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Abstract Oxytocin (OT) and arginine vasopressin (AVP) are two small, related 
neuropeptides found in many mammalian species, including humans. These neuro-
peptides are associated with a range of social behaviors and their dysregulation has 
been associated with deficits in social behavior. In particular, the OT neuropeptide 
system has been investigated in Autism Spectrum Disorder (ASD), as well as in 
Prader-Willi Syndrome (PWS), Williams Syndrome (WS) and Fragile X Syndrome 
(FXS), all of which are characterized by marked social deficits. PWS, WS and FXS 
are caused by identified genetic mutations and provide insight into the developmen-
tal influences of the OT system. In particular, FXS is caused by a mutation in a sin-
gle gene and up to 47 % of patients with FXS are diagnosed with ASD or also have 
autism related behaviors. Animal models of genetic neurodevelopmental disorders 
(NDD) are becoming a valuable tool to examine the role and relatedness of OT and 
AVP in the developing brain. We provide an example of how OT and AVP systems 
are altered with a mutation in the mouse Fragile X mental retardation 1 ( Fmr1) gene 
which leads to FXS-like symptoms in Fmr1 knockout (KO) mice. By studying the 
OT and AVP systems in these rare disorders, we may further understand their mech-
anisms of action in ASD and in typical development. This chapter will summarize 
the current data pertaining to these NDD and the systems of OT and AVP.
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14.1  Introduction to OT & AVP Neuropeptide Hormones

Oxytocin (OT) and arginine vasopressin (AVP) are small mammalian neuropeptides 
nine amino acids in length, differing from each other by only two amino acids. 
OT is produced primarily in hypothalamic nuclei, including the supraoptic (SON) 
and paraventricular nuclei (PVN). AVP is also synthesized in the PVN and SON. 
However in males, additional brain regions including the amygdala and the bed 
nucleus of the stria terminalis (BNST) also produce AVP. OT and AVP of hypotha-
lamic origins are transported from the SON and PVN to the mammalian posterior 
pituitary by neurosecretion where they are released into the blood stream, acting as 
hormones on target tissues. In addition, both OT and AVP are capable of moving 
throughout the central nervous system (CNS) via diffusion in the cerebral spinal 
fluid (CSF; Neumann and Landgraf 2012). The peptide producing oxytocin gene 
(OXT) is homologous with its evolutionarily related, vasopressin (AVP) gene. The 
human OXT and AVP genes are linked on chromosome 20p13 and are positioned in 
opposite transcriptional orientations, while separated by only 12 kb of DNA. Both 
have specific receptors, but their close evolutionary relationship permits cross-talk 
and interacting molecular systems. These neuropeptide hormones have receptors in 
various brain regions and throughout the body, including areas that are important 
for regulating social behavior and reactivity to stressors.

In both, the human and mouse genomes OT and AVP peptide genes are located 
adjacently on the same chromosome. Often, the blood levels of both peptides are 
highly correlated (Dai et al. 2012) suggesting a coordinated release. The receptors 
for both peptides are localized in specific areas of the nervous system, particularly 
in the brainstem and areas that play a role in social, adaptive behaviors, or in the 
regulation of the hypothalamic-pituitary-adrenal axis (HPA) and autonomic nervous 
system (ANS; Lim et al. 2004). Because OT and AVP are closely related and have 
the ability to act on the other’s receptors, it has been proposed that they evolved 
to interact and sometimes have opposing physiological effects. For example, both 
hormones have been shown to affect the control of the autonomic nervous system 
(ANS), with OT having primarily parasympathetic actions, and AVP serving as both 
a central and peripheral regulatory component of the sympathetic nervous system 
and HPA axis (Sawchenko and Swanson 1985; Kenkel et al. 2012). However, high 
levels of neuropeptides can be partial agonists for their homologous receptors and 
may result in AVP and OT pathway interactions (Chini et al. 1996).

Of particular importance in neurodevelopmental disorders (NDD) is the fact that 
OT and AVP can modulate social and repetitive behavior, as well as other manifes-
tations of anxiety and state regulation (Carter 2007). Animal research has gener-
ally associated OT release or exposure with positive sociality, reduced anxiety and 
lower levels of reactivity to stressors (Carter 1998; Neumann and Landgraf 2012). 
AVP can influence anxiety and the regulation of the HPA axis and stress responses. 
In general, central AVP is described as anxiogenic (Landgraf and Wigger 2003). 
However, there also is evidence in rats that the effects of AVP are brain region spe-
cific and dose-dependent. For example, AVP may be anxiolytic if given in low doses 
(Appenrodt et al. 1998).
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Mouse knockout (KO) studies of the OT receptor (OXTR) or OT regulators 
have reported decreased social memory or recognition (Jin et al. 2007; Ferguson 
et al. 2000; Takayanagi et al. 2005). Oxtr KO mice also showed decreased cognitive 
flexibility and a resistance to change learned pattern of behavior, comparable to 
restricted/repetitive interests (Sala et al. 2011). Both social deficits and behavioral 
rigidity were ameliorated by OT administration (Sala et al. 2011). The finding that 
OT continues to have effects in Oxtr KO mice supports the hypothesis that OT 
can influence behavior through other receptors, particularly the AVP receptors (e.g. 
AVPR1A and/or AVPR1B). Given the influence of these neuropeptides on brain 
regions affecting both social and repetitive behaviors, modulation of OT and AVP 
pathways are being explored as treatment targets for Fragile X Syndrome (FXS) and 
Autism Spectrum Disorders (ASD).

These studies set the stage for a series of recent studies of the effects of exogenous 
OT treatments in humans (Ebstein et al. 2012; Macdonald and Feifel 2013). For 
example, intranasal OT (IN-OT) administration in healthy human males increased 
prosocial behaviors and trust, especially as measured by computerized economic 
games (Baumgartner et al. 2008; Kirsch et al. 2005; Kosfeld et al. 2005). IN-OT 
may also increase gaze toward the eye region of faces (Guastella et al. 2008), and 
has been associated with improved facial memory (Rimmele et al. 2009), enhanced 
salience of social cues (Shamay-Tsoory et al. 2009), and improved performance on 
the reading the mind in the eyes task (RMET; Domes et al. 2007).

As previously reviewed, OT has been found to have anxiolytic effects, improve 
social interactions, reduce fear, and improve the ability of healthy volunteers to 
interpret subtle social cues (Macdonald and Macdonald 2010). In addition, OT dys-
function has been associated with neuropsychiatric disorders such as ASD in human 
studies (Ishak et al. 2011; Domes et al. 2007; Winslow and Insel 2004). By 2010, 
there were over 20 OT administration studies, which included ASD, schizophrenia, 
postpartum depression, posttraumatic stress disorder (PTSD), and irritable bowel 
syndrome (Macdonald and Macdonald 2010). As IN-OT has been associated with 
alterations in social decision-making, processing of social stimuli, certain social be-
haviors such as eye contact, and social memory, there has been a growing number of 
studies investigating its abilities to treat a range of neurobehavioral disorders.

