
Chapter 6
An Introduction to Neuroscientific Methods:
Single-cell Recordings

Veit Stuphorn and Xiaomo Chen

Abstract This chapter describes the role of single-cell recordings in understanding
the mechanisms underlying human cognition. Cognition is a function of the brain,
a complex computational network, whose most elementary nodes are made up out
of individual neurons. These neurons encode information and influence each other
through a dynamically changing pattern of action potentials. For this reason, the ac-
tivity of neurons in the awake, behaving brain constitutes the most fundamental form
of neural data for cognitive neuroscience. This chapter discusses a number of techni-
cal issues and challenges of single-cell neurophysiology using a recent project of the
authors as an example. We discuss issues such as the choice of an appropriate animal
model, the role of psychophysics, technical challenges surrounding the simultaneous
recording of multiple neurons, and various methods for perturbation experiments.
The chapter closes with a consideration of the challenge that the brain’s complexity
poses for fully understanding any realistic nervous circuit, and of the importance
of conceptual insights and mathematical models in the interpretation of single-cell
recordings.

6.1 Introduction

The fundamental goal of cognitive neuroscience is the explanation of psychological
processes by their underlying neural mechanisms. This explanatory goal is reduc-
tionist and operates under the assumption that some form of identity hypothesis is
correct, i.e., that specific mental events or processes are identical or intimately linked
to specific neuronal events and processes. An explanation therefore only starts with
a description of the processes on the neuronal level that give rise to the processes
on the psychological level. A full explanation also requires a specification of the
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exact causal link between the two levels, i.e., a hypothesis about which of the many
physical phenomena in the brain is thought to correspond with a specific mental
phenomenon.

Thus, the first question is the adequate level of description of the brain at which
this causal (or explanatory) link can be established. In general, there are three broad
levels at which brain activity can be described, which relate to three different sets of
measurement technologies that are currently available. The first level encompasses
all the subcellular, molecular processes that explain the behavior of a neuron. This
level of description includes for example biochemical and biophysical investigations
of receptors, G-proteins, ion channels, and other building blocks that determine the
internal organization and workings of neurons.

The second level encompasses the electrophysiological activity of individual neu-
rons or circuits of individual neurons. This level includes experiments in which the
temporal pattern of action potentials of individual neurons is recorded, while be-
haviorally relevant sensory, motor, or cognitive variables are changed, and is the
primary topic of this chapter. Experiments on individual neurons allow one to inves-
tigate whether neuronal activity (the temporal pattern of action potentials, or spikes)
represents (is correlated with) behaviorally relevant information. This level of de-
scription also includes the connection and interaction between individual neurons
across different brain areas. Importantly, perturbation experiments in which neu-
ronal activity is either suppressed or enhanced, allow one to go a step further and to
establish causal links between spiking activity and behavioral functions.

The third level encompasses experiments aimed at recording mass action of large
numbers of neurons. Human imaging experiments (fMRI, PET) fall into this cat-
egory, as does electrophysiological recordings of field potentials at varying scales
(LFP, ECoG, EEG). This third level somewhat overlaps with the second level, inso-
much as the second level of description includes simultaneous recordings of many
individual neurons within a local circuit, or across different parts of the brain. The
main distinction is essentially methodological; level two descriptions are of identi-
fied, individual neurons, while level three descriptions are of unidentified, averaged
neurons. This summing up over many neurons is due to technical constraints of the
measurement techniques used, and leads to lower spatial and temporal resolution.
Consequently, recordings of mass activity are likely to be most accurate in cases
in which most neurons in a particular location have similar functions and activity
patterns. However, recent research has shown that even in primary sensory areas, but
particularly in associate brain regions, such as frontal and parietal cortex, individual
neurons with different functional roles are often located in close vicinity to each
other. We will see an example of this later in this chapter (see Fig. 6.2). Here mass
action recordings of brain activity will likely have a lower resolution in the identi-
fication of functionally relevant signals. These disadvantages are balanced by two
great advantages: the ability to record activity from many—or, indeed, all—parts of
the brain, and the non-invasive nature of the measurement methods, which permits
their routine use in humans.
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6.2 Single Neurons Provide the Critical Link Between Brain
and Cognition

It is clear that we can learn from all available techniques and their respective useful-
ness will depend on the specific question at hand, as well as technical constraints.
Thus, pragmatic considerations will lead scientists always towards using all sources
of information. Nevertheless, we can ask from a theoretical point of view at which
of the three levels we can best articulate the relationship between particular men-
tal (or cognitive) states and neural states [1–3]. Ever since the pioneering work of
Adrian and Hartline [4, 5], individual neurons are seen as the elementary units of
the nervous system that represent information and perform computations on these
representations [2, 3, 6–10]. There is general agreement that the temporal structure
of action potentials encodes the information. However, the exact nature of this code
is still under active investigation [11–14]. Mountcastle was the first to formulate a
research program centered on a systematic comparison of psychophysical measures
in conscious subjects and recordings of individual neurons [7, 15]. At present, this
program has resulted in multiple examples of individual neurons, whose firing pat-
terns match to a stunning degree with mental states, such as perceptions or decisions,
as measured using psychophysical methods [16–18].

A particularly impressive example of such a match between neural activity and
perception are results from recordings in single somatosensory nerve fibers in hu-
mans during stimulation of the skin [19]. Near-threshold skin indentations resulted
in a variable response of the nerve fiber. During some trials, an action potential was
generated, while on other trials no electrophysiological response was observed. As-
tonishingly, on trials in which an action potential was registered, the human subjects
reported the subjective experience of a light touch. On trials with an identical me-
chanical stimulation, but without an action potential, the humans reported no touch
perception. This finding implies a very strong linking hypothesis, according to which
a single action potential in a peripheral nerve elicits a particular mental state. Similar
findings linking changes in the activity of individual neurons to changes in mental
state have been observed in cortical neurons of animals [20, 21].

