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    Chapter 13   
 Methylglyoxal, Triose Phosphate Isomerase, 
and Glyoxalase Pathway: Implications 
in Abiotic Stress and Signaling in Plants 

             Charanpreet     Kaur     ,     Shweta     Sharma    ,     Sneh     Lata     Singla-Pareek    , 
and     Sudhir     Kumar     Sopory   

    Abstract     Methylglyoxal (MG) is a cytotoxic metabolite inevitably produced as a 
side product of primary metabolic pathways via both enzymatic and non-enzymatic 
reactions. In plants, spontaneous generation of MG through breakdown of triose sug-
ars (dihydroxyacetone phosphate and glyceraldehyde 3-phosphate) is believed to be 
the major route for MG formation. MG is maintained at basal levels in plants under 
normal conditions that accumulate to higher concentrations under various stresses, 
probably as a general consequence of all abiotic stresses. The toxic effects of MG is 
due to its ability to induce oxidative stress in cells, either directly through increased 
generation of reactive oxygen species (ROS) or indirectly via advanced glycation 
end product (AGE) formation. Thus, elevated MG levels have implications in inhibi-
tion of growth and development in plants. To keep MG levels in check, the two-step 
glyoxalase pathway comprising glyoxalase I (GLYI) and glyoxalase II (GLYII) 
enzymes has evolved as the major MG-scavenging detoxifi cation system that con-
verts MG to  D -lactate using glutathione as a cofactor in this process. Over-expression 
of glyoxalase pathway has been shown to confer tolerance to multiple stresses that 
works by controlling MG levels and maintaining glutathione homeostasis in plants. 
Moreover, increased activity of triose phosphate isomerase under different stresses 
that use up triose sugars via glycolysis further prevents MG levels from accumulat-
ing in the system along with increasing the energy status of plants. Considering the 
fact that MG levels are maintained at a threshold concentration in plants even under 
physiological conditions and also observed MG-dependent induction in expression 
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of triose phosphate isomerase, a role for MG in signaling pathways is suggested. 
Here, we provide an insight to the role of MG and glyoxalases in plant stress response 
with special mention about the possible involvement of MG in signaling pathway.  

  Keywords     Glyoxalase I   •   Glyoxalase II   •   Glutathione   •   Methylglyoxal   •   Triose 
phosphate isomerase   •   Abiotic stress response   •   Heavy metal stress   •   Salinity   • 
  Stress tolerance     

13.1      Introduction 

 Abiotic stresses negatively impact plant growth and development resulting in extensive 
losses to agricultural production worldwide (Boyer  1982 ). Perception of stress fol-
lowed by signal transmission to turn on the adaptive responses is the key step lead-
ing to plant stress tolerance. However, tolerance or sensitivity to stresses is a very 
complex event, with more than one stress simultaneously affecting the plant and 
that too at multiple stages of development. Collectively as a common consequence 
of stress, various metabolic pathways are affected in living systems and the intricate 
nature of these pathways poses a challenge for the identifi cation of key regulatory 
components involved in abiotic stress response (Fraire-Velázquez and Balderas-
Hernández  2013 ). Also associated with stress, is the increased generation of delete-
rious chemical entities, namely, reactive oxygen species (ROS) and methylglyoxal 
(MG), that are otherwise constantly produced as by-products of metabolic processes 
and scavenged by plant antioxidative defense system to maintain at certain steady-
state levels. Accumulation of these toxic molecules disrupts the delicate balance 
leading to oxidative stress, which is ultimately responsible for alteration in meta-
bolic behavior observed during stress. Though implications of ROS toxicity and 
signaling in plants have been well investigated by various research groups but the 
role of MG in abiotic stress response and signaling is not fully known. 

 The generation of MG in living systems is from the triose sugars via dissociable 
intermediate of the reaction catalyzed by triose phosphate isomerase (TPI) in 
 glycolysis (Phillips and Thornalley  1993 ; Richard  1993 ). MG levels have been 
reported to elevate during various abiotic stress conditions and are responsible, to 
some extent, for the damage that occurs to cellular machinery under stress (Yadav 
et al.  2005a ; Hoque et al.  2012a ). The toxicity of MG is believed to be due to its 
ability to interact with and modify protein and nucleotide moieties leading to loss of 
cell viability culminating in cell death (Thornalley  1998 ,  2008 ). In order to counter 
the toxic effects of MG, the ubiquitous glyoxalase pathway has evolved that con-
verts MG to  D -lactate, thereby alleviating ill-effects of MG from the system 
(Thornalley  1993 ). In this regard, transgenic plants over-expressing glyoxalase 
genes exhibited improved tolerance to various stresses by resisting an increase in 
the levels of MG and maintaining redox homeostasis (Singla-Pareek et al.  2003 , 
 2006 ). However, the relevance of indirect route of MG generation via the glycolytic 
enzyme TPI in stress response is largely undiscovered. We have reported that MG 
can induce TPI expression and activity, suggesting an involvement of this enzyme 
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in stress response (Sharma et al.  2012 ). This, in corroboration to previously reported 
steady-state levels of MG maintained at some threshold concentration even in 
glyoxalase over- expressing plants, indicates towards involvement of MG as a sig-
naling molecule even in the plant system. In this chapter, the implications of MG 
generating and scavenging pathways in abiotic stress response and the possible role 
of MG as a signal molecule are presented.  