14.2  Autism Spectrum Disorder and OT/AVP

In 1943, Leo Kanner described a male patient as having “stereotyped movements 
[and] … repetitions carried out in exactly the same way in which they had been 
performed originally” and also noted his social communication such that “he 
always seemed to be parroting what he had heard said to him at one time or another 
….Words to him had a specifically literal, inflexible meaning. He seemed unable to 
generalize, to transfer an expression to another similar object or situation” (Kanner 
1943). This group of symptoms later extended and described in detail is currently 
known as ASD. As described in the DSM-5 (American Psychiatric Association 
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2013), it is characterized by persistent deficits in social communication and social 
interaction across multiple contexts, and the diagnosis requires the presence of re-
stricted, repetitive patterns of behaviors, interests, or activities. ASD is a heritable 
(Bailey et al. 1995) and highly heterogeneous disorder, caused by familial genetic 
risks in addition to possible gene-environment interactions during early develop-
ment (Chaste and Leboyer 2012). Individuals with ASD may also have comorbid 
anxiety disorders, irritability and aggression, and come to clinical attention due to 
difficulties at home and school related to their communication deficits and restrict-
ed interests.

It was suggested by a number of researchers, including Waterhouse et al. as early 
as 1996, that dysfunction in the OT and AVP systems might contribute to the atypi-
cal social behaviors in ASD (Waterhouse et al. 1996). One of the first examinations 
of the association of OT specifically and ASD showed that children with ASD have 
low levels of plasma OT (Modahl et al. 1998). In particular, a subgroup of this 
sample identified as aloof using Wing’s diagnostic topology had the lowest levels, 
suggesting that those with the most severe socially aloof symptoms had more OT 
dysfunction. Building on these results with the same sample, it was also shown that 
there was an increase in OT-Gly, OT-Gly-Lys, and OT-Gly-Lys-Arg peptides, col-
lectively known as OT-X precursors for OT, as well as an increase in the ratio of 
OT-X/OT, associated with the reduction in OT seen in the patients with ASD (Green 
et al. 2001). There was also a positive correlation between OT-X and checklist items 
associated with ASD, including stereotypies, while OT-X correlated negatively with 
an item describing atypical comfort-giving within the ASD group. Consequently, 
changes in OT processing, specifically a failure to completely process the prohor-
mone OT-X, might lead to a deficiency in OT and thus exacerbate some of the 
symptoms of ASD. To our knowledge this study has not been replicated. However, 
other studies done in older patients have failed to report an OT deficiency, or have 
reported higher than expected OT levels in their ASD samples (Jansen et al. 2006; 
Miller et al. 2013). Future research will need to determine if differences in results 
of OT levels in individuals with ASD compared to controls reflect differences in 
the study populations and/or methods for assaying OT. It should be noted that these 
studies often prepared samples differently with varying plasma processing/extrac-
tion methods, and used different assay techniques. Additionally, ASD population 
differences included varying ages and recent data has suggested that some blood 
biomarkers like OT may change after puberty (Hammock et al. 2012). In addition, 
ASD is a very heterogeneous disorder and OT level differences may be specific to 
clinical and etiological subgroups within the broader ASD population.

14.2.1  Intranasal OT Studies in ASD

Currently medications for ASD concentrate on alleviating certain symptoms. Ris-
peridone and aripiprazole may be used for irritability, whereas guanfacine and cloni-
dine are used off label for aggression, and selective serotonin reuptake inhibitors 
(SSRI; i.e. escitalopram, fluoxetine, and sertraline) are used to treat anxiety or 
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depression (Owley et al. 2010; Jaselskis et al. 1992). Recently, OT has been investi-
gated to target the treatment of ASD’s core symptoms, social deficits and restrictive 
and repetitive behaviors (RRBs).

Several studies using intravenous or IN-OT in patients with ASD have been con-
ducted. It has been shown that nonapeptides, like AVP and OT, can be measured 
in CSF after intranasal administration (Born et al. 2002). Ease of giving intranasal 
drugs makes it preferred for most ASD studies, although more research needs to 
be conducted on how IN-OT reaches the brain and influences behavior. In addition 
to measuring OT responses to single dose challenges in ASD (Andari et al. 2010; 
Guastella et al. 2010), few studies have examined longer term treatment effects 
(Anagnostou et al. 2012). In addition to varying administration and duration study 
protocols, studies have often focused on symptom subdomains or defined social 
tasks such as RRBs (Hollander et al. 2003), emotion recognition (Guastella et al. 
2010; Dadds et al. 2014), affective speech comprehension (Hollander et al. 2007), 
and facial recognition (Domes et al. 2013).

As mentioned above, single dose studies or challenges have been utilized to 
study the acute and immediate effects of OT. An initial study in ASD examined the 
effects of a four-hour continuous dose of intravenous OT (Hollander et al. 2003). 
After 1 h of infusion there was a decrease in RRB (repeating and touching). This 
decrease lasted when measured after 4 h as well. More recently, a double-blind, 
randomized, placebo controlled study of IN-OT in 16 males with ASD (ages 12–19 
years old) showed that a single IN-OT dose could improve the ability to recognize 
emotion, particularly in easy queries (Guastella et al. 2010). Single dose IN-OT 
studies have also been done to examine the effects of OT on trust behavior and 
visual scanning of faces (Andari et al. 2010). Individuals with ASD given OT had 
a significant preference for the “good player” (the computer player who tossed the 
ball back to you) that was similar to the control subjects also performing the task. 
This preference was further supported by the patients’ reporting of trust, towards the 
“good player” after OT administration. In the visual scanning task, ASD subjects 
specifically avoided the area of high expression, the eyes, when given placebo, but 
significantly increased their gaze fixation towards the eyes with OT.

Recently a multi-dose OT administration study was conducted by Dadds et al. 
(2014). Individuals with high functioning ASD received 12 or 24 IU (depending on 
the weight of the patient) IN placebo or OT once daily for 5 days. During these 5 
days, the participant and their parents received daily parent-child interaction train-
ing and assessments of RRB, emotion recognition, social interaction skills, and gen-
eral behavioral adjustment. While improvements over time were detected in both 
OT and placebo, there were no differences observed between the two groups. Sev-
eral proposed possible explanations for these findings were: (1) emotion recogni-
tion was measured pre-post changes following multiple exposures versus while the 
patient was under the influence; (2) lower-order RRB, such as repeating, ordering 
and touching, respond to OT (Hollander et al. 2003), while higher-order RRB, such 
as ritualistic behavior and insistence on sameness, do not (Anagnostou et al. 2012); 
(3) increased eye gaze frequency is usually measured with artificial or computer-
ized faces, while they utilized “real-life” interactions; (4) the OT receptor system 
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disruptions in some patients with ASD may respond differently than in other ASD 
patients; and (5) differences between the studies regarding age and diagnostic char-
acteristics of the sample. Positive results were also observed in a 6-week protocol, 
which showed that IN-OT is well tolerated when given daily and may improve 
social cognition and decrease RRB in adults (Anagnostou et al. 2012). It may be 
important to note that reports of individual differences in the response to IN-OT 
are increasingly observed, although sample sizes in studies will need to be larger to 
explore individual response variation. While complex, the results from OT admin-
istration studies have provided a basis for understanding the role of OT. They aid 
in the development of study protocols that are focused on the population that will 
benefit the most from OT therapy.