All of these findings point towards the spiking activity of single cells in awake,
behaving animals (including humans) as the key level for understanding how physical
events in the brain underlie mental events and cognition [2, 3]. So, what is then the
best way in which we can get these critical experimental data, and what are the
technical requirements? Some of the technical requirements are described by Crist
and Lebedev [22]. They include the choice of an appropriate animal model, useful
behavioral tasks, methods for electrophysiological recordings of one or more single
neurons, methods for perturbing spiking activity in the brain, and data analysis. In
the following section of this chapter we will go, one by one, over these different
requirements, using an ongoing research project from our laboratory as an example.
We chose our own work mainly because we are most familiar with it. Wherever
appropriate, we will refer to the works of others to illustrate different approaches
than the ones we used.
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6.3 Choice of Animal Model

Traditionally, the majority of the electrophysiological investigations of the sensory,
motor and cognitive functions of the brain have been done in primates. Techniques
for recording from individual neurons in awake, behaving primates were pioneered
by Evarts [23, 24] and then further developed by Mountcastle, Wurtz and others
[25, 26]. This is in contrast to the majority of modern biomedical research in which
rodents, in particular mice and rats, are the dominant animal models. The reasons for
this preference are the greater number of genetic and other molecular biological tools
that are available in these animals, because of the much shorter generational span of
rodents compared to primates. More recently, rodents have been used increasingly to
study the neural mechanisms of cognitive functions, such as decision-making under
uncertainty [27, 28]. The fact that rats can be trained in sophisticated behavioral tasks
opens up the question, to what extent they might not be a superior animal model
relative to monkeys. This is a particularly pressing question, since neuroscience
is at the moment in the middle of a technical revolution. New tools for observing
neural activity of large numbers of neurons optically, such as two photon imaging
[29], and the automation of anatomical methods [30] allows for an unprecedented
level of insight into the activity of large numbers of neurons, and their internal
connection. The functional relevance of identified types of neurons can be probed
using optogenetic tools [31]. All of these new tools have been developed in rodents,
in particular mice.

We used macaque monkeys in our study, and we feel that there are still strong
reasons that support the continued use of this animal model, in particular in cognitive
neuroscience. The most important reason is the fact that there are radical anatomical
and structural differences between the brains of rodents and primates [32]. This is
particularly true for the frontal cortex, which is generally believed to be essential for
higher cognitive function in humans and other mammals [33, 34].

Based on cytoarchitectonical and structural differences between different areas in
the frontal lobe of rodents and primates, Wise suggested that primates have evolved
certain new areas that do not exist in rodents [32, 35]. Recent support for this hypoth-
esis comes from fMRI experiments in humans that show a regional specialization
in the representations of primary and secondary, abstract reward in the orbitofrontal
cortex [36]. Whereas the anterior lateral orbitofrontal cortex, a phylogenetically re-
cent structure (only present in primates), processes monetary gains, the posterior
lateral orbitofrontal cortex, phylogenetically and ontogenetically older (and shared
with rodents), processes erotic stimuli, a more basic reward. Interestingly, the phy-
logenetically newer parts make up the majority of the frontal cortex in primates
[32].

These differences in frontal architecture and their unknown functional conse-
quences can lead to difficulties in the interpretation of neuroscientific findings. For
example, reports in monkeys have claimed that the activity of certain neurons in the
orbitofrontal cortex represents uncertainty and risk (defined as outcome variability)
[37]. This finding is in agreement with human neuroimaging studies [38]. Recently,
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a very clever study in rats suggests that this neuronal activity pattern might not rep-
resent risk per se, but instead acquired salience [28]. However, while this finding
is intriguing, it will need to be replicated in primates, simply to make sure that the
functional differences revealed in these two studies are not the result of differences
in the functional architecture and overall function of orbitofrontal cortex in monkeys
and rats.

Another reason to use primates is related to the potential for what might be called
‘behavioral mimicry’. Organisms with completely different internal architectures can
generate behavior that looks similar, but is produced for entirely different reasons.
The formal mathematical proof of this possibility was derived in the theory of finite
automata [2, 39]. In such a case of mimicry, the behavioral similarity is likely to
be only superficial and strongly context-dependent. A real-world example is the
response of rodents, macaques and humans in reward-reversal tasks. In such tasks,
one of two options is consistently rewarded and, therefore, almost exclusively chosen.
If, however, the reward contingencies are unexpectedly switched without notice, so
that the previously unrewarded option will now lead consistently to reward, rodents,
monkeys, and humans will all learn to switch their preferences to the newly rewarded
option. From this qualitative similarity, one might conclude that very similar, perhaps
even identical, choice and learning mechanisms underlie this behavior in all of these
organisms. However, such a conclusion does not take into account some intriguing
differences in the time course of the switch. Human subjects need typically only
one error trial to switch [40]. In contrast, rodents switch their behavior only after
20–40 trials [41]. This is (at least from a human point of view) a staggering amount
of exposure to a clear-cut, non-probabilistic change in reward contingencies. This
seems to imply that at least humans represent the task contingencies in a different
way and might use different learning or choice mechanisms than rodents. Thus, the
picture that emerges is complex. Monkeys need at least 10–15 trials [42], which is
still different from humans, but closer to them than the behavior of rodents.

