
Chapter 8
Design Automation for On-Chip Nanophotonic
Integration

Christopher Condrat, Priyank Kalla, and Steve Blair

Abstract Recent breakthroughs in silicon photonics technology are enabling the
integration of optical devices into silicon-based semiconductor processes. Signifi-
cant developments in silicon photonic manufacturing and integration are enabling
investigations into applications beyond that of traditional telecom: sensing, filtering,
signal processing, quantum technology—and even optical computing. In effect,
we are now seeing a convergence of communications and computation, where
the traditional roles and boundaries of optics and microelectronics are becoming
blurred. As the applications for opto-electronic integrated circuits (OEICs) are
developed, and manufacturing capabilities expand, design support is necessary to
fully exploit the potential of this technology. Photonic design automation represents
an opportunity to take OEIC design to a larger scale, facilitating design-space
exploration, and laying the foundation for current and future optical applications—
thus fully realizing the potential of this technology.

This chapter describes our work on design automation for integrated optic system
design. Using a building-block model for optical devices, we provide an EDA-
inspired design flow and methodologies for optical design automation. Underlying
these flows and methodologies are new supporting techniques in behavioral and
physical synthesis. We also provide modeling for optical devices, and determine
optimization and constraint parameters that guide the automation techniques.
Starting from a logic design model, we describe how conventional logic synthesis
and physical design techniques (placement, global and detail routing) can be applied
in a top-down fashion to engineer a fully automated design flow for integrated
optical systems.

This research was funded in part by a sub-contract to AFOSR grant FA9550-09-1-0661.

C. Condrat
Calypto Design Systems, Wilsonville, OR, USA
e-mail: chris@g6net.com

P. Kalla (�) • S. Blair
Department of Electrical and Computer Engineering, University of Utah, Salt Lake City,
UT, USA
e-mail: kalla@ece.utah.edu; blair@ece.utah.edu

© Springer ScienceCBusiness Media New York 2015
R.O. Topaloglu (ed.), More than Moore Technologies for Next Generation
Computer Design, DOI 10.1007/978-1-4939-2163-8_8

187

mailto:chris@g6net.com
mailto:kalla@ece.utah.edu
mailto:blair@ece.utah.edu


188 C. Condrat et al.

8.1 Introduction

Advancements in integrated optics are expanding the role of optical devices in
system design. Opto-electronic integrated circuits (OEICs) [1], merging optics and
control electronics on a monolithic substrate, are now a reality and enable optical
integration in a diverse set of applications, such as sensing, signal processing, com-
munications, and also computing [2–9]. The driving forces behind optics technology
come from different, but inter-related areas. One area is optical interconnects. As
semiconductors feature sizes have scaled downward, metal interconnects are now
the dominant cause of delay and power usage in system design. In addition, the
trend towards greater parallelism at the system level [10] has prioritized the role
of communications in computing. Optics are therefore being pushed as an inter-
and intra-chip interconnect technology to provide high-speed, long-haul, low-power
communications [11–16].

A second driving force behind optical technology is that of manufacturing.
Silicon is the mainstay of the semiconductor industry. The ease of manufactur-
ing for semiconductors in well-characterized silicon-based processes, and steady
improvements in performance and density at each process node makes CMOS-
based technology the dominant computing manufacturing technology. For the same
reasons, attempts were also made to develop silicon-based integrated optics—silicon
photonics. Silicon’s high refractive index and transparency to telecom wavelengths
make it a suitable material for integrated optical waveguides, but silicon’s use had
traditionally been limited to passive optical devices such array waveguide gratings
(AWGs) [17]. In the active domain, silicon’s indirect band gap limiting silicon-
based lasers, inability to detect light at telecom wavelengths, and slow modulation
due to weak or absent electro-optic effects [18, 19] stymied nanophotonic device
development. III-V semiconductor compounds such as gallium arsenide (GaAs)
and indium phosphide (InP), or materials such as lithium niobate (LiNbO3) would
become the materials of choice for active photonic devices.

This changed in 2005, when Intel Corporation announced the first all-silicon
optical modulator operating beyond the 1 Ghz threshold [20]. Fast optical mod-
ulation would be a significant breakthrough in silicon photonics, enabling viable
optical networks to be fabricated in all-silicon processes. This development ushered
in a number of subsequent breakthroughs in silicon photonic device development,
including faster modulators [21, 22], hybrid lasers [23], and other device technolo-
gies [24] including hybrid silicon-germanium processes [25] for on-chip detectors.
This promise of monolithic integration of OEICs in silicon-based processes opens
the door to a great number of opportunities in system design. Already a number of
architectures have been proposed for connecting systems via optical interconnect
networks [14, 26], including as separate layers in 3D ICs. Investigations have
also been made into optical digital signal processing [27], sensing, and even
computing frameworks that can leverage optics in ways that would have been cost-
prohibitive. In essence, silicon-based integrated optics are enabling the convergence
of computation and communication.



8 Design Automation for On-Chip Nanophotonic Integration 189

As optical devices are integrated on larger scales, the need for design automation
becomes apparent to handle greater levels of complexity in design. Scalability
requires abstractions, which in turn enables and requires the use of optimization
algorithms, design methodologies and tool-flows. What is now required is an
Electronic Design Automation (EDA) type tool flow replicated and adapted to
the optical domain. Such a Photonic Design Automation (PDA) represents an
opportunity to take OEIC design to a larger scale, facilitating design-space explo-
ration, and laying the foundation for current and future optical applications—thus
fully realizing the potential of this technology. In this chapter, we describe the
research and development efforts towards PDA by our research group: proposing
a design automation flow with abstractions, optimization algorithms, tool-flows,
and methodologies —enabling the synthesis of OEICs through automated means.
We demonstrate our approach on optical computing applications, even though our
approach is quite generic and not restricted to optical computing.

Contributions: In our work, we consider optical switching devices such as
Mach-Zehnder Interferometers (MZI) and ring resonators connected by waveguides,
splitters, couplers, detectors, etc., to form optical logic computing systems. We
describe how Boolean logic synthesis techniques can be adapted to such a tech-
nology to design optical logic circuits. Subsequent to logic design, we describe
a physical design methodology for placement and routing of optical circuits. We
analyze technology-specific cost metrics during each stage of the synthesis process,
and design algorithmic techniques that optimize for them. The chapter provides an
overview of our contributions, and interested readers are referred to [2, 28–32] for
more details.

Organization: The chapter is organized as follows: The following subsection
depicts the photonic design flow proposed in this work. Section 8.2 describes the
overall view of an integrated optical system. Section 8.3 covers the background
and switching device models employed in this work. Section 8.4 describes the
proposed photonic logic synthesis model. Section 8.5 describes the physical design
automation methodology and cost models. Section 8.6 covers the global routing
approach, whereas the detail routing model is elaborated in Section 8.7. Section 8.8
concludes the chapter.

8.1.1 The Photonic Design Automation Flow

Our design flow, depicted in Fig. 8.1, draws inspirations from EDA design flows
and methodologies, and it consists of behavioral synthesis and physical synthesis.
Ancillary to this flow is technology modeling, where the groundwork is laid for
design automation in terms of building-block models and optimization metrics used
throughout the design flow. System integration also plays an important role by
introducing external constraints and effects on the optical system such as: area-
limitations, packaging, and thermal interactions between on-chip heat sources and
optical devices.



190 C. Condrat et al.

Technology Constraints

Behavioral Synthesis Physical Synthesis

Computing
Architecture

Logic Synthesis

Photonic
Tech Mapping

Building-Block
Model

Optimization
Metrics

Library
Elements

Signal Loss, Timing,
Device Count, etc.

