
Chapter 7
Model-Based Cognitive Neuroscience: A
Conceptual Introduction

Birte U. Forstmann and Eric-Jan Wagenmakers

Abstract This tutorial chapter shows how the separate fields of mathematical psy-
chology and cognitive neuroscience can interact to their mutual benefit. Historically,
the field of mathematical psychology is mostly concerned with formal theories of
behavior, whereas cognitive neuroscience is mostly concerned with empirical mea-
surements of brain activity. Despite these superficial differences in method, the
ultimate goal of both disciplines is the same: to understand the workings of hu-
man cognition. In recognition of this common purpose, mathematical psychologists
have recently started to apply their models in cognitive neuroscience, and cognitive
neuroscientists have borrowed and extended key ideas that originated from mathe-
matical psychology. This chapter consists of three main sections: the first describes
the field of mathematical psychology, the second describes the field of cognitive neu-
roscience, and the third describes their recent combination: model-based cognitive
neuroscience.

7.1 Introduction

The griffin is a creature with the body of a lion and the head and wings of an eagle.
This mythical hybrid is thought to symbolize the rule over two empires, one on
the earth (the lion part) and the other in the skies (the eagle part). The preceding
six tutorial chapters may have given the impression that the field of model-based
cognitive neuroscience is similar to a griffin in that it represents the union of two
fundamentally incompatible disciplines. After all, the methods and concepts from
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Fig. 7.1 The griffin—part
lion, part eagle—as depicted
in Jonston (1660); copper
engraving by Matthius
Merian

the field of formal modeling, explained in Chaps. 1, 2, and 3, appear to have little
in common with the methods and concepts from the field of cognitive neuroscience
as discussed in Chaps. 4, 5, and 6. The goal of this tutorial chapter is to explain
that this impression is mistaken—the griffin analogy is apt because it highlights the
added possibilities and novel insights that can be obtained when formal models for
behavior are combined with methods from cognitive neuroscience ([1; Fig. 7.1).

In this chapter we explain why it is natural to combine behavioral modeling
with cognitive neuroscience; furthermore, we illustrate the benefits of the symbiotic
relationship between the two disciplines by means of concrete examples. However,
before we discuss our model-neuroscience griffin in detail, it is informative to first
discuss its component disciplines separately.

7.2 Mathematical Psychology

Mathematical psychologists are concerned with the formal analysis of human be-
havior. Objects of study include perception, decision-making, learning, memory,
attention, categorization, preference judgments, and emotion. Whenever researchers
propose, extend, or test formal models of human behavior they are practising math-
ematical psychology. Thus, the field of mathematical psychology is relatively broad,
and defined more by method than by topic or subject matter. To give you an impres-
sion of the work done by mathematical psychologists, Table 7.1 provides an overview
of the articles published in the June 2012 issue of the Journal of Mathematical
Psychology.

The inner core of card-carrying mathematical psychologists is comprised of only
about a few hundred researchers, and consequently progress in the field can be
agonizingly slow. In his 2008 editorial in the Journal of Mathematical Psychology,
the society’s president Jim Townsend wrote:

It can prove a frustrating experience to compare psychology’s pace of advance with progress
in the ‘hard’ sciences. [...] steps in filling in data about a phenomenon not to mention testing
of major theoretical issues and models, seem to occur with all the urgency of a glacier. One
may wait years, before a modeler picks up the scent of an intriguing theoretical problem and
carries it ahead. It is disheartening to contrast our situation with, say, that of microbiology.
[9, p. 270]
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Table 7.1 Articles published in the June 2012 issue of the Journal of Mathematical Psychology

Title Reference

A tutorial on the Bayesian approach for analyzing structural equation models [2]

Symmetry axiom of Haken-Kelso-Bunz coordination dynamics revisited in the
context of cognitive activity

[3]

Quantum-like generalization of the Bayesian updating scheme for objective and
subjective mental uncertainties

[4]

Torgerson’s conjecture and Luce’s magnitude production representation imply an
empirically false property

[5]

A predictive approach to nonparametric inference for adaptive sequential sampling
of psychophysical experiments

[6]