13.2     How Methylglyoxal Brings About Toxicity in Cells? 

 Methylglyoxal was fi rst prepared by von Pechmann in 1887 on warming isonitroso-
acetone with dilute sulfuric acid (von Pechmann  1887 ). It is a well-known reactive 
α-oxoaldehyde that is both a mutagen and genotoxic agent. The toxic effects of MG 
arise due to the ability of this compound to modify both proteins and nucleotides 
through the two functional groups, aldehyde and ketone, present in MG (Thornalley 
 2008 ). It is, however, the aldehydic group that is more prone to attack by any other 
functional groups than the ketonic group, elucidating the mode of action of MG in 
biological systems (Leoncini  1979 ). MG along with glyoxal is the most potent glycat-
ing agent, modifying amino groups of proteins. Generally, guanidine groups of argi-
nine are susceptible for modifi cations, resulting in the formation of advanced glycation 
end products (AGEs) that are the mediators of MG-induced toxicity in biological 
systems (Thornalley  2008 ). MG reacts with arginine residues to form hydroimidazo-
lone derivate (MG-H, with three related structural isomers), argpyrimidine, and THP 
(tetrahydropyrimidine) (Thornalley et al.  2003 ; Ahmed et al.  2002 ,  2005 ). In addition, 
the cross-linking between lysine residues and MG leads to the formation of CEL 
[Nε-(carboxyethyl)lysine] and MOLDs (methylglyoxal–lysine dimers) (Ahmed and 
Thornalley  2002 ; Ahmed et al.  2002 ). However, quantitative analysis of AGE revealed 
hydroimidazolone MG-H1 to be the major glycation adduct formed with argpyrimi-
dine. In this context, a “dicarbonyl proteome” has been defi ned, which consists of 
proteins susceptible to modifi cation by MG and undergo functional impairment as a 
consequence of these modifi cations (Rabbani and Thornalley  2012 ). The component 
proteins are linked to mitochondrial dysfunction in diabetes and ageing, oxidative 
stress, dyslipidemia, cell detachment, and anoikis and apoptosis and include albumin, 
hemoglobin, transcription factors, mitochondrial proteins, extracellular matrix pro-
teins, and lens crystallins. Further, activity of several NADPH-generating enzymes is 
also reported to be reduced on exposure to MG (Morgan et al.  2013 ). This is due to 
the irreversible modifi cation of arginine residues, which otherwise form an essential 
component of active sites and are required for NADP +  binding. 

 Besides proteins, nucleic acids and basic phospholipids can also be irreversibly 
modifi ed by MG-mediated glycation reactions at the amino groups (Brown et al. 
 2005 ; Thornalley et al.  2010 ). Deoxyguanosine is the most reactive nucleotide sus-
ceptible to MG modifi cation in physiological conditions. In vivo, the major 
MG-derived nucleotide AGEs are the imidazopurinone derivatives, which have been 
shown to be responsible for loss in genomic integrity associated with genotoxic 
effects (Thornalley et al.  2010 ). 
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 In plants, adverse effect of MG on barley seed germination was demonstrated 
where growth inhibition was shown to be proportional to the concentration of MG 
(Mankikar and Rangekar  1974 ). Inhibition in response to low concentration of MG 
was recoverable to some extent but at higher than 1 μM MG concentration, the dam-
age was extensive and irreversible. Addition of cysteine or methionine counteracted 
the detrimental effects of MG at 0.1 μM concentrations and less, thereby implicating 
the involvement of sulfhydryl groups of key enzymes (Mankikar and Rangekar 
 1974 ). Other growth processes, apart from seed germination, such as root elongation 
and chlorosis are also affected by MG (Hoque et al.  2012a ). Hoque and coworkers 
have shown that 0.1 mM MG delays root elongation in  Arabidopsis , whereas a week-
long exposure to 1 mM MG inhibited germination by 21 % and also repressed root 
elongation along with inducing chlorosis. Further, MG is also shown to inhibit activi-
ties of various enzymes involved in antioxidant defense such as glutathione 
 S -transferase (GST) activity, which can be reversed by the exogenous application of 
glutathione (Hoque et al.  2010 ). Also, MG can inhibit activity of cytosolic ascorbate 
peroxidase (APX), an enzyme playing a key role in the protection of cells from oxi-
dative damage by scavenging ROS (Hoque et al.  2012b ). The authors suggested that 
inhibition of GST and APX activities was mainly due to their modifi cation by MG, 
which thereby lowers the affi nity of the enzymes for their respective substrates. In 
spinach, addition of MG to chloroplasts is known to stimulate photosynthetic elec-
tron transport in thylakoid membranes (Saito et al.  2011 ). MG has been identifi ed as 
a Hill oxidant that catalyses the photoreduction of O 2  at photosystem I, leading to the 
production of O 2  -  thereby enhancing oxidative stress, which ultimately disrupts 
 photosynthesis (Saito et al.  2011 ).  

13.3     Synthesis and Turnover of Methylglyoxal 

 Methylglyoxal being a ubiquitous product of cellular metabolism is produced as a 
result of both enzymatic and non-enzymatic reactions. Its production is inevitable 
being tightly coupled to glycolysis. However, the rate of production varies depend-
ing upon the organism, tissue, cell metabolism, and physiological niche. 

