allocated to a particular point source and the point source is responsible
for management of the nonpoint source to offset nutrient discharges from the point
source facility.

9.4 Trading Problem Formulation

A general trading problem applicable to any watershed is formulated, and subse-
quently applied to the Christina watershed case study. Because of the uncertainity
associated with the nonpoint sources, a stochastic programming problem is required.
The problem considers trading between a set of point sources and a single nonpoint
source, assumed to be a farm. All sources discharge pollutants into a common body
of water, such as a lake. The maximum amount of discharge per day into the body
of water is statutorily regulated. The model does not consider regulations on non-
point source emissions, a simplification that reflects actual regulations that exclude
nonpoint sources due to the impossibility of accurately measuring their emissions.
The development of TMDL results, therefore, in specific load allocations for each
point source that becomes the baseline for trading between the point source and
the nonpoint source. Note that the reduction techniques for the nonpoint source are
nonlinearly dependent on the type and quantity of pollutant being treated.

Uncertainties in both inputs and outputs to the sources necessitate that the problem
be formulated as a stochastic program. Let i = 1, ..., P represent the set of point



120 9 The Environmental Trading Problem

source and j = 1, ..., M represent the chemicals that are regulated. Assume that the
current pollutant discharge levels and the discharge reduction cost are known for
each chemical at every point source.

Additional parameters characterizing each point source are:

• D(i), the total volumetric discharge from point source i, expressed as volume/time
• ep0(i, j ), the pretreatment discharge quantity of chemical j from point source i,

expressed as mass/volume
• cp(i, j ), the cost of treating chemical j at point source i, expressed as dollars/mass.

Some point sources have uncertainties in the measurement of their discharge quality
and quantity, typically introduced when a point source treats incoming wastewater
from a variety of sources, and resulting in both inputs and outputs that vary within
certain limits. For example, a publicly owned water treatment plant (POWT) may
treat sewage waste as well as water runoffs, the latter having a variable quantity and
content. Therefore, only cp(i, j ) is a deterministic parameter for all i and j ; both
D(i) and ep0(i, j ) contain uncertainty.

The nonpoint source is assumed to have a fixed amount of available land that can
be divided among all point sources to implement treatment technologies (BMP). The
nonpoint source is characterized by:

• Lmax , the maximum amount of nonpoint source land available for trading,
expressed as area

• en0, the pretreatment discharge quantity of chemical j from the nonpoint source,
expressed as mass·area/time

• cn(j ), the cost for the nonpoint source discharge reduction of chemical j ,
expressed as dollars/area

• bNPS(j ), the nonpoint source abatement efficiency of chemical j

• qn(j ) = en0(j )bNPS(j ), the abatement in nonpoint source discharge of chemical
j , expressed as mass·area/time.

As previously mentioned, there are difficulties in measuring both the emissions and
the reduction efficiencies for a particular technology at a nonpoint source, thus the
actual reductions achieved by BMP are not precisely known. Therefore, eno and
bNPS (and thus qn(j )) contain uncertainty, while other parameters are assumed to be
known for all i and j .

In addition to the waste load allocation for each point source, there are regula-
tory restrictions on the maximum amount of any chemical that can be discharged
into the water body at a particular location. Enforcing this limit ensures that the
implementation of pollutant trading does not result in the creation of localized points
of high pollutant concentration known as “hot spots.” Accordingly, the model in-
cludes zred (ij ) representing the targeted reduction in discharge of chemical j by
point source i (expressed as mass/time) and zallowed (j ) representing the maximum
permitted discharge of chemical j at any single location (expressed as mass/time).

Two decisions are to be made, with the goal of achieving the reduction targets at
the lowest total cost:

1. How much end-of-pipe treatment reduction should be achieved at each point
source?
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2. How much land (NPS) should be allocated to each point source to achieve further
reductions?