On a signal detection approach to m-alternative forced choice with bias, with
maximum likelihood and Bayesian approaches to estimation

[7]

How to measure post-error slowing: A confound and a simple solution [8]

One solution to this glacier-like progress is for mathematical psychologists to collab-
orate with researchers from other disciplines; when more researchers are interested
in a particular phenomenon this greatly increases the speed with which new discov-
eries are made. This is in fact exactly what happened when cognitive neuroscientists
became interested in quantitative models for speeded decision making (e.g., [10–12];
prior to this development, such models were proposed, adjusted, and tested only by
a handful of mathematical psychologists—for example, from 1978 to 2001 Roger
Ratcliff stood alone in his persistent efforts to promote the drift diffusion model as a
comprehensive account of human performance in speeded two-choice tasks.

7.2.1 The Drift Diffusion Model

In the drift diffusion model (DDM), shown in Fig. 7.2, noisy information is accumu-
lated over time until a decision threshold is reached and a response is initiated. The
DDM provides a formal account of how people make speeded decisions between two
choice alternatives. In other words, the model yields parameter estimates (e.g., for
drift rate and boundary separation) that represent specific psychological processes
(e.g., ability and response caution) in order to account for error rates as well as
response time distributions for both correct choices and errors. Put differently, the
DDM takes observed behavior—which may be difficult to interpret—and decom-
poses it into psychological processes that are easier to interpret. For instance, the
boundary separation parameter in the DDM reflects the amount of information that
a participant seeks to accumulate before being confident enough to respond. Higher
levels of boundary separation reflect a more cautious response regime, one in which
responding is slow but errors are few.
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Fig. 7.2 A drift diffusion model for the lexical decision task. In this task, the participant is shown
a letter string and has to decide quickly whether it is an existing word (e.g., tiger) or not (e.g.,
drapa). Noisy evidence is accumulated over time until a boundary is reached and the corresponding
response is initiated. Drift rate quantifies decision difficulty and boundary separation quantifies
response caution. Predicted response time equals the decision time plus the time required for
non-decision processes such as stimulus encoding and response execution. (Figure as originally
published in [13])

Throughout the years, Ratcliff repeatedly demonstrated how the DDM allows for
deeper insight in the processes that underlie observed behavior (e.g., [14]). Consider,
for instance, the finding that older adults respond more slowly than younger adults,
a general empirical regularity that holds even in relatively simple tasks such as
lexical decision. The once-dominant explanation of this age-related slowing holds
that older adults have a reduced rate of information processing, perhaps as a result of
neural degradation; hence, the age-related slowing was assumed to hold generally,
across a wide range of different tasks and processes [15–17]. However, when the
DDM was applied to the data from older adults, Ratcliff and colleagues discovered
something surprising [18, 19]: in most speeded two-choice tasks, drift rates did
not differ between the young and the old. That is, older adults were accumulating
diagnostic information as efficiently as the young. Instead, the age-related slowdown
was usually due to a combination of two factors: (1) an increase in non-decision time,
that is, the time needed for encoding and response execution, and (2) an increase in
response caution. These results suggest that the age-related slowing can be undone,
at least in part, by encouraging the elderly to adopt a more risky response strategy
(for a confirmation of this prediction see for instance [20]).
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Currently, the DDM can be considered one of the most successful quantitative
models in mathematical psychology: not only does it provide fits to empirical data
that are consistently good, it has also driven theoretical progress in fields traditionally
dominated by verbal or quasi-formal accounts. These intuitive accounts were often
unable to withstand quantitative scrutiny (e.g., [21]).

The main weakness of the DDM is that it provides a decomposition of performance
that is relatively abstract, that is, the DDM does not commit to any representational
assumptions. This makes the model less interesting from a psychological point of
view. The main weakness of the DDM, however, is also its main strength: because
its account is relatively abstract it can be applied to a wide range of different tasks
and paradigms.

