
Chapter 8
Systems Analysis of High-Throughput Data

Rosemary Braun

Abstract Modern high-throughput assays yield detailed characterizations of the ge-
nomic, transcriptomic, and proteomic states of biological samples, enabling us to
probe the molecular mechanisms that regulate hematopoiesis or give rise to hema-
tological disorders. At the same time, the high dimensionality of the data and the
complex nature of biological interaction networks present significant analytical chal-
lenges in identifying causal variations and modeling the underlying systems biology.
In addition to identifying significantly disregulated genes and proteins, integrative
analysis approaches that allow the investigation of these single genes within a func-
tional context are required. This chapter presents a survey of current computational
approaches for the statistical analysis of high-dimensional data and the development
of systems-level models of cellular signaling and regulation. Specifically, we focus
on multi-gene analysis methods and the integration of expression data with domain
knowledge (such as biological pathways) and other gene-wise information (e.g., se-
quence or methylation data) to identify novel functional modules in the complex
cellular interaction network.

Keywords Statistical analysis · High-throughput data · Microarrays · Sequencing ·
NGS · Genomics · Machine learning · Network models

Introduction

The precise coordination of complex and adaptive living processes relies upon sys-
tems that regulate transcriptional, posttranscriptional, and epigenetic control of gene
expression and protein production. In contrast to the simplified view of the “central
dogma” of molecular biology, wherein transcription followed by translation leads
linearly from DNA to RNA to protein, it is now understood that there exist feed-
back loops at each stage, forming a network of regulatory interactions (Fig. 8.1).
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Fig. 8.1 Regulatory mechanisms in molecular biology. DNA is transcribed to mRNA and then
translated into protein. The rate of transcription is controlled by a feedback loop in which the
level of transcription factor proteins is regulated the activity of the transcriptional complex, and
genes can be permanently silenced by methylation of cytosine in CpG promoter regions of the
DNA sequence. More recently, it has been discovered that the expression of small noncoding RNA
molecules (e.g., microRNAs) can downregulate entire sets of genes by binding to complementary
sequences in the mRNA

Identifying functionally relevant genes and unraveling the systems governing their
expression can elucidate the molecular mechanisms underlying development and
disease, as well as facilitate the development of prognostic tests and therapeutic
interventions [1, 2].

Although living organisms have long been thought of as complex systems com-
prising many strongly interdependent parts [3, 4], the study of biological processes
at the systems level remained a theoretical practice until fairly recently. Prior to the
completion of the Human Genome Project and the development of high-throughput
technologies, limitations on the ability to exhaustively assay samples of interest re-
quired that each gene be probed one at a time, leading to a reductionist approach in
which biological systems were investigated by examining their parts in isolation. In
recent years, however, major technological advances have enabled assays that yield
highly detailed genome-wide information for each sample (including sequence, ex-
pression, and epigenetic modifications). This unprecedented increase in our ability
to probe how every gene is expressed in a particular tissue or responds to a particular
environmental perturbation now makes systems biology possible. The wealth of data
now being generated in high-throughput profiling studies not only allows gene-level
analyses to be applied comprehensively across the entire genome, but provides an
immense opportunity to augment reductionist one-gene-at-a-time techniques with
systems-level analyses that treat the data in an integrative manner and elucidate the
functional association between differentially expressed genes.

Complementing the advances in experimental technologies, advances in comput-
ing technology have ushered in an exciting era of computational systems biology.
Broadly speaking, computational systems biology investigations may be classified
into two groups, each with its own utility and set of challenges: the statistical analy-
sis of high-dimensional data to infer differentially regulated network modules from
experimental studies, and the dynamical simulation of these networks to model the
occurrence of cellular events. Here, we focus on statistical and machine learning
algorithms to draw inferences about regulatory networks from complex data sets.
Combined with gene-level analyses, pathway-based methods provide comprehensive
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analyses of the functional modules that govern biological processes. The objective of
this chapter is to provide theoretical and practical knowledge of how high-throughput
data can be harnessed to yield mechanistic insights and build predictive models at
the systems level.

Generating High-Throughput Data

The accuracy of any systems-level analysis will depend on the quality of the data
being analyzed. This, in turn, depends upon the experimental design, the assay
technology employed, and the preprocessing of the raw data.Although a full review of
these considerations is beyond the scope of this chapter, a brief overview is presented
for context.

Experimental Design

Experiments may be designed with several goals in mind:

Class comparison Identification of genes or gene sets behaving differently between
predetermined “classes” of samples (e.g., cases and controls, different phenotypes,
different stages of development, different treatments, etc.).

Time series Investigation of the dynamics of gene expression changes following
an exposure (e.g., to examine how the expression profile changes over time and
differs between growth phenotypes).

Class prediction (supervised machine learning) Identification of a minimal set of
genes that can be used to categorize a new sample into one of several known
types based on its molecular profile (e.g., with the goal of predicting treatment
response). Also called supervised machine learning.

Class discovery (clustering/unsupervised ML) Identification of novel groups of
samples on the basis of their molecular profiles (e.g., to identify disease subtypes
among clinically similar cases that may correspond to differing prognoses).

Network Analysis Identification of differential relationships between molecules,
either by analyzing the data in the context of putative interaction networks or by
“reverse engineering” the underlying network based on experimental data.

Regardless of the question under consideration, several guiding principles should be
observed. First, all high-throughput studies yield a measurements in a feature space
(105–106 probes) that is of much higher dimensionality than the number of samples
(often on the order of 102). From a mathematical modeling standpoint, these exper-
iments are underdetermined, meaning there are many more variables (genes) than
there are equations (samples), and different analysis methods may yield different
results that are nevertheless equally valid/optimal fits. Second, despite improve-
ments in quality control and experimental accuracy and precision, high-throughput
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technologies remain relatively noisy and are highly sensitive to batch effects (mean-
ing that the same samples, assayed at two different labs or at two different times
using identical protocols, may exhibit highly differentially expressed genes that are
responding to extraneous biological variables). These two challenges underscore the
need for biological replicates: both to increase the power of the many gene-wise sta-
tistical tests being performed, and to capture the natural level of variability between
phenotypically identical samples.

Microarrays

There currently exist a number of different experimental modalities for genomic
investigations, each with its own benefits and challenges. The oldest and best-
established are microarrays, which measure the hybridization of fluorophore-labeled
nucleic acid strands to complementary probe sequences on a chip. The intensity of
fluorescence at a specific probe spot is proportional to the amount of bound nucleic
acid strands. Microarray chips contain 105–106 different probes, permitting thou-
sands of genes to be simultaneously assayed. These may be designed to measure
mRNA abundance (gene expression profiling), microRNAs (miRNA profiling), or
to detect single nucleotide polymorphisms (SNPs) in DNA. Chips functionalized
with antibodies may be used in a similar fashion to assess protein abundance.

Before they can be analyzed, microarray data must be preprocessed and nor-
malized. The preprocessing steps include the subtraction of background intensities,
averaging across duplicated probes, thresholding or scaling to spiked-in controls or
housekeeping genes, removal of probes that fail to meet QC criteria, and normal-
ization to render each array comparable to the others. Normalization schemes rely
upon the assumption that the vast majority of genes are not differentially modulated
in the phenotype of interest, and attempt to remove chip-wide variations in gene
expression that are likely due to technical factors alone. The choice of preprocess-
ing and normalization algorithms can have a significant impact on the results of the
statistical analysis, and the appropriate selection depends in part on the microar-
ray technology; the reader is referred to the several comprehensive reviews [5–7]
for additional guidance. Because the normalized abundances are approximately log-
normally distributed, values expressed on a logarithmic scale are often tested using
standard parametric statistics.

