
Chapter 3
An Introduction to the Diffusion Model
of Decision Making

Philip L. Smith and Roger Ratcliff

Abstract The diffusion model assumes that two-choice decisions are made by accu-
mulating successive samples of noisy evidence to a response criterion. The model has
a pair of criteria that represent the amounts of evidence needed to make each response.
The time taken to reach criterion determines the decision time and the criterion that
is reached first determines the response. The model predicts choice probabilities and
the distributions of response times for correct responses and errors as a function of
experimental conditions such as stimulus discriminability, speed-accuracy instruc-
tions, and manipulations of relative stimulus frequency, which affect response bias.
This chapter describes the main features of the model, including mathematical meth-
ods for obtaining response time predictions, methods for fitting it to experimental
data, including alternative fitting criteria, and ways to represent the fit to multiple
experimental conditions graphically in a compact way. The chapter concludes with
a discussion of recent work in psychology that links evidence accumulation to pro-
cesses of perception, attention, and memory, and in neuroscience, to neural firing
rates in the oculomotor control system in monkeys performing saccade-to-target
decision tasks.

3.1 Historical Origins

The human ability to translate perception into action, which we share with nonhuman
animals, relies on our ability to make rapid decisions about the contents of our
environment. Any form of coordinated, goal-directed action requires that we be
able to recognize things in the environment as belonging to particular cognitive
categories or classes and to select the appropriate actions to perform in response.
To a very significant extent, coordinated action depends on our ability to provide
rapid answers to questions of the form: “What is it?” and “What should I do about
it?” When viewed in this way, the ability to make rapid decisions—to distinguish
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predator from prey, or friend from foe—appears as one of the basic functions of
the brain and central nervous system. The purpose of this chapter is to provide an
introduction to the mathematical modeling of decisions of this kind.

Historically, the study of decision-making in psychology has been closely con-
nected to the study of sensation and perception—an intellectual tradition with its
origins in philosophy and extending back to the nineteenth century. Two strands of
this tradition are relevant: psychophysics, defined as the study of the relationship
between the physical magnitudes of stimuli and the sensations they produce, and
the study of reaction time or response time (RT). Psychophysics, which had its ori-
gins in the work of Gustav Fechner in the Netherlands in 1860 on “just noticeable
differences,” led to the systematic study of decisions about stimuli that are difficult
to detect or to discriminate. The study of RT was initiated by Franciscus Donders,
also in the Netherlands, in 1868. Donders, inspired by the pioneering work of Her-
mann von Helmholtz on the speed of nerve conduction, sought to develop methods
to measure the speed of mental processes. These two strands of inquiry were mo-
tivated by different theoretical concerns, but led to a common realization, namely,
that decision-making is inherently variable. People do not always make the same
response to repeated presentation of the same stimulus and the time they take to
respond to it varies from one presentation to the next.

Trial-to-trial variation in performance is a feature of an important class of mod-
els for speeded, two-choice decision-making developed in psychology, known as
sequential-sampling models. These models regard variation in decision outcomes
and decision times as the empirical signature of a noisy evidence accumulation
process. They assume that, to make a decision, the decision maker accumulates suc-
cessive samples of noisy evidence over time, until sufficient evidence for a response
is obtained. The samples represent the momentary evidence favoring particular de-
cision alternatives at consecutive time points. The decision time is the time taken to
accumulate a sufficient, or criterion, amount of evidence and the decision outcome
depends on the alternative for which a criterion amount of evidence is first obtained.
The idea that decision processes are noisy was first proposed on theoretical grounds,
to explain the trial-to-trial variability in behavioral data, many decades before it was
possible to use microelectrodes in awake, behaving animals to record this variability
directly. The noise was assumed to reflect the moment-to-moment variability in the
cognitive or neural processes that represent the stimulus [1–4].

In this chapter, we describe one such sequential-sampling model, the diffusion
model of Ratcliff [5]. Diffusion models, along with random walk models, comprise
one of the two main subclasses of sequential-sampling models in psychology; the
other subclass comprises accumulator and counter models. For space reasons, we
do not consider models of this latter class in this chapter. The interested reader is
referred to references [2–4] and [6] for discussions. To distinguish Ratcliff’s model
from other models that also represent evidence accumulation as a diffusion process,
we refer to it as the standard diffusion model. Historically, this model was the first
model to represent evidence accumulation in two-choice decision making as a diffu-
sion process and it remains, conceptually and mathematically, the benchmark against
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which other models can be compared. It is also the model that has been most exten-
sively and successfully applied to empirical data. We restrict our consideration here
to two-alternative decision tasks, which historically and theoretically have been the
most important class of tasks in psychology.

3.2 Diffusion Processes and Random Walks

Mathematically, diffusion processes are the continuous-time counterparts of random
walks, which historically preceded them as models for decision-making. A random
walk is defined as the running cumulative sum of a sequence of independent random
variables, Zj , j = 1, 2, . . . . In models of decision-making, the values of these
variables are interpreted as the evidence in a sequence of discrete observations of
the stimulus. Typically, evidence is assumed to be sampled at a constant rate, which
is determined by the minimum time needed to acquire a single sample of perceptual
information, denoted Δ. The random variables are assumed to take on positive and
negative values, with positive values being evidence for one response, say Ra , and
negative values evidence for the other response, Rb. For example, in a brightness
discrimination task, Ra might correspond to the response “bright” and Rb correspond
to the response “dim.” The mean of the random variables is assumed to be positive or
negative, depending on the stimulus presented. The cumulative sum of the random
variables,

Xi =
i∑

j=1

Zj ,

is a random walk. If the Zj are real-valued, the domain of the walk is the positive
integers and the range is the real numbers. To make a decision, the decision-maker
sets a pair of evidence criteria, a and b, with b < 0 < a and accumulates evidence
until the cumulative evidence total reaches or exceeds one of the criteria, that is, until
Xi ≥ a or Xi ≤ b. The time taken for this to occur is the first passage time through
one of the criteria, defined formally as

Ta = min{iΔ : Xi ≥ a|Xj > b; j < i}
Tb = min{iΔ : Xi ≤ b|Xj < a; j < i}.