Technology Modeling

System Integration

Optical Netlist

Optical Place and Route

= Our Contributions
Packaging
and Area

Thermal
Gradients

Device
Placement

Global & Detailed
Routing

Thermal-aware
Device Resynthesis

GDSII Masks
for Fabrication

Fig. 8.1 The proposed design flow

8.2 Integrated Optic Systems

Figure 8.2 depicts a high-level view of an integrated optics system. We describe the
components of this system and their operations; the details of the individual devices
can be found in [33]. At the optical inputs of a system are lasers that provide light at
the wavelengths the system is designed for, around 1; 550 nm for SOI systems. For
silicon-based processes, this light is usually coupled into the system from outside
using fiber couplers or grating couplers. To inject data into the system, modulation
devices such as Mach Zehnder interferometers (MZIs), are used to vary the intensity
of the input light. The light is then routed throughout the substrate using waveguides
and optical switching devices with electrical switching inputs or in some cases
employing all-optical switching.

The routing network also includes passive devices such as waveguide splitters,
waveguide crossings, and passive multiplexing devices such as array waveguide
gratings. Splitters divide the input among two outputs, with each output receiving
half the input power, minus losses. Crossings are necessary for waveguides to cross
each other on the single-layer planar substrate with minimal losses; crossings will
feature into our physical design work in subsequent sections. Devices such as array
waveguide gratings enable (de)multiplexing of various wavelengths, and have been
a useful application for 1st-generation silicon photonics.



8 Design Automation for On-Chip Nanophotonic Integration 191

Fig. 8.2 High-level view of an integrated optic system

At the outputs of the system are demultiplexers for multi-wavelength systems,
photodetectors and garbage outputs. Waveguides can support ranges of wavelengths,
and therefore multiple channels of data may be present on a waveguide that need to
be demultiplexed at the output. After demultiplexing, a photodetector (receiver) is
required to translate optical signals into electrical signals, to read the transmitted
data. Such photodetectors utilize materials such as germanium [34], which are
incorporated into modern silicon photonics processes [35]. Finally, some routing
networks need to dispose of unused light. To prevent interference and noise, the
light from these “garbage outputs” must either be routed to the edge of the substrate
for disposal, or absorbed by a material such as germanium, placed near the exit-point
of the waveguide.

8.3 Device Models for Synthesis

One of the goals of this work is to develop synthesis techniques that utilize
conventional integrated optics devices that can be fabricated with current
technology, while also being applicable to future design processes. We describe
the basic operation of the integrated optic devices we utilize.



192 C. Condrat et al.

a b

c

Fig. 8.3 Mach-Zehnder interferometer routing devices. (a) Mach-Zehnder interferometer (MZI);
(b) MZI in parts; (c) Ring-resonator modulator

Routing light using waveguides is performed through the use of coupling and
controlled interference. Consider the Mach-Zehnder Interferometer (MZI) depicted
in Fig. 8.3a. The paths connected between P and F and Q and G are waveguides.
Under certain conditions, when waveguides are brought in close proximity to each
other, energy transfers between one waveguide to the other, and vice-versa. The
couplers in this device are 3dB couplers, dividing and/or combining the signal from
both inputs equally between the two outputs. The actual routing is controlled by
input S , described by the following equations:

�1 D !

c
· n · L �2 D !

c
· .n C �n/ · L (8.1)

�� D j�2 � �1j D � D !

c
· �n · L (8.2)

where ! is the angular frequency of the light (dependent on wavelength), �1 and �2

represent the phase of the light in the two center waveguides, and n is the index of
refraction for the waveguide.

The input S is used to change the refractive index of Fig. 8.3b(1) by �n via
heating, carrier injection, or other means. This causes a path-length difference, and
therefore a phase difference, between the signals in Fig. 8.3b(1) and b(2), causing
constructive or destructive interference at the second coupler. A phase difference of
0 or � [36] will route each input completely to one output or the other, and the device
acts as the controlled crossbar depicted in Fig. 8.4a. Similarly, other designs [16,37],
as depicted in Fig. 8.3c, can be used to reduce the amount of phase-shift needed and
the size of the overall device. Changing the refractive index can be accomplished by



8 Design Automation for On-Chip Nanophotonic Integration 193

Fig. 8.4 Crossbar switch,
and different routing
configurations. (a) Gate; (b)
Bar; (c) Cross; (d) Splitter

a b c d

using a microheater or more advanced methods such as the MOS-capacitors used in
Intel’s high-speed modulator [20]. Modulation is also possible using devices such as
ring resonators. The operation of such devices will be covered in later chapters. In
our work, we can utilize either an MZI or ring resonators as an electrically controlled
optical crossbar switch to design digital optical logic.

The operation of the MZI allows us to model it as a crossbar gate that routes
light signal completely between two paths depending on the state of S, and depict
it symbolically in Fig. 8.4a, with its two states Fig. 8.4b and c (bar and cross
respectively). The waveguides are sourced by light (logical “1”) or darkness (“0”),
and the output of a function is read using optical receivers at the end. In our model,
the switching input S is an electrical signal; it is an outside signal that controls the
cross/bar configuration and cannot be switched by optical inputs. Connections to p
and q, and f and g are waveguides, and for simplicity, light is assumed to move from
the p and q side to f and g. In our model, an optical signal cannot directly switch a
crossbar’s S input1. More formally:

.S D 0/ ) .P D F / ^ .Q D G/

.S D 1/ ) .Q D F / ^ .P D G/
(8.3)

These constraints affect how functions may be composed, and imply that the inputs
to a crossbar are the primary inputs for that network. Waveguide connections
between crossbar gates are depicted symbolically as black “wires.” All designs
created using the above model can be physically realized, including allowing
waveguides to cross each other without interference.

In addition to MZIs, we also utilize optical splitters, depicted symbolically
in Fig. 8.4d. A splitter divides the light from one waveguide into two output
waveguides, each of which contain the original signal, but at half the power (a 3 dB
loss). In our model, splitters are a significant signal degradation mechanism for a
given topology; losses due to waveguide bends, waveguide crossings and insertion
losses for MZI devices are the other mechanisms.

1Switching a crossbar gate with an optical signal requires an opto-electrical interface comprising an
optical receiver unit feeding switching hardware. This can be expensive and slow, and is currently
beyond the scope of the synthesis technique applied to this device model.



194 C. Condrat et al.

8.4 Optical Boolean Logic

Static-CMOS benefits from two important properties: metals and semi-conductors
conduct when physically connected, and logic is restorative in nature. These two
properties grant static-CMOS a great level of flexibility for implementing and
optimizing logic functions, especially as it allows fanout for multi-level logic
implementation. Unfortunately, this flexibility does not extend to optical circuits.

Consider the two networks in Fig. 8.5 implementing functions f1 D a C b and
f2 D c · .a C b/. The first network implements f2 by using the output of f1 to
drive the switching input of a gate. This is an unworkable design under our model,
because an optical signal f1 cannot switch the electrical input of another gate.
A more optimal solution is found in the second design Fig. 8.5b, which uses f1

as an optical input to another gate. This design benefits from using fewer gates, but
more importantly, the sub-function is kept entirely in the optical domain. In such a
way sub-functions can be shared, but with limitations.

8.4.1 Waveguide Splitters

The device which enables signal sharing using waveguides is the waveguide splitter.
A waveguide splitter shares the signal of the input waveguide between two output
waveguides, dividing the input power between two outputs, generally with a 50:50
ratio (3 dB loss). As the outputs of the splitter have only half the power of the
original signal, there are limitations on how many may be used, which can serve
as a cost-metric in the design of an optical logic network. Furthermore, as an optical
signal, the sub-function may still only be switched and routed further using primary
inputs to the network.

a b

Fig. 8.5 Two configurations for f1 D a C b and f2 D c · .a C b/. (a) Incompatible design.
(b) Compatible design



8 Design Automation for On-Chip Nanophotonic Integration 195

8.4.2 Garbage Outputs

A “garbage output” is a waveguide output that is not connected to a receiver
(a function output), i.e. it is left unused. These unconnected outputs cause problems
because the signals, and the light/energy it carries, may interfere with the operation
of the network if not properly “disposed.” This is demonstrated in Fig. 8.6, which
is the visual output of a Finite Difference Time Domain (FDTD) simulation [38] of
an MZI device. The FDTD simulation technique models wave propagation through
a (discrete) wave medium; Fig. 8.6 depicts the MZI device routing light from the
top-left input to the lower-right output. The lower-right output of the device is left
unconnected. Light arriving at this unconnected output can do a number of things,
including dispersing into the substrate as noise and heat (as shown in the figure as
ripples in the substrate) and/or reflecting back into the device, interfering with other
signals.