“Next Generation” Sequencing

The development of next generation sequencing (NGS) represents an important leap
forward in identifying disease-specific genetic variants (DNAseq), epigenetic modifi-
cations (ChIPSeq of histone methylation), and transcriptional regulation and splicing
(RNAseq). Combined, such genomic data provide a powerful means to identify the re-
lationships between the genetic sequence, epigenetic marks, and expression of genes.
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In contrast to microarrays, which probe regions of the genome with known se-
quences, NGS studies comprehensively assay the entire genome. The data produced
are vast, and present different preprocessing challenges than those encountered in
microarray studies. The experimental technique consists of fragmenting the DNA or
RNA into short segments, which are then sequenced. These so-called “short reads”
must then be aligned to a reference genome sequence in order to identify the genes
to which they correspond. (Although NGS assays are highly comprehensive, the
mapping of reads is a computationally challenging task, and the resulting data is
often considerably noisier than that obtained by microarray.) The number of reads
for a given genomic region is used as a measure of gene expression (in RNAseq)
and to identify probable transcription-factor binding sites or epigenetic modifica-
tions (DNAseq, ChIPseq). For more details on sequencing, alignment, and variant
calling in NGS studies, the reader is referred to two recent reviews [8, 9]. Once these
steps are completed, the data may be analyzed to reveal disease-associated genetic
variants, epigenetic modifications, and differential expression [10].

Gene-Level Statistical Analyses

While the focus of this chapter is to acquaint the reader with systems-level statistical
analyses, it is useful to briefly review several common gene-level approaches.

Often, the first goal is to identify genes that behave differently in the sample
groups of interest (“class comparison”). For mRNA and miRNA expression studies,
where the gene level data are continuous, genes are tested for differential expression
between groups using a t-test; where more covariates are involved (such as in studies
investigating gene×environment interactions), linear models may be used. Linear
models may also be used in the context of time-series analysis to identify genes
whose expression changes over time and detect those whose time-course profiles
differ between sample classes. In SNP and sequence studies, where the covariates
are categorical, χ2 tests are used to identify SNP loci where minor allele frequencies
differ significantly. These tests yield a statistic, one per gene/miRNA/locus, that
quantifies the difference in expression or allele frequencies between the groups of
interest. These statistics may then be compared against an appropriate distribution
to yield a p-value and identify significant associations. (For expression microarrays,
the limma package [11] in R [12] provides a user-friendly framework for gene level
analyses. Other BioConductor utilities [13, 14] provide similar functionality for SNP
arrays, NGS, and other experimental modalities.)

In all cases, the vast number of hypotheses being tested (at least one per gene,
and often times more) necessitates a multiple testing correction [15] of the p-values.
That is, at a significance threshold of p ≤ 0.05, we expect that a gene will be falsely
called significant 5 % of the time, leading to thousands of such false positives when
the number of genes assayed is on the order of 105. While the simple Bonferroni
adjustment may be used (in which the significance threshold is set to 0.05 divided
by the number of genes assayed), it is considered to be excessively conservative.
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Specifically, it is assumed in the Bonferroni adjustment that each gene is strictly
independent of all others, an assumption well known to be false for genomic data
(in the case of expression, co-regulated genes will exhibit correlated expression; in
SNPs, patterns of recombination will lead to linkage disequilibrium, or a tendency
for SNP alleles at one loci to be correlated with the alleles at another). Instead,
the false positives should be controlled using the false discovery rate adjustment
(FDR) [16], which has been proven to exert robust control over the error rate even
when the hypotheses have dependencies [17]. Alternatively, assumption-free but
computationally intensive permutation procedures [18] may be used.

Identifying Functional Modules

The lists of significant genes obtained by the analyses described above provide limited
mechanistic insights without additional biological context. To gain an understanding
of systems biology, it is necessary to assemble single-gene information to identify
sets of genes and interactions that fulfill particular biological functions. Typically,
this is done either by finding clusters of genes that behave in the same way in the
experiment, or by incorporating expert knowledge from pathway databases to focus
the analysis.

Clustering

It is well-accepted that genes interact with each other in transcriptional modules, and
that these modules in turn interact with other modules [19, 20]. Because of these re-
lationships, genes that function together often exhibit directly or inversely correlated
expression. The simplest method for identifying those modules and connections is
by clustering the genes to identify groups of genes whose expression is similar across
the set of samples [21, 22].

The two most commonly used clustering algorithms are hierarchical clustering
and k-means clustering. Their considerable popularity is due to their computational
and conceptual simplicity. However, because both rely upon the user to specify the
number of clusters, they are prone to artificially separating genes that should be in the
same cluster (if the user specifies more clusters than are truly present) or speciously
combining them (if the user specifies too few). They are limited in their ability to
detect clusters with complex shapes. To address these limitations, refinements of
both schemes have been proposed; we describe them below.

Hierarchical Clustering

The commonly used hierarchical clustering [23] technique agglomeratively sorts
genes based on the similarity of their expression, producing a tree that can be cut
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into clusters. For each pair of genes i and j , hierarchical clustering computes a dis-
tance metric Dij ; then, starting with each gene as its own “cluster,” iteratively merges
clusters based on the smallest Dij between them. Most frequently, a Euclidean dis-

tance metric (i.e., Dij=
√∑

m (g2
i,m+g2

j ,m) where gi,m denotes the expression of

gene i in sample m) is used, although non-Euclidean distances (e.g., Manhat-
tan or Mahalanobis), correlation-based distances (e.g., Dij=1−Cor(gi , gj )), or
information-theoretic metrics may also be used. The criteria for merging clusters
is known as the linkage. Simply put, for any two clusters, we wish to consider merg-
ing, we examine the pairwise distances Dij for the genes in the merged clusters;
the linkage can be set to be the average, minimum (“single” linkage), or maximum
(“complete” linkage) of the pairwise differences within the resulting cluster. The
choice of which clusters to merge is then based on which cluster pairs yield the
smallest linkage. At each iteration, those pairs of clusters are merged, forming a
binary tree, and the number of clusters is determined by the height at which user cuts
the tree.

However, while hierarchical clustering has a long history in microarray analysis,
it is extremely sensitive to the choice of distance metric and the linkage method used
to merge the clusters, since the “greedy” agglomeration causes slight inaccuracies
to snowball. Hierarchical clustering should therefore be considered an exploratory
tool rather than an analytical one.

k-Means Clustering

The well-established k-means clustering [24] technique provides a more stable par-
tition of the genes. The algorithm iteratively finds points that define the centers of
globular clusters: starting with a user-specified number of clusters k, it selects k

genes at random as starting centroids, and clusters all the genes based on the cen-
troid to which they are closest. For each of the resulting k clusters, new centers are
computed based on the mean expression of the genes assigned to that cluster. The
genes are reclustered with respect to the new centroids, and the process is repeated
until the clustering assignments converge. In addition to being much less error prone
than hierarchical clustering, k-means is also considerably faster. As with hierarchi-
cal clustering, however, the user must specify the number of clusters (which in the
case of genes means guessing at the number of “modules”). In addition, k-means
performs poorly when the genes do not form globular, linearly separable clusters.

Improved Approaches

To address these drawbacks, several refinements have been proposed. Graph-
theoretic spectral techniques [25–30] are able to articulate clusters with nonlinear
and nonconvex boundaries, allowing complex relationships between genes (such as
those that oscillate differentially over the cell cycle) to be discerned. Variational
clustering schemes [31, 32] achieve similar goals. Several schemes have also been
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proposed to estimate the number of clusters from the data itself rather than relying
on user input [30, 33–36]. Combined, these methods produce robust partitions even
in complex data sets.