Obviously, primates are not superior animal models with regards to all possible
research questions. In general, the choice of rodents as models for human behavioral,
neural, and even mental processes is likely to be most appropriate if the object of
study is an aspect of behavior and the brain that is common among all mammals. An
example is the role of the neural circuits in the hypothalamus in the control of hunger
and food consumption [43]. However, even for something as seemingly primitive as
appetite and food consumption there exist important behavioral differences between
humans and other mammals with less complex brains. For instance, humans show
reliable behavioral and neural differences while consuming the same wine, when
given different information about its price [44]. Thus, the choice of appropriate
animal model ultimately depends on the research question. Within the domain of
cognitive neuroscience, it seems to us that non-human primates are still the obvious
choice, given their overall similarity with humans, and the fact that many of the new
techniques first developed in rodents are now applied to primates [45–49].

Of course, there are also large differences between humans and other non-human
primates [50]. These differences will likely forever preclude the study of certain
human abilities, such as language, in animal models. This is important, because
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language, and the abstract, symbol-operating cognitive abilities that go along with
it, pervade every other aspect of human mental and cognitive life, from memory to
decision-making. In addition, there are likely to be other, potentially more subtle
differences in the way cognitive mechanisms operate in humans and other primates.
It is therefore of great interest to use every opportunity to study single-unit responses
in awake humans [51]. This approach has already led to some insights into language
[52], representation of objects [53], and cognitive control [54]. In addition, single-
unit recordings can provide new insights into mental diseases, such as obsessive-
compulsive disorders [55]. This resource should be used more widely by cognitive
neuroscientists.

6.4 Behavioral Tasks and Psychophysics

The ability to link neuronal activity and cognitive function depends critically on our
ability to vary the cognitive signals of interest in a controlled and measurable fashion.
This, in turn, depends entirely on the behavioral task design, and the psychophysical
methods used to analyze behavior and deduce cognitive states from it. Thus, single
unit electrophysiology, and mathematical psychology and modeling are critically
linked [Forstmann, Wagenmakers, chapter of this book]. Mathematical psychology
provides formal models of cognitive processes, which afford quantifiable variables
that are related to behavior in an operational manner and that can be compared to
measures of neuronal activity. Of course in practice, the hypothesized link might turn
out not to exist, because the model might not have been an appropriate description
of the underlying cognitive and neuronal mechanism. However, this form of model
falsification is exactly how science progresses.

In the case of the specific project that we chose as an example, we were interested in
the neuronal mechanism underlying value-based decision making. Decision-making
involves the selection of a particular behavioral response from a set of two or more
possible responses. Our understanding of the neural processes that underlie this
selection process is most advanced in the case of perceptual decisions [56]. These
decisions are guided by external sensory stimuli and reflect the beliefs of the decision
maker about the external world. Value-based decisions, on the other hand, are much
less well understood.

Value-based decision making is the process of selecting an action among several
alternatives based on the subjective value of their outcomes. This requires the brain
to first estimate the value of the outcome of each possible response, and then to
select one of them on the basis of those values [57–60]. This raises two fundamental
questions: (1) Where in the brain are the values of different types of outcomes and
actions represented and how are these value signals computed? and (2) How and
where does the brain compare those value signals to generate a choice?

With respect to the first question, a rapidly growing number of studies have found
neural responses that are correlated with some form of value signals [57, 61–63].
Several studies found orbitofrontal cortex (OFC) and amygdala encoding the value
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of different goals [62, 64–67]. These signals are stimulus-based and independent of
the actions required to obtain them. These option value signals represent therefore
predicted future states of the world. To allow the selection of an appropriate action,
these goal representations need to be associated with the actions that are most likely
to bring them about. This type of value signal is known as action value. Action-value
signals for hand and eye movements have been found in the striatum [68, 69], in
the dorsolateral prefrontal cortex (DLPFC) [70], and in the medial frontal cortex
[71, 72], including the supplementary eye field (SEF) [73].

With respect to the second question, there are currently two major theories of
how the brain compares value signals and uses them to select an action [74]. One
theory is the goods- or goal-based theory of decision making [62], according to
which the brain computes the subjective value of each offer, selects between these
option value signals, and then prepares the appropriate action plan. This theory in its
purest form predicts that motor areas should only represent the chosen action. The
other theory is the action-based theory of decision making [18, 75–78], according
to which potential actions are simultaneously represented in the brain and compete
against each other. This competition is biased by a variety of factors including the
subjective value of each offer (i.e., their action values). This theory in its purest
form predicts that option value signals should not predict the chosen option, before
an action is chosen, since these signals are only precursors to the decision. A third
alternative is that competition occurs at both levels in parallel [74].

In order to study value-based decision making, we needed to design a task in
which the monkey was forced to select actions based on its internal estimation about
the worth of various options. In our case, we kept the number of alternatives binary
to start with the simplest condition. In addition, we were also interested in creating
a task in which identical task conditions would elicit different choices. This would
allow us to differentiate between the representation of the decision process itself that
should co-vary with the behavioral choice, and the representation of other factors
that should stay invariant across trials (e.g., the representation of a particular option
and its attributes, independent of whether it is chosen or not).