If the first criterion reached is a, the decision maker makes response Ra; if it is b,
the decision maker makes response Rb. The decision time, TD , is the time for this to
occur

TD = min{Ta , Tb}.
If response Ra is identified as the correct response for the stimulus presented, then
the mean, or expected value, of Ta , denoted E[Ta], is the mean decision time for
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correct responses; E[Tb] is the mean decision time for errors, and the probability of
a correct response, P (C), is the first passage probability of the random walk through
the criterion a,

P (C) = Prob{Ta < Tb}.
Although either Ta or Tb may be infinite on a given realization of the process the
other will be finite, so TD will be finite with probability one; that is, the process will
terminate with one or other response in finite time [7]. This means that the probability
of an error response, P (E), will equal 1 − P (C).

Random walk models of decision-making have been proposed by a variety of
authors. The earliest of them were influenced by Wald’s sequential probability ratio
test (SPRT) in statistics [8] and assumed that the random variables Zj were the log-
likelihood ratios that the evidence at each step came from one as opposed to the
other stimulus. The most highly-developed of the SPRT models was proposed by
Laming [9]. The later relative judgment theory of Link and Heath [10] assumed that
the decision process accumulates the values of the noisy evidence samples directly
rather than their log-likelihood ratios. Evaluation of these models focused primarily
on the relationship between mean RT and accuracy and the ordering of mean RTs
for correct responses and errors as a function of experimental manipulations [2–4,
9, 10].

3.3 The Standard Diffusion Model

A diffusion process may be thought of as random walk in continuous time. Instead of
accumulating evidence at discrete time points, evidence is accumulated continuously.
Such a process can be obtained mathematically via a limiting process, in which the
sampling interval is allowed to go to zero while constraining the average size of the
evidence at each step to ensure the variability of the process in a given, fixed time
interval remains constant [7, 11]. The study of diffusion processes was initiated by
Albert Einstein, who proposed a diffusion model for the movement of a pollen particle
undergoing random Brownian motion [11]. The rigorous study of such processes was
initiated by Norbert Wiener [12]. For this reason, the simplest diffusion process is
known variously as the Wiener process or the Brownian motion process.

In psychology, Ratcliff [5] proposed a diffusion model of evidence accumulation
in two-choice decision-making—in part because it seemed more natural to assume
that the brain accumulates information continuously rather than at discrete time
points. Ratcliff also emphasized the importance of studying RT distributions as a way
to evaluate models. Sequential-sampling models not only predict choice probabilities
and mean RTs, they predict entire distributions of RTs for correct responses and
errors. This provides for very rich contact between theory and experimental data,
allowing for strong empirical tests.

The main elements of the standard diffusion model are shown in Fig. 3.1. We shall
denote the accumulating evidence state in the model as Xt , where t denotes time.
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Fig. 3.1 Diffusion model. The process starting at z accumulates evidence between decision criteria
at 0 and a. Moment-to-moment variability in the accumulation process means the process can
terminate rapidly at the correct response criterion, slowly at the correct response criterion, or at
the incorrect response criterion. There is between-trial variability in the drift rate, ξ , with standard
deviation η, and between-trial variability in the starting point, z, with range sz

Before describing the model, we should mention that there are two conventions used
in psychology to characterize diffusion models. The convention used in the preceding
section assumes the process starts at zero and that the criteria are located at a and
b, with b < 0 < a. The other is based on Feller’s [13] analysis of the so-called
gambler’s ruin problem and assumes that the process starts at z and that the criteria
are located at 0 and a, with 0 < z < a. As the latter convention was used by Ratcliff
in his original presentation of the model [5] and in later work, this is the convention
we shall adopt for the remainder of this chapter. The properties of the process are
unaltered by translations of the starting point; such processes are called spatially
homogeneous. For processes of this kind, a change in convention simply represents a
relabeling of the y-axis that represents the accumulating evidence state. Other, more
complex, diffusion processes, like the Ornstein-Uhlenbeck process [14–16], are not
spatially homogeneous and their properties are altered by changes in the assumed
placement of the starting point.

As shown in the figure, the process, starting at z, begins accumulating evidence at
time t = 0. The rate at which evidence accumulates, termed the drift of the process
and denoted ξ , depends on the stimulus that is presented and its discriminability.
The identity of the stimulus determines the direction of drift and the discriminability
of the stimulus determines the magnitude. Our convention is that when stimulus sa

is presented the drift is positive and the value of Xt tends to increase with time,
making it is more likely to terminate at the upper criterion and result in response
Ra . When stimulus sb is presented the drift is negative and the value of Xt tends
to decrease with time, making it is more likely to terminate at the lower boundary
with response Rb. In our example brightness discrimination task, bright stimuli lead
to positive values of drift and dim stimuli lead to negative values of drift. Highly
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discriminable stimuli are associated with larger values of drift, which lead to more
rapid information accumulation and faster responding. Because of noise in the pro-
cess, the accumulating evidence is subject to moment-to-moment perturbations. The
time course of evidence accumulation on three different experimental trials, all with
the same drift rate, is shown in the figure. These noisy trajectories are termed the
sample paths of the process. A unique sample path describes the time course of
evidence accumulation on a given experimental trial. The sample paths in the figure
show some of the different outcomes that are possible for stimuli with the same drift
rate. The sample paths in the figure show: (a) a process terminating with a correct re-
sponse made rapidly; (b) a process terminating with a correct response made slowly,
and (c) a process terminating with an error response. In behavioral experiments,
only the response and the RT are observables; the paths themselves are not. They are
theoretical constructs used to explain the observed behavior.