One interesting and extensible approach, consensus clustering [36], is a method
that may be wrapped around any clustering algorithm of choice (hierarchical, k-
means, spectral clustering, etc.) to provide both an estimate of the number of clusters
present in the data and a measure of the robustness of the clustering. In consensus
clustering, the data is randomly subset so that only a portion of the genes and samples
are used. The clustering algorithm of choice is then used to cluster the samples or
genes into k = 2, 3, 4, . . . groups for multiple random subsets of the data. For each k,
a consensus matrix is obtained where the i, j th entries are the fraction of times gene
i and gene j were assigned to the same cluster across multiple subsets. For a truly
robust partition, it is expected that the entries will all be close to 1 or 0, that is, either
i and j are consistently placed in the same cluster, or they are consistently placed in
different groups. (This reflects the intuition that if the algorithm only place objects in
the same cluster together half the time, it is questionable whether a separate cluster
truly exists.) The optimal k (number of clusters) is that for which the consensus
matrix comes closest to the ideal of pure 1’s and 0’s. Wrapping consensus clustering
around k-means or hierarchical clustering mitigates the limitations of those methods;
moreover, because the consensus technique may be wrapped around any clustering
engine, it can readily incorporate the advantages offered by the more sophisticated
nonlinear clustering algorithms described above. Recently, consensus clustering was
applied to identify molecular subtypes of diffused large B-cell lymphoma, leading
to the identification of highly reproducible transcriptional signatures corresponding
to differential signaling cascades [37].

Dimension Reduction

As the number of genes assayed is vast, it is often of interest to find a small number of
representative patterns that describe most of the variation observed in the data and on
which the gene expression may be modeled, rather than dealing with the whole data
set. This problem is closely related to clustering: by identifying dominant patterns of
gene expression (across samples or over time), one may then find clusters of genes
that match particular patterns. Those pattern-based clusters may then be examined
for common regulatory elements.

Principal Component Analysis

The simplest and best-known dimension reduction technique is principal component
analysis (PCA) [38], which transforms a set of observations of possibly correlated
variables (e.g., gene expression measurements) into a new set of variables, called the
principal components (PCs), which are constructed such that the PCs are completely
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PC2
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Fig. 8.2 In principal components analysis, the principal components are defined such that the
first principal component (PC1) lies along the direction of greatest variation and each succeeding
component (in two dimensions, only PC2) is defined to lie in an orthogonal direction with the
highest variance. Geometrically, the PCA space is a rotation of the original axes

independent of each other. The transformation is defined such that the first principal
component lies along the direction of greatest variation in the data, accounting for
as much of the overall variation in the gene expression between samples as possible.
Each succeeding component lies, in turn, along the direction of the highest variance
under the constraint that it will be orthogonal to (i.e., uncorrelated with) the preceding
components. Mathematically, the principal components are the eigenvectors of the
covariance matrix; the associated eigenvalues indicate the amount of variance along
each component. A graphical illustration in two dimensions is given in Fig. 8.2.

The transformation is linear, that is, the original coordinates (genes) are rotated in
the PCA space, such that the bulk of the variation lies along the first PC, and so on, as
shown in Fig. 8.2. Each gene may thus be described using a weighted combination
of components (and vice versa). Because the bulk of the statistical variation in the
data is contained in the first few components, it is possible to use just the first few
PCs, rather than the full 105-dimensional feature space, when analyzing the data. The
resulting clusters may then be examined for common regulatory elements. Recently,
Chilarska and coworkers used this approach to identify combinatorial transcriptional
control in a genome-wide study of blood stem/progenitor cells [39]. PCA has also
been used to identify “fingerprints” of hematopoietic stem cell differentiation [40].

Eigengenes

The principal components transformation can be written in terms of another matrix
factorization called the singular value decomposition (indeed, computation of the
principal components is typically done from the SVD, rather than the mathemati-
cally equivalent but computationally costly eigendecomposition of the covariance
matrix). While PCA yields a matrix containing the PCs (i.e., the eigenvectors) and
a vector of loadings (the eigenvalues), SVD yields two matrices, each describing an
orthogonal basis, and a vector of so-called singular values. When applied to gene
expression data, the two matrices have the dimensions of the genes and samples,
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which are referred to as the “eigengenes” and “eigenarrays,” respectively [41]. Like
the principal components, the eigengenes (eigenarrays) are unique orthonormal su-
perpositions of the genes (samples). Eigengenes/arrays that are inferred to represent
noise may be filtered out, much like filtering out the higher PCs in PCA. Representing
the data by the remaining eigengenes and eigenarrays gives a global picture of the
dynamics of gene expression, in which individual genes (or samples) are clustered
into groups of similar regulation and function (or similar cellular state and biolog-
ical phenotype, respectively). These clusters may then be associated with observed
genome-wide effects of regulators. Recently, this method has been used to uncover
the combinatorial role of transcription factors regulating the yeast sulfur assimila-
tion pathway [42] and combined with dynamical modeling; a similar approach could
be used to link high-throughput data to dynamical models of blood stem cell fate
(e.g., [43]).

Nonlinear Dimension Reduction

The patterns described by the principal component vectors or eigengenes are lin-
ear combinations of the gene expression measurements. However, if the biological
patterns of interest have a nonlinear form, as is likely to arise from regulatory net-
works with feedback loops, neither classical PCA nor SVD can articulate those
patterns. Instead, nonlinear dimension reduction (NLDR) techniques must be used.
NLDR may be thought of as a nonlinear version of PCA where the coordinates are
“threaded” along the direction of greatest variability. Optimally detecting those paths
is a mathematically and computationally challenging task, and several methods have
been proposed including kernel PCA, Laplacian eigenmaps, IsoMaps, and spectral
embedding [44, 45]. Of these approaches, the neural-network-based self organizing
map (SOM) [46] is the best represented in the genomics literature. Figure 8.3 pro-
vides an illustration of the first SOM coordinate versus the first PC for data lying
on a curved manifold; while the first PC captures only 76.77 % of the variance, the
first component of the SOM captures 93.14 % and provides a better description of
the underlying pattern.

This property makes SOM (and NLDR generally) particularly well-suited for
analyzing transcription dynamics, where the relationships between genes may not
be strictly linear. SOM has been applied to detect and interpret gene expression
patterns governing hematopoiesis [47]. For an in-depth mathematical treatment of
various NLDR methods, the reader is referred to [48].

However, while NLDR provides a more accurate and possibly more biologically
meaningful dimension reduction than PCA or SVD, it must also be noted that the
transformation from the new, dimension-reduced space to that of the genes is not a
straight-forward (or even necessarily possible) task. This is a direct consequence of
their nonlinearity and places them in stark contrast to PCA and SVD, from which it is
easy to recover the original coordinates. This, in turn, means that it is very difficult to
say which genes are the ones driving the dominant pattern observed, which can pose
problems when it comes time to identify specific genes for validation work. In short,
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Fig. 8.3 Comparison of SOM versus PCA. While the first PC captures only 76.77 % of the variance,
the first component of the SOM captures 93.14 % and provides a better description of the underlying
pattern

what we gain in accuracy and representativeness in NLDR is lost in interpretability.
The choice of dimension reduction should thus be undertaken with the end goal of
the analysis in mind.

Pathway Analysis

Pathways, or networks of functionally related genes and molecules, provide a natu-
ral framework in which systems-level effects may be investigated in the context of
existing “expert” knowledge. Pathway definitions may be extracted from a grow-
ing number of databases, including the Pathway Interaction Database [49], KEGG
[50], Reactome [51], and InnateDB [52], among others. Many statistical computing
packages, including R/BioConductor, have interfaces to these databases [53].

Analyzing high-throughput molecular measurements at the pathway level have
two significant benefits. First, it permits the grouping of hundreds of thousands of
genes (or other biomarkers) into several hundred pathways, reducing the complexity
of the analysis. Second, identifying active pathways that differ between two condi-
tions can provide more explanatory power and mechanistic insights than a simple
list of genes. These benefits have given rise to a vast number of different pathway
analysis approaches over the past decade [54].
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Many tools for pathway analysis are available, including free, open-source R
software from the BioConductor project [13] (http://www.bioconductor.org) and
popular commercial tools such as Ariadne Genomics Pathway Studio (http://www.
ariadnegenomics.com/) and Ingenuity Pathway Analysis (http://www.ingenuity.
com/). As these tools are well-documented and constantly evolving, we focus here
on the underlying methodology.

