
Chapter 11
Importance Sampling for Multi-Constraints
Rare Event Probability

Virgile Caron

11.1 Introduction and Context

In this paper, we consider efficient estimation of the probability of large deviations
of a multivariate sum of independent, identically distributed, light-tailed, and non-
lattice random vectors.

Consider Xn
1 WD .X1; : : : ; Xn/ n i.i.d. random vectors with known common

density pX on R
d , d > 1; copies of X WD �

X.1/; : : : ; X.d/
�

: The superscript .j /

pertains to the coordinate of a vector and the subscript i pertains to replications.
Consider also u a measurable function defined from R

d to R
s : Define U WD u.X/

with density pU and

U1;n WD
nX

iD1

Ui :

We intend to estimate for large but fixed n

Pn WD P .U1;n 2 nA/ (11.1)

where A is a non-empty measurable set of Rs such as EŒu .X/� … A: In [3], the
authors consider in detail the case where d D s D 1, A WD An D .an; 1/ and an is
a convergent sequence.

The basic estimate of Pn is defined as follows: generate L i.i.d. samples Xn
1 .l/

with underlying density pX and define
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fPn WD 1

L

LX

lD1

1En

�
Xn

1 .l/
�

where

En WD
n
.x1; : : : ; xn/ 2 �Rd

�n W .u .x1/ C � � � C u .xn// 2 nA
o

: (11.2)

The Importance Sampling estimator of Pn with sampling density g on
�
R

d
�n

is

cPn WD 1

L

LX

lD1

OPn.l/1En

�
Y n

1 .l/
�

(11.3)

where OPn.l/ is called “importance factor” and can be written

OPn.l/ WD

nQ

iD1

pX .Yi .l//

g
�
Y n

1 .l/
� (11.4)

where the L samples Y n
1 .l/ WD .Y1.l/; : : : ; Yn.l// are i.i.d. with common density

g; the coordinates of Y n
1 .l/ however need not be i.i.d. It is known that the optimal

choice for g is the density of Xn
1 WD .X1; : : : ; Xn/ conditioned upon

�
Xn

1 2 En

�
,

leading to a zero variance estimator. We refer to [5] for the background of this
section.

The state-independent IS scheme for rare event estimation (see [6] or [12]),
rests on two basic ingredients: the sampling distribution is fitted to the so-called
dominating point (which is the point where the quantity to be estimated is mostly
captured; see [11]) of the set to be measured; independent and identically distributed
replications under this sampling distribution are performed. More recently, a state-
dependent algorithm leading to a strongly efficient estimator is provided by [2] when
d D s, u.x/ D x and A has a smooth boundary and a unique dominating point.
Indeed, adaptive tilting defines a sampling density for the i�th r.v. in the run which
depends both on the target event .U1;n 2 nA/ and on the current state of the path up
to step i � 1: Jointly with an ad hoc stopping rule controlling the excursion of the
current state of the path, this algorithm provides an estimate of Pn with a coefficient
of variation independent upon n. This result shows that nearly optimal estimators
can be obtained without approximating the conditional density.

The main issue of the method described above is to find dominating point.
However, when the dimension of the set A increases, finding a dominating point
can be very tricky or even impossible. A solution will be to divide the set under
consideration into smaller subset and, for each one of this subset, find a dominating
point. Doing so makes the implementation of an IS scheme harder and harder as the
dimension increases.
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Our proposal is somehow different since it is based on a sharp approximation
result of the conditional density of long runs. The approximation holds for any
point conditioning of the form .U1;n D nv/ : Then sampling v in A according to
the distribution of U1;n conditioned upon .U1;n 2 nA/ produces the estimator. By its
very definition this procedure does not make use of any dominating point, since it
randomly explores the set A: Indeed, our proposal hints on two choices: first do not
make use of the notion of dominating point and explore all the target set instead (no
part of the set A is neglected); secondly, do not use i.i.d. replications, but merely
sample long runs of variables under a proxy of the optimal sampling scheme.