Both of these conditions were fulfilled in a gambling task, in which the monkeys
had to choose between gambles with different probabilities to win reward of varying
amounts (Fig. 6.1a, b). We used targets that consisted of two colors correspond-
ing to the two possible reward amounts. The portion of a color within the target
corresponded to the probability of receiving that reward amount (Fig. 6.1b). The
minimum reward amount for the gamble option was always 1 unit of water, while
the maximum reward amount varied between 3, 5 and 9 units, with three different
probabilities of receiving the larger reward (20, 40, and 80 %). This resulted in a
set of 7 gambles. The colors and differences in area size were easy to discriminate
for the monkey. Thus, in presenting two targets to the monkey, the problem for the
animal was not one of perceptual uncertainty. Instead, the problem of selecting the
better of the two options was related to the uncertainty about the actual outcome that
would follow from each choice. A decision-maker that is indifferent to risk should
base his decision on the sum of values of the various outcomes weighted by their
probabilities, i.e., the expected value of the gamble. However, humans and animals
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Fig. 6.1 Gambling task and estimate of subjective value. a The gambling task consisted of two
types of trials, choice trials and no-choice trials. All the trials started with the appearance of a
fixation point at the center of the screen, which the monkeys were required to fixate for 500–1000
ms. After that, in choice trial, two targets appeared on two locations that were randomly chosen
among the four quadrants. Simultaneously, the fixation point disappeared and within 1000 ms the
monkeys had to choose between the gambles by making a saccade toward one the targets. Following
the choice, the nonchosen target disappeared from the screen. The monkeys were required to keep
fixating the chosen target for 500–600 ms, after which the target changed color. The two-colored
square then changed into a single-colored square associated with the final reward amount. This
indicated the result of the gamble to the monkeys. The monkeys were required to continue to fixate
the target for another 300 ms until the reward was delivered. In the choice trial, each gamble option
was paired with all other six gamble options. The sequence of events in no-choice trial was the
same as in choice trial except that only one target was presented. In those trials, the monkeys were
forced to make a saccade to the given target. All 7 gamble options were presented during no-choice
trials. We presented no-choice and choice trials interleaved in blocks of trials that consisted of
all twenty one different choice trials and eight onset different trials and seven different no-choice
trials. Within a block, the order of trials was randomized. The locations of the targets in each
trial were also randomized, which prevented the monkeys from preparing a movement toward a
certain direction before the target appearance. b Four different colors indicated four different reward
amounts (increasing from 1, 3, 5 to 9 units of water, where 1 unit equaled 30 μl). Note that the
expected value of the gambles along the diagonal axis was the same. c The mean subjective value
of the 7 gamble options for one of the monkeys. The subjective value ranges between 0 for the least
and 1 for the most valuable option

are not indifferent to risk and their actual decisions deviate from this prediction in
a systematic fashion. Thus, the subjective value of a gamble depends on the risk
attitude of a decision-maker.

In addition, there is another interesting feature that can be seen in everyday life,
as well as in our laboratory task. For certain combinations of gambles, the monkeys
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were very certain which one they preferred. However, for a large range of other
combinations they varied in their choice, even after they were exposed to the dif-
ferent gamble options daily for many months. One of the reasons for this persistent
uncertainty about the value of the gamble options might be the fact that gambles vary
across two independent dimensions, reward amount and probability, both of which
affect the overall value. Options can be attractive for different reasons, e.g., either
because of low risk or high payoff. Assessing the value of a gamble option requires,
therefore, a trade-off between the different attributes that have to be integrated in a
weighted fashion in order to generate a one-dimensional decision variable, the sub-
jective value of the option. This process has no obvious best solution and agents can
remain ambivalent with respect to which of the options is optimal. In addition, there
might also be other sources of variance, such as changes in attention or motivation
or recent outcome history. In any case, the monkeys showed behavioral variance in
our gambling task, which was important for us. Combined, the two features of our
task produce a situation that is almost a perfect inversion of the classic perceptual
decision-making task, in which sensory stimuli are very ambiguous, but the correct
response can easily be selected, given a particular belief about the state of the world
[16, 18]. In contrast, in our gambling task, the state of the world is easy to perceive,
but the appropriate response is unclear.

In terms of the link between the neural and the mental level, we are faced in our
research with the problem of comparing a subjective, internal variable (the subjective
value of the various options) to an objective, measurable variable (the firing rate of
neurons). Here the behavioral variance is likewise of great importance, since it al-
lows us to use psychophysical scaling techniques [79, 80] to estimate the subjective
value of different targets (Fig. 6.1c). These techniques go back to Fechner, who was
the first to suggest that a psychophysical experiment could be conducted in which
an observer makes judgments along a psychological dimension having no obvious
physical correlate (here, subjective value) [81, 82]. Thurstone further developed
the theoretical method for analyzing such data from paired comparison judgments
[83]. In his model, Thurstone assumed that the judgment process was based on the
comparison of noisy internal representations. The differences across the compared
distributions lead to systematic differences in the probability of particular judgments.
Similar ideas within economics lead to the development of random utility models
[84], in which it is presumed that choices are based on noisy internal utility esti-
mations [85]. Importantly, this scaling method gave us an estimate of the subjective
value that went beyond a mere ordinal ranking. Instead, we could order the subjective
value of the various gambles on an interval scale [82, 86] that allowed us to estimate
not only which gamble is preferred over another, but also by how much (Fig. 6.1c).
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6.5 Electrophysiological Recordings of One or More Identified
Neurons

In our experiment, we used an in-house built system of electrode microdrives that
allowed us to independently control the position of up to 6 different electrodes. Our
recording setup required us to advance electrodes acutely during each recording
session into the brain. This allowed us to cover a wide range of different cortical
locations and, more importantly, to position the electrode close to neurons, whose
activity was task-related. In this regard, apart from the fact that we did this with
multiple electrodes, our approach was very similar to the traditional single electrode
recording approach. However, both approaches introduce mechanical disturbances
within the brain tissue during advancement of the electrode. These mechanical in-
stabilities, together with pulsations introduced by heart rate and breathing generated
instabilities in the position of the neuron with respect to the tip of the electrode. These
instabilities influenced our long-term recording stability. To keep the signal to noise
ratio of spike identification stable required constant monitoring and minute adjust-
ments of the electrode position by the researcher. This is a well-known problem for
single unit electrophysiology, but it is exacerbated in the case of multiple electrodes.
Ultimately, for human researchers one reaches very soon an attentional bottleneck.
Overcoming these limitations would be a major breakthrough that would allow us to
record simultaneously from large numbers of neurons [87].