These unconnected, or “garbage” outputs are problematic, and must be properly
routed to the edges of the substrate where they can be dispersed away from the
logic devices. The additional waveguides needed for this can cause congestion and
complicate the overall physical routing of a network. Every crossbar gate output
that is left unconnected is a garbage output. For example, the network shown in
Fig. 8.5b would require three garbage outputs to be routed to the edges of the
substrate, leading to a far-less compact design. Minimizing gate count, in general,
reduces the number of garbage outputs, and is an important part of any synthesis
procedure.

Fig. 8.6 Dispersion of light into the substrate from a garbage output



196 C. Condrat et al.

With these constraints in mind, we now explore two basic design styles/methods
for creating optical crossbar logic networks: BDD-based design and Virtual Gate
design. We show how these design styles operate, and highlight their abilities,
as well as limitations. These limitations motivate more advanced approaches
using Boolean decomposition as a means to derive designs that may be more
optimal and beyond the ability of the other approaches to optimize for. All these
described methods lend themselves to automation, and provide a comparison of
these approaches near the end of the chapter, using metrics which are described in
the coming sections.

8.4.3 BDD Based Design

The 2 � 2 crossbar can be modeled as two multiplexers with complemented inputs.
As multiplexers, each crossbar gate effectively implements Shanon’s expansion in
one variable:

f D Nxf Nx C xfx (8.4)

outputf D Nsp C sq (8.5)

outputg D sp C Nsq

We can therefore utilize logic structures that employ Shanon’s expansion, namely
(Reduced Order) Binary Decision Diagrams (BDDs) [39] for direct implementation
using crossbar gates.

Consider the ROBDD in Fig. 8.7a, which implements two functions: f1 D abCc

and f2 D Nab C c, using variable order a � b � c. A dashed line indicates the
negative cofactor, and a solid line the positive cofactor, which are connected to the
p and q ports of a gate respectively. This is reflected in Fig. 8.7b. A crossbar network
can therefore be technology-mapped from the BDD. The BDD’s variable-switched
function form directly maps to crossbar gate networks, and does not violate our
crossbar model. In addition, the properties of the resulting network are also directly
related to the properties of the BDD structure, including the effects of variable
ordering on the canonical structure of an ROBDD.

8.4.3.1 Salient Features

A BDD-based crossbar network will, in general, have a number of garbage outputs
equal to the number of nodes present in the BDD. The physical aspects of crossbar
gates also mean that networks cannot take advantage of ROBDD extensions such
as complemented edges as the signal in a waveguide cannot be “inverted” without
extra hardware; complemented functions will need to be derived as separate BDD



8 Design Automation for On-Chip Nanophotonic Integration 197

a b

Fig. 8.7 BDD-based design for f1 D ab C c, f2 D Nab C c. (a) BDD Graph; (b) Resulting
BDD-based design

function. Common subexpression extraction is possible in the form of shared
functions is possible through the use of splitters; however, the effects of the signal
degradation must be accounted for.

BDD-crossbar networks are relatively path-delay balanced, as they have a feed-
forward design topology. The longest path is computed as:

lmax D h · l0 (8.6)

where h is the height of the BDD graph.
Where BDD-based design suffers is in the number of garbage outputs produced

by the approach. Each gate has the potential to produce a garbage output that must be
accounted for through routing or a light absorbing structure. The canonical structure
of ROBDDs can also lead to networks of extremely large gate counts for a given
function. Though BDD-based design is attractive for its predictable signal delay,
the number of garbage outputs and unpredictability of logic composition in terms
of gate counts leads us to abandon this logic composition method for crossbar gate
logic. We therefore investigate a composition methodology using “virtual gates.”

8.4.4 Virtual Gates Based Design

Consider the device networks depicted in Fig. 8.8. We denote these logic
composition functions “Virtual Gates” (VGs). A virtual gate (VG) is—functionally
and conceptually—a crossbar gate that is switched by a function, not necessarily
a primary input. The gate is “virtual” in the sense that it is a black box for a
function composed of “real” gates—those driven by primary inputs—as well as
other virtual gates. A novel form of nesting can be used to compose VG function



198 C. Condrat et al.

a

b

c

Fig. 8.8 Virtual gate functions for 2-input Boolean operators. (a) AND; (b) OR; (c) XOR

a b

Fig. 8.9 Composing functions with virtual gates. (a) Virtual gates implementing f D ab C cd ;
(b) Resulting network

implementations, where Boolean operators are implemented by replacing child
gates with other gates, a real or virtual.

A given VG implementation comprises two input waveguide ports p and q
connected by waveguides and crossbar gates to two output ports f and g. The
nesting operation comprises the Boolean operator forms depicted in Fig. 8.8, and
is illustrated in Fig. 8.9a where two AND virtual gates are nested within an OR
virtual gate, creating the final function abCcd . Evaluation of a VG, given a primary
input assignment, involves assigning p and q inputs logical 0 and 1 respectively, and
applying cross or bar configurations to gates as defined in Fig. 8.4. The output of
the function is detected at f, with g D :f.

The process of composition is illustrated in Fig. 8.9a, where a function f D
ab C cd is implemented by replacing (or nesting) the gates of an OR function with
VGs implementing a · b and c · d . The result is depicted in Fig. 8.9b.

While it may seem strange to see feedback loops in device designs, the physical
devices can indeed implement self-feedback. As an experiment, the model for
the AND gate depicted in Fig. 8.8a was simulated in a 2D FDTD simulator



8 Design Automation for On-Chip Nanophotonic Integration 199

Fig. 8.10 FDTD simulation of an AND virtual gate

OptiFDTD®by Optiwave Software; the visual output2 of which can be seen for
a D 1; b D 0 in Fig. 8.10. The signal from the top-left crosses in the top gate, but
passes through in the bottom gate, returning to the top gate where it crosses again to
appear in the top-right output.

8.4.4.1 Salient Features

Networks composed of virtual gates have exactly two optical inputs p and q and
two outputs f and g, as the entire network is, in itself, a virtual gate; in addition,
for a given function, a maximum of one garbage output is created. The existence
of a complete logic enables virtual gates to implement any logic function using
crossbar gates comprising only primary inputs. This includes factored functions,
and any other single-output representation using Boolean operators. Control signals
(S ) are connected via the primary inputs of the function. The f port implements the
function, and g D :f . Furthermore, the total number of real gates is the number
of primary literals in the original logic expression the network is derived from.

2Note that there are differences from the virtual gate diagram: the bottom two ports are swapped
because the waveguides are not crossed in the center, and that the “light” source is positioned at
the p input rather than at the q input.



200 C. Condrat et al.

Virtual gates also suffer from very unbalanced signal paths, depending on the
state of the switches, with the potential for a signal to traverse every waveguide
present in a VG network. The maximum signal path lmax is roughly computed as:

lmax D 2 · p · l0 (8.7)

where p is the number of operators in the virtual gate, and l0 is a “unit length”
of waveguide. This is based on the fact that all virtual gate operators connect two
gates (virtual or real) by two waveguides, and a signal could possibly traverse all
paths to reach the destination. For example, the network in Fig. 8.9a would have
a 2 · 3 · l0 D 6l0 long maximum signal path, which is close to the longest possible
signal path from p to f with variable assignment fa; b; c; dg D f1; 0; 1; 0g at 5l0.
The value lmax is a reasonable rough estimate; it can be further refined by estimating
routing distances for operators and physical network topology.