 Undoubtedly, the major pathway for MG synthesis in biological systems is via its 
spontaneous generation in a glycolytic bypass, as a result of decomposition of triose 
sugars, GAP and DHAP (glyceraldehydes 3-phosphate and dihydroxyacetone phos-
phate, respectively) (Richard  1991 ; Phillips and Thornalley  1993 ). This reaction was 
initially reported in mid-1930s by Meyerhof and Lohmann ( 1934 ), but was ignored by 
referring to it as a mere experimental artifact. Later, Richard ( 1993 ) who investigated 
the mechanism of formation of MG from triose phosphates showed the physiological 
signifi cance of this reaction. At the physiological pH, there is a high tendency for loss 
of α-carbonyl proton from the triose phosphates, producing an enediolate phosphate 
intermediate possessing low energy barrier for phosphate group elimination (Richard 
 1984 ). It is thus the deprotonation followed by spontaneous β-elimination of phos-
phate group of triose phosphates that leads to the formation of MG as the by-product 
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of glycolysis (Richard  1993 ). However, TPI catalyzing the reversible interconversion 
of triose phosphates, DHAP and GAP, avoids the spontaneous degradation of the 
transition state intermediate into MG by stabilizing the enzyme-bound enediolate 
phosphate intermediate. In fact, the enzyme-bound enediolate phosphate intermediate 
is protonated 10 6 -fold faster compared to the rate at which phosphate group is expelled 
(Richard  1991 ). Even then, the reaction catalyzed by TPI is not perfect and the enedio-
late intermediate may leak from the active site, producing MG in a side reaction. Thus, 
MG formation from triose sugars is believed to be the major route of its production 
under physiological conditions. Other minor routes of non-catalyzed MG generation 
include metabolism of acetone and aminoacetone (Kalapos  1999 ). MG metabolism 
through various pathways in plants is depicted in Fig.  13.1 .  

 The enzyme-catalyzed production of MG has been reported only in animals and 
bacteria and not in plants. These include oxidation of aminoacetone in the catabo-
lism of  L -threonine, catalyzed by the enzyme semicarbazide-sensitive amine oxi-
dase (Lyles and Chalmers  1992 ), the oxidation of ketone bodies by myeloperoxidase 
(Aleksandrovskii  1992 ), and the oxidation of acetone by cytochrome P450 (Casazza 
et al.  1984 ; Koop and Casazza  1985 ). In addition, under pathological conditions 
such as ketosis or diabetic ketoacidosis, the oxidation of ketone bodies also seems 
to be an important source of MG (Turk et al.  2006 ). Unlike the above-described 
pathways where MG is generated as a side product, MG synthase is the only known 
enzyme, which specifi cally catalyzes MG synthesis and for this it uses the triose 
sugar DHAP as the substrate (Hopper and Cooper  1971 ,  1972 ). Interestingly, MG 
synthase is co-operatively inhibited by inorganic phosphate (P i ), and this regulation 
controls the glycolytic fl ux depending on the availability of P i  (Cooper  1984 ). It has 

  Fig. 13.1    Metabolism of MG in plants. MG is generated spontaneously as a side product of glu-
cose, lipid, and protein metabolic pathways. Detoxifi cation of MG occurs majorly via glyoxalase 
pathway comprising GLYI and GLYII enzymes. However, GSH-independent GLYIII, aldose 
reductase, and dehydrogenase are also capable of reducing MG       
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been reported in many organisms such as bacteria (Hopper and Cooper  1971 ,  1972 ), 
yeast (Babel and Hofmann  1981 ; Murata et al.  1985 ), goat liver (Ray and Ray 
 1981 ), but no such activity has been yet reported from plants. 

 The breakdown of MG is regarded as an important detoxifi cation mechanism, 
which protects the system from its detrimental effects. The primary route for MG 
detoxifi cation is through the two-step glyoxalase pathway comprising glyoxalase I 
(GLYI; S-D lactoylglutathione lyase) and glyoxalase II (GLYII; hydroxyacylgluta-
thione hydrolase) enzymes, which act sequentially to convert MG into  D -lactate 
(Fig.  13.1 ). The fi rst enzyme, GLYI isomerizes hemithioacetal formed from the 
spontaneous combination of MG and GSH to S-D lactoylglutathione, which is then 
hydrolyzed by the GLYII enzyme to yield  D -lactate, regenerating GSH in the pro-
cess (Racker  1951 ; Crook and Law  1952 ). The result of glyoxalase system was 
earlier believed to be a dead-end product until the determination of  D -lactate dehy-
drogenase activity in the biological systems through which  D -lactate is converted to 
pyruvate (Long and Kaplan  1968 ; Pratt et al.  1979 ). Like MG, glyoxalase pathway 
is also ubiquitously present in the biological systems, highlighting the fundamental 
importance of this MG-scavenging mechanism in plants. 

 Apart from glyoxalases, other enzymes such as aldo-keto reductases can also 
consume MG thereby reducing it to the corresponding alcohol (Ko et al.  2005 ; 
Simpson et al.  2009 ; Narawongsanont et al.  2012 ). Over-expression of MG detoxi-
fying enzymes, both glyoxalases (Veena and Sopory  1999 ; Singla-Pareek et al. 
 2003 ,  2006 ,  2008 ; Saxena et al.  2011 ; Alvarez Viveros et al.  2013 ) and aldo-keto 
reductases (Hegedüs et al.  2004 ; Simpson et al.  2009 ; Turóczy et al.  2011 ) has 
resulted in transgenic plants with improved tolerance to abiotic stresses, which keep 
MG levels in check and thereby contribute to proper growth and sustenance of 
plants under stress conditions. 

