
Chapter 3
Markov-Modulated Samples
and Their Applications

Alexander Andronov

3.1 Problem Setting

The classical sample theory supposes that sample elements are identically
distributed and independent (i.i.d.) random variables. Lately a great attention has
been granted to dependence in probabilistic structures, for example, dependence
between interarrival times of various flows, between service times, etc. Usually it
is described by the so-called Markov-modulated processes. They are used widely
in environmental, medical, industrial, and sociological researches. We restrict
ourselves by a case when elements of the sample are positive random variables. It
is convenient to consider them as lifetimes of unreliable elements.

Let us consider sample elements fXi ; i D 1; : : : ; ng, modulated by a finite
continuous-time Markov chain (see [6]). For simplicity we say that the elements
operate in the so-called random environment. The last is described by an “external”
continuous-time ergodic Markov chain J.t/; t > 0, with a final state space E D
f1; 2; : : : ; kg. Let �i;j be the transition rate from state i to state j .

Additionally, n binary identical elements are considered. Each component can be
in two states: up(1) and down(0). The elements of system fail one by one, in random
order. For a fixed state i 2 E, all n elements have the same failure rate �i .t/ and
are stochastically independent. When the external process changes its state from
i to j at some random instant t , all elements, which are alive at time t , continue
their life with new failure rate �j .t/. If on interval .t0; t/ the random environment
has state i 2 E, then the residual lifetime �r � t0 (up-state) of the r th component,
r D 1; 2; : : : ; n, has a cumulative distribution function (CDF) with failure rate �i .t/

for time moment t , and the variables f�r � t0; r D 1; 2; : : : ; ng are independent.
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We wish to get statistical estimates for the unknown parameters ˇ.i/ D .ˇ1;i ; ˇ2;i ;

: : : ; ˇm;i /
T , i D 1; : : : ; k. Note that in the above described process elements of the

sample fXi ; i D 1; : : : ; ng are no i.i.d. anymore, as it is assumed in the classical
sampling theory.

Further we make the following suppositions. Firstly, parameters of the Markov-
modulated processes f�i;j g are known. Secondly, with respect to hazard rates
�i .t/, a parametrical setting takes place: all �i .t/ are known, accurate to m

parameters ˇ.i/ D .ˇ1;i ; ˇ2;i ; : : : ; ˇm;i /
T , so we will write �i .t I ˇ.i//. Further, we

use the .m � k/-matrix ˇ D .ˇ.1/; ˇ.2/; : : : ; ˇ.k// of unknown parameters. Thirdly,
with respect to the available sample: sample elements are fixed corresponding
to their appearance, so the order statistics X.1/; X.2/; : : : ; X.n/ are fixed. Finally,
the states of the random environment J.t/ are known only for time moments
0; X.1/; X.2/; : : : ; X.n/.

The maximum likelihood estimates (see [5, 8, 9]) for the unknown parameters
ˇ are derived. Results of a simulation study illustrate the elaborated technique.
Presented paper continues our previous investigations [1, 2].

3.2 Transition Probabilities

In this section we cite a result from the paper of Andronov and Gertsbakh [3].
Define N.t/ as the number of elements which are in the up state at time moment t .
Obviously P fN.0/ D ng D 1. We denote

pr;i;j .t0; t/DP fN.t/Dr; J.t/Dj jN.t0/Dr; J.t0/ D ig; r 2 f1; : : : ; ng; i; j 2 E;

pr;i .t0; t/D.pr;i;1.t0; t/; : : : ; pr;i;k.t0; t//T; Pr.t0; t/D.pr;1.t0; t/; : : : ; pr;k.t0; t// ;

� .t; ˇ/Ddiag
�
�1.t; ˇ.1//; : : : ; �1.t; ˇ.k//

�
; �Ddiag

 

�
kX

iD1

�i;1; : : : ; �
kX

iD1

�i;k

!

:

(3.1)

It has been shown that

PPr.t0; t/ D � .� C r� .t; ˇ// Pr.t0; t/ C �T Pr.t0; t/; 0 6 t0 6 t: (3.2)

Below we consider a simple time-homogeneous case when �i .t I ˇ.i// D �i .ˇi / 8i

� .t; ˇ/ D � .ˇ/ D diag.�1.ˇ.1//; : : : ; �k.ˇ.k///. Therefore,

PPr.t0; t/ D �
�T � .� C r� .ˇ//

�
Pr.t0; t/; 0 6 t0 6 t:

In this case a solution can be represented by matrix exponent (see [4, 7]):

Pr.t0; t/ D exp
�
.t � t0/

�
�T � .� C r� .ˇ//

��
; 0 6 t0 6 t: (3.3)
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3.3 Maximum Likelihood Estimates