The noisiness, or variability, in the accumulating evidence is controlled by a
second parameter, the infinitesimal standard deviation, denoted s. Its square, s2, is
termed the diffusion coefficient. The diffusion coefficient determines the variability in
the sample paths of the process. Because the parameters of a diffusion model are only
identified to the level of a ratio, all the parameters of the model can be multiplied by a
constant without affecting any of the predictions. To make the parameters estimable,
it is common practice to fix s arbitrarily. The other parameters of the model are
then expressed in units of infinitesimal standard deviation, or infinitesimal standard
deviation per unit time.

3.4 Components of Processing

As shown in Fig. 3.1, the diffusion model predicts RT distributions for correct re-
sponses and errors. Moment-to-moment variability in the sample paths of the process,
controlled by the diffusion coefficient, means that on some trials the process will fin-
ish rapidly and on others it will finish slowly. The predicted RT distributions have
a characteristic unimodal, positively-skewed shape: More of the probability mass in
the distribution is located below the mean than above it. As the drift of the process
changes with changes in stimulus discriminability, the relative proportions of cor-
rect responses and errors change, and the means and standard deviations of the RT
distributions also change. However, the shapes of the RT distributions change very
little; to a good approximation, RT distributions for low discriminability stimuli are
scaled copies of those for high discriminability stimuli [17].

One of the main strengths of the diffusion model is that the shapes of the RT dis-
tributions it predicts are precisely those found in empirical data. Many experimental
tasks, including low-level perceptual tasks like signal detection and higher-level
cognitive tasks like lexical decision and recognition memory, yield families of RT
distributions like those predicted by the model [6]. In contrast, other models, partic-
ularly those of the accumulator/counter model class, predict distribution shapes that
become more symmetrical with reductions in discriminability [6]. Such distributions
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tend not to be found empirically, except in situations in which people are forced to
respond to an external deadline.

One of the problems with early random walk models of decision-making—which
they shared with the simplest form of the diffusion model—is they predicted that
mean RTs for correct responses and errors would be equal [2]. Specifically, if
E[Rj |si], denotes the mean RT for response Rj to stimulus si , with i, j ∈ {a, b}, then,
if the drifts for the two stimuli are equal in magnitude and opposite in sign, as is natural
to assume for many perceptual tasks, the models predicted that E[Ra|sa] = E[Ra|sb]
and E[Rb|sa] = E[Rb|sb]; that is, the mean time for a given response made correctly
is the same as the mean time for that response made incorrectly. They also predicted,
when the starting point is located equidistantly between the criteria, z = a/2, that
E[Ra|sa] = E[Rb|sa] and E[Ra|sb] = E[Rb|sb]; that is, the mean RT for correct
responses to a given stimuli is the same as the mean error RT to that same stimulus.
This prediction holds regardless of the relative magnitudes of the drifts. Indeed, a
stronger prediction holds; the models predicted equality not only of mean RTs, but
of the entire distributions of correct responses and errors. These predictions almost
never hold empirically. Rather, the typical finding is that when discriminability is
high and speed is stressed, error mean times are shorter than correct mean times.
When discriminability is low and accuracy is stressed, error mean times are longer
than correct mean times [2]. Some studies show a crossover pattern, in which errors
are faster than correct responses in some conditions and slower in others [6].

A number of modifications to random walk models were proposed to deal with
the problem of the ordering of mean RTs for correct responses and errors, includ-
ing asymmetry (non-normality) of the distributions of evidence that drive the walk
[1, 10], and biasing of an assumed log-likelihood computation on the stimulus in-
formation at each step [18], but none of them provided a completely satisfactory
account of the full range of experimental findings. The diffusion model attributes
inequality of the RTs for correct responses and errors to between-trial variability in
the operating characteristics, or “components of processing,” of the model. The dif-
fusion model predicts equality of correct and error times only when the sole source
of variability in the model is the moment-to-moment variation in the accumulation
process. Given the complex interaction of perceptual and cognitive processes in-
volved in decision-making, such an assumption is probably an oversimplification. A
more realistic assumption is that there is trial-to-trial variability, both in the quality
of information entering the decision process and in the decision-maker’s setting of
decision criteria or starting points. Trial-to-trial variability in the information enter-
ing the decision process would arise either from variability in the efficiency of the
perceptual encoding of stimuli or from variation in the quality of the information
provided by nominally equivalent stimuli. Trial-to-trial variability in decision crite-
ria or starting points would arise as the result of the decision-maker attempting to
optimize the speed and accuracy of responding [4]. Most RT tasks show sequential
effects, in which the speed and accuracy of responding depends on the stimuli and/or
the responses made on preceding trials, consistent with the idea that there is some
kind of adaptive regulation of the settings of the decision process occurring across
trials [2, 4].
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Fig. 3.2 Effects of
trial-to-trial variability in drift
rates and starting points. The
predicted RT distributions are
probability mixtures across
processes with different drift
rates (top) or different starting
points (bottom). Variability in
drift rates leads to slow
errors; variability in starting
points leads to fast errors

The diffusion model assumes that there is trial-to-trial variation in both drift rates
and starting points. Ratcliff [5] assumed that the drift rate on any trial, ξ , is drawn from
a normal distribution with mean ν and standard deviation η. Subsequently Ratcliff,
Van Zandt, and McKoon [19] assumed that there is also trial-to-trial variability in the
starting point, z, which they modeled as a rectangular distribution with range sz. They
chose a rectangular distribution mainly on the grounds of convenience, because the
predictions of the model are relatively insensitive to the distribution’s form. The main
requirement is that all of the probability mass of the distribution must lie between
the decision criteria, which is satisfied by a rectangular distribution with sz suitably
constrained. The distributions of drift and starting point are shown in Fig. 3.1.