There are a number of ways to achieve this goal. One possibility is the use of
a series of electrode drives that can move electrodes independently operated by
multiple researchers working in conjunction [88]. Each researcher is responsible for a
few electrodes. This acute recording approach is in some sense the most conservative,
insomuch as it requires the least dramatic change relative to traditional methods of
single-unit recordings. Because of this, it is easy to implement in principle. However,
it is not clear how scalable this approach is, given the increasing demands in well-
trained man power.

Another possibility is the use of microelectrode arrays [89–91]. In this approach
the electrodes are not advanced acutely for each recording session. Instead, an array
consisting of multiple electrodes (with as many recording contacts as desired and
technically feasible) is chronically implanted into the brain [92–94]. Due to its better
mechanical stability, neuronal spikes can be recorded typically for extended time
periods. The signal to noise ratio of microelectrode arrays and of conventional elec-
trodes is comparable [91]. One disadvantage of the microarray recording setup is the
inability to actively search for task-relevant neuronal activity. Once implanted, the
electrodes cannot be moved and the researcher has to be content with whatever signal
he or she can get. To some extent, this disadvantage can even be seen as strength,
since pre-selection of ‘interesting’ neurons introduces severe sampling biases in tra-
ditional recording studies. This has made it very hard to directly compare the results
of single unit studies in different brain areas. Since microarrays sample neurons in
different parts of the brain in a more random fashion, they allow a more unbiased
comparison [95]. A straightforward and unbiased way to increase the likelihood to
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record from task-relevant neurons using chronic microarrays would be a strategy of
recording from as many parts of the electrode as possible to increase the number
and extent of neurons that can be sampled [90, 94]. This strategy relies on the use
of modern lithographic techniques to fabricate electrodes. There has been a lot of
progress in the manufacture and use of such polytrodes [96] and there exists a large
design space that can be explored for further improvements [97].

A third approach that combines aspects of the acute and chronic recording methods
is semichronic recording [98, 99]. In this approach, miniature mechanical micro-
drives are implanted into the brain, each containing a number of independently
movable microelectrodes. Recordings are made by slowly advancing a subset of
electrodes in each chamber each day. This procedure has been used very successfully
during the investigation of neurons in the rodent hippocampus [100]. Semichronic
recording provides the ability to move electrodes into brain areas that are of particular
interest, and the possibility of recording from many individual neurons simultane-
ously. However, this type of recording device is still not commonly used in primate
experiments and requires further development.

6.6 Relationship Between Neural Activity and Decision
Variables

Decision-making under risk is very common in everyday life, where practically
every action can have more than one possible outcome. Value-based decision making
requires the translation of internal value signals related to the different options into
the selection of unique motor signals necessary to obtain the desired option. Where
and how this is achieved is still debated [101]. Therefore, we concentrated our initial
research on brain areas that receive input from motivational and cognitive systems
and provide output to the motor system. One such region is the supplementary eye
field (SEF). SEF receives input from areas that represent option value, such as the
orbitofrontal cortex and the amygdala [102, 103]. SEF forms a cortico-basal ganglia
loop with the caudate nucleus, which is known to contain saccadic action value
signals [104, 105]. SEF projects to oculomotor areas, such as frontal eye field,
lateral intraparietal cortex, and superior colliculus [102]. Neurons in SEF become
active before value-based saccades, much earlier than neurons in frontal eye field
and lateral intraparietal cortex [106]. SEF might therefore participate in the process
of value-based decision making in the case of eye movements.

Our initial recordings confirmed that SEF neurons represent three major func-
tional signals during decision-making [107]. One group of neurons encoded the
value of reward options, but not the type of eye movement necessary to obtain it.
Such option value signals are similar to signals found in the orbitofrontal cortex.
These signals appeared first in the SEF. Next, a group of neurons became active
that combined information about the value of an option with information about the
direction of the saccade necessary to receive the reward. Such action value signals
are ideally suited to select the action that will most likely maximize reward. Lastly,
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pure motor-related neurons became active that only carried eye movement related
signals. This succession of value- to motor-related signals is in line with our working
hypothesis that SEF serves as a bridge between the value and the motor systems. We
presume that it takes value information and translates it into action value represen-
tations. The learning of appropriate action value signals requires a system that can
evaluate the outcome of actions that are taken. Interestingly, SEF neurons also carry
various monitoring signals [108]. Altogether, these earlier findings suggested that
SEF participates in value-based decision making by computing an action value map
of the existing choice options. Competition within this map could select the action
associated with the highest value, which in turn could be used to guide the selection
and execution of the appropriate eye movement.