For the first 25 years, the development and application of the DDM was guided
by statistical and pragmatic considerations; Of particular relevance here is that the
dynamics of decision-making in neural circuits is remarkably similar to that postu-
lated by the DDM (e.g., [12]) in that neurons appear to accumulate noisy evidence
until threshold. Thus, the DDM does not only capture behavioral data but holds the
promise to capture underlying neural dynamics as well. This may not be accidental:
the DDM describes performance of a decision-maker who is statistically optimal in
the sense of minimizing mean response time for a fixed level of accuracy (e.g., [22])
and it is plausible that for simple perceptual tasks, evolution and individual learning
has curtailed those neural dynamics that lead to suboptimal outcomes. Cognitive neu-
roscientists have not only applied the DDM to neural data, they have also proposed
theoretical extensions to the model. For instance, high-profile extensions concern the
generalization to more than two choice-alternatives [23, 24], collapsing bounds [25],
urgency-gating [26], and drift rates that change during stimulus processing [27].

7.2.2 Ambivalence Towards Neuroscience

Although mathematical psychologists are increasingly interested in the neural un-
derpinnings of cognition, the overall attitude towards the neurosciences is one of
ambivalence or even open distrust.1 Some of this ambivalence stems from the concern
that brain measurements alone may not be theoretically meaningful. For instance,
Coltheart claimed that “no functional neuroimaging research to date has yielded
data that can be used to distinguish between competing psychological theories” [28,
p. 323] (see the exercise at the end of this chapter).

To demonstrate the limitations of neuroscientific methods, Ulrich presented the
following thought experiment [29]. Suppose you are intrigued by the ability of a
computer program to provide analytic solutions to integrals. In the Maple program,
for instance, you can enter the integral

∫
x sin x dx as int(x*sin(x),x); and

Maple will immediately return the solution: sin(x)-x*cos(x). How can we
learn more about how Maple accomplishes these and other computations?

1 At the 2009 annual meeting of the Society for Mathematical Psychology, one of the plenary
speakers discussed some of his beginning exploits in cognitive neuroscience. Following his talk,
the first question from the audience was whether he had now “joined the dark force”.
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Ulrich argues that neuroscientists may tackle this problem in different ways, as
illustrated in Fig. 7.3: analogous to functional brain imaging, one might perform a
heat scan on the laptop as it computes integrals, and compare this with a control
condition where it is just waiting for input (Fig. 7.3, top left panel). Analogous
to EEG measurements, one could attach surface electrodes to the laptop, have the
laptop repeatedly perform integrals, and compute a stimulus-locked or a response-
locked event-related potential (Fig. 7.3, top right panel). Analogous to single-cell
recordings in monkeys, one might implant electrodes and register the activity of
small components within the laptop (Fig. 7.3, lower left panel). Finally, analogous to
neurosurgical methods, one might lesion the laptop, for instance by hitting it with a
hammer. With luck, one might even discover a double dissociation, that is, lesioning
one part of the laptop harms the computation of integrals but does not harm word
processing, whereas lesioning another part of the laptop harms word processing but
not the computation of integrals (Fig. 7.3, lower right panel).

Ulrich ([29, p. 29]) concludes that “(...) none of these fancy neuroscience tech-
niques can directly unravel the hidden mechanisms of this symbolic math program”
and hence, brain measurement techniques alone cannot replace formal theories of
cognition. We suspect that most mathematical psychologists subscribe to the Ulrich
laptop metaphor of neuroscience. The laptop metaphor is insightful and thought-
provoking, but it should not be misinterpreted to mean that neuroscientific methods
are by definition uninformative. For example, consider a race of aliens who discover
a refrigerator and wish to learn how it works. They may first conduct behavioral ex-
periments and conclude that parts of the refrigerator are cooler then others. They may
study the speed of cooling in the different compartments, and its relation to a host of
relevant factors (e.g., the extent to which the refrigerator door is left open, the tem-
perature of various products just before they are put inside, and the volume occupied
by the products). The aliens may develop theoretical concepts such as homeostasis,
they may propose sets of axioms, and they may develop competing formal models
about how the refrigerator does what it does. Unfortunately, the behavioral data are
rather sparse and therefore they will fail to falsify many of the more complicated
theories. It is evident that “neuroscientific” measures of studying the refrigerator
(e.g., examining its underlying circuitry) will yield additional insights that can be
used either to adjudicate between the competing theories or to develop new theories
that are more appropriate.