Enrichment Analyses

The simplest pathway analysis approach is an overrepresentation analysis, which
seeks to address statistically the following question: given a set of genes known to
be on a pathway, and given the list of genes detected to be different in the study
(e.g., with FDR≤0.05 in a test of differential expression), is there greater overlap
than would be expected by chance alone? That is, do the significant genes appear to
aggregate in certain pathways? The probability of having an overlap of m or more
genes when there are M significant genes out of N genes assayed, and n genes in
total on the pathway is given by the hypergeometric distribution,

Pr (X ≥ m|N , M , n) =
∑n

r=m

(
M

r

)(
N−M

n−r

)

(
N

n

) (8.1)

which is easily computed for all gene sets of interest.
While simple, overrepresentation analysis has a significant limitation: because it

uses only the most significant genes (e.g., those passing the arbitrary FDR≤0.05
threshold), marginally less significant genes (e.g., FDR = 0.051) are discarded, re-
sulting in information loss. In contrast, the popular Gene Set Enrichment Analysis
(GSEA) algorithm [55, 56] uses the full list of all genes, ranked in order of signifi-
cance, and uses a Kolmogorov–Smirnov running sum statistic to answer the question:
what is the probability that the genes in this pathway lie as near the top of the ranked
list as we observe them to be? Significance may be computed either by permuting
the sample labels or permuting the genes included in the pathway [54, 57, 58]. These
methods have been applied successfully to a variety of studies, including expres-
sion profiling of acute lymphocytic leukemia subtypes [59]; pathways involved in
the activation of memory T cells, monocytes, and B cells [60]; and resistance to
chemotherapy in acute myeloid leukemia cells [2].

Nevertheless, both simple overrepresentation analysis and GSEA have a common
drawback: they rely upon the computation of gene-level statistics. It is well known
that complex diseases exhibit considerable molecular heterogeneity, either due to
causative mechanisms that can be deleteriously affected in a variety of ways (such
that no particular alteration is dominant among the case samples) or to those that are
only deleteriously affected through a specific combination of particular alterations
(such that control samples may have some, but not all, the alterations necessary
to produce the case phenotype). As a result, individual genes may fail to reach
significance in univariate tests of significance, and pathway analyses that rely on

http://www.bioconductor.org
http://www.ariadnegenomics.com/
http://www.ariadnegenomics.com/
http://www.ingenuity.com/
http://www.ingenuity.com/
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single-gene association statistics may fail to detect significant pathways simply be-
cause the constituent genes do not exhibit univariate associations. Simply put, by
relying on univariate, gene-level tests, overrepresentation and enrichment analyses
still make the reductionist assumption that regulatory systems may be investigated
by examining their parts in isolation.

Pathway Summary Statistics

An alternative is to compute a pathway-level “summary” statistic: a single value that
summarizes the expression level (or other data) for all the genes in the pathway. For
each pathway, a summary statistic is obtained for each sample based on its profile,
and those summaries may then be tested for association with the condition of interest.
A very crude example is to use the average expression value for the genes on the
pathway, such that a sample in which many of the genes are upregulated will have a
high pathway summary value, regardless of which genes happen to be upregulated.
However, simply averaging the gene expression levels is a poor measure of pathway
activity from a biological point of view, since these mechanisms involve both up-
and downregulation for which coordinated gene expression (and hence correlations)
are important. A more justifiable approach, therefore, is to use PCA for the genes
in the pathway of interest, selecting the first PC as the “pathway summary.” This
has the effect of summarizing the expression (or other) values for all the genes on
the pathway by a single number that describes the bulk of the variation and which
mathematically accounts for the correlations in gene expression. This technique has
been used identify differential pathways in leukemia [61] as well as other cancers.

Extending this idea, we proposed a method [62] in which the pathway summary
values and genes not known to be on the pathway were tested for differential cor-
relation. In the “Gene × Pathway Correlation (GPC) Score” method [62], we first
computed pathway summary values based on the first PC for every pathway of in-
terest, yielding for each pathway j a value pj ,m summarizing sample m’s expression
across pathway j ’s genes. For each gene i with expression gi,m in sample m, we
compute the GPC-score as the difference in the correlations of g and p in the case
and control phenotype,

GPC-score = Corm∈Case(pj ,m, gi,m) − Corm∈Control(pj ,m, gi,m) , (8.2)

yielding a gene × pathway matrix of correlation differences for each gene-pathway
pair. The significance of the correlation differences are assessed by randomly permut-
ing the case and control labels. This method has the power to identify new regulatory
interactions (by finding correlated gene-pathway pairs), as well as to detect those
which are altered in disease (by identifying gene-pathway pairs with significant dif-
ferences). An example gene-pathway pair identified in a prostate cancer study is
given in Fig. 8.4.

Although this method was applied in [62] exclusively to mRNA expression data,
the same technique may be applied as an integrative analysis using both mRNA
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Fig. 8.4 GPC-Score identifies differential gene-pathway coexpression for the MSH2 (mismatch
repair) gene and the RNA polymerase pathway for a subset of prostate tumor samples; these samples
corresponded to worse clinical outcomes. (Image: [62])

and other genomic or environmental measurements. For instance, one can apply
it to combined miRNA/mRNA data to search for differentially correlated miRNA-
pathway pairs, thereby identifying miRNAs whose expression modulates the activity
of regulatory networks.

These pathway summaries effectively amount to selecting the n genes on a given
pathway and applying a dramatic dimension reduction to go from the n features down
to a single one. As such, the same caveats about linearity described in Section “Di-
mension Reduction” apply, namely, linear methods cannot account for complex
or oscillatory relationships between genes. Instead, NLDR such as kernel PCA
or Laplacian eigenmaps may be used, providing a more accurate and biologically
representative summary of the expression patterns across a pathway.

Sample Class Prediction and Class Discovery

In the previous section, our goal was to categorize genes into biologically relevant
functional modules, either by grouping the genes into clusters of correlated expres-
sion or by pathway analysis. Here, we turn our attention to categorizing samples
based on complex patterns in the experimental data, with the goal of predicting
the status or outcome for a new sample or discovering sample subclasses that were
previously unknown.
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The gene-level tests described in Section “Generating High-Throughput Data”
yield lists of differentially expressed genes and significantly associated genetic vari-
ants that are ubiquitously reported in genomic studies. However, while these genes
are significantly associated with the phenotype of interest, they may not accurately
classify or predict the outcome for a new sample. To develop predictors from high-
throughput data, machine-learning algorithms are commonly used. These algorithms
are first “trained” against a subset of the data for which the outcomes are known,
and then evaluated for accuracy against an independent “testing” subset (for which
the outcomes are also known). If the classifier performs well in the testing subset,
it may then be validated in a distinct data set. The procedure of dividing the data
into training/testing sets, known as cross-validation, ensures that the models are not
overfit to technical nuances in the data. As the known sample labels (case/control,
exposed/unexposed, etc.) are used to train the machine, these techniques are referred
to as “supervised” classifiers.

The literature now contains many supervised machine learning algorithms; for a
deep and comprehensive exposition, the reader is directed to Hastie and Tibshirani’s
Elements of Statistical Learning [48]. Here, we discuss three powerful techniques:
one designed for continuous data (such as gene expression), one designed for categor-
ical (SNP or sequence) data, and a third that can accommodate a mixture of covariates.
From a systems-biology perspective, the predictive “signatures” obtained from these
algorithms may be used to suggest functional modules, identify epistatic interactions
between genetic variants, or provide an integrative analysis that combines genomic,
epigenetic, and expression data. We also discuss unsupervised methods for class
discovery (i.e., the identification of sample subtypes based solely on the high-
throughput data). Such methods can articulate complex, systems-level similarities
and differences that would be indetectable by association tests alone.