Trial-to-trial variation in drift rates allows the model to predict slow errors; trial-to-
trial variation in starting point allows it to predict fast errors. The combination of the
two allows it to predict crossover interactions, in which there are fast errors for high
discriminability stimuli and slow errors for low discriminability stimuli. Figure 3.2a
shows how trial-to-trial variability in drift results in slow errors. The assumption that
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drift rates vary across trials means that the predicted RT distributions are probability
mixtures, made up of trials with different values of drift. When the drift is small
(i.e., near zero), error rates will be high and RTs will be long. When the drift is
large, error rates will be low and RTs will be short. Because errors are more likely
on trials on which the drift is small, a disproportionate number of the trials in the
error distribution will be trials with small drifts and long RTs. Conversely, because
errors are less likely on trials on which drift is large, a disproportionate number of
the trials in the correct response distribution will be trials with large drifts and short
RTs. In either instance, the predicted mean RT will be the weighted mean of the RTs
on trials with small drift and large drifts.

Figure 3.2a illustrates how slow errors arise in a simplified case in which there
are just two drifts, ξ1 and ξ2, with ξ1 > ξ2. When the drift is ξ1, the mean RT is 400
ms and the probability of a correct response, P (C), is 0.95. When the drift is ξ2, the
mean RT is 600 and P (C) = 0.80. The predicted mean RTs are the weighted means
of large drift and small drift trials. The predicted mean RT for correct responses is
(0.95 × 400 + 0.80 × 600)/1.75 = 491 ms. The predicted mean for error responses
(0.05 × 400 + 0.20 × 600)/0.25 = 560 ms. Rather than just two drifts, the diffusion
model assumes that the predicted means for correct responses and errors are weighted
means across an entire normal distribution of drift. However, the effect is the same:
predicted mean RTs errors are longer than those for correct responses.

Figure 3.2b illustrates how fast errors arise as the result of variation in starting
point. Again, we have shown a simplified case, in which there are just two starting
points, one of which is closer to the lower, error, response criterion and the other
of which is closer to the upper, correct, response criterion. In this example, a single
value, of drift, ξ , has been assumed for all trials. The model predicts fast errors
because the mean time for the process to reach criterion depends on the distance it
has to travel and because it is more likely to terminate at a particular criterion if the
criterion is near the starting point rather than far from it. When the starting point
is close to the lower criterion, errors are faster and also more probable. When the
starting point is close to the upper criterion, errors are slower, because the process
has to travel further to reach the error criterion, and are less probable. Once again,
the predicted distributions of correct responses and errors are probability mixtures
across trials with different values of starting point.

In the example shown in Fig. 3.2b, when the process starts near the upper criterion,
the mean RT for correct responses is 350 ms and P (C) = 0.95. When it starts near
the lower criterion, the mean RT for correct responses is 450 ms and P (C) = 0.80.
The predicted mean RTs for correct responses and errors are again the weighted
means across starting points. In this example, the mean RT for correct responses
is (0.95 × 350 + 0.80 × 450)/1.75 = 396 ms; the mean RT for errors is (0.20 ×
350 + 0.05 × 450)/0.25 = 370 ms. Again, the model assumes that the predicted
mean times are weighted means across the entire distribution of starting points, but
the effect is the same: predicted mean times for errors are faster than those correct
responses. When equipped with both variability in drift and starting point, the model
can predict both the fast errors and the slow errors that are found experimentally [6].
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The final component of processing in the model is the non-decision time, denoted
Ter. Like many other models in psychology, diffusion model assumes that RT can be
additively decomposed into the decision time, TD , and the time for other processes,
Ter:

RT = TD + Ter.

The subscript in the notation means “encoding and responding.” In many applica-
tions of the model, it suffices to treat Ter as a constant. In practice, this is equivalent to
assuming that it is an independent random variable whose variance is negligible com-
pared to that of TD . In other applications, particularly those in which discriminability
is high and speed is emphasized and RT distributions have small variances, the data
are better described by assuming that Ter is rectangularly distributed with range st .
As with the distribution of starting point, the rectangular distribution is used mainly
as a convenience, because when the variance of Ter is small compared to that of TD ,
the shape of the distribution will be determined almost completely by the shape of
the distribution of decision times. The advantage of assuming some variability in Ter

in these settings is that it allows the model to better capture the leading edge of the
empirical RT distributions, which characterizes the fastest 5–10 % of responses, and
which tends to be slightly more variable than the model predicts.

3.5 Bias and Speed-Accuracy Tradeoff Effects

Bias effects and speed-accuracy tradeoff effects are ubiquitous in experimental psy-
chology. Bias effects typically arise when the two stimulus alternatives occur with
unequal frequency or have unequal rewards attached to them. Speed-accuracy trade-
off effects arise as the result of explicit instructions emphasizing speed or accuracy
or as the result of an implicit set on the part of the decision-maker. Such effects
can be troublesome in studies that measure only accuracy or only RT, because of
the asymmetrical way in which these variables can be traded off. Small changes in
accuracy can be traded off against large changes in RT, which can sometimes make
it difficult to interpret a single variable in isolation [2].

One of the attractive features of sequential-sampling models like the diffusion
model is that they provide a natural account of how speed-accuracy tradeoffs arise.
As shown in Fig. 3.3, the models assume that criteria are under the decision-maker’s
control. Moving the criteria further from the starting point (i.e., increasing a while
keeping z = a/2) increases the distance the process must travel to reach a criterion
and also reduces the probability that it will terminate at the wrong criterion because
of the cumulative effects of noise. The effect of increasing criteria will thus be slower
and more accurate responding. This is the speed-accuracy tradeoff.