In order to test this hypothesis, we recorded from SEF neurons, while monkeys
chose between gambles of varying subjective values. The histograms in Fig. 6.2 show
the activity of multiple identified single neurons during saccades to four different
targets recorded in one of these sessions. The activity differences indicate the pre-
ferred direction and the strength of the tuning of the different cells. This directional
tuning (or lack thereof in the time period preceding the saccade) is of course only
one of the functional dimensions along which the SEF neurons can vary [73]. The
other major dimension, sensitivity to subjective value of the target, is not shown
in Fig. 6.2. However, even while ignoring this other potential source of functional
variability; a comparison of the neurons is enough to make clear, why it is impor-
tant to record from individual neurons. The SEF neurons that were recorded from
each of the three electrodes were, as a group, in very close anatomical proximity
to each other. Otherwise, it would not have been possible to separate their action
potentials from the background modulation of all the other neurons surrounding the
electrode tip. Nevertheless, there is a marked difference in directional tuning among
these neurons. In particular, one of the neurons recorded by the second electrode
(middle column, first row) is most active for saccades to target T3 and least active for
saccades to target T4. This is in contrast to two other neurons recorded by the same
electrode (middle column, second and fourth row) that show an exactly opposite
pattern of activity: these are most active for saccades to target T4 and least active
for saccades to target T3. Any form of mass-activity recording would have simply
averaged over these differences. In the best case, this would have increased the noise
of the recording, and in the worst case it would have led to a failure to detect an
important functional difference among the neurons forming the local network.

If a framework based on anatomical proximity is inadequate to functionally un-
derstand the SEF neurons, what kind of alternative works better? In our case, it turns
out that the functional framework of the action value map works well to give us some
insights on the pattern of activity in SEF during decision-making. Figure 6.3 shows
the population activity in SEF as a time-direction map of neuronal activity. Here,
we sort the neurons according to their preferred direction relative to the position of
the chosen and unchosen target. Since the monkey made saccades in four different
directions, each neuron contributed four different activity traces to the time-direction
map. To avoid a bias introduced by neurons with higher activity levels, we normal-
ized the activity of each neuron across all conditions. To smooth over inevitable



6 An Introduction to Neuroscientific Methods 125

Fig. 6.2 Recording of multiple identified single neurons. An example of numerous individual
neurons recorded simultaneously from three different electrodes inserted into different parts of SEF
during one recording session. Each panel shows the the average spike rate of one neuron aligned
on saccade onset for movements towards each of the four different target locations (T1: blue, T2:
black, T3: violet, T4: red line). The panel in each of the three columns represents the activity of one
individual neuron that was recorded from one of the three electrodes., We were able to isolate four
different neurons in the first two electrodes, and two more neurons from the third electrode

differences with which the preferred directions were represented in our neuronal
sample, we binned the neuronal activity. It should be understood that this simple
act itself represents a form of interpretation or hypothesis regarding the function of
the neurons. We presume that each neuron represents the action value of saccades
directed towards its preferred direction. Thus, as a whole the activity distribution
across the entire neuronal population encodes the combined estimation of the rela-
tive values of the various saccades that the monkey can make. Each vertical line in
the map represents the state of this activity distribution in the action value map at
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Fig. 6.3 Time-direction map of normalized neuronal activity in SEF. Each of the two maps shows
the normalized population activity distribution of directionally SEF neurons as a function of time.
We averaged neuronal activity over all different subjective target values. The vertical axis shows
the activity distribution of neurons sorted by the orientation of their preferred direction relative to
the direction of the chosen target (at 1.57 radians) and the non-chosen target (at 4.71 radians). The
horizontal axis shows the change of this activity distribution across time relative to saccade onset.
The time-direction map on the left shows the SEF activity during no-choice trials, in which only one
target was presented. The time-direction map on the right shows the activity of the same neurons
during choice trials. The upper band of activated neurons corresponds to neurons representing the
chosen target direction, while the lower band of activated neurons represents the non-chosen target
location

one moment in time. Since in our experiment, all targets were presented with the
same distance from the center, we can presume that our map here is one-dimensional.
Thus, the time-direction map shows the development of action value-related activity
over the course of decision-making.

The map on the left shows the simple no-choice case, in which only one target is
presented. In response to the target presentation, activity in a broad set of neurons
increases. Activity centered on the target direction reaches a maximum around the
time of saccade initiation. The map on the right shows the more complex case, in
which two targets are presented. There are a number of differences. First, activity
starts to rise in two parts of the map. One is centered on the target that will be chosen,
while the other is centered on the non-chosen target. The initial rise in activity relative
to saccade onset starts earlier, in keeping with the fact that reaction times are longer
when the monkey has to choose between two response options. In the beginning, the
activity associated with both possible targets is of similar strength, but around 50
ms before saccade onset, a difference develops between these two different groups
of cells. The activity centered on the chosen target becomes much larger than the
one centered on the non-chosen target, and increases until saccade onset. In fact, the
peak activity associated with the chosen target is much larger than the peak activity
associated with the same saccade during no-choice trials. This increased activity for
increased number of targets is very unusual and differs from the behavior of neurons
in other oculomotor regions. However, it might allow SEF to reliably encode the
best action value even in the face of distractors. In sum, the SEF population activity
seems to represent first both equally possible alternatives, before in a second step
reflecting the selection of the chosen target.
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These observations then beg the question, whether SEF activity actively takes
part in the decision process. To answer this, we have to establish at least two links
[2, 3]. The first link is between the variations of neuronal activity and the behavioral
choices of the monkey. To establish this link, we have to show that we can decode
(i.e., predict) the behavioral choice from the neuronal activity to some statistically
significant degree on any given trial. Traditionally, with single units, such a link
was established using techniques derived from signal detection theory [109, 110].
These techniques rely on a comparison of the neuron’s activity across trials that
never occurred simultaneously. For example, all trials, in which the two options A
and B are presented, are divided into trials in which option A was chosen and trials
in which option B was chosen. By comparing the activity of a neuron across these
two types of trials one can hope to see if there are differences related to behavioral
choice. However, this entails that the trials recorded from an individual neuron are
treated as if they belonged to a pair of neurons. Underlying this analysis is therefore
the assumption of a fictitious ‘antineuron’ that behaves as the mirror image of the
recorded neuron, but that was never actually recorded (and most likely does not exist).
Apart from these issues, there is the deeper question about the extent to which the
different trial repetitions are actually identical. In light of these conceptual problems,
it would be better to use the activity of many neurons on a single trial to do what, in
the traditional approach, is done with the activity of a single neuron on many trials
[111].

