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Abstract The exploration of brain epigenomes, including DNA methylation and 
covalent histone modifications, has provided novel insights into the mechanisms of 
normal and diseased brain development, and furthermore, deleterious mutations and 
rare structural variants in more than 50 genes encoding various types of chromatin 
regulators have been linked to autism spectrum disorders. In this book chapter, we 
will provide a general introduction on the basic principles of epigenetic regulation, 
and then discuss matters of epigenetic heritability as it pertains to autism spectrum 
disorders, highlight monogenic forms of the disorder associated with disordered 
chromatin structure and function, summarize the current knowledge base as it per-
tains to epigenetic regulation during normal aging and development, including the 
alterations that were reported in postmortem brain studies in autism spectrum disor-
ders. We conclude the chapter with a brief discussion on novel epigenetic therapies 
for neurodevelopmental disease.
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Autism spectrum disorder (ASD) is a summary term for neurodevelopmental condi-
tions bound together by broad syndromic overlap in three key behavioral domains 
including deficits in social interaction, communication, and restricted, stereotypical 
or repetitive behavior. ASDs also present with intellectual disability, neurological 
manifestations including seizure disorder, and other movement disorders. The age 
of onset of ASD almost always falls within early childhood, mostly within the first 
36 months after birth. It is currently estimated that one of every 88 children born in 
the US will be diagnosed with ASD.

Behavioral genetic studies using twin and family study designs provide com-
pelling evidence for a strong genetic contribution (Lichtenstein et al. 2010), yet 
environmental influences may also be etiologically important (Lichtenstein et al. 
2010; Hallmayer et al. 2011). Indeed, over the course of the last 10 years, advances 
in molecular genetic methods have led significant developments in exploring the 
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genetic risk architecture of ASD. Thus, approximately 10 % of so-called sporadic 
cases of ASD are thought to be the direct result of deletions, duplications and other 
copy number variants affecting several kilo- to megabases of a select set of chro-
mosomal loci which, when mutated, carry high penetrance/high disease risk. Single 
nucleotide polymorphisms and allelic variants, many of which are fairly common 
(defined as minor allele frequency above 5 %) in the general population, also make 
a significant contribution to the ASD genetic risk architecture, which shows signifi-
cant overlap in a range of psychiatric disorders such as depression, schizophrenia 
and attention-deficit hyperactivity disorder.

However, despite these advances in ASD genetics, which undoubtedly continue 
to occur at rapid pace, the genetic risk architecture remains poorly understood for 
a large majority, or at least 70–85 % of cases. Therefore, additional efforts will be 
required to obtain better insights into the underlying neurobiology of ASD, requir-
ing—like for any complex medical condition—a multipronged approach that will 
reach far beyond clinical genetics. Here, we discuss the potential contribution of 
epi-( greek for “over,” “above”) genetics, a term which we apply broadly to describe 
the regulation and organization of chromatin structures and, more generally, three-
dimensional genome architectures and functions. After providing

 i.  a general introduction on the basic principles of epigenetic regulation, we will 
discuss

 ii. epigenetic heritability,
 iii.  monogenic forms of ASD due to mutations in genes encoding chromatin regula-

tory proteins,
 iv. epigenetic regulation in the human brain during normal aging and development,
 v. epigenetic dysregulation in the autistic brain and
 vi.  novel epigenetic therapies for neurodevelopmental disease and then conclude 

with
 vii. a synopsis and outlook.

5.1  Chromatin and Epigenetic Regulation—General 
Principles

The elementary unit of chromatin is the nucleosome, or 146 bp of genomic DNA 
wrapped around an octamer of core histones, connected by linker DNA and linker 
histones. The collective set of covalent DNA & histone modifications and variant 
histones provide the major building blocks for the ‘epigenome’, or the epigenetic 
landscapes that define the functional architecture of the genome, including its orga-
nization into many tens of thousands of transcriptional units, clusters of condensed 
chromatin and other features that are differentially regulated in different cell types 
and developmental stages of the organism (Rodriguez-Paredes and Esteller 2011; 
Li and Reinberg 2011). For an in depth description for some of the epigenetic mark-
ings, see (Zhou et al. 2011; Ederveen et al. 2011; Kinney et al. 2011).
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Common terminology used in chromatin studies includes (i) nucleosomes, 
comprised of a protein octamer of 4 small proteins, the nucleosome core histones, 
around which 146 bp of DNA is wrapped around. Transcription start sites are often 
defined by a nucleosome-free interval, probably for increased access of the tran-
scriptional initiation complex and other regulators of gene expression. Arrays of 
nucleosomes, connected by linker DNA and linker histones, comprise the 10 nm 
‘beads-on-a-string’ chromatin fiber; (ii) Euchromatin defines loose chromatin typi-
cally at sites of actively transcribed genes and units poised for transcription; (iii) 
Heterochromatin defines tightly packed nucleosomal arrays. The terms Euchroma-
tin and Heterochromatin were initially described by their differential microscopic 
appearance (Heitz 1928). Constitutive heterochromatin remains highly condensed 
in most interphase nuclei. Examples include pericentric and telomeric repeat DNA, 
the inactivated X-chromosome (‘Barr body’) of female somatic cells, and other 
chromosomal structures often found in close proximity to the nuclear envelope and 
also around the nucleolus (see Fig. 5.1). Facultative heterochromatin includes si-
lenced genes that upon differentiation or other stimuli could switch to a state of 
active transcription.