 A novel type of MG utilizing glyoxalase has been reported in bacteria and recently 
in  Arabidopsis  and humans, which does not require GSH, and unlike the conven-
tional glyoxalase pathway catalyzes the conversion of MG to  D -lactate in a single 
step (Misra et al.  1995 ). In humans and  Arabidopsis , they are known as DJ-1 proteins 
and are believed to be the genetic cause for the early onset of Parkinson’s disease in 
humans (Bonifati et al.  2003 ; Lee et al.  2012 ; Kwon et al.  2013 ). In  Arabidopsis , six 
members in the DJ-1 family have been reported and the ectopic expression of one of 
the members (DJ-1d) has been shown to restore tolerance to MG in bacterial strain 
lacking  GLYI  and  GLYIII  genes (Kwon et al.  2013 ). The wild-type bacteria are resis-
tance to 0.7 mM MG concentration whereas the mutant strain lacking  GLYI  and 
 GLYIII  cannot tolerate more than 0.5 mM MG. However, upon transformation with 
 DJ - 1d  gene, mutant strain could successfully grow on 0.7 mM MG-supplemented 
medium, thereby reverting the growth defect of mutant cells (Kwon et al.  2013 ). 
Another member of the DJ-1 family from  Arabidopsis ,  AtDJ1C , has also been 
 studied and found to be required for viability. Though it is an atypical member of the 
DJ-1 family since it lacks a conserved cysteine residue required for enzymatic 
 activity in other superfamily members, it is essential for proper chloroplast develop-
ment and homozygous disruption of the  AtDJ1C  gene results in nonviable albino 
seedlings (Lin et al.  2011 ).  
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13.4     Methylglyoxal Levels Under Stress Conditions 

 Endogenous MG generation has been reported in all biological systems that rapidly 
increases under stress and disease conditions in bacteria, animals, mammals, and 
yeast (Thornalley  1990 ; Kalapos et al.  1992 ; Wu and Juurlink  2002 ). Similarly in 
plants, MG levels have been reported to increase in response to abiotic, biotic 
stresses as well as other stimuli such as white light, 2,4-D and ABA (Chen et al. 
 2004 ; Yadav et al.  2005a ; Hossain et al.  2009 ). Under physiological conditions, MG 
concentration lies within 30–75 μM range in various plant species such as rice, 
 Pennisetum , tobacco, and  Brassica  seedlings and is same in both leaves and roots 
except rice, where MG levels are lower in roots compared to leaves. However, a 
2–6-fold increase in MG levels is observed in response to salinity, drought, and cold 
stress conditions (Yadav et al.  2005a ). Noticeably under salt stress, MG levels 
increased to as high as 75–200 μM in these plants, suggesting accumulation under 
salinity stress being a universal response. These values are much higher than what 
has been reported in yeast and animals (Chaplen et al.  1998 ; Martins et al.  2001 ). It 
is possible that increased rate of glycolysis under stress leads to higher levels of MG 
in plants. However, another possibility which cannot be undermined is the sponta-
neous degradation of triosephosphates to MG during pre-analytical processing of 
samples. Further studies using newer and more sensitive detection methods are 
likely to resolve these inconsistencies in measurement. 

 Methylglyoxal levels are also reported to increase signifi cantly in response to 
white light (2.21-fold) in pumpkin seedlings (Hossain et al.  2009 ), where treatment 
with exogenous MG, ABA, and salinity and drought stress also increases MG pro-
duction manifold (which is in accordance with increased GLYI activity under these 
stresses). Also, infection with  Aspergillus fl avus  increases MG production by 2.5- 
fold in a maize genotype, consequently resulting in the production of afl atoxin, a 
carcinogenic secondary metabolite (Chen et al.  2004 ). Banu et al. ( 2010 ) have also 
demonstrated a signifi cant ~2-fold increase in MG levels in tobacco BY-2 cells in 
response to 200 mM NaCl stress. Taken together, it can be inferred that accumula-
tion in MG under different stress conditions is unavoidable as it is probably a com-
mon consequence of both abiotic and biotic stresses in plants (Chen et al.  2004 ; 
Yadav et al.  2005a ; Hossain et al.  2009 ).  