Nearest Shrunken Centroids

Given a set of samples comprising different categories (cases and controls, say),
and a new sample whose categorization is unknown, a natural way to classify it is
to ask which group, on average, the unknown sample is closer to. This approach
is referred to as a “nearest centroid classifier”—the centroids represent the average
gene expressions (or other data) in each sample class, and the new sample is classified
based on the centroid to which it is nearest.

In the context of genome-wide expression profiling, the centroid for each sample
class resides in a very high-dimensional space. If 105 genes have been assayed, the
centroid for the cases is a 105-dimensional vector which gives the average expression
for each gene across all the case samples; likewise the controls. As the vast majority
of these genes are not biologically relevant, it is important to remove those which can
be reasonably assumed to be noise. One powerful approach is to consider not only the
average gene expression, but the variance as well, moving the centroid coordinates
closer to each other by an amount proportional to the variance of the corresponding
genes [63]. This procedure is referred to as “shrinking” the centroids.
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Fig. 8.5 Nearest shrunken centroids classifier. In a, the nearest centroid classifier in two dimensions
is illustrated. There are two classes of samples k, shown as light circles and dark squares. After
scaling each gene (here, g1 and g2) to unit variance within each group k, the unknown sample x

is classified based upon the nearest centroid μ (in this case, the dark squares). (b)–(d) illustrate the
shrinkage of the centroids for a gene g. Centroids μgk , shown as a black line, are moved in the
direction of the center line to a new position μ′

gk . In b, neither cross the center line, and the new
position is retained. In c, the centroid for the light circles crosses the center line and is thresholded
to 0. In d, both centroids cross the center line and are thresholded to 0; because the new centroids
are equal, the gene no longer contributes to the classification

A graphical illustration is given in Fig. 8.5. Mathematically, the nearest centroids
procedure attempts to classify a new sample with gene expression x into group k

such that δk(x) is minimized:

δk(x) = x�Σ−1μk − 1

2
μ�

k Σ−1μk + ln (π k) , (8.3)

where μk are the centroids for each group k, Σ is the covariance matrix (across
all groups), and π k are the prior probabilities that x belongs to each group k. For
instance, when building a classifier to detect a rare disease, π k may be taken from the
disease prevalence in the population, reflecting the low probability that the patient
has the disease of interest.

In the “shrunken” approach [63], the gth entry of the vector μk (i.e., the mean
of gene g in group k) is moved from μgk to μ′

gk by an amount proportional to the
pooled variance sg (plus a slight offset s0) for gene g:

μ′
gk = μgk − Δ(sg + s0)

√
1/nk + 1/n , (8.4)

where nk is the number of samples in group k, n is the total number of samples,
and the degree of shrinkage is controlled by the parameter Δ. Genes that cross
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Fig. 8.6 Application of the nearest shrunken centroids classifier to distinguish cytogenetically
normal cases (“NEG”) from those with BCR/ABL fusion based on gene expression profiles of
patients with acute lymphoblastic leukemia (ALL). The overall misclassification error is shown on
the left, while the misclassification error for the known groups is shown on the right. As the shrinkage
parameter Δ increases, fewer genes remain in the model. Initially, the removal of genes improves
the accuracy as “noisy” genes are removed. Optimal values of Δ, corresponding to the smallest
error observed in the cross-validation, are obtained at Δ = 2.272 (115 genes) and Δ = 2.796 (40
genes). Increasing Δ beyond 3 removes informative genes (only 20 remain at Δ = 3), causing a
dramatic increase in the error rate, particularly amongst BCR/ABL cases

the “overall” centroid across all groups (i.e., those for which μ′
gk − μg ≤ 0) for

all classes k do not contribute to the final model, resulting the removal of high-
variance “noisy” genes from the classifier. The shrinkage parameter Δ controls the
aggressiveness of the removal (higher Δ forces a greater degree of shrinkage and
hence more genes are removed), and is optimized by cross-validation. The data set
is split into multiple training and testing subsets, and samples in the testing subset
are classified according to the shrunken centroids in the training subset. By varying
the value of Δ over multiple training/testing splits, it is possible to choose Δ such
that the error in the testing subset is minimized.

An example applied to gene expression data from well-known study [64] of
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) is given
in Fig. 8.6. Here, the nearest shrunken centroids classifier, implemented in the R
package pamr [65], has been applied to data from 12,625 genes in 95 ALL cases, of
whom 42 are cytogenetically normal and 37 have BCR/ABL fusion. The classifier
was trained using tenfold cross validation with increasing values of Δ ranging from
Δ = 0 (no shrinkage, all genes used) until no genes remained at Δ ≈ 5. As shown in
Fig. 8.6, the misclassification error initially drops as Δ is increased and noisy genes
are removed. The optimum Δ = 2.796 yields an error rate of approximately 13 %
using 40 genes. Further increasing Δ has the effect of removing informative genes,
causing the error rate to rise again. This is particularly true for the BCR/ABL cases,
which are frequently misclassified as cytogenetically normal as Δ is increased above
the optimum.
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Identifying Epistatic Interactions

As with expression profiling by microarray and NGS, genome-wide association stud-
ies (GWAS) have become a powerful and increasingly affordable tool to study genetic
sequence variants associated with disease. Modern GWAS yield information on mil-
lions of single nucleotide polymorphism (SNPs) loci distributed across the human
genome, and have already yielded insights into the genetic basis of complex diseases
[66, 67]; a complete list of published GWAS can be found at the National Can-
cer Institute-National Human Genome Research Institute (NCI-NHGRI) catalog of
published genome-wide association studies [68]. As described above, the data is typ-
ically analyzed by testing the alleles at each locus for association with case status;
significant association is indicative of a nearby genetic variant which may play a role
in the phenotype being studied. Genomic regions of interest may also be investigated
by haplotype analysis, in which a handful of alleles transmitted together on the same
chromosome are tested for association with disease; in this case, the loci which are
jointly considered are located within a small genomic region, often confined to the
neighborhood of a single gene.

Recently, however, there has been increasing interest in multilocus, systems-based
analyses. This interest is motivated by a variety of factors. First, few loci identified
in GWAS have large effect sizes (the problem of “missing heritability”) and it is
likely that the common-disease, common-variant hypothesis [69, 70] does not hold
in the case of complex diseases. Second, single marker associations identified in
GWAS often fail to replicate. This phenomenon has been attributed to underlying
epistasis [71], and a similar problem in gene expression profiling has been mitigated
through the use of gene-set statistics. Most importantly, it is now well understood that
because biological systems are driven by complex biomolecular interactions, multi-
gene effects will play an important role in mapping genotypes to phenotypes; recent
reviews by Moore and coworkers describe this issue well [70, 72]. In addition, the
finding that epistasis and pleiotropy appear to be inherent properties of biomolecular
networks [73] rather than isolated occurrences motivates the need for systems-level
understanding of human genetics.

Several multi-SNP GWAS analysis approaches have been described in the liter-
ature. Thorough reviews are provided in [74, 75], and we briefly describe several
here. Building on the well-established Gene Set Enrichment Analysis [55] method
initially developed for gene expression data, two articles have proposed an extension
of GSEA for SNP data [76, 77] using the χ2 SNP-level statistics. As in expression-
based GSEA, the reliance on single-marker statistics means that systematic yet subtle
changes in a gene set will be missed if the individual genes do not have a strong
marginal association. In the case of a purely epistatic interaction between two SNPs
in a set, the set may fail to reach significance altogether.