DNA (Hydroxy)-Methylation: Two related but functionally very different types of 
DNA modifications, methylation (m) and hydroxymethylation (hm) of cytosines in 
CpG dinucleotides, provide the bulk of the epigenetic modifications in vertebrate 
DNA (Kriaucionis and Heintz 2009). There are additional types of DNA modifica-
tions, which are mostly chemical intermediates in the context of mC5 and hmC5 
(cytosines methylated at the carbon 5 position) synthesis and breakdown (Ito et al. 
2011). While the majority of DNA (hydroxy)-methylation is found at sites of CpG 
dinucleotides and, more generally, in the CpG enriched sequences of the genome, a 
recent study in rat cerebral cortex reported that up to 25 % of mC5 in brain is found 
at nonCpG sites, a fraction that is far higher than previously assumed (Xie et al. 
2012). The mC5 and hmC5 markings show a differential (but not mutually exclu-
sive) pattern of genomic occupancy. The hmC5 mark is concentrated towards the 
5’ end of genes and the proximal most portion of transcriptional units, and broadly 
correlates with local gene expression levels (Jin et al. 2011; Song et al. 2011). There 
is increasing evidence that the genome-wide distribution of hmC5 is regulated in 
tissue-specific manner. For example, in brain, one of the tissues with highest levels 
of hmC5, the mark is enriched in many active genes (Mellen et al. 2012) and could 
play a role in the regulation of intron/exon boundaries and splicing events of neuron-
specific gene transcripts (Khare et al. 2012). Some of these findings in brain resonate 
with observations on the hmC5 distribution in embryonic stem cells. For example, 
(Wu et al. 2011) performed genome-wide profile of 5hmC in both wild-type and 
Tet1-depleted mouse embryonic stem (ES) cells, and their data suggest that 5hmC 
is enriched at both gene bodies of actively transcribed genes and extended promoter 
regions of Polycomb-repressed developmental regulators. Furthermore, there is 
evidence that hmC5 is also enriched in enhancer region marked by H3K4me1 and 
H3K27ac in human embryonic stem cells (Stroud et al. 2011; Szulwach et al. 2011).
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Fig. 5.1  The Epigenome, from nucleus to nucleosome. Schematic illustration of gene ( green) 
poised for transcription by polymerase II (Pol II) initiation complex, with nucleosome free interval 
at transcription start site ( TSS). distal enhancer sequence ( blue) which in loop-like structure moves 
in close proximity to active gene. Subset of heterochromatic portions of the genome ( red), includ-
ing silenced genes, border the nuclear envelope and pore complex and the nucleolar periphery. A 
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On the other hand, less than < 3 % of methyl-cytosine (mC5) markings are po-
sitioned around the 5’ end of genes (Maunakea et al. 2010). The classical concept 
on the transcriptional regulatory role of DNA methylation, which also has guided 
many brain related studies, is that promoter-bound repressive chromatin remodeling 
complexes negatively regulate transcription (Sharma et al. 2005). There are many 
studies that report changes in promoter DNA methylation (mostly in conjunction 
with decreased gene expression) in preclinical models of psychosis, depression and 
addiction, as well as in brain tissue in subjects diagnosed with one of these condi-
tions. Interestingly, however, while the largest amount, or 97 %, of mC5s are found 
in intra- and intergenic sequences and within DNA repeats (Maunakea et al. 2010), 
only few of these studies have explored brain DNA methylation changes at repeat 
DNA and other sequences outside of promoters.

Histone Modifications: The epigenetic regulation of chromatin by virtue of chemi-
cal histone modifications is even more complex than DNA methylation discussed 
above, and it is now thought that there are far more than 100 amino acid residue-
specific post-translational modifications (PTMs) in a typical vertebrate cell (Tan 
et al. 2011), including mono (me1), di (me2)- and tri (me3) methylation, acetyla-
tion and crotonylation, polyADP-ribosylation and small protein (ubiquitin, SUMO) 
modification of specific lysine residues, as well as arginine (R) methylation and 
‘citrullination’, serine (S) phosphorylation, tyrosine (T) hydroxylation, and several 
others (Kouzarides 2007; Taverna et al. 2007; Tan et al. 2011). These site- and 
residue-specific PTMs are typically explored in the context of chromatin structure 
and function, with an epigenetic histone code (a combinatorial set of histone PTMs 
that differentiates between promoters, gene bodies, enhancer and other regulatory 
sequences, condensed heterochromatin, and so on) (Zhou et al. 2011). It is impor-
tant to emphasize that histone PTMs rarely occur in isolation, and instead multiple 
histone PTMs appear to be co-regulated and, as a group, define the aforementioned 
chromatin states (Berger 2007). Many active promoters, for example, are defined by 
high levels of histone H3 lysine 4 methylation in combination with various histone 
lysine acetylation markings (Zhou et al. 2011). Repressive histone PTMs, includ-
ing the trimethylated forms of H3K9, H3K27 and H4K20, potentially co-localize 
to some of the same loci in the genome, and so forth. Furthermore, there is also 

small subset of representative histone variants and histone H3 site-specific lysine (K) residues at 
N-terminal tail (K4, K9, K27, K36, K79) and H4K20 residue are shown as indicated, together with 
panel of mono- and trimethyl, or acetyl modifications that differentiate between active promoters, 
transcribed gene bodies, and repressive chromatin, as indicated. DNA cytosines that are hydroxy-
methylated at the C5 position are in the nervous system most prominent at active promoters and 
gene bodies, while methylated cytosines are positioned around repressed promoters and in con-
stitutive heterochromatin, and within the body of some of the actively transcribed genes. Specific 
examples of chromatin regulatory proteins associated with monogenic forms of neurodevelop-
mental disorders, including autism are provided. For an updated listing of the > 50 genes encod-
ing chromatin regulators and neurodevelopmental risk genes, which includes not only (i) various 
regulators of DNA methylation and histone PTM and variants, but also (ii) multiple components 
of the cohesin complex which tethers together promoter-enhancer and other types of chromosomal 
loopings, and (iii) multiple members of the BAF nucleosome sliding/chromatin remodeling com-
plex, see (Ronan et al. 2013)
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evidence for a coordinated and sequential regulation; phosphorylation of histone H3 
at the serine (S)10 position often serves as a trigger for subsequent acetylation of 
neighboring lysine residues histone H3 lysine 9 (H3K9) and lysine 14 (H3K14) in 
the context of transcriptional activation, while at the same time blocking repression-
associated methylation of H3K9 (Nowak and Corces 2004). Of note, proteins asso-
ciated with the regulation of histone PTMs are sometimes referred to as ‘writers’, or 
‘erasers’ or ‘readers’, essentially differentiating between the process of establishing 
or removing a mark as opposed to its docking functions for chromatin remodeling 
complexes that regulate transcription, or induce and maintain chromatin condensa-
tion (Taverna et al. 2007; Mosammaparast and Shi 2010; Justin et al. 2010). Obvi-
ously, the concept of chromatin ‘reader’, ‘writer’ and ‘eraser’ proteins could easily 
be expanded to proteins associated with DNA methylation (Fig. 5.1).