We will propose an IS sampling density which approximates this conditional
density very sharply on its first components y1; : : : ; yk where k D kn is very
large, namely k=n ! 1: However, but in the Gaussian case, k should satisfy
.n � k/ ! 1 by the very construction of the approximation. The IS density on�
R

d
�n

is obtained multiplying this proxy by a product of a much simpler state-
independent IS scheme following [13].

The paper is organized as follows. Section 11.2 is devoted to notations and
hypothesis. In Sect. 11.3, we expose the approximation scheme for the conditional
density of Xk

1 under .U1;n D nv/. Our IS scheme is introduced in Sect. 11.4.
Simulated results are presented in Sect. 11.5 which enlighten the gain of the present
approach over state-dependent Importance Sampling schemes.

We rely on [7] where the basic approximation (and proofs) used in the present
paper can be found. The real case is studied in [4] and applications for IS estimators
can be found in [3].

11.2 Notations and Hypotheses

We consider approximations of the density of the vector Xk
1 on

�
R

d
�k

, when the
conditioning event writes (11.1) and k WD kn is such that

0 6 lim sup
n!1

k

n
6 1 (K1)

lim
n!1.n � k/ D C1: (K2)

Therefore we may consider the asymptotic behavior of the density of the random
walk on long runs.

Throughout the paper the value of a density pZ of some continuous random
vector Z at point z may be written pZ.z/ or p .Z D z/ ; which may prove more
convenient according to the context.

Let pnv (and distribution Pnv) denote the density of Xk
1 under the local condition

.U1;n D nv/



122 V. Caron

pnv

�
Xk

1 D Y k
1

� WD p.Xk
1 D Y k

1

ˇ̌
U1;n D nv/ (11.5)

where Y k
1 belongs to

�
R

d
�k

and v belongs to A.
We will also consider the density pnA (and distribution PnA) of Xk

1 conditioned
upon .U1;n 2 nA/

pnA

�
Xk

1 D Y k
1

� WD p.Xk
1 D Y k

1

ˇ̌
U1;n 2 nA/: (11.6)

The approximating density of pnv is denoted gnv; the corresponding approxima-
tion of pnA is denoted gnA: Explicit formulas for those densities are presented in the
next section.

11.3 Multivariate Random Walk Under a Local
Conditioning Event

Let "n be a positive sequence such as

lim
n!1 "2

n.n � k/ D 1 (E1)

lim
n!1 "n.log n/2 D 0 (E2)

It will be shown that "n .log n/2 is the rate of accuracy of the approximating
scheme.

We assume that U WD u .X/ has a density pU (with p.m. PU) absolutely
continuous with respect to Lebesgue measure on R

s : Furthermore, we assume that
u is such that the characteristic function of U belongs to Lr for some r > 1:

Denote 0 is the vector of R
s with all coordinates equal to 0 and V.0/ a

neighborhood of 0:

We assume that U satisfy the Cramer condition, meaning

˚U.t/ WD EŒexp < t; U >� < 1; t 2 V.0/ � R
s :

and define

m.t/ WD t r log.˚U.t//; t 2 V.0/ � R
s

and

~.t/ WD t rr log.˚U.t//; t 2 V.0/ � R
s :

as the mean and the covariance matrix of the tilted density defined by
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�˛
u .x/ WD exp < t; u.x/ >

˚U.t/
pX.x/: (11.7)

where t is the only solution of m.t/ D ˛ for ˛ in the convex hull of PU: Conditions
on ˚U.t/ which ensure existence and uniqueness of t are referred to steepness
properties (see [1], p153 ff, for all properties of moment generating function used
in this paper).

We now state the general form of the approximating density. Let v 2 A and
denote

g0.y1jy0/ WD �v
u .y1/ (11.8)

with an arbitrary y0 and �v
u defined in (11.7).