As an alternative, the notion that cases will more closely resemble other cases than
they will controls has motivated a number of distance-based approaches for detecting
epistasis. Multi-dimensionality reduction (MDR) has been proposed and applied to
SNP data [78–80]. The technique is conceptually similar to the nearest Shrunken
centroids classifier described above; here, sets of l SNPs are exhaustively searched
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for combinations that will best partition the samples by examining the 3l cells in
that space (corresponding to homozygous minor, heterozygous, and homozygous
major alleles for each locus) for overrepresentation of cases. While this method finds
epistatic interactions without requiring marginal effects and can be structured to in-
corporate expert knowledge, it is limited by the fact the the total number of loci to be
combinatorially explored must be restricted to limit computational cost. To address
this, an “interleaving” approach in which models are constructed hierarchically has
been suggested [79] to reduce the combinatorial search space. A recent and pow-
erful MDR implementation [81] taking advantage of the CUDA parallel computing
architecture for graphics processors has made feasible a genome-wide analysis of
pairwise SNP interactions. Still, MDR remains computationally challenging, such
that expanding the search to other SNP set sizes (rather than restricting to pairwise
interactions) can be impeded by combinatorial complexity if an exhaustive search is
to be performed.

In order to narrow down the combinatorial complexity of discovering SNP sets
using techniques such as MDR, feature selection may be employed. Of particular
importance here is the distance-based approach of the Relief family of algorithms
[82–85]. These are designed to identify features of interest by weighting each feature
through a nearest-neighbor approach. The weights are constructed in the following
way: for each SNP, one selects samples at random and asks whether the nearest
neighbor (across all SNPs) from the same class and the nearest neighbor from the
other class have the same or different values from the randomly chosen sample. At-
tributes for which in-class nearest neighbors tend to have the same value are weighted
more strongly as being more representative of the underlying biology. Because the
neighbor distances are computed across all attributes, Relief-type algorithms can
identify SNPs that form part of an epistatic group and provide a means of filtering
out unpredictive loci.

While these methods have so far been applied to finding small groups of interacting
SNPs, one may instead be interested in whether cases and controls exhibit differential
distance when considering a large number of genes. A multi-SNP statistic has been
proposed in the literature [86–88] for determining whether a new sample of interest is
on average (across a large number of SNPs) “closer” to one population (e.g., cases)
than to another (e.g., controls). The method [86] is motivated by the idea that a subtle
but systematic variation across a large number of SNPs can produce a discernible
difference in the closeness of an individual to one population sample relative to
another. Assuming an individual Y and two population groups F and G with minor
allele frequencies yi , fi , and gi (yi ∈ {0, 0.5, 1}) for SNP i, respectively, we write
the distance metric for SNP i as

DY ,i = |yi − fi | − |yi − gi | , (8.5)

and then consider the normalized mean across all SNPs of interest:

SY = EDY ,i√
VarDY ,i/ l

. (8.6)

An illustration is given in Fig. 8.7.
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Fig. 8.7 Genetic distance
metric (Eqs. 8.5–8.6). If Y is
closer to G than to F for
locus i, DY ,i is positive. If
DY ,i is consistently positive
across all l loci, SY will be so
as well, indicating a tendency
for Y to have more “G-like”
patterns of genetic variation

It is clear from Eqs. 8.5 and 8.6 that individuals Y whose minor allele frequencies
at locus i more closely resemble those of group G will have a positive DY ,i and
vice versa. By chance alone, we would expect DY ,i to be as frequently positive as
negative, yielding SY ≈ 0. However, a slight but consistent tendency to be closer to
one group than another across a set of SNPs will cause deviations in SY (Fig. 8.7).
The significance of SY in Eq. 8.6 may be assessed either parametrically by assuming
normality (only in the case of large l), or by resampling the F and G populations.

While this statistic was originally designed to identify group membership of indi-
viduals who were known to be in either F or G (and hence contributing to fi and gi),
it was later shown in [87] that even out-of-pool breast cancer cases were in general
“closer” to the population of other cases than to the controls, suggesting that the
combination of multiple alleles has the potential to classify new samples. Building
on these ideas, the PoDA [89] technique has been proposed to find pathway-based
SNP-sets that distinguish cases from controls. The hypothesis is that if the SNPs
come from a pathway that plays a role in disease, there will be greater in-class
similarity than between-class similarity in the genotypes for those SNPs, i.e., a
case will show greater genetic similarity to other cases than to controls for the
SNPs on a disease-related pathway, but will be equidistant for the SNPs on a non-
disease-related pathway. In order to identify the significant pathways, a leave-one-out
cross-validation procedure is used: each sample in the study is treated as unknown,
and the pathways with SNPs that most accurately classify the “unknown” samples
are flagged. Because subtle but consistent DY ,i’s will accumulate to give large values
of SY in Eq. 8.6, PoDA can identify multi-SNP sets which differ systematically even
when the single-SNP associations are not strong enough to be significant, making
it useful for detecting epistatic interactions. By restricting the PoDA SNP sets to
those defined based on known relationships (e.g., SNPs in genes sharing a common
pathway), one may incorporate expert knowledge to reduce the search space and
provide biological interpretability.



8 Systems Analysis of High-Throughput Data 173

Fig. 8.8 Schematic of a decision tree. At each step, a variable and threshold is chosen to optimally
partition the samples based on known labels. The decision rules may operate on continuous variables
(like color here, with blue and red coming closest to the mauve and periwinkle ideals, respectively),
categorical variables (like column, which can take on values 1–5), or booleans (like “bottom,”
which is either true or false). The partitioning stops when the nodes are pure. Variables may be used
multiple places in the tree (such as color here), so long as they are not used along the same branch
twice

Random Forests

The methods described above are designed to be applied to one type of data from a
single experimental modality—continuous data, such as that obtained in expression
profiling, or categorical data, such as that obtained by SNP or sequencing studies.
Now that genome-wide experiments are growing increasingly affordable, it is be-
coming more common for a variety of assays to be run on the same set of samples,
allowing the various measurements to be integrated in the analysis. The Random
Forests algorithm [90] is a decision-tree based classifier that permits multiple types
of data to be mixed a priori, enabling its use as an integrative predictor.

Decision trees are a conceptually simple supervised classifier. At each step, a
variable and threshold is chosen to optimally partition the samples based on known
labels. The decision rules may operate on continuous or categorical variables. The
partitioning continues until either all nodes are pure or all variables have been used.
An illustration is given in Fig. 8.8. Once the rules are established based on labeled
samples (i.e., the tree is trained), the rules may be used to classify a new sample of
unknown status.

Because at every level the decision tree partitions the samples completely, certain
partitions are not possible to achieve. An example is given in Fig. 8.9; here, there is
no way to place the cuts (corresponding to decision rules) to isolate the sample in
the center and achieve pure partitions.

In order to address this issue, the “Random Forests” classifier was proposed [90].
As in consensus clustering (described above), in Random Forests, we also randomly
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Fig. 8.9 Possible and impossible decision tree partitions. On the left, a possible partition (at levels
1, 2, and 3 in the decision tree) is shown; on the right, a partition that cannot be achieved with the
classical decision tree algorithm

subset the data, selecting samples on which to grow the tree using a random sample
of features (gene expression, SNP alleles, clinical covariates, or any other available
information). The procedure is repeated for many different samplings, yielding a
“forest” of decision trees, each trained on a random subset of the data (in much the
same way that one obtains a multitude of clusterings of randomly subsetted data in
consensus clustering). New samples are then classified according to a majority vote
of the trees.