Histone Variants: In addition to the core histones H2A/H2B/H3/H4, histone vari-
ants such as H3.3, H2A.Z and H2A.X exist. The role of these variant histones, 
which differ from the canonical histones only at very few amino acid positions, is 
often discussed in the context of replication-independent expression and assembly 
(Woodcock 2006), and several histone variants robustly affect nucleosome stabil-
ity and compaction (Jin and Felsenfeld 2007). One popular model postulates that 
during the process of gene expression, RNA polymerase and the transcriptional 
activation and elongator complexes destabilize nucleosomes, which in turn pro-
motes nucleosome remodeling and variant histone incorporation which then further 
potentiate or stabilize gene expression (Sutcliffe et al. 2009; Bintu et al. 2011).

Chromatin-Bound RNAs (CBRs): While the process of gene expression is obviously 
defined by nascent RNA emerging from genomic DNA packaged into chromatin, 
the term CBR could be reserved to RNA species as part of a chromatin structure, 
thereby regulating its functions. None of these definitions are mutually exclusive, 
however. According to some estimates, up to 2–3 % of the nucleic acid content in 
chromatin is contributed by polyadenylated RNAs (Rodriguez-Campos and Azorin 
2007). One of the best known examples of a CBR is provided by the X-chromosome 
Inactive Transcript (XIST) (Brockdorff 2013; Zhao et al. 2008).

Perhaps one of the most illustrative and complex examples as it pertains to ASD-
associated CBR involves chromosome 15q11-13, a highly regulated locus, subject 
to genomic imprinting (parent-of-origin-specific gene expression) and responsible 
for a range of neurodevelopmental syndromes, including Prader-Willi and Angel-
man, as well as for a subset of cases diagnosed with ASD (Leung et al. 2011). Fur-
thermore, DNA structural variants within this locus could contribute to genetic risk 
to schizophrenia and bipolar disorder, further emphasizing that this locus is broadly 
relevant for a range of neuropsychiatric disease (Leung et al. 2011). Of note, a very 
large ncRNA arises from 15q11-13, covering 1 Mb in the mouse and 600 kb in hu-
mans and 148 exons and introns (Le Meur et al. 2005). This long SNPRN-UBE3A 
ncRNA, which normally is highly expressed on the paternal but not on the maternal 
chromosome, includes clusters of smaller non-coding RNAs that are thought to 
modulate nucleolar functions in neurons, and an antisense transcript, UBE3A-AS 
which suppresses UBE3A sense transcription of the same gene on the paternal chro-
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mosome (Leung et al. 2011). Evidence has been that the SNPRN-UBE3A ncRNA, 
and the smaller RNAs derived from it, produce a ‘RNA cloud’ in cis, which contrib-
utes to lasting decondensation of this locus on the paternal chromosome, including 
epigenetic decoration with open chromatin-bound histone modifications and loss of 
repressive chromatin-associated histone and DNA methylation (Leung et al. 2011; 
Xin et al. 2001). Interestingly, UBE3A (also known as E6-AP) encodes a ubiquitin 
ligase that targets RING-1B, a component of Polycomb repressive complex PRC1, 
for its subsequent degradation (Zaaroor-Regev et al. 2010). Because PRC1 is a key 
regulator for genome-wide repressive histone (H3K27) methylation, dysregulated 
expression of long SNPRN-UBE3A ncRNA in the context of 15q11-13 imprinting 
disorders and/or genetic mutations and polymorphisms, may affect orderly activity 
of the PRC1 complex in developing brain (Vogel et al. 2006; Tarabykin et al. 2000; 
Golden and Dasen 2012), perhaps resulting in chromatin defects across widespread 
portions of neuronal or glial genomes, with serious implications for brain function 
and behavior.

Chromatin Remodeling and Nucleosome Positioning: Chromatin remodeling com-
plexes are comprised of multiple subunits, that according to their classical definition 
regulate sliding and mobility of nucleosomes, powered by ATP hydrolysis, thereby 
regulating gene expression and RNA polymerase II access at transcription start sites 
(Ronan et al. 2013). Examples of well known chromatin remodelers with a critical 
role in brain development include the BAF (SWI/SNF) complex and CHD family 
of proteins (Ronan et al. 2013). Interestingly, mutations in numerous members of 
the BAF complex and multiple CHD proteins have now been linked to psychiatric 
disease and developmental brain disorders (Ronan et al. 2013).

Higher Order Chromatin Structures: Epigenetic decoration of nucleosomes, 
including the DNA and histone modifications, and histone variants described above, 
in itself, would fall short to adequately describe the epigenome, or even the local-
ized chromatin architecture at any given (genomic) locus. This is because nucleoso-
mal organization leads to only a 7-fold increase in packaging density of the genetic 
material, as compared to naked DNA; however, the actual level of compaction in the 
vertebrate nucleus in interphase (which defines the nucleus during the time period 
a cell is not dividing, including postmitotic cells such as neurons) is about three 
orders of magnitude higher (Belmont 2006). The chromosomal arrangements in 
the interphase nucleus are not random, however. Specifically, loci at sites of active 
gene expression are more likely to be clustered together and positioned towards a 
central position within the nucleus, while heterochromatin and silenced loci move 
more towards the nuclear periphery (Cremer and Cremer 2001; Duan et al. 2010). 
Chromosomal loopings, in particular, are among the most highly regulated ‘supra-
nucleosomal’ structures and are associated with transcriptional regulation, by, for 
example, positioning distal regulatory enhancer or silencer elements that—in the 
linear genome—are positioned potentially many hundred of kilobases apart from 
a gene, to interact directly with that specific promoter (Wood et al. 2010; Gaszner 
and Felsenfeld 2006).