For 1 6 i 6 k � 1, we recursively define g.yiC1jyi
1/. Set ti 2 R

s to be the
unique solution to the equation

m.ti / D mi;n WD n

n � i

�
v � u1;i

n

�
(11.9)

where u1;i D u.y1/ C � � � C u.yi /:

Denote

~
j;l

.i;n/ WD d 2

dt .j /dt .l/

�
log E

�
mi;n
U

exp < t; U >
�

.0/

and

~
j;l;m

.i;n/ WD d 3

dt .j /dt .l/dt .m/

�
log E

�
mi;n
U

exp < t; U >
�

.0/ :

for j; l and m in f1; : : : ; sg: In the sequel, ~.i;n/ will denote the matrix with elements�
~

j;l

.i;n/

�

16j;l6s
:

Denote

g.yiC1jyi
1/ WD Cins .u.yiC1/I ˇ˛ C v; ˇ/ pX.yiC1/ (11.10)

where Ci is a normalizing factor, ns .u.yiC1/I ˇ˛ C v; ˇ/ is the normal density at
u.yiC1/ with mean ˇ˛ C v and covariance matrix ˇ: ˛ and ˇ are defined by

˛ WD
 

ti C ~�2
.i;n/�

2.n � i � 1/

!

and

ˇ WD ~.i;n/.n � i � 1/
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and � defined by

� WD
0

@
sX

j D1

~
j;j;p

.i;n/

1

A

16p6s

:

Then

gnv.yk
1 / WD g0.y1jy0/

k�1Y

iD1

g.yiC1jyi
1/ (11.11)

Theorem 1. Assume (E1), (E2), (K1) and (K2).

• Let Y k
1 be a sample from density pnv: Then

p
�

Xk
1 D Y k

1 jU1;n D nv
�

D gnv.Y k
1 /.1 C oPnv .1 C "n.log n/2// (11.12)

• Let Y k
1 be a sample from density gnv: Then

p
�

Xk
1 D Y k

1 jU1;n D nv
�

D gnv.Y k
1 /.1 C oGnv .1 C "n.log n/2// (11.13)

Remark 11.1. The approximation of the density of Xk
1 is not performed on the

sequence of entire spaces
�
R

d
�k

but merely on a sequence of subsets of
�
R

d
�k

which
contains the trajectories of the conditioned random walk with probability going
to 1 as n tends to infinity. The approximation is performed on typical paths. For
the sake of applications in Importance Sampling, (11.13) is exactly what we need.
Nevertheless, as proved in [7], the extension of our results from typical paths to the

whole space
�
R

d
�k

holds: convergence of the relative error on large sets imply that
the total variation distance between the conditioned measure and its approximation
goes to 0 on the entire space.

Remark 11.2. The rule which defines the value of k for a given accuracy of the
approximation is stated in Sect. 5 of [7].

Remark 11.3. When the Xi ’s are i.i.d. multivariate Gaussian with diagonal covari-
ance matrix and u.x/ D x, the results of the approximation theorem are true for
k D n � 1 without the error term. Indeed, it holds p.Xn�1

1 D xn�1
1

ˇ̌
U1;n D nv/ D

gnv

�
xn�1

1

�
for all xn�1

1 in
�
R

d
�n�1

.

As stated above the optimal choice for the sampling density is pnA: It holds

pnA.xk
1 / D

Z

A

pnv

�
Xk

1 D xk
1

�
p.U1;n=n D vj U1;n 2 nA/dv (11.14)
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so that, in contrast with [2] or [6], we do not consider the dominating point approach
but merely realize a sharp approximation of the integrand at any point of A and
consider the dominating contribution of all those distributions in the evaluation of
the conditional density pnA:

11.4 Adaptive IS Estimator for Rare Event Probability

The IS scheme produces samples Y WD .Y1; : : : ; Yk/ distributed under gnA, which is
a continuous mixture of densities gnv as in (11.11) with p .U1;n=n D vjU1;n 2 nA/.