We will leave it up to philosophers to decide whether the study of cognition is simi-
lar to a laptop or to a refrigerator. This decision may well depend on the cognitive phe-
nomenon under study. For instance, perceptual illusions are perhaps best understood
by taking into account the neural processes that subserve perception, whereas a differ-
ent approach is warranted when one wants to understand loss-aversion in gambling.

Pragmatically, any approach is worthwhile as long as it yields theoretical progress,
that is, a deeper understanding of human cognition. It is undeniably true that brain
measurements, just as response times or error rates, constitute data that are potentially
informative about the underlying cognitive process. The main difficulty, therefore,
is to develop formal models that allow the brain measurements to make contact with
putative cognitive processes.
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Fig. 7.3 Illustration of Ulrich’s thought experiment. The operations of a computer program are
studied with methods from neuroscience. Top left panel: heat radiation scan; top right panel: event-
related potentials; lower left panel: single-unit recordings; lower right panel: experimental lesions.
Figure reprinted with permission from [29]

7.3 Cognitive Neuroscience

The annual meetings of the Society for Neuroscience attract up to 40,000 partici-
pants, and plenary lectures are given by celebrities such as the Dalai Lama. Based on
the attendance to their respective annual meeting, neuroscientists outnumber math-
ematical psychologist by a factor of 200 to 1. Cognitive neuroscientists use brain
measurement techniques to study cognitive processes such as perception, attention,
learning, emotion, decision-making, etc. Most of this work involves an empirical
comparison between groups, treatments, or experimental conditions. For instance,
Rouw and Scholte [30] compared a group of control participants with a group of
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Table 7.2 First seven articles published in the June 2012 issue of the Journal of Cognitive
Neuroscience

Title Reference

Focal brain lesions to critical locations cause widespread disruption of the modular
organization of the brain

[33]

Playing a first-person shooter video game induces neuroplastic change [34]

Closing the gates to consciousness: Distractors activate a central inhibition process [35]

TMS of the FEF interferes with spatial conflict [36]

Local field potential activity associated with temporal expectations in the macaque
lateral intraparietal area

[37]

Spatio-temporal brain dynamics mediating post-error behavioral adjustments [38]

Hippocampal involvement in processing of indistinct visual motion stimuli [39]

grapheme-color synesthetes, people who experience a specific color whenever they
see a particular letter or number (e.g., “T is bright red”). Diffusion tensor imaging
confirmed the hypothesis that the added sensations in synesthesia are associated with
more coherent white matter tracts in various brain areas in frontal, parietal, and tem-
poral cortex. In another example, Jepma and Nieuwenhuis [31] used a reinforcement
learning task in which participants have to maximize rewards by making a series of
choices with an uncertain outcome. The main result was that baseline pupil diam-
eter was larger preceding exploratory choices (i.e., choices associated with a large
uncertainty in outcome) than it was preceding exploitative choices (i.e., choices as-
sociated with a small uncertainty in outcome). Pupil diameter is an indirect marker
for the activity of the locus coeruleus, a nucleus that modulates the norepinephrine
system. Hence, the results are consistent with adaptive gain theory, according to
which activity in the locus coeruleus regulates the balance between exploration and
exploitation. A final example concerns the work by Ding and Gold [32], who showed
that electrical microstimulation of the monkey caudate nucleus biases performance
in a random-dot motion task.2 This result suggests that the caudate has a causal role
in perceptual decision making.

To give you a further impression of the work done by cognitive neuroscientists,
Table 7.2 provides an overview of the articles published in the June 2012 issue
of the Journal of Cognitive Neuroscience. Compared to the mathematical psychol-
ogy approach, the cognitive neuroscience approach is geared towards understanding
cognition on a relatively concrete level of implementation: what brain areas, neural
processes, and circuits are involved in a particular cognitive process?