74 C. J. Peter et al.

The regulation of higher order chromatin is certainly of critical importance for 
human health, including orderly brain development and function. For example, 
Cornelia de Lange Syndrome (CdLS) with an estimated incidence of 1:10–30,000 
live births among the more frequent genetic disorders (source http://ghr.nlm.nih.
gov) is associated with severe developmental delay and a range of neuropsychi-
atric symptoms, including ASD and psychosis (Moss et al. 2008). CdLS (includ-
ing Online Mendelian Inheritance of Man (OMIM) 122470 and 300590) involves 
causative mutations in the cohesin complex, a multisubunit protein that includes, 
among others, nipped B-like protein (NIPBL), structural maintenance of chromo-
somal proteins SMC1A and SMC3, and histone deacetylase HDAC8 (Deardorff 
et al. 2012; Gervasini et al. 2013). Cohesin is thought to form ring-like structures 
bringing together DNA segments from different locations, and by interaction with 
transcriptional co-activators such as the Mediator multi-protein complex, these pro-
tein networks could provide the foundation for chromosomal loop formations, in-
cluding promoter-enhancer loopings that define cell-type specific gene expression 
programs (Kagey et al. 2010).

Thus, there can be little doubt that epigenetic regulation is of critical importance 
for orderly brain development. The list of chromatin regulators (Ronan et al. 2013) 
includes not only methyl-CpG-binding proteins (incl. MECP2, the Rett Syndrome 
gene) but also multiple members of the BAF and also CHD complexes regulating 
nucleosome mobility (Ronan et al. 2013). Another pathway with multiple genes 
found to have mutations in larger ASD cohorts includes H3K4 methyltransferases 
and demethylases MLL1 (Jones et al. 2012), MLL2 (Hannibal et al. 2011), MLL3 
(O’Roak et al. 2012; Kleefstra et al. 2012; Neale et al. 2012), and KDM5A, KDM5C/
JARID1C/SMCX (Adegbola et al. 2008; Najmabadi et al. 2011; Jensen et al. 2005). 
As we pointed out above, these detailed findings from clinical genetics will require 
further workup of the cell type(s) and developmental stage(s) at risk, because the 
neurobiology of disease driven by these genes and their mutations remains essen-
tially unresolved.

5.2  ‘Epigenetic Heritability’ in ASD?

Significant strides have been achieved in unraveling the genetic risk architecture of 
ASD. Thus, it is now estimated that up to 30 % of cases harbor either (i) identifiable 
chromosomal microdeletions and duplications (copy number variants) that often en-
compass many hundreds of kilobases of sequence on the linear genome (7–20 % of 
cases), or (ii) single gene disorders such as Fragile X, Rett Syndrome and others that 
in toto account for 5–7 % of all cases, and another (iii) 5 % of cases are due to meta-
bolic diseases including mitochrondrial disease, phenylketonuria, adenylosuccinate 
lyase deficiency etc (Schaaf and Zoghbi 2011). This still leaves 70 % of cases with 
no straightforward genetic explanation, albeit genetic approaches such as whole 
exome and whole genome sequencing are beginning to make additional inroads in 
the complex field of ASD genetics, mostly by identifying additional rare variants 

http://ghr.nlm.nih.gov
http://ghr.nlm.nih.gov


755 Epigenetic Regulation in Autism

of potentially high disease risk (Gratten et al. 2013; Shi et al. 2013). There are also 
ongoing refinements in mapping some of the common (mostly single nucleotide) 
polymorphisms that contribute to the genetic risk of ASD and other psychiatric and 
neurodevelopmental disorders (Smoller et al. 2013).

In addition to the above described genetic risk structure of ASD—there is both 
indirect and direct evidence for epigenetic component(s) in the etiology of the dis-
order. At the population level, twin studies have almost exclusively been used to 
demonstrate substantial genetic contribution to ASD etiology. However, it is im-
portant to underscore that the concordance rates are not exceeding 50 % in monozy-
gotic twin studies in ASD and related disease (Steffenburg et al. 1989; Bailey et al. 
1995; Chang et al. 2013)—providing ample evidence for the role of environmental 
factors, and for epigenetic processes in the etiology of ASD. The framework for the 
epigenetics of ASD includes an increasing list of deleterious mutations and DNA 
structural variants directly resulting in dysregulated chromatin, including several 
portions of chromosomes 15q and 7q that are classical sites for genomic imprinting, 
as defined by allele-specific DNA methylation signatures differentially regulated on 
the maternally vs. paternally derived chromosomes (Schanen 2006). Therefore, it is 
entirely possible that disruption of gene expression via epigenetic mechanisms not 
reflected in the primary nucleotide sequence, or so called ‘epialleles’, either due to 
de novo dysregulation in very early development, or by inheritance and carry-over 
of epigenetic information through the parental germline, plays an important role in 
some causes of ASD and other psychiatric disorders.