Accordingly, the decision variables in the model are qp(i, j ), the discharge abatement
of chemical j at point source i (expressed as mass/volume), and L(i, j ), the land
allocated for trading by point source i to treat chemical j . The objective function is
therefore

Minf1(cn, L) + E[f2(D, cp, qp)], (9.1)

where E is the expectation operator over the uncertain parameters and f1 and f2

are nonlinear functions of the respective variables. The first term in the objective
represents the cost incurred due to trading through the allocation of land for each
point source from the nonpoint source, while the second term represents the expected
value of the total end-of-pipe treatment cost incurred by the point source to satisfy
the regulations in the presence of uncertainty.

A feasible solution to this problem must meet the following constraints :
∑

i,j

L(i, j ) ≤ Lmax (9.2)

E
[
D(i, j )qp(i, j ) + L(i, j )qn(j )

] ≥ zred (i, j ) ∀ (i, j ) (9.3)

E
[
D(i, j )

(
ep0(i, j ) − qp(i, j )

)] ≤ zallowed (j ) ∀ (i, j ) (9.4)

0 ≤ qp(i, j ) ≤ ep0(i, j ) ∀ (i, j ) (9.5)

qn(j ) = en0(j )bNPS(j ) ∀ (i, j ) (9.6)

The first constraint (9.2) ensures that the total land allocated to all point sources
does not exceed the amount of land available at the nonpoint sources. The second set
of constraints (9.3) ensures that each point source achieves its individual reduction
target for each chemical, with or without trading, while the third set (9.4) ensures that
the emission of pollutant j at any location does not exceed the maximum allowable
amount. The reduction of each chemical at each point source is restricted to values
between zero and the initial concentration by the fourth set of constraints (9.5).
Finally, the fifth set of constraints (9.6) models the effect of uncertainty on the
problem by relating the pollutant reduction by the nonpoint source (qn(j )) to the
uncertain parameters en0(j ) and bNPS(j ).

The problem can be made more tractable by converting it into a two-stage stochas-
tic programming problem with recourse. The first-stage decisions are land allocations
(the trading itself) between the point source and the nonpoint source, L(i, j ), and the
second-stage decisions are the amounts of point source abatement, qp(i, j ), achieved
by end-of-pipe treatment. The two-stage formulation, including specific definitions
of functions f1 and f2, is given as

First − stage problem (9.7)

Min

P∑

i=1

M∑

j=1

cn(i, j )L(i, j )αj + E
[
R(L, qp, qn, D)

]
(9.8)
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Table 9.1 Point source details for Christina River Basin

Total
discharge

Current discharge
(kg/day)

Targeted
(% reduction)

Treatment (cost,
$/kg)

Point source (MGDa) N P N P N P

1 0.4 30.30 30.30 0 13 15.6 5.2

2 1.028 233.63 38.94 26 26 14 4.9

3 7.5 568.18 568.18 25 0 10.9 3.8

4 3.85 291.66 299.76 0 68 12.7 4.2

5 0.6 68.18 45.45 10 10 15.4 5.1

6 1.1 125.0 313.72 34 83 14.4 5

7 0.72 5.45 5.45 5 5 18.3 5.4

8 0.7 171.06 26.51 69 0 15.4 5.12

a MGD Millions of gallons per day

subject to :

P∑

i=1

M∑

j=1

L(i, j ) ≤ Lmax , (9.9)

where R is the recourse function. The term αj is a constant for chemical j that
represents the nonlinear relationship between land allocation and pollutant reduction.

Second − stage problem (9.10)

Min E
[
R(L, qp, qn, D)

] =
Nsamp∑

n=1

P∑

i=1

M∑

j=1

D(i, j , n)cp(i, j )qp(i, j , n) (9.11)

subject to :

D(i, j , n)qp(i, j ) + L(i, j )qn(j , n) ≥ zred (i, j , n) ∀ (i, j , n) (9.12)

D(i, j , n)
[
ep0(i, j ) − qp(i, j , n)

] ≤ zallowed (j ) ∀ (i, j , n) (9.13)

0 ≤ qp(i, j ) ≤ ep0(i, j ) ∀ (i, j ) (9.14)

qn(j , n) = en0(j )bNPS(j , n) ∀ (j , n), (9.15)

where Nsamp is the sample size used to represent the uncertain space in the
optimization algorithm, and n is a particular sample from that space.