Simulation of samples U1;n=n under this density can be performed through
Metropolis–Hastings algorithm, since

r.v; v0/ WD p.U1;n=n D vj U1;n 2 nA/

p.U1;n=n D v0j U1;n 2 nA/

turns out to be independent upon P .U1;n 2 nA/ : The proposal distribution of the
algorithm should be supported by A:

The density gnA is extended from
�
R

d
�k

onto
�
R

d
�n

completing the n � k

remaining coordinates with i.i.d. copies of r.v’s YkC1; : : : ; Yn with common tilted
density

gnA

�
yn

kC1

ˇ̌
yk

1

� WD
nY

iDkC1

�mk
u .yi / (11.15)

with mk WD m.tk/ D n
n�k

�
v � u1;k

n

�
and

u1;k D
kX

iD1

u.yi /:

The last n � k r.v’s Yi ’s are therefore drawn according to the state independent
i.i.d. scheme in phase with Sadowsky and Bucklew [13].

We now define our IS estimator of Pn: Let Y n
1 .l/ WD Y1.l/; : : : ; Yn.l/ be

generated under gnA: Let

cPn.l/ WD
Qn

iD1 pX.Yi .l//

gnA.Y n
1 .l//

1En

�
Y n

1 .l/
�

(11.16)
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and define

cPn WD 1

L

LX

lD1

cPn.l/: (11.17)

in accordance with (11.3).

Remark 11.4. In the real case and for A D .a; 1/, the authors of [3] show that
under certain regularity conditions the resulting relative error of the estimator is
proportional to

p
n � kn and drops by a factor

p
n � kn=

p
n with respect to the

state independent IS scheme. In [8], the authors propose a slight modification in the
extension of gnA which allows to prove the strong efficiency of the estimator (11.17)
using arguments from both [2] and [3].

11.5 When the Dimension Becomes Very High

This section compares the performance of the present approach with respect to
the standard tilted one using i.i.d. replications under (11.7) on an extension of a
well-known example developed in [9] and in [10]. Let B WD .E100/d which is the
d -Cartesian product of E100 defined by

E100 WD
�

x100
1 W jx1 C � � � C x100j

100
> 0:28

�
:

We want to estimate P100 D P ŒB� and explore the gain in relative accuracy when
the dimension of the measured set increases. Consider 100 r.v.’s Xi ’s i.i.d. random
vectors in R

d with common i.i.d. N.0:05; 1/ distribution. Our interest is to show
that in this simple asymmetric case our proposal provides a good estimate, while
the standard IS scheme ignores a part of the event B: The standard i.i.d. IS scheme
introduces the dominating point a Dt .0:28; : : : ; 0:28/ and the family of i.i.d. tilted
r.v’s with common N.a; 1/ distribution. It can be seen that a large part of B is never
visited through the procedure, inducing a bias in the estimation. Indeed, the rogue
path curse (see [9]) produces an overwhelming loss in accuracy, imposing a very
large increase in runtime to get reasonable results. Under the present proposal the
distribution of the Importance Factor concentrates around P100 avoiding rogue path.

This example is not as artificial as it may seem; indeed, it leads to a 2d dominating
points situation which is quite often met in real life. Exploring at random the set of
interest avoids any search for dominating points. Drawing L i.i.d. points v1; : : : ; vL

according to the distribution of U1;100=100 conditionally upon B we evaluate P100

with k D 99; note that in the Gaussian case Theorem 1 provides an exact description
of the conditional density of Xk

1 for all k between 1 and n. The following figure
shows the gain in relative accuracy w.r.t. the state independent IS scheme according
to the growth of d: The value of P100 is 10�2d (Fig. 11.1).
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Fig. 11.1 Relative Accuracy of the adaptive estimate (dotted line) w.r.t. i.i.d. tilted one (solid line)
as a function of the dimension d for L D 1;000

Conclusion
In this paper, we explore a new way to estimate multi-constraints large

deviation probability. In future work, the author will investigate the theoretical
behavior of the relative error of our proposed estimator.
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