Here, we define epigenetic heritability simply as a phenotype or predisposition 
that is transmitted from one generation to the next, by some sort of molecular infor-
mation in the germ cell, that is not encoded by the base pair DNA sequence of the 
(transmitted) genome. It is often speculated that ‘abnormal’ epigenetic decoration 
of the haploid germ cell genome (including DNA and histone modifications, see 
below) contribute to heritable risk of common (including psychiatric) disorders but 
convincing evidence, or even proof, of ‘true epigenetic heritability’ in disorders 
such as ASD is extremely difficult to accomplish with present day technologies, 
because it would, among others, require demonstration that DNA structural vari-
ants either in cis (at the site of the epigenetic defect) or trans (other locations in 
the genome) were not driving the chromatin alterations. Nonetheless, there is an 
increasing amount of correlative evidence in support of epigenetic heritability in 
humans, including the role of the ancestral nutritional environment in metabolic 
disease risk in children and grandchildren (Rando 2012). In the following sections, 
we summarize some of the most interesting findings as it pertains to the possibility 
for disease-relevant epigenetic heritability:

1. Nucleosomal organization and DNA:histone octamer packaging is retained 
in 4 % of the haploid genome in sperm, and these retained nucleosomes are 
enriched significantly at loci of developmental importance, including imprinted 
gene clusters, microRNA clusters, homeobox (HOX) gene clusters, and the 
promoters of stand-alone developmental transcription and signaling factors 
(Hammoud et al. 2009). Furthermore, DNA methylation patterns and histone 
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modifications are also preserved in the portion of the genome that maintains 
nucleosomal organization in sperm cells (Hammoud et al. 2009; Okada et al. 
2010). The limitations of present day genome technology, including the lack of 
genome-wide high quality sequence information when only few cells are avail-
able as input has so far prevented our ability to map the epigenome of human 
oocytes (McGraw et al. 2013); however, high quality DNA methylation maps 
have also been established for mouse oocytes (Shirane et al. 2013; Smallwood 
et al. 2011). Therefore, in principle, chromatin templates, including their epigen-
etic markings, could be passed on to the next generation for perhaps as much as 
4 % of the human genome (Hammoud et al. 2009), and therefore the portion of 
the genome subject to transgenerational epigenetic inheritance would indeed be 
larger than the entire protein coding sequence (‘exome’) which amounts to ‘only’ 
1–1.5 % of the genome.

2. Paternal age, (and specifically advanced parental age), has been linked to an 
increased risk for neurodevelopmental disorders, including ASD, and much of 
this effect could be attributed to an age-associated risk of rare de novo muta-
tion, with a doubling of the mutational burden through the paternal age every 
16 years, according to some of the more widely publicized findings (Kong et al. 
2012). Twin studies have demonstrated that advancing paternal age modifies 
twin concordance for autism (Lundstrom et al. 2012). There is evidence that 
advanced grandpaternal age contributes independently to increase the risk for 
ASD by approximately 1.7-fold both for the maternal and paternal lines (Frans 
et al. 2013). Preclinical work in mice and rat would suggest that, at least for the 
paternal age effect, epigenetic mechanism could play a role too. Thus, brain of 
offspring from older fathers showed DNA methylation abnormalities at multiple 
imprinted gene loci (imprinted loci show parent-of-origin specific epigenetic 
regulation and are by some authors considered to be more sensitive to epigen-
etic pertubations) (Smith et al. 2013). In addition, aberrant DNA methylation in 
sperm of older animals has been observed at DNA repeats encoding ribosomal 
genes (Oakes et al. 2003).

3. In the rodent, there is ample evidence for transgenerational effects of environ-
mental influences, including nutrition, stress and drugs, impacting brain and 
behavior for at least one, or few generations. These involve DNA methylation 
and histone modification changes in a number of molecules involved in seroto-
nergic signaling and neurotrophins (including brain-derived neurotrophic fac-
tor (Bdnf)) (Bohacek and Mansuy 2013; Morgan and Bale 2011; Vassoler et al. 
2013).

4. In humans, adverse environmental conditions, including famine around the time 
of conception, have been linked to lasting DNA methylation changes at the site 
of some of the best studied imprinted gene loci, including IGF2R/H19 (Heijmans 
et al. 2008) and could contribute to the increased risk for neurodevelopmental 
and also endocrine disorders that are associated with these conditions, including 
diabetes and schizophrenia (Lumey et al. 2011).
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5. Maternal prenatal use of prescribed medications has been recently associated 
with risk for ASD. Risks for ASD have been reported for selective serotonin 
reuptake inhibitors (SSRI) and other monoamine reuptake inhibitors (Rai et al. 
2013), and mood stabilizers such as valproate (Meador and Loring 2013; Chris-
tensen et al. 2013). Psychiatric and neurologic medications are used in > 3 % of 
women of child-bearing potential, all cross the placenta and animal models of 
their exposure result in aberrant neurodevelopment (Walsh et al. 2008; Pardo 
and Eberhart 2007). Adverse effects of these drugs include interference in GAB-
Aergic, dopaminergic, serotoninergic, and glutamatergic pathways. Importantly, 
they have been shown to effect DNA methylation (Mill et al. 2008; Tsankova 
et al. 2007; Melas et al. 2012) and histone modifications (Peter and Akbarian 
2011; Li et al. 2004).

5.3  Monogenic Forms of ASD Due to Mutations in Genes 
Encoding Chromatin Regulatory Proteins

The list of mutations carrying a high risk for ASD, even as singular genetic factors, 
includes an increasing number of genes encoding a chromatin regulatory protein. 
This is not too surprising, because chromatin remodeling and proper assignment 
of epigenetic marks is of fundamental importance for brain ontogenesis and a key 
control point in the stepwise transition from pluripotency to neural precursor to ter-
minally differentiated neurons and glia (Ho and Crabtree 2010), and involved in de-
velopmental events such as neuronal migration and connectivity formation (Fuentes 
et al. 2011). On the other hand, ASD-associated chromatin disorders were initially 
known only in the context of embryonic defects and multi-organ syndromes, with 
some of the more recently discovered gene defects affecting selectively the brain 
without significant involvement of peripheral organs. Well known examples of the 
former type of gene defects include Rubinstein-Taybi syndrome (RSTS) 1 ( Online 
Mendelian Inheritance of Man, OMIM 180849) and 2 (OMIM 613684) (Roelfsema 
and Peters 2007), as well as the Immunodeficiency, centromere instability, facial 
anomalies (ICF1) mental retardation syndrome (OMIM 242860) (de Greef et al. 
2011; Ehrlich et al. 2008), among others. The most well known example of the latter 
type of gene defects includes Rett Syndrome, an X-linked neurological disorder of 
early childhood (OMIM 312750). To date, deleterious mutations in over 50 differ-
ent chromatin regulators have been associated with psychiatric disorders including 
ASD and schizophrenia (Ronan et al. 2013).
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5.4  Epigenetic Regulation in the Human Brain During 
Normal Development and Aging—Implications for 
ASD