8.4.4.2 Expression Sharing

The major limitation of designing with virtual gates is that the nesting of gates
prevents the extraction/sharing of arbitrary common sub-expressions (CSE). For
example, in Fig. 8.11 one cannot simply share the ab term from f D abCbc for use
with another gate; assignments such as abcd D f1; 1; 1; 1g will cause all crossbar
gates to assume a cross-configuration, isolating the top input of the h-gate from the
optical inputs of the network. In effect, any operator employing feedback for its
inputs can produce an undefined state. Only the XOR operator does not exhibit
this behavior as it has no feedback, but XOR-based CSE is not well studied in
contemporary logic synthesis. To address this issue particularly for optical logic
synthesis, we investigated a XOR-based functional decomposition technique for
CSE, and implemented it within our virtual-gate paradigm. Interested readers may
refer to our publication [2] for more details.

Fig. 8.11 Internal functions
of virtual gates cannot be
shared



8 Design Automation for On-Chip Nanophotonic Integration 201

8.5 Physical Synthesis Methodology for Integrated Optics

Subsequent to high-level and logic design, the need for automated design space
exploration and optimization also begins to appear for physical synthesis of inte-
grated electro-optical systems. For this reason, the Electronic Design Automation
(EDA) community is investigating how automatic design space exploration tech-
niques can be adapted to the photonics domain [40–44]. Such circuits are complex in
their device interconnections, often featuring high device counts and large amounts
of feedback loops. These designs comprise a set of pre-designed optical devices—
modulators, switches, splitters—placed on a planar substrate, connected together via
waveguides. For example, in our previous work [2], our multi-level logic synthesis
methodology for implementing logic demonstrates how optical designs can scale
beyond the ability of custom design. The physical synthesis of such applications
now has to be addressed. For this purpose, we describe the design constraints, layout
models and methodologies for integrated optics automation.

8.5.1 Design Constraints

At the physical automation level, we identify signal power and substrate area as our
core guiding metrics.

8.5.1.1 Signal Power

Signal power is the primary guiding metric in our methodology. All devices,
including bulk waveguides, have insertion losses, measured in decibels (dB).
Our assumption is that these losses are pre-characterized through device-analysis
(FDTD, etc.) for the following type devices:

• Pre-designed devices [device-specific] (e.g. modulator devices, switches, split-
ters, etc.). Losses are characterized from inputs to outputs. For example, waveg-
uide splitters have their signal power from the input effectively halved at each
output (a 3dB loss).

• Waveguide crossings [0.1–0.2 dB / crossing] Per-crossing losses are on the
order of 0.1–0.2dB per crossing [45–47], affecting both crossing waveguides.

• Waveguide bends [0.001–0.3 dB / bend] Losses dependent on inherent waveg-
uide properties (materials, geometry, etc.), radius of curvature of the bend, and
surface roughness due to fabrication [48–50].

• Bulk waveguides [0.01–2 dB / cm] As these losses are extremely low (dB per
centimeter, e.g. 0.03dB/cm [51]), we consider bulk waveguides essentially
lossless.



202 C. Condrat et al.

Losses due to the presence of pre-designed devices are effectively fixed.
Therefore, the design automation problem concerns itself with designing within
the permitted losses between such devices–the routing fabric. We identify three
main routing loss mechanisms in descending importance: 1) waveguide crossings,
which induce a relatively large fixed loss per crossing; 2) waveguide bends,
especially bends close to the minimum radius of curvature; 3) bulk waveguides,
which generally have low losses; however surface roughness can induce losses over
larger distances for smaller waveguides.

8.5.1.2 SOI Waveguides

Si-photonic waveguides, with their large refractive index differentials, provide
strong mode confinement, and therefore bends can be much sharper, saving area.
While waveguide bends can be effectively lossless given a large enough radius of
curvature, accepting small per-bend losses can be advantageous in reducing the area
occupied by a bend [49]. The choice of minimum routing grid size can therefore
affect the weighting of metrics used to guide the routing, whether losses due to
bends, waveguide crossings [45], or area.

8.5.1.3 Area

Many optical devices, such as those used for switching, are designed such that their
input and output ports appear on only opposing sides. This feed forward device
design often extends to the device networks as a whole, resulting in overall networks
that are very wide. Wide substrates may not be desirable when integrating optics into
designs, and a more suitable aspect ratio may need to be enforced. The side-effect
of this is that devices must be rearranged on the substrate in a manner that can
affect inter-device locality as well as increase waveguide routing complexity. This
becomes an important part of the placement phase of our methodology.

8.5.2 Methodology

We propose the following methodology for the overall physical design problem
for integrated optics. As depicted in Fig. 8.12c, pre-designed optical devices are
represented as rectangular blocks (a) that are arranged (placed) in fixed-width
columns (b). Such a placement gives rise to vertical routing channels (c), which
are routing regions that separate the placed devices. Waveguides are routed between
devices at “ports” (d) that face the channels. For ports in different columns, these
waveguides may pass through horizontal routing channels, as depicted in (e). While
the substrate is planar, waveguides may also cross each other perpendicularly (f)
without sharing signals.



8 Design Automation for On-Chip Nanophotonic Integration 203

Overall, the physical design methodology requires that the problem be solved in
three steps:

• Placement of optical switching devices into columns, i.e. a grid-based layout.
• Global routing of waveguides that connect these devices. Global routing solution

will determine the overall routing topology of all the nets.
• Detailed routing of all the nets, which manifests itself as a well-defined channel

routing problem.

While this methodology is analogous to that employed in the VLSI domain, the
design and optimization constraints imposed by the optical technology are different.
Any CAD solution to this problem will have to incorporate such technology specific
constraint models and design rules.

8.5.3 Device Placement

Pre-designed optical devices are placed into columns. Consider the layout of devices
in Fig. 8.12a. While devices maintain ports on only their left and right sides,
connections may be made to any other device in the network by routing through
vertical columns and between columns. In such a manner, connectivity is preserved,
but the overall network has a smaller aspect ratio. Placement techniques, such
as those used for row placement and chip floorplanning [52], can therefore be
employed for placing devices within an optical substrate. The placement of devices
into columns enables us to utilize routing techniques designed for such placement
strategies. In our applications we use the Capo placer [52] to arrange devices in
rows given a specific aspect ratio. Connected devices are localized as much as
possible, reducing congestion. Such a placement simplifies the subsequent signal-
loss constrained global and local routing methods for integrated optics.

a b c

Fig. 8.12 Stages of the Physical Design Methodology. (a) Columns of optical devices, and global
routes; (b) Resulting channels for detailed routing; (c) Ports, routes and channels



204 C. Condrat et al.

8.5.4 Global and Detail Routing

Global routing determines the high level topology a signal may take through the
channels from source to destination. The chosen routes induce bends and crossings
with other nets. The optimization goal of the global router is to minimize losses due
to waveguide crossings and waveguide bends. In addition, global routing also takes
into account overall net lengths and routing congestion.

Given a device placement, a graph is derived from the vertical and horizontal
channels separating the device blocks. Nodes are placed at locations where ports
are located, and where horizontal and vertical routing regions meet. Any device
placement topology may also be used; however, we assume a channel-based
placement is used. In a channel-based placement, such as depicted in Fig. 8.13a,
nodes and edges are first derived for the vertical channels from the location of device
ports and horizontal channels. These channels are then connected to other channels
via horizontal inter-channel edges, such as depicted in Fig. 8.13b.

The presence of inter-route loss can affect signal quality more than route length,
forcing longer routes to be exercised. Consider the nets in example Fig. 8.13c, where
a net q can utilize one of two distinct routes (1) and (2). Route (1), though shorter
than route (2), must cross the chosen route for p; to avoid the crossing, route (2)
could be utilized. Route (2), however, crosses over the chosen route for r . Should
route r have less stringent loss constraints than p, route (2) may be chosen over (1),
despite a longer overall path. Ultimately, the final route choice is derived from a
combination of all loss factors.

The global router provides a set of vertical routing channels with net/port
connectivity, such as depicted in Fig. 8.12c. At this stage, detail routing is
performed, determining the actual placement of horizontal and vertical connections

a b

c

Fig. 8.13 Construction of routing graph from channel layout. (a) Vertical nodes and edges from
layout; (b) Complete routing graph; (c) Different route choices inducing different crossings



8 Design Automation for On-Chip Nanophotonic Integration 205

within the vertical channel. Consider the routing channels depicted in Fig. 8.12b.
The channel routing area is a grid between the pins on either side of the channel,
where waveguides are routed between pairs of pins. Traditional VLSI channel
routing seeks to minimize the area of a fully routed channel. In our channel routing
techniques, we optimize for crossings and bends, with channel height a subsequent
metric. The details of our channel routing approaches are found in Sect. 8.7.