14.2.2  OT and AVP Genetic Studies in ASD

Over the past decade, many studies have explored the role of genetics in ASD. It is 
theorized that the genetic heterogeneity of ASD could account for the complexity 
of its genetic etiology. When studying OT and AVP system genes, researchers often 
explore subphenotype scores such as social impairments in ASD. In a recent re-
view, genetic polymorphisms of receptor and pathway regulators such as AVPR1a, 
OXTR, neurophysin I and II, and CD38 were discussed (Ebstein et al. 2009). Eb-
stein and colleagues presented preliminary data in their review regarding their find-
ings about CD38, a transmembrane glycoprotein involved in OT secretion (Ebstein 
et al. 2009). Based on their studies of mice, they hypothesized a role for CD38 in 
ASD and its role in mediating OT, and in promoting nurturing behavior and social 
familiarity. (Jin et al. 2007). They genotyped 12 tag single nucleotide polymor-
phisms (SNPs) across CD38 in 170 ASD trios and assessed IQ and social skills via 
the Vineland Adaptive Behavior Scales (VABS) in this sample. A significant asso-
ciation between categorical ASD measures (ADI-R; Lord et al. 1994 and ADOS-G; 
Lord et al. 2000) and CD38 SNPs was found, as well as between social skills in 
ASD (VABS) and CD38 (rs4634217, rs4516711, rs4508877 and rs3796867), hap-
lotypes and VABS, and CD38 mRNA levels and VABS. Further supporting the role 
of CD38 in ASD, it has also been noted that there is reduced expression of CD38 in 
lymphoblastoid cells of patients with ASD (Lerer et al. 2010), and the rs3796863 
CD38 SNP has been associated with high functioning ASD in some populations 
(Munesue et al. 2010). However, this CD38 SNP has also been shown to correlate 
with higher activation of fusiform brain regions in healthy males challenged with 
OT (Sauer et al. 2012).

Candidate genes for ASD have also been culled from known genetic variants that 
are more broadly related to affiliative behavior (Yrigollen et al. 2008). In a study 
of 177 ASD probands from 151 families it was found that different OXTR SNPs 
were associated with stereotyped behavior, communication skills, an ADI-based 
diagnosis group and the ASD diagnosis acquired from multiple measurements. 
Specifically, there was a significant SNP in the OXT/AVP region (rs2740204; 
p= 0.016) associated with stereotyped behaviors (Yrigollen et al. 2008).
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In summary, many studies have focused on OXTR as a candidate gene for ASD. 
It has been shown that multiple SNPs are associated with stereotyped behaviors and 
communication skills (Yrigollen et al. 2008). Studies specifically examining identi-
fied populations such as Chinese Han have shown significant associations between 
ASD and two of its SNPs, rs2254298 and rs53576 (Wu et al. 2005). Also, in a study 
utilizing a Caucasian sample the rs2254298 SNP was associated with ASD diagno-
sis (Jacob et al. 2007). It should be noted that there was overtransmission of the G 
allele to the autistic Caucasian probands versus overtransmission of the A allele in 
the Chinese Han sample. More recently, the rs2268493, rs1042778 and rs7632287 
SNPs have also been associated with ASD in a sample in which 95 % of individuals 
self identified as Caucasian (Campbell et al. 2011).

14.2.3  OT Blood Levels in ASD

The limitations to direct access of the brain’s oxytocinergic pathways have con-
strained human research. Therefore, peripheral OT levels have been used as proxies 
for brain OT levels. A widely used measurement is plasma OT, but urine and sali-
vary OT levels have also been examined. Several researchers have observed asso-
ciations between peripheral, plasma OT and AVP levels and social stimuli (Kenkel 
et al. 2012; Schneiderman et al. 2012; Schradin et al. 2013; Seltzer et al. 2010; 
Wismer Fries et al. 2005). In particular, peripheral OT has been associated with 
human parental care, both maternal and paternal, such that parents display higher 
levels of OT than non-parents and low plasma OT levels in parents are associated 
with less parental touch, whereas higher levels correspond to longer durations of 
gaze synchrony and reporting of greater parental care during the parent’s childhood 
(Feldman et al. 2012).

Studies of adolescents have also utilized peripheral measures of OT as well as 
AVP. In a recently published preliminary study of high functioning ASD individuals 
and typically developing controls, Miller et al. (2013) researched the direct con-
nection between peripheral OT/AVP levels and ASD. Higher levels of OT were 
observed in all girls and were associated with greater anxiety. Across both sexes, 
higher OT levels were also associated with better pragmatic language. In addition, 
all boys had significantly higher levels of AVP. Gender differences were also noted 
within the ASD sample such that there was a positive association between AVP 
levels and RRB in ASD girls, but this was negatively (although non-significantly) 
associated with RRB in boys with ASD (Miller et al. 2013). Overall, these results 
suggest specific and sexually dimorphic mechanisms for OT and AVP with regard 
to anxiety and RRB.

Another important study that researched the connection between ASD and OT 
plasma levels was performed in 1998. Modahl et al. (1998), found plasma OT lev-
els in children with ASD were lower than the control group. They also examined 
how social behaviors were associated with plasma OT levels. Modahl et al. found 
that oxytocin was positively associated with age for “normal” children but not for 
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children with ASD. Additionally, physiological variables such as time of food in-
take were negatively associated with oxytocin level, and physical exercise and the 
presence of a respiratory condition were also associated with oxytocin level in the 
control group. The oxytocin levels of the children with ASD were not related to 
these physiological variables. Later, a study performed by Jansen et al. (2006) in-
volved adults diagnosed with ASD, who were asked to perform a public speaking 
task. Interestingly, in this study, subjects showed normal cortisol responses and no 
change in response to the task in norepinephrine, epinephrine, OT or AVP. However 
both basal OT levels and heart rate were elevated in the ASD group compared to 
healthy controls. They hypothesized that the interplay between cortisol and OT may 
influence the effects of social interactions and support.

Peripheral measurement of serotonin (5-HT) has recently been investigated in 
conjunction with OT, as many studies have reported hyperserotonemia within a 
subgroup of individuals with ASD (Leventhal et al. 1990; Schain and Freedman 
1961; Leboyer et al. 1999; Kuperman et al. 1985; Abramson et al. 1989; Chugani 
et al. 1999) and both 5-HT and OT are peripheral biomarkers that correspond to 
systems that interact in the brain. An analysis of whole blood 5-HT and plasma 
OT levels in children and adolescents with ASD showed a negative correlation, 
and this negative correlation was more prominent in younger children (Hammock 
et al. 2012). These results parallel findings in Oxtr KO mice which show that these 
mice had higher concentrations of whole-blood 5-HT, and the relationship between 
plasma OT levels and whole blood 5-HT levels are stronger in younger individuals 
(Hammock et al. 2012).