The diffusion model with variation in drift and starting point can account for the
interactions with experimental instructions emphasizing speed or accuracy that are
found experimentally. When accuracy is emphasized and criteria are set far from
the starting point, variations in drift have a greater effect on performance than do
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Fig. 3.3 Speed-accuracy tradeoff and response bias. Reducing decision criteria leads to faster
and less accurate responding. Shifting the starting point biases the process towards the response
associated with the nearer criterion

variations in starting point, and so slow errors are found. When speed is emphasized
and criteria are near the starting point, variations in starting point have a greater
effect on performance than do variations in drift and fast errors are found.

Like other sequential-sampling models, the diffusion model accounts for bias
effects by assuming unequal criteria, represented by a shift in the starting point
towards the upper or lower criterion, as shown in Fig. 3.3. Shifting the starting point
towards a particular response criterion increases the probability of that response
and reduces the average time taken to make it. The probability of making the other
response is reduced and the average time to make it is correspondingly increased.
The effect of changing the prior probabilities of the two responses, by manipulating
the relative stimulus frequencies, is well described by a change in the starting point
(unequal decision criteria). In contrast, unequal reward rates not only lead to a bias in
decision criteria, they also lead to a bias in the way stimulus information is classified
[20]. This can be captured in the idea of a drift criterion, which is a criterion on
the stimulus information, like the criterion in signal detection theory. The effect of
changing the drift criterion is to make the drift rates for the two stimuli unequal. Both
kinds of bias effects appear to operate in tasks with unequal reward rates.

3.6 Mathematical Methods For Diffusion Models

Diffusion processes can be defined mathematically either via partial differential equa-
tions or by stochastic differential equations. If f (τ , y; t , x) is the transition density
of the process Xt , that is, f (τ , y; t , x) dx is the probability that a process starting
at time τ in state y will be found at time t in a small interval (x, x + dx), then the
accumulation process Xt , with drift ξ and diffusion coefficient s2, satisfies the partial
differential equation

∂f

∂τ
= 1

2
s2 ∂2f

∂y2
+ ξ

∂f

∂y
.
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This equation is known in the probability literature as Kolmogorov’s backward equa-
tion, so called because its variables are the starting time τ and the initial state y. The
process also satisfies a related equation known as Kolmogorov’s forward equation,
which is an equation in t and x [7, 11]. The backward equation is used to derive
RT distributions; the forward equation is useful for characterizing the accumulated
evidence at time t for processes that have not yet terminated at one of the criteria [5].

Alternatively, the process can be defined as satisfying the stochastic differential
equation [11]:

dXt = ξdt + s dWt .

The latter equation is useful because it provides a more direct physical intuition about
the properties of the accumulation process. Here dXt is interpreted as the small,
random change in the accumulated evidence occurring in a small time interval of
durationdt . The equation says that the change in evidence is the sum of a deterministic
and a random part. The deterministic part is proportional to the drift rate, ξ ; the
random part is proportional to the infinitesimal standard deviation, s. The term on
the right, dWt , is the differential of a Brownian motion or Wiener process, Wt . It
can be thought of as the random change in the accumulation process during the
interval dt when it is subject to the effects of many small, independent random
perturbations, described mathematically as a white noise process. White noise is
a mathematical abstraction, which cannot be realized physically, but it provides
a useful approximation to characterize the properties of physical systems that are
perturbed by broad-spectrum, Gaussian noise. Stochastic differential equations are
usually written in the differential form given here, rather than in the more familiar
form involving derivatives, because of the extreme irregularity of the sample paths
of diffusion processes, which means that quantities of the form dXt/dt are not well
defined mathematically.

Solution of the backward equation leads to an infinite series expression for the
predicted RT distributions and an associated expression for accuracy [5, 7, 11]. The
stochastic differential equation approach leads to a class of integral equation methods
that were developed in mathematical biology to study the properties of integrate-and-
fire neurons. The interested reader is referred to references [6, 16, 21] for details.
For a two-boundary process with drift ξ , boundary separation a, starting point z, and
infinitesimal standard deviation s, with no variability in any of its parameters, the
probability of responding at the lower barrier, P (ξ , a, z), is

P (ξ , a, z) = exp (− 2ξa/s2) − exp (− 2ξz/s2)

exp (− 2ξa/s2) − 1
.

The cumulative distribution of first passage times at the lower boundary is

G(t , ξ , a, z) =

P (ξ , a, z) − πs2

a2
e−ξz/s2

∞∑

k=1

2k sin
(

kπz
a

)
exp

{
− 1

2

(
ξ2

s2 + k2π2s2

a2

)
t
}

(
ξ2

s2 + k2π2s2

a2

) .
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The probability of a response and the cumulative distribution of first passage times
at the upper boundary are obtained by replacing ξ with −ξ and z with a − z in the
preceding expressions. More details can be found in reference [5].

In addition to the partial differential equation and integral equation methods,
predictions for diffusion models can also be obtained using finite-state Markov chain
methods or by Monte Carlo simulation [22]. The Markov chain approach, developed
by Diederich and Busemeyer [23], approximates a continuous-time, continuous-
state, diffusion process by a discrete-time, discrete-state, birth-death process [5].
A transition matrix is defined that specifies the probability of an increment or a
decrement to the process, conditional on its current state. The entries in the transition
matrix express the relationship between the drift and diffusion coefficients of the
diffusion process and the transition probabilities of the approximating Markov chain
[24]. The transition matrix includes two special entries that represent criterion states,
which are set equal to 1.0, expressing the fact that once the process has transitioned
into a criterion state, it does not leave it. An initial state vector is defined, which
represents the distribution of probability mass at the beginning of the trial, including
the effects of any starting point variation. First passage times and probabilities can
then be obtained by repeatedly multiplying the state vector by the transition matrix.
These alternative methods are useful for more complex models for which an infinite-
series solution may not be available. There are now software packages available for
fitting the standard diffusion model that avoid the need to implement the model from
first principles [25–27].