Chromatin remodeling and epigenetic mechanisms are involved in developmental 
events such as neuronal migration and connectivity formation (Fuentes et al. 2011). 
Furthermore, there is increasing evidence that the normal course of maturation and 
aging is associated with changes in the brain’s epigenome. On the one hand, this 
is an attractive hypothesis given that there are widespread age-related changes in 
gene expression in the cerebral cortex, including downregulation of many neuronal 
genes (Erraji-Benchekroun et al. 2005; Tang et al. 2009). However, in contrast to 
the accumulation of somatic mutations and other structural brain DNA changes that 
affect promoter function during aging (which are likely to be irreversible) (Lu et al. 
2004), most or perhaps all epigenetic markings studied to date are now thought to 
be reversible, and there is no a priori reason for unidirectional accumulation of a 
specific epigenetic mark in aging brain chromatin. Nonetheless, an increasing body 
of literature indicates that a substantial reorganization of the epigenome occurs dur-
ing postnatal development and aging. Human cerebral cortex, for example, shows 
complex and gene-specific changes in levels of methyl-cytosine (mC5; cytosines 
are methylated at the carbon 5 position), with a steady rise at many promoters that 
continues into old age in conjunction with subtle changes (mostly a decline) in gene 
expression (Siegmund et al. 2007; Hernandez et al. 2011).

The increasing list of monogenic forms of neurodevelopmental disease due to 
mutations in genes encoding specific chromatin remodelers speaks to the impor-
tance of these mechanisms for brain ontogenesis and early maturation. It is interest-
ing to note that DNA and histone methylation signatures show, on a genome-wide 
scale, the most dramatic changes during prenatal development, and the transition 
phases from perinatal period to early infancy and the perinatal period; in striking 
contrast, epigenetic changes during subsequent periods of maturation and aging, 
including puberty and various phases of adulthood, are comparatively minor (Sieg-
mund et al. 2007; Numata et al. 2012; Shulha et al. 2013; Cheung et al. 2010). Cell-
type specific epigenome profilings confirmed that these developmental changes are 
not explained by the various shifts in neuron-to glia ratios and other changes in cell 
type composition and instead, point to large scale chromatin remodeling in corti-
cal neurons during prenatal and early postnatal development (Cheung et al. 2010; 
Shulha et al. 2013; Siegmund et al. 2007).

Thus, one could conclude that immature neurons are, both in utero and for the 
first few months or years after birth, particularly vulnerable to epigenetic pertuba-
tions, and some of these could have played a role in the etiology of some cases on 
the autism spectrum. This hypothesis is further supported by the observation that 
prenatal exposure to certain types of drugs, including the short chain fatty acid 
derivative and histone deacetylase inhibitor, sodium valproate, is associated with 
a 2–3 fold increase in the risk of the offspring to develop ASD (Christensen et al. 
2013). Because epigenetic mechanisms literally serve as a molecular bridge linking 
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the genome to the environment, it is worth noting in this context that a recent large 
twin cohort attributed the estimated risk of shared in utero environment at 30–80 % 
for ASD, exceeding the estimated genetic risk of 14–67 % (Hallmayer et al. 2011).

5.5  Gene Expression and Chromatin Alterations in ASD 
Postmortem Brain

ASD, like many other psychiatric disorders, lacks a unifying neuropathology and 
is probably comprised of a diverse set of syndromes of considerable genetic and 
etiologic heterogeneity. Interestingly, however, studies even in fairly small post-
mortem brain cohorts with typically less than 20 cases and equal number of controls 
have shown significant, disease-associated changes in RNA and protein levels. For 
example, there is literature reporting downregulated GABAA and GABAB receptor 
expression and ligand binding across multiple areas of the cerebral cortex and cer-
ebellum, in conjunction with altered expression of GABA synthesis enzymes and 
GABA neuron-specific peptides in cerebral cortex, hippocampus and cerebellum, 
reviewed in (Blatt and Fatemi 2011). As in other conditions, including schizophre-
nia (Akbarian and Huang 2006), changes in the GABAergic transcriptome appear to 
affect a significant portion of cases on the autism spectrum, albeit the reported RNA 
alterations are not sufficiently consistent to reach the level of significance in all of 
the postmortem studies (Huang et al. 2010). Nonetheless, this work in the clinical 
tissue samples provided one of the cornerstones for the popular hypothesis that al-
terations in the balance of excitatory and inhibitory (E/I) activity play a critical role 
in the pathophysiology of a substantial number of cases on the autism spectrum, af-
fecting cortical inhibitory (GABAergic) circuitry and synchronization of electrical 
activity across widespread brain regions in the autistic brain (Uhlhaas and Singer 
2012; Rubenstein 2010).

The complete set of gene expression changes in the autistic brain are likely to 
go far beyond these GABAergic RNAs. For example, recent microarray studies 
identified a diverse set of neuronal genes and noncoding RNAs, many of which po-
sitioned in genomic loci conferring genetic ASD susceptibility and that showed al-
tered expression in prefrontal and temporal cortex or cerebellar cortices (Voineagu 
et al. 2011; Ziats and Rennert 2013), with additional gene expression changes in-
dicative of a dysfunction of immune regulation in at least some of the disease cases 
(Voineagu et al. 2011). Given that transcriptional regulation is closely associated 
with dynamic changes in chromatin structure and function (Lee and Young 2013), 
it would not be too surprising that these gene expression alterations in the diseased 
brain are associated with epigenetic changes in cis-regulatory sequences such as 
transcription start sites.