In the considered case, besides the initial state j.0/ of J.0/, a sample of size n is
given: .x; j / D f.xj.r/; j.r//; r D 1; : : : ; ng, where xj.r/ is the r th order statistic of
the sample and j.r/ D J.x.r// is a corresponding state of the random environment.
Setting x.0/ D 0 we rewrite the log-likelihood function as

ll.ˇI .x; j // D
n�1X

rD0

Œln pn�r;j.r/;j.rC1/.x.r/; x.rC1/I ˇ/

C ln.n � r/ C ln �j.rC1/.x.rC1/I ˇ.j.rC1///�: (3.4)

Considering gradients with respect to the column vectors ˇ.v/, v D 1; : : : ; k, we get
maximum likelihood equations

@

@ˇ.v/
ll.ˇI .x; j // D

n�1X

rD0

1

pn�r;j.r/;j.rC1/.x.r/; x.rC1/I ˇ/

� @

@ˇ.v/
pn�r;j.r/;j.rC1/.x.r/; x.rC1/I ˇ/

C
n�1X

rD0

1

�j.rC1/.x.rC1/I ˇ.j.rC1///

� @

@ˇ.v/
�j.rC1/.x.rC1/I ˇ.j.rC1/// D 0; v D 1; : : : ; k:(3.5)

Further, we consider a time-homogeneous case when all rate intensity �i .ˇ
.i// have

one unknown scalar parameter ˇi only, so �i .ˇ
.i// D ˇi , i D 1; : : : ; k. We will

write pm;i;j .t � t0/ D pm;i;j .t0; t/. Then, the likelihood equations (3.5) have the
following form:

@

@ˇ.v/
ll.ˇI .x; j // D

n�1X

rD0

1

pn�r;j.r/;j.rC1/.x.rC1/ � x.r/I ˇ/

� @

@ˇ.v/
pn�r;j.r/;j.rC1/.x.rC1/ � x.r/I ˇ/

C 1

ˇv

n�1X

rD0

ıv;j.rC1/ D 0; (3.6)

where ıv;j.rC1/ is the Kronecker symbol: ıv;j.rC1/ D 1 if v D j.r C 1/, and
ıv;j.rC1/ D 0 otherwise.
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Now we must get an expression for the derivative @

@ˇ.v/ pn�r;j.r/;j.rC1/.x.rC1/ �
x.r/I ˇ/. For that we use an expression for a derivative of a matrix exponent (see
Lemma of Appendix). Let Dv be a square matrix from zero, where only one
non-zero element equals 1 and takes the vth place of a main diagonal. Then,
for the homogeneous case when � .ˇ/ D diag.�1.ˇ/; : : : ; �k.ˇ// D � D
diag.ˇ1; : : : ; ˇk/, according to (3.3), we have for v D 1; : : : ; k:

@

@ˇv

Pr.t0; t/ D @

@ˇv

expf.t � t0/.�T � � � r� /g D
1X

iD1

1

i Š
.t � t0/i

i�1X

j D0

.�T � � � r� /j

�
�rDv

@

@ˇv

ˇv

�
.�T � � � r� /i�1�j D

�r

1X

iD1

1

i Š
.t � t0/i

i�1X

j D0

.�T � � � r� /j Dv.�T � � � r� /i�1�j :

Therefore

@

@ˇv

Pr.t0; t/ D �r

1X

iD1

1

i Š
.t � t0/i

i�1X

j D0

�
.�T � � � r� /j

�hvi

�
.�T � � � r� /i�1�j

�
hvi ; (3.7)

where M hvi and Mhvi mean � th column and � th row of matrix M .
Now we can use a numerical method for the solution of the likelihood equa-

tion (3.6). Note that parameter ˇv can be non-trivially estimated if state v has been
registered as some j.r/ D v, r D 0; 1; : : : ; n.

3.4 Simulation Study

Below there are the results of a simulation study presented, they are performed for
an analysis of the described estimating procedure efficiency. As initial data, data
from the paper [3] have been used. Let us describe one. A random environment has
three states .k D 3; E D f1; 2; 3g/. Transition intensities f�i;j g from state i to state
j , .i; j D 1; 2; 3/ are given by a matrix

� D .�i;j / D
0

@
0 0:2 0:3

0:1 0 0:2

0:4 0:2 0

1

A : (3.8)
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Let a number of the considered elements n equals 5. For the environment state
i 2 E, all elements have a constant failure rate �i .t/ D ˇi and they fail
independently. Therefore, a last time till a given element failure (for the same state
i of the environment) has the exponential distribution with parameter ˇi . These
parameters must be estimated. For that purpose a sample is given. It contains a
sequence of n C 1 pairs: .x; j / D f.xj.r/; j.r//; r D 0; : : : ; ng, where xj.r/ is the
r th order statistic of n-sample, and j.r/ D J.x.r// is an environment state in the
instant x.r/. The initial pair .x.0/; j.0// equals .0; 1/.