Over the last few years studies measuring peripheral OT have increased. As 
discussed in McCullough et al. (2013) and Szeto et al. (2011), the methodologies 
can lead to vastly different results (increased values, decreased values or values 
differing by an order of magnitude). For example, Modahl et al. (1998) performed 
plasma extractions and then radioimmunoassays (RIA) whereas Miller et al. (2013) 
utilized an enzyme immunoassay (EIA) with different plasma preparation methods. 
Additionally, there is also specific laboratory generated RIA versus commercial 
EIA and RIA kits. When manufacturer instructions are followed, values obtained 
have a similar order of magnitude, but it has been noted that some of these kits may 
also be detecting closely related metabolites. Note that the studies often prepared 
samples differently with varying plasma processing/extraction methods, and use 
of different assay techniques. Future research will need to determine if differences 
in results about OT levels in ASD reflect differences in the study populations and/
or methods for assaying OT. ASD population differences include varying ages and 
OT levels may change during development, especially after puberty. (Hammock 
et al. 2012). ASD is a very heterogeneous disorder and OT level differences may be 
specific to clinical and etiological subgroups within the broader ASD population. In 
addition, there is variability of OT plasma levels across typical and healthy popula-
tions. The inherent U-shaped distribution (Zhong et al. 2012) observed in normative 
populations may also add to variability in OT measurement in ASD studies.
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14.3  Prader-Willi Syndrome and OT

Prader-Willi syndrome (PWS) is a complex disorder with multisystem effects and 
a distinct behavioral phenotype. It occurs in approximately 1/10,000 to 1/30,000 
births, and is initially characterized by severe infantile hypotonia and difficulty 
feeding, although later in infancy and into adolescence individuals with PWS often 
eat excessively and develop morbid obesity. Other characteristics of PWS include 
hypogonadism, short stature, small hands and feet, and strabismus. The cognitive 
phenotype is marked by delayed motor and language development, and behavioral 
difficulties including compulsive behavior, stubbornness and temper tantrums (Bit-
tel et al. 2007b; Cassidy et al. 2012). The many behavioral and psychiatric manifes-
tations of PWS are evident in early childhood, and are characterized by hyperactiv-
ity, impulsivity, temper tantrums, emotional lability, anxiety and repetitive behavior 
(Borghgraef et al. 1990; Whitman and Accardo 1987; Gross-Tsur et al. 2001). Often 
this phenotype is suggestive of ASD as well as attention deficit hyperactivity disor-
der (ADHD; Cassidy et al. 2012). Face processing is also altered in individuals with 
PWS, as they have difficulty reading facial expressions (Whittington and Holland 
2011).

The cause of PWS is the lack of expression of specifically paternal genes located 
on chromosome 15q11.2-q13. Many of the genes expressed in this region come 
from the father, as those from the mother are normally inactivated. Consequently, 
either a lack of expression or absence of the paternal copy of the genes in this region 
leads to no expression (Saitoh et al. 1997). This may occur through microdeletions 
in the paternal chromosome, no copy of the paternal chromosome paired with two 
copies of the maternal chromosome or uniparental disomy (UPD) or imprinting 
defects due to epigenetic causes (Cassidy et al. 2012). The genes expressed in this 
region have been studied at length to develop models of PWS and to delineate 
their roles in the different aspects of the PWS phenotype. Such studies are compli-
cated by differences in the behavioral phenotype between individuals with deletions 
and those with UPD, as those with UPD have a less severe phenotype (Bittel et al. 
2007a) and higher verbal IQ scores (Dimitropoulos et al. 2000).

While the deletion of no one individual gene has been found to cause PWS, 
research has shown that the lack of expression of multiple genes may be central 
to the syndrome’s expression. Specifically, five polypeptide coding genes, namely 
MKRN3, MAGEL2, MAGED1, NECDIN and SNURF-SNRPRN, have been shown 
to be centrally involved in PWS. Animal models lacking one of these genes have 
been developed for Magel2 (Boccaccio et al. 1999), Maged1 (Dombret et al. 2012), 
Necdin (Lavi-Itzkovitz et al. 2012; Muscatelli et al. 2000) and Snurf (Tsai et al. 
1999), although none of these individual gene disruption models completely reca-
pitulates the PWS phenotype.

Another line of approach to elucidate the physiological underpinnings of PWS 
has been to examine the OT system in individuals with PWS as well as in animal 
models. There is a deficit of OT producing neurons in the PVN in the brains of per-
sons with PWS (Swaab et al. 1995), as well as lower levels of OT in CSF (Martin 
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et al. 1998). IN-OT administration increases trust in others and decreases disruptive 
behavior in individuals with PWS (Tauber et al. 2011). In addition, administration 
of OT has also been shown to rescue behavior in a Maged1 deletion model of PWS 
in which there is a decrease in hypothalamic OT (Dombret et al. 2012). Although 
rescue was not attempted in the Necdin model, this mutant also shows a reduction in 
OT producing neurons in the hypothalamus (Muscatelli et al. 2000). Consequently, 
there appears to be disruption of the OT system in individuals with PWS, which 
is recapitulated in different animal models. However, the exact mechanism of OT 
dysregulation is unclear.

14.4  Williams Syndrome and OT

Williams syndrome (WS) was first described over 50 years ago (Williams et al. 
1961). The first reported cases were focused on infants with hypercalcemia, de-
velopmental delays, cardiac malformations and dysmorphic facial features (Morris 
1993). However, better characterization of this syndrome has elucidated a distinct 
behavioral phenotype marked by an increased social drive paired with social fear-
lessness, poor judgment, difficulty forming peer relationships and high anxiety lev-
els (Jarvinen et al. 2013). The cause of this disorder has been determined to be the 
deletion of 25–30 genes in the q11.23 region of either maternal or paternal chromo-
some 7 that span approximately 1.5 megabases (Ewart et al. 1993; Lowery et al. 
1995; Korenberg et al. 2000; Schubert 2009). ELN, the gene for elastin, was the first 
deleted gene identified and its absence is indicative of a diagnosis of WS. While 
ELN disruption affects connective tissue, particularly of the aorta (Lowery et al. 
1995), other genes such as LIMK1, CYLN2, GTF2I and GTF2IRD1 are involved 
in the behavioral phenotype of WS (Jarvinen-Pasley et al. 2008). The deletion of 
GTF2I as well as GTF2IRD1 has been shown to be involved in the social phenotype 
specifically (Sakurai et al. 2011; Proulx et al. 2010).

The social phenotype associated with WS is striking due to the hypersociability 
of the affected individuals, as well as the preference for novel social over non-social 
stimuli (Jarvinen-Pasley et al. 2008, 2010) and increased eye contact (Mervis et al. 
2003). In addition, the speech of individuals with WS is marked by high levels of 
socially engaging language as compared to controls or individuals with other devel-
opmental disorders such as Down Syndrome (Jarvinen-Pasley et al. 2010; Jarvinen 
et al. 2013). However, this does not translate into the development of social rela-
tionships as individuals show difficulty with social adjustment (Gosch and Pankau 
1994, 1997) and social judgment (Einfeld et al. 1997; Gosch and Pankau 1997). In 
addition, affected individuals show deficits in social understanding, as evidenced 
by difficulty identifying affect (Gagliardi et al. 2003; Plesa-Skwerer et al. 2006) or 
other’s mental states (Jarvinen-Pasley et al. 2008).

The high sociability of individuals with WS positions this syndrome as a good 
mechanism through which to understand the biological underpinnings of social 
behavior. Mouse models of WS include GTF2I-deficient mice which display in-
creased social interaction with novel mice and diminished social habituation (Saku-
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rai et al. 2011) as well as Gtf2ird1 deletions, that also show increased sociability 
(Proulx et al. 2010). Recently, de novo duplications of regions of 7q11.23 have been 
shown to be associated with ASD, whereas deletions of the same region lead to WS 
(Sanders et al. 2011). Such opposite effects of gene expression leading to markedly 
contrasting phenotypes raises the issue of dosage effects, but it should be noted 
that both ASD and WS phenotypes include abnormal social relationships, although 
through different mechanisms. Whereas individuals with WS show prolonged face 
gaze, those with ASD display reduced face gaze (Riby and Hancock 2009). In addi-
tion, although children with WS and ASD display high levels of anxiety, individuals 
with ASD have higher levels of RRB as well as greater rates of social phobia and 
separation anxiety (Cascio et al. 2012).