For the Christina watershed, the authorities have recommended 8 point sources
for trading, out of a total of 104 point sources. Two of the eight are private industries,
while the other are municipal polluters. Two nutrients, nitrogen and phosphorus, are
considered tradable commodities, and both have known TMDL-generated reduction
targets at each point source. The total volumetric discharge, current discharge levels,
and reduction targets for both pollutants are given in Table 9.1, along with the mean
values for the cost of end-of-pipe treatment at each point source. Various parameters
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Table 9.2 Point source details of NPS emission and treatment

Nitrogen Phosphorus

Mean value of emission quantity (kg per unit area per day) 20.2 30.5

Standard deviation in emission quantity 2.0 2.0

BMP cost ($ per unit area) 17.18 17.18

BMP nutrient reduction efficiency 0.50 0.39

Standard deviation in reduction efficiency 0.02 0.02

BMP best management practice
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Fig. 9.1 Variation of the objective function result with sample size

of the BMPs along with the average pretrading discharges of both nutrients for the
nonpoint source are given in Table 9.2. The maximum allowed concentrations at
a discharge point (zallowed ) are 450 and 570 kg/day for nitrogen and phosphorus,
respectively. The total quantity of land available for trading (Lmax) is 500 units.
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9.5 Results

To show the efficacy of the L-shaped BONUS method algorithm compared to the stan-
dard L-shaped method, and to ensure the benefits of the L-shaped BONUS method
are independent of the sampling technique used, the problem was solved in four
ways:

• Standard L-shaped method with Hammersley sequence sampling (HSS) technique
• Standard L-shaped method with Monte Carlo sampling (MCS ) technique
• L-shaped BONUS method with HSS technique
• L-shaped BONUS method with MCS technique.

For each methodology, the value of the objective function (total cost) is shown as
a function of sample size in Fig. 9.1. The value of land allocated by point source
8 toward nitrogen pollution trading (L(8, 1)), a representative decision variable, is
shown in Fig. 9.2. While it can be seen that the optimization method has a larger
effect on the value of the objective function than the sampling technique, the variation
among all four methodologies is just larger than 1 %, well within acceptable tolerance
limits for the solution of a stochastic nonlinear program. The plot for the decision
variable shows an even smaller average difference between the standard L-shaped
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method and the L-shaped BONUS method (0.05 % for HSS and 0.26 % for MCS).
This indicates that the reweighting approximation used in L-shaped BONUS method
does not sacrifice accuracy in calculating results.

Figure 9.3 shows the iteration ratio, the number of iterations required for the
standard L-shaped method divided by the number of iterations required for the L-
shaped BONUS method, as a function of sample size. The iteration ratio generally
increases as the sample size gets larger; thus, the larger the sample size, the greater
the computational savings using the BONUS method. Because Figs. 9.1 and 9.2
show that the value of both the objective function and the representative decision
variable reaches a steady-state value as the sample size is increased, indicating that
a large sample size is needed for accurate results, it can therefore be concluded that
the L-shaped BONUS method is of significant utility in reducing the computational
cost of the environmental trading problem.

The solution to the trading problem is qualitatively similar under all four solution
methods: to minimize the total cost, every point source needs to achieve part of its
required reductions through trading with the nonpoint source. Such a decision is
unlikely to result when each point source makes an independent decision, without
consideration of the overall cost of reductions. Therefore, the results strongly suggest
that a rigorous method and systematic mathematical analysis should be performed
to achieve environmental benefits at the lowest possible cost.
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9.6 Summary

In this chapter, because the environmental trading problem that seeks to manage
nutrient pollution in the Christina River Basin of the LDR is formulated as a two-stage
stochastic programming problem, the use of a specialized stochastic programming
solution method, such as the L-shaped method, is appropriate for finding its solution.
The L-shaped BONUS algorithm, combining the standard L-shaped method with the
BONUS reweighting scheme, provides results within 2 % of those provided by the
standard L-shaped method while reducing iterations by a factor of more than 20 for
large sample sizes. Therefore, it is concluded that the L-shaped BONUS method
provides both accurate results and a significant reduction in computational cost.

