
Chapter 33
Optimization via Information Geometry

Luigi Malagò and Giovanni Pistone

33.1 Introduction

The present paper is based on the talk given by the second author on May 21,
2013, to the Seventh International Workshop on Simulation in Rimini. Some pieces
of research that were announced in that talk have been subsequently published
[19, 21, 22]. Here we give a general overview, references to latest published results,
and a number of specific topics that have not been published elsewhere.

Let .˝;F ; �/ be a measure space, whose strictly positive probability densities
form the algebraically open convex set P>. An open statistical model .M ; �; B/

is a parametrized subset of P>, that is, M � P> and � WM ! B , where � is a
one-to-one mapping onto an open subset of a Banach space B . We assume in the
following that ˝ is endowed with a distance and F is its Borel � -algebra.

If f W˝ ! R is a bounded continuous function, the mapping M 3 p 7! Ep Œf �

is a Stochastic Relaxation (SR) of f . The strict inequality Ep Œf � < sup!2˝ f .!/
holds for all p 2 M , unless f is constant. However, supp2M Ep Œf � D sup!2˝
f .!/ if there exists a probability measure � in the weak closure of M � � whose
support is contained in the set of maximizing points of f , that is to say

�

�
! 2 ˝Wf .!/ D sup

!2˝
f .!/

�
D 1; or

Z
f d� D sup

!2˝
f .!/:
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Such a � belongs to the border of M � �. For a discussion of the border issue for
finite ˝, see [14]. Other relaxation methods have been considered, e.g., [4, 25].

An SR optimization method is an algorithm producing a sequence pn 2 M ,
n 2 N, which is expected to converge to the probability measure �, so that
limn!1 Epn Œf � D sup!2˝ f .!/. Such algorithms are best studied in the frame-
work of Information Geometry (IG), that is, the differential geometry of statistical
models. See [3] for a general treatment of IG and [4, 6, 13, 16–19] for applications
to SR. All the quoted literature refers to the case where the model Banach space of
the statistical manifold, i.e., the parameter space, is finite dimensional, B D R

d .
An infinite dimensional version of IG has been developed, see [22] for a recent
presentation together with new results, and the references therein for a detailed
bibliography. The nonparametric version is unavoidable in applications to evolution
equations in Physics [21], and it is useful even when the sample space is finite [15].

33.2 Stochastic Relaxation on an Exponential Family

We recall some basic facts on exponential families, see [8].

1. The exponential family q� D exp
�Pd

jD1 �j Tj �  .�/
�

� p, Ep
�
Tj
� D 0, is a

statistical model M D fq�g with parametrization q� 7! � 2 R
d .

2.  .�/ D log
�
Ep

�
e� �T

�	
, � 2 R

d , is convex and lower semi-continuous.
3.  is analytic on the (nonempty) interior U of its proper domain.
4. r .�/ D E� ŒT �, T D .T1; : : : ; Td /.
5. Hess .�/ D Var� .T /.
6. U 3 � 7! r .�/ D � 2 N is one-to-one, analytic, and monotone;

N is the interior of the marginal polytope, i.e., the convex set generated by
fT .!/W! 2 ˝g.

7. The gradient of the SR of f is

r.� 7! E� Œf �/ D .Cov� .f; T1/ ; : : : ;Cov� .f; Td //;

which suggests to take the least squares approximation of f on Span .T1; : : : ; Td /
as direction of steepest ascent, see [18].

8. The representation of the gradient in the scalar product with respect to � is called
natural gradient, see [2, 3, 15].

Different methods can be employed to generate a maximizing sequence of
densities pn is a statistical model M . A first example is given by Estimation of
Distribution Algorithms (EDAs) [12], a large family of iterative algorithms where
the parameters of a density are estimated after sampling and selection, in order to
favor samples with larger values for f , see Example 1. Another approach is to
evaluate the gradient of Ep Œf � and follow the direction of the natural gradient over
M , as illustrated in Example 2.
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Example 1 (EDA from [19]). An Estimation of Distribution Algorithm is an SR
optimization algorithm based on sampling, selection, and estimation, see [12].