3.7 The Representation of Empirical Data

The diffusion model predicts accuracy and distributions of RT for correct responses
and errors as a function of the experimental variables. In many experimental settings,
the discriminability of the stimuli is manipulated as a within-block variable, while
instructions, payoffs, or prior probabilities are manipulated as between-block vari-
ables. The model assumes that manipulations of discriminability affect drift rates,
while manipulations of other variables affect criteria or starting points. Although
criteria and starting points can vary from trial to trial, they are assumed to be inde-
pendent of drift rates, and to have the same average value for all stimuli in a block.
This assumption provides an important constraint in model testing.

To show the effects of discriminability variations on accuracy and RT distributions,
the data and the predictions of the model are represented in the form of a quantile-
probability plot, as shown in Fig. 3.4. To construct such a plot, each of the RT
distributions is summarized by an equal-area histogram. Each RT distribution is
represented by a set of rectangles, each representing 20 % of the probability mass
in the distribution, except for the two rectangles at the extremes of the distribution,
which together represent the 20 % of mass in the upper and lower tails. The time-
axis bounds of the rectangles are distribution quantiles, that is, those values of time
that cut off specified proportions of the mass in the distribution. Formally, the pth
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Fig. 3.4 Representing data in a quantile probability plot. Top panel: An empirical RT distribution is
summarized using an equal-area histogram with bins bounded by the distribution quantiles. Middle
panel: The quantiles of the RT distributions for correct responses and errors are plotted vertically
against the probability of a correct response on the right and the probability of an error response
on the left. Bottom panel: Example of an empirical quantile probability plot from a brightness
discrimination experiment
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quantile, Qp, is defined to be the value of time such that the proportion of RTs
in the distribution that are less than or equal to Qp is equal to p. The distribution
in the figure has been summarized using five quantiles: the 0.1, 0.3, 0.5, 0.7, and
0.9 quantiles. The 0.1 and 0.9 quantiles represent the upper and lower tails of the
distribution, that is, the fastest and slowest responses, respectively. The 0.5 quantile
is the median and represents the distribution’s central tendency. As shown in the
figure, the set of five quantiles provides a good summary of the location, variability,
and shape of the distribution.

To construct a quantile probability plot, the quantile RTs for correct responses
and errors are plotted on the y-axis against the choice probabilities (i.e., accuracy)
on the x-axis for each stimulus condition, as shown in the middle panel of the
figure. Specifically, if, Qi,p(C) and Qi,p(E) are, respectively, the quantiles of the
RT distributions for correct responses and errors in condition i of the experiment,
and Pi(C) and Pi(E) are the probabilities of a correct response and an error in
that condition, then the values of Qi,p(C) are plotted vertically against Pi(C) for
p = 0.1, 0.3, 0.5, 0.7, 0.9, and the values of Qi,p(E) are similarly plotted against
Pi(E). All of the distribution pairs and choice probabilities from each condition are
plotted in a similar way.

The bottom panel of the figure shows data from a brightness discrimination ex-
periment from Ratcliff and Smith [28] in which four different levels of stimulus
discriminability were used. Because of the way the plot is constructed, the two out-
ermost distributions in the plot represent performance for the most discriminable
stimuli and the two innermost distributions represent performance for the least dis-
criminable stimuli. The value of the quantile-probability plot is that it shows how
performance varies parametrically as stimulus discriminability is altered, and how
different parts of the RT distributions for correct responses and errors are affected
differently. As shown in the figure, most of the change in the RT distribution with
changing discriminability occurs in the upper tail of the distribution (e.g., the 0.7 and
0.9 quantiles); there is very little change in the leading edge (the 0.1 quantile). This
pattern is found in many perceptual tasks and also in more cognitive tasks like recog-
nition memory. The quantile-probability plot also shows that errors were slower than
correct responses in all conditions. This appears as a left-right asymmetry in the plot;
if the distributions for correct responses and errors were the same, the plot would
be mirror-image symmetrical around its vertical midline. The predicted degree of
asymmetry is a function of the standard deviation of the distribution of drift rates,
η and, when there are fast errors, of the range of starting points, sz. The slow-error
pattern of data in Fig. 3.4 is typical of difficult discrimination tasks in which accuracy
is emphasized.

The pattern of data is Fig. 3.4 is rich and highly-constrained and represents a
challenge for any model. The success of the diffusion model is that it has shown
repeatedly that it can account for data of this kind. Its ability to do so is not a just a
matter of model flexibility. It is not the case that the model is able to account for any
pattern of data whatsoever [29]. Rather, as noted previously, the model predicts fam-
ilies of RT distributions that have a specific and quite restricted form. Distributions
of this particular form are the ones most often found in experimental data.
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3.8 Fitting the Model to Experimental Data

Fitting the model to experimental data requires estimation of its parameters by it-
erative, nonlinear minimization. A variety of minimization algorithms have been
used in the literature, but the Nelder-Mead SIMPLEX algorithm has been popular
because of its robustness [30]. Parameters are estimated to minimize a fit statistic,
or loss function, that characterizes the discrepancy between the model and the data.
A variety of fit statistics have been used in applications, but chi-square-type statis-
tics, either the Pearson chi-square (χ2) or the likelihood-ratio chi-square (G2), are
common. For an experiment with m stimulus conditions, these are defined as