Notations

bNPS(j ) nonpoint source abatement efficiency of chemical j

cn(j ) cost for the nonpoint source discharge reduction of chemical j ,
expressed as dollars/area

cp(i, j ) cost of treating chemical j at point source i, expressed as
dollars/mass

D(i) total volumetric discharge from point source i, expressed as
volume/time

ep0(i, j ) pretreatment discharge quantity of chemical j from point source
i, expressed as mass/volume

en0 pretreatment discharge quantity of chemical j from the nonpoint
source, expressed as mass·area/time

L(i, j ) land allocated for trading by point source i to treat chemical j

Lmax maximum amount of nonpoint source land available for trading,
expressed as area

M number of regulated chemicals
n a particular sample from the uncertain space
Nsamp the sample size used to represent the uncertain space in the

optimization algorithm
P number of point sources
qn(j ) = en0(j ) abatement in nonpoint source discharge of chemical j , expressed
bNPS(j ) as mass·area/time
qp(i, j ) discharge abatement of chemical j at PS i (expressed as

mass/volume)
R recourse function
zred (ij ) targeted reduction in discharge of chemical j by point source i

(expressed as mass/time)
zallowed (j ) maximum permitted discharge of chemical j at any single

location (expressed as mass/time)
Greek letters
αj cost exponent



Chapter 10
Water Security Networks

10.1 Introduction

Because of the importance of water to all life on Earth, water security has become a
critical matter in national and international sustainability. Contamination through ei-
ther malicious (e.g., terrorist attacks) or accidental means (e.g., industrial accidents)
could quickly become a catastrophic event. Therefore, water utilities and their related
government agencies perceive a growing need to detect and minimize water contam-
ination in distributed water networks. Much attention has been given to optimization
of water network design, such as network capacity, pipe diameter and length, com-
ponent failures, etc., as a means of minimizing risk (see review for sensor placement
in water networks [17]). However, work on qualitative aspects of water network
design, such as chemical propagation, concentration of disinfectants, contamination
minimization, etc., is far less prominent, though such factors should be considered
at the design stage to best make water networks secure from contamination.

One approach given little attention in the literature thus far is the use of sensors
in the water distribution network that can detect contaminated water and provide
feedback from which appropriate control measures could be taken to minimize the
risk. In determining optimal sensor placement, it is necessary to consider the trade-
off between the cost of sensors and the risks of contamination. Noise factors and
uncertainties in contamination scenarios make it challenging to find a robust solu-
tion in the face of risk. One major source of uncertainty is changing water demands
at various junctions within the network, which stems from both uncertainty with
time (such as the difference in demand between morning and evening) and uncer-
tainty about the actual value at a particular time. Another is varying probability of
contamination at a specific node. Therefore, the problem requires a methodology
that identifies optimum locations while accounting for these uncertainties, and thus
becomes a stochastic programming problem.

In this chapter, the demand uncertainty is extensively modeled, affecting both the
constraints and the objective function of the stochastic programming problem. The
problem is thereby transformed into a two-stage stochastic programming problem
with recourse. The solution is then found using the L-shaped BONUS algorithm. This
method gives results that are truly optimal in an actual water distribution network.
This chapter is based on Shastri and Diwekar [50].

© Urmila Diwekar, Amy David 2015 127
U. Diwekar, A. David, BONUS Algorithm for Large Scale Stochastic Nonlinear
Programming Problems, SpringerBriefs in Optimization, DOI 10.1007/978-1-4939-2282-6_10
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Fig. 10.1 Example water network

10.2 Motivation and Prior Work

A deterministic approach to the water network security problem is explored in [1] .
Here, the risk from contamination is minimized by using sensors for timely detection,
with the objective of minimizing total sensor cost. The problem is formulated as an
integer program (OP), modeling a water network as a graph G = (V , E) (see [3] for
more on graph theory), where E is the set of edges representing pipes and V is the set
of nodes where pipes meet (reservoirs, tanks, consumption points, etc.). An example
network is shown in Fig. 10.1. A contaminating event, or “attack” is modeled as the
release of a large volume of a harmful contaminant at a single point in the network
with a single injection. The water network simulator EPANET is used to determine
the water flow, given the set of available water sources, and assuming that the current
demand pattern holds steady for sufficiently long. The IP formulation is given as

min Σn
i=1Σ

P
p=1Σ

n
j=1αipCipj δjp (10.1)

where (10.2)