13.5     Role of Glyoxalase Pathway in Plant Stress Physiology 

 Since generation of MG and increase in its concentration under stress conditions is an 
unavoidable phenomenon in biological systems, manipulation of glyoxalase pathway 
holds the potential for protection of plants against toxic effects of MG. Initial studies 
describing an upregulation in transcript levels of glyoxalase genes in response to various 
stress cues had opened the vistas for future of glyoxalase research in plant stress 
response. Espartero and coworkers ( 1995 ) showed a 2–3-fold increase in GLYI 
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transcripts in roots, stems, and leaves of tomato plants treated with NaC1, mannitol, and 
ABA. Thereafter, a GLYI gene from  Brassica juncea  was transformed in tobacco in 
order to investigate the functional signifi cance of glyoxalases  in planta . Veena and 
Sopory ( 1999 ) reported that over-expression of GLYI gene is capable of inducing toler-
ance towards salinity stress and exogenous MG application in plants. This is achieved 
through controlling MG levels and maintaining reduced GSH pool. Similar results were 
also obtained when GLYI was transformed in  Vigna mungo  (Bhomkar et al.  2008 ). 
Further, over-expression of GLYII gene from rice has been carried out in different plants 
such as tobacco, rice, and recently in  Brassica juncea,  which imparts signifi cant toler-
ance to high MG and salt treatments similar to GLYI gene (Singla-Pareek et al.  2003 , 
 2008 ; Wani and Gosal  2011 ; Saxena et al.  2011 ). A balance was maintained in Na + /K +  
ratio in the transgenic rice plants compared to wild-type (WT) in both shoot and root that 
correlated well with normal growth of these plants and formed the basis of minimizing 
Na +  toxicity under salt stress (Singla-Pareek et al.  2008 ). Also, the transgenic tobacco 
plants could grow, fl ower, and set normal viable seeds under continuous salinity stress 
conditions (Singla-Pareek et al.  2003 ). Likewise, the transgenic  Brassica  plants over-
expressing  OsGLYII  gene also showed signifi cant levels of salinity stress tolerance by 
delaying senescence (Saxena et al.  2011 ). Interestingly, the double-transgenic tobacco 
plants expressing the entire pathway (GLYI + GLYII) outperformed the single trans-
genic lines, expressing either GLYI or GLYII genes or also non-transformed WT plants 
under salinity and heavy metal stresses (Singla- Pareek et al.  2003 ,  2006 ). The transgenic 
plants could grow well in the  presence of 5 mM ZnCl 2  without any yield penalty and 
could tolerate toxic concentrations of other heavy metals as cadmium and lead. A reduc-
tion in MG levels along with maintaining higher levels of reduced GSH under salinity 
stress and increased phytochelatin production after zinc treatment is believed to confer 
stress tolerance in the transgenic plants (Yadav et al.  2005b ; Singla-Pareek et al.  2006 ). 
Similarly, transgenic tomato plants expressing similar construct showed improved salin-
ity stress tolerance by decreasing oxidative stress (Alvarez Viveros et al.  2013 ). In cor-
roboration to observed heavy metal tolerance of plants expressing glyoxalase pathway, 
transformation of a wheat GLYI gene in tobacco also leads to increased tolerance to zinc 
when compared to untransformed control (Lin et al.  2010 ). Over- expression of sugar 
beet GLYI in tobacco also confers enhanced tolerance to MG, salt, mannitol, and H 2 O 2  
treatments (Wu et al.  2013 ). 

 Transcriptome and proteome analysis has also indicated the role of glyoxalase 
pathway in stress response. A recent genome-wide study in rice and  Arabidopsis  
has indicated the multiple stress inducible nature of glyoxalases in these species, 
which also undergo developmental and tissue-specifi c variations (Mustafi z et al. 
 2011 ; Kaur et al.  2013 ). In  Brassica juncea , GLYI transcript is upregulated in 
response to salinity, mannitol, and heavy metal stresses (Veena and Sopory  1999 ). 
Additionally, GLYI has been identifi ed as dehydration-induced gene in foliage grass 
 Sporobolus stapfi anus  (Blomstedt et al.  1998 ). In wheat, GLYI expression is induced 
in response to  F. graminearium  infection and NaCl and ZnCl 2  treatments (Lin et al. 
 2010 ). The assessment of stress transcriptome and proteomes in stress-sensitive and 
stress-tolerant varieties has clearly indicated the role of glyoxalase genes in stress 
response with stress-tolerant species exhibiting higher expression of glyoxalases 
even under nonstress conditions (Chao et al.  2005 ; Witzel et al.  2009 ; Sun et al. 
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 2010 ). A comparative transcriptome profi ling of salt-tolerant wild tomato and a salt- 
sensitive tomato cultivar revealed two GLYI genes being salt stress inducible only 
in the wild tomato suggesting a more effective detoxifi cation system in the tolerant 
species (Sun et al.  2010 ). The inspection of root proteome of barley genotypes with 
contrasting response towards salinity stress also revealed glyoxalase proteins to be 
either downregulated or present at low levels in sensitive varieties compared to con-
stitutive or increased expression in tolerant varieties (Witzel et al.  2009 ). Moreover, 
glyoxalase activity is also induced under stress conditions as reported in onion bulbs 
and pumpkin seedlings, providing further conformity to the role of glyoxalases in 
stress response (Hossain et al.  2009 ; Hossain and Fujita  2009 ).  

13.6     Triose Phosphate Isomerase: Regulation Under Stress 
and Role in Maintaining Methylglyoxal Homeostasis 

 TPI, being an important component of glycolysis, has been well studied and is found 
to be highly conserved in nature, exhibiting roughly 50 % sequence conservation 
from bacteria to humans (Joseph-McCarthy et al.  1994 ). TPI adjusts the rapid equi-
librium between DHAP and GAP, produced via aldolase during glycolysis and 
thereby serves an important physiological role which is also refl ected through 
 studies manifesting effects of TPI defi ciency or loss in its activity in humans. TPI 
defi ciency is a rare autosomal recessive multisystem genetic disease, characterized 
by reduced enzyme activity in all tissues leading to the elevation of DHAP levels in 
erythrocytes (Schneider  2000 ). It was initially described in humans in 1965 and is 
associated with a progressive and severe neurological disorder, characterized by 
chronic   hemolytic anemia     frequently leading to death in early childhood (Schneider 
et al.  1965 ). Although there is no indication that DHAP accumulation is toxic, but it 
is the spontaneous decomposition of DHAP to MG that results in extensive damage 
to the system (Phillips and Thornalley  1993 ) as it can readily modify both proteins 
and DNA molecules (Thornalley  2008 ). 