Dai et al. (2012) examined the possibility of dysregulation of OT in WS as it 
relates to the contrasting phenotypes of WS or ASD.  This was done by examining 
deletions or increased expression, respectively, of genes in the region defining WS. 
They show increased baseline levels of OT in individuals with WS as compared to 
controls. Additionally, OT levels correlated positively with increased approach to 
strangers as well as decreased adaptive social behaviors. These results suggest that 
there may be a dose dependent effect of OT, as high levels may impair adaptive 
social behavior and may partly underlie the maladaptive social phenotype of WS.

14.5  Fragile X Syndrome

Named for the fragile site observed at Xq27.3, Fragile X Syndrome (FXS) is the 
most common inherited form of intellectual disability and the most common known 
single gene mutation associated with ASD (O’Donnell and Warren 2002). World-
wide prevalence estimates range from 1 case in 1000-4000 males and 1 case in 
4000-6000 females (Brown 1990; Morton et al. 1997; Turner et al. 1996; Webb 
2010). This rare genetic disorder is characterized by specific physical features, and 
cognitive and behavioral phenotypes (Berry-Kravis et al. 2002, 2011; McLennan 
et al. 2011). The physical features can include a long narrow face with large protrud-
ing ears, connective tissue abnormalities (i.e. hyperextensive joints), macroorchi-
dism, macrocephaly, obesity (especially in young males), loose skin over the hands, 
a high arched palate, a vertical plantar crease and flat feet (Moy et al. 2009; Schap-
iro et al. 1995). The behavioral and social characteristics of FXS include hyperac-
tivity, attention difficulties, mood lability, compulsive and perseverative behaviors, 
aggressive outbursts, learning deficits, developmental delays (including delayed 
speech development), social shyness, gaze avoidance, sensory hypersensitivity, 
withdrawal from touch and stereotypic movements and behaviors (i.e. hand flap-
ping and rocking), poor motor coordination and echolalia (Hagerman et al. 2009; 
Hall 2009; Hall et al. 2009; Moy et al. 2009). Many of these behaviors are linked to 
the anxiety level of the individual, a meaningful link because physiological studies 
have noted increased sympathetic and decreased parasympathetic activity and poor 
coordination between the systems (Hall et al. 2009).
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Cognitive tests have indicated a specific pattern of strengths and weaknesses. 
FXS individuals exhibit deficits in visuo-spatial tasks, quantitative skills, short-
term and working memory, expressive language skills, sequential processing and 
executive function (Hall et al. 2012; Cornish et al. 1999; Kwon et al. 2001; Freund 
and Reiss 1991; Maes et al. 1994; Berry-Kravis et al. 2002) and relative strengths 
in receptive language skills, visual memory, acquisition of factual information, 
imitation skills and gestalt processing (Berry-Kravis et al. 2002). This population 
also has susceptibility to certain other neuropsychiatric disabilities including ASD, 
ADHD and anxiety disorders, as well as neurological disorders such as epilepsy 
(Pretorius et al. 1998; Hessl et al. 2001). While the genetic cause of FXS has been 
found, the neurological basis of FXS symptoms continues to be unknown. MRI 
studies have found that individuals with FXS have enlarged lateral ventricles and 
increased caudate nucleus volumes relative to control subjects (Reiss et al. 1995). 
Anatomical studies of post-mortem brains have revealed that dendritic spines of 
neocortical pyramidal neurons of FXS subjects are longer and thinner than those 
of matched controls (Rudelli et al. 1985; Wisniewski et al. 1991; Irwin et al. 2001; 
Hinton et al. 1991), indicating that the spines fail to mature normally in FXS pa-
tients (Irwin et al. 2001).

The majority of individuals with FXS have social anxiety and almost a third have 
symptoms that overlap with ASD (Hagerman et al. 2010). Published studies have 
reported the prevalence rate of FXS and autistic behaviors/ASD diagnosis to range 
from 25–47 %, however sample sizes are often small (Hatton et al. 2006; Morton 
et al. 1997). Like the disorder itself, autistic symptoms are more common in males 
than females. Individuals with both FXS and ASD often have poorer developmental 
outcomes, lower cognitive abilities, lower levels of adaptive behavior and more 
problem behaviors than FXS individuals with fewer ASD related comorbidities. 
Of the individuals with FXS and autistic behaviors, 15–40 % of males and a few 
females meet the diagnostic criteria for ASD (Berry-Kravis et al. 2002) and present 
with more severe communication deficits, stereotyped behaviors, and social anxiety 
versus social disinterest. In addition, males present with more severe developmental 
delays. Overlapping behaviors between ASD and FXS, such as eye gaze avoidance 
(Hall et al. 2009), have led many scientists to study FXS as a way to understand and 
possibly target treatment for ASD.

14.5.1  Molecular Biology of Fragile X Syndrome

Diagnosis is based on DNA analysis that identifies the number of CGG repeats in 
the fragile X mental retardation 1 ( FMR1) gene at the Xq27.3 site (Turner et al. 
1996). In most affected individuals, this genetic disorder is caused by a trinucleotide 
(CGG) repeat expansion in the 5′  untranslated (promoter) region of the FMR1 gene. 
FMR1 encodes the fragile X mental retardation protein (FMRP), a 69 kDa protein 
found in most adult and fetal tissues, with high concentrations in the brain and tes-
tes. The expression of FMRP in neural tissue seems to be experience-dependent. It 
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is produced in the soma and near the synapse of neurons (Berry-Kravis et al. 2002, 
2011), and is essential to the shaping of dendritic spines (Davidovic et al. 2011). 
The protein and network of mRNA targets and interacting proteins contribute to 
several forms of synaptic plasticity involving learning and memory processes, nota-
bly those induced by activation of type I metabotropic glutamate receptor (mGluR; 
Davidovic et al. 2011). It is hypothesized that a decrease in Fmr1 functionally af-
fects the protein interaction network with direct consequences on signaling cascade 
and cellular metabolism (Davidovic et al. 2011).

There are two different FMR1 mutations, namely full mutation and premutation 
(Goodrich-Hunsaker et al. 2011a, b). Premutations make up approximately 10 % 
of male and 2–3 % of female ASD cases (Wang et al. 2010). These mutations are 
associated with Fragile X-associated tremor/ataxia syndrome (FXTAS; Wang et al. 
2010), have a repeat length of 50–200 and do not usually cause mental deficits, 
although shyness and anxiety have been known to occur. Premutations influence 
translation of FMR1 mRNA (Feng et al. 1995) such that individuals with permuta-
tions produce excess FMR1 mRNA, yet synthesize lower than normal levels of 
FMRP (Tassone et al. 2000a, b). Upon female transmission the premutation can 
become a full mutation. FXS is caused by full mutation which is > 200 trinucleotide 
repeats, and results in hypermethylation of the gene and transcriptional silencing 
(Tassone et al. 2000a). This creates an FMRP deficiency in the brain which leads to 
FXS presentation (Tassone et al. 2000a; McLennan et al. 2011).