Cipi = 1, i = 1, ..., n; p = 1, ..., P (10.3)
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sij = sji , i = 1, ..., n − 1; i < j (10.4)

Cipj ≥ Cipk − skj (i, k, j ) ∈ Es.t.fkjp = 1 (10.5)
∑

(i,j )∈E,i<j

sij ≤ Smax ; sij ∈ {0, 1}; (i, j ) ∈ E. (10.6)

In this representation, deterministic parameter P is the number of flow patterns and
Smax is the maximum number of sensors that can be placed. Uncertainty is introduced
through αip, the probability of an attack at node vi during flow pattern p (conditional
on exactly one attack on a node during some flow pattern) and δip, the population
density at node vi while flow p is active. Both these sets of parameters are modeled
as a known probability distribution (either uniform or normal ).

fkjp describes the flow pattern: if water flows from node k to node j in flow pattern
p, then fkjp = 1 and 0 otherwise. Cipj is the contamination indicator; Cipj = 1 if
node vj is contaminated by an attack at node vi during pattern p, and 0 otherwise.
Both fkjp and Cipj are determined through use of the EPANET simulator of water
networks (see [40]). Decision variable sij is 1 if a sensor is placed on the edge (vi , vj )
and 0 otherwise.

The objective function considers both the probability of an attack and the severity
of an attack, the latter influenced by both the number of nodes affected and the
population density at each of those nodes, for a given flow pattern. The first set of
constraints ensures that a node is contaminated if directly attacked, and the second
indicates that a single sensor allows for sensing of water flow in either direction within
an edge (pipe). The third set of constraints propagates contamination throughout the
water network: if there is positive flow from vi to vj and no sensor on that edge, then
contamination at vi results in contamination at vj . The fourth constraint limits the
sensors placed to the total number of sensors available. The final set of constraints
enforces the binary nature of the decision variables, which, in turn, enforces the same
for the contamination indicators. The IP formulation therefore seeks to minimize the
overall impact of an attack, by placing sensors so as to minimize the number of
people whose water supply would be contaminated, while remaining within a fixed
total for the number of sensors.

However, this formulation is limited in that it assumes that demand at each node is
determined solely by the population density at that node. The network flow patterns
are therefore determined by the population density. In reality, demand can vary with
time of day, season, etc., and thereby change the network flow, rendering the objective
function insufficient for capturing the true risk. A similar shortcoming occurs in the
constraints, rendering the IP formulation insufficient for producing an optimal result.

In order to better capture the effects of uncertainty, the problem can be modified
as follows:

min Σ
Nsamp

l=1 Σn
i=1Σ

P
p=1Σ

n
j=1αip(l)δjp(l)Cipj (10.7)

where

Cipi = 1, i = 1, ..., n; p = 1, ..., P (10.8)
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sij = sji , i = 1, ..., n − 1; i < j (10.9)

Cipj ≥ Cipk − skj (i, k, j ) ∈ Es.t.fkjp = 1 (10.10)
∑

(i,j )∈E,i<j

sij ≤ Smax ; sij ∈ {0, 1}; (i, j ) ∈ E. (10.11)

The stochastic formulation can be solved using sampling-based techniques, wherein
the distributions of the uncertain parameters are approximated by a sample set. Here,
Nsamp is the number of samples to be used in such a technique. This formulation
weights the objective function according to the uncertainty of the population den-
sity. Further, flow demands are taken to be directly proportional to the population
density, so flow throughout the network may change according to the uncertainty of
population density. This represents a significant improvement over the initial IP.

However, this formulation fails to consider the cost of sensors. Sensors are avail-
able in a broad range of resolutions and accuracy, both of which vary with cost.
Considering both the costs of sensors, βij , and the set of uncertain parameters, u,
allows for the formulation of the problem as a two-stage stochastic programming
problem with recourse.