However, one challenge for epigenetic studies in brain is the enormous cellular 
heterogeneity of the postmortem tissue, with its mixed population of glutamatergic 
and GABAergic neurons, mature oligodendrocytes and astrocytes and their precur-
sors as well as endothelial cells. Furthermore, some brains from subjects on the 
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autism spectrum show evidence for inflammation, including activation and pro-
liferation of microglia as the brain’s immune surveillance cells (Theoharides et al. 
2013; Suzuki et al. 2013; Tetreault et al. 2012). This is an important problem given 
that cell-type specific differences in DNA and histone methylation landscapes are, 
on a genome-wide scale, far greater than, for example, developmentally regulated 
changes within a specific cell type, or species-specific regulation in the primate 
brain (Shulha et al. 2013, 2012b; Cheung et al. 2010). Thus, conventional chroma-
tin assays, which are designed to detect and quantify DNA methylation and his-
tone modifications requiring an input material between 103–108 nuclei (Huang et al. 
2006; Adli and Bernstein 2011), could be severly confounded by changes in glia-
to-neuron ratios that could show considerable fluctuations across different develop-
mental or disease states. To date, many studies exploring epigenetic dysregulation 
of gene expression in major psychiatric disorders examined DNA methylation and 
histone modifications in tissue homogenates, thus ignoring the fact that the gene(s)-
of-interest often are expressed only in a select subpopulation of neurons or other 
cells.

To bypass these limitations, a recent postmortem brain study, conducted on 16 
subjects on the autism spectrum and 16 controls of child and adult age, profiled 
the transcriptional mark, histone H3-trimethylated at lysine 4, on a genome-wide 
scale in prefrontal cortical neurons and separately, in non-neuronal chromatin from 
the same cases (Shulha et al. 2012a). The study identified 711 “epigenetic risk” 
loci were affected in variable subsets of autistic individuals, including the synaptic 
vesicle gene RIMS3, the retinoic acid signaling regulated gene RAI1 (Nakamine 
et al. 2008), the histone demethylase JMJD1C (Castermans et al. 2007), the as-
trotactin ASTN2 (Glessner et al. 2009), the adhesion molecules NRCAM (Sakurai 
et al. 2006; Bonora et al. 2005; Petek et al. 2001) and SEMA5 (Weiss et al. 2009; 
Melin et al. 2006), the ubiquitin ligase PARKIN2 ( PARK2) (Scheuerle and Wilson 
2011; Glessner et al. 2009) and many other genes for which rare structural DNA 
variations could carry high disease penetrance. Intriguingly, for most of these epi-
genetic changes, the H3K4me3 changes occurred selectively in prefrontal neurons, 
but not in their surrounding non-neuronal cells (Shulha et al. 2012a). Therefore, the 
disease-associated epigenetic signatures in ASD are cell-type specific and, at least 
in neurons, show significant overlap with the genetic risk architecture of neurode-
velopmental disorders (Shulha et al. 2012a).

Another study, using peripheral blood cells from monozygotic twins discordant 
for ASD, identified multiple disease-associated differentially DNA methylated re-
gions, which would suggest that at least some of the epigenetic alterations in sub-
jects with ASD may be unrelated to the genetic risk architectures in the affected 
cases (Wong et al. 2013).
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5.6  Epigenetic Drug Targets to Treat ASD

To date, no medication has been approved for the treatment of core symptoms of 
ASD, including social and other cognitive defects and problems associated with 
language and communication and interaction (Payakachat et al. 2012). Preliminary 
data suggest that intranasal application of the nonapeptide, oxytocin, when adminis-
tered in research and laboratory settings, elicits a modest improvement in repetitive 
behaviors and some of the test measures for social cognition (Bakermans-Kranen-
burg and van Ijzendoorn 2013). In addition, antipsychotic medications (originally 
designed to treat schizophrenia and other types of psychosis) such as risperidone 
and aripiprazole demonstrated improvement in parent-reported measures of chal-
lenging behaviors such as repetitive or aggressive behaviors, but carry a significant 
side-effect burden (Payakachat et al. 2012). Other types of drugs, including anticon-
vulsants and anxiolytics may be very beneficial in selected cases to treat seizures 
and anxiety but obviously do not address the core symptoms. Thus, there is a press-
ing need to pursue novel and innovative treatment options for these types of condi-
tions. It is not unreasonable to explore promising epigenetic drug targets in ASD.

One recent, impressive example for epigenetic drug targets is provided by topoi-
somerases (topos), DNA cleaving enzymes that are important in the processes for 
replication and recombination, transcription and chromatin remodeling (Salerno 
et al. 2010). A recent study using an unbiased high-content screening approach, us-
ing mouse primary cortical neurons, discovered that a diverse group of molecules, 
that share an inhibitory activity against DNA topoisomerase type I or II enzymes 
can unlock the expression of the normally epigenetically silenced paternal allele of 
the gene encoding ubiquitin protein ligase E3A ( Ube3a). These topo inhibitors me-
diate their effect by reducing the expression of the imprinted Ube3a antisense RNA 
( Ube3a-ATS) (Huang et al. 2011). The expression of this antisense RNA is nor-
mally repressed in the maternal chromosome in conjunction with the allele-specific 
DNA methylation of an imprinting center (a DNA or chromatin structure that car-
ries epigenetic information about parental origin) (Bressler et al. 2001). Similar to 
hundreds of other loci defined by parent-of-origin-specific gene expression, Ube3a 
was considered epigenetically stable throughout life (Reik 2007). This hypothesis 
now needs to be revised, however, given that even a single intrathecal infusion 
of the FDA-approved topoisomerase inhibitor topotecan was sufficient to relieve 
silencing of the paternal Ube3a (sense) transcript in lumbar spinal neurons for an 
extended period of at least 3 months (Huang et al. 2011). The most obvious explana-
tion for topotecan’s mechanism of action—altered DNA methylation of the Ube3a 
imprinting center—has been ruled out, thus the underlying mechanism(s) remain 
a mystery. Thus, the reactivation of paternal UBE3A expression via topoisomer-
ase inhibition could provide a starting point to investigate potential therapies for 
Angelman syndrome, which is caused by loss of function mutations and deletions 
at the maternal UBE3A locus (Kishino et al. 1997; Matsuura et al. 1997; Sutcliffe 
et al. 1997), and for which there are currently no effective treatments. Currently, it 
remains unknown whether topoisomerase-mediated reversal of imprinting-related 
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gene expression is specific to the UBE3A locus. However, this issue could be ad-
dressed by, for example, fusing topoisomerase enzymes to customized motifs for 
sequence-specific binding at UBE3A. For example, zinc finger nucleases or tran-
scription activator-like (TAL) effectors of plant pathogenic bacteria have been fused 
to the FokI restriction enzyme, allowing the induction of‘custom-made’ DNA strand 
breaks at specific and even at unique loci in the genome (Porteus and Baltimore 
2003; Bogdanove and Voytas 2011). An even more promising toolkit was recently 
introduced to the field, utilizing a genome defense mechanism in bacteria, CRISPR 
(Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associ-
ated) (Bhaya et al. 2011). The Type II CRISPR/Cas system requires a single protein, 
Cas9, to catalyze DNA cleavage (Sapranauskas et al. 2011) and is now widely used 
to induce targeted mutations in eukaryotic systems, including human and mouse 
cells (Cong et al. 2013).