Very rarely have other mutations in the FMR1 gene involving deletions (Gedeon 
et al. 1992; Wohrle et al. 1992) or a point mutation (De Boulle et al. 1993) resulted 
in symptoms identical or even more severe than typical FXS. FMRP is an RNA-
binding protein with three RNA-interacting motifs, namely two KH domains and 
one RGG box (Ashley et al. 1993; Siomi et al. 1993). Findings that a point mutation 
in one of the KH domains is sufficient to produce severe FXS (Siomi et al. 1994; De 
Boulle et al. 1993) points to the conclusion that this aspect of the protein is closely 
related to the clinical symptoms. While mainly found in the cytoplasm (Verheij 
et al. 1993; Devys et al. 1993), FMRP appears to be able to shuttle in and out of the 
nucleus (Feng et al. 1997) possibly as a carrier for specific mRNAs.

In the brain, FMRP appears in the cytoplasm of both the soma and dendrites of 
neurons (Devys et al. 1993; Feng et al. 1997), forms complexes with other pro-
teins including the fragile X-related proteins 1 and 2 (FXR1P and FXR2P), along 
with mRNA in mRNA-proteins (mRNPs) in association with ribosomes (Feng et al. 
1997; Corbin et al. 1997; Ceman et al. 2000; Eberhart et al. 1996; Khandjian et al. 
1996). As mentioned earlier, levels of FMRP have been shown to be regulated by 
sensory experience (Irwin et al. 2005; Todd and Mack 2000; Todd et al. 2003a, b). 
Supporting this theory is mounting evidence which implicates FMRP in synaptic 
plasticity and findings showing that mice lacking FMRP have impaired long-term 
potentiation in somatosensory cortex (Li et al. 2002), visual cortex (Wilson and Cox 
2007), olfactory cortex (Larson et al. 2005), cingulate cortex, and amygdala (Zhao 
et al. 2005), as well as enhanced long-term depression in hippocampus (Huber et al. 
2002). In synaptosomal preparations, stimulation of mGluR results in an FMRP-
dependent increase in protein synthesis (Weiler et al. 1997, 2004).
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14.5.2  Fragile X Syndrome and OT

There are several reasons why treatment with OT has been investigated in FXS. 
There is evidence that some of the features of ASD and FXS may be reduced by OT 
(Bartz and Hollander 2006; Hall et al. 2012; Hollander et al. 2007). As described 
above, OT released endogenously or given exogenously has been associated with 
positive social behaviors, as well as reductions in anxiety, obsessiveness and stress 
reactivity. OT may also serve to counter the defensive behavioral strategies associ-
ated with stressful experiences, and the central release of AVP and other peptides, 
such as corticotropin-releasing factor (Carter 2007). IN-OT in males has increased 
“trust” in a computer game task (Kosfeld et al. 2005) and may reduce endocrine re-
sponses to psychosocial stressors in men and women (Heinrichs and Domes 2008).

Similarly to ASD, available treatments for FXS focus on managing symptoms. 
Stimulants are prescribed for ADHD symptoms, whereas SSRIs and antipsychotics 
treat aggression associated with anxiety and carbamazepine is used for treatment 
of seizures (Hampson et al. 2011). Currently, there are no treatments on the mar-
ket targeting the molecular abnormalities of FXS (Gurkan and Hagerman 2012). 
However, recent studies have begun to investigate IN-OT due to the autistic-like 
behaviors observed in FXS and the social and anxiolytic effects of OT.

A 2012 study conducted by Hall and colleagues researched the effects of IN-OT 
on males with FXS. They hypothesized that the prosocial and anxiolytic effects of 
OT would reduce, if not alleviate, socially inappropriate behaviors and social anxi-
ety in males with FXS. Of the ten low functioning males between the ages of 13 and 
28 years (mean age = 21.3 years) recruited, eight subjects completed the study. All 
subjects were confirmed by standard Southern blot analysis to have a fully methyl-
ated full mutation. The study was set-up as a randomized double-blind placebo-
controlled single-dose trial performed with intranasal administration of placebo, 
24 IU OT and 48 IU OT.

As previously mentioned, extreme eye gaze avoidance and hyperarousal are ex-
hibited by FXS individuals when experiencing stressful social situations. Hall and 
colleagues collected eye gaze frequency, heart rate (HR), respiratory sinus arrhyth-
mia (RSA), heart rate variability (HRV) and salivary cortisol during the social chal-
lenge (10 min in length), which was conducted 50 min after OT administration. The 
first 5 min was a social proximity task, where the subjects sat quietly while a female 
researcher sat opposite with knees almost touching and read a magazine or book. 
The second five minute section was a social interaction task, here the experimenter 
while seated had a conversation with the subject, asking questions such as “tell me 
what movies you like to watch”. Before the conversation started, the subjects were 
instructed to look the experimenter in the eyes as much as possible while talking, 
they were additionally prompted by the researcher during the conversation when 
needed, similar to previous studies (Hall et al. 2012).

Confirmation of the hypothesis that OT would have beneficial consequences 
in FXS would be observed in increased eye gaze frequency, a reduction in physi-
ological arousal, and a decrease in salivary cortisol. The researchers observed a 
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significant main effect with OT. As compared to a placebo, 24 IU OT led to an 
increase in eye gaze frequency ( p= 0.042). No differences were noticed between the 
two tasks of the social challenge. There was also a significant main effect of OT ob-
served in the salivary cortisol levels. Salivary cortisol levels were looked at pre and 
post challenge, and showed a significant decrease for the 48 IU dose as compared 
to placebo ( p= 0.05). However, no effects were observed in the physiological mea-
surements (HR, HRV, and RSA). Hall and colleagues hypothesized that the admin-
istration of OT may dampen amygdala reactivity towards social stimuli that causes 
anxiety (Kirsch et al. 2005; Petrovic et al. 2008), decrease HPA axis activation, and 
increase social motivation (Witt et al. 1992; Witt and Insel 1992). At present, neither 
OT nor AVP are known to be targets of FMRP. Two points of future investigation 
that could reveal the interplay between OT and FMRP as proposed by Hall et al. 
(2012) were: (1) an experiment to determine the localization of mRNAs encoding 
FMRP and OT precursor in dendritic domains (Smith 2004), and (2) research into 
the non-coding BC1, a neuron-specific RNA polymerase III transcript and OT in 
hypothalamo-neurohypophyseal neurons (Tiedge et al. 1993) should be performed.

14.5.3  Animal Models of Fragile X Syndrome Provide Insight 
on Moderators of Neurodevelopmental Pathways

Animal models have proven indispensible in the understanding of diseases and dis-
orders, and in the development of pharmaceuticals used to treat them. The quality of 
an animal model is ascertained based on how well it can meet certain criteria of va-
lidity, namely construct, face and predictive validity (Bernardet and Crusio 2006). 
How well the model’s behavioral traits resemble the core traits of the disorder is 
face validity. Predictive validity is established when a drug reduces or improves 
symptoms in both the model and human. Construct validity is the “quality” of the 
model, its ability to accurately measure or represent what it claims to be measuring 
(Cronbach and Meehl 1955). There currently are several FXS animal models, three 
mice and one drosophila model that meet multiple criteria.