It is tempting to believe that the level of implementation is the level that is some-
how appropriate for the study of cognition. This is suggested, for example, by the
adage “the mind is what the brain does”. However, Ulrich’s laptop metaphor shows
that such a conclusion is premature; clearly, the analytical integration that Maple

2 In this popular perceptual task, the participant has to judge the apparent direction of a cloud of
moving dots.
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accomplishes is “what the laptop does”, but it does not follow that we need or want
to study the properties of the laptop in order to understand how Maple handles in-
tegrals analytically. Thus, even though “the mind is what the brain does”, it is not
automatically the case that when we measure the brain we learn a great deal about
the mind. Readers who doubt this statement are advised to read the contributions that
follow the article by Coltheart [28]; here, the discussants have to put in hard work
to come up with just a single example of how functional neuroimaging has provided
data to discriminate between competing psychological theories.

In order for cognitive neuroscience to have impact on psychological theory, it is
important that the two are linked [40–42]. One way to accomplish such linking is
by elaborating the psychological theory such that it becomes explicit about the brain
processes involved [43]; another way is by using formal models to connect findings
from neuroscience to the cognitive processes at hand. For instance, a mathematical
psychologist may use the DDM to state that, when prompted to respond quickly,
participants become less cautious, that is, they require less evidence before they are
willing to make a decision. This description of cognition is relatively abstract and does
not speak to how the brain implements the process. A neuroscientist may make this
more concrete and suggest that the instruction to respond quickly leads to an increase
of the baseline level of activation in the striatum, such that less input from cortex
is needed to suppress the output nuclei of the basal ganglia, thereby releasing the
brain from tonic inhibition and allowing an action to be executed [44, 45]. Thus, the
DDM may provide an estimate of a latent cognitive process (e.g., response caution)
which may then be compared against activation patterns in the brain. By using
formal models that estimate psychological processes, this particular neuroscience
approach furthers real theoretical progress and potentially bridges the divide between
the implementational level and the algorithmic level [46].

7.4 Model-Based Cognitive Neuroscience: Symbiosis
of Disciplines

The goal of model-based cognitive neuroscience is to bridge the gap between brain
measurements and cognitive process with the help of formal models (e.g.,[10, 47–
51]). This interdisciplinary approach is illustrated in Fig. 7.4. The figure shows that
experimental psychology, mathematical psychology, and cognitive neuroscience all
pursue a common goal: a better understanding of human cognition. It is often difficult,
however, to learn about the relevant cognitive processes from the data directly –
often, one first needs a mathematical model to provide quantitative estimates for the
cognitive processes involved. Next, the estimates of the cognitive processes can be
related to the brain measurements.

The “model-in-the-middle” [52] symbiosis of disciplines is useful in several ways.
Rather than discuss the advantages abstractly, the next two sections provide concrete
illustrations of the mutually beneficial relationship between mathematical models
and brain measurements (see also [1]).
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Fig. 7.4 The model-in-the-middle approach unites experimental psychology, mathematical psy-
chology, and cognitive neuroscience, as the main goal of all three disciplines is to understand more
deeply the processes and mechanisms that constitute human cognition. The red arrow indicates the
reciprocal relation between measuring the brain and modeling behavioral data. (Figure reprinted
with permission from [1])

7.4.1 Use of Mathematical Models for Cognitive Neuroscience

Mathematical models are useful in many ways. First, they decompose observed
behavioral data into latent cognitive processes. Brain measurements can then be
associated with particular cognitive processes instead of behavioral data. For exam-
ple, Chap. 2 explained how the LBA model—just as the DDM model discussed in
Sect. 7.2 and in Chap. 3—decomposes response time distributions and error rates
into underlying concepts such as response caution and the speed of information
processing. This decomposition can be used to demonstrate that a particular experi-
mental manipulation had the desired effect. For instance, participants in a study by
Forstmann and colleagues [44] performed a random-dot motion task under various
cue-induced levels of speed-stress. That is, before each stimulus a cue indicated
whether the stimulus needed to be classified accurately or quickly. Because the au-
thors were interested in the neural basis of the speed-accuracy tradeoff, they hoped
that the cue would selectively affect the LBA response caution parameter. And in-
deed, the model decomposition confirmed that this was the case. Note that without
concrete model fitting, this conclusion had been premature, unwarranted, and poten-
tially misleading—it is certainly possible that instructions to respond more quickly
can, for some tasks, also induce a change in speed of processing, or a change in the
time required for peripheral processes.
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Another advantage that the model-based decomposition brings is that, even when
a particular manipulation is not process-pure, one may associate brain measurements
specifically with the parameter of interest. For instance, suppose that in the speed-
accuracy experiment by Forstmann and colleagues [44], a cue to respond more
quickly had also lowered the speed of information processing. This means that the
critical fMRI contrasts are contaminated because they reflect a combination of two
effects: the change in response caution associated with the speed-accuracy tradeoff,
and the change in drift rate associated with the lower speed of processing. One
method to address this complication is to correlate the contaminated brain measures
(e.g., the average change in the BOLD response for each participant) with the process
of interest (e.g., the individual estimates of the change in response caution), perhaps
after partialling out the effects of the nuisance process. This method identifies those
voxels that relate to the cognitive construct of response caution.