Input: N;M F population size, selected population size
Input: M D fp.xI �/g F parametric model
t  0

P t D INITRANDOM.) F random initial population
repeat

P t
s D SELECTION.P t ;M/ F select M samples

�tC1 D ESTIMATION.P t
s ;M / F opt. model selection

P tC1 D SAMPLER.�tC1; N / F N samples
t  t C 1

until STOPPINGCRITERIA.)

Example 2 (SNGD from [19]). Stochastic Natural Gradient Descent [18] is an SR
algorithm that requires the estimation of the gradient.

Input: N;	 F population size, learning rate
Optional: M F selected population size (default M D N )
t  0

�t  .0; : : : ; 0/ F uniform distribution
P t  INITRANDOM.) F random initial population
repeat

P t
s D SELECTION.P t ;M/ F opt. select M samples
OrEŒf � cCov.f; Ti /diD1 F empirical covariances
OI  ŒcCov.Ti ; Tj /�di;jD1 F fTi .x/g may be learned

�tC1 �t � 	 OI�1 OrEŒf �
P tC1 GIBBSSAMPLER.� tC1; N / F N samples
t  t C 1

until STOPPINGCRITERIA.)

Finally, other algorithms are based on Bregman divergence. Example 3 illustrates
the connection with the exponential family.

Example 3 (Binomial B.n; p/). On the finite sample space ˝ D f0; : : : ; ng with
�.x/ D �

n
x

	
, consider the exponential family p.xI �/ D exp

�
�x � n log

�
1C e�

		
.

With respect to the expectation parameter � D ne�=.1 C e� / 2�0; nŒ we have
p.xI �/ D .�=n/x.1 � �=n/n�x , which is the standard presentation of the binomial
density.

The standard presentation is defined for � D 0; n, where the exponential formula
is not. In fact, the conjugate  �.�/ of  .�/ D n log

�
1C e�

	
is

 �.�/ D

8̂̂
<
ˆ̂:

C1 if � < 0 or � > n,

0 if � D 0; n,

� log
�

�

n��
�

� n log
�

n
n��

�
if 0 < � < n.
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We have

logp.xI �/ D log



�

n � �
�
.x � �/C  �.�/; � 2�0; nŒ

D  0�.�/.x � �/C  �.�/ 6  �.x/:

For x ¤ 0; n, the sign of  0�.�/.x � �/ is eventually negative as � ! 0; n, hence

lim
�!0;n logp.xI �/ D lim

�!0;n  
0�.�/.x � �/C  �.�/ D �1:

If x D 0; n, the sign of both  0�.�/.0��/ and  0�.�/.n��/ is eventually positive as
� ! 0 and � ! n, respectively. The limit is bounded by 0 D  �.x/, for x D 0; n.

The argument above is actually general. It has been observed by [5] that the
Bregman divergence D �

.xk�/ D  �.x/� �.�/� 0�.�/.x � �/ > 0 provides an
interesting form of the density as p.xI �/ D e�D � .xk�/e �.x/ / e�D � .xk�/.

33.3 Exponential Manifold

The set of positive probability densities P> is a convex subset of L1.�/. Given a

p 2 P>, every q 2 P> can be written as q D ev �p where v D log
�
q

p

�
. Below we

summarize, together with a few new details, results from [21,22] and the references
therein, and the unpublished [24].

Definition 33.1 (Orlicz ˚-Space [11], [20, Chapter II], [23]). Define
'.y/ D cosh y � 1. The Orlicz ˚-space L˚.p/ is the vector space of all random
variables such that Ep Œ˚.˛u/� is finite for some ˛ > 0. Equivalently, it is the set of
all random variables u whose Laplace transform under p � �, t 7! Oup.t/ D Ep Œetu�
is finite in a neighborhood of 0. We denote by M˚.p/ � L˚.p/ the vector space
of random variables whose Laplace transform is always finite.