8.5.5 Routing Grid Realization

The result of routing algorithms must be transformed into the physical waveguide
layout. This entails converting the routing grids into waveguide bends satisfying the
material bend constraints, which are generally defined in terms of minimum radius
of curvature and coupling distance.

A rectilinear routing grid is realized as waveguides by converting all 90ı grid
transitions to 90ı waveguide bends. This requires that such bends complete within
a quarter of the routing grid. This is illustrated in Fig. 8.14b where a horseshoe-
shaped bend utilizes two 90ı waveguide bends, each taking place within a quadrant
of the routing grid. This mapping represents the smallest grid that can be suitably
used for complete routing grid flexibility.

The physical routing can also exploit the spacing between curves at the corners of
grids. These “knock-knee” style bends, as depicted in Fig. 8.14c, enable additional
track sharing—potentially reducing the overall number of tracks needed for a
routing. For example, in the solution depicted in Fig. 8.15b, the knock-knee bends
between signals C-E, F-G, D-I, and G-J allow each respective pair to occupy the
same track, with the net effect of reducing the total number of tracks to four (4).
Routing techniques enabling knock-knee track sharing must account for shared
rectilinear grid locations, e.g. Fig. 8.15a, during channel construction.

The waveguide’s minimum radius of curvature r has an important role in
determining the routing grid’s minimum size. In some cases, r may be chosen for

a b c

Fig. 8.14 Conversion of grid units to waveguide curves. (a) S-shaped grid to bends; (b)
Horseshoe-shaped grid to waveguide bends; (c) Knock-knee grid with 90ı bends, radius of
curvature r , and minimum coupling distance wc



206 C. Condrat et al.

Fig. 8.15 Knock-knee model
for grid spacing. (a) Shared
grid corners enable
knock-knees; (b) Channel
routing incorporating
knock-knee bends (Four
tracks, eight crossings)

a b

area reduction, at the expense of per-bend losses [49]. For example, to enable knock-
knee routing patterns, the distance wc in Fig. 8.14c must be sufficient to prevent
significant coupling between waveguides.

8.6 Global Routing for Integrated Optics

Global routing provides the high-level overall placement of routes throughout the
device network, while detailed routing determines the localized routing necessary
to complete routing. In the VLSI domain, global routers are mostly concerned with
1) wire-length, 2) congestion, and 3) overflow—all of which are interrelated. For
integrated optics, some of these aspects, such as wire-length, are deemphasized and
in their place the router must also account for signal loss in terms of crossings and
bends. In addition, optical routing must be performed on a single routing layer.

Despite the advanced state of VLSI global routers [53–56], their applicability
is limited within the optical routing domain. VLSI routing is inherently multi-
layer, and VLSI global routers are designed to take advantage of multiple layers
in order to produce routing solutions. As such, global routers are also not designed
to minimize crossings. Minimization techniques for metrics such as vias, though
applicable to bends, cannot be applied to waveguide crossings, as a single via can
facilitate multiple crossings due to multiple-layers. We therefore investigate global
routing specifically for integrated optics.

8.6.1 Routing Using Mixed Integer Linear Programming

We conceptually frame global routing through mixed integer linear programming
(MILP). Each net i has a set of ni candidate routes. Only one route k may be
chosen for a given net, and that route has a cost associated with it ˛i

k . The cost
˛i

k is formulated in terms of signal loss: static losses induced by bends and length,
and inter-route losses caused by crossings between of different routes of different
nets. More formally



8 Design Automation for On-Chip Nanophotonic Integration 207

˛i
k D ˛i

k;static · xi
k C

j¤iX

j

niX

kD1

njX

lD1

˛
i;j

k;l · x
i;j

k;l (8.8)

˛i
total D

niX

kD1

˛i
k ˛i

total < ˛i
max (8.9)

where xi
k D 1 if net i uses route k, otherwise 0, and x

i;j

k;l D 1 if respective nets i and

j use routes k and l , respectively, otherwise 0. A loss-coefficient ˛
i;j

k;l is the inter-
route loss associated with those two routes. ˛i

total constrains the maximum losses
acceptable for the given net. Equations (8.8) and (8.9) provide the basic structure for
optimization. What remains is to determine the coefficient weights ˛i

k;static and ˛
i;j

k;l .

8.6.2 Route Analysis

Routes are defined on a graph G comprising a set of grid-edges E derived from
layout of the device placement. For example, the routing regions between devices
in Fig. 8.16 produce a set of edges connecting between port-endpoints.

Static route costs ˛i
k;static are derived from the set of edges Ei

k that a route
traverses, comprising a sum of edge-cost weights. Waveguide bends also have a
cost associated with them, as they can be a significant loss mechanism. In order to
penalize their use, we modify the graph by adding weighted via-edges connecting
between vertical and horizontal edges, as depicted in Fig. 8.16. Though straight-
waveguide losses at these scales are negligibly small, longer routes have a greater
potential for intersecting other routes, potentially causing more crossings. Edges
are therefore weighted according to their length in the substrate to favor locality.
For simplicity, a basic approach for choosing the set of candidate routes for a given
net is to choose the set of routes with the least static route-costs. Other metrics, such
as potential edge-capacity utilization, and diversity of routes may also provide better
route candidates.

Fig. 8.16 Routing graph derived from device placement



208 C. Condrat et al.

a b

Fig. 8.17 Functionally equivalent configurations of path-endpoints and their rotations. (a) Same
direction (A ! B) induce crossings; (b) Opposite directions require no crossings

Given the sets of candidate routes, inter-route losses ˛
i;j

k;l are determined by
pairwise analyzing candidate routes for different nets to determine whether routes
cross. The given pair of routes may have multiple shared sets of edges (paths) where
a crossing may occur. A crossing, if it is required, will occur only once for a given
shared path; we can treat the shared path edges as a single node that retains the
crossing of the original.

Consider the two nets depicted in Fig. 8.17, where route A and B share edges in
the middle. At the endpoints of the shared edges, the two routes diverge; we denote
these as diverging endpoint edges (DEEs). For a given endpoint, rotation is the
direction a route’s DEE must rotate towards DEE of the other route, pivoted on their
shared node, on the arc that does not contain the shared route edges. For example, in
the left path endpoint of Fig. 8.17a, the DEE of A rotates counter-clockwise towards
the DEE of B . Likewise, on the right side, DEE of A again rotates counter-clockwise
towards the DEE of B . A crossing is only required if-and-only-if the rotation of both
endpoints is the same, otherwise no crossing is required.

8.6.2.1 Minimization Function

With the per-route and per-net equations in place, and their coefficient weights deter-
mined, the final minimization function is a sum of all net costs. The minimization
function is implemented as

minimize W
mX

iD1

Wi · ˛i
total (8.10)

where m is the total number of nets and each Wi is a per-net weight to prioritize
certain nets over others during optimization. Though not detailed here, congestion
can be accounted for by the number of routes that utilize given edges in the routing
graph.

The presented global router is relatively basic as compared to contemporary
VLSI routers; however, it accounts for many aspects specific to single-layer
integrated optic routing. For VLSI routers, crossing minimization at a global level is
not incorporated. Therefore, instead of utilizing VLSI-centric global routers, we



8 Design Automation for On-Chip Nanophotonic Integration 209

developed our own global router for integrated optics. Subsequent to the global
routing, the final detail routing problem is formulated and solved as a channel
routing problem.