χ2 =
m∑

i=1

ni

12∑

j=1

(pij − πij )2

πij

and

G2 = 2
m∑

i=1

ni

12∑

j=1

pij ln

(
pij

πij

)
,

respectively These statistics are asymptotically equivalent and yield similar results
in most applications. In these equations, the outer summation over i indexes the m

conditions in the experiment and the inner summation over j indexes the 12 bins
defined by the quantiles of the RT distributions for correct responses and errors. (The
use of five quantiles per distribution gives six bins per distribution, or 12 bins per
correct and error distribution pair.) The quantities pij and πij are the observed and
predicted proportions of probability mass in each bin, respectively, and ni is the
number of stimuli in the ith experimental condition. For bins defined by the quantile
bounds, the values of pij will equal 0.2 or 0.1, depending on whether or not the
bin is associated with a tail quantile, and the values of πij are the differences in the
probability mass in the cumulative finishing time distributions, evaluated at adjacent
quantiles, G(Qi,p, ν, a, z) − G(Qi,p−1, ν, a, z). Here we have written the cumulative
distribution as a function of the mean drift, ν, rather than the trial-dependent drift, ξ , to
emphasize that the cumulative distributions are probability mixtures across a normal
distribution of drift values. Because the fit statistics keep track of the distribution of
probability mass across the distributions of correct responses and errors, minimizing
them fits both RT and accuracy simultaneously.

Fitting the model typically requires estimation of around 8–10 parameters. For an
experiment with a single experimental condition and four different stimulus discrim-
inabilities like the one shown in Fig. 3.4, a total of 10 parameters must be estimated
to fit the full model. There are four values of the mean drift, νi , i = 1, . . . , 4, a
boundary separation parameter, a, a starting point, z, a non-decision time, Ter, and
variability parameters for the drift, starting point, and non-decision time, η, sz, and
st , respectively. As noted previously, to make the model estimable, the infinitesimal
standard deviation is typically fixed to an arbitrary value (Ratcliff uses s = 0.1 in his
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work, but s = 1.0 has also been used). In experiments in which there is no evidence
of response bias, the data can be pooled across the two responses to create one dis-
tribution of correct responses and one distribution of errors per stimulus condition.
Under these conditions, a symmetrical decision process can be assumed (z = a/2)
and the number of free parameters reduced by one. Also, as discussed previously,
in many applications the non-decision time variability parameter can be set to zero
without worsening the fit.

Although the model has a reasonably large number of free parameters, it affords
a high degree of data reduction, defined as the number of degrees of freedom in the
data divided by the number of free parameters in the model. There are 11m degrees
of freedom in a data set with m conditions and six bins per distribution (one degree
of freedom is lost for each correct-error distribution pair, because the expected and
observed masses are constrained to be equal in each pair, giving 12−1 = 11 degrees
of freedom per pair). For the experiment in Fig. 3.4, there are 44 degrees of freedom
in the data and the model had nine free parameters, which represents a data reduction
ratio of almost 5:1. For larger data sets, data reduction ratios of better than 10:1 are
common. This represents a high degree of parsimony and explanatory power.

It is possible to fit the diffusion model by maximum likelihood instead of by min-
imum chi-square. Maximum likelihood defines a fit statistic (a likelihood function)
on the set of raw RTs rather than on the probability mass in the set of bins, and max-
imizes this (i.e., minimizes its negative). Despite the theoretical appeal of maximum
likelihood, its disadvantage is that it is vulnerable to the effects of contaminants or
outliers in a distribution. Almost all data sets have a small proportion of contaminant
responses in them, whether from finger errors or from lapses in vigilance or atten-
tion, or other causes. RTs from such trials are not representative of the process of
theoretical interest. Because maximum likelihood requires that all RTs be assigned a
non-zero likelihood, outliers of this kind can disrupt fitting and estimation, whereas
minimum chi-square is much less susceptible to such effects [31].

Many applications of the diffusion model have fitted it to group data, obtained by
quantile-averaging the RT distributions across participants. A group data set is cre-
ated by averaging the corresponding quantiles, Qi,p, for each distribution of correct
responses and errors in each experimental condition across participants. The choice
probabilities in each condition are also averaged across participants. The advantage
of group data is that it is less noisy and variable than individual data. A potential con-
cern when working with group data is that quantile averaging may distort the shapes
of the individual distributions, but in practice, the model appears to be robust to
averaging artifacts. Studies comparing fits of the model to group and individual data
have found that both methods lead to similar conclusions. In particular, the averages
of the parameters estimated by fitting the model to individual data agree fairly well
with the parameters estimated by fitting the model to quantile-averaged group data
[32, 33]. Although the effects of averaging have not been formally characterized, the
robustness of the model to averaging may be a result of the relative invariance of its
families of distribution shapes, discussed previously.
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3.9 The Psychophysical Basis of Drift

The diffusion model has been extremely successful in characterizing performance in
a wide variety of speeded perceptual and cognitive tasks, but it does so by assuming
that all of the information in the stimulus can be represented by a single value of drift,
which is a free parameter of the model, and that the time course of the stimulus encod-
ing processes that determine the drift can be subsumed within the non-decision time,
Ter, which is also a free parameter. Recent work has sought to characterize the percep-
tual, memory, and attentional processes involved in the computation of drift and how
the time course of these processes affects the time course of decision making [34].

Developments in this area have been motivated by recent applications of the dif-
fusion model to psychophysical discrimination tasks, in which stimuli are presented
very briefly, often at very low levels of contrast and followed by backward masks to
limit stimulus persistence. Surprisingly, performance in these tasks is well described
by the standard diffusion model, in which the drift rate is constant for the duration
of an experimental trial [35, 36]. The RT distributions found in these tasks resemble
those obtained from tasks with response-terminated stimuli, like those in Fig. 3.4,
and show no evidence of increasing skewness at low stimulus discriminability, as
would be expected if the decision process were driven by a decaying perceptual trace.
The most natural interpretation of this finding is that the drift rate in the decision
process depends on a durable representation of the stimulus stored in visual short-
term memory (VSTM), which preserves the information it contains for the duration
of an experimental trial.