 In plants, different organelle-specifi c forms of TPI viz. cytosol and chloroplast 
localized forms have been reported, but much is still to be known about the role of 
these different isozymes (Pichersky and Gottlieb  1984 ). However, a plastid- localized 
TPI has been shown to be crucial for the transition from heterotrophic to autotrophic 
growth during post-germinative seedling establishment in  Arabidopsis  (Chen and 
Thelen  2010 ). It was found that the reduction in activity of the plastid-localized TPI 
leads to stunted growth and abnormal chloroplast development, probably due to MG 
toxicity developed as a result of DHAP and MG accumulation in the developing 
plastids. Further, the role of cytosolic TPI has also been investigated, where reduc-
tion in cTPI activity in roots of potato leads to signifi cant changes in several path-
ways of carbon metabolism such as modifi cations in glycolysis, pentose phosphate 
pathway, amino acid pool, and lipid metabolism (Dorion et al.  2010 ). 

 TPI has also been reported to be involved in plant stress response and alteration 
in expression levels is observed under abiotic or biotic stress conditions (Riccardi 
et al.  1998 ; Morris and Djordjevic  2001 ). Transcript levels of cytosolic  TPI  from 
rice have been shown to rise gradually under submergence stress, reaching maxima 
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at 24 h and are maintained thereafter till 48 h (Umeda and Uchimiya  1994 ). In fact 
after 20 h of submergence, a marked increase in  TPI  levels occurs in roots and 
culms in rice seedlings but no such change is observed in leaf tissues (Xu et al. 
 1994 ). Likewise,  cTPI  expression is also induced in response to water defi cit condi-
tions in maize (Riccardi et al.  1998 ) and iron defi ciency in  Arabidopsis  (Thimm 
et al.  2001 ). Selective alterations with respect to  TPI  induction have also been 
reported in response to desiccation, salt, oxygen deprivation, and high temperature 
stress (Minhas and Grover  1991 ). Transcript levels increase under desiccation, salt, 
oxygen deprivation, and high temperature stresses in shoots and oxygen deprivation 
and high temperature treatment in roots (Minhas and Grover  1991 ). In addition, we 
have recently shown that there is an increase in  OscTPI  transcript, protein, and 
enzyme activity in rice in response to various abiotic stresses and MG treatment 
(Sharma et al.  2012 ). Interestingly, MG treatment led to a ~2-fold increase in  OscTPI  
transcript levels and also induced corresponding activity in a concentration- dependent 
manner (Sharma et al.  2012 ). This may probably help in restoring the balance in the 
glycolytic cycle towards ATP generation and ultimately rescuing the plant from stress. 
Also, we checked the stress response of recombinant  OscTPI  in  E. coli  (Fig.  13.2 ). 

  Fig. 13.2    Over-expression of  OsTPI  in  E. coli  confers tolerance towards methylglyoxal. A com-
parison of growth curves of untransformed E. coli (BL21) cells and E. coli cells transformed with 
pET28aOscTPI at different MG concentrations       
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The bacterial cells over-expressing  OscTPI  displayed better  survival ability in 
response to low MG concentration (0.5 mM) whereas at 5 mM MG, no signifi cant 
differences in growth pattern of untransformed and  OscTPI  transformed cells could 
be noticed. This is because higher MG concentration may be lethal to the bacteria.  

 Taken together, it can be said that environmental stresses affect mitochondrial 
respiration and photosynthetic processes thereby impairing oxygen uptake, energy 
levels, and ATP content (Botha et al.  1984 ; Purvis and Shewfelt  1993 ; Grass and 
Burris  1995 ; Tezara et al.  1999 ). As a result, glycolysis becomes the primary mode 
of energy production in plant tissues under low oxygen conditions, leading to 
increased activity of most of the glycolytic enzymes under such hypoxic and anoxic 
conditions (Mustroph and Albrecht  2003 ).  

13.7     Methylglyoxal as a Signaling Molecule 
in Biological Systems 

 Despite the ubiquitous presence of glyoxalase pathway in biological systems 
and existence of multiple forms of these enzymes in plants, MG is still main-
tained at threshold levels (30–75 μM) even in glyoxalase over-expressing plants 
(Yadav et al.  2005a ). These fi ndings suggest a role for MG, which is much beyond 
a mere toxic compound. MG-mediated protein modifi cations besides having impli-
cations in glycation have also been investigated in the context of stress-induced 
signaling in different species. Role of MG as a signaling molecule has been demon-
strated in yeast and animals but not much work has been done in plants. 

 MG is known to initiate signal transduction through the high osmolarity glycerol-
mitogen- activated protein kinase (HOG-MAPK) cascade in yeast (Maeta et al. 
 2005 ). It activates the Yap1 transcription factor, which is important for the oxidative- 
stress response in  Saccharomyces cerevisiae , thereby facilitating its translocation to 
nucleus (Maeta et al.  2004 ). Further, osmotic stress or MG stimulation has been 
shown to phosphorylate Hog1 via pbs2 leading to its translocation to nucleus, where 
transcription factors Msn2/4 are then recruited to the promoter region of stress- 
responsive genes possessing stress response elements (STRE). Also, MG can acti-
vate the uptake of Ca 2+  in yeast cells, thereby stimulating the calcineurin/
Crz1-mediated Ca 2+  signaling (Maeta et al.  2005 ). In  Schizosaccharomyces pomb e, 
Pap1 along with the Sty1/Spc1 stress-activated protein kinase (SAPK) pathway has 
been identifi ed as respective homologues of Yap1 transcription factor and HOG- 
MAPK pathway of  S. cerevisiae,  which are involved in response to MG toxicity 
(Zuin et al.  2005 ; Takatsume et al.  2006 ). MG is also reported to attenuate the rate 
of overall protein synthesis in  S. cerevisiae  by activating the protein kinase Gcn2 to 
phosphorylate the alpha subunit of translation initiation factor 2 (eIF2α) (Nomura 
et al.  2008 ). 