8.7 Channel Routing for Integrated Optics

In column-based optical device placement, the detailed routing problem manifests
itself as a channel routing problem, where (Silicon) optical waveguides are fabri-
cated on a planar substrate and are connected to devices at the ends of the channel.
Planar routes require waveguides to bend (curve) and cross each other—causing loss
of signal power. Channel routing techniques are therefore needed that minimize
waveguide crossings and bends. We present a channel router based on crossing-
aware, graph-constraint track-assignment. The router minimizes signal loss as a
function of waveguide crossings and bends within the channel, while also reducing
area.

8.7.1 Optimization Objective

The primary optimization objective in our routing formulation is signal loss
minimization. Within the channel, this is achieved by: 1) minimization of the total
number of waveguide crossings; and 2) minimization of the number of waveguide
bends. Minimization of the number of tracks (channel height) is the subsequent
secondary objective.

We optimize for the total signal loss within the channel due to optical feedback
within the system. A signal may be routed such that it enters a given channel
multiple times and may cross multiple other nets. Therefore, instead of minimizing
losses on a per-net basis, we minimize for total losses within a channel (Fig. 8.18).

8.7.2 Left-Edge-Style Channel Routing

Traditional left-edge-style channel routers [57–59] represent the channel routing
problem using horizontal and vertical constraint graphs (HCG, VCG). An alternate
representation of the HCG is the zone representation, which is derived from the
HCG, where every zone is defined by a maximal clique. The number of signals in
the largest zone is the lower bound on the number of tracks needed for routing.
These graphs encode constraints on how tracks may be assigned to nets in the
channel. Consider the channel routing problem depicted in Fig. 8.19a. The resulting
zone representation is depicted in Fig. 8.19b. Likewise, the VCG for the problem is
represented in Fig. 8.20a.



210 C. Condrat et al.

a b

Fig. 8.18 Channel routing solutions under differing constraints. (a) Track-optimized (five tracks,
ten crossings); (b) Crossing-constrained (five tracks, eight crossings)

a b

Fig. 8.19 Horizontal constraints and zone representation. (a) Five maximal subsets of signals;
(b) Resulting five zones

Fig. 8.20
Crossing-constraints
modifications to the VCG.
(a) Original VCG; (b) With
crossing constraints

a b

A net may be assigned to a track should it have no descendants on the VCG, and
have no overlapping zone conflicts with previously assigned nets on a given track.
Nets are removed from the VCG as they are assigned to tracks. When a track cannot
contain more nets, a new track is created and the process is repeated until no more
nets are left for assignment.



8 Design Automation for On-Chip Nanophotonic Integration 211

Multiple nets can be candidates for assignment to a given track, each with
different horizontal overlaps. Therefore heuristics are used to choose which nets are
assigned first. One of the simplest is a greedy heuristic used in constrained left-edge
channel routing [57], where the left-most available nets in channel are assigned
first to tracks. This can lead to sub-optimal track-utilization; more sophisticated
heuristics analyze the graph structure for better results, such as [59], which attempts
to reduce the longest path in the VCG for better track utilization. We refer to
the class of track assignment algorithms above generically as “left-edge-style”
channel routing. The approach we describe below can be incorporated into any such
techniques.

8.7.2.1 Crossing-Constrained Track Assignment

Figure 8.18a depicts the output of a (VLSI) left-edge 2-layer channel router, and
Fig. 8.18b, a channel routing constrained for crossing-minimization. Both solutions
are minimal in terms of tracks; however, the total number of crossings in Fig. 8.18a
is 10, compared to 8 in Fig. 8.18a. The discrepancy in the number of crossings is
attributed to the two crossing points caused by nets B and C . By forcing C to appear
below B , two crossings are avoided. However, transforming from Fig. 8.18a to b is
not as simple as moving net C below B , not if track height is to be kept minimal.
Crossing minimization must therefore be encoded into the routing process itself as
constraints.

We constrain the channel routing problem to favor crossing minimization. The
VCG is modified such that avoidable crossings impose vertical constraints on the net
ordering. Only nets that share zones have the possibility of crossing, and pairwise
analysis takes place after the zones are derived.

A crossing constraint is only encoded into the VCG if a crossing can be avoided.
For example, the pair of nets in Fig. 8.21c would not normally be constrained in
the VCG; however, a net crossing can be avoided if B is assigned a track above A.
Therefore, an edge connecting B to A is added to the VCG. Conversely, the two
nets in Fig. 8.21b cannot avoid crossing, and therefore no constraint is added.

We introduce the concept of pin-rotation to detect avoidable crossings. If we were
to map the pins of nets on a unit circle, a crossing is unavoidable if rotating from one
pin to the next is not possible without first passing through the pin of another net.
Consider the nets depicted in Fig. 8.21a. Collapsing the shared horizontal region,
and considering the areas Fig. 8.21a(1) and a(2) shows how pins of a given side
rotate with respect to each other (clockwise/counter-clockwise) around an axis fixed
at the center. In the case of Fig. 8.21a(1), the rotation of the left pin of A to the left
pin of B is counterclockwise, and likewise the pins on the right-side also rotate in the
same counterclockwise direction. If the pins on both left and right terminals rotate
in the same direction a crossing is unavoidable.



212 C. Condrat et al.

a

b c

Fig. 8.21 Crossing detection via rotation from A to B . (a) Rotation direction with respect to pin
locations; (b) Same rotation direction ) Unavoidable crossing; (c) Opposite rotation directions
) Avoidable crossing

More formally:

X
left
A;B;C W D

(
X

left
B;top if C

left
A < C

left
B

:X
left
A;top otherwise

(8.11)

X
right
A;B;C W D

(
X

right
A;top if C

right
A < C

right
B

:X
right
B;top otherwise

(8.12)

Xavoidable.A; B/ D
�
X

left
A;B;C W ¤ X

right
A;B;C W

�
(8.13)

where C
left=right
N is the integer-valued column-position of a pin of net N on a given

side (left, right); the Boolean variable X
left=right
N;top , using the same notation, denotes

whether that pin resides on the top side of the channel. Equations (8.11) and (8.12)
utilize the horizontal relationships of pins and their channel-sides (top/bottom) to
determine the clockwise rotation (CW) of a given pair of left or right pins for nets A

and B , rotating from A to B . A crossing is avoidable only if left and right rotations
are not the same, the result of (8.13).



8 Design Automation for On-Chip Nanophotonic Integration 213

For example, in Fig. 8.21a, consider the left side of the shared span
Fig. 8.21a(1):

• The variables C
left
A and C

left
B are the column positions of the respective left-

terminals of nets A and B . In the example, C
left
A D 1, C

left
B D 2.

• C
left
A < C

left
B implies X

left
A;B;C W D X

left
B;top from (8.11).

• The left pin of net B is not on the top side of the channel (X left
B;top D false).

Therefore, the left side of the pair of nets is not rotating clockwise from A to B ,
i.e. X

left
A;B;C W D X

left
B;top D false.

• On the right side of the shared span Fig. 8.21a(2), C
right
A < C

right
B . This condition

implies that X
right
A;B;C W D X

right
A;top D false. The right side is therefore also not

rotating clockwise from A to B .

Having the same direction of rotation (X left
A;B;C W D X

right
A;B;C W D false) implies that a

crossing is unavoidable, as determined by (8.13); this is reflected in the figure.
Applying crossing constraints to the problem depicted in Fig. 8.19a results in the

VCG depicted Fig. 8.20b. As compared to the original VCG Fig. 8.20a, the crossing-
constrained VCG is more heavily constrained, ensuring that unnecessary crossings
do not occur, such as the double-crossing of nets B and C in Fig. 8.18a.

8.7.2.2 Knock-Knee Track Sharing

Though the modified VCG is effective in preventing waveguide crossings, the
additional constraints can affect overall track height, and may produce a worse
solution in terms of number of tracks. However, we observe that the bend geometry
of optical waveguides can be exploited to further reduce channel height. This is
discussed below.