Proposition 33.1 (Properties of the ˚-Space).

1. The set S61 D ˚
u 2 L˚.p/WEp Œ˚.u/� 6 1

�
is the closed unit ball of the

complete norm

kukp D inf

�

 > 0WEp


˚



u




��
6 1

�

on the ˚-space. For all a > 1 the continuous injections L1.�/ ,! L˚.p/ ,!
La.p/ hold.
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2. kukp D 1 if either Ep Œ˚.u/� D 1 or Ep Œ˚.u/� < 1 and Ep

h
˚
�

u



�i
D 1

for 
 > 1. If kukp > 1, then kukp 6 Ep Œ˚.u/�. In particular,
limkukp!1 Ep Œ˚ .u/� D 1.

3. M˚.p/ is a closed and separable subspace of L˚.p/.
4. L˚.p/ D L˚.q/ as Banach spaces if, and only if,

R
p1��q� d� is finite on a

neighborhood of Œ0; 1�.

Proof. 1. See [11], [20, Chapter II], [23].
2. The function R> 3 ˛ 7! Ou.t/ D Ep Œ˚.˛u/� is increasing, convex, lower semi-

continuous. If for some tC > 1 the value Ou.tC/ is finite, we are in the first case and

Ou.1/ D 1. Otherwise, we have Ou.1/ 6 1. If kukp > a > 1, so that
��� a
kukp u

���
p
> 1,

hence

1 < Ep

"
˚

 
a

kukp
u

!#
6 a

kukp
Ep Œ˚ .u/� ;

and kukp < aEp Œ˚ .u/�, for all a > 1.
3. See [11], [20, Chapter II], [23].
4. See [9, 24].

Example 4 (Boolean State Space). In the case of a finite state space, the moment
generating function is finite everywhere, but its computation can be challenging.
We discuss in particular the Boolean case ˝ D fC1;�1gn with counting reference
measure � and uniform density p.x/ D 2�n, x 2 ˝. In this case there is a
huge literature from statistical physics, e.g., [10, Ch. VII]. A generic real function
on ˝—called pseudo-Boolean [7] in the combinatorial optimization literature—
has the form u.x/ D P

˛2L Ou.˛/x˛ , with L D f0; 1gn, x˛ D Qn
iD1 x

˛i
i ,

Ou.˛/ D 2�n
P

x2˝ u.x/x˛ .
As eax D cosh.a/C sinh.a/x if x2 D 1 i.e., x D ˙1, we have

etu.x/ D exp

0
@ X
˛2Supp Ou

t Ou.˛/x˛
1
A D

Y
˛2Supp Ou

et Ou.˛/x˛

D
Y

˛2Supp Ou
.cosh.t Ou.˛//C sinh.t Ou.˛//x˛/

D
X

B�Supp Ou

Y
˛2Bc

cosh.t Ou.˛//
Y
˛2B

sinh.t Ou.˛//x
P
˛2B ˛:

The moment generating function of u under the uniform density p is

t 7!
X

B2B.Ou/

Y
˛2Bc

cosh.t Ou.˛//
Y
˛2B

sinh.t Ou.˛//;
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where B.Ou/ are those B � Supp Ou such that
P

˛2B ˛ D 0 mod 2. We have

Ep Œ˚� .tu/ D
X

B2B0.Ou/

Y
˛2Bc

cosh.t Ou.˛//
Y
˛2B

sinh.t Ou.˛// � 1;

where B0.Ou/ are those B � Supp Ou such that
P

˛2B ˛ D 0 mod 2 andP
˛2Supp Ou ˛ D 0.
If S is the f1; : : : ; ng � Supp Ou matrix with elements ˛i , we want to solve the

system Sb D 0 mod 2 to find all elements of B; we add the equation
P
b D 0

mod 2 to find B0. The simplest example is u.x/ D Pn
iD1 cixi ,

Example 5 (The Sphere is Not Smooth in General). We look for the moment
generating function of the density

p.x/ / .aC x/� 32 e�x; x > 0;

where a is a positive constant. From the incomplete gamma integral

”�1
2
x D

Z 1
x

s� 12�1e�s ds; x > 0;

we have for �; a > 0,

d

dx
�



�1
2
; �.aC x/

�
D ��� 12 e��a.aC x/� 32 e��x:

We have, for � 2 R,

C.�; a/ D
Z 1
0

.aC x/� 32 e��x dx D

8̂̂
<
ˆ̂:

p
�e�a�

�� 1
2
; �a

	
if � > 0:

1

2
p
a

if � D 0;

C1 if � < 0:

or, C.�; a/ D 1
2
a� 12 �

p
��

2
e�aR1=2;1.�a/ if � 6 1, C1 otherwise, where R1=2;1 is

the survival function of the Gamma distribution with shape 1=2 and scale 1.
The density p is obtained with � D 1,

p.x/ D C.1; a/�1.aC x/� 32 e�x D .aC x/� 32 e�x

ea�
�� 1

2
; a
	 ; x > o;

and, for the random variable u.x/ D x, the function

˛ 7! Ep Œ˚.˛u/� D 1

ea�
�� 1

2
; a
	
Z 1
0

.aC x/� 32
e�.1�˛/x C e�.1C˛/x

2
dx � 1
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D C.1 � ˛; a/C C.1C ˛; a/

2C.1; a/
� 1

is convex lower semi-continuous on ˛ 2 R, finite for ˛ 2 Œ�1; 1�, infinite otherwise,
hence not steep. Its value at ˛ D 1 is

Ep Œ˚.u/� D 1

ea�
�� 1

2
; a
	
Z 1
0

.aC x/�
3
2
1C e�2x

2
dx � 1

D C.0; a/C C.2; a/

2C.1; a/
� 1

Example 6 (Normal Density). Let p.x/ D .2�/�1=2e�.1=2/x2 . Consider a generic
quadratic polynomial u.x/ D aC bx C 1

2
cx2. We have for tc ¤ 1

t.aCbxC1

2
cx2/�1

2
x2 DD � 1

2.1 � tc/�1


x � tb

1 � tc
�2

C1

2

t2b2 � 2ta.1 � tc/
.1 � tc/ ;

hence

Ep

�
etu
� D

8̂<
:̂

C1 if tc 6 1,
p
1 � tc exp



1

2

t2b2 � 2ta.1 � tc/
.1 � tc/

�
if tc < 1:

If, and only if, �1 < c < 1, we have

Ep Œ˚.u/� D 1

2

p
1 � c exp



1

2

b2 � a.1 � c/
.1 � c/

�

C1

2

p
1C c exp



1

2

b2 � a.1C c/

.1C c/

�
� 1:

33.4 Vector Bundles

Vector bundles are constructed as sets of couples .p; v/ with p 2 P> and v
is some space of random variables such that Ep Œv� D 0. The tangent bundle
is obtained when the vector space is L˚0 .p/. The Hilbert bundle is defined as
HP> D ˚

.p; v/Wp 2 P>; v 2 L20.p/
�
. We refer to [21] and [15] were charts and

affine connections on the Hilbert bundle are derived from the isometric transport

L20.p/ 3 u 7!
r
p

q
u �



1C Eq

r
p

q

���1 

1C

r
p

q

�
Eq

r
p

q
u

�
2 L20.q/:
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In turn, an isometric transport U q
p WL20.p/ ! L20.q/ can be used to compute the

derivative of a vector field in the Hilbert bundle, for example the derivative of the
gradient of a relaxed function.

The resulting second order structure is instrumental in computing the Hessian
of the natural gradient of the SR function. This allows to design a second order
approximation method, as it is suggested in [1] for general Riemannian manifolds,
and applied to SR in [15]. A second order structure is also used to define the
curvature of a statistical manifold and, possibly, to compute its geodesics, see [6]
for applications to optimization.
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