 In animals, MG is shown to induce signals, which trigger processes such as 
apoptosis, and also have implications in vascular complications of diabetes, through 
two distinct signal cascades, protein tyrosine kinase (PTK)-dependent control of 
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ERK1 and ERK2 (extracellular signal-regulated kinase) and PTK-independent 
redox-linked activation of JNK (c-Jun N-terminal kinase)/p38 MAPK and caspases 
(Akhand et al.  2001 ). It has been shown to induce oxidative stress-mediated apop-
tosis by facilitating the phosphorylation of p38 MAPK in nerve-derived Schwann 
cells of rat (Fukunaga et al.  2005 ). Recently, the phosphorylation of Akt1 (protein 
kinase B) by MG has been reported in adipose tissues, which thereby stimulates 
adipogenesis in obese Zucker rats (Jia et al.  2012 ). 

 In plants, until now very preliminary information is available regarding the role of 
MG in stress-induced signaling. The involvement of MG in inducing stomatal closure, 
ROS production, and cytosolic-free calcium concentration has been investigated in 
order to clarify its role in  Arabidopsis  guard cells (Hoque et al.  2012c ). MG was found 
to reduce stomatal apertures in a dose-dependent manner with the process being revers-
ible at only low MG concentration (1 mM). Further, it induced O 2  −  production in whole 
leaves and ROS accumulation in the guard cells, which was completely abolished by 
1 mM salicylhydroxamic acid (SHAM). MG at 1 mM concentration could increase 
cytosolic Ca 2+  oscillations in the guard cells that were suppressed by pretreatment with 
1 mM SHAM. Collectively, this data indicated that MG-induced stomatal closure 
involves an extracellular oxidative burst, which diffuses into the intracellular space lead-
ing to intracellular ROS accumulation in guard cells, and this result in stomatal closure 
via Ca 2+ -dependent pathway (Hoque et al.  2012c ). In addition, MG can also inhibit light-
induced stomatal opening in  Arabidopsis  by inhibiting K +  infl ux into the guard cells, 
which most likely occurs via the modifi cation of C-terminal region of the inward-recti-
fying potassium channel (Hoque et al.  2012d ). The role of MG in closure of stomatal 
aperture is believed to be important to withstand extreme environmental conditions. 

 The stress-responsive gene expression in  Arabidopsis  has been investigated 
using an ABA-defi cient mutant,  aba2-2  in response to MG (Hoque et al.  2012a ). 
For this purpose, the transcription of ABA-independent gene,  RD29A - and ABA- 
dependent genes,  RD29B  and  RAB18,  was monitored in the presence and absence of 
MG in 2-week-old  Arabidopsis  wild type and  aba2 -2 mutant seedlings. The MG 
treatment did not affect transcript level of  RD29A  in either plant type, but signifi -
cantly increased transcription levels of ABA-dependent genes,  RD29B  (fi vefold at 
1 mM MG) and  RAB18  (threefold at 1 mM MG) in concentration-dependent man-
ner in the wild-type seedlings. However in the  aba2-2  mutant, MG did not induce 
 RD29B  or  RAB18  transcription even at 1.0 mM concentration. This suggested that 
MG can act through an ABA-dependent pathway to affect transcription and also 
plant developmental processes in  Arabidopsis . 

 Our studies have shown that MG can induce  OscTPI  expression, which in turn, 
increases protein and enzyme activity (Sharma et al.  2012 ). This shifts the reaction 
towards GAP formation, thereby decreasing DHAP levels and consequently lowering 
MG concentration by feedback mechanism (Fig.  13.3 ). MG-dependent regulation of 
 OscTPI  seems advantageous to the system as increased  OscTPI  expression, on the one 
hand, is likely to reduce MG-mediated toxicity and on the other hand, will increase the 
energy status of the cell by adjusting the equilibrium towards GAP formation. 
Moreover, we have also observed an upregulation in transcript levels of several gly-
oxalase genes in rice (Mustafi z et al.  2011 ) and also non-MG metabolism- related 
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gene,  OsETHE1 , in response to exogenous MG application (Kaur et al.  2014 ). 
We believe that MG has profound effect on transcriptome and proteome of plant spe-
cies, which is indeed quite possible since MG is perceived as a stress by the plant, like 
various abiotic stresses. This is even supported by our recent transcriptome studies in 
rice in response to MG treatment, which also indicates towards a massive alteration in 
cellular functioning of a cell after MG application (unpublished data). Collectively, 
this data gives strong indication towards an important role of MG as signal molecule 
in plants as well, being involved in diverse stress adaptation pathways.   

13.8     Functional Genomics Perspective in Triose Phosphate 
Isomerase and Glyoxalase Research 

 Functional genomics approaches, including transcriptome, proteome, and 
metabolome- based studies, are being increasingly used for simultaneous analysis of 
large number of genes. Using these techniques, it has become easier to analyze the 
effect of hormonal, chemical, or environmental responses on various aspects of 
plant development at a large scale. In this context, stress transcriptomes and pro-
teomes have been assessed for alteration in gene and protein expression profi les in 
order to identify the underlying mechanism of plant defense and stress adaptation, 
which can help in raising stress-tolerant plants. 