As the goal here is to predict rather than cluster, the measure of accuracy is not how
well-clustered the selected samples are (as it is in consensus clustering), but how well
the decision tree predicts the status of the samples not selected in the random sample.
For each tree, one can compute the the prediction accuracy for the “out of bag” (OOB)
samples—those not used in the training of that particular tree. The average OOB error
rate is considered to be a good estimate of the testing error, since each OOB error
rate computation is based on samples not used in that particular tree. The OOB error
rate is also used to tune the size of the random subset of features. The more features
are kept, the more similar the trees will be to one another (eventually converging to
identical trees), leading to a forest that may be overfit. The smaller the size of the
feature subset, the more diverse the trees are, but each tree will exhibit worse per-tree
performance due to the lost information. By varying the size of the feature subset
and examining the OOB error rate, these two competing forces may be optimally
balanced to yield a forest of trees that are neither underdetermined nor overfit.

Random forests have a number of useful features as an integrative predictor:
it can incorporate different data modalities, is invariant to transformations of the
data, can handle missing data easily, has a tuning mechanism to prevent overfitting,
and provides an estimate of its accuracy. In addition, by looking at the purity of
the partition each time a particular feature is used across the entire forest of trees,
one may obtain a measure of its importance, yielding a ranked list of discriminatory
markers. The ranked list may then be used as an input to pathway enrichment analyses
(see Section “Pathway Analysis”), providing further systems-level insight [91]. This
approach both allows one to combine data types in the pathway analysis and indicates
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pathways that are not only “hit” by differential genes but by those that are predictive
of the biological outcome. Alternatively, pathway summary statistics (as described
in Section “Pathway Analysis”) may be used as the features input to the Random
Forests algorithm.

These features make Random Forests a powerful and highly accurate [92–94]
algorithm for generating predictive models. Recently, it has been applied to public
expression data as an in-silico screen to discover agents that eradicate leukemia
stem cells [95]; applied to a SNP study to identify genomic variants that govern
progression-free survival of myeloma patients [96]; and to elucidate transcription
factor activity in hematopoietic stem cell differentiation [97].

Class Discovery

The prediction algorithms described above rely upon supervised training using a set
of samples for which the true classification is known. However, as with clustering,
our knowledge about the true structure of the data may be incomplete in the sense
that there exist subtypes which are either unknown or not reflected by the training
sample labels. In particular, if a set of samples comprise a single clinical phenotype
but span several different molecular subtypes, classifying a new sample based on
molecular data may be highly error-prone owing to the lack of a distinct pattern in
the training set. As a result, it is often of interest to attempt to discover any existing
molecular subtypes present in the data. To this end, the clustering and cluster-number
determination algorithms described in Section “Identifying Functional Modules”
may be applied to samples (as well as to genes) to discover the optimal number of
sample clusters. As with genes, it is important to recognize that these clusters may
not be linearly separable, and therefore nonlinear techniques are likely to be more
accurate [98]. The application of these techniques may then be followed by training
a supervised classifier on the detected molecular subtypes. (Note that if a nonlinear
clustering method is used, it is necessary to ensure the appropriate nonlinear out-of-
sample extension is used to project the test samples onto the nonlinear space defined
by the training samples, as discussed in [44].)

The Partition Decoupling Method

One approach for identifying molecular subtypes at progressively finer scales with-
out imposing linearity constraints is the partition decoupling method (PDM) [26, 30].
The PDM is able to reveal relationships between samples based on multigene expres-
sion profiles without requiring that the genes be differentially expressed (i.e., without
requiring the samples to be linearly separable in the gene-expression space), as il-
lustrated in Fig 8.10, and has the power to reveal relationships between samples at
various scales, permitting the identification of phenotypic subtypes. The PDM con-
sists of two iterated components: a spectral clustering step, in which the correlations
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Fig. 8.10 Expression levels for three oscillatory yeast cell-cycle genes from two different treat-
ments: +, elutriation-synchronized samples; �, CDC-28 synchronized samples. The samples have
different amplitudes of expression oscillation, leading to a “bullseye” pattern (note that the means
for each gene in the two groups is approximately the same). Cluster assignment for each sample is
shown by color for linear k means clustering (red/black) above the diagonal, and nonlinear spectral
clustering (blue/green) below the diagonal. Note the difference in accuracy. (Image: [30])

between samples in the high-dimensional feature space are used to partition samples
into clusters, followed by a scrubbing step, in which the projection of the data onto
the cluster centroids is subtracted so that the residuals may be clustered. As part of the
spectral clustering procedure, a low-dimensional nonlinear embedding of the data
is used, both reducing the effect of noisy features and permitting the partitioning of
clusters with non-convex boundaries. The clustering and scrubbing steps are iterated
until the residuals are indistinguishable from noise as determined by comparison to
a resampled null model. This procedure yields “layers” of clusters that articulate
relationships between samples at progressively finer scales.

The PDM has a number of satisfying features. The use of spectral clustering
allows identification of clusters that are not necessarily separable by linear surfaces
(such as the “bullseye” pattern in Fig. 8.10), permitting the identification of complex
relationships between samples. This means that clusters of samples can be identified
even in situations where the genes do not exhibit differential expression, a trait that
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makes it particularly well-suited to examining gene expression profiles of complex
diseases. The PDM employs a low-dimensional embedding of the feature space,
reducing the effect of noise in the data. As the data itself is used to determine both
the optimal number of clusters and the optimal dimensionality in which the feature
space is represented, the PDM provides an entirely unsupervised method for class
discovery, without relying upon heuristics. Importantly, the use of a resampled null
model to determine the optimal dimensionality and number of clusters prevents
clustering when the geometric structure of the data is indistinguishable from chance.
By scrubbing the data and repeating the clustering on the residuals, the PDM permits
the resolution of relationships between samples at various scales; this is a particularly
useful feature in the context of gene-expression analysis, as it permits the discovery
of distinct sample types, subtypes, etc.

These features make the PDM a powerful tool for genomic data analysis. As we
demonstrated in [30] and illustrated here in Fig. 8.11, PDM detects with near-perfect
accuracy both the phenotype and exposure groups in a study of radiation response;
application to a leukemia data set with “incomplete” sample labeling demonstrated
the PDM’s ability to detect ALL subtypes simply from the expression data alone,
with higher accuracy than other algorithms.

As described in [30], the accuracy of the PDM can be applied to gene subsets
defined by pathways to identify mechanisms that permit the partitioning of pheno-
types. In Pathway-PDM, one subsets the genes by pathway, applies the PDM, and
tests whether the unsupervised PDM cluster assignments reflect the known sample
classes. Pathways that permit accurate partitioning contain genes with expression pat-
terns that distinguish the classes, and may be inferred to play a role in the underlying
biology. As the PDM does not require the pathway’s constituent genes be differen-
tially expressed, complex regulatory relationships within pathways may be detected
(such as those giving rise to the pattern seen in Fig. 8.10). It was further demonstrated
in [30] that this approach, due to its increase accuracy, is a useful meta-analytical
tool that can improve cross-study concordance, allowing more robust findings to be
culled from existing high-throughput datasets.

Network-Based Approaches

Further refinements to the analyses described here are achieved by examining the
structure of interaction networks, rather than treating pathways as simple collections
of genes. Network-based analyses fall into two broad categories: statistical analyses
of high-throughput data in the context of putative interaction networks, and the
inference of network topology from the data itself. A comprehensive introduction to
network analysis in general may be found in [99]; case studies of its application to
gene expression data are presented in [7], and a review of graph-theoretic concepts in
the context of biology is provided in [100]. Here, we discuss a number of promising
techniques.
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Fig. 8.11 Multilayered, highly accurate unsupervised class discovery using PDM. Left, two “lay-
ers” of clusters correspond to the radiation exposure (UV light, Ionizing radiation, Mock) and the
case (high-RS) group (versus three control groups) in a radiation sensitivity study. The number of
clusters in each layer is determined by the PDM itself from the data yielding three clusters in the
first layer (top left panel) and two in the second (center left panel); the resulting classification is
near-perfect discrimination of both phenotype and exposure (bottom left panel). Right, we see the
clustering for leukemia data from [64]. The PDM automatically detects three clusters; in the top
panel, comparison against the provided labels (AML/ALL) shows that the ALL group has been split
by PDM; in the lower panel, it is revealed that this corresponds to a subtype difference (ALL-B,
ALL-T ), demonstrating PDM’s ability to identify sample subtypes even when they may be unknown
or unannotated in the data. (Image: [30])

Network Statistics

To incorporate known interaction network topology with traditional pathway analy-
ses (Section “Pathway Analysis”), several approaches have been proposed. These
methods are based on gene-specific data (either the raw data itself or p-values
derived from gene-level statistical tests) overlayed on biological networks obtained
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from databases such as Pathway Interaction Database [49], KEGG [50], Reactome
[51], InnateDB [52], etc.