This idea was incorporated in the integrated system model of Smith and Ratcliff
[34], which combines submodels of perceptual encoding, attention, VSTM, and
decision-making in a continuous-flow architecture. It assumes that transient stimulus
information encoded by early visual filters is transferred toVSTM under the control of
spatial attention and the rate at which evidence is accumulated by the decision process
depends on the time-varying strength of the VSTM trace. Because the VSTM trace is
time-varying, the decision process in the model is time-inhomogeneous. Predictions
for time-inhomogeneous diffusion processes cannot be obtained using the infinite-
series method, but can be obtained using either the integral equation method [16] or
the Markov chain approximation [23]. The integrated system model has provided a
good account of performance in tasks in which attention is manipulated by spatial
cues and discriminability is limited by varying stimulus contrast or backward masks.
It has also provided a theoretical link between stimulus contrast and drift rates, and
an account of the shifts in RT distributions that occur when stimuli are embedded
in dynamic noise, which is one of the situations in which the standard model fails
[28, 37]. The main contribution of the model to our understanding of simple decision
tasks is to show how performance in these tasks depends on the time course of
processes of perception, memory, attention, and decision-making acting in concert.
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3.10 Conclusion

Recently, there has been a burgeoning of interest in the diffusion model and related
models in psychology and in neuroscience. In psychology, this has come from the
realization that the model can provide an account of the effects of stimulus informa-
tion, response bias, and response caution (speed-accuracy tradeoff) on performance
in simple decision tasks, and a way to characterize these components of processing
quantitatively in populations and in individuals. In neuroscience, it has come from
studies recording from single cells in structures of the oculomotor systems of awake
behaving monkeys performing saccade-to-target decision tasks. Neural firing rates
in these structures are well-characterized by assuming that they provide an online
read-out of the process of accumulating evidence to a response criterion [38]. This
interpretation has been supported by the finding that the parameters of a diffusion
model estimated from monkeys’RT distributions and choice probabilities can predict
firing rates in the interval prior to the overt response [39, 40]. These results link-
ing behavioral and neural levels of analysis have been accompanied by theoretical
analyses showing how diffusive evidence accumulation at the behavioral level can
arise by aggregating the information carried in individual neurons across the cells in
a population [41, 42].

There has also been recent interest in investigating alternative models that exhibit
diffusive, or diffusion-like, model properties. Some of these investigations have
been motivated by a quest for increased neural realism, and the resulting models
have included features like racing evidence totals, decay, and mutual inhibition [43].
Although arguments have been made for the importance of such features in a model,
and although these models have had some successes, none has yet been applied as
systematically and as successfully to as wide a range of experimental tasks as has
the standard diffusion model.

Exercises

Simulate a random walk with normally-distributed increments in Matlab, R, or some
other software package. Use your simulation to obtain predicted RT distributions
and choice probabilities for a range of different accumulation rates (means of the
random variables, Zi). Use a small time step of, say, 0.001 s to ensure you obtain a
good approximation to a diffusion process and simulate 5000 trials or more for each
condition. In most experiments to which the diffusion model is applied, decisions are
usually made in around a second or less, so try to pick parameters for your simulation
that generate RT distributions on the range 0–1.5 s.

1. The drift rate, ξ , and the infinitesimal standard deviation, s, of a diffusion process
describe the change occurring in a unit time interval (e.g., during one second).
If ξrw and srw denote, respectively, the mean and standard deviation of the dis-
tribution of increments, Zi , to the random walk, what values must they be set to
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in order to obtain a drift rate of ξ = 0.2 and an infinitesimal standard deviation
of s = 0.1 in the diffusion process? (Hint: The increments to a random walk
are independent and the means and variances of sums of independent random
variables are both additive).

2. Verify that your simulation yields unimodal, positively-skewed RT distributions
like those in Fig. 3.1. What is the relationship between the distribution of cor-
rect responses and the distribution of errors? What does this imply about the
relationship between the mean RTs for correct responses and errors?

3. Obtain RT distributions for a range of different drift rates. Drift rates of
ξ = {0.4, 0.3, 0.2, 0.1} with a boundary separation a = 0.1 are likely to be
good choices with s = 0.1. Calculate the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles of
the distributions of RT for each drift rate. Construct a Q-Q (quantile-quantile)
plot by plotting the quantiles of the RT distributions for each of the four drift con-
ditions on the y-axis against the quantiles of the largest drift rate (e.g., ξ = 0.4)
condition on the x-axis. What does a plot of this kind tell you about the families
of RT distributions predicted by a model?

4. Compare the Q-Q plot from your simulation to the empirical Q-Q plots reported
by Ratcliff and Smith [28] in their Fig. 20. What do you conclude about the
relationship?

5. Read Wagenmakers and Brown [17]. How does the relationship they identify
between the mean and variance of empirical RT distributions follow from the
properties of the model revealed in the Q-Q plot?

Further Reading

Anyone wishing to properly understand the RT literature should begin with Luce’s
(1986) classic monograph, Response Times [2]. Although the field has developed
rapidly in the years since it was published, it remains unsurpassed in the depth
and breadth of its analysis. Ratcliff’s (1978) Psychological Review article [5] is
the fundamental reference for the diffusion model, while Ratcliff and Smith’s
(2004) Psychological Review article [6] provides a detailed empirical comparison
of the diffusion model and other sequential-sampling models. Smith and Ratcliff’s
(2004) Trends in Neuroscience article [38] discusses the emerging link between
psychological models of decision-making and neuroscience.
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