Consider the two nets in Fig. 8.22a. The endpoints of the two nets occupy the
same column and therefore net A should be placed above B in the VCG. However,
given the same track, the two nets would intersect at a corner of each horizontal

a b c

Fig. 8.22 VCGs for Fig. 8.19a and knock-knee extension. (a) Knock-knee implementation;
(b) Knock-knee-constrained zone representation; (c) 4-track routing solution utilizing knock-knees



214 C. Condrat et al.

span—a knock-knee. In VLSI, this situation is untenable, and different tracks would
need to be assigned to each net. However, for waveguides, the minimum grid
spacing for a channel can permit knock-knees in the routing grid. This is depicted
in Fig. 8.22a, where a track is shared between the two nets without overlap.

A knock-knee occurs where one net ends and another begins, e.g. nets C and E

in Fig. 8.22c. During zone construction, at columns where knock-knees appear, the
net that is beginning its horizontal span is only added to the subsequent column set,
rather than the current column set under consideration. For example, in Fig. 8.22c
knock-knee signals E, F , G, I , and J are removed from the marked columns and
only appear in the subsequent columns.

The effect of this column change on the resulting zones is demonstrated in
Fig. 8.22b, where there are six (6) zones rather than the five (5) from the previous
zone analysis Fig. 8.19. Despite containing an additional zone, the largest column
set now contains one fewer net than the original, resulting in the 4-track solution
depicted in Fig. 8.22c.

Overall, the effect incorporating knock-knees into a routing solution is that two
knock-knee nets can now occupy separate zones, and therefore can be placed on the
same track. Additional zones may be created; however, those zones are equal in size
or smaller in terms of nets—potentially reducing the lower bound on the number of
tracks required for routing.

8.7.2.3 Cycles Induced by Crossing Constraints

Crossing constraints can induce cycles in the VCG. Consider the three nets depicted
in Fig. 8.23a. Without crossing constraints, nets A and B would be unconstrained,
and no cycle would occur; however, due to the constraint edge between B and A

such a cycle occurs. Cyclic constraints cannot be routed without additional tracks
and require “doglegging” to complete routing [58]. In order to avoid crossings, the
routes for A and B are converted into doglegging routes as depicted in Fig. 8.23b,
utilizing the same columns as the original. Unfortunately, this results in an additional

a b c

Fig. 8.23 Cycles induced by crossing constraints. (a) Vertical cyclic constraints; (b) Dog-legging
avoids crossings; (c) Knock-knees avoid additional tracks



8 Design Automation for On-Chip Nanophotonic Integration 215

two (2) tracks being added to the routing solution should spare tracks not be
available adjacent to the cycle. However, in the presence of knock-knees, both the
crossings, and the additional tracks can be avoided, as depicted in Fig. 8.23c. The
experimental results show that knock-knees can have a marked difference in track
utilization especially in the presence of cyclic constraints induced by crossings.

In our work, we have designed two detail routers based on the above channel
routing and crossing-aware signal loss models. Our routers provide an effective
means to automate optical waveguide routing and track assignment, with signal loss
as the main metric. Interested readers can refer to our publication [60] for details on
our algorithms and experimental results.

8.8 Conclusion

This chapter has described design automation for integrated optics. We have
demonstrated photonics design automation through a building-block methodology
with optics technology-specific constraints and objectives. Our design flow is
broken into behavioral and physical synthesis stages. In the behavioral synthesis
phase, we describe multi-level logic design and synthesis techniques for optical
digital logic. Mach-Zehnder Interferometer (MZI) and ring resonators devices are
employed as switching devices—connected with waveguides—to construct optical
logic systems. A virtual gate based design methodology is introduced that enables
device-minimal logic synthesis for such a technology.

Post logic synthesis, the logic network needs to be placed and the
interconnection-network needs to be routed. For this purpose, we introduce a
row/column based placement methodology that exploits the regularity of the MZI-
based optical logic network. Post placement, a global and detail routing framework
is presented that minimizes signal loss as the primary optimization constraint.
Signal loss models are incorporated to account for insertion losses, waveguide
crossing and bends incurred due to routing on a planar substrate. This work
essentially demonstrates the feasibility of silicon photonic design automation,
though significant research is needed to make silicon-photonics design technology
widely applicable and scalable.

References

1. Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron.
2006;12:1678–87

2. Condrat C, Kalla P, Blair S. Logic Synthesis for Integrated Optics. In: Proceedings of the 21st
Edition of the Great Lakes Symposium on Great Lakes Symposium on VLSI, GLSVLSI ’11,
New York:ACM; 2011. pp. 13–18.

3. Condrat C, Kalla P, Blair S. Exploring Design and Synthesis for Optical Digital Logic.
International Workshop on Logic Synthesis, 2010.



216 C. Condrat et al.

4. Caulfield HJ, Vikram CS, Zavalin A. Optical logic redux. Optik. 2006;117:199–209
5. Politi A, Matthews J, O’Brien J. “Shor’s Quantum Factoring Algorithm on a Photonic Chip.

Science. 2009;325:1221
6. Hardy J, Shamir J. Optics Inspired Logic Architecture. Opt Express. 2007;15:150–65
7. Caulfield et al. HJ. Generalized optical logic elements GOLEs. Opt Commun. 2007;271:

365–76
8. Ganapati P. Germanium laser breakthrough brings optical computing closer. Wired Mag. 2010
9. Blair S, Wagner K. Collision-based computing. Chapter gated logic with optical solitons.

London: Springer, 2002. p. 355–80.
10. Shan A. Heterogeneous Processing: a Strategy for Augmenting Moore’s Law (http://www.

linuxjournal.com/article/8368). Linux J. 2006; 142
11. Dokania Rk, Apsel AB. Analysis of challenges for on-chip optical interconnects. In: GLSVLSI,

GLSVLSI. New York: ACM; 2009. pp. 275–80.
12. Batten C, Joshi A, Stojanovic V, Asanovic K, Designing chip-level nanophotonic interconnec-

tion networks. IEEE J Emerging Sel Top Circuits Syst. 2012;2:137–53
13. Cianchetti M, Kerekes J, Albonesi D, Phastlane: A rapid transit optical routing network. In:

Proceedings of the 36th annual International Symposium on Computer Architecture, ISCA
’09, New York:ACM; 2009. p. 441–450

14. Beausoleil et al. R. A nanophotonic interconnect for high-performance many-core computa-
tion. Symposium on High-Performance Interconnects, 2008. p. 182–189

15. Chan J, Hendry G, Bergman K, Carloni L. Physical-layer modeling and system-level design
of chip-scale photonic interconnection networks. IEEE Trans Comput-Aided Design Integr
Circuits Syst. 2011;30(10):1507–1520.

16. Emelett SJ, Soref R. Design and simulation of silicon microring optical routing switches.
J Lightwave Technol. 2005;23:1800

17. Pearson et al. MR. Arrayed waveguide grating demultiplexers in silicon-on-insulator. In:
Proceedings of SPIE, vol. 3953, 2000. p. 11–18

18. Boyd RW. Nonlinear optics, third edition. 3rd ed. Academic Press: New York; 2008.
19. Dinu M, Quochi F, Garcia H. Third-order nonlinearities in silicon at telecom wavelengths.

Appl Phys Lett. 2003;82:2954–56
20. Liao L et al. High speed silicon Mach-Zehnder modulator. Opt Express. 2005;13:3129–35
21. Green W et al. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt

Express. 2007;15:17106–113
22. Liao L, Liu A, Basak J, Nguyen H, Paniccia M, Rubin D, Chetrit Y, Cohen R, Izhaky N. Gbit/s

silicon optical modulator for highspeed applications. Electron Lett. 2007;43(22):1196–1197
23. Park H, Fang A, Kodama S, Bowers J. Hybrid silicon evanescent laser fabricated with a silicon

waveguide and III-V offset quantum wells. Opt Express. 2005;13:9460–9464
24. Lipson M. Compact electro-optic modulators on a silicon chip. IEEE J Sel Top Quantum

Electron. 2006;12:1520–1526
25. Gunn C, Masini GLI. Closing in on photonics large-scale integration. Photon Spectra. 2007
26. Miller DAB. Optical interconnects to electronic chips. Appl Opt. 2010;49:F59–F70
27. Madsen C, Zhao J. Optical filter design and analysis: a signal processing approach. NewYork:

Wiley, 1999.
28. Condrat C, Kalla P, Blair S. A methodology for physical design automation for integrated

optics. In: Proceedings of IEEE International Midwest Symposium on Circuits and Systems,
2012.