All the mentioned sampling data are given and are used in an estimating
procedure. Own samples are simulated for the following parameter values: ˇ D
.ˇ1 ˇ2 ˇ3/T D .0:1 0:2 0:3/T . It is convenient to present these data as 3 � .n C 1/

matrix. An example of such matrix for n D 5 is the following:

Sample D
0

@
r 0 1 2 3 4 5

x.r/ 0 0:624 1:502 2:009 8:711 9:429

J.x.r// 1 1 2 1 3 3

1

A :

In the simulation process, samples are generated one by one. Various samples
are independent. Each sample corresponds to the appointed initial state of the
environment: a sample with number 3i C j corresponds to the initial state J.0/ D
j I j D 1; 2; 3I i D 0; : : : . Further, q such three samples (with the initial states
j D 1; 2; 3) form a block, containing 3q samples. A maximum log-likelihood
estimate (MLE) Q̌ D . Q̌

1; Q̌
2; Q̌

3/T is calculated for each block.
In broad outline, a procedure is as follows. For each sample, a changing of the

environment J.t/; t > 0, and instants of element failure x.r/, r D 1; : : : ; n, are
simulated. Then, for the sample, a logarithm of likelihood function (3.4) and its
gradient (3.5) or (3.6) are recorded. These expressions are used for MLE calculation.
As an optimization method, the gradient method has been used.

The gradient method is given by the following parameters: n is a sample size
(initial number of system elements); b0 is an initial value of parameter estimate; d is
a step of moving along the gradient; " is a maximum module of a difference between
sequential values of the parameter estimate ˇ, for which a calculation is ended; L is
a limit number of a gradient recalculation during moving from an initial point; K is
a number of addends, appreciated in an expansion of the matrix exponent (3.7); 3q

is a number of the samples in the block.
A set of such parameters numerical values .n; b0; d; "; L; K; q/ is called an

experiment design. Below, the results of simulation study are presented.
In Table 3.1 the corresponding results are presented for the design experiment

n D 5, b0 D .0:08 0:22 0:328/T , d D 0:015, " D 0:01, L D 20, K D 20,
r D 5, q D 5 and various values of total block number N . In the first column
the initial value of the estimate b0 D .0:08 0:22 0:328/T is written. The following
columns there are the estimate values given by averaging over N blocks. For a
big number of the blocks, the coefficients d and " have been changed. Namely, for
N D 15; 17; 19; 21 those values equal 0:002, and for N D 21, additionally, L D 40.
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Table 3.1 Convergence of the estimates for initial value b0 D .0:08 0:22 0:328/T

N 1 2 3 4 5 6 7 8
Q̌
1 0.080 0.076 0.103 0.119 0.111 0.097 0.088 0.098 0.101

Q̌
2 0.220 0.217 0.208 0.211 0.219 0.219 0.213 0.211 0.213

Q̌
3 0.328 0.219 0.303 0.333 0.351 0.316 0.280 0.256 0.292

N 9 10 11 12 13 15 17 19 21
Q̌
1 0.094 0.109 0.103 0.098 0.103 0.100 0.101 0.102 0.102

Q̌
2 0.209 0.210 0.207 0.209 0.209 0.208 0.208 0.208 0.208

Q̌
3 0.267 0.298 0.279 0.280 0.298 0.283 0.290 0.295 0.298

An analysis of the Table 3.1 shows that a convergence to true values .0:1 0:2 0:3/

takes place but very slow.
In conclusion we would like to remark that considered approach allows improv-

ing probabilistic predictions for functioning of various complex technical and
economical systems.

Appendix

Lemma 3.1. If elements of matrix G.t/ are differentiable function of t , then

@

@t
G.t/n D

n�1X

iD0

G.t/i

�
@

@t
G.t/

�
G.t/n�1�i ; n D 1; 2; : : : ;

@

@t
exp.G.t// D @

@t

1X

iD0

1

i Š
G.t/i D

1X

iD1

1

i Š

i�1X

j D0

G.t/j

�
@

@t
G.t/

�
G.t/i�1�j :

Proof. Lemma 3.1 is true for n D 1 and 2. If one is true for n > 1, then

@

@t
G.t/nC1 D

�
@

@t
G.t/

�
G.t/n C G.t/

@

@t
G.t/n

D
�

@

@t
G.t/

�
G.t/n C G.t/

n�1X

iD0

G.t/i

�
@

@t
G.t/

�
G.t/n�1�i

D
nX

iD0

G.t/i

�
@

@t
G.t/

�
G.t/n�i : ut
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