 A number of such studies have led to the identifi cation of glyoxalases as stress- 
responsive genes with increased expression in response to stress. For instance, transcrip-
tome studies describing the response of  Arabidopsis  seedlings to usual contaminants 

  Fig. 13.3    MG, glyoxalase, and TPI interplay during stress. During stress, MG levels increase as a 
consequence of imbalance in metabolic pathways. Elevated MG levels increase TPI expression and 
activity, shifting the equilibrium towards completion of glycolytic cycle. Also, MG upregulates 
glyoxalase pathway genes thereby accelerating its detoxifi cation through feedback mechanism and 
hence, keeping MG levels in check. “+” indicates activation and “−” indicates inhibition of the 
particular gene/pathway       
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present in soil, such as heavy metals and xenobiotic compounds, have indicated an 
involvement of glyoxalases under such conditions. A threefold induction in GLYII tran-
script in response to the xenobiotic, 2,4,6-trinitrotoluene (TNT); increased expression of 
GLYI on application of herbicide atrazine; or upregulation in response to arsenite; sug-
gest a role of fundamental importance for glyoxalases in stress and adaptive responses 
(Ekman et al.  2003 ; Ramel et al.  2007 ; Chakrabarty et al.  2009 ). Further, ABA treatment 
in shoots of rice seedlings, or application of high hydrostatic pressure in germinating 
rice seeds, has also been shown to increase  abundance of GLYI transcripts (Lin et al. 
 2003 ; Liu et al.  2008 ). Even comparative transcriptome studies in stress-sensitive and 
stress-tolerant plant varieties highlight the signifi cance of glyoxalases. Highly salt-toler-
ant rice variety, Nona Bokra, showed increase in transcript levels of two glyoxalase 
genes under salt stress. In contrast, the salt-sensitive rice variety IR28, exhibited a sig-
nifi cantly different regulation pattern for these genes (Chao et al.  2005 ). 

 Similarly, several proteome studies have reported an upregulation in levels of TPI pro-
tein in response to stress. Though the direct role of metabolism-related proteins in defense 
is less known but their role in maintaining metabolite pool in order to drive the metabolic 
processes for countering stress cannot be undermined. For instance, levels of TPI protein 
along with other enzymes of glycolysis were induced in response to oxidative stress, in the 
green alga  Haematococcus pluvialis  (Wang et al.  2004 ); and likewise exposure to cad-
mium in poplar also enhanced levels of TPI (Kieffer et al.  2009 ). Moreover, proteomic 
analysis of salt stress-responsive proteins in rice roots led to identifi cation of TPI as one of 
the upregulated proteins (Yan et al.  2005 ). Likewise, inspection of salt-stressed proteome 
of the halophyte C 4  plant,  Aeluropus lagopoides,  revealed an induction in levels of both 
TPI and GLYI proteins (Sobhanian et al.  2010 ). Measuring metabolite content in shoots 
after salt treatment revealed a decrease in DHAP and corresponding increase in GAP lev-
els, in correlation with the observed increase in TPI expression under salt stress. Also, 
reduced glutathione levels were found to be relatively lower under stress, which is logical 
since GSH serves an important role in maintaining redox homeostasis in cells, being used 
in several antioxidant reactions, such as one catalyzed by GLYI (Sobhanian et al.  2010 ). In 
addition, developmental events such as grain fi lling and seed maturation in barley using 
two-dimensional gel electrophoresis also revealed the involvement of glyoxalases in devel-
opmental processes. The glyoxalase protein was found to be present throughout the devel-
opment process, but showed maximum accumulation at the desiccation stage, suggestive 
of its involvement in seed development. On the other hand, TPI was found to be expressed 
throughout the development and as multiple spots on the gel, probably serving a house-
keeping role as a component of energy cycle (Finnie et al.  2002 ). 

 Thus, with the advent of high-throughput techniques, our knowledge regarding plant 
stress response has considerably increased, and in fact, these techniques have helped us 
better understand the underlying mechanisms of plant responses to various stimuli.  

13.9     Conclusions 

 Methylglyoxal is a potent cytotoxin even in plants, which needs to be removed from the 
system to protect it from the undesirable effects of MG. In response to stress conditions, 
MG levels increase in plants thereby conferring toxicity in the system mainly through 
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the modifi cations of protein and nucleotide moieties. MG produced as a result of both 
enzymatic and non-enzymatic reactions is an unavoidable consequence of stress, and 
thus detoxifi cation mechanisms play an important role in reducing the concentration of 
MG from the system, which is largely generated from the triose sugars as a dissociable 
intermediate of the reaction catalyzed by TPI. This probably indicates an involvement of 
this glycolytic enzyme in stress response where expression and activity of TPI in the 
physiological systems and the alteration in stress due to imbalance in metabolism, may 
in part determine the rate of MG generation. The glyoxalase pathway by scavenging 
MG has been shown to confer tolerance to multiple stresses mainly by reducing MG 
levels and maintaining redox homeostasis, thus playing a role of immense signifi cance. 
Moreover, MG initiates apoptosis in animals, controls stomatal movements in plants, 
and also induces gene expression. Thus, it is possible that similar to ROS, MG might 
also be acting as an important messenger in the intricate signaling cascade. 
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