A promising new technique for decoding neural activity is the use of modern pat-
tern classification methods to analyze activity recorded simultaneously from multiple
neurons [112–115]. An interesting new approach for visualizing the pattern of activ-
ity within a large number of neurons is the state space representation [116]. In this
general framework, the activity of a group of neurons is represented as a particular
point in an N-dimensional space, where N is equal to the number of neurons. The
activity of each neuron at a given moment in time is represented numerically along
one of the dimensions forming the space. Thus, the entire population forms a vector
pointing to the part of the state space that represents the momentary state of the set
of neurons. Changes in neuronal activity lead to shifts in the state space that form
a trajectory. The direct visualization of this state space is obviously not possible for
groups of neurons larger than three. However, it is possible to visualize the main
changes in state space following dimensionality-reduction through methods, such as
principal component analysis. The mean trajectories describing the shifts of popu-
lation activity in SEF during decision making are shown in Fig. 6.4a for the set of
10 neurons depicted in Fig. 6.2. The trajectories associated with the choice of the
four saccade directions all start in the same part of the state space projection spanned
by the first two principal components (PC1, PC2), before moving in four different
directions in this state space. The trajectories shown in Fig. 6.4a indicate the mean
positions of the state vector. The state vectors associated with the individual trials
form a cloud around the mean trajectory.

We can now ask if there is a linear boundary that optimally divides the state
space, so that we can distinguish between the state vectors that are associated with
particular choices (of options or saccade direction). Next, we can ask how well we
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Fig. 6.4 Neuronal dynamics during decision-making within a neuronal state space and results of
linear classifier. a The activity of the simultaneously recorded neurons shown in Fig. 6.2 defined a
10-dimensional state space. A projection of this state space onto a 2-dimensional subspace is shown.
The subspace is defined by the first two principal components (PC1, PC2) explaining variance in the
neuronal state vector distribution. The temporal succession of the mean state vector location between
target and saccade onset is shown separately for trials in which one of four saccade directions was
chosen by the monkey. The mean state vector locations form a trajectory (T1: blue, T2: black, T3:
violet, T4: red line). The green dot on the trajectories indicates the moment of saccade initiation.
b A linear discriminant analysis of the distribution of state vectors for all combination of saccade
directions was performed. The percentage of correctly predicted choices based on this analysis
is plotted as a function of the time bin during which the state vectors were defined. The red bar
indicates those time periods, in which the percentage of correct predictions was significantly larger
than chance, as determined through a permutation test

can decode the monkey’s choices based on this approach, and at what point in time
our predictive power is better than chance. The result of this analysis for the same
set of 10 SEF neurons is shown in Fig. 6.4b. As we can see, the neuronal assembly
does not allow us to predict the chosen saccade direction up until 60 ms before
saccade onset. However, after this point the predictive power rapidly increases until
it reaches a choice probability of ∼ 75 % just before saccade onset. This ‘decision
point’ matches the estimate derived from the time-direction map for the moment at
which the activity map differentiates (Fig. 6.3).

6.7 Perturbing Spiking Activity in the Brain

Showing that SEF activity is correlated with decisions in the gambling task is a
good beginning towards establishing a link between neuronal activity and mental
processes. However, the critical step is clearly the establishment of causality. This
requires perturbation experiments, to show that changes in neuronal activity cause
changes in behavior.

To this end, we used a cooling probe to temporarily inactivate the SEF in both
hemispheres, while a monkey performed the gambling task [117]. It has been known
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for some time that cooling suppresses the generation of action potentials. This in-
activation is fast (with 1–5 min.), reversible, and causes no damage to the affected
tissue. All these factors make this technique easier to use than pharmacological in-
activation. At the same time, the size and extent of the affected area can be easily
controlled by the shape of the cooling probe. Thus, large brain areas can be influenced
simultaneously, a relative advantage over optogenetic techniques that are limited by
the ability to spread light evenly. On the downside, cooling affects all neurons near
the probe, and therefore does not allow the specific manipulation of functionally or
anatomically defined neuronal sub-groups.

The behavioral effects of the inactivation are shown in Fig. 6.5. We plot the
probability of choosing the less valuable target as a function of the difference in
subjective values. Behavior under normal conditions is shown by the blue bars. As
one would expect, the probability of choosing the less valuable option is largest
when the difference is small and the discrimination of the value difference is hard.
For larger value differences (> 20 %), the monkey typically picks the less valuable
target only rarely. If SEF plays a causal role in value-based decision making, we
would expect the monkey to show an increased rate of sub-optimal choices when
SEF can no longer guide motor selection. This is indeed the case, as shown by the
red bars. The effect is largest for intermediate value differences. This is probably
due to the fact that there is a ceiling effect for very small value differences, while for
very large value differences the decision is so easy that other brain regions beside
the SEF are sufficient to pick the better option. Nevertheless, the overall effect of
cooling on behavior is significant (p < 0.01), and the size of the effect is comparable
to the effect of permanent lesions of the orbitofrontal cortex through ablation [118].
Importantly, the fact that inactivation of SEF has an immediate effect on value-based
decisions establishes a causal link between SEF single unit activity and the monkey’s
choice based on subjective preferences (at least with regards to eye movements).