Two homologous genes to Fmr1 in vertebrates are Fxr1 (fragile X related gene) 
and Fxr2. Their proteins, FXR1P and FXR2P are both expressed in the neural tis-
sue, specifically in cell bodies, but they are also found in the dendrites near the 
synapse. Both Fxr1 and Fxr2 KO mice have been produced. FXR1P homozygous 
mice die within 24 hours of birth, while heterozygous mice exhibit abnormal limb 
musculature. FXR2P deficient mice have a normal lifespan and have learning defi-
cits similar to Fmr1 KO with some differences and circadian rhythm deficits (Ber-
ry-Kravis et al. 2011). The fruit fly model, a mutant lacking dFmr1 (also known as 
dFxr) protein, exhibits overextension of neurites during development of mushroom 
bodies (brain region linked with memory) and have a behavioral phenotype that in-
cludes circadian rhythm abnormalities and altered courtship behavior (Berry-Kravis 
et al. 2011; Gatto and Broadie 2009).

One of the most well characterized animal models of FXS was developed in 
1994 by the Dutch-Belgian Fragile X Consortium (1994), and is a mouse model 
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with an identical molecular endpoint of the experimental model and the human 
disease (i.e., lack of FMRP throughout the lifespan). This mouse was created by 
inserting a neomycin cassette into exon 5 of the murine Fmr1 gene. The insert dis-
rupts the transcription of Fmr1 mRNA causing an absence of FMRP. Even though 
the cause may not be identical, this mouse model exhibits behavioral similarities 
to FXS. Fmr1 KO mice are described as having lower than normal levels of initial 
social interaction (Mineur et al. 2006), lacking preference for social novelty, and 
displaying inappropriate social responses (Pietropaolo et al. 2011) versus wild-type 
(WT). In contrast, OTKO or AVPKO mice display high levels of social contact that 
does not diminish over time, thus failing to show familiarity (Crawley et al. 2007).

While macroorchidism is observed in the Fmr1 KO animals (Bakker et al. 1994) 
as well as in FXS patients, the behavioral patterns differ between the patients and 
the KO. By most accounts Fmr1 KO mice appear to have relatively normal behav-
ior, but research has shown that the behavioral and cognitive deficits of the KO are 
actually quite subtle and parallel FXS patients (Paradee et al. 1999; D’Hooge et al. 
1997; Peier et al. 2000; Berry-Kravis et al. 2002). Some behavioral phenotypes dis-
played in Fmr1 KO are deficits in object recognition memory (including a failure 
to habituate to objects), and impairment of spatial memory (Mineur et al. 2002).

Several studies indicate that Fmr1 KO mice are hyperactive and show indica-
tions of increased anxiety (Mineur et al. 2002; Spencer et al. 2005; Bakker et al. 
1994), and overreact to sensory stimuli (Chen and Toth 2001; Frankland et al. 2004; 
Nielsen et al. 2002). Fmr1 KO mice also exhibit abnormal social interactions, in-
cluding a general reduction in social contact and a failure to show social recogni-
tion (Bernardet and Crusio 2006; Mineur et al. 2006; Spencer et al. 2005; Yan et al. 
2004). Also, similar to FXS patients, these mice exhibit sensory hyperresponsive-
ness, especially to auditory stimuli. Loud tones may induce audiogenic seizures. In 
some tasks there is variability in the results (i.e. complex visual and auditory dis-
criminant tasks and activity level in an open field). This variability may come from 
different mouse strains reflecting the effect of different genetic backgrounds on the  
the expression of the symptoms. This is also hypothesized to be the basis for the 
variability observed in the symptoms of FXS patients. In work by Pietropaolo et al. 
(2011), the validity of the Fmr1 KO mouse on the C57BL/6 (B6) background was 
tested against WT and Fmr1 KO on the FVB background. They found the Fmr1 KO 
on the B6 background to be a good model for FXS and a suitable model for ASD 
(Pietropaolo et al. 2011; Yan et al. 2004).

These mice also have neuropathologic phenotypes that are similar to those of 
FXS patients, including density of dendritic spines of pyramidal neurons in the 
visual and somatosensory cortices that are greater in adult Fmr1 KO than WT. In 
some brain areas, in both mice Fmr1 KO and FXS patients, the appearance of the 
spines are more similar to developing versus mature spines (Berry-Kravis et al. 
2002). Absence of FMRP in both humans and mice results in improper development 
of dendritic spines on cortical pyramidal neurons (Comery et al. 1997; Irwin et al. 
2000, 2001, 2002). The use of the Fmr1 KO mouse has also provided some insight 
into the normal cellular function of FMRP. The subtle cognitive deficits of Fmr1 
KO mice present difficulties for preclinical testing of potential treatments, and high-
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light how complex the relationship between the mouse and human phenotypes are. 
One possibility is that cognitive processes in which FMRP plays a vital role in 
humans are poorly developed in mice; thus mice lacking FMRP are not particularly 
disabled, at least compared to severely-affected patients. A second possibility is 
that other proteins can compensate for FMRP in mice but not in humans. Third, the 
behavioral paradigms thus far applied to the mouse model may not efficiently assay 
cognitive domains most affected in FXS.

14.5.4  Examining OT in Neurodevelopmental Animal Models: 
A Way to Examine Early Effects?

Below we present preliminary data measuring the OT and AVP systems in a mouse 
model in order to learn more about FXS pathway interactions during development. 
The animal model was generated with WT and Fmr1 KO mice from a colony found-
ed with stock obtained from the Jackson Laboratory (Bar Harbor, ME, USA) that 
was backcrossed onto a B6 background > 10 generations. Mice were genotyped us-
ing primers described previously (The Dutch-Belgian Fragile-X Consortium 1994). 
Cells were stained using the immunocytochemical (ICC) staining procedures, fol-
lowing protocols described in early work on OT and AVP in voles (Yamamoto et al. 
2004). All sections were double-stained for NeuN (a marker that stains cell nuclei 
only in neurons), which allowed precise localization of cytoarchitechtonic bound-
aries. Stained sections were mounted on subbed slides and examined with OT and 
AVP antibodies (OT antibodies were generously provided by M. Morris and AVP 
antibodies were obtained from MP Biomedical #647171, formerly ICN; Solon, OH, 
USA). Slices of tissue for each animal were categorized as described in Paxinos 
and Franklin (2004) and carefully matched across subjects to allow comparable 
sections. The imaged slides captured at 10X, were coded and scored by an experi-
mentally blind scorer using Image J (NIH, Bethesda, MD) software. Cells in the 
PVN of the hypothalamus regions were stained separately for OT and AVP ( N= 6–7 
mice per group). Boxed sampling areas were: 125 × 125 μm2 (PVN total staining 
density), 250 × 375 μm2 (PVN fibers), 93.75 × 93.75 μm2 for cell counts bilaterally 
in both the PVN and SON.

Preliminary results suggest a significant reduction in both OT-positive (Fig. 14.1) 
and AVP-positive (Fig. 14.2) cells in the PVN of Fmr1 KO as compared to WT 
(Table 14.1). While not significant, there is a trend for fewer OT-positive cells in 
the SON (Table 14.2). We also measured, by cell count, the abundance of OXTR 
positive cells in the hippocampus, and  retrosplenial granular and piriform cortices. 
None of these areas showed a significant change in cell density as compared to WT 
mice ( p> 0.05). Earlier work in voles has suggested that both OT and AVP may 
support a general tendency toward social contact (Cho et al. 1999). The absence 
of either OT or AVP in the presence of the other neuropeptide did not produce an 
“asocial” animal. However, selective social preferences, such as those necessary for 
pair bond formation, appear to require stimulation of both OT and AVP receptors.
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Although the preliminary data shown here for Fmr1 KO mice needs to be repli-
cated in a larger sample size and in other animal models, we include these findings 
as an example of possible approaches to examining the role of peptides, including 
OT and AVP, in molecularly characterized genetic syndromes. Work across these 
models also could provide additional insight regarding the role of OT and AVP in 
early development, especially in syndromes in which atypical trajectories occur.