29. Condrat C, Kalla P, Blair S. Channel routing for integrated optics. In: Proceedings of
ACM/IEEE System-Level Interconnect Prediction Workshop, 2013.

30. Condrat C, Kalla P, Blair S, Crossing-Aware Channel Routing for Photonic Waveguides. In:
Proceedings of IEEE International Midwest Symposium on Circuits and Systems, 2013.

31. Condrat C, Kalla P, Blair S. Thermal-aware Synthesis of Integrated Photonic Ring Resonators.
In: To appear in Proceeding of the International Conference on CAD (ICCAD), Nov. 2014.

32. Condrat C. Design Automation for Integrated Optics, PhD thesis, University of Utah, 2014.
33. Pollock C, Lipson M, Integrated photonics. Dordrecht:Kluwer Academic Publishers; 2003.

http://www.linuxjournal.com/article/8368
http://www.linuxjournal.com/article/8368


8 Design Automation for On-Chip Nanophotonic Integration 217

34. Koester SJ et al. Ge-on-SOI-detector/si-cmos-amplifier receivers for high-performance optical-
communication applications. J Lightwave Technol. 2007;25:46–57

35. OpSIS: Optoelectronic System Integration in Silicon. http://www.opsisfoundry.org.
36. Okamoto K. Fundamentals of optical waveguides. London: Academic Press; 2000.
37. Emelett S, Soref R. Analysis of dual-microring-resonator cross-connect switches and modula-

tors. Opt Express. 2005;13:7840–53
38. Shlager KL, Schneider JB. A Selective survey of the finite-difference time-domain litera-

ture. Advances in Computational electrodynamics: the finite-difference time-domain method.
Boston:Artech House Inc; vol. 37, 1995. p. 39–56.

39. Bryant RE. Graph based algorithms for boolean function manipulation. IEEE Trans Comput.
1986;C-35:677–91

40. Ding D, Pan D. Oil: a nano-photonics optical interconnect library for a new photonic network
architecture. In: System-level interconnect prediction workshop (SLIP), 2009.

41. Ding D, Zhang Y, Huang H, Chen RT, Pan DZ. O-Router: an optical routing framework for
low power on-chip silicon nano-photonic integration. In: Design Automation Conference 2009.
p. 264–69.

42. Orcutt J, Ram R. Photonic device layout within the foundry cmos design environment. IEEE
Photonics Technol Lett. 2010.

43. Ding D, Yu B, Pan D. “GLOW: a global router for low-power thermal-reliable interconnect
synthesis using photonic wavelength multiplexing. In: 2012 17th Asia and South Pacific Design
Automation Conference (ASP-DAC), 30 Jan–02 Feb 2012, p. 621–26.

44. Zheng Y, Lisherness P, Gao M, Bovington J, Cheng K, Wang H, Yang S. Power-Efficient
Calibration and Reconfiguration for Optical Network-on-Chip. J Opt Commun Networking.
2012;4:955–66

45. Bogaerts W, Dumon P, Thourhout DV, Baets R. Low-loss, low-cross-talk crossings for silicon-
on-insulator nanophotonic waveguides. Opt Lett. 2007;32:2801–03

46. Sanchis P, Villalba P, Cuesta F, Håkansson A, Griol A, Galán JV, Brimont A, J. Martí J. Highly
efficient crossing structure for silicon-on-insulator waveguides. Opt. Lett. 2009;34:2760–62.

47. Xu F, Poon AW, Silicon cross-connect filters using microring resonator coupled multimode-
interference-based waveguide crossings. Opt. Express. 2008;16:8649–57.

48. Cardenas J, Poitras CB, Robinson JT, Preston K, Chen L, Lipson M. Low loss etchless silicon
photonic waveguides. Opt. Express. 2009;17:4752–57.

49. Vlasov Y, McNab S. Losses in single-mode silicon-on-insulator strip waveguides and bends.
Opt. Express. 2004;12:1622–31.

50. Qian Y, Kim S, Song J, Nordin GP, Jiang J. Compact and low loss silicon-on-insulator rib
waveguide 90ı bend. Opt. Express. 2006;14:6020–28.

51. Li G, Yao J, Thacker H, Mekis A, Zheng X, Shubin I, Luo Y, Lee J, Raj K, Cunningham JE,
Krishnamoorthy AV. Ultralow-loss, high-density SOI optical waveguide routing for macrochip
interconnects. Opt. Express. 2012;20:12035–39.

52. Roy J, Papa D, Adya S, Chan H, Ng A, Lu J, Markov I. Capo: robust and scalable open-source
min-cut floorplacer. In: Proceedings of the 2005 international symposium on Physical design,
ISPD ’05. New York: ACM; 2005. p. 224–6.

53. Larry M, Carl E. PathFinder: A Negotiation-based Performance-driven Router for FPGAs. In:
Proceedings of the 1995 ACM Third International Symposium on Field-programmable Gate
Arrays, FPGA ’95. New York: ACM; 1995. p. 111–7.

http://www.opsisfoundry.org


218 C. Condrat et al.

54. Pan M, Chu C. FastRoute 2.0: A High-quality and Efficient Global Router. In: Design
Automation Conference, 2007. ASP-DAC ’07. Asia and South Pacific, 2007. p. 250–5.

55. Cho M, Lu K, Yuan K, Pan DZ. BoxRouter 2.0: Architecture and Implementation of a Hybrid
and Robust Global Router, Ť ICCAD. In: In Proceeding of ICCAD 2007, 2007. pp. 503–8.

56. Chang Y, Lee Y, Wang T. NTHU-Route 2.0: A fast and stable global router. In: IEEE/ACM
International Conference on Computer-Aided Design, 2008. ICCAD 2008. 2008. p. 338–43.

57. Hashimoto A, Stevens J. Wire routing by optimizing channel assignment within large
apertures. In: Proceedings of the 8th Design Automation Workshop, DAC ’71. New York:
ACM; 1971. p. 155–69.

58. Deutsch D. A dogleg channel router. In: Proceedings of the 13th Design Automation
Conference, DAC ’76. New York:ACM; 1976. p. 425–33.

59. Yoshimura T, Kuh ES. Efficient algorithms for channel routing. IEEE Trans Comput Aided
Des Integr Circuits Syst 1982;1:25–35.

60. Condrat C, Kalla P, Blair S. Crossing-aware channel routing for integrated optics. IEEE Trans
CAD, special section on optical interconnects 2014;33,6:814–25.


	8 Design Automation for On-Chip Nanophotonic Integration
	8.1 Introduction
	8.1.1 The Photonic Design Automation Flow

	8.2 Integrated Optic Systems
	8.3 Device Models for Synthesis
	8.4 Optical Boolean Logic
	8.4.1 Waveguide Splitters
	8.4.2 Garbage Outputs
	8.4.3 BDD Based Design
	8.4.3.1 Salient Features

	8.4.4 Virtual Gates Based Design
	8.4.4.1 Salient Features
	8.4.4.2 Expression Sharing


	8.5 Physical Synthesis Methodology for Integrated Optics
	8.5.1 Design Constraints
	8.5.1.1 Signal Power
	8.5.1.2 SOI Waveguides
	8.5.1.3 Area

	8.5.2 Methodology
	8.5.3 Device Placement
	8.5.4 Global and Detail Routing
	8.5.5 Routing Grid Realization

	8.6 Global Routing for Integrated Optics
	8.6.1 Routing Using Mixed Integer Linear Programming
	8.6.2 Route Analysis
	8.6.2.1 Minimization Function


	8.7 Channel Routing for Integrated Optics
	8.7.1 Optimization Objective
	8.7.2 Left-Edge-Style Channel Routing
	8.7.2.1 Crossing-Constrained Track Assignment
	8.7.2.2 Knock-Knee Track Sharing
	8.7.2.3 Cycles Induced by Crossing Constraints


	8.8 Conclusion
	References