Finally, the model-based decomposition allows one to take into account indi-
vidual differences. For instance, Forstmann and colleagues [44] found that speed
cues activated the right anterior striatum and the right pre-supplementary motor area
(pre-SMA). This result was corroborated by an analysis of individual differences:
participants with a relatively large cue-induced decrease in response caution also
showed a relatively large increase in activation in the right anterior striatum and right
pre-SMA. Of course, such an analysis is only meaningful if there are substantial
individual differences to begin with; if all participants respond to the cue in approxi-
mately the same way then the group-average result will be highly significant but the
individual difference analysis may not be significant at all.

In another example of the importance of individual differences, Forstmann and
colleagues [53] studied the neural basis of prior knowledge in perceptual decision-
making. As before, participant performed a random-dot motion task; this time, the
cue gave prior information about the likely direction of movement of the upcoming
stimulus. The cue “L9”, for example, indicated that the probability was 90 % that the
upcoming stimulus would move to the left (see also [54]). The cue-induced bias was
clearly visible in the behavioral data: responses were much faster and more often
correct when the cue was reliable and informative. Surprisingly, however, the fMRI
contrast did not reveal any significant results. After including an LBA response bias
parameter as a covariate in the fMRI analysis, however, the results showed significant
cue-related activation in regions that generally matched the theoretical predictions
(e.g., putamen and orbitofrontal cortex). The reason for the discrepancy is that by
adding the response bias parameter we can account for individual differences in
people’s reactions to the cue. Some participants exhibited a lot of bias, and others
only a little. These individual differences in the latent cognitive process are usually not
incorporated the fMRI analysis and hence add to the error term instead. By explicitly
accounting for individual differences the error term is reduced and experimental
power is increased.

Mathematical models are also useful because they can drive the search for brain
areas involved in a particular cognitive function. In fMRI research, for instance,
this means that a model’s predictions are convolved with the hemodynamic response
function. Next, the predicted blood oxygenation level dependent signal (BOLD)
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response profiles are used to search for areas in the brain with similar activation
profiles. The search can be exploratory or more confirmatory. A prominent example
of the latter approach is the recent work that attempts to link the components of the
ACT-R model to different brain regions (see the final chapter of this book as well as
[55, 56]).

Another way in which mathematical models are useful is that they may help
demonstrate that performance in superficially different tasks may be driven by the
same cognitive process. For example, the cognitive neuroscience literature suggests
that perceptual categorization and old-new recognition are subserved by separate
neural systems. In contrast, mathematical models of these tasks suggests that similar
processes are involved. Specifically, exemplar models posit that people categorize
a test object by comparing it to exemplars stored in memory. Both categorization
and recognition decisions are thought to be based on the summed similarity of the
test object to the exemplars [57, 58]. These conflicting perspectives were recently
reconciled by Nosofsky and colleagues [59], who argued that categorization and
recognition differ not in terms of the underlying process, but in terms of the under-
lying criterion settings: in recognition, the criterion needs to be strict, since the test
object needs to match one of the study items exactly; in categorization, the criterion
can be more lax, as exact matches are not needed. In an fMRI experiment, Nosofsky
and colleagues [59] induced participants to use different criterion settings; the result-
ing data were then fit by an exemplar model. Results confirmed that (1) the exemplar
model provides a good account of both categorization and recognition, with only cri-
terion settings free to vary; (2) the average task-related differences in brain activation
can be explained by differences in evidence accumulation caused by systematically
varying criterion settings; and (3) participants with high criterion settings show large
BOLD differences between old and random stimuli in the frontal eye fields and the
anterior insular cortex. Hence, Nosofsky and colleagues [59] concluded that there is
little evidence that categorization and recognition are subserved by separate memory
systems. The most important lesson to be learned from this work is that differences
in brain activation do not necessarily indicate different underlying mechanisms or
processes. Differences in brain activation can also come about through differences
in stimulus surface features (which Nosofsky et al. controlled for) and differences
in criterion settings. A mathematical model can estimate these criterion settings and
allow a statistical assessment of their importance.