14.6  Conclusion and Next Steps

While each of the disorders described here (ASD, PWS, WS and FXS) is unique, 
each one is characterized by atypical social behaviors and in many cases a tendency 
toward high levels of anxiety. Given the importance of OT and AVP to mamma-

Fig. 14.1  Expression in the paraventricular nucleus ( PVN) of OT, as measured by ICC, is reduced 
in Fmr1 KO mice, compared to the wild-type ( WT). (Reprinted from Brain Research, Francis et al. 
2014, Copyright (2014) with permission from Elsevier)
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lian social behaviors and anxiety, the neuropeptides’ investigative value in these 
syndromes is not unexpected. This review summarized the possible role of OT in 
these NDD through experiments conducted by others and ourselves (Table 14.3). 
Each of these early developmental disorders displayed alterations in the OT system 
and may represent many molecular pathways that lead to a commonly disrupted 
neuropeptide hormone system. Our preliminary data suggests decreased numbers of 
OT-positive and AVP-positive cells in the PVN of Fmr1 KO mice, a mouse model 
for FXS. Individuals with PWS have shown lower levels of OT in CSF and fewer 
OT producing cells in the PVN. Lower plasma OT levels have also been detected in 
some children or a subgroup of ASD affected children. In contrast with WS, which 
is characterized by hypersociability, a positive correlation was found between OT 
levels and increased stranger approach and decreased adaptive social behavior. 
Knowledge of the functionality of the OXTR in WS remains to be studied. Given 
the rarity of these disorders and the complex animal models needed to research 
these disorders, many of these studies have small sample sizes. These significant 
studies, however, can motivate future research on these disorders and other NDD, 
especially those disorders with dysfunctional social behaviors as a symptom.

Fig. 14.2  Expression in the paraventricular nucleus ( PVN) of AVP. In Fmr1 KO mice, as com-
pared to the wild-type ( WT) AVP expression is reduced as measured by ICC. (Reprinted from 
Brain Research, Francis et al. 2014, Copyright (2014) with permission from Elsevier)
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ASD, as described above, is the primary NDD presumed to be associated with 
dysregulation of the OT system. It is striking, however, that other disorders with 
phenotypes marked by abnormal social behavior as well as anxiety (manifested in 
RRB) have abnormalities in OT production as measured in blood and CSF (Table 
14.3). For example, individuals with PWS, like those in ASD, have difficulty with 
social competence (Dimitropoulos et al. 2013), are aloof and avoid eye contact 
(Dimitropoulos et al. 2009). Furthermore, RRB is also evidenced in PWS (Greaves 
et al. 2006), although to a lesser degree than in ASD as measured using the Repeti-
tive Behavior Scale-Revised (RBS-R; Flores et al. 2011). A subset of the chromo-
somal region associated with PWS is also associated with an increased risk for ASD, 
as maternally inherited duplications of the 15q11-13 region are associated with 
1–3 % of ASD cases (Bolton et al. 2001; Cook et al. 1997; Vorstman et al. 2006).

Table 14.1  Number of OT and AVP-positive cells in PVN of Fmr1 KO versus WT mice. (Reprinted 
from Brain Research, Francis et al. 2014, Copyright (2014) with permission from Elsevier)

OT AVP
WT Knockout WT Knockout

PVN 17a ± 2b 9 ± 3 p= 0.047 10 ± 2 4 ± 2 p= 0.05
a Mean number of positive cell/0.2 mm2 
b Mean ± SE ( N = 6–7/group)

Table 14.2  Number of OT and AVP-positive cells in SON of Fmr1 KO versus WT mice. (Reprinted 
from Brain Research, Francis et al. 2014, Copyright (2014) with permission from Elsevier)

OT AVP
WT Knockout WT Knockout

SON 13a ± 2b 8 ± 3 p= 0.254 11 ± 2 6 ± 2 p= 0.107
a Mean number of positive cell/0.08 mm2 
b Mean ± SE ( N = 6–7/group)

Table 14.3  A Summary of OT Affects on NDD (Modified from Brain Research, Francis et al., 
2014, Copyright (2014) with permission from Elsevier)
Disorder Neuropeptide system affected
Autism spectrum 
disorders

↓↑ or atypical levels of OT in blood (human)
IN-OT ↑ social task performance and ↓ repetitive behaviors (human)
To be studied:human neuropathology and animal models

Prader-willi syndrome ↓ OT producing cells in the PVN (human)
↓ level of OT in CSF (human)
IN-OT ↑ trust and ↓ disruptive behaviors (human)

Williams syndrome ↑ OT levels (human)
To be studied:human neuropathology and animal models

Fragile X Syndrome ↓ OT + and AVP + cells in the PVN ( Fmr1 KO mice)
↓ OXTR + cells in several areas of the brain related to learning, 
memory and emotion ( Fmr1 KO mice)
IN-OT ↑ eye gaze frequency (human)
IN-OT ↓ salivary cortisol (human)
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Williams syndrome and ASD also share commonalities, namely abnormal social 
phenotypes and anxiety. Individuals with WS, unlike those with PWS, show a phe-
notype that is markedly different from ASD. Although both groups are at risk for 
anxiety, individuals with ASD show higher levels of social phobia and separation 
anxiety, as well as higher rates of RRB. However, children with WS have higher 
scores on measures of generalized anxiety (Rodgers et al. 2012). WS is charac-
terized by an increase in OT levels (Dai et al., 2012), as well as a deletion of the 
7q11.23 region as opposed to a de novo duplication which leads to ASD (Sanders et 
al., 2011). Thus, it is likely that some ASD and WS symptoms are related to genetic 
dosage effects. Studies of FX and ASD mechanism may also inform each other, as 
mutations in mGluR5 can contribute to the diagnosis of FXS or ASD, and mGluR5 
antagonists have shown promise in alleviating ASD symptoms in mouse models 
(Silverman et al. 2012) as well as Fragile X pathology.

As summarized in this review, animal and human research to date has shown 
that dysregulation of the OT system is associated with marked deficits in social 
behavior as well as anxiety. This commonality across multiple NDD may indicate a 
shared OT pathway that is affected during development. The use of animal models, 
particularly those developed for FXS, WS and PWS, will provide insight into such a 
pathway, as these disorders have well characterized genetics, whereas there are over 
103 disease genes and 44 genomic loci reported to be involved in ASD (Betancur 
2011). However, unlike in ASD, there is a lack of human data on the pathophysi-
ology of FXS, WS and PWS, as well as pharmacological interventions. Ideally, 
scientists want to identify specific molecular pathways to target distinct syndromes 
and disorders for treatment. However, many effective treatments modulate common 
neurochemical or hormone pathways that are downstream from etiologically con-
tributing factors (e.g. drugs for hypertension). Combining the strengths of human 
and animal model studies across these NDD may provide important clues into the 
role of OT in development, in addition to elucidating the complex neurophysiology 
and treatment targets for FXS, PWS, WS and ASD.
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