Of note, drugs that inhibit histone deacetylases (these enzymes typically target a 
wide range of histone and non-histone proteins for deacetylation) might have thera-
peutic potential in depression and other psychiatric illnesses (Morris et al. 2010; 
Covington et al. 2009; Schroeder et al. 2007) but caution is warranted given that 
the already mentioned histone deacetylase inhibitor (HDACi), sodium valproate, 
confers a 2–3 fold increase in causation of ASD following prenatal exposure (Chris-
tensen et al. 2013). Curiously, in a rat model for prenatal valproate exposure, the 
ensuing deficits in social cognition could be significantly ameliorated with HDACi 
(Foley et al. 2012), thereby drawing a distinction between the adverse effects of 
HDACi (or at least of one HDACi drug, valproate) during prenatal development on 
the one hand and potential therapeutic benefits later in life.

Interestingly, data from 85,000 participants in the prospective Norwegian Moth-
er and Child Cohort study showed that prenatal exposure to folic acid (also known 
as Vitamin B9) around the time of conception was associated with a significant 
decrease in the risk for ASD associated with severe language delay in the offspring 
(Suren et al. 2013). Of note, folic acid is an essential substrate for the generation 
of methyl-Vitamin B12. Moreover, the folate and vitamin B12-dependent enzyme, 
methionine synthase, affects molecular and cellular mechanisms, including DNA 
and histone methylation modifications, and is expressed at very high levels in hu-
man cerebral cortex at 28 weeks of gestation, then shows an exponential decline, 
resulting in 400-fold lower levels in aged (80+ years) control subjects; this protein 
shows abnormally low levels in brain of some cases diagnosed with ASD (Muratore 
et al. 2013). These extremely interesting observations justify more detailed follow-
up work, because when viewed together, they definitively point to the importance 
of general regulators of cellular methylation metabolism for normal and diseased 
neurodevelopment. Furthermore, DNA methylation inhibitors, including the cyti-
dine analogues 5-azacytidine (5-Aza-CR), zebularine and nucleoside analogs that 
sequester DNMT enzymes after being incorporated into DNA (Kelly et al. 2010), 
when administered directly into brain tissue, disrupt synaptic plasticity and hip-
pocampal learning and memory, and thereby act as powerful modulators of reward 
and addiction behaviors (Levenson et al. 2006; Han et al. 2010; Miller and Sweatt 
2007; LaPlant et al. 2010). In addition, inhibitors for the histone H3K9-specific 
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methyltransferases G9a/Glp (Kubicek et al. 2007) strongly enhance the develop-
ment of reward behaviors in mice exposed to the stimulant drug cocaine (Maze 
et al. 2010). It will be interesting to explore, in the preclinical model, the role of 
these specific DNA and histone methylation inhibitors on social cognition and other 
behavioral domains specifically important for ASD.

5.7  Synopsis and Outlook

In the living cell, the functional definition of the human genome goes far beyond its 
linear sequence of 6 (or when haploid, 3) billion basepairs. It is the ‘epi-( greek for 
‘over’, ‘above’)genome’, with a rich cache of highly regulated structural modifica-
tions of DNA cytosine and histone residues and variants, which defines the mold-
ings and three-dimensional structure of the genomic material inside the cell nucleus, 
thereby providing a molecular bridge between genes and ‘the environment’, and 
orchestrating the myriads of transcriptional units, condensed chromatin clusters and 
many of the other features that distinguish between various cell types and develop-
ment- or disease-states sharing the same genome within the same subject. Rapid 
advances in our knowledge about the basic principles of epigenetic regulation, and 
more specifically, epigenetic mechanisms in the developing nervous system, are 
dramatically reshaping current thinking of neurological and psychiatric disease. A 
number of postmortem studies of autism and control brains provided convincing 
evidence that dysregulation of chromatin structure and function is part of the patho-
physiology of disease, at least in some of the affected cases. Furthermore, based on 
the current knowledge base from clinical genetics, deleterious mutations and struc-
tural variants in at least 50 genes, each encoding a different chromatin-associated 
protein, are associated with intellectual disability and ASD, further emphasizing 
that the fine-tuning of epigenetic regulation is broadly relevant for the developing 
human brain. Preclinical work, complemented by prospective and epidemiological 
studies, are beginning to identify promising epigenetic drug targets for the treat-
ment of neurodevelopmental disorders. It is the authors expectation that in the near 
future, the blossoming field of neuroepigenetics will significantly contribute to a 
better understanding of the neurobiology of ASD, and perhaps pave the way for 
novel and effective treatments and prevention.
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