In addition to the above, mathematical models have general worth because they
provide (1) a concrete implementation of a theoretical framework; (2) a coherent in-
terpretive framework; and (3) a guide to experimental manipulations that are particu-
larly informative. In sum, it is evident that for cognitive neuroscience, the use of math-
ematical models comes with considerable advantages. The reverse—the advantages
of cognitive neuroscience for mathematical models—is the topic of the next section.
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7.4.2 Use of Cognitive Neuroscience for Mathematical Models

Until recently, findings from cognitive neuroscience had little impact on model de-
velopment in mathematical psychology. Exceptions that confirm the rule are parallel
distributed processing models [60, 61] and neurocomputational models developed
to take into account the details of neural processing [43, 62–64]. This state of af-
fairs is changing, and for good reason: response times, error rates, and confidence
judgements ultimately provide little information to tell apart mathematical models
with incompatible assumptions and architectures [41]. For instance, Ditterich [23]
showed that behavioral data are insufficient to discriminate between multiple-choice
response time models that have evidence integrators with and without leakage, with
and without feedforward and feedback inhibition, and with and without linear and
non-linear mechanisms for combining information across choice alternatives. Neural
data, however, can able to adjudicate between the hypothesized mechanisms, at least
in potentia [23].

As a specific example, consider a generic response time model with N evidence
accumulators, one for each choice alternative, that race to a threshold. The model can
account for the speed-accuracy tradeoff by changing the distance from baseline to
threshold. However, the model is mute on whether instructions to respond accurately
increase threshold or decrease baseline; in fact, these mechanisms are mathematically
equivalent. Nevertheless, the mechanisms are not conceptually equivalent, and neural
data could discriminate between the two accounts. A similar example considers
the change in processing that occurs as the number of incorrect choice alternatives
increases. Such an increase in task difficulty requires a longer period of evidence
accumulation in order to reach an acceptable level of accuracy in identifying the
target alternative. The evidence accumulation process can be extended either by
increasing thresholds or by decreasing the baseline. Using behavioral data, there is
no way to tell these two mechanisms apart. However, Churchland and colleagues
[65] used single-cell recordings to show that, confronted with the prospect of having
to chose between four instead of two random-dot choice alternatives, monkeys had
decreased firing rates in the lateral intraparietal area. These single cell recordings are
consistent with a changing baseline account rather than a shifting threshold account.

Hence, the general promise is that data from cognitive neuroscience may provide
additional constraints. An interesting illustration of this principle is provided by
Purcell and colleagues [66], who studied how monkeys perform a visual search task
in which they have to make an eye movement toward a single target presented among
seven distractors. Several models were fit to the data, and initial constraint was gained
by using the measured spike trains as input to the evidence accumulators. This creates
an immediate challenge: the models must determine when the accumulators start to
be driven by the stimulus, because the neural activity that precedes stimulus onset
is uninformative and its accumulation can only harm performance. Hence, models
with perfect integration failed, as they were overly impacted by early spiking activity
that was unrelated to the stimulus. Models with leaky integration did not suffer from
early spiking activity, but their predictions were inconsistent with another neural
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constraint: the spiking activity from movement neurons. In the end, the only class of
models that survived the test were gated integration models, models that block the
influence of noise inputs until a certain threshold level of activation is reached.

In general, it is clear that neuroscience data hold tremendous potential for answer-
ing questions that mathematical psychologists can never address with behavioral
data alone.