First-stage problem:

min Σ(i,k)∈Eβij sij + E[R(C, s, u)] (10.12)

sij = sji i = 1, ..., n − 1; i < j (10.13)

Σ(i,j )∈E,i<j sij ≤ Smaxsij ∈ (0, 1); (i, j ) ∈ E (10.14)

Second-stage problem:

min E[R(C, s, u)] = Σ
Nsamp

l=1 Σn
i=1Σ

P
p=1Σ

n
j=1Sαip(l)δjp(l)Cipj (10.15)

cipi = 1 i = 1, ..., n; p = 1, ..., P (10.16)

Cipj ≥ Cipk − skj (i, k, j ) ∈ E; s.t.fkjp = 1 (10.17)

Here, the first-stage decision variables are the sensor placement represented by sij ,
and the recourse variables are the contamination indicators represented by Cipj . S

is the rededication cost associated with each person affected by the contamination
(e.g., treatment cost). Note the similarity of the second-stage problem to the modified
problem given in Eqs. 10.7 through 10.11; the only difference is the addition of S,
so as to properly weight the cost of remediation against the cost of sensors. Again,
Nsamp is used to discretize the uncertain space.

10.3 Solution Methodology

A two-stage stochastic programming problem with recourse, using sampling to
approximate continuous uncertain space, can be solved using sampling based opti-
mization methods. Using the L-shaped method, the first-stage problem uses a linear
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approximation of the second-stage recourse function and the additional constraints
sequentially generated in the the second stage to fix the first-stage decision vari-
ables. These first-stage decision variables are then used as inputs to the second stage
to compute the exact value of the recourse function using the generated scenarios,
which is traditionally done by solving the dual of the second-stage problem for every
scenario.

In this particular problem, the second-stage problem depends on the values of Cipj

and fijp, thus, the EPANET simulation of the water network would need to be run
for every sampled value of δjp. This would be computationally expensive, as a large
number of samples are required, but can be remedied by instead using the L-shaped
BONUS algorithm, as described in Chap. 8. The EPANET simulation is therefore
performed for only one set of uniform samples. For the subsequent iterations, the
BONUS reweighting scheme is used. Note that the Hammersly sequence sampling
(HSS ) technique is used for sampling because of the advantages provided by its k

dimensional uniformity (see [23] and Wang et al. 2004).

10.3.1 Use of BONUS Reweighting for Pattern Estimation

A particular network flow pattern, p, is mathematically defined by the various fijp

values in the network. Use of the BONUS reweighting scheme for determining flow
patterns was validated using the following procedure:

1. Take a fixed number of samples from both a uniform distribution and a normal
distribution on the set of population densities at each node (δij ).

2. Perform EPANET simulations for every sample, recording the number of times
that binary variable fijp = 1. For example, if 100 simulations are performed, and
f14p takes a value of 1 in 56 of the simulations, the value 56 is noted for f14p,
indicating that the there was positive water flow from node 1 to node 4 in 56 out
of the 100 simulations.

3. Estimate the values for fijp using the BONUS reweighting scheme,
4. Compare the values found in step 2 for the normal distribution to those calculated

in step 3, and calculate an error of estimation as the absolute value of the difference
between them.

5. Calculate the standard deviation of the error of estimation.

These steps were repeated for various sample sizes ranging from 100 to 700. As
shown in Fig. 10.2, the standard deviation of the estimation error with 700 samples
is about 15 % of that with 100 samples. Therefore, the larger sample size provides
a significant improvement in the accuracy of the reweighting scheme. Additionally,
the number of uncertain nodes was varied from 1 to 8, with the former resulting in
an estimation error of 0.13, while the latter resulted in an estimation error of 13.31.
Thus, estimation quality degrades with the number of nodes in the network.
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Fig. 10.2 Estimation error as a function of sample size

10.3.2 Back Estimation of Flow Patterns

The BONUS reweighting approach gives the expected values of all fijp in the given
network for a normal distribution on each δij . To solve the sensor placement problem,
these fijp values must be used to find the frequency of occurrence of various flow
patterns, i.e., how many times a particular flow pattern appears, given a particular
number of simulations, n. This is done through an optimization problem that seeks to
achieve the estimation value of the summations of fij over all p found in the previous
section, using the fijp values of various known patterns. For example, if f14 is known
to be 56, and the total number of flow patterns to be considered, designated np, is
100, then the optimization problem attempts to find a set of 100 flow patterns such
that there is positive flow from node 1 to node 4 in 56 of them.