SEF is clearly part of a larger network that is involved in value-based decision
making. An important future direction will therefore be the exploration of the other
brain areas in the network. One group of areas, such as dorsolateral prefrontal cortex,
orbitofrontal cortex and amygdala, provide inputs to the SEF. Another set of areas
including frontal eye field, superior colliculus and dorsal striatum, in turn, receive
inputs from the SEF. Understanding the entire circuit responsible for value-based
decision making will require us to describe the types of signals and their temporal
order within this network of brain areas.

6.8 Future Developments

Recently, very ambitious proposals for large-scale projects have been suggested
within neuroscience. Many prominent and accomplished neuroscientists have sug-
gested that we should try to reconstruct the neuronal network for large parts if not the
entire, brain of a small mammal, a ‘structural’ connectome [30]. Other researchers
have suggested that we should attempt to record every action potential from every
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Fig. 6.5 Behavioral effects of bilateral inactivation of SEF through cooling. The probability of
choosing the smaller of two options was plotted as a function of relative difference in subjective
value of the options as determined behaviorally (see Fig. 6.1). The behavior under normal conditions
is shown by the blue bars (normal temperature; 37◦C). The behavior, when SEF is inactivated in
both hemispheres, is shown by the red bars (∼10◦C)

neuron within a circuit, ultimately again within the entire brain, a ‘functional’ con-
nectome [119]. Such ideas are very ambitious and attractive, since they promise to
tackle directly one of the biggest problems in our current understanding of the brain.
While we can observe the spiking activity of individual neurons, and can establish
links between their activity and behavior or even mental states, we mostly do not
know why the neurons show the activity pattern that we observe. The activity of neu-
rons in the brain is ultimately an emergent property of the interactions between the
different elements that make up the circuit that they belong to. Thus, only knowledge
about the fine structure of this circuit and the distributed activity of the various ele-
ments that make up the circuit will provide us with a true mechanistic understanding
of the brain.

However, there is reason to be cautious. It is easy to underestimate the true
complexity of the brain [2, 120]. Moore proved that the number of steps necessary
to learn about the internal structure of a computing machine is at least the same
order of magnitude as the number of states of the machine [39]. It is easy to see the
consequences of this relationship for a task such as fully characterizing the visual
cortex of the mouse, which contains about 2 million neurons [120]. Any realistic hope
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of progress relies on our ability to discover hierarchical structures in the network,
which would allow us to simplify the level of complexity of the circuit that needs
to be understood in order to explain the behavior of the entire network [120, 121].
Such insights ultimately require further conceptual breakthroughs, and the input of
theorists, such as mathematical psychologists or computational neuroscientists.

In conclusion, we are living in exciting times for neuroscientists. Important
technological breakthroughs have been made and there is the potential for the devel-
opment of even more advanced methods for recording neural activity from hundreds,
if not thousands, neurons simultaneously and to reconstruct nervous circuits in
unprecedented detail [122, 123]. Without any doubt, these attempts at technical
innovation will move neuroscience forward. This is true, not least, because work
towards achieving these goals might lead to much-needed improvements in mea-
surement technology, even if the ultimate goal should remain elusive. However, it is
important not to ignore the main source of most of the real insights into the brain that
have been acquired up to now, namely, the establishment of a functional and explana-
tory link between neural activity and mental phenomena using psychophysics and
mathematical models. When the newly available techniques are combined with these
established approaches, we will truly see great steps forward in our understanding
of the brain.

Exercises

1. Given the fact that, in humans, for the foreseeable future we will have to rely
on mass-activity measures of brain activity, the relationship between single-unit
activity and mass-action recordings is of interest. What do you think is the re-
lationship between individual neurons producing action potentials and fMRI or
EEG?

2. New generations of neuroprobes will allow extreme miniaturization. Currently
available probes allow the construction of devices with 456 electrodes. Within a
few years we will likely have neuroprobes available that have up to 2000 elec-
trodes [123]. Also currently already available are microchips that can be injected
into the brain and that allow the recording of electrical fields, temperature, and
the local emission of light, which would allow the spatially precise control of
neural activity through optogenetics [124]. More futuristic approaches envision
“nanometer-scale light-sensitive devices that could embed themselves in the mem-
brane of neurons, power themselves from cellular energy, and wirelessly convey
the activity of millions of neurons simultaneously” [123, 125]. If we assume for
a moment that all these technical advances come to fruition, what are questions
that could be answered using these new techniques?
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Further Reading

1. Wise [32] provides a provocative review about the function of prefrontal cortex.
It includes a discussion of the differences between the frontal cortex of primates
and rodents.

2. In a seminal paper, Teller [1] lays out the internal logic that allows establishing
a link between a set of physical events in the brain to psychological events or
a functional concept. A more in depth discussion of these requirements is also
provided by Parker & Newsome [3] in the sensory domain and by Schall [2] in
the motor domain.

3. In a highly amusing and interesting book, Passingham [50] describes what is
known about the specific characteristics of human brain anatomy and physiology,
as opposed to the brains of other primates.

4. Glimcher [85] lays out, how psychology, economics, and neuroscience can be
related in a new reductionist framework.

5. In this classic description, Gescheider [82] gives an overview over modern psy-
chophysics. This topic is of utmost importance to anyone interested in connecting
brain activity with behavior and mental states.

6. Modern approaches for the recording of multiple individual neurons are discussed
by Kipke et al. [89] and Buzsaki [94]. An interesting new method for analyzing
the resulting multi-neuron data is described in Yu, et al. [116]. These papers are
of course just highlights out of a vast literature.

7. Denk et al. [30] and Alivisatos et al. [119] describe ambitious new proposals of
obtaining structural and functional ‘connectomes’, that is, a complete description
of a neuronal circuit.

8. Koch [120] discusses the difficulties for explaining the mammalian brain related
to its astonishing complexity.
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