The relevance of network structure has long been appreciated. In [101], the authors
presented systematic mathematical analysis of the topology of metabolic networks of
43 organisms representing all three domains of life, and found that despite significant
variation in the pathway components, these networks share common mathematical
properties which enhance error-tolerance. In [102], the authors compared the lethality
of mutations in yeast with the positions of the affected protein in known pathways, and
found that the biological necessity of the protein was well modeled by its connectivity
in the network.

Based on such observations, Ideker et al. [103] proposed a method to identify
subnetworks of pathways whose genes were enriched for highly significant genes. As
the combinatorial problem of finding the maximum-scoring subnetwork is NP-hard
(and hence computationally unfeasible for large networks), the authors introduced a
simulated-annealing approximation. A related method, described in [104], searches
for genes for which differential expression is present within the subnetwork of genes
surrounding it. A more robust scoring approach improving upon [103] has recently
been proposed [105], and is implemented in R/BioConductor as BioNet [106].
These techniques may be used to indicate subsets of interactions in a pathway that
appear to be the most critical, and could be targeted in functional studies.

However, like non-network enrichment analyses (Section “Pathway Analysis”),
these network-based enrichment analyses [102–104] rely upon the constituent genes
displaying independent association with the phenotypes of interest and will fail to
capture networks in which the individual gene expressions have similar distribu-
tions but altered coexpression characteristics. As an alternative, correlation- and
co-expression-based approaches have been proposed in which the edges connecting
two interacting genes are examined in the context of the surrounding network. In
[107], the authors proposed an “activity” and “consistency” score for each interaction
in a pathway. Beginning with a list of molecule input and outputs for every interaction
in a biological pathway, Efroni et al. [107] defined the “activity” of the interaction as
the joint probability of finding the interaction’s genes in an overexpressed state and
defined the “consistency” of the interaction as the probability of overexpression in
the output conditioned on the activity of the inputs. Similarly, in ScorePAGE [108]
the similarity between each pair of genes in a pathway is computed (e.g., correla-
tion, covariance, etc.) and is averaged over the pathway weighted by the number of
reactions needed to connect the two genes.

More recently, Signaling Pathway Impact Analysis (SPIA) [109, 110] was pro-
posed. SPIA incorporates changes in gene expression with the types of interactions
and the positions of genes in a pathway, defining a “perturbation factor” for each
gene as the sum of its measured change in expression and a linear function of the
perturbation factors of all the other genes in a pathway. Compared to GSEA [55],
SPIA was found to have increased statistical power to detect altered pathways [110].
Similarly, the NetGSA method [111] also models each gene as a linear function of
other genes in the network, but in addition accounts for a gene’s baseline expression
by representing it as a latent variable in the model. Both SPIA and NetGSA have
been implemented as R BioConductor packages [13].
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Network Inference

In the methods outlined above, pathway network descriptions are obtained from
curated databases and used as a framework in which to analyze transcriptomic data at
the systems level. While this enables existing biological knowledge to be incorporated
into the analysis, it also has the drawback of presuming that the network of regulatory
relationships is accurately represented by the pathway database. A complementary
approach involves the inference of regulatory networks from the data without making
assumptions about the underlying graph. Network inference methods are thus able
to identify previously unknown relationships between genes, as well as incorporate
elements (such as microRNAs) that are not represented in pathway databases.

Inference of the underlying network structure given a set of cell states [112–120]
is a formidable task. Although some success in the reconstruction of large-scale gene
regulatory networks (GRNs) has recently been achieved in some cases [119–123], the
systematic reconstruction of large-scale networks describing regulatory function and
direct interactions of genes from expression or other data remains a major challenge in
systems biology. With the increasing feasibility of genome-wide assays, an increasing
amount of systems biology research is concerned with attempting to infer GRNs
from large scale data sets based upon correlations between expression levels under
various experimental conditions. Methods developed for this task are faced with a
fundamental difficulty: while direct regulatory relationships between genes typically
yield a high degree of correlation in their expression, the reverse is not necessarily
true. For instance, two non-interacting genes may share the same upstream regulator,
causing their expression to be correlated despite not sharing a direct link. On a global
scale, GRNs are known to be sparse, i.e., direct regulatory relationships are a small
fraction of all possible connections, but correlations can be non-vanishing between
any pair of genes.

Increasingly sophisticated techniques have been devised to tackle this difficulty
and attempt to infer the topological properties of GRNs from correlations in gene
expression [112, 119]. Prominent examples are simple thresholding techniques [118],
the use of partial correlation [116], and mutual information [113]. It should, however,
be noted that an essential drawback of these methods is the reliance on arbitrary
thresholds or related external parameters that are not defined by the system, and the
quality of inferences based on these techniques often depends sensitively on these
parameters. For instance, choosing correlation thresholds too high or too low yields
false negatives or false positives, respectively.

Reconstructed networks may also be compared across phenotypes to identify
novel interactions. In [124], the authors describe a method in which pairs of genes
connected by a common edge in the pathway network were examined for correlation
in tumor and normal gene expression data in multiple cancers. Gene–gene edges
with correlations that exceeded a threshold were kept, thus forming a correlation
network in tumors and a separate correlation network in normal cells. Differences
in the resulting correlation networks were then assessed through a permutation test,
indicating pathways with significant differences in gene correlation. (This method
could be regarded as an network based extension of [62, 125, 126].)
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Recently, these network inference techniques have played a role in reverse en-
gineering the regulatory networks of healthy human B cells [127] and chronic
lymphocytic leukemia cancer cells [128], providing a richer description of the
systems biology of blood. Because network inference approaches do not rely on
assumptions about the pathway architecture, they are exceptionally well-suited to be
applied to integrated data sets (e.g., combining both mRNA and microRNA expres-
sion data) to identify complex regulatory relationships. In a recent example, network
inference techniques have revealed how the networks of miRNAs and target genes
are reprogrammed in leukemia [129], further enriching our understanding of the
systems biology underlying healthy and diseased hematopoietic processes.

Future Directions

Today, the feasibility of genome-wide assays, along with thousands of existing se-
quenced genomes [130] and hundreds of thousands of existing expression profiles
[131] publicly available, provide exciting avenues for the investigation of develop-
mental and disease processes in blood. To fully harness the power of this information,
it is necessary not only to analyze the data at the gene-level, but also to examine it at
the systems level. Driven by the abundance of experimental data, novel computational
tools for systems-level investigations have been devised and implemented (includ-
ing pathway enrichment analyses, methods for identifying functional gene-sets, and
techniques for inferring regulatory networks), enabling a variety of complementary
analytical techniques to be applied.

At the same time, a number of significant methodological challenges remain
an area of active research, including improving the precision and accuracy of the
knowledge contained in gene and pathways annotation databases, developing more
efficient algorithms for combinatorially bound problems, and improving the robust-
ness of network analysis and enrichment techniques. Just as the analytical methods
will benefit experiment, so too will new experimental data inform methodological
advances. We expect that these mutual advances will further improve the ability
of computational and mathematical methods to model biological processes, predict
clinical and experimental outcomes, and suggest therapeutic targets.
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