Mathematically, this problem is represented as

min ΠP
p=1np (10.18)

subject to: ΣP
p=1np = 100 (10.19)

ΣP
p=1npfijp = Σ

Nsamp

m=1 f̃ij (m) ∀i, j , (10.20)
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where f̃ij is the total number of times there is positive flow from node i to node
j , as estimated by the BONUS reweighting scheme. The result of this optimization
problem can then be directly incorporated into the stochastic problem formulation.

10.4 Results

The sensor placement problem was solved for the water network depicted in Fig. 10.1
using three different formulations:

1. Deterministic formulation (method A): Considering the mean demands and two
basic flow patterns, i.e., no uncertainty

2. Formulation with noise consideration (method B): Considering uncertain de-
mands only affecting the objective function, i.e., the original formulation modified
to include sensor costs and cost per affected person

3. Stochastic formulation (method C): Considering uncertain demands affecting
both the objective function and the constraints and solved using the L-shaped
BONUS algorithm.

In all three solution methods, the attack probability at various nodes was considered
to be fixed and equal during any pattern. Two demand patterns were considered with
significant shifts in demand (which may correspond to, for example, differing times
of day in an actual network). For methods B and C, the HSS technique was used
to generate 100 samples. Additionally, in method C, various flow patterns for the
uncertain demands were identified for a base case uniform sample via simulations in
EPANET, resulting in ten total flow patterns, eight more than the two basic patterns
considered in methods A and B.

Two possible sensor types were considered: a low-cost sensor for $ 1,500,000 per
sensor and a high-cost sensor for $ 4,500,000 per sensor. The unit cost of treatment,
S, was estimated at $ 30,000. While it is difficult to estimate the cost of treatment as
it is dependent on both the exact nature of the contamination and health care costs in
a particular location, the $ 30,000 estimate provides a reasonable trade-off between
the two types of cost found in the objective function: sensors and treatment.

The problem was solved by varying the maximum number of allowed sensors from
1 to 14. Selected results are presented in Tables 10.1 and 10.2. Table 10.1 gives the
value of the objective function and risk output by the solution method used. Table 10.2
gives the results when samples of the uncertain problem parameters are taken and the
uncertainty is propagated through the model output by the corresponding solution
method. Note that the results for method C are identical in the two tables; this is
because method C performs a probabilistic analysis in the initial decision making.

The results show that the actual cost and risk calculated using method C are
less than or equal to the actual cost and risk calculated under methods A and B.
In the cases where method C provides a lower cost, this indicates that methods A
and B result in suboptimal decisions. Though the percentage risk may be higher
under method C, the total objective function is still better minimized when using this
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Table 10.1 Comparison of estimated cost and risk for different solution methods

Method A Method B Method C

Max. # of
sensors

Type of
sensor

Cost
($ x 107)

% risk Cost ($ x 107) % risk Cost
($ x 107)

% risk

1 Low cost 2.1875 29.375 2.1067 29.647 2.2860 32.364

High cost 2.4875 29.375 2.4045 29.647 2.5860 32.364

2 Low cost 1.8625 22.727 1.7954 22.658 1.9914 25.628

High cost 2.4625 22.727 2.3937 22.658 2.5860 32.364

4 Low cost 1.7125 16.856 1.6964 18.885 1.8062 18.277

High cost 2.4625 22.727 2.3937 22.658 2.5860 32.364

Table 10.2 Comparison of actual cost and risk for different solution methods

Method A Method B Method C

Max. # of
sensors

Type of
sensor

Cost
($ x 107)

% risk Cost ($ x 107) % risk Cost
($ x 107)

% risk

1 Low cost 2.2860 32.364 2.2860 32.364 2.2860 32.364

High cost 2.5860 32.364 2.5860 32.364 2.5860 32.364

2 Low cost 1.9914 25.628 2.1193 27.565 1.9914 25.628

High cost 2.5914 25.628 2.7193 27.565 2.5860 32.364

4 Low cost 1.9738 20.816 1.9106 19.858 1.8062 18.277

High cost 2.5917 25.628 2.7193 27.565 2.5860 32.364

method. The differences among the estimated objective and risk among methods are
as high as 30 % in some cases. Because the estimated values for method C are the
actual values, this difference emphasizes the extent of the suboptimality of results
found using method A or method B.