7.5 Open Challenges

The above examples have only scratched the surface of the work conducted within
model-based cognitive neuroscience. Nevertheless, the field can greatly expand by
considering a broader range of mathematical models, and a broader range of brain
measures (e.g., structural MRI, event-related potentials in EEG, genetics, pharma-
cology, etc.). Also, model dynamics can be linked more closely to brain dynamics,
either by constructing a single overarching statistical model, or by developing single
trial estimates of cognitive processes. For example, van Maanen and colleagues [67]
extended the LBA model to estimate drift rate and thresholds on a trial-by-trial basis.
This allows a more direct comparison with neurophysiological data, which also vary
on a trial-by-trial basis.

Another challenge is to balance the desire for parsimonious models (i.e., mod-
els with few parameters and clear mechanisms) against the reality of the brain’s
overwhelming complexity. The appropriate level of model complexity depends very
much on the goals of the researchers. If the goal is to obtain estimates of latent
cognitive processes, then the model needs to be relatively simple—the behavioral
data simply do not provide sufficient support for models that are relatively complex.
On the other hand, if the goal is to create a model that accounts for the detailed
interactions between neurons or brain systems, the model needs to be more intricate.

A final challenge is that, despite the intuitive attractiveness of results from rats and
monkeys, we should remain aware of the possibility that some of the results obtained
with these species may not carry over to humans. This may be due to differences in
anatomy, but other factors can contribute as well. For instance, recent work suggests
that monkeys who perform a speeded choice task may experience an increased
urgency to respond [26] that can expresses itself in response thresholds that decreases
over time [25, 68]. Before concluding that response urgency or collapsing bounds
are a universal signature of human decision making, however, we need to make sure
that the pattern in monkeys is obtained in humans as well. This requires a careful
modeling exercise in which benchmark data sets are fit with two versions of the same
sequential sampling model: one that has constant thresholds and one that has collaps-
ing bounds [69]. It is entirely possible, for instance, that collapsing bounds are used
by monkeys because they want to maximize reward rate [68]; first-year psychology
undergraduates, however, are usually not reinforced with squirts of orange juice
and may approach the task with a different goal. The collapsing-bound hypothesis
shows promise and is worth exploring, but its generality is pending investigation.
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7.6 Concluding Comments

The examples in this chapter have shown how mathematical models can advance
cognitive neuroscience, and how cognitive neuroscience can provide constraint for
mathematical models. The increasing collaboration between these historically sepa-
rate fields of study is an exciting new development that we believe will continue in
the future.

Exercises

1. Section 7.2: in what sense is the DDM similar to signal-detection theory?
2. Section 7.2: Can you find a concrete example to refute Coltheard’s claim that

“no functional neuroimaging research to date has yielded data that can be used
to distinguish between competing psychological theories”?

3. Section 7.3: Read the articles by Miller [70] and by Insel [71] on the impact of
neuroscience on psychiatry and clinical psychology. Who do you agree with, and
why?

4. Section 7.2: Read the Gold and Shadlen [12] article and prepare a 30-min
presentation on it, critically summarizing and explaining its content.

5. Describe a mathematical model (not discussed in this chapter) that could find
application in cognitive neuroscience.

6. Mention one pro and one con for each of the following brain measures: single-cell
recordings, ERP, fMRI, and DWI.

7. Can you think of concrete research questions in cognitive neuroscience that could
profit from a model-based approach?

Further Reading

1. Ratcliff and McKoon [74] offer an overview of the drift diffusion model and its
relation to cognitive neuroscience.

2. http://neuroskeptic.blogspot.com/2012/02/mystery-joker-parodies-neuroscience.
html tells a tale about neuroscience and Sigmund Freud.

3. Churchland and Ditterich [75] discuss recent developments in models for a choice
between multiple alternatives.

4. We consider our work on bias [53] as one of our better efforts. Unfortunately, the
reviewers did not agree, and one even commented “Flawed design, faulty logic,
and limited scholarship engender no confidence or enthusiasm whatsoever”.

http://neuroskeptic.blogspot.com/2012/02/mystery-joker-parodies-neuroscience.html
http://neuroskeptic.blogspot.com/2012/02/mystery-joker-parodies-neuroscience.html
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