The optimal sensor locations shown in Figs. 10.3 and 10.4 are for low and high-
cost sensors, respectively. The sensor locations are identified by a notation consisting
of the method used and the maximum number of sensors allowed in that particular
solution. For example, method B with two low-cost sensors permitted returns opti-
mal locations of sensors along branches 10-11 and 12-22. Therefore, “b2” appears
alongside these branches in the diagram.

Branch 10-11 is identified as a sensor location for all methods used. This is
unsurprising, given that it is one of the entry points into the network, and water
therefore flows from 10 to 11 in the majority of flow patterns studied. However, the
placement of additional sensors varies by method. When low-cost sensors are used,
methods A and C place a second sensor at branch 3-22, while method B places a
sensor at branch 12-12. This is because, in the two basic flow patterns, the flow in
branch 12-22 is always positive, thus, water flows from 12 to 22 and method B does
not consider a contamination at 3 or 22 to be a risk to node 12. By contrast, method
C accounts for the possibility of a reverse flow in this branch, i.e., water may flow
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b2

Fig. 10.3 Placement of low-cost sensors for different methods

from 22 to 12, and a contamination at 3 or 22 could indeed affect node 12. Similar
reasons can be identified for other differences among solution methods, and we can
therefore conclude that method C does a better job of accounting for true risk over
methods A and B, which exclude potential real-life events from consideration.

To examine the computational advantages of the L-shaped BONUS algorithm, as
compared to the traditional L-shaped algorithm, selected cases were solved using
both techniques. For a sample size of 100, use of the L-shaped BONUS method
proved to be five times faster. Further, the computational time increases exponen-
tially with the sample size for the standard L-shaped method, but linearly for the
L-shaped BONUS method. The comparisons also showed an average difference in
the cost and risk percentages of about 4 and 5.4 %, respectively. Thus, accuracy is
not compromised through the use of BONUS reweighting.
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Fig. 10.4 Placement of high-cost sensors for different methods

10.5 Summary

The problem of optimal sensor placement in a water distribution network is critical
to securing a water supply, and the trade-offs between risk and the cost of sensing
a contamination must be considered in determining optimal sensor locations. Exist-
ing problem formulations fail to adequately account for uncertain demands and the
multitude of flow patterns that may occur as a result. A stochastic programming for-
mulation that considers uncertainty in both the objective function and the constraints
is therefore needed to provide optimal results. The L-shaped BONUS algorithm,
which combines the traditional L-shaped method with the BONUS reweighting
scheme for flow pattern estimation, allows this formulation to be solved in a short
amount of time, and is shown to give accurate results.
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Notations

Cipj contamination indicator; Cipj = 1
if node vj is contaminated by an attack at node vi

during pattern p, and 0 otherwise
E set of edges representing pipes
fij total number of flow patterns that

contain positive flow from node vi to node vj

fkjp parameter describing the flow pattern; if water flows from node k

to node j in flow pattern p, then fkjp = 1 and 0 otherwise
G graph
np total number of flow patterns to be considered
Nsamp number of samples used in a stochastic solution method
P is the number of flow patterns
S remediation cost associated with each person

affected by the contamination (e.g., treatment cost)
sij decision variable representing sensor placement;

1 if a sensor is placed on the edge (vi , vj ) and 0 otherwise
Smax maximum number of sensors that can be placed
u set of uncertain parameters
V set of nodes where pipes meet (reservoirs, tanks, consumption points, etc.)

Greek letters
αip the probability of an attack at node vi during flow pattern p

βij cost of a sensor
δip the population density at node